
FUNCTION MANUAL

support.industry.siemens.com

PID control

11/2023Edition

SIMATIC
S7-1200, S7-1500

Introduction 1

Safety instructions 2

Principles for control 3

Configuring a software
controller 4

Using PID_Compact 5

Using PID_3Step 6

Using PID_Temp 7

Using PID basic functions 8

Auxiliary functions 9

Instructions 10

SIMATIC
S7-1200, S7-1500
PID control

Function Manual

11/2023
A5E35300227-AG

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E35300227-AG
Ⓟ 10/2023 Subject to change

Copyright © Siemens AG 2019 - 2023.
All rights reserved

Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

4

1 Introduction.. 13
1.1 Purpose, conventions and supplementary information.. 13
1.2 Guide to the Function Manuals documentation... 14
1.2.1 Information classes Function Manuals... 14
1.2.2 Basic tools.. 16
1.2.3 SIMATIC Technical Documentation.. 18

2 Safety instructions.. 20
2.1 Cybersecurity information... 20

3 Principles for control... 21
3.1 Controlled system and actuators... 21
3.2 Controlled systems... 22
3.3 Characteristic values of the control section.. 24
3.4 Pulse controller... 27
3.5 Response to setpoint changes and disturbances.. 30
3.6 Control Response at Different Feedback Structures.. 32
3.7 Selection of the controller structure for specified controlled systems................................. 39
3.8 PID parameter settings.. 40

4 Configuring a software controller.. 41
4.1 Overview of software controller.. 41
4.2 Steps for the configuration of a software controller... 43
4.3 Add technology objects... 43
4.4 Configure technology objects.. 44
4.5 Call instruction in the user program... 45
4.6 Downloading technology objects to device.. 46
4.7 Commissioning software controller... 47
4.8 Save optimized PID parameter in the project.. 47
4.9 Working with multi-instance objects.. 48
4.10 Comparing values... 50
4.10.1 Comparison display and boundary conditions.. 50
4.10.2 Comparing values... 51
4.11 Parameter view... 52
4.11.1 Introduction to the parameter view... 52

PID control
Function Manual, 11/2023, A5E35300227-AG

Table of contents

4.11.2 Structure of the parameter view.. 54
4.11.2.1 Toolbar... 54
4.11.2.2 Navigation.. 54
4.11.2.3 Parameter table.. 55
4.11.3 Opening the parameter view... 56
4.11.4 Default setting of the parameter view... 57
4.11.5 Working with the parameter view... 59
4.11.5.1 Overview.. 59
4.11.5.2 Filtering the parameter table... 59
4.11.5.3 Sorting the parameter table.. 60
4.11.5.4 Transferring parameter data to other editors... 60
4.11.5.5 Indicating errors... 61
4.11.5.6 Editing start values in the project.. 61
4.11.5.7 Status of configuration (offline).. 63
4.11.5.8 Monitoring values online in the parameter view.. 64
4.11.5.9 Change display format of value... 64
4.11.5.10 Create snapshot of monitor values.. 65
4.11.5.11 Modifying values.. 66
4.11.5.12 Comparing values... 67
4.11.5.13 Applying values from the online program as start values.. 68
4.11.5.14 Initializing setpoints in the online program.. 69
4.12 Display instance DB of a technology object.. 70

5 Using PID_Compact... 71
5.1 Technology object PID_Compact... 71
5.2 PID_Compact as of V2... 72
5.2.1 Configuring PID_Compact as of V2.. 72
5.2.1.1 Basic settings as of V2... 72
5.2.1.2 Process value settings as of V2.. 75
5.2.1.3 Advanced settings as of V2... 75
5.2.2 Commissioning PID_Compact as of V2... 86
5.2.2.1 Pretuning as of V2.. 86
5.2.2.2 Fine tuning as of V2.. 88
5.2.2.3 "Manual" mode as of V2.. 90
5.2.3 Override control with PID_Compact as of V2.. 90
5.2.4 Simulating PID_Compact as of V2 with PLCSIM.. 94
5.3 PID_Compact V1... 95
5.3.1 Configuring PID_Compact V1.. 95
5.3.1.1 Basic settings V1... 95
5.3.1.2 Process value settings V1.. 97
5.3.1.3 Advanced settings V1.. 98
5.3.2 Commissioning PID_Compact V1... 105
5.3.2.1 Commissioning V1.. 105
5.3.2.2 Pretuning V1... 106
5.3.2.3 Fine tuning V1.. 107
5.3.2.4 "Manual" mode V1.. 109
5.3.3 Simulating PID_Compact V1 with PLCSIM.. 110

PID control
Function Manual, 11/2023, A5E35300227-AG 5

Table of contents

6 Using PID_3Step.. 111
6.1 Technology object PID_3Step.. 111
6.2 PID_3Step V2.. 112
6.2.1 Configuring PID_3Step V2... 112
6.2.1.1 Basic settings V2... 112
6.2.1.2 Process value settings V2.. 116
6.2.1.3 Actuator settings V2... 116
6.2.1.4 Advanced settings V2.. 119
6.2.2 Commissioning PID_3Step V2.. 123
6.2.2.1 Pretuning V2... 123
6.2.2.2 Fine tuning V2.. 124
6.2.2.3 Commissioning with manual PID parameters V2.. 125
6.2.2.4 Measuring the motor transition time V2.. 126
6.2.3 Simulating PID_3Step V2 with PLCSIM... 128
6.3 PID_3Step V1.. 129
6.3.1 Configuring PID_3Step V1... 129
6.3.1.1 Basic settings V1... 129
6.3.1.2 Process value settings V1.. 133
6.3.1.3 Actuator settings V1... 134
6.3.1.4 Advanced settings V1.. 136
6.3.2 Commissioning PID_3Step V1.. 139
6.3.2.1 Commissioning V1.. 139
6.3.2.2 Pretuning V1... 140
6.3.2.3 Fine tuning V1.. 141
6.3.2.4 Commissioning with manual PID parameters V1.. 142
6.3.2.5 Measuring the motor transition time V1.. 143
6.3.3 Simulating PID_3Step V1 with PLCSIM... 145

7 Using PID_Temp.. 146
7.1 Technology object PID_Temp.. 146
7.2 Configuring PID_Temp.. 147
7.2.1 Basic settings.. 147
7.2.1.1 Introduction... 147
7.2.1.2 Controller type.. 148
7.2.1.3 Setpoint.. 148
7.2.1.4 Process value.. 149
7.2.1.5 Heating and cooling output value... 149
7.2.1.6 Cascade.. 151
7.2.2 Process value settings... 152
7.2.2.1 Process value limits... 152
7.2.2.2 Process value scaling... 152
7.2.3 Output settings... 153
7.2.3.1 Basic settings of output... 153
7.2.3.2 Output value limits and scaling... 155
7.2.4 Advanced settings.. 158
7.2.4.1 Process value monitoring.. 158
7.2.4.2 PWM limits... 159

6

Table of contents

PID control
Function Manual, 11/2023, A5E35300227-AG

7.2.4.3 PID parameters... 161
7.3 Commissioning PID_Temp... 168
7.3.1 Commissioning... 168
7.3.2 Pretuning... 169
7.3.3 Fine tuning... 171
7.3.4 "Manual" mode... 175
7.3.5 Substitute setpoint.. 176
7.3.6 Cascade commissioning.. 177
7.4 Cascade control with PID_Temp.. 177
7.4.1 Introduction... 177
7.4.2 Program creation.. 179
7.4.3 Configuration... 180
7.4.4 Commissioning... 181
7.4.5 Substitute setpoint.. 182
7.4.6 Operating modes and fault response... 183
7.5 Multi-zone controlling with PID_Temp... 183
7.6 Override control with PID_Temp.. 186
7.7 Simulating PID_Temp with PLCSIM.. 189

8 Using PID basic functions... 190
8.1 CONT_C.. 190
8.1.1 Technology object CONT_C... 190
8.1.2 Configure controller difference CONT_C.. 190
8.1.3 Configure the controller algorithm CONT_C... 191
8.1.4 Configure the output value CONT_C.. 192
8.1.5 Programming a pulse controller.. 193
8.1.6 Commissioning CONT_C... 193
8.2 CONT_S.. 194
8.2.1 Technology object CONT_S... 194
8.2.2 Configure controller difference CONT_S.. 194
8.2.3 Configuring control algorithm CONT_S.. 195
8.2.4 Configure manipulated value CONT_S... 195
8.2.5 Commissioning CONT_S.. 196
8.3 TCONT_CP.. 197
8.3.1 Technology object TCONT_CP... 197
8.3.2 Configure TCONT_CP.. 197
8.3.2.1 Controller difference... 197
8.3.2.2 Controlling algorithm.. 198
8.3.2.3 Manipulated value continual controller... 200
8.3.2.4 Manipulated value pulse controller.. 201
8.3.3 Commissioning TCONT_CP.. 203
8.3.3.1 Optimization of TCONT_CP.. 203
8.3.3.2 Requirements for an optimization... 205
8.3.3.3 Possibilities for optimization.. 207
8.3.3.4 Tuning result.. 209
8.3.3.5 Parallel tuning of controller channels.. 210

PID control
Function Manual, 11/2023, A5E35300227-AG 7

Table of contents

8.3.3.6 Fault descriptions and corrective measures.. 211
8.3.3.7 Performing pretuning... 214
8.3.3.8 Performing fine tuning.. 214
8.3.3.9 Cancelling pretuning or fine tuning... 215
8.3.3.10 Manual fine-tuning in control mode.. 215
8.3.3.11 Performing fine tuning manually... 216
8.4 TCONT_S.. 217
8.4.1 Technology object TCONT_S... 217
8.4.2 Configure controller difference TCONT_S.. 217
8.4.3 Configure controller algorithm TCONT_S... 218
8.4.4 Configure manipulated value TCONT_S... 219
8.4.5 Commissioning TCONT_S.. 219

9 Auxiliary functions.. 220
9.1 Polyline.. 220
9.2 SplitRange.. 220
9.3 RampFunction.. 221
9.4 RampSoak.. 221
9.5 Filter_PT1... 222
9.6 Filter_PT2... 222
9.7 Filter_DT1... 223
9.8 Filter_Universal... 223

10 Instructions... 224
10.1 PID_Compact.. 224
10.1.1 New features of PID_Compact... 224
10.1.2 Compatibility with CPU and FW... 227
10.1.3 CPU processing time and memory requirement PID_Compact as of V2............................... 228
10.1.4 PID_Compact as of V2... 229
10.1.4.1 Description of PID_Compact V3... 229
10.1.4.2 Description of PID_Compact V2... 233
10.1.4.3 PID_Compact as of V2 operating principle... 236
10.1.4.4 Input parameters of PID_Compact as of V2.. 238
10.1.4.5 Output parameters of PID_Compact as of V2... 239
10.1.4.6 In/out parameter of PID_Compact as of V2... 240
10.1.4.7 Static tags of PID_Compact as of V2... 241
10.1.4.8 Changing the interface of PID_Compact as of V2... 250
10.1.4.9 State and Mode as of V2 parameters... 252
10.1.4.10 ErrorBits as of V2 parameter.. 255
10.1.4.11 ActivateRecoverMode tag as of V2.. 257
10.1.4.12 Warning tag as of V2... 258
10.1.4.13 Tag IntegralResetMode as of V2.. 259
10.1.4.14 Example program for PID_Compact V2.. 260
10.1.5 PID_Compact V1... 266
10.1.5.1 Description of PID_Compact V1... 266
10.1.5.2 Input parameters of PID_Compact V1.. 269
10.1.5.3 Output parameters of PID_Compact V1... 270
10.1.5.4 Static tags of PID_Compact V1... 271

8

Table of contents

PID control
Function Manual, 11/2023, A5E35300227-AG

10.1.5.5 Parameters State and sRet.i_Mode V1.. 275
10.1.5.6 Parameter Error V1... 277
10.1.5.7 Reset V1 parameter... 278
10.1.5.8 Tag sd_warning V1... 279
10.1.5.9 Tag i_Event_SUT V1.. 280
10.1.5.10 Tag i_Event_TIR V1.. 280
10.2 PID_3Step... 281
10.2.1 New features of PID_3Step.. 281
10.2.2 Compatibility with CPU and FW .. 282
10.2.3 CPU processing time and memory requirement PID_3Step V2.x... 284
10.2.4 PID_3Step V2.. 285
10.2.4.1 Description of PID_3Step V2.. 285
10.2.4.2 Mode of operation of PID_3Step V2... 290
10.2.4.3 Changing the PID_3Step V2 interface.. 293
10.2.4.4 Input parameters of PID_3Step V2... 293
10.2.4.5 Output parameters of PID_3Step V2.. 295
10.2.4.6 In/out parameters of PID-3Step V2... 296
10.2.4.7 Static tags of PID_3Step V2... 297
10.2.4.8 State and Mode V2 parameters... 305
10.2.4.9 ErrorBits V2 parameter.. 310
10.2.4.10 Tag ActivateRecoverMode V2.. 312
10.2.4.11 Tag Warning V2.. 314
10.2.5 PID_3Step V1.. 315
10.2.5.1 Description PID_3Step V1.. 315
10.2.5.2 Operating principle PID_3Step V1.. 319
10.2.5.3 PID_3Step V1 input parameters .. 322
10.2.5.4 PID_3Step V1 output parameters .. 323
10.2.5.5 PID_3Step V1 static tags.. 325
10.2.5.6 State and Retain.Mode V1 parameters... 332
10.2.5.7 Parameter ErrorBits V1.. 338
10.2.5.8 Reset V1 parameter... 339
10.2.5.9 Tag ActivateRecoverMode V1.. 340
10.2.5.10 Tag Warning V1.. 341
10.2.5.11 Tag SUT.State V1.. 342
10.2.5.12 Tag TIR.State V1.. 342
10.3 PID_Temp... 343
10.3.1 New features of PID_Temp.. 343
10.3.2 Compatibility with CPU and FW... 343
10.3.3 CPU processing time and memory requirement PID_Temp V1.. 344
10.3.4 PID_Temp... 345
10.3.4.1 Description of PID_Temp... 345
10.3.4.2 Mode of operation of PID_Temp.. 349
10.3.4.3 Input parameters of PID_Temp.. 354
10.3.4.4 Output parameters of PID_Temp... 356
10.3.4.5 In/out parameters of PID_Temp V2.. 357
10.3.4.6 PID_Temp static tags... 359
10.3.4.7 PID_Temp state and mode parameters.. 383
10.3.4.8 PID_Temp ErrorBits parameter... 389
10.3.4.9 PID_Temp ActivateRecoverMode tag... 392
10.3.4.10 PID_Temp Warning tag.. 393
10.3.4.11 PwmPeriode tag.. 394

PID control
Function Manual, 11/2023, A5E35300227-AG 9

Table of contents

10.3.4.12 IntegralResetMode tag.. 396
10.4 PID basic functions.. 398
10.4.1 CONT_C.. 398
10.4.1.1 Description CONT_C.. 398
10.4.1.2 How CONT_C works.. 399
10.4.1.3 CONT_C block diagram... 400
10.4.1.4 Input parameter CONT_C.. 401
10.4.1.5 Output parameters CONT_C.. 402
10.4.2 CONT_S.. 403
10.4.2.1 Description CONT_S.. 403
10.4.2.2 Mode of operation CONT_S... 403
10.4.2.3 Block diagram CONT_S.. 405
10.4.2.4 Input parameters CONT_S... 406
10.4.2.5 Output parameters CONT_S.. 407
10.4.3 PULSEGEN.. 408
10.4.3.1 Description PULSEGEN.. 408
10.4.3.2 Mode of operation PULSEGEN... 409
10.4.3.3 Mode of operation PULSEGEN... 412
10.4.3.4 Three-step control.. 412
10.4.3.5 Two-step control... 414
10.4.3.6 Input parameters PULSEGEN... 415
10.4.3.7 Output parameter PULSEGEN.. 416
10.4.4 TCONT_CP.. 416
10.4.4.1 Description TCONT_CP.. 416
10.4.4.2 Mode of operation TCONT_CP... 417
10.4.4.3 Operating principle of the pulse generator.. 426
10.4.4.4 Block diagram TCONT_CP.. 429
10.4.4.5 Input parameters TCONT_CP... 430
10.4.4.6 Output parameters TCONT_CP.. 431
10.4.4.7 In/out parameters TCONT_CP.. 431
10.4.4.8 Static variables TCONT_CP... 432
10.4.4.9 Parameter STATUS_H.. 436
10.4.4.10 Parameters STATUS_D... 437
10.4.5 TCONT_S.. 438
10.4.5.1 Description TCONT_S.. 438
10.4.5.2 Mode of operation TCONT_S... 439
10.4.5.3 Block diagram TCONT_S.. 443
10.4.5.4 Input paramters TCONT_S... 444
10.4.5.5 Output parameters TCONT_S.. 445
10.4.5.6 In/out parameters TCONT_S.. 445
10.4.5.7 Static variables TCONT_S... 445
10.4.6 Integrated system functions.. 447
10.4.6.1 CONT_C_SF... 447
10.4.6.2 CONT_S_SF... 447
10.4.6.3 PULSEGEN_SF... 448
10.5 Polyline.. 448
10.5.1 Compatibility with CPU and FW... 448
10.5.2 Description Polyline.. 449
10.5.3 Operating principle Polyline.. 451
10.5.4 Input parameters of Polyline... 454
10.5.5 Output parameters of Polyline... 454

10

Table of contents

PID control
Function Manual, 11/2023, A5E35300227-AG

10.5.6 Static tags of Polyline.. 455
10.5.7 ErrorBits parameter... 456
10.6 SplitRange.. 459
10.6.1 Compatibility with CPU and FW... 459
10.6.2 SplitRange description.. 459
10.6.3 SplitRange input parameters... 462
10.6.4 SplitRange output parameters... 462
10.6.5 SplitRange static tags.. 462
10.6.6 ErrorBits parameter... 463
10.7 RampFunction.. 464
10.7.1 Compatibility with CPU and FW... 464
10.7.2 RampFunction description... 465
10.7.3 RampFunction mode of operation... 469
10.7.4 RampFunction input parameters... 472
10.7.5 RampFunction output parameters... 472
10.7.6 RampFunction static tags.. 473
10.7.7 ErrorBits parameter... 474
10.8 RampSoak.. 477
10.8.1 Compatibility with CPU and FW... 477
10.8.2 Description of RampSoak.. 477
10.8.3 Operating principle RampSoak.. 479
10.8.3.1 Configuring and validating profile data.. 479
10.8.3.2 Executing a profile.. 481
10.8.3.3 Configuring the starting behavior - static tag StartMode.. 486
10.8.3.4 Configuring the stopping behavior - static tag StopMode... 489
10.8.3.5 Measuring the cycle time.. 491
10.8.3.6 Enable behavior EN/ENO... 492
10.8.4 Input parameter RampSoak... 492
10.8.5 Output parameter RampSoak.. 493
10.8.6 In-out parameter RampSoak.. 493
10.8.7 Static tags RampSoak.. 494
10.8.8 ErrorBits parameter... 496
10.9 Filter_PT1... 500
10.9.1 Compatibility with CPU and FW... 500
10.9.2 Description of Filter_PT1... 500
10.9.3 Operating principle Filter_PT1... 506
10.9.4 Input parameter Filter_PT1.. 508
10.9.5 Output parameter Filter_PT1... 508
10.9.6 Static tags Filter_PT1... 508
10.9.7 ErrorBits parameter... 509
10.10 Filter_PT2... 512
10.10.1 Compatibility with CPU and FW... 512
10.10.2 Description of Filter_PT2... 513
10.10.3 Operating principle Filter_PT2... 519
10.10.4 Input parameter Filter_PT2.. 521
10.10.5 Output parameter Filter_PT2... 521
10.10.6 Static tags Filter_PT2... 521
10.10.7 ErrorBits parameter... 522
10.11 Filter_DT1... 525

PID control
Function Manual, 11/2023, A5E35300227-AG 11

Table of contents

10.11.1 Compatibility with CPU and FW... 525
10.11.2 Description of Filter_DT1... 526
10.11.3 Operating principle Filter_DT1... 533
10.11.4 Input parameter Filter_DT1... 534
10.11.5 Output parameter Filter_DT1.. 534
10.11.6 Static tags Filter_DT1.. 535
10.11.7 ErrorBits parameter... 536
10.12 Filter_Universal... 539
10.12.1 Compatibility with CPU and FW... 539
10.12.2 Description Filter_Universal... 539
10.12.3 Operating principle Filter_Universal... 541
10.12.3.1 Filter parameters.. 541
10.12.3.2 Initializing output values... 546
10.12.3.3 Final value in steady state... 548
10.12.3.4 Use in time-critical applications... 549
10.12.3.5 Call environment and automatic detection of the cycle time.. 549
10.12.3.6 Reset response.. 550
10.12.3.7 Enable behavior EN/ENO... 550
10.12.4 Input parameter Filter_Universal... 550
10.12.5 Output parameter Filter_Universal.. 551
10.12.6 Static tags Filter_Universal.. 551
10.12.7 ErrorBits parameter... 553

Index... 557

12

Table of contents

PID control
Function Manual, 11/2023, A5E35300227-AG

Introduction 1
1.1 Purpose, conventions and supplementary information

Purpose of the documentation
This documentation will support you in configuring and programming control tasks with the
S7-1200 and S7-1500 automation systems.

Basic knowledge required
The following knowledge is required in order to understand the documentation:
• General knowledge of automation technology
• Knowledge of the industrial automation system SIMATIC
• Experience of working with STEP 7 (TIA Portal)

Scope of the documentation
This documentation applies to the use of SW controllers on the CPUs of automation systems
S7-1200 and S7-1500 together with STEP 7 (TIA Portal). Additional SW controllers that are not
covered in this documentation are available for the use of S7-300 and S7-400 with STEP 7
(TIA Portal). Section Overview of software controller (Page 41) gives a complete overview of
all SW controllers in STEP 7 (TIA Portal) and their possible applications.

Conventions
Observe notes marked as follows:

NOTE
The notes contain important information on the product described in the documentation, on
the handling of the product or on part of the documentation to which particular attention
should be paid.

Industry Mall
The Industry Mall is the Siemens AG catalog and ordering system for automation and drive
solutions based on Totally Integrated Automation (TIA) and Totally Integrated Power (TIP).
Catalogs for all automation and drive technology products can be found on the Internet
(https://mall.industry.siemens.com).

13
PID control
Function Manual, 11/2023, A5E35300227-AG

https://mall.industry.siemens.com

See also

Topic page "SIMATIC Technology - PID Control: Overview and important links"
https://support.industry.siemens.com/cs/ww/en/view/109751051
(https://support.industry.siemens.com/cs/ww/en/view/109751051)

1.2 Guide to the Function Manuals documentation

1.2.1 Information classes Function Manuals
The documentation for the SIMATIC S7‑1500 automation system, for the 1513/1516pro-2 PN,
SIMATIC Drive Controller CPUs based on SIMATIC S7‑1500 and the SIMATIC ET 200MP,
ET 200SP, ET 200AL and ET 200eco PN distributed I/O systems is arranged into three areas.
This arrangement enables you to access the specific content you require.
You can download the documentation free of charge from the Internet
(https://support.industry.siemens.com/cs/ww/en/view/109742705).

Basic information
The system manuals and Getting Started describe in detail the configuration, installation,
wiring and commissioning of the SIMATIC S7‑1500, SIMATIC Drive Controller, ET 200MP,
ET 200SP, ET 200AL and ET 200eco PN systems. Use the corresponding operating instructions
for 1513/1516pro-2 PN CPUs.
The STEP 7 online help supports you in the configuration and programming.
Examples:
• Getting Started S7-1500
• System manuals
• Operating instructions ET 200pro and 1516pro-2 PN CPU
• Online help TIA Portal

Device information
Equipment manuals contain a compact description of the module-specific information, such
as properties, wiring diagrams, characteristics and technical specifications.
Examples:
• Equipment manuals for CPUs
• Equipment manuals for interface modules
• Equipment manuals for digital modules
• Equipment manuals for analog modules
• Equipment manuals for communication modules
• Equipment manuals for technology modules
• Equipment manuals for power supply modules
• Equipment manuals for BaseUnits

14
PID control

Function Manual, 11/2023, A5E35300227-AG

Introduction
1.2 Guide to the Function Manuals documentation

https://support.industry.siemens.com/cs/ww/en/view/109751051
https://support.industry.siemens.com/cs/ww/en/view/109742705

General information
The function manuals contain detailed descriptions on general topics relating to the
SIMATIC Drive Controller and the S7-1500 automation system.
Examples:
• Function Manual Diagnostics
• Function Manual Communication
• Function Manuals Motion Control
• Function Manual Web Server
• Function Manual Cycle and Response Times
• PROFINET Function Manual
• PROFIBUS Function Manual

Product Information
Changes and supplements to the manuals are documented in a Product Information. The
Product Information takes precedence over the device and system manuals.
You will find the latest Product Information on the Internet:
• S7-1500/ET 200MP (https://support.industry.siemens.com/cs/de/en/view/68052815)
• SIMATIC Drive Controller

(https://support.industry.siemens.com/cs/de/en/view/109772684/en)
• Motion Control (https://support.industry.siemens.com/cs/de/en/view/109794046/en)
• ET 200SP (https://support.industry.siemens.com/cs/de/en/view/73021864)
• ET 200eco PN (https://support.industry.siemens.com/cs/ww/en/view/109765611)

Manual Collections
The Manual Collections contain the complete documentation of the systems put together in
one file.
You will find the Manual Collections on the Internet:
• S7-1500/ET 200MP/SIMATIC Drive Controller

(https://support.industry.siemens.com/cs/ww/en/view/86140384)
• ET 200SP (https://support.industry.siemens.com/cs/ww/en/view/84133942)
• ET 200AL (https://support.industry.siemens.com/cs/ww/en/view/95242965)
• ET 200eco PN (https://support.industry.siemens.com/cs/ww/en/view/109781058)

15

Introduction
1.2 Guide to the Function Manuals documentation

PID control
Function Manual, 11/2023, A5E35300227-AG

https://support.industry.siemens.com/cs/de/en/view/68052815
https://support.industry.siemens.com/cs/de/en/view/109772684/en
https://support.industry.siemens.com/cs/de/en/view/109794046/en
https://support.industry.siemens.com/cs/de/en/view/73021864
https://support.industry.siemens.com/cs/ww/en/view/109765611
https://support.industry.siemens.com/cs/ww/en/view/86140384
https://support.industry.siemens.com/cs/ww/en/view/84133942
https://support.industry.siemens.com/cs/ww/en/view/95242965
https://support.industry.siemens.com/cs/ww/en/view/109781058

1.2.2 Basic tools

Tools
The tools described below support you in all steps: from planning, over commissioning, all
the way to analysis of your system.

TIA Selection Tool
The TIA Selection Tool tool supports you in the selection, configuration, and ordering of
devices for Totally Integrated Automation (TIA).
As successor of the SIMATIC Selection Tools , the TIA Selection Tool assembles the already
known configurators for automation technology into a single tool.
With the TIA Selection Tool , you can generate a complete order list from your product
selection or product configuration.
You can find the TIA Selection Tool on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/109767888)

SIMATIC Automation Tool
You can use the SIMATIC Automation Tool to perform commissioning and maintenance
activities on various SIMATIC S7 stations as bulk operations independent of TIA Portal.
The SIMATIC Automation Tool offers a wide range of functions:
• Scanning of a PROFINET/Ethernet system network and identification of all connected CPUs
• Assignment of addresses (IP, subnet, Gateway) and device name (PROFINET device) to a

CPU
• Transfer of the date and the programming device/PC time converted to UTC time to the

module
• Program download to CPU
• RUN/STOP mode switchover
• CPU localization through LED flashing
• Reading out of CPU error information
• Reading the CPU diagnostic buffer
• Reset to factory settings
• Firmware update of the CPU and connected modules
You can find the SIMATIC Automation Tool on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/98161300)

16
PID control

Function Manual, 11/2023, A5E35300227-AG

Introduction
1.2 Guide to the Function Manuals documentation

https://support.industry.siemens.com/cs/ww/en/view/109767888
https://support.industry.siemens.com/cs/ww/en/view/98161300

PRONETA
SIEMENS PRONETA (PROFINET network analysis) is a commissioning and diagnostic tool for
PROFINET networks. PRONETA Basic has two core functions:
• In the network analysis, you get an overview of the PROFINET topology. Compare a real

configuration with a reference installation or make simple parameter changes, e.g. to the
names and IP addresses of the devices.

• The "IO test" is a simple and rapid test of the wiring and the module configuration of a
plant, including documentation of the test results.

You can find SIEMENS PRONETA Basic on the Internet:
(https://support.industry.siemens.com/cs/ww/en/view/67460624)
SIEMENS PRONETA Professional is a licensed product that offers you additional functions. It
offers you simple asset management in PROFINET networks and supports operators of
automation systems in automatic data collection/acquisition of the components used through
various functions:
• The user interface (API) offers an access point to the automation cell to automate the scan

functions using MQTT or a command line.
• With PROFIenergy diagnostics, you can quickly detect the current pause mode or the

readiness for operation of devices that support PROFIenergy and change these as needed.
• The data record wizard supports PROFINET developers in reading and writing acyclic

PROFINET data records quickly and easily without PLC and engineering.
You can find SIEMENS PRONETA Professional on the Internet.
(https://www.siemens.com/proneta-professional)

SINETPLAN
SINETPLAN, the Siemens Network Planner, supports you in planning automation systems and
networks based on PROFINET. The tool facilitates professional and predictive dimensioning of
your PROFINET installation as early as in the planning stage. In addition, SINETPLAN supports
you during network optimization and helps you to exploit network resources optimally and to
plan reserves. This helps to prevent problems in commissioning or failures during productive
operation even in advance of a planned operation. This increases the availability of the
production plant and helps improve operational safety.
The advantages at a glance
• Network optimization thanks to port-specific calculation of the network load
• Increased production availability thanks to online scan and verification of existing systems
• Transparency before commissioning through importing and simulation of existing STEP 7

projects
• Efficiency through securing existing investments in the long term and the optimal use of

resources
You can find SINETPLAN on the Internet
(https://new.siemens.com/global/en/products/automation/industrial-
communication/profinet/sinetplan.html).

17

Introduction
1.2 Guide to the Function Manuals documentation

PID control
Function Manual, 11/2023, A5E35300227-AG

https://support.industry.siemens.com/cs/ww/en/view/67460624
https://www.siemens.com/proneta-professional
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html

1.2.3 SIMATIC Technical Documentation
Additional SIMATIC documents will complete your information. You can find these
documents and their use at the following links and QR codes.
The Industry Online Support gives you the option to get information on all topics. Application
examples support you in solving your automation tasks.

Overview of the SIMATIC Technical Documentation
Here you will find an overview of the SIMATIC documentation available in Siemens Industry
Online Support:

Industry Online Support International
(https://support.industry.siemens.com/cs/ww/en/view/109742705)

Watch this short video to find out where you can find the overview directly in Siemens
Industry Online Support and how to use Siemens Industry Online Support on your mobile
device:

Quick introduction to the technical documentation of automation products per
video (https://support.industry.siemens.com/cs/us/en/view/109780491)

YouTube video: Siemens Automation Products - Technical Documentation at a
Glance (https://youtu.be/TwLSxxRQQsA)

Retention of the documentation
Retain the documentation for later use.
For documentation provided in digital form:
1. Download the associated documentation after receiving your product and before initial

installation/commissioning. Use the following download options:
– Industry Online Support International: (https://support.industry.siemens.com)

The article number is used to assign the documentation to the product. The article
number is specified on the product and on the packaging label. Products with new,
non-compatible functions are provided with a new article number and documentation.

– ID link:
Your product may have an ID link. The ID link is a QR code with a frame and a black
frame corner at the bottom right. The ID link takes you to the digital nameplate of your
product. Scan the QR code on the product or on the packaging label with a smartphone
camera, barcode scanner, or reader app. Call up the ID link.

2. Retain this version of the documentation.

18
PID control

Function Manual, 11/2023, A5E35300227-AG

Introduction
1.2 Guide to the Function Manuals documentation

https://support.industry.siemens.com/cs/ww/en/view/109742705
https://support.industry.siemens.com/cs/us/en/view/109780491
https://youtu.be/TwLSxxRQQsA
https://support.industry.siemens.com

Updating the documentation
The documentation of the product is updated in digital form. In particular in the case of
function extensions, the new performance features are provided in an updated version.
1. Download the current version as described above via the Industry Online Support or the ID

link.
2. Also retain this version of the documentation.

mySupport
With "mySupport" you can get the most out of your Industry Online Support.

Registration You must register once to use the full functionality of "mySupport". After registra
tion, you can create filters, favorites and tabs in your personal workspace.

Support requests Your data is already filled out in support requests, and you can get an overview of
your current requests at any time.

Documentation In the Documentation area you can build your personal library.

Favorites You can use the "Add to mySupport favorites" to flag especially interesting or fre
quently needed content. Under "Favorites", you will find a list of your flagged
entries.

Recently viewed
articles

The most recently viewed pages in mySupport are available under "Recently viewed
articles".

CAx data The CAx data area gives you access to the latest product data for your CAx or CAe
system. You configure your own download package with a few clicks:
• Product images, 2D dimension drawings, 3D models, internal circuit diagrams,

EPLAN macro files
• Manuals, characteristics, operating manuals, certificates
• Product master data

You can find "mySupport" on the Internet. (https://support.industry.siemens.com/My/ww/en)

Application examples
The application examples support you with various tools and examples for solving your
automation tasks. Solutions are shown in interplay with multiple components in the system -
separated from the focus on individual products.
You can find the application examples on the Internet.
(https://support.industry.siemens.com/cs/ww/en/ps/ae)

19

Introduction
1.2 Guide to the Function Manuals documentation

PID control
Function Manual, 11/2023, A5E35300227-AG

https://support.industry.siemens.com/My/ww/en
https://support.industry.siemens.com/cs/ww/en/ps/ae

PID control
Function Manual, 11/2023, A5E35300227-AG20

Safety instructions 2
2.1 Cybersecurity information

Siemens provides products and solutions with industrial cybersecurity functions that support
the secure operation of plants, systems, machines, and networks.
In order to protect plants, systems, machines, and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
cybersecurity concept. Siemens’ products and solutions constitute one element of such a
concept.
Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.
For more information on protective industrial cybersecurity measures for implementation,
please visit (https://www.siemens.com/global/en/products/automation/topic-areas/industrial-
cybersecurity.html).
Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure to
cyber threats.
To stay informed about product updates at all times, subscribe to the Siemens Industrial
Cybersecurity RSS Feed under
(https://new.siemens.com/global/en/products/services/cert.html).

https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://new.siemens.com/global/en/products/services/cert.html

Principles for control 3
3.1 Controlled system and actuators

Controlled system
Room temperature control by means of a heating system is a simple example of a controlled
system. A sensor measures the room temperature and transfers the value to a controller. The
controller compares the current room temperature with a setpoint and calculates an output
value (manipulated variable) for heating control.

A properly set PID controller reaches this setpoint as quickly as possible and then holds it a
constant value. After a change in the output value, the process value often changes only with
a time delay. The controller has to compensate for this response.

Actuators
The actuator is an element of the controlled system and is influenced by the controller. Its
function modifies mass and energy flows.
The table below provides an overview of actuator applications.

Application Actuator
Liquid and gaseous mass flow Valve, shutter, gate valve

Solid mass flow, e.g., bulk material Articulated baffle, conveyor, vibrator channel

Switching contact, contactor, relay, thyristorFlow of electrical power

Variable resistor, variable transformer, transistor

Actuators are distinguished as follows:
• Proportional actuators with constant actuating signal

These elements set degrees of opening, angular positions or positions in proportion to the
output value. The output value has an analog effect on the process within the control
range.
Actuators in this group include spring-loaded pneumatic drives, as well as motorized
drives with position feedback for which a position control system is formed.
An continuous controller, such as PID_Compact, generates the output value.

21
PID control
Function Manual, 11/2023, A5E35300227-AG

• Proportional actuators with pulse-width modulated signal
These actuators are used to generate the output of pulses with a length proportional to
the output value within the sampling time intervals. The actuator - e.g. a heating resistor
or cooling apparatus - is switched on in isochronous mode for durations that differ
depending on the output value.
The actuating signal can assume unipolar "On" or "Off" states, or represent bipolar states
such as "open/close", "forward/backward", "accelerate/brake".
The output value is generated by a two-step controller such as PID_Compact with pulse-
width modulation.

• Actuators with integral action and three-step actuating signal
Actuators are frequently operated by motors with an on period that is proportional to the
actuator travel of the choke element. This includes elements such as valves, shutters, and
gate valves. In spite of their different design, all of these actuators follow the effect of an
integral action at the input of the controlled system.
A step controller, such as PID_3Step. generates the output value.

3.2 Controlled systems
The properties of a controlled system can hardly be influenced as these are determined by the
technical requirements of the process and machinery. Acceptable control results can only be
achieved by selecting a suitable controller type for the specific controlled system and
adapting the controller to the time response of the controlled system. Therefore, it is
indispensable for the configuration of the proportional, integral and derivative actions of the
controller to have precise knowledge of the type and parameters of the controlled system.

Controlled system types
Controlled systems are classified based on their time response to step changes of the output
value.
We distinguish between the following controlled systems:
• Self-regulating controlled systems

– Proportional-action controlled systems
– PT1 controlled systems
– PT2 controlled systems

• Non-self-regulating controlled systems
• Controlled systems with and without dead time

22
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.2 Controlled systems

Self-regulating controlled systems
Proportional-action controlled systems
In proportional-action controlled systems, the process value follows the output value almost
immediately. The ratio between the process value and output value is defined by the
proportional Gain of the controlled system.
Examples:
• Gate valve in a piping system
• Voltage dividers
• Step-down function in hydraulic systems
PT1 controlled systems
In a PT1 controlled system, the process value initially changes in proportion to the change of
the output value. The rate of change of the process value is reduced as a function of the time
until the end value is reached, i.e., it is delayed.
Examples:
• Spring damping system
• Charge of RC elements
• Water container that is heated with steam.
The time constants are often identical for heating and cooling processes, or for charging and
discharge characteristics. With different time constants, controlling is clearly more complex.
PT2 controlled systems
In a PT2 controlled system, the process value does not immediately follow a step change of
the output value, i.e., it increases in proportion to the positive rate of rise and then
approaches the setpoint at a decreasing rate of rise. The controlled system shows a
proportional response characteristic with second order delay element.
Examples:
• Pressure control
• Flow rate control
• Temperature control

Non-self-regulating controlled systems
Non-self-regulating controlled systems have an integral response. The process value
approaches an infinite maximum value.
Example:
• Liquid flow into a container

Controlled systems with dead time
A dead time always represents the runtime or transport time that has to expire before a
change to the system input can be measured at the system output.
In controlled systems with dead time, the process value change is delayed by the amount of
the dead time.
Example:
• Conveyor

23

Principles for control
3.2 Controlled systems

PID control
Function Manual, 11/2023, A5E35300227-AG

3.3 Characteristic values of the control section

Determining the time response from the step response
Time response of the controlled system can be determined based on the time characteristic of
process value x following a step change of output value y. Most controlled systems are self-
regulating controlled systems.

The time response can be determined by approximation using the variables Delay time Tu,
Recovery time Tg and Maximum value Xmax. The variables are determined by applying
tangents to the maximum value and the inflection point of the step response. In many
situations, it is not possible to record the response characteristic up to the maximum value
because the process value cannot exceed specific values. In this case, the rate of rise vmax is
used to identify the controlled system (vmax = Δx/Δt).

24
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.3 Characteristic values of the control section

The controllability of the controlled system can be estimated based on the ratio Tu/Tg, or Tu ×
vmax/Xmax . Rule:

Process type Tu / Tg Suitability of the controlled system for controlling
I < 0.1 can be controlled well

II 0.1 to 0.3 can still be controlled

III > 0.3 difficult to control

Influence of the dead time on the controllability of a controlled system
A controlled system with dead time and recovery reacts as follows to a jump of the output
value.

Tt Dead time
Tu Delay time
Tg Recovery time
y Output value
x Process value

The controllability of a self-regulating controlled system with dead time is determined by the
ratio of Tt to Tg. Tt must be small compared to Tg. Rule:
Tt/Tg ≤ 1

Response rate of controlled systems
Controlled systems can be judged on the basis of the following values:
Tu < 0.5 min, Tg < 5 min = fast controlled system
Tu > 0.5 min, Tg > 5 min = slow controlled system

25

Principles for control
3.3 Characteristic values of the control section

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters of certain controlled systems

Physical
quantity

Controlled system Delay time Tu Recovery time Tg Rate of rise vmax

Small electrically heated furnace 0.5 to 1 min 5 to 15 min Up to 60 K/min.

Large electrically heated annealing furnace 1 to 5 min 10 to 20 min Up to 20 K/min.

Large gas-heated annealing furnace 0.2 to 5 min 3 to 60 min 1 to 30 K/min

Distillation tower 1 to 7 min 40 to 60 min 0.1 to 0.5° C/s

Autoclaves (2.5 m3) 0.5 to 0.7 min 10 to 20 min Not specified

High-pressure autoclaves 12 to 15 min 200 to 300 min Not specified

Steam superheater 30 s to 2.5 min 1 to 4 min 2°C/s

Injection molding machines 0.5 to 3 min 3 to 30 min 5 to 20 K/min

Extruders 1 to 6 min 5 to 60 min

Packaging machines 0.5 to 4 min 3 to 40 min 2 to 35 K/min

Temperature

Room heating 1 to 5 min 10 to 60 min 1° C/min

Pipeline with gas 0 to 5 s 0.2 to 10 sFlow rate

Pipeline with liquid None None

Not relevant

Gas pipeline None 0.1 s Not relevant

Drum boiler with gas or oil firing None 150 s Not relevant

Pressure

Drum boiler with impact grinding mills 1 to 2 min 2 to 5 min Not relevant

Vessel level Drum boiler 0.6 to 1 min Not specified 0.1 to 0.3 cm/s

Small electric drive None 0.2 to 10 s Not relevant

Large electric drive None 5 to 40 s Not relevant

Speed

Steam turbine None Not specified 50 min–1

Small generators None 1 to 5 s Not relevantVoltage

Large generators None 5 to 10 s Not relevant

26
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.3 Characteristic values of the control section

3.4 Pulse controller

Two-step controllers without feedback
Two-step controllers have the state "ON" and "OFF" as the switching function. This
corresponds to 100% or 0% output. This behavior generates a sustained oscillation of process
value x around setpoint w.
The amplitude and duration of the oscillation increase in proportion to the ratio between the
delay time Tu and recovery time Tg of the controlled system. These controllers are used mainly
for simple temperature control systems (such as electrically directly heated furnaces) or as
limit-value signaling units.
The following diagram shows the characteristic of a two-step controller

① ON
② OFF
Yh Control range
w Setpoint

27

Principles for control
3.4 Pulse controller

PID control
Function Manual, 11/2023, A5E35300227-AG

The following diagram shows the control function of a two-step controller

① Response characteristic without controller
② Response characteristic with two-step controller
Tu Delay time
Tg Recovery time
XSd Switching difference

Two-step controllers with feedback
The behavior of two-step controllers in the case of controlled systems with larger delay times,
such as furnaces where the functional space is separated from the heating, can be improved
by the use of electronic feedback.
The feedback is used to increase the switching frequency of the controller, which reduces the
amplitude of the process value. In addition, the control-action results can be improved
substantially in dynamic operation. The limit for the switching frequency is set by the output
level. It should not exceed 1 to 5 switches per minute at mechanical actuators, such as relays
and contactors. In the case of binary voltage and current outputs with downstream thyristor
or Triac controllers high switching frequencies can be selected that exceed the limit
frequency of the controlled system by far.

28
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.4 Pulse controller

Since the switching pulses can no longer be determined at the output of the controlled
system, results comparable with those of continuous controllers are obtained.
The output value is generated by pulse-width modulation of the output value of a continuous
controller.
Two-step controllers with feedback are used for temperature control in furnaces, at
processing machines in the plastics, textile, paper, rubber and foodstuff industries as well as
for heating and cooling devices.

Three-step controllers
Three-step controllers are used for heating / cooling. These controllers have two switching
points as their output. The control-action results are optimized through electronic feedback
structures. Fields of applications for such controllers are heating, low-temperature, climatic
chambers and tool heating units for plastic-processing machines.
The following diagram shows the characteristic of a three-step controller

y Output value, e.g.
y11 = 100% heating
y12 = 0% heating
y21 = 0% cooling
y22 = 100% cooling

x Physical quantity of the process value, e.g., temperature in° C
w Setpoint
xSh Distance between Switching Point 1 and Switching Point 2

29

Principles for control
3.4 Pulse controller

PID control
Function Manual, 11/2023, A5E35300227-AG

3.5 Response to setpoint changes and disturbances

Response to setpoint changes
The process value should follow a setpoint change as quickly as possible. The response to
setpoint changes is improved by minimizing fluctuation of the process value and the time
required to reach the new setpoint.

x Process value
w Setpoint

Response to disturbances
The setpoint is influenced by disturbance variables. The controller has to eliminate the
resulting control deviations in the shortest time possible. The response to disturbances is
improved by minimizing fluctuation of the process value and the time required to reach the
new setpoint.

x Process value
w Setpoint
① Influencing a disturbance variable

Disturbance variables are corrected by a controller with integral action. A persistent
disturbance variable does not reduce control quality because the control deviation is
relatively constant. Dynamic disturbance variables have a more significant impact on control

30
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.5 Response to setpoint changes and disturbances

quality because of control deviation fluctuation. The control deviation is eliminated again
only by means of the slow acting integral action.
A measurable disturbance variable can be included in the controlled system. This inclusion
would significantly accelerated the response of the controller.

31

Principles for control
3.5 Response to setpoint changes and disturbances

PID control
Function Manual, 11/2023, A5E35300227-AG

3.6 Control Response at Different Feedback Structures

Control behavior of controllers
A precise adaptation of the controller to the time response of the controlled system is
decisive for the controller's precise settling to the setpoint and optimum response to
disturbance variables.
The feedback circuit can have a proportional action (P), proportional-derivative action (PD),
proportional-integral action (PI), or proportional-integral-derivative action (PID).
If step functions are to be triggered by control deviations, the step responses of the
controllers differ depending on their type.

Step response of a proportional action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller

32
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.6 Control Response at Different Feedback Structures

Equation for proportional action controller
Output value and control deviation are directly proportional, meaning:
Output value = proportional gain × control deviation
y = GAIN × x

Step response of a PD-action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller
TM_LAG Delay of the Derivative action

Equation for PD-action controller

33

Principles for control
3.6 Control Response at Different Feedback Structures

PID control
Function Manual, 11/2023, A5E35300227-AG

The following applies for the step response of the PD-action controller in the time range:

t = time interval since the step of the control deviation
The derivative action generates a output value as a function of the rate of change of the
process value. A derivative action by itself is not suitable for controlling because the output
value only follows a step of the process value. As long as the process value remains constant,
the output value will no longer change.
The response to disturbances of the derivative action is improved in combination with a
proportional action. Disturbances are not corrected completely. The good dynamic response
is advantageous. A well attenuated, non-oscillating response is achieved during approach and
setpoint change.
A controller with derivative action is not appropriate if a controlled system has pulsing
measured quantities, for example, in the case of pressure or flow control systems.

34
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.6 Control Response at Different Feedback Structures

Step response of a PI-action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller

An integral action in the controller adds the control deviation as a function of the time. This
means that the controller corrects the system until the control deviation is eliminated. A
sustained control deviation is generated at controllers with proportional action only. This
effect can be eliminated by means of an integral action in the controller.
In practical experience, a combination of the proportional, integral and derivative actions is
ideal, depending on the requirements placed on the control response. The time response of
the individual components can be described by the controller parameters proportional gain
GAIN, integration time TI (integral action), and derivative action time TD (derivative action).
Equation for PI-action controller

35

Principles for control
3.6 Control Response at Different Feedback Structures

PID control
Function Manual, 11/2023, A5E35300227-AG

The following applies for the step response of the PI-action controller in the time range:

t = time interval since the step of the control deviation

36
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.6 Control Response at Different Feedback Structures

Step response of a PID controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller
TM_LAG Delay of the Derivative action
Ti Integration time

Equation for PID controller

37

Principles for control
3.6 Control Response at Different Feedback Structures

PID control
Function Manual, 11/2023, A5E35300227-AG

The following applies for the step response of the PID controller in the time range:

t = time interval since the step of the control deviation

Response of a controlled system with different controller structures
Most of the controller systems occurring in process engineering can be controlled by means
of a controller with PI-action response. In the case of slow controlled system with a large
dead time, for example temperature control systems, the control result can be improved by
means of a controller with PID action.

① No controller
② PID controller
③ PD-action controller
w Setpoint
x Process value

Controllers with PI and PID action have the advantage that the process value does not have
any deviation from the setpoint value after settling. The process value oscillates over the
setpoint during approach.

38
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.6 Control Response at Different Feedback Structures

3.7 Selection of the controller structure for specified controlled
systems

Selection of the Suitable Controller Structures
To achieve optimum control results, select a controller structure that is suitable for the
controlled system and that you can adapt to the controlled system within specific limits.
The table below provides an overview of suitable combinations of a controller structure and
controlled system.

Controller structureControlled system
P PD PI PID

With dead time only Unsuitable Unsuitable Suitable Unsuitable

PT1 with dead time Unsuitable Unsuitable Well suited Well suited

PT2 with dead time Unsuitable Suited conditionally Well suited Well suited

Higher order Unsuitable Unsuitable Suited conditionally Well suited

Not self-regulating Well suited Well suited Well suited Well suited

The table below provides an overview of suitable combinations of a controller structure and
physical quantity.

Controller structure
P PD PI PID

Physical quantity

Sustained control deviation No sustained control deviation
Temperature For low perform

ance requirements
and proportional
action controlled
systems with Tu/Tg
< 0,1

Well suited The most suitable controller structures
for high performance requirements
(except for specially adapted special
controllers)

Pressure Suitable, if the
delay time is incon
siderable

Unsuitable The most suitable controller structures
for high performance requirements
(except for specially adapted special
controllers)

Flow rate Unsuitable, because
required GAIN
range is usually too
large

Unsuitable Suitable, but integ
ral action controller
alone often better

Hardly required

39

Principles for control
3.7 Selection of the controller structure for specified controlled systems

PID control
Function Manual, 11/2023, A5E35300227-AG

3.8 PID parameter settings

Rule of Thumb for the Parameter Setting

Controller structure Setting
P GAIN ≈ vmax × Tu [° C]

PI GAIN ≈ 1.2 × vmax × Tu [° C]
TI ≈ 4 × Tu [min]

PD GAIN ≈ 0.83 × vmax × Tu [° C]
TD ≈ 0.25 × vmax × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

PID GAIN ≈ 0.83 × vmax × Tu [° C]
TI ≈ 2 × Tu [min]
TD ≈ 0.4 × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

PD/PID GAIN ≈ 0.4 × vmax × Tu [° C]
TI ≈ 2 × Tu [min]
TD ≈ 0.4 × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

Instead of vmax = ∆x / ∆t , you can use Xmax / Tg.
In the case of controllers with PID structure the setting of the integral action time and
differential-action time is usually coupled with each other.
The ratio TI / TD lies between 4 and 5 and is optimal for most controlled systems.
Non-observance of the differential-action time TD is uncritical at PD controllers.
In the case of PI and PID controllers, control oscillations occur if the integral action time TI has
been select by more than half too small.
An integral action time that is too large slows down the settling times of disturbances. One
cannot expect that the control loops operate "optimally" after the first parameter settings.
Experience shows that adjusting is always necessary, when a system exists that is "difficult to
control" with Tu / Tg > 0.3.

40
PID control

Function Manual, 11/2023, A5E35300227-AG

Principles for control
3.8 PID parameter settings

Configuring a software controller 4
4.1 Overview of software controller

For the configuration of a software controller, you need an instruction with the control
algorithm and a technology object. The technology object for a software controller
corresponds with the instance DB of the instruction. The configuration of the controller is
saved in the technology object. In contrast to the instance DBs of other instructions,
technology objects are not stored for the program resources, but rather under CPU >
Technology objects.

Technology objects and instructions

CPU Library Instruction Technology
object

Description

S7-1200 PID_Compact V1.x PID_Compact V1.x Universal PID controller with integrated tuning

S7-1200 PID_3Step V1.x PID_3Step V1.x PID controller with integrated tuning for
valves

S7-1500
S7-1200 V4.x

PID_Compact V2.x PID_Compact V2.x Universal PID controller with integrated tuning

S7-1500
S7-1200 V4.x

PID_3Step V2.x PID_3Step V2.x PID controller with integrated tuning for
valves

S7-1500 ≥ V1.7
S7-1200 ≥ V4.1

PID_Temp V1.x PID_Temp V1.x Universal PID temperature controller with
integrated tuning

S7-1500 ≥ V3.1

Compact PID

PID_Compact V3.x PID_Compact V3.x Universal PID controller with integrated tuning

S7-1500/300/40
0

CONT_C CONT_C Continuous controller

S7-1500/300/40
0

CONT_S CONT_S Step controller for actuators with integrating
behavior

S7-1500/300/40
0

PULSEGEN - Pulse generator for actuators with proportion
al behavior

S7-1500/300/40
0

TCONT_CP TCONT_CP Continuous temperature controller with pulse
generator

S7-1500/300/40
0

PID basic functions

TCONT_S TCONT_S Temperature controller for actuators with
integrating behavior

S7-300/400 TUN_EC TUN_EC Optimization of a continuous controller

S7-300/400

PID Self Tuner

TUN_ES TUN_ES Optimization of a step controller

S7-300/400 PID_CP PID_CP Continuous controller with pulse generator

S7-300/400 PID_ES PID_ES Step controller for actuators with integrating
behavior

S7-300/400

Standard PID Con
trol (PID Profession
al optional package)

LP_SCHED - Distribute controller calls

S7-300/400 A_DEAD_B - Filter interfering signal from control deviation

S7-300/400

Modular PID Control
(PID Professional CRP_IN - Scale analog input signal

41
PID control
Function Manual, 11/2023, A5E35300227-AG

CPU Library Instruction Technology
object

Description

S7-300/400 CRP_OUT - Scale analog output signal

S7-300/400 DEAD_T - Delay output of input signal

S7-300/400 DEADBAND - Suppress small fluctuations to the process
value

S7-300/400 DIF - Differentiate input signals over time

S7-300/400 ERR_MON Monitor control deviation

S7-300/400 INTEG - Integrate input signals over time

S7-300/400 LAG1ST - First-order delay element

S7-300/400 LAG2ND - Second-order delay element

S7-300/400 LIMALARM - Report limit values

S7-300/400 LIMITER - Limiting the manipulated variable

S7-300/400 LMNGEN_C - Determine manipulated variable for continu
ous controller

S7-300/400 LMNGEN_S - Determine manipulated variable for step con
troller

S7-300/400 NONLIN - Linearize encoder signal

S7-300/400 NORM - Scale process value physically

S7-300/400 OVERRIDE - Switch manipulated variable from 2 PID con
trollers to 1 actuator

S7-300/400 PARA_CTL - Switch parameter sets

S7-300/400 PID - PID algorithm

S7-300/400 PUSLEGEN_M - Generate pulse for proportional actuators

S7-300/400 RMP_SOAK - Specify setpoint according to ramp / soak

S7-300/400 ROC_LIM - Limit rate of change

S7-300/400 SCALE_M - Scale process value

S7-300/400 SP_GEN - Specify setpoint manually

S7-300/400 SPLT_RAN - Split manipulated variable range

S7-300/400 SWITCH - Switch analog values

S7-300/400

optional package)

LP_SCHED_M - Distribute controller calls

42
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.1 Overview of software controller

4.2 Steps for the configuration of a software controller
All SW-controllers are configured according to the same scheme:

Step Description
1 Add technology object (Page 43)

2 Configure technology object (Page 44)

3 Call instruction in the user program (Page 45)

4 Download technology object to device (Page 46)

5 Commission software controller (Page 47)

6 Save optimized PID parameters in the project (Page 47)

7 Comparing values (Page 51)

8 Display instances of a technology object (Page 70)

4.3 Add technology objects

Add technology object in the project navigator
When a technology object is added, an instance DB is created for the instruction of this
technology object. The configuration of the technology object is stored in this instance DB.

Requirement
A project with a CPU has been created.

Procedure
To add a technology object, proceed as follows:
1. Open the CPU folder in the project tree.
2. Open the "Technology objects" folder.
3. Double-click "Add new object".

The "Add new object" dialog box opens.
4. Click on the "PID" button.

All available PID-controllers for this CPU are displayed.
5. Select the instruction for the technology object, for example, PID_Compact.
6. Enter an individual name for the technology object in the "Name" input field.
7. Select the "Manual" option if you want to change the suggested data block number of the

instance DB.
8. Click "Further information" if you want to add own information to the technology object.
9. Confirm with "OK".

43

Configuring a software controller
4.3 Add technology objects

PID control
Function Manual, 11/2023, A5E35300227-AG

Result
The new technology object has been created and stored in the project tree in the "Technology
objects" folder. The technology object is used if the instruction for this technology object is
called in a cyclic interrupt OB.

NOTE
You can select the "Add new and open" check box at the bottom of the dialog box. This opens
the configuration of the technology object after adding has been completed.

4.4 Configure technology objects
The properties of a technology object on a S7-1200 CPU can be configured in two ways.
• In the Inspector window of the programming editor
• In the configuration editor
The properties of a technology object on a S7-300/400 CPU can only be configured in the
configuration editor.

Inspector window of the programming editor
In the Inspector window of the programming editor you can only configure the parameters
required for operation.
The offline values of the parameters are also shown in online mode. You can only change the
online values in the commissioning window.
To open the Inspector window of the technology object, follow these steps:
1. Open the "Program blocks" folder in the project tree.
2. Double-click the block (cyclic interrupt OB) in which you open the instruction of the SW

controller.
The block is opened in the work area.

3. Click on the instruction of the SW controller.
4. In the Inspector window, select the "Properties" and "Configuration" tabs consecutively.

Configuration window
For each technology object, there is a specific configuration window in which you can
configure all properties.
To open the configuration window of the technology object, follow these steps:
1. Open the "Technology objects" folder in the project tree.
2. Open the technology object in the project tree.
3. Double-click the "Configuration" object.

44
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.4 Configure technology objects

Symbols
Icons in the area navigation of the configuration and in the Inspector window show
additional details about the completeness of the configuration:

The configuration contains default values and is complete.
The configuration exclusively contains default values. With these default values the use of the tech
nology object is possible without further changes.

The configuration contains user-defined or automatically adjusted values and is complete.
All input fields of the configuration contain valid values and at least one default setting was
changed.

The configuration is incomplete or faulty.
At least one input field or a collapsible list contains no value or an invalid value. The corresponding
field or the drop-down list box has a red background. When clicked, the roll-out error message
indicates the cause of the error.

The properties of a technology object are described in detail in the section for the technology
object.

4.5 Call instruction in the user program
The instruction of the software controller must be called in a cyclic interrupt OB. The
sampling time of the software controller is determined by the interval between the calls in
the cyclic interrupt OB.

Requirement
The cyclic interrupt OB is created and the cycle time of the cyclic interrupt OB is correctly
configured.

Procedure
Proceed as follows to call the instruction in the user program:
1. Open the CPU folder in the project tree.
2. Open the "Program blocks" folder.
3. Double-click the cyclic interrupt OB.

The block is opened in the work area.
4. Open the "Technology" group in the "Instructions" window and the "PID Control" folder.

The folder contains all instructions for software controllers that can be configured on the
CPU.

5. Select the instruction and drag it to your cyclic interrupt OB.
The "Call options" dialog box opens.

6. Select a technology object or type the name for a new technology object from the "Name"
list.

Result
If the technology object does not exist yet, it is added. The instruction is added in the cyclic
interrupt OB. The technology object is assigned to this call of the instruction.

45

Configuring a software controller
4.5 Call instruction in the user program

PID control
Function Manual, 11/2023, A5E35300227-AG

4.6 Downloading technology objects to device
A new or modified configuration of the technology object must be downloaded to the CPU
for the online mode. The following characteristics apply when downloading retentive data:
• Software (changes only)

– S7-1200, S7-1500:
Retentive data is retained.

– S7-300/400:
Retentive data is updated immediately. CPU does not change to Stop.

• Download PLC program to device and reset
– S7-1200, S7-1500:

Retentive data is updated at the next change from Stop to RUN. The PLC program can
only be downloaded completely.

– S7-300/400:
Retentive data is updated at the next change from Stop to RUN.

Downloading retentive data to an S7-1200 or S7-1500 CPU

NOTE
The download and reset of the PLC program during ongoing system operation can result in
serious damages or injuries in the case of malfunctions or program errors.
Make sure that dangerous states cannot occur before you download and reset the PLC
program.

Proceed as follows to download the retentive data:
1. Select the entry of the CPU in the project tree.
2. Select the command "Download and reset PLC program" from the "Online" menu.

– If you have not established an online connection yet, the "Extended download" dialog
opens. In this case, set all required parameters for the connection and click
"Download".

– If the online connection has been defined, the project data is compiled, if necessary,
and the dialog "Load preview" opens. This dialog displays messages and recommends
actions necessary for download.

3. Check the messages.
As soon as download is possible, the "Download" button becomes active.

4. Click on "Download".
The complete PLC program is downloaded and the "Load results" dialog opens. This dialog
displays the status and the actions after the download.

5. If the modules are to restart immediately after the download, select the check box "Start
all".

6. Close the dialog "Download results" with "Finish".

46
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.6 Downloading technology objects to device

Result
The complete PLC program is downloaded to the device. Blocks that only exist online in the
device are deleted. By downloading all affected blocks and by deleting any blocks in the
device that are not required, you avoid inconsistencies between the blocks in the user
program.
The messages under "Info > General" in the Inspector window indicate whether the download
was successful.

4.7 Commissioning software controller

Procedure
To open the "Commissioning" work area of the technology object, follow these steps:
1. Open the "Technology objects" folder in the project tree.
2. Open the technology object in the project tree.
3. Double-click the "Commissioning" object.
The commissioning functions are specific for each controller and are described there.

4.8 Save optimized PID parameter in the project
The software controller is optimized in the CPU. Through this, the values in the instance-DB
on the CPU no longer agree with those in the project.
To update the PID parameter in the project with the optimized PID parameters, proceed as
follows:

Requirement
• An online connection to the CPU is established and the CPU is in "RUN" mode.
• The functions of the commissioning window have been enabled by means of the "Start"

button.

Procedure
1. Open the CPU folder in the project tree.
2. Open the "Technology objects" folder.
3. Open a technology object.
4. Double click on "Commissioning".
5. Click on the icon "Upload PID parameters".
6. Save the project.

Result
The currently active PID parameters are stored in the project data. When reloading the project
data in the CPU, the optimized parameters are used.

47

Configuring a software controller
4.8 Save optimized PID parameter in the project

PID control
Function Manual, 11/2023, A5E35300227-AG

4.9 Working with multi-instance objects
If a function block (FB) calls another FB, its instance data can also be saved in the instance DB
of the calling FB. This type of block call is referred to as a multi-instance. The PID software
controllers support this type of call and can be used as multi-instance.

Advantages
The use of multi-instances offers the following advantages:
• Good structuring possibility
• Lower number of instance DBs
• Individually configured FBs as template for a software controller than you can instantiate

as often as you wish

Restrictions
When using multi-instances for PID software controllers, the following restrictions are in place
compared to using a single instance:
• No support of Openness for PID multi-instance objects
• No comparison of PID multi-instance objects in a comparison editor. Comparison is only

possible via the block containing the multi-instance objects.
• No technology object-specific Inspector window of the programming editor for calling the

PID_Compact, PID_3Step and PID_Temp instructions

Configuration of multi-instance objects
The configuration and commissioning of PID multi-instance objects is not opened via the
"Technology objects" folder in the project tree, as is the case with single-instance objects. For
multi-instance objects, you can find configuration and commissioning in the "Technology
objects" tab of the detail view.
To open the configuration of multi-instance objects, follow these steps:
1. Select the FB or instance DB with the multi-instance object in the project tree.
2. Click on the "Technology objects" tab in the detail view.
3. Navigate to the desired multi-instance object.
4. Open the configuration of the multi-instance object.

NOTE
The configuration editor does not offer online functionality for multi-instance objects in an
FB. Instance DBs do not have this restriction.

48
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.9 Working with multi-instance objects

Commissioning of multi-instance objects
To open the commissioning of multi-instance objects, follow these steps:
1. Select the instance DB with the multi-instance object in the project tree.
2. Click on the "Technology objects" tab in the detail view.
3. Navigate to the desired multi-instance object.
4. Open the commissioning of the multi-instance object.
This functionality is not available for PID multi-instance objects in FBs.

NOTE
If PID multi-instance objects are in an array, you can only navigate to these multi-instance
objects in the detail view if the number of array elements does not exceed 100. For arrays
with more than 100 elements, the individual PID multi-instance objects are not displayed and
the editors for configuration and commissioning are not available.

Example for the use of PID multi-instance objects
To use PID multi-instance objects for your application, you can do the following:
1. Add a function block to your program.
2. Call one or multiple suitable PID controllers with the "Multi-instance" call option in this FB.
3. Add your own application-dependent functionality in the same FB, for example, pre-

processing of the setpoint.
4. Select the FB in the project tree and then open the configuration editors of the PID multi-

instance objects via the "Technology objects" tab of the detail view.
5. Perform the configuration, which should be identical for all instances of the FB, in the

configuration editors.
6. Close the configuration editors.
7. Instantiate the FB as required in the user program so that instance DBs are created.
8. Select one of these instance DBs in the project tree and then open the configuration

editors of the PID multi-instance objects via the "Technology objects" tab of the detail
view.

9. Perform the configuration, which is individual for this instance DB, in the configuration
editors.

10.

Close the configuration editors.

11.

Repeat steps 8 to 10 for the other instance DBs with PID multi-instance objects.

12.

Compile the program, load it into the device and set up an online connection.

13.

Select an instance DB that contains PID multi-instance objects in the project tree and then
open the commissioning editors of the PID multi-instance objects via the "Technology
objects" tab of the detail view.

14.

Commission the PID multi-instance objects.

15.

Close the commissioning editors.

16.

Repeat steps 13 to 15 for the other instance DBs with PID multi-instance objects.

49

Configuring a software controller
4.9 Working with multi-instance objects

PID control
Function Manual, 11/2023, A5E35300227-AG

4.10 Comparing values

4.10.1 Comparison display and boundary conditions
The "Compare values" function provides the following options:
• Comparison of configured start values of the project with the start values in the CPU and

the actual values
• Direct editing of actual values and the start values of the project
• Immediate detection and display of input errors with suggested corrections
• Backup of actual values in the project
• Transfer of start values of the project to the CPU as actual values

Icons and operator controls
The following icons and operator controls are available:

Icon Function
Start value in PLC matches the configured Start value in project

Start value in PLC does not match the configured Start value in project

The comparison of the Start value in PLC with the configured Start value in project cannot
be performed

At least one of the two comparison values has a process-related or syntax error.

Create snapshot of monitor values and accept setpoints of this snapshot as start values

Load start values of setpoints as actual values (initialize setpoints)

Opens the "Compare values" dialog

Boundary conditions
The "Compare values" function is available for S7-1200 and S7-1500 without limitations.
The following limitation applies to S7-300 and S7-400:
In monitoring mode, an S7-300/S7-400 cannot transfer the start values to the CPU. These
values cannot be displayed online with "Compare values".
The actual values of the technology object are displayed and can be changed directly.

50
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.10 Comparing values

4.10.2 Comparing values
The procedure is shown in the following using "PID Parameters" as an example.

Requirements
• A project with a software controller is configured.
• The project is downloaded to the CPU.
• The configuration dialog is open in the project navigator.

Procedure
1. Open the desired software controller in the project navigation.
2. Double-click the "Configuration" object.
3. Navigate within the configuration window to the "PID Parameters" dialog.
4. Click the icon to activate monitoring mode.

The icons and operator controls (Page 50) of the "Compare values" function are shown
behind the parameters.

5. Click the desired parameter in the input box and change the parameter values manually by
entering them directly.
– If the background of the input box is gray, this value is a read-only value and cannot be

changed.
– To change the values in the "PID Parameters" dialog, enable manual entry by selecting

the "Enable manual entry" check box beforehand.
6. Click the icon to open the dialog for the start values.

This dialog indicates two values of the parameter:
– Start value in CPU: The start value in the CPU is shown in the top part.
– Start value in the project: The configured start value in the project is shown in the

bottom part.
7. Enter the desired value in the input box for the project.

Error detection
The input of incorrect values is detected. Corrections are suggested in this case.
If you enter a value with incorrect syntax, a rollout containing the corresponding error
message opens below the parameter. The incorrect value is not applied.
If you enter a value that is incorrect for the process, a dialog opens containing the error
message and a suggested correction:
• Click "No" to accept this suggested correction and correct your input.
• Click "OK" to apply the incorrect value.

NOTICE
Malfunctions of the controller
Values incorrect for the process can result in controller malfunctions.

51

Configuring a software controller
4.10 Comparing values

PID control
Function Manual, 11/2023, A5E35300227-AG

Backing up actual values
Click the icon to transfer the actual controller values to the start values of your configured
project.

Transferring project values to the CPU
Click the icon to transfer the configured values of your project to the CPU.

CAUTION
Prevent personal injury and property damage!
Downloading and resetting of the user program while the plant is operating may result in
significant property damage and severe personal injuries in the event of malfunctions or
program errors.
Make sure that dangerous states cannot occur before you download and reset the user
program.

4.11 Parameter view

4.11.1 Introduction to the parameter view
The Parameter view provides you with a general overview of all relevant parameters of a
technology object. You obtain an overview of the parameter settings and can easily change
them in offline and online mode.

① "Parameter view" tab
② Toolbar (Page 54)

52
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

③ Navigation (Page 54)
④ Parameter table (Page 55)

Function scope
The following functions are available for analyzing the parameters of the technology objects
and for enabling targeted monitoring and modification.
Display functions:
• Display of parameter values in offline and online mode
• Display of status information of the parameters
• Display of value deviations and option for direct correction
• Display of configuration errors
• Display of value changes as a result of parameter dependencies
• Display of all memory values of a parameter: Start value PLC, Start value project, Monitor

value
• Display of the parameter comparison of the memory values of a parameter
Operator control functions:
• Navigation for quickly changing between the parameters and parameter structures.
• Text filter for faster searches for particular parameters.
• Sorting function for customizing the order of parameters and parameter groups to

requirements.
• Memory function for backing up structural settings of the Parameter view.
• Monitoring and modifying of parameter values online.
• Change display format of value.
• Function for saving a snapshot of parameter values of the CPU in order to capture

momentary situations and to respond to them.
• Function for applying a snapshot of parameter values as start values.
• Download of modified start values to the CPU.
• Comparison functions for comparing parameter values with one another.

Validity
The Parameter view described here is available for the following technology objects:
• PID_Compact
• PID_3Step
• PID_Temp
• CONT_C (S7-1500 only)
• CONT_S (S7-1500 only)
• TCONT_CP (S7-1500 only)
• TCONT_S (S7-1500 only)
• TO_Axis_PTO (S7-1200 Motion Control)
• TO_Positioning_Axis (S7-1200 Motion Control)
• TO_CommandTable_PTO (S7-1200 Motion Control)
• TO_CommandTable (S7-1200 Motion Control)

53

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

4.11.2 Structure of the parameter view

4.11.2.1 Toolbar

The following functions can be selected in the toolbar of the parameter view.

Icon Function Explanation
Monitor all Starts the monitoring of visible parameters in the active Parameter

view (online mode).

Create snapshot of monit
or values and accept set
points of this snapshot as
start values

Applies the current monitor values to the “Snapshot” column and
updates the start values in the project.
Only in online mode for PID_Compact, PID_3Step and PID_Temp.

Load start values of set
points as actual values
(initialize setpoints)

Transfers the start values updated in the project to the CPU.
Only in online mode for PID_Compact, PID_3Step and PID_Temp.

Create snapshot of monit
or values

Applies the current monitor values to the “Snapshot” column.
Only in online mode.

Modify all selected para
meters immediately and
once

This command is executed once and as quickly as possible without ref
erence to any particular point in the user program.
Only in online mode.

Select navigation struc
ture

Toggles between functional navigation and data navigation.

Text filter... After entry of a character string: Display of all parameters containing
the specified string in one of the currently visible columns.

Selection of compare val
ues

Selection of parameter values that are to be compared with one anoth
er in online mode (Start value in project, Start value in PLC, Snapshot)
Only in online mode.

Save window settings Saves your display settings for the Parameter view (e.g., selected nav
igation structure, activated table columns, etc.)

4.11.2.2 Navigation

Within the "Parameter view" tab, the following alternative navigation structures can be
selected.

Navigation Explanation
Functional naviga
tion

In the functional navigation, the structure of the parameters is
based on the structure in the configuration dialog ("Functional
view" tab), commissioning dialog, and diagnostics dialog.
The last group "Other parameters" contains all other parameters of
the technology object.

Data navigation In the data navigation, the structure of the parameters is based on
the structure in the instance DB / technology DB.
The last group "Other parameters" contains the parameters that are
not contained in the instance DB / technology DB.

54
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

You can use the "Select navigation structure" drop-down list to toggle the navigation
structure.

4.11.2.3 Parameter table

The table below shows the meaning of the individual columns of the parameter table. You
can show or hide the columns as required.
• Column "Offline" = X: Column is visible in offline mode.
• Column "Online" = X: Column is visible in online mode (online connection to the CPU).

Column Explanation Offline Online
Name in functional
view

Name of the parameter in the functional view.
The display field is empty for parameters that are not configured via the techno
logy object.

X X

Full name in DB Complete path of the parameter in the instance DB / technology DB.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Name in DB Name of the parameter in the instance DB / technology DB.
If the parameter is part of a structure or UDT, the prefix ". ./" is added.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Status of configura
tion

Display of the completeness of the configuration using status symbols.
see Status of configuration (offline) (Page 63)

X

Compare result Result of the "Compare values" function.
This column is shown if there is an online connection and the "Monitor all" but
ton is selected.

X

Start value project Configured start value in the project.
Error indication if entered values have a syntax or process-related error.

X X

Default value Value that is pre-assigned to the parameter.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Snapshot Snapshot of the current values in the CPU (monitor values).
Error indication if values have a process-related error.

X X

Start value PLC Start value in the CPU.
This column is shown if there is an online connection and the "Monitor all" but
ton is selected.
Error indication if values have a process-related error.

X

Monitor value Current value in the CPU.
This column is shown if there is an online connection and the "Monitor all" but
ton is selected.
Error indication if values have a process-related error.

X

Modify value Value that is to be used to change the monitor valuet.
This column is shown if there is an online connection and the "Monitor all" but
ton is selected.
Error indication if entered values have a syntax or process-related error.

X

Selection for transmis
sion

Selection of the Modify values that are to be transmitted using the "Modify all
selected parameters immediately and once" button.
This column is displayed together with the "Modify value" column.

X

55

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Column Explanation Offline Online
Minimum value Minimum process-related value of the parameter.

If the minimum value is dependent on other parameters, it is defined:
• Offline: By the Start value project.
• Online: By the Monitor values.

X X

Maximum value Maximum process-related value of the parameter.
If the maximum value is dependent on other parameters, it is defined:
• Offline: By the Start value project.
• Online: By the Monitor values.

X X

Setpoint Designates the parameter as a setpoint. These parameters can be initialized
online.

X X

Data type Data type of the parameter.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Retain Designates the value as a retentive value.
The values of retentive parameters are retained even after the voltage supply is
switched off.

X X

Accessible from HMI Indicates whether the HMI can access this parameter during runtime. X X

Visible in HMI Indicates whether the parameter is visible in the selection list of the HMI by
default.

X X

Comment Brief description of the parameter. X X

See also
Comparing values (Page 50)

4.11.3 Opening the parameter view

Requirement
The technology object has been added in the project tree, i.e., the associated instance DB /
technology DB of the instruction has been created.

Procedure
1. Open the "Technology objects" folder in the project tree.
2. Open the technology object in the project tree.
3. Double-click the "Configuration" object.
4. Select the "Parameter view" tab in the top right corner.

Result
The Parameter view opens. Each displayed parameter is represented by one row in the
parameter table.
The displayable parameter properties (table columns) vary depending on whether you are
working with the Parameter view in offline or online mode.
In addition, you can selectively display and hide individual table columns.

56
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

See also
Default setting of the parameter view (Page 57)

4.11.4 Default setting of the parameter view

Default settings
To enable you to work efficiently with the Parameter view, you can customize the parameter
display and save your settings.
The following customizations are possible and can be saved:
• Show and hide columns
• Change column width
• Change order of the columns
• Toggle navigation
• Select parameter group in the navigation
• Selection of compare values

Show and hide columns
To show or hide columns in the parameter table, follow these steps:
1. Position the cursor in the header of the parameter table.
2. Select the "Show/Hide" command in the shortcut menu.

The selection of available columns is displayed.
3. To show a column, select the check box for the column.
4. To hide a column, clear the check box for the column.
or
1. Position the cursor in the header of the parameter table.
2. Select the "Show all columns" command in the shortcut menu if all columns of the offline

or online mode are to be displayed.
Some columns can only be displayed in online mode: see Parameter table (Page 55).

Change column width
To customize the width of a column so that all texts in the rows can be read, follow these
steps:
1. Position the cursor in the header of the parameter table to the right of the column to be

customized until the shape of the cursor changes to a cross.
2. Then double-click this location.
or
1. Open the shortcut menu on the header of the parameter table.
2. Click

– "Optimize column width" or
– "Optimize width of all columns".

If the column width setting is too narrow, the complete content of individual fields are shown
if you hover the cursor briefly over the relevant field.

57

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Change order of the columns
The columns of the parameter table can be arranged in any way.
To change the order of the columns, follow these steps:
1. Click on the column header and use a drag-and-drop operation to move it to the desired

location.
When you release the mouse button, the column is anchored to the new position.

Toggle navigation
To toggle the display form of the parameters, follow these steps:
1. Select the desired navigation in the “Select navigation structure” drop-down list.

– Data navigation
– Functional navigation

See also Navigation (Page 54).

Select parameter group in the navigation
Within the selected navigation, you choose between the “All parameters” display or the
display of a subordinate parameter group of your choice.
1. Click the desired parameter group in the navigation.

The parameter table only displays the parameters of the parameter group.

Selection of compare values (online)
To set the compare values for the “Compare values” function, follow these steps:
1. Select the desired compare values in the “Selection of compare values” drop-down list.

– Start value project / Start value PLC
– Start value project / Snapshot
– Start value PLC / Snapshot

The “Start value project / Start value PLC” option is set by default.

Saving the default setting of the Parameter view
To save the above customizations of the Parameter view, follow these steps:
1. Customize the Parameter view according to your requirements.
2. Click the “Save window settings” button at the top right of the Parameter view.

58
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

4.11.5 Working with the parameter view

4.11.5.1 Overview

The following table provides an overview of the functions of the Parameter view in online
and offline mode described in the following.
• Column "Offline" = X: This function is possible in offline mode.
• Column "Online" = X: This function is possible in online mode.

Function/action Offline Online
Filtering the parameter table (Page 59) X X

Sorting the parameter table (Page 60) X X

Transferring parameter data to other editors (Page 60) X X

Indicating errors (Page 61) X X

Editing start values in the project (Page 61) X X

Status of configuration (offline) (Page 63) X

Monitoring values online in the parameter view (Page 64) X

Create snapshot of monitor values (Page 65) X

Modifying values (Page 66) X

Comparing values (Page 67) X

Applying values from the online program as start values (Page 68) X

Initializing setpoints in the online program (Page 69) X

4.11.5.2 Filtering the parameter table

You can filter the parameters in the parameter table in the following ways:
• With the text filter
• With the subgroups of the navigation
Both filter methods can be used simultaneously.

With the text filter
Texts that are visible in the parameter table can be filtered. This means only texts in displayed
parameter rows and columns can be filtered.
1. Enter the desired character string for filtering in the “Text filter...” input box.

The parameter table displays only the parameters containing the character string.
The text filtering is reset.
• When another parameter group is selected in the navigation.
• When navigation is changed from data navigation to functional navigation, or vice versa.

59

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

With the subgroups of the navigation
1. Click the desired parameter group in the navigation, e.g., "Static".

The parameter table only shows the static parameters. You can select further subgroups
for some groups of the navigation.

2. Click “All parameters” in the navigation if all parameters are to be shown again.

4.11.5.3 Sorting the parameter table

The values of the parameters are arranged in rows. The parameter table can be sorted by any
displayed column.
• In columns containing numerical values, sorting is based on the magnitude of the

numerical value.
• In text columns, sorting is alphabetical.

Sorting by column
1. Position the cursor in the header cell of the desired column.

The background of this cell turns blue.
2. Click the column header.

Result
The entire parameter table is sorted by the selected column. A triangle with tip facing up
appears in the column header.
Clicking the column header again changes the sorting as follows:
• Symbol “▲”: Parameter table is sorted in ascending order.
• Symbol “▼”: Parameter table is sorted in descending order.
• No symbol: The sorting is removed again. The parameter table assumes the default

display.
The “../“ prefix in the “Name in DB” column is ignored when sorting.

4.11.5.4 Transferring parameter data to other editors

After selecting an entire parameter row of the parameter table, you can use the following:
• Drag-and-drop
• <Ctrl+C>/<Ctrl+V>
• Copy/Paste via shortcut menu
Transfer parameters to the following editors of the TIA Portal:
• Program editor
• Watch table
• Signal table for trace function
The parameter is inserted with its full name: See information in “Full name in DB” column.

60
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

4.11.5.5 Indicating errors

Error indication
Parameter assignment errors that result in compilation errors (e.g. limit violation) are
indicated in the Parameter view.
Every time a value is input in the Parameter view, a check is made for process-related and
syntax errors and the result is indicated.
Bad values are indicated by:
• Red error symbol in the "Status of configuration" (offline mode) or "Compare result"

(online mode, depending on the selected comparison type) columns
and/or
• Table field with red background

If you click the bad field, a roll-out error message appears with information of the
permissible value range or the required syntax (format)

Compilation error
From the error message of the compiler, you can directly open the Parameter view
(functional navigation) containing the parameter causing the error in situations where the
parameter is not displayed in the configuration dialog.

4.11.5.6 Editing start values in the project

With the Parameter view, you can edit the start values in the project in offline mode and
online mode.
• You make value changes in the “Start value project” column of the parameter table.
• In the “Status of configuration” column of the parameter table, the progress of the

configuration is indicated by the familiar status symbols from the configuration dialog of
the technology object.

Boundary conditions
• If other parameters depend on the parameter whose start value was changed, the start

value of the dependent parameters are also adapted.
• If a parameter of a technology object is not editable, it is also not editable in the

parameter view. The ability to edit a parameter can also depend on the values of other
parameters.

61

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Defining new start values
To define start values for parameters in the Parameter view, follow these steps:
1. Open the Parameter view of the technology object.
2. Enter the desired start values in the "Start value project" column. The value must match

the data type of the parameter and must not exceed the value range of the parameter.
The limits of the value range can be seen in the “Maximum value” and “Minimum value”
columns.

The "Status of configuration" column indicates the progress of the configuration with colored
symbols.
See also Status of configuration (offline) (Page 63)
Following adaptation of the start values and downloading of the technology object to the
CPU, the parameters take the defined value at startup if they are not declared as retentive
(“Retain” column).

Error indication
When a start value is input, a check is made for process-related and syntax errors and the
result is indicated.
Bad start values are indicated by:
• Red error symbol in the "Status of configuration" (offline mode) or "Compare result"

(online mode, depending on the selected comparison type) columns
and/or
• Red background in the “Start value project” field

If you click on the bad field, a roll-out error message appears with information of the
permissible value range or the necessary syntax (format)

Correcting bad start values
1. Correct bad start values using information from the roll-out error message.

Red error symbol, red field background, and roll-out error message are no longer
displayed.

The project cannot be successfully compiled unless the start values are error-free.

62
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

4.11.5.7 Status of configuration (offline)

The status of the configuration is indicated by icons:
• In the “Status of configuration” column in the parameter table
• In the navigation structure of the functional navigation and data navigation

Symbol in “Status of configuration” column

Symbol Meaning
The start value of the parameter corresponds to the default value and is valid. A start
value has not yet been defined by the user.

The start value of the parameter contains a value defined by the user or an automatically
adjusted value. The start value is different than the default value. The start value is error-
free and valid.

The start value of the parameter is invalid (syntax or process-related error).
The input box has a red background. When clicked, the roll-out error message indicates
the cause of the error.

Only for S7-1200 Motion Control:
The start value of the parameter is valid but contains warnings.
The input box has a yellow background.

The parameter is not relevant in the current configuration.

Symbol in the navigation
The symbols in the navigation indicate the progress of the configuration in the same way as
in the configuration dialog of the technology object.

See also
Configure technology objects (Page 44)

63

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

4.11.5.8 Monitoring values online in the parameter view

You can monitor the values currently taken by the parameters of the technology object in the
CPU (monitor values) directly in the Parameter view.

Requirements
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.

Procedure
1. Start the monitoring by clicking .

As soon as the Parameter view is online, the following columns are additionally displayed:
– Compare result
– Start value PLC
– Monitor value
– Modify value
– Selection for transmission
The "Monitor value" column shows the current parameter values on the CPU.
Meaning of the additional columns: see Parameter table (Page 55)

2. Stop the monitoring by clicking again.

Display
All columns that are only available online have an orange background:
• Values in light-orange cells can be changed.
• Values in cells with a dark orange background cannot be changed.

4.11.5.9 Change display format of value

The display format of the value can be selected via the shortcut menu of a table row in the
Parameter view of the technology object.
The display format of the following values can be changed both in online mode and in offline
mode:
• Start value project
• Start value PLC
• Maximum value
• Minimum value
• Snapshot
• Monitor value
• Default value
• Modify value

64
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

The set display format applies to all values of the table row.
The following display formats of the value can be changed:
• Default
• Hex
• Octal
• Bin
• Dec (+/-)
• DEC
Depending on the parameter selected in the parameter view, only the supported display
formats can be selected.

Requirements
• The Parameter view of the technology object is open.

Procedure
To change the display format of the value, proceed as follows:
1. Select one or more table rows in which you want to change the display format.
2. Select the "Display format" command in the shortcut menu.
3. Select the desired display format.

NOTE
To change the display format of a certain data type in multiple table rows, sort the Parameter
view by this data type. Then select the first and last table row with this data type while
keeping the <Shift> key pressed and change the display format for the selected table rows.

4.11.5.10 Create snapshot of monitor values

You can back up the current values of the technology object on the CPU (monitor values) and
display them in the Parameter view.

Requirements
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.
• The “Monitor all” button is selected.

Procedure
To show the current parameter values, follow these steps:
1. In the Parameter view, click the “Create snapshot of monitor values" icon .

65

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Result
The current monitor values are transferred once to the "Snapshot" column of the parameter
table.
You can analyze the values "frozen" in this way while the monitor values continue to be
updated in the "Monitor values" column.

4.11.5.11 Modifying values

With the Parameter view, you can modify values of the technology object in the CPU.
You can assign values to the parameter once (Modify value) and modify them immediately.
The modify request is executed as quickly as possible without reference to any particular
point in the user program.

DANGER
Danger when modifying:
Changing the parameter values while the plant is operating may result in severe damage to
property and personal injury in the event of malfunctions or program errors.
Make sure that dangerous states cannot occur before you use the "Modify" function.

Requirements
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.
• The “Monitor all” button is selected.
• The parameter can be modified (associated field in the "Modify value" column has a light-

orange background).

Procedure
To modify parameters immediately, follow these steps:
1. Enter the desired modify values in the “Modify values” column of the parameter table.
2. Check whether the check box for modifying is selected in the "Select for transmission"

column.
The modify values and associated check boxes of dependent parameters are automatically
adapted at the same time.

3. Click the “Modify all selected parameters immediately and once” icon .
The selected parameters are modified once and immediately with the specified values and
can be monitored in the "Monitor values" column. The check boxes for modifying in the
"Selection for transmission" column are automatically cleared after the modify request is
complete.

66
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

Error indication
When a start value is input, a check is made immediately for process-related and syntax errors
and the result is indicated.
Bad start values are indicated by:
• Red background in the “Modify value” field
and
• If you click the bad field, a roll-out error message appears with information of the

permissible value range or the necessary syntax (format)

Bad modify values
• Modify values with process-related errors can be transmitted.
• Modify values with syntax errors cannot be transmitted.

4.11.5.12 Comparing values

You can use comparison functions to compare the following memory values of a parameter:
• Start value project
• Start value PLC
• Snapshot

Requirements
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.
• The “Monitor all” button is selected.

Procedure
To compare the start values on the various target systems, follow these steps:
1. Click the "Selection of comparison values" icon .

A selection list containing the comparison options opens:
– Start value project - Start value PLC (default setting)
– Start value project - Snapshot
– Start value PLC - Snapshot

2. Select the desired comparison option.
The selected comparison option is executed as follows:
– A scales symbol appears in the header cells of the two columns selected for

comparison.
– Symbols are used in the "Compare result" column to indicate the result of the

comparison of the selected columns.

67

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Symbol in "Compare result" column

Symbol Meaning
The compare values are equal and error-free.

The compare values are not equal and error-free.

At least one of the two compare values has a process-related or syntax error.

The comparison cannot be performed. At least one of the two comparison values is not
available (e.g. snapshot).

Comparison of the value is inappropriate since it is not relevant in one of the configura
tions.

Symbol in the navigation
The symbols are shown in the same way in the navigation if the comparison result applies to
at least one of the parameters below the displayed navigation structure.

4.11.5.13 Applying values from the online program as start values

In order to apply optimized values from the CPU to the project as start values, you create a
snapshot of the monitor values. Values of the snapshot marked as a "Setpoint" are then
applied to the project as start values.

Requirements
• The technology object is of the type "PID_Compact", "PID_3Step" or "PID_Temp".
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.
• The “Monitor all” button is selected.

Procedure
To apply optimized values from the CPU, follow these steps:
1. Click the "Create snapshot of monitor values and accept setpoints of this snapshot as start

values" icon .

68
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.11 Parameter view

Result
The current monitor values are applied to the "Snapshot" column and their setpoints are
copied to the "Start value in project" column as new start values.

NOTE
Applying values of individual parameters
You can also apply the values of individual parameters that are not marked as a setpoint from
the "Snapshot" column to the "Start values project" column. To do so, copy the values and
insert them into the "Start value in project" column using the "Copy" and "Paste" commands in
the shortcut menu.

4.11.5.14 Initializing setpoints in the online program

You can initialize all parameters that are marked as a "Setpoint" in the Parameter view with
new values in the CPU in one step. In so doing, the start values are downloaded from the
project to the CPU. The CPU remains in "RUN" mode.
To avoid data loss on the CPU during a cold restart or warm restart, you must also download
the technology object to the CPU.

DANGER
Danger when changing parameter values
Changing the parameter values while the plant is operating may result in severe damage to
property and personal injury in the event of malfunctions or program errors.
Make sure that dangerous states cannot occur before you reinitialize the setpoints.

Requirements
• The technology object is of the type "PID_Compact", "PID_3Step" or "PID_Temp".
• There is an online connection.
• The technology object is downloaded to the CPU.
• The program execution is active (CPU in "RUN").
• The Parameter view of the technology object is open.
• The “Monitor all” button is selected.
• The parameters marked as " have a "Start value in project" that is free of process-related

and syntax errors.

Procedure
To initialize all setpoints, follow these steps:
1. Enter the desired values in the "Start value in project" column.

Ensure that the start values are free of process-related and syntax errors.
2. Click the icon "Load start values of setpoints as actual values".

69

Configuring a software controller
4.11 Parameter view

PID control
Function Manual, 11/2023, A5E35300227-AG

Result
The setpoints in the CPU are initialized with the start values from the project.

4.12 Display instance DB of a technology object.
An instance DB, in which the parameter and static variables are saved, is created for each
technology object.

Procedure
To display the instance DB of a technology object, proceed as follows:
1. Open the CPU folder in the project tree.
2. Open the "Technology objects" folder.
3. Highlight a technology object.
4. Select the command "Open DB editor" in the shortcut menu.

70
PID control

Function Manual, 11/2023, A5E35300227-AG

Configuring a software controller
4.12 Display instance DB of a technology object.

Using PID_Compact 5
5.1 Technology object PID_Compact

The technology object PID_Compact provides a continuous PID controller with integrated
optimization. You can alternatively configure a pulse controller. Both manual and automatic
mode are possible.
PID-Compact continuously acquires the measured process value within a control loop and
compares it with the required setpoint. From the resulting control deviation, the instruction
PID_Compact calculates an output value by which the process value is adapted as quickly and
stable as possible to the setpoint. The output value for the PID controller consists of three
actions:
• Proportional action

The proportional action of the output value increases in proportion to the control
deviation.

• I action
The integral action of the output value increases until the control deviation has been
balanced.

• D action
The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_Compact calculates the proportional, integral and derivative parameters
for your controlled system during pretuning. Fine tuning can be used to tune the parameters
further. You do not need to manually determine the parameters.

Additional information
• Overview of software controller (Page 41)
• Add technology objects (Page 43)
• Configure technology objects (Page 44)
• Configuring PID_Compact as of V2 (Page 72)
• Configuring PID_Compact V1 (Page 95)

FAQ
For more information, see the following FAQs in the Siemens Industry Online Support:
• Entry ID 79047707 (https://support.industry.siemens.com/cs/ww/en/view/79047707)

71
PID control
Function Manual, 11/2023, A5E35300227-AG

https://support.industry.siemens.com/cs/ww/en/view/79047707

5.2 PID_Compact as of V2

5.2.1 Configuring PID_Compact as of V2

5.2.1.1 Basic settings as of V2

Configure the following properties of the "PID_Compact" technology object under "Basic
settings" in the Inspector window or in the configuration window:
• Physical quantity
• Control logic
• Start-up behavior after reset
• Setpoint (only in the Inspector window)
• Process value (only in the Inspector window)
• Output value (only in the Inspector window)

Setpoint, process value and output value
You can only configure the setpoint, process value and output value in the Inspector window
of the programming editor. Select the source for each value:
• Instance DB

The value saved in the instance DB is used.
Value must be updated in the instance DB by the user program.
There should be no value at the instruction.
Change via HMI possible.

• Instruction
The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.
No change via HMI possible.

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and the process value
in the "Controller type" group. The setpoint and the process value are displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.
PID_Compact does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.
Examples
• Opening the drain valve will reduce the level of a container's contents.
• Increasing cooling will reduce the temperature.

72
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

Startup characteristics
1. To switch to "Inactive" mode after CPU restart, clear the "Activate Mode after CPU restart"

check box.
To switch to the operating mode saved in the Mode parameter after CPU restart, select the
"Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a complete
download to the device.
After a complete download to the device, PID_Compact starts in the selected operating
mode. With each additional restart, PID_Compact starts in the mode that was last saved in
Mode.

Example
You have selected the "Activate Mode after CPU restart" check box and the entry "Pretuning"
in the "Set Mode to" list. After a complete download to the device, PID_Compact starts in the
"Pretuning" mode. If pretuning is still active, PID_Compact starts in "Pretuning" mode again
after restart of the CPU. If pretuning was successfully completed and automatic mode is
active, PID_Compact starts in "Automatic mode" after restart of the CPU.

Procedure
Proceed as follows to define a fixed setpoint:
1. Select "Instance DB".
2. Enter a setpoint, e.g. 80° C.
3. Delete any entry in the instruction.
Proceed as follows to define a variable setpoint:
1. Select "Instruction".
2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

PID_Compact will scale the value of the analog input to the physical quantity if you use the
analog input value directly.
You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:
1. Select the entry "Input_PER" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the address of the analog input.
Proceed as follows to use the processed process value in floating point format:
1. Select the entry "Input" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the name of the variable in which the processed process value is saved.

73

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

PID_Compact offers three output values. Your actuator will determine which output value you
use.
• Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

• Output
The output value needs to be processed by the user program, for example because of non-
linear actuator response.

• Output_PWM
The actuator is controlled via a digital output. Pulse width modulation creates minimum
ON and minimum OFF times.

Procedure
Proceed as follows to use the analog output value:
1. Select the entry "Output_PER (analog)" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the analog output.
Proceed as follows to process the output value using the user program:
1. Select the entry "Output" in the drop-down list "Output".
2. Select "Instance DB".

The calculated output value is saved in the instance data block.
3. For the preparation of the output value, use the output parameter Output.
4. Transfer the processed output value to the actuator via a digital or analog CPU output.
Proceed as follows to use the digital output value:
1. Select the entry "Output_PWM" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the digital output.

74
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

5.2.1.2 Process value settings as of V2

If you have configured the use of Input_PER in the basic setting, you must convert the value
of the analog input to the physical quantity of the process value. The current configuration is
displayed in the Input_PER display.
Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

Procedure
To scale the process value, follow these steps:
1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.
2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.
Default settings for the value pairs are stored in the hardware configuration. To use the value
pairs from the hardware configuration, follow these steps:
1. Select the PID_Compact instruction in the programming editor.
2. Interconnect Input_PER with an analog input in the basic settings.
3. Click the "Automatic setting" button in the process value settings.
The existing values will be overwritten with the values from the hardware configuration.

You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can configure how PID_Compact reacts to an error in automatic mode in the
output value settings.

5.2.1.3 Advanced settings as of V2

Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_Compact instruction:
• At the InputWarning_H output parameter if the warning high limit has been exceeded
• At the InputWarning_L output parameter if the warning low limit has been undershot
The warning limits must be within the process value high and low limits.
The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98 °C; warning high limit = 90 °C
Warning low limit = 10 °C; process value low limit = 0 °C
PID_Compact will respond as follows:

Process value InputWarning_H InputWarning_L ErrorBits Operating mode
> 98 °C TRUE FALSE 0001h Inactive or

Substitute output
value with error
monitoring

≤ 98 °C and > 90 °C TRUE FALSE 0000h Automatic mode

75

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Process value InputWarning_H InputWarning_L ErrorBits Operating mode
≤ 90 °C and ≥ 10 °C FALSE FALSE 0000h Automatic mode

< 10 °C and ≥ 0 °C FALSE TRUE 0000h Automatic mode

< 0 °C FALSE TRUE 0001h Inactive or
Substitute output
value with error
monitoring

In the output value settings, you can specify the reaction of PID_Compact when the process
value high limit or low limit is violated.

See also
State and Mode as of V2 parameters (Page 252)

Via pulse width modulation, the value at the output parameter Output is transformed into a
pulse sequence that is output at output parameter Output_PWM.
Output is calculated in the PID algorithm sampling time. The sampling time is used as time
period of the pulse width modulation.
The PID algorithm sampling time is determined during pretuning or fine tuning. If manually
setting the PID parameters, you will also need to configure the PID algorithm sampling time.
Output_PWM is output in the PID_Compact sampling time. The PID_Compact sampling time is
equivalent to the cycle time of the calling OB.
The pulse duration is proportional to the value at Output and is always an integer multiple of
the PID_Compact sampling time.

① PID_Compact sampling time
② PID algorithm sampling time
③ Pulse duration
④ Break time

The "Minimum ON time" and the "Minimum OFF time" are rounded to an integer multiple of
the PID_Compact sampling time.

76
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.
Example
PID_Compact sampling time (equivalent to the cycle time of the calling OB) = 100 ms
PID algorithm sampling time (equivalent to the time period)= 1000 ms
Minimum ON time = 200 ms
Output is a constant 15%. The smallest pulse that PID_Compact can output is 20%. In the first
cycle, no pulse is output. In the second cycle, the pulse not output in the first cycle is added
to the pulse of the second cycle.

① PID_Compact sampling time
② PID algorithm sampling time
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum
ON and OFF times.
If you are using "Output" or "Output_PER", you must configure the value 0.0 for the minimum
ON and OFF times.

NOTE
The minimum ON and OFF times only affect the output parameter Output_PWM and are not
used for any pulse generators integrated in the CPU.

77

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Output value limits
In the "Output value limits" configuration window, configure the absolute limits of your
output value in percent. Absolute output value limits are not violated in neither manual mode
nor automatic mode. If an output value outside the limits is specified in manual mode, the
effective value is limited in the CPU to the configured limits.
The output value limits must match the control logic.
The valid output value limit values depend on the Output used.

Output -100.0 to 100.0%

Output_PER -100.0 to 100.0%

Output_PWM 0.0 to 100.0%

Reaction to error

NOTICE
Your system may be damaged.
If you output "Current value while error pending " or "Substitute output value while error
pending" in the event of an error, PID_Compact remains in automatic mode. This may cause
a violation of the process value limits and damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

PID_Compact is preset so that the controller stays active in most cases in the event of an
error. If errors occur frequently in controller mode, this default reaction has a negative effect
on the control response. In this case, check the Errorbits parameter and eliminate the cause
of the error.
PID_Compact generates a programmable output value in response to an error:
• Zero (inactive)

PID_Compact outputs 0.0 as output value for all errors and switches to "Inactive" mode.
The controller is only reactivated by a falling edge at Reset or a rising edge at
ModeActivate.

• Current value while error is pending
If the following errors occur in automatic mode, PID_Compact returns to automatic mode
as soon as the errors are no longer pending.
If one or more of the following errors occur, PID_Compact stays in
automatic mode:
– 0001h: The "Input" parameter is outside the process value limits.
– 0800h: Sampling time error
– 40000h: Invalid value at Disturbance parameter.
If one or more of the following errors occur in automatic mode, PID_Compact switches to
"Substitute output value with error monitoring" mode and outputs the last valid output
value:
– 0002h: Invalid value at Input_PER parameter.
– 0200h: Invalid value at Input parameter.
– 0400h: Calculation of output value failed.
– 1000h: Invalid value at Setpoint parameter.

78
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

If an error occurs in manual mode, PID_Compact continues using the manual value as the
output value. If the manual value is invalid, the substitute output value is used. If the
manual value and substitute output value are invalid, the output value low limit is used.
If the following error occurs during a pretuning or fine tuning, PID_Compact remains in
active mode:
– 0020h: Pretuning is not permitted during fine tuning.
When any other error occurs, PID_Compact cancels the tuning and switches to the mode
from which tuning was started.
As soon as no errors are pending, PID_Compact returns to automatic mode.

• Substitute output value while error is pending
PID_Compact outputs the substitute output value.
If the following error occurs, PID_Compact stays in "Substitute output value with error
monitoring" mode and outputs the output value low limit:
– 20000h: Invalid value at SubstituteOutput tag.
For all other errors, PID_Compact reacts as described for "Current value while error is
pending".

See also
State and Mode as of V2 parameters (Page 252)

The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

NOTE
The currently active PID parameters are located for PID_Compact V1 in the sRet structure and
as of PID_Compact V2 in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters as follows:
• PID_Compact V1: Change the PID parameters in the sBackUp structure and apply these

changes with sPid_Cmpt.b_LoadBackUp = TRUE to the sRet structure.
• PID_Compact as of V2: Change the PID parameters in the CtrlParamsBackUp structure and

apply these changes with LoadBackUp = TRUE to the Retain.CtrlParams structure.
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

79

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

The PID algorithm operates according to the following equation:

Symbol Description
y Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Compact.
Downloading technology objects to device (Page 46)

Proportional gain
The value specifies the proportional gain of the controller. PID_Compact does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

80
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

81

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_Compact are executed at every call.
If you use Output_PWM, the sampling time of the PID algorithm is used as the period duration
of the pulse width modulation. The accuracy of the output signal is determined by the ratio of
the PID algorithm sampling time to the cycle time of the OB. It is therefore recommended
that the cycle time is a maximum of one tenth of the PID algorithm sampling time.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list.
• PID

Calculates PID parameters during pretuning and fine tuning.
• PI

Calculates PI parameters during pretuning and fine tuning.
• User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program.

The PID parameters are displayed in the "PID Parameters" configuration window. During
tuning, the PID parameters are adapted to the controlled system with the exception of the
dead zone width that has to be configured manually.

NOTE
The currently active PID parameters are located in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters in the CtrlParamsBackUp structure and apply these changes with
LoadBackUp = TRUE to the Retain.CtrlParams structure.
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

PID_Compact is a PIDT1 controller with Anti-Windup and weighting of the proportional and
derivative actions.

82
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

The PID algorithm operates according to the following equation (dead zone disabled):

Symbol Description Associated parameters of the
PID_Compact instruction

y Output value of the PID algorithm -
Kp Proportional gain Retain.CtrlParams.Gain
s Laplace operator -
b Proportional action weighting Retain.CtrlParams.PWeighting
w Setpoint CurrentSetpoint
x Process value ScaledInput
TI Integration time Retain.CtrlParams.Ti
a Derivative delay coefficient (derivative delay T1 = a ×

TD)
Retain.CtrlParams.TdFiltRatio

TD Derivative action time Retain.CtrlParams.Td
c Derivative action weighting Retain.CtrlParams.DWeighting
DeadZone Dead zone width Retain.CtrlParams.DeadZone

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Compact.
Download technology objects to device

Proportional gain
The value specifies the proportional gain of the controller. PID_Compact does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

83

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.
If the output value reaches an output value limit in automatic mode, the integral action is
stopped depending on the direction (Anti-Windup). As of PID_Compact Version 3.0, the
integral component is also actively limited in order to prevent delayed control behavior, e.g.
when the output value limits change. Changes to the following tags can lead to an
adjustment of the integral component in automatic mode:
• Output value limits (Config.OutputLowerLimit and Config.OutputUpperLimit tags)
• Setpoint (Setpoint tag)
• Proportional gain (Retain.CtrlParams.Gain tag)
• Proportional action weighting (Retain.CtrlParams.PWeighting tag)
• Disturbance variable (Disturbance variable)

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

84
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_Compact are executed at every call.
If you use Output_PWM, the sampling time of the PID algorithm is used as the period duration
of the pulse width modulation. The accuracy of the output signal is determined by the ratio of
the PID algorithm sampling time to the cycle time of the OB. It is therefore recommended
that the cycle time is a maximum of one tenth of the PID algorithm sampling time.

Dead zone width
If the process value is affected by noise, the noise can also have an effect on the output
value. The output value may fluctuate considerably when the controller gain is high and the
derivative action is activated. If the process value lies within the dead zone around the
setpoint, the control deviation is suppressed so that the PID algorithm does not react and
unnecessary fluctuations of the output value are reduced.
The dead zone width is not set automatically during tuning. You have to correctly configure
the dead zone width manually. The dead zone is deactivated by setting the dead zone width
= 0.0.
When the dead zone is switched on, the result can be a permanent control deviation
(deviation between setpoint and process value). This can have a negative effect on fine
tuning.
If values other than 1.0 are configured for the proportional action weighting or the derivative
action weighting, setpoint changes even within the dead zone affect the output value.
Process value changes within the dead zone do not affect the output value, regardless of the
weighting.
The diagram below illustrates the effect of the dead zone: The X / horizontal axis shows the
control deviation = Setpoint - Process value. The Y / vertical axis shows the output signal of
the dead zone that is passed to the PID algorithm.

85

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list.
• PID

Calculates PID parameters during pretuning and fine tuning.
• PI

Calculates PI parameters during pretuning and fine tuning.
• User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program.

See also
Selection of the controller structure for specified controlled systems (Page 39)

5.2.2 Commissioning PID_Compact as of V2

5.2.2.1 Pretuning as of V2

The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The PID parameters are calculated from the maximum
rate of rise and dead time of the controlled system. You obtain the best PID parameters when
you perform pretuning and fine tuning.
The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the rate
of rise of the process value is significantly higher compared to the noise. This is most likely
the case in operating modes "Inactive" and "manual mode". The PID parameters are backed up
before being recalculated.

Requirement
• The "PID_Compact" instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• PID_Compact is in one of the following modes: "Inactive", "Manual mode", or "Automatic

mode".
• The setpoint and the process value lie within the configured limits (see "Process value

monitoring" configuration).
• The difference between setpoint and process value is greater than 30% of the difference

between process value high limit and process value low limit.
• The distance between the setpoint and the process value is > 50% of the setpoint.

86
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

Procedure
To perform pretuning, follow these steps:
1. Double-click the "PID_Compact > Commissioning" entry in the project tree.
2. Select the entry "Pretuning" in the "Tuning mode" drop-down list.
3. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– Pretuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon when the progress bar has reached 100% and it can be assumed
the controller tuning function is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Compact switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If pretuning is not possible, PID_Compact responds with the configured reaction to errors.

See also
State and Mode as of V2 parameters (Page 252)

87

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

5.2.2.2 Fine tuning as of V2

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters
are tuned for the operating point from the amplitude and frequency of this oscillation. All PID
parameters are recalculated from the results. PID parameters from fine tuning usually have
better master control and disturbance characteristics than PID parameters from pretuning.
You obtain the best PID parameters when you perform pretuning and fine tuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

Requirement
• The PID_Compact instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits.
• The control loop has stabilized at the operating point. The operating point is reached

when the process value corresponds to the setpoint.
• No disturbances are expected.
• PID_Compact is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning can be started from the following operating modes: "Inactive", "automatic mode",
or "manual mode". Fine tuning proceeds as follows when started from:
• Automatic mode

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.
PID_Compact controls the system using the existing PID parameters until the control loop
has stabilized and the requirements for fine tuning have been met. Only then will fine
tuning start.

• Inactive or manual mode
If the requirements for pretuning are met, pretuning is started. The determined PID
parameters will be used for control until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start. If pretuning
is not possible, PID_Compact responds with the configured responses in the event of an
error.
An attempt is made to reach the setpoint with the minimum or maximum output value if
the process value for pretuning is already too near the setpoint. This can produce
increased overshoot.

88
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

Procedure
To perform fine tuning, follow these steps:
1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.
2. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– The process of fine tuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached 100%
and it is to be assumed that tuning is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

Result
If fine tuning was performed without errors, the PID parameters have been tuned.
PID_Compact switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If errors occurred during "fine tuning", PID_Compact responds with the configured response
to errors.

See also
State and Mode as of V2 parameters (Page 252)

89

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

5.2.2.3 "Manual" mode as of V2

The following section describes how you can use the "manual mode" operating mode in the
commissioning window of the "PID_Compact" technology object. Manual mode is also
possible when an error is pending.

Requirement
• The "PID_Compact" instruction is called in a cyclic interrupt OB.
• An online connection to the CPU has been established and the CPU is in "RUN" mode.

Procedure
Use "Manual mode" in the commissioning window if you want to test the controlled system
by specifying a manual value. To define a manual value, proceed as follows:
1. Click the "Start" icon.
2. Select the "Manual mode" check box in the "Online status of controller" area.

PID_Compact operates in manual mode. The most recent current output value remains in
effect.

3. Enter the manual value in the "Output" field as a % value.
4. Click the icon.

Result
The manual value is written to the CPU and immediately goes into effect.
Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller. The switchover to automatic mode is bumpless.

See also
State and Mode as of V2 parameters (Page 252)

5.2.3 Override control with PID_Compact as of V2

Override control
In case of override control, two or more controllers share one actuator. Only one controller
has access to the actuator at any time and influences the process.
A logic operation decides which controller has access to the actuator. This decision is often
made based on a comparison of the output values of all controllers, for example, in case of a
maximum selection, the controller with the largest output value gets access to the actuator.
The selection based on the output value requires that all controllers operate in automatic
mode. The controllers that do not have an effect on the actuator are updated. This is
necessary to prevent windup effects and their negative impacts on the control response and
the switchover between the controllers.

90
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

PID_Compact supports override controls as of version 2.3 by offering a simple process for
updating the controllers that are not active:
• By using the OverwriteInitialOutputValue and PIDCtrl.PIDInit tags, you can preassign the

integral action of the controller in automatic mode as though the PID algorithm had
calculated Output = OverwriteInititalOutputValue for the output value in the last cycle.

• To do this, OverwriteInitialOutputValue is interconnected with the output value of the
controller that currently has access to the actuator.

• By setting the bit PIDCtrl.PIDInit, you trigger the pre-assignment of the integral action as
well as the restart of the controller cycle and the PWM period.

• The subsequent calculation of the output value in the current cycle takes place based on
the pre-assigned (and synchronized for all controllers) integral action as well as the
proportional action and integral action from the current control deviation.

• The derivative action is not active during the call with PIDCtrl.PIDInit = TRUE and therefore
does not contribute to the output value.

This procedure ensures that the calculation of the current output value and thus the decision
on which controller is to have access to the actuator is only based on the current process
state and the PI parameters. Windup effects for controllers that are not active and thus
incorrect decisions of the switchover logic are prevented.

Requirements
• PIDCtrl.PIDInit is only effective if the integral action is activated (Retain.CtrlParams.Ti tag >

0.0).
• You must assign PIDCtrl.PIDInit and OverwriteInitialOutputValue in your user program

yourself (see example below). PID_Compact does not automatically change these tags.
• PIDCtrl.PIDInit is only effective when PID_Compact is in automatic mode (parameter State

= 3)
• If possible, select the sampling time of the PID algorithm (Retain.CtrlParams.Cycle tag) in

such a way that it is identical for all controllers, and call all controllers in the same cyclic
interrupt OB. In this way, you ensure that the switchover does not take place within a
controller cycle or a PWM period.

NOTE
Constant adaptation of the output value limits
Instead of the active updating of the controllers without access to the actuator described
here, this is implemented alternatively by constant adaptation of the output value limits in
other controller systems.
This is not possible with PID_Compact, because a change of the output value limits is not
supported in automatic mode.

91

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Example: Control of a gas pipeline
PID_Compact is used for control of a gas pipeline.
The main goal is to control the flow rate Input1. The controller PID_Compact_1 is used for this
purpose. In addition, the pressure Input2 (measured in flow direction in front of the valve) is
to be kept below the high limit with the limiting controller PID_Compact_2.
Flow rate and pressure are controlled by a single solenoid valve. The output value of the
controller corresponds to the valve opening: The valve is opened when the output value
increases. This means the flow rate increases (normal control logic) while the pressure drops
(inverted control logic).

The valve is controlled with the output value of PID_Compact in I/O format (parameter
Output_PER) by writing the program tag ActuatorInput.
The setpoint for the flow rate is specified at the parameter PID_Compact_1.Setpoint.
The pressure high limit is specified as setpoint at the parameter PID_Compact_2.Setpoint.

92
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

Both controllers must share one valve as shared actuator. The logic that decides which
controller gets access to the actuator is implemented by a maximum selection of the output
value (in Real format, parameter Output) in this case. Because the output value corresponds
to the opening of the valve, the controller that requires the larger valve opening gets the
control.

NOTE
Activate inversion of the control logic
Because a decrease of the actual value (pressure) is to be achieved with the pressure
regulator PID_Compact_2 when the output value increases (valve opening), the inversion of
the control logic must be activated: PID_Compact_2.Config.InvertControl = TRUE.

In normal operation of the plant, the actual value of the flow rate corresponds to the
setpoint. The flow controller PID_Compact_1 has settled on a stationary output value
PID_Compact_1.Output. The actual value of the pressure in normal operation is significantly
below the high limit that is specified as setpoint for PID_Compact_2. The pressure regulator
therefore wants to close the valve even further to increase the pressure, which means it will
calculate an output value PID_Compact_2.Output that is smaller than the output value of the
flow controller PID_Compact_1.Output. The maximum selection of the switchover logic
therefore gives the flow controller PID_Compact_1 continued access to the actuator. In
addition, it is ensured that PID_Compact_2 is updated by means of the assignments
PID_Compact_2.OverwriteInitialOutputValue = PID_Compact_1.Output and
PID_Compact_2.PIDCtrl.PIDInit = TRUE.
If the pressure now approaches the high limit or exceeds it, for example due to a fault, the
pressure regulator PID_Compact_2 calculates a higher output value to open the valve even
further and thus reduce the pressure. If PID_Compact_2.Output is greater than
PID_Compact_1.Output, the pressure regulator PID_Compact_2 receives access to the
actuator through the maximum selection and opens it. It is ensured that PID_Compact_1 is
updated by means of the assignments PID_Compact_1.OverwriteInitialOutputValue =
PID_Compact_2.Output and PID_Compact_1.PIDCtrl.PIDInit = TRUE.
The pressure is reduced while the flow rate increases and can no longer be kept at the
setpoint.
Once the fault has been remedied, the pressure will continue to drop and the opening of the
valve is reduced by the pressure regulator. If the flow controller calculates a larger opening as
output value, the plant returns to normal operation so that the flow controller
PID_Compact_1 once again has access to the actuator.

93

Using PID_Compact
5.2 PID_Compact as of V2

PID control
Function Manual, 11/2023, A5E35300227-AG

This example can be implemented with the following SCL program code:

"PID_Compact_1"(Input := "Input1");

"PID_Compact_2"(Input := "Input2");

IF "PID_Compact_1".Output >= "PID_Compact_2".Output THEN

"ActuatorInput" := "PID_Compact_1".Output_PER;

"PID_Compact_1".PIDCtrl.PIDInit := FALSE;

"PID_Compact_2".PIDCtrl.PIDInit := TRUE;

"PID_Compact_2".OverwriteInitialOutputValue :=
"PID_Compact_1".Output;

ELSE
"ActuatorInput" := "PID_Compact_2".Output_PER;

"PID_Compact_1".PIDCtrl.PIDInit := TRUE;

"PID_Compact_2".PIDCtrl.PIDInit := FALSE;

"PID_Compact_1".OverwriteInitialOutputValue :=
"PID_Compact_2".Output;

END_IF;

5.2.4 Simulating PID_Compact as of V2 with PLCSIM

NOTE
Simulation with PLCSIM
The simulation of PID_Compact V2.x with PLCSIM for CPU S7-1200 is not supported.
PID_Compact V2.x can only be simulated for CPU S7-1500 with PLCSIM.
For the simulation with PLCSIM, the time behavior of the simulated PLC is not exactly
identical to that of a "real" PLC. The actual cycle clock of a cyclic interrupt OB can have larger
fluctuations with a simulated PLC than with "real" PLCs.
In the standard configuration, PID_Compact determines the time between calls automatically
and monitors them for fluctuations.
For the simulation of PID_Compact with PLCSIM, for example, a sampling time error (ErrorBits
= DW#16#00000800) can therefore be detected.
This results in ongoing tuning being aborted.
The response in automatic mode depends on the value of the ActivateRecoverMode tag.
To prevent this from happening, you should configure PID_Compact for simulation with
PLCSIM as follows:
• CycleTime.EnEstimation = FALSE
• CycleTime.EnMonitoring = FALSE
• CycleTime.Value: Assign the cycle clock of the calling cyclic interrupt OB in seconds to this

tag.

94
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.2 PID_Compact as of V2

5.3 PID_Compact V1

5.3.1 Configuring PID_Compact V1

5.3.1.1 Basic settings V1

Configure the following properties of the "PID_Compact" technology object under "Basic
settings" in the Inspector window or in the configuration window:
• Physical quantity
• Control logic
• Start-up behavior after reset
• Setpoint (only in the Inspector window)
• Process value (only in the Inspector window)
• Output value (only in the Inspector window)

Setpoint, process value and output value
You can only configure the setpoint, process value and output value in the Inspector window
of the programming editor. Select the source for each value:
• Instance DB

The value saved in the instance DB is used.
Value must be updated in the instance DB by the user program.
There should be no value at the instruction.
Change via HMI possible.

• Instruction
The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.
No change via HMI possible.

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and process value in
the "Controller type" group. The setpoint and process value will be displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.
PID_Compact does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.
Examples
• Opening the drain valve will reduce the level of a container's contents.
• Increasing cooling will reduce the temperature.

95

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Start-up behavior after reset
To change straight to the last active operating mode after restarting the CPU, select the
"Enable last mode after CPU restart" check box.
PID_Compact will remain in "Inactive" mode if the check box is cleared.

Procedure
Proceed as follows to define a fixed setpoint:
1. Select "Instance DB".
2. Enter a setpoint, e.g. 80° C.
3. Delete any entry in the instruction.
Proceed as follows to define a variable setpoint:
1. Select "Instruction".
2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

PID_Compact will scale the value of the analog input to the physical quantity if you use the
analog input value directly.
You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:
1. Select the entry "Input_PER" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the address of the analog input.
Proceed as follows to use the processed process value in floating point format:
1. Select the entry "Input" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the name of the variable in which the processed process value is saved.

PID_Compact offers three output values. Your actuator will determine which output value you
use.
• Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

• Output
The output value needs to be processed by the user program, for example because of non-
linear actuator response.

• Output_PWM
The actuator is controlled via a digital output. Pulse width modulation creates minimum
ON and minimum OFF times.

96
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

Procedure
Proceed as follows to use the analog output value:
1. Select the entry "Output_PER (analog)" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the analog output.
Proceed as follows to process the output value using the user program:
1. Select the entry "Output" in the drop-down list "Output".
2. Select "Instance DB".

The calculated output value is saved in the instance data block.
3. For the preparation of the output value, use the output parameter Output.
4. Transfer the processed output value to the actuator via a digital or analog CPU output.
Proceed as follows to use the digital output value:
1. Select the entry "Output_PWM" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the digital output.

5.3.1.2 Process value settings V1

Configure the scaling of your process value and specify the process value absolute limits In
the "Process value settings" configuration window.

Scaling the process value
If you have configured the use of Input_PER in the basic settings, you will need to convert the
value of the analog input into the physical quantity of the process value. The current
configuration will be displayed in the Input_PER display.
Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.
1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.
2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.
Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:
1. Select the instruction PID_Compact in the programming editor.
2. Connect Input_PER with an analog input in the basic settings.
3. Click on the "Automatic setting" button in the process value settings.
The existing values will be overwritten with the values from the hardware configuration.

97

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Monitoring process value
Specify the absolute high and low limit of the process value. As soon as these limits are
violated during operation, the controller switches off and the output value is set to 0%. You
must enter reasonable limits for your controlled system. Reasonable limits are important
during optimization to obtain optimal PID parameters.
The default for the "High limit process value" is 120 %. At the I/O input, the process value can
be a maximum of 18% higher than the standard range (overrange). An error is no longer
reported for a violation of the "High limit process value". Only a wire-break and a short-circuit
are recognized and the PID_Compact switches to "Inactive" mode.

WARNING

If you set very high process value limits (for example -3.4*1038...+3.4*1038), process value
monitoring will be disabled. Your system may then be damaged if an error occurs.

See also
Process value monitoring V1 (Page 98)
PWM limits V1 (Page 99)
Output value limits V1 (Page 101)
PID parameters V1 (Page 101)

5.3.1.3 Advanced settings V1

Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_Compact instruction:
• At the InputWarning_H output parameter if the warning high limit has been exceeded
• At the InputWarning_L output parameter if the warning low limit has been undershot
The warning limits must be within the process value high and low limits.
The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C
Warning low limit = 10° C; process value low limit = 0° C
PID_Compact will respond as follows:

Process value InputWarning_H InputWarning_L Operating mode
> 98° C TRUE FALSE Inactive

≤ 98° C and > 90° C TRUE FALSE Automatic mode

≤ 90° C and ≥ 10° C FALSE FALSE Automatic mode

< 10° C and ≥ 0° C FALSE TRUE Automatic mode

< 0° C FALSE TRUE Inactive

98
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

See also
Process value settings V1 (Page 97)
PWM limits V1 (Page 99)
Output value limits V1 (Page 101)
PID parameters V1 (Page 101)

Via pulse width modulation, the value at the output parameter Output is transformed into a
pulse sequence that is output at output parameter Output_PWM.
Output is calculated in the PID algorithm sampling time. The sampling time is used as time
period of the pulse width modulation.
The PID algorithm sampling time is determined during pretuning or fine tuning. If manually
setting the PID parameters, you will also need to configure the PID algorithm sampling time.
Output_PWM is output in the PID_Compact sampling time. The PID_Compact sampling time is
equivalent to the cycle time of the calling OB.
The pulse duration is proportional to the value at Output and is always an integer multiple of
the PID_Compact sampling time.

① PID_Compact sampling time
② PID algorithm sampling time
③ Pulse duration
④ Break time

The "Minimum ON time" and the "Minimum OFF time" are rounded to an integer multiple of
the PID_Compact sampling time.
A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.
Example
PID_Compact sampling time (equivalent to the cycle time of the calling OB) = 100 ms
PID algorithm sampling time (equivalent to the time period)= 1000 ms
Minimum ON time = 200 ms

99

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Output is a constant 15%. The smallest pulse that PID_Compact can output is 20%. In the first
cycle, no pulse is output. In the second cycle, the pulse not output in the first cycle is added
to the pulse of the second cycle.

① PID_Compact sampling time
② PID algorithm sampling time
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum
ON and OFF times.
If you are using "Output" or "Output_PER", you must configure the value 0.0 for the minimum
ON and OFF times.

NOTE
The minimum ON and OFF times only affect the output parameter Output_PWM and are not
used for any pulse generators integrated in the CPU.

See also
Process value settings V1 (Page 97)
Process value monitoring V1 (Page 98)
Output value limits V1 (Page 101)
PID parameters V1 (Page 101)

100
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

In the "Output value limits" configuration window, configure the absolute limits of your
output value in percent. Absolute output value limits are not violated in neither manual mode
nor in automatic mode. If a output value outside the limits is specified in manual mode, the
effective value is limited in the CPU to the configured limits.
The valid output value limit values depend on the Output used.

Output -100.0 to 100.0

Output_PER -100.0 to 100.0

Output_PWM 0.0 to 100.0

PID_Compact sets the output value to 0.0 if an error occurs. 0.0 must therefore always be
within the output value limits. You will need to add an offset to Output and Output_PER in
the user program if you want an output value low limit of greater than 0.0.

See also
Process value settings V1 (Page 97)
Process value monitoring V1 (Page 98)
PWM limits V1 (Page 99)
PID parameters V1 (Page 101)

The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

NOTE
The currently active PID parameters are located for PID_Compact V1 in the sRet structure and
as of PID_Compact V2 in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters as follows:
• PID_Compact V1: Change the PID parameters in the sBackUp structure and apply these

changes with sPid_Cmpt.b_LoadBackUp = TRUE to the sRet structure.
• PID_Compact as of V2: Change the PID parameters in the CtrlParamsBackUp structure and

apply these changes with LoadBackUp = TRUE to the Retain.CtrlParams structure.
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

101

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

The PID algorithm operates according to the following equation:

Symbol Description
y Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Compact.
Downloading technology objects to device (Page 46)

Proportional gain
The value specifies the proportional gain of the controller. PID_Compact does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

102
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

103

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_Compact are executed at every call.
If you use Output_PWM, the sampling time of the PID algorithm is used as the period duration
of the pulse width modulation. The accuracy of the output signal is determined by the ratio of
the PID algorithm sampling time to the cycle time of the OB. It is therefore recommended
that the cycle time is a maximum of one tenth of the PID algorithm sampling time.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list.
• PID

Calculates PID parameters during pretuning and fine tuning.
• PI

Calculates PI parameters during pretuning and fine tuning.
• User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program.

104
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

5.3.2 Commissioning PID_Compact V1

5.3.2.1 Commissioning V1

The commissioning window helps you commission the PID controller. You can monitor the
values for the setpoint, process value and output value along the time axis in the trend view.
The following functions are supported in the commissioning window:
• Controller pretuning
• Controller fine tuning

Use fine tuning for fine adjustments to the PID parameters.
• Monitoring the current closed-loop control in the trend view
• Testing the controlled system by specifying a manual output value
All functions require an online connection to the CPU to have been established.

Basic handling
• Select the desired sampling time in the "Sampling time" drop-down list.

All values in the commissioning window are updated in the selected update time.
• Click the "Start" icon in the measuring group if you want to use the commissioning

functions.
Value recording is started. The current values for the setpoint, process value and output
value are entered in the trend view. Operation of the commissioning window is enabled.

• Click the "Stop" icon if you want to end the commissioning functions.
The values recorded in the trend view can continue to be analyzed.

Closing the commissioning window will terminate recording in the trend view and delete the
recorded values.

See also
Pretuning V1 (Page 106)
Fine tuning V1 (Page 107)
"Manual" mode V1 (Page %getreference)

105

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

5.3.2.2 Pretuning V1

The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The tuned PID parameters are calculated as a function of
the maximum slope and dead time of the controlled system.
The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the rate
of rise of the process value is significantly higher compared to the noise. The PID parameters
are backed up before being recalculated.

Requirement
• The "PID_Compact" instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• PID_Compact is in "inactive" or "manual" mode.
• The setpoint may not be changed during controller tuning. PID_Compact will otherwise be

deactivated.
• The setpoint and the process value lie within the configured limits (see "Process value

monitoring" configuration).
• The difference between setpoint and process value is greater than 30% of the difference

between process value high limit and process value low limit.
• The distance between the setpoint and the process value is > 50% of the setpoint.

Procedure
To perform pretuning, follow these steps:
1. Double-click the "PID_Compact > Commissioning" entry in the project tree.
2. Select the entry "Pretuning" in the "Tuning mode" drop-down list.
3. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– Pretuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon when the progress bar has reached 100% and it is to be assumed
the controller tuning function is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Compact switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If pretuning is not possible, PID_Compact will change to "Inactive" mode.

106
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

See also
Parameters State and sRet.i_Mode V1 (Page 275)
Commissioning V1 (Page 105)
Fine tuning V1 (Page 107)
"Manual" mode V1 (Page %getreference)

5.3.2.3 Fine tuning V1

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters
are optimized for the operating point from the amplitude and frequency of this oscillation. All
PID parameters are recalculated on the basis of the findings. PID parameters from fine tuning
usually have better master control and disturbance behavior than PID parameters from
pretuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

Requirement
• The PID_Compact instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• The setpoint and the process value lie within the configured limits (see "Process value

monitoring" configuration).
• The control loop has stabilized at the operating point. The operating point is reached

when the process value corresponds to the setpoint.
• No disturbances are expected.
• The setpoint may not be changed during controller tuning.
• PID_Compact is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning can be started in "inactive", "automatic" or "manual" mode. Fine tuning proceeds
as follows when started in:
• Automatic mode

Start fine tuning in automatic mode if you wish to improve the existing PID parameters
using controller tuning.
PID_Comact will regulate using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

• Inactive or manual mode
If the requirements for pretuning are met, pretuning is started. The PID parameters
established will be used for adjustment until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start. If pretuning
is not possible, PID_Compact will change to "Inactive" mode.

107

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

An attempt is made to reach the setpoint with a minimum or maximum output value if the
process value for pretuning is already too near the setpoint. This can produce increased
overshoot.

Procedure
Proceed as follows to carry out "fine tuning":
1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.
2. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– The process of fine tuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached 100%
and it is to be assumed the controller tuning function is blocked. Check the configuration
of the technology object and, if necessary, restart controller tuning.

Result
The PID parameters will have been optimized if fine tuning has been executed without errors.
PID_Compact changes to automatic mode and uses the optimized parameters. The optimized
PID parameters will be retained during power OFF and a restart of the CPU.
If errors occurred during "fine tuning", PID_Compact will change to "inactive" mode.

See also
Parameters State and sRet.i_Mode V1 (Page 275)
Commissioning V1 (Page 105)
Pretuning V1 (Page 106)
"Manual" mode V1 (Page %getreference)

108
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

5.3.2.4 "Manual" mode V1

The following section describes how you can use the "Manual" operating mode in the
commissioning window of the "PID Compact" technology object.

Requirement
• The "PID_Compact" instruction is called in a cyclic interrupt OB.
• An online connection to the CPU has been established and the CPU is in the "RUN" mode.
• The functions of the commissioning window have been enabled via the "Start" icon.

Procedure
Use "Manual mode" in the commissioning window if you want to test the controlled system
by specifying a manual value. To define a manual value, proceed as follows:
1. Select the "Manual mode" check box in the "Online status of controller" area.

PID_Compact operates in manual mode. The most recent current output value remains in
effect.

2. Enter the manual value in the "Output" field as a % value.
3. Click the control icon .

Result
The manual value is written to the CPU and immediately goes into effect.

NOTE
PID_Compact continues to monitor the process value. If the process value limits are
exceeded, PID_Compact is deactivated.

Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller. The switchover to automatic mode is bumpless.

See also
Parameters State and sRet.i_Mode V1 (Page 275)
Commissioning V1 (Page 105)
Pretuning V1 (Page 106)
Fine tuning V1 (Page 107)

109

Using PID_Compact
5.3 PID_Compact V1

PID control
Function Manual, 11/2023, A5E35300227-AG

5.3.3 Simulating PID_Compact V1 with PLCSIM

NOTE
Simulation with PLCSIM
For the simulation with PLCSIM, the time behavior of the simulated PLC is not exactly
identical to that of a "real" PLC. The actual cycle clock of a cyclic interrupt OB can have larger
fluctuations with a simulated PLC than with "real" PLCs.
In the standard configuration, PID_Compact determines the time between calls automatically
and monitors them for fluctuations.
For a simulation of PID_Compact with PLCSIM, for example, a sampling time error (ErrorBits =
DW#16#00000800) can therefore be detected.
PID_Compact switches to "Inactive" mode (State = 0) in this case.
To prevent this from happening, you should configure PID_Compact for simulation with
PLCSIM as follows:
• sb_EnCyclEstimation = FALSE
• sb_EnCyclMonitoring = FALSE
• sPid_Calc.r_Cycle: Assign the cycle clock of the calling cyclic interrupt OB in seconds to this

tag.

110
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Compact
5.3 PID_Compact V1

Using PID_3Step 6
6.1 Technology object PID_3Step

The technology object PID_3Step provides a PID controller with tuning for valves or actuators
with integral response.
You can configure the following controllers:
• Three-point step controller with position feedback
• Three-point step controller without position feedback
• Valve controller with analog output value
PID_3Step continuously acquires the measured process value within a control loop and
compares it with the setpoint. From the resulting control deviation, PID_3Step calculates an
output value through which the process value reaches the setpoint as quickly and steadily as
possible. The output value for the PID controller consists of three actions:
• Proportional action

The proportional action of the output value increases in proportion to the control
deviation.

• I action
The integral action of the output value increases until the control deviation has been
balanced.

• D action
The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_3Step calculates the proportional, integral and derivative parameters for
your controlled system during pretuning. Fine tuning can be used to tune the parameters
further. You do not need to manually determine the parameters.

Additional information
• Overview of software controller (Page 41)
• Add technology objects (Page 43)
• Configure technology objects (Page 44)
• Configuring PID_3Step V2 (Page 112)
• Configuring PID_3Step V1 (Page 129)

Principle
For more information, see the following FAQs in the Siemens Industry Online Support:
• Entry ID 68011827 (https://support.industry.siemens.com/cs/ww/en/view/68011827)

111
PID control
Function Manual, 11/2023, A5E35300227-AG

https://support.industry.siemens.com/cs/ww/en/view/68011827

6.2 PID_3Step V2

6.2.1 Configuring PID_3Step V2

6.2.1.1 Basic settings V2

Configure the following properties of the "PID_3Step" technology object under "Basic settings"
in the Inspector window or in the configuration window:
• Physical quantity
• Control logic
• Start-up behavior after reset
• Setpoint (only in the Inspector window)
• Process value (only in the Inspector window)
• Output value (only in the Inspector window)
• Position feedback (only in the Inspector window)

Setpoint, process value, output value and position feedback
You can only configure the setpoint, process value, output value and position feedback in the
Inspector window of the programming editor. Select the source for each value:
• Instance DB

The value saved in the instance DB is used.
Value must be updated in the instance DB by the user program.
There should be no value at the instruction.
Change via HMI possible.

• Instruction
The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.
No change via HMI possible.

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and the process value
in the "Controller type" group. The setpoint and the process value are displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.
PID_3Step does not work with negative proportional gain. Select the check box "Invert control
logic" to reduce the process value with a higher output value.
Examples
• Opening the drain valve will reduce the level of a container's contents.
• Increasing cooling will reduce the temperature.

112
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

Startup characteristics
1. To switch to "Inactive" mode after CPU restart, clear the "Activate Mode after CPU restart"

check box.
To switch to the operating mode saved in the Mode parameter after CPU restart, select the
"Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a complete
download to the device.
After a complete download to the device, PID_3Step starts in the selected operating mode.
With each additional restart, PID_3Step starts in the mode that was last saved in Mode.

Example
You have selected the "Activate Mode after CPU restart" check box and the entry "Pretuning"
in the "Set Mode to" list. After a complete download to the device, PID_3Step starts in the
"Pretuning" mode. If pretuning is still active, PID_3Step starts in "Pretuning" mode again after
restart of the CPU. If pretuning was successfully completed and automatic mode is active,
PID_3Step starts in "Automatic mode" after restart of the CPU.

Procedure
Proceed as follows to define a fixed setpoint:
1. Select "Instance DB".
2. Enter a setpoint, e.g. 80° C.
3. Delete any entry in the instruction.
Proceed as follows to define a variable setpoint:
1. Select "Instruction".
2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

PID_3Step will scale the value of the analog input to the physical quantity if you use the
analog input value directly.
You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:
1. Select the entry "Input_PER" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the address of the analog input.
Proceed as follows to use the processed process value in floating point format:
1. Select the entry "Input" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the name of the variable in which the processed process value is saved.

113

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Position feedback configuration depends upon the actuator used.
• Actuator without position feedback
• Actuator with digital endstop signals
• Actuator with analog position feedback
• Actuator with analog position feedback and endstop signals

Actuator without position feedback
Proceed as follows to configure PID_3Step for an actuator without position feedback:
1. Select the entry "No Feedback" in the drop-down list "Feedback".

Actuator with digital endstop signals
Proceed as follows to configure PID_3Step for an actuator with endstop signals:
1. Select the entry "No Feedback" in the drop-down list "Feedback".
2. Activate the "Actuator endstop signals" check box.
3. Select "Instruction" as source for Actuator_H and Actuator_L.
4. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Actuator with analog position feedback
Proceed as follows to configure PID_3Step for an actuator with analog position feedback:
1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

– Use the analog input value for Feedback_PER. Configure Feedback_PER scaling in the
actuator settings.

– Process the analog input value for Feedback using your user program.
2. Select "Instruction" as source.
3. Enter the address of the analog input or the variable of your user program.

Actuator with analog position feedback and endstop signals
Proceed as follows to configure PID_3Step for an actuator with analog position feedback and
endstop signals:
1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".
2. Select "Instruction" as source.
3. Enter the address of the analog input or the variable of your user program.
4. Activate the "Actuator endstop signals" check box.
5. Select "Instruction" as source for Actuator_H and Actuator_L.
6. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

114
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

PID_3Step offers an analog output value (Output_PER) and digital output values (Output_UP,
Output_DN). Your actuator will determine which output value you use.
• Output_PER

The actuator has a relevant motor transition time and is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V or 4...20 mA. The value at
Output_PER corresponds to the target position of the valve, e.g. Output_PER = 13824,
when the valve is to be opened by 50%.
For auto-tuning and anti windup behavior, for example, PID_3Step takes into
consideration that the analog output value has a delayed effect on the process due to the
motor transition time. If no relevant motor transition time is in effect in your process (e.g.
with solenoid valves), so that the output value has a direct and full effect on the process,
use PID_Compact instead.

• Output_UP, Output_DN
The actuator has a relevant motor transition time and is controlled by two digital outputs.
Output_UP moves the valve in the open state direction.
Output_DN moves the valve in the closed state direction.

The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior. You should therefore configure
the motor transition time under "Actuator settings" with the value that the motor requires to
move the actuator from the closed to the opened state.

Procedure
Proceed as follows to use the analog output value:
1. Select the entry "Output (analog)" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the analog output.
Proceed as follows to use the digital output value:
1. Select the entry "Output (digital)" in the drop-down list "Output".
2. Select "Instruction" for Output_UP and Output_DN.
3. Enter the addresses of the digital outputs.
Proceed as follows to process the output value using the user program:
1. Select the entry corresponding to the actuator in the drop-down list "Output".
2. Select "Instruction".
3. Enter the name of the tag you are using to process the output value.
4. Transfer the processed output value to the actuator by means of an analog or digital CPU

output.

115

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

6.2.1.2 Process value settings V2

If you have configured the use of Input_PER in the basic setting, you must convert the value
of the analog input to the physical quantity of the process value. The current configuration is
displayed in the Input_PER display.
Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

Procedure
To scale the process value, follow these steps:
1. Enter the low pair of values in the "Scaled low process value" and "Low" text boxs.
2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.
Default settings for the value pairs are stored in the hardware configuration. To use the value
pairs from the hardware configuration, follow these steps:
1. Select the PID_3Step instruction in the programming editor.
2. Interconnect Input_PER with an analog input in the basic settings.
3. Click the "Automatic setting" button in the process value settings.
The existing values will be overwritten with the values from the hardware configuration.

You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can specify how PID_3Step responds to errors in automatic mode in the
actuator settings.

6.2.1.3 Actuator settings V2

Actuator-specific times
Configure the motor transition time and the minimum ON and OFF times to prevent damage
to the actuator. You can find the specifications in the actuator data sheet.
The motor transition time is the time in seconds the motor requires to move the actuator
from the closed to the opened state. You can measure the motor transition time during
commissioning.
The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior.
If no relevant motor transition time is in effect in your process (e.g. with solenoid valves), so
that the output value has a direct and full effect on the process, use PID_Compact instead.
The motor transition time is retentive. If you enter the motor transition time manually, you
must completely download PID_3Step.
Downloading technology objects to device (Page 46)
If you are using "Output_UP" or "Output_DN", you can reduce the switching frequency with
the minimum on and minimum OFF time.
The on or off times calculated are totaled in automatic mode and only become effective
when the sum is greater than or equal to the minimum on or OFF time.
Manual_UP = TRUE or Manual_DN = TRUE in manual mode operates the actuator for at least
the minimum ON or OFF time.

116
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

If you have selected the analog output value Output_PER, the minimum ON time and the
minimum OFF time are not evaluated and cannot be changed.

Reaction to error
PID_3Step is preset so that the controller stays active in most cases in the event of an error. If
errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the Errorbits parameter and eliminate the cause of the
error.

NOTICE
Your system may be damaged.
If you output "Current value while error pending" or "Substitute output value while error
pending" in the event of an error, PID_3Step remains in automatic mode even if the process
value limits are violated. This may damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

PID_3Step generates a programmable output value in the case of an error:
• Current value

PID_3Step is switched off and no longer modifies the actuator position.
• Current value for error while error is pending

The controller functions of PID_3Step are switched off and the position of the actuator is
no longer changed.
If the following errors occur in automatic mode, PID_3Step returns to automatic mode as
soon as the errors are no longer pending.
– 0002h: Invalid value at Input_PER parameter.
– 0200h: Invalid value at Input parameter.
– 0400h: Calculation of output value failed.
– 1000h: Invalid value at Setpoint parameter.
– 2000h: Invalid value at Feedback_PER parameter.
– 4000h: Invalid value at Feedback parameter.
– 8000h: Error during digital position feedback.
– 20000h: Invalid value at SavePosition tag.
If one or more of the following errors occur, PID_3Step stays in
automatic mode:
– 0001h: The Input parameter is outside the process value limits.
– 0800h: Sampling time error
– 40000h: Invalid value at Disturbance parameter.
PID_3Step remains in manual mode if an error occurs in manual mode.
If an error occurs during tuning or transition time measurement, PID_3Step switches to
the mode in which tuning or transition time measurement was started. Only in the event
of the following error is tuning not aborted:
– 0020h: Pretuning is not permitted during fine tuning.

117

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

• Substitute output value
PID_3Step moves the actuator to the substitute output value and then switches off.

• Substitute output value while error is pending
PID_3Step moves the actuator to the substitute output value. When the substitute output
value is reached, PID_3Step reacts as it does with "Current value for while error is
pending".

Enter the substitute output value in "%".
Only substitute output values 0% and 100% can be configured when using Output_UP and
Output_DN without analog position feedback (Config.OutputPerOn = FALSE and
Config.FeedbackOn = FALSE). To reach the high or low endstop, the actuator is moved in the
corresponding direction. If endstops are available (Config.ActuatorEndStopOn = TRUE),
Output_UP and Output_DN are reset with Actuator_H = TRUE or Actuator_L = TRUE. If no
endstop signals are available (Config.ActuatorEndStopOn = FALSE), Output_UP and
Output_DN are reset after a travel time of Config.VirtualActuatorLimit *
Retain.TransitTime/100.
Any substitute output values within the output value limits can be configured when using
Output_PER or analog position feedback (Config.OutputPerOn = TRUE or Config.FeedbackOn
= TRUE).

Scaling position feedback
If you have configured the use of Feedback_PER in the basic settings, you will need to convert
the value of the analog input into %. The current configuration will be displayed in the
"Feedback" display.
Feedback_PER is scaled using a low and high value pair.
1. Enter the low pair of values in the "Low endstop" and "Low" input boxes.
2. Enter the high pair of values in the "High endstop" and "High" input boxes.
"Low endstop" must be less than "High endstop"; "Low" must be less than "High".
The valid values for "High endstop" and "Low endstop" depend upon:
• No Feedback, Feedback, Feedback_PER
• Output (analog), Output (digital)

Output Feedback Low endstop High endstop
Output (digital) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)

Output (digital) Feedback -100.0% or 0.0% 0.0% or +100.0%

Output (digital) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

Output (analog) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)

Output (analog) Feedback -100.0% or 0.0% 0.0% or +100.0%

Output (analog) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

118
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

Limiting the output value
You can exceed or undershoot the output value limits during the transition time
measurement and with mode = 10. The output value is limited to these values in all other
modes.
Enter the absolute output value limits in the "Output value high limit" and "Output value low
limit" input boxes. The output value limits must be within "Low endstop" and "High endstop".
If no Feedback is available and Output (digital) is set, you cannot limit the output value.
Output_UP and Output_DN are then reset upon Actuator_H = TRUE or Actuator_L = TRUE. If
no endstop signals are available, Output_UP and Output_DN are reset after a travel time of
150% of the motor actuating time.
The default value of 150% can be adjusted using the tagConfig.VirtualActuatorLimit. As of
PID_3Step Version 2.3 the monitoring and limiting of the travel time can be deactivated with
Config.VirtualActuatorLimit = 0.0.

6.2.1.4 Advanced settings V2

Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_3Step instruction:
• At the InputWarning_H output parameter if the warning high limit has been exceeded
• At the InputWarning_L output parameter if the warning low limit has been undershot
The warning limits must be within the process value high and low limits.
The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C
Warning low limit = 10° C; process value low limit = 0° C
PID_3Step will respond as follows:

Process value InputWarning_H InputWarning_L ErrorBits Operating mode
> 98° C TRUE FALSE 0001h As configured

≤ 98° C and > 90° C TRUE FALSE 0000h Automatic mode

≤ 90° C and ≥ 10° C FALSE FALSE 0000h Automatic mode

< 10° C and ≥ 0° C FALSE TRUE 0000h Automatic mode

< 0° C FALSE TRUE 0001h As configured

In the actuator settings, you can configure the response of PID_3Step when the process value
high limit or low limit is violated.

119

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

NOTE
The currently active PID parameters are located in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters in the CtrlParamsBackUp structure and apply these changes to the
Retain.CtrlParams structure as follows:
• PID_3Step V1: Apply the changes with Config.LoadBackUp = TRUE
• PID_3Step V2: Apply the changes with LoadBackUp = TRUE
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

The PID algorithm operates according to the following equation:

Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

120
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_3Step.
Downloading technology objects to device (Page 46)

Proportional gain
The value specifies the proportional gain of the controller. PID_3Step does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

121

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the PID_3Step sampling time. All
other functions of PID_3Step are executed at every call.

Dead zone width
The dead zone suppresses the noise component in the steady controller state. The dead zone
width specifies the size of the dead zone. The dead zone is off if the dead zone width is 0.0.
If values not equal to 1.0 are configured for the proportional action weighting or the
derivative action weighting, setpoint changes even within the dead zone affect the output
value.
Process value changes within the dead zone do not affect the output value, regardless of the
weighting.

122
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

6.2.2 Commissioning PID_3Step V2

6.2.2.1 Pretuning V2

The pretuning determines the process response to a pulse of the output value and searches
for the point of inflection. The tuned PID parameters are calculated as a function of the
maximum slope and dead time of the controlled system. You obtain the best PID parameters
when you perform pretuning and fine tuning.
The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the rate
of rise of the process value is significantly higher compared to the noise. This is most likely
the case in operating modes "Inactive" and "manual mode". The PID parameters are backed up
before being recalculated.
The setpoint is frozen during pretuning.

Requirement
• The PID_3Step instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• The motor transition time has been configured or measured.
• PID_3Step is in one of the following modes: "Inactive", "Manual mode", or "Automatic

mode".
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).

Procedure
To perform pretuning, follow these steps:
1. Double-click the "PID_3Step > Commissioning" entry in the project tree.
2. Select the entry "Pretuning" in the "Tuning mode" drop-down list in the working area

"Tuning".
3. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– Pretuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon when the progress bar has reached 100% and it is to be assumed
the controller tuning function is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

123

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_3Step switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If pretuning is not possible, PID_3Step responds with the configured reaction to errors.

6.2.2.2 Fine tuning V2

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters
are tuned for the operating point from the amplitude and frequency of this oscillation. All PID
parameters are recalculated from the results. PID parameters from fine tuning usually have
better master control and disturbance characteristics than PID parameters from pretuning.
You obtain the best PID parameters when you perform pretuning and fine tuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.
The setpoint is frozen during fine tuning.

Requirement
• The PID_3Step instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).
• The control loop has stabilized at the operating point. The operating point is reached

when the process value corresponds to the setpoint.
• No disturbances are expected.
• PID_3Step is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning proceeds as follows when started from:
• Automatic mode

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.
PID_3Step controls the system using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

• Inactive or manual mode
Pretuning is always started first. The determined PID parameters will be used for control
until the control loop has stabilized and the requirements for fine tuning have been met.
Only then will fine tuning start.

124
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

Procedure
To perform fine tuning, follow these steps:
1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.
2. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– The process of fine tuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached 100%
and it is to be assumed the controller tuning function is blocked. Check the configuration
of the technology object and, if necessary, restart controller tuning.

Result
If no errors occurred during fine tuning, the PID parameters have been tuned. PID_3Step
switches to automatic mode and uses the tuned parameters. The tuned PID parameters will
be retained during power OFF and a restart of the CPU.
If errors occurred during fine tuning, PID_3Step responds with the configured response to
errors.

6.2.2.3 Commissioning with manual PID parameters V2

Requirement
• The PID_3Step instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• The motor transition time has been configured or measured.
• PID_3Step is in "inactive" mode.
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).

125

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Procedure
Proceed as follows to commission PID_3Step with manual PID parameters:
1. Double-click on "PID_3Step > Configuration" in the project tree.
2. Click on "Advanced settings > PID Parameters" in the configuration window.
3. Select the check box "Enable direct input".
4. Enter the PID parameters.
5. Double-click the "PID_3Step > Commissioning" entry in the project tree.
6. Establish an online connection to the CPU.
7. Load the PID parameters to the CPU.
8. Click the "Start PID_3Step" icon.

Result
PID_3Step changes to automatic mode and controls using the current PID parameters.

See also
PID parameters V2 (Page 120)

6.2.2.4 Measuring the motor transition time V2

Introduction
PID_3Step requires the motor transition time to be as accurate as possible for good controller
results. The data in the actuator documentation contains average values for this type of
actuator. The value for the specific actuator used may differ.
You can measure the motor transition time during commissioning if you are using actuators
with position feedback or endstop signals. The output value limits are not taken into
consideration during the motor transition time measurement. The actuator can travel to the
high or the low endstop.
The motor transition time cannot be measured if neither position feedback nor endstop
signals are available.

Actuators with analog position feedback
Proceed as follows to measure motor transition time with position feedback:
Requirement
• Feedback or Feedback_PER has been selected in the basic settings and the signal has been

connected.
• An online connection to the CPU has been established.
1. Select the "Use position feedback" check box.
2. Enter the position to which the actuator is to be moved in the "Target position" input field.

The current position feedback (starting position) will be displayed. The difference between
"Target position" and "Position feedback" must be at least 50% of the valid output value
range.

3. Click the "Start" icon.

126
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

Result
The actuator is moved from the starting position to the target position. Time measurement
starts immediately and ends when the actuator reaches the target position. The motor
transition time is calculated according to the following equation:
Motor transition time = (output value high limit – output value low limit) × Measuring time /
AMOUNT (target position – starting position).
The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. When the transition time measurement is ended and
ActivateRecoverMode = TRUE, PID_3Step switches to the operating mode from which the
transition time measurement was started. If the transition time measurement is ended and
ActivateRecoverMode = FALSE, PID_3Step changes to "Inactive" mode.

NOTE
Click on the icon "Upload measured transition time" to load the motor transition time
measured to the project.

Actuators with endstop signals
Proceed as follows to measure the transition time of actuators with endstop signals:
Requirement
• The "Endstop signals" check box in the basic settings has been selected and Actuator_H

and Actuator_L are connected.
• An online connection to the CPU has been established.
Proceed as follows to measure motor transition time with endstop signals:
1. Select the "Use actuator endstop signals" check box.
2. Select the direction in which the actuator is to be moved.

– Open - Close - Open
The actuator is moved first to the high endstop, then to the low endstop and then back
to the high endstop.

– Close - Open - Close
The actuator is moved first to the low endstop, then to the high endstop and then back
to the low endstop.

3. Click the "Start" icon.

Result
The actuator is moved in the selected direction. Time measurement will start once the
actuator has reached the first endstop and will end when the actuator reaches this endstop
for the second time. The motor transition time is equal to the time measured divided by two.
The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. When the transition time measurement is ended and
ActivateRecoverMode = TRUE, PID_3Step switches to the operating mode from which the
transition time measurement was started. If the transition time measurement is ended and
ActivateRecoverMode = FALSE, PID_3Step changes to "Inactive" mode.

127

Using PID_3Step
6.2 PID_3Step V2

PID control
Function Manual, 11/2023, A5E35300227-AG

Cancelling transition time measurement
PID_3Step switches to "Inactive" mode if you cancel transition time measurement by pressing
the Stop button.

6.2.3 Simulating PID_3Step V2 with PLCSIM

NOTE
Simulation with PLCSIM
The simulation of PID_3Step V2.x with PLCSIM for CPU S7-1200 is not supported.
PID_3Step V2.x can only be simulated for CPU S7-1500 with PLCSIM.
For the simulation with PLCSIM, the time behavior of the simulated PLC is not exactly
identical to that of a "real" PLC. The actual cycle clock of a cyclic interrupt OB can have larger
fluctuations with a simulated PLC than with "real" PLCs.
In the standard configuration, PID_3Step determines the time between calls automatically
and monitors them for fluctuations.
For a simulation of PID_3Step with PLCSIM, for example, a sampling time error ((ErrorBits =
DW#16#00000800) can therefore be detected.
This results in ongoing tuning being aborted.
The response in automatic mode depends on the value of the ActivateRecoverMode tag.
To prevent this from happening, you should configure PID_3Step for simulation with PLCSIM
as follows:
• CycleTime.EnEstimation = FALSE
• CycleTime.EnMonitoring = FALSE
• CycleTime.Value: Assign the cycle clock of the calling cyclic interrupt OB in seconds to this

tag.

128
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.2 PID_3Step V2

6.3 PID_3Step V1

6.3.1 Configuring PID_3Step V1

6.3.1.1 Basic settings V1

Configure the following properties of the "PID_3Step" technology object under "Basic settings"
in the Inspector window or in the configuration window:
• Physical quantity
• Control logic
• Start-up behavior after reset
• Setpoint (only in the Inspector window)
• Process value (only in the Inspector window)
• Output value (only in the Inspector window)
• Position feedback (only in the Inspector window)

Setpoint, process value, output value and position feedback
You can only configure the setpoint, process value, output value and position feedback in the
Inspector window of the programming editor. Select the source for each value:
• Instance DB

The value saved in the instance DB is used.
Value must be updated in the instance DB by the user program.
There should be no value at the instruction.
Change via HMI possible.

• Instruction
The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.
No change via HMI possible.

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and process value in
the "Controller type" group. The setpoint and process value will be displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.
PID_3Step does not work with negative proportional gain. Select the check box "Invert control
logic" to reduce the process value with a higher output value.
Examples
• Opening the drain valve will reduce the level of a container's contents.
• Increasing cooling will reduce the temperature.

129

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Start-up behavior after reset
To change straight to the last active mode after restarting the CPU, select the "Enable last
mode after CPU restart" check box.
PID_3Step will remain in "Inactive" mode if the check box is cleared.

Procedure
Proceed as follows to define a fixed setpoint:
1. Select "Instance DB".
2. Enter a setpoint, e.g. 80° C.
3. Delete any entry in the instruction.
Proceed as follows to define a variable setpoint:
1. Select "Instruction".
2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

PID_3Step will scale the value of the analog input to the physical quantity if you use the
analog input value directly.
You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:
1. Select the entry "Input_PER" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the address of the analog input.
Proceed as follows to use the processed process value in floating point format:
1. Select the entry "Input" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the name of the variable in which the processed process value is saved.

130
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

Position feedback configuration depends upon the actuator used.
• Actuator without position feedback
• Actuator with digital endstop signals
• Actuator with analog position feedback
• Actuator with analog position feedback and endstop signals

Actuator without position feedback
Proceed as follows to configure PID_3Step for an actuator without position feedback:
1. Select the entry "No Feedback" in the drop-down list "Feedback".

Actuator with digital endstop signals
Proceed as follows to configure PID_3Step for an actuator with endstop signals:
1. Select the entry "No Feedback" in the drop-down list "Feedback".
2. Activate the "Actuator endstop signals" check box.
3. Select "Instruction" as source for Actuator_H and Actuator_L.
4. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Actuator with analog position feedback
Proceed as follows to configure PID_3Step for an actuator with analog position feedback:
1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

– Use the analog input value for Feedback_PER. Configure Feedback_PER scaling in the
actuator settings.

– Process the analog input value for Feedback using your user program.
2. Select "Instruction" as source.
3. Enter the address of the analog input or the variable of your user program.

Actuator with analog position feedback and endstop signals
Proceed as follows to configure PID_3Step for an actuator with analog position feedback and
endstop signals:
1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".
2. Select "Instruction" as source.
3. Enter the address of the analog input or the variable of your user program.
4. Activate the "Actuator endstop signals" check box.
5. Select "Instruction" as source for Actuator_H and Actuator_L.
6. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

131

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

PID_3Step offers an analog output value (Output_PER) and digital output values (Output_UP,
Output_DN). Your actuator will determine which output value you use.
• Output_PER

The actuator has a relevant motor transition time and is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V or 4...20 mA. The value at
Output_PER corresponds to the target position of the valve, e.g. Output_PER = 13824,
when the valve is to be opened by 50%.
For auto-tuning and anti windup behavior, for example, PID_3Step takes into
consideration that the analog output value has a delayed effect on the process due to the
motor transition time. If no relevant motor transition time is in effect in your process (e.g.
with solenoid valves), so that the output value has a direct and full effect on the process,
use PID_Compact instead.

• Output_UP, Output_DN
The actuator has a relevant motor transition time and is controlled by two digital outputs.
Output_UP moves the valve in the open state direction.
Output_DN moves the valve in the closed state direction.

The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior. You should therefore configure
the motor transition time under "Actuator settings" with the value that the motor requires to
move the actuator from the closed to the opened state.

Procedure
Proceed as follows to use the analog output value:
1. Select the entry "Output (analog)" in the drop-down list "Output".
2. Select "Instruction".
3. Enter the address of the analog output.
Proceed as follows to use the digital output value:
1. Select the entry "Output (digital)" in the drop-down list "Output".
2. Select "Instruction" for Output_UP and Output_DN.
3. Enter the addresses of the digital outputs.
Proceed as follows to process the output value using the user program:
1. Select the entry corresponding to the actuator in the drop-down list "Output".
2. Select "Instruction".
3. Enter the name of the tag you are using to process the output value.
4. Transfer the processed output value to the actuator by means of an analog or digital CPU

output.

132
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

6.3.1.2 Process value settings V1

Configure the scaling of your process value and specify the process value absolute limits In
the "Process value settings" configuration window.

Scaling the process value
If you have configured the use of Input_PER in the basic settings, you will need to convert the
value of the analog input into the physical quantity of the process value. The current
configuration will be displayed in the Input_PER display.
Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.
1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.
2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.
Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:
1. Select the instruction PID_3Step in the programming editor.
2. Connect Input_PER to an analog input in the basic settings.
3. Click on the "Automatic setting" button in the process value settings.

The existing values will be overwritten with the values from the hardware configuration.

Monitoring process value
Specify the absolute high and low limit of the process value. You must enter reasonable limits
for your controlled system. Reasonable limits are important during optimization to obtain
optimal PID parameters. The default for the "High limit process value" is 120 %. At the I/O
input, the process value can be a maximum of 18% higher than the standard range
(overrange). This setting ensures that an error is no longer signaled due to a violation of the
"Process value high limit". Only a wire-break and a short-circuit are recognized and PID_3Step
reacts according to the configured reaction to error.

NOTICE
Your system may be damaged.
If you set very high process value limits (for example -3.4*1038...+3.4*1038), process value
monitoring will be disabled. Your system may then be damaged if an error occurs. You need
to configure useful process value limits for your controlled system.

133

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

6.3.1.3 Actuator settings V1

Actuator-specific times
Configure the motor transition time and the minimum ON and OFF times to prevent damage
to the actuator. You can find the specifications in the actuator data sheet.
The motor transition time is the time in seconds the motor requires to move the actuator
from the closed to the opened state. The maximum time that the actuator is moved in one
direction is 110% of the motor transition time. You can measure the motor transition time
during commissioning.
The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior.
If no relevant motor transition time is in effect in your process (e.g. with solenoid valves), so
that the output value has a direct and full effect on the process, use PID_Compact instead.
If you are using "Output_UP" or "Output_DN", you can reduce the switching frequency with
the minimum on and minimum OFF time.
The on or off times calculated are totaled in automatic mode and only become effective
when the sum is greater than or equal to the minimum on or OFF time.
A rising edge at Manual_UP or Manual_DN in manual mode will operate the actuator for at
least the minimum on or OFF time.
If you have selected the analog output value Output_PER, the minimum ON time and the
minimum OFF time are not evaluated and cannot be changed.

Reaction to error
PID_3Step is preset so that the controller stays active in most cases in the event of an error. If
errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the Errorbits parameter and eliminate the cause of the
error.
PID_3Step generates a programmable output value in response to an error:
• Current value

PID_3Step is switched off and no longer modifies the actuator position.
• Current value for error while error is pending

The controller functions of PID_3Step are switched off and the position of the actuator is
no longer changed.
If the following errors occur in automatic mode, PID_3Step returns to automatic mode as
soon as the errors are no longer pending.
– 0002h: Invalid value at Input_PER parameter.
– 0200h: Invalid value at Input parameter.
– 0800h: Sampling time error
– 1000h: Invalid value at Setpoint parameter.
– 2000h: Invalid value at Feedback_PER parameter.
– 4000h: Invalid value at Feedback parameter.
– 8000h: Error during digital position feedback.
If one of these error occurs in manual mode, PID_3Step remains in manual mode.
If an error occurs during the tuning or transition time measurement, PID_3Step is switched
off.

134
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

• Substitute output value
PID_3Step moves the actuator to the substitute output value and then switches off.

• Substitute output value while error is pending
PID_3Step moves the actuator to the substitute output value. When the substitute output
value is reached, PID_3Step reacts as it does with "Current value for while error is
pending".

Enter the substitute output value in "%".
Only substitute output values 0% and 100% can be configured when using Output_UP and
Output_DN without analog position feedback (Config.OutputPerOn = FALSE and
Config.FeedbackOn = FALSE). The actuator is moved in one direction at 110% of the motor
transition time to ensure the high or low endstop is reached. There endstop signals take
priority.
Any substitute output values within the output value limits can be configured when using
Output_PER or analog position feedback (Config.OutputPerOn = TRUE or Config.FeedbackOn
= TRUE).

Feedback scaling
If you have configured the use of Feedback_PER in the basic settings, you will need to convert
the value of the analog input into %. The current configuration will be displayed in the
"Feedback" display.
Feedback_PER is scaled using a low and high value pair.
1. Enter the low pair of values in the "Low endstop" and "Low" input boxes.
2. Enter the high pair of values in the "High endstop" and "High" input boxes.
"Low endstop" must be less than "High endstop"; "Low" must be less than "High".
The valid values for "High endstop" and "Low endstop" depend upon:
• No Feedback, Feedback, Feedback_PER
• Output (analog), Output (digital)

Output Feedback Low endstop High endstop
Output (digital) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)

Output (digital) Feedback -100.0% or 0.0% 0.0% or +100.0%

Output (digital) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

Output (analog) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)

Output (analog) Feedback -100.0% or 0.0% 0.0% or +100.0%

Output (analog) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

Limiting the output value
You can only exceed or undershoot the output value limits during the transition time
measurement. The output value is limited to these values in all other modes.
Enter the absolute output value limits in the "Output value high limit" and "Output value low
limit" input boxes. The output value limits must be within "Low endstop" and "High endstop".
If no Feedback is available and Output (digital) is set, you cannot limit the output value. The
digital outputs are reset with Actuator_H = TRUE or Actuator_L = TRUE, or after a travel time
amounting to 110% of the motor transition time.

135

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

6.3.1.4 Advanced settings V1

Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_3Step instruction:
• At the InputWarning_H output parameter if the warning high limit has been exceeded
• At the InputWarning_L output parameter if the warning low limit has been undershot
The warning limits must be within the process value high and low limits.
The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C
Warning low limit = 10° C; process value low limit = 0° C
PID_3Step will respond as follows:

Process value InputWarning_H InputWarning_L Operating mode
> 98° C TRUE FALSE Inactive

≤ 98° C and > 90° C TRUE FALSE Automatic mode

≤ 90° C and ≥ 10° C FALSE FALSE Automatic mode

< 10° C and ≥ 0° C FALSE TRUE Automatic mode

< 0° C FALSE TRUE Inactive

The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

NOTE
The currently active PID parameters are located in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters in the CtrlParamsBackUp structure and apply these changes to the
Retain.CtrlParams structure as follows:
• PID_3Step V1: Apply the changes with Config.LoadBackUp = TRUE
• PID_3Step V2: Apply the changes with LoadBackUp = TRUE
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

136
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

The PID algorithm operates according to the following equation:

Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_3Step.
Downloading technology objects to device (Page 46)

Proportional gain
The value specifies the proportional gain of the controller. PID_3Step does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.

137

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the PID_3Step sampling time. All
other functions of PID_3Step are executed at every call.

138
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

Dead zone width
The dead zone suppresses the noise component in the steady controller state. The dead zone
width specifies the size of the dead zone. The dead zone is off if the dead zone width is 0.0.
If values not equal to 1.0 are configured for the proportional action weighting or the
derivative action weighting, setpoint changes even within the dead zone affect the output
value.
Process value changes within the dead zone do not affect the output value, regardless of the
weighting.

6.3.2 Commissioning PID_3Step V1

6.3.2.1 Commissioning V1

You can monitor the setpoint, process value and output value over time in the "Tuning"
working area. The following commissioning functions are supported in the curve plotter:
• Controller pretuning
• Controller fine tuning
• Monitoring the current closed-loop control in the trend view
All functions require an online connection to the CPU to have been established.

Basic handling
• Select the desired sampling time in the "Sampling time" drop-down list.

All values in the tuning working area are updated in the selected update time.
• Click the "Start" icon in the measuring group if you want to use the commissioning

functions.
Value recording is started. The current values for the setpoint, process value and output
value are entered in the trend view. Operation of the commissioning window is enabled.

• Click the "Stop" icon if you want to end the commissioning functions.
The values recorded in the trend view can continue to be analyzed.

• Closing the commissioning window will terminate recording in the trend view and delete
the recorded values.

139

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

6.3.2.2 Pretuning V1

The pretuning determines the process response to a pulse of the output value and searches
for the point of inflection. The tuned PID parameters are calculated as a function of the
maximum slope and dead time of the controlled system.
The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the rate
of rise of the process value is significantly higher compared to the noise. The PID parameters
are backed up before being recalculated.
The setpoint is frozen during pretuning.

Requirement
• The PID_3Step instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• PID_3Step is in "inactive" or "manual" mode.
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).

Procedure
To perform pretuning, follow these steps:
1. Double-click the "PID_3Step > Commissioning" entry in the project tree.
2. Select the entry "Pretuning" in the "Tuning mode" drop-down list in the working area

"Tuning".
3. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– Pretuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon when the progress bar has reached 100% and it is to be assumed
the controller tuning function is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_3Step switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If pretuning is not possible, PID_3Step changes to "Inactive" mode.

140
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

6.3.2.3 Fine tuning V1

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters
are optimized for the operating point from the amplitude and frequency of this oscillation. All
PID parameters are recalculated on the basis of the findings. PID parameters from fine tuning
usually have better master control and disturbance behavior than PID parameters from
pretuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.
The setpoint is frozen during fine tuning.

Requirement
• The PID_3Step instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).
• The control loop has stabilized at the operating point. The operating point is reached

when the process value corresponds to the setpoint.
• No disturbances are expected.
• PID_3Step is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning proceeds as follows when started in:
• Automatic mode

Start fine tuning in automatic mode if you wish to improve the existing PID parameters
using controller tuning.
PID_3Step will regulate using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

• Inactive or manual mode
Pretuning is always started first. The PID parameters established will be used for
adjustment until the control loop has stabilized and the requirements for fine tuning have
been met. Only then will fine tuning start.

141

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Procedure
Proceed as follows to carry out "fine tuning":
1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.
2. Click the "Start" icon.

– An online connection will be established.
– Value recording is started.
– The process of fine tuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached
100% and it is to be assumed the controller tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
The PID parameters will have been optimized if fine tuning has been executed without errors.
PID_3Step changes to automatic mode and uses the optimized parameters. The optimized PID
parameters will be retained during power OFF and a restart of the CPU.
If errors occurred during fine tuning, PID_3Step will change to "inactive" mode.

6.3.2.4 Commissioning with manual PID parameters V1

Procedure
Proceed as follows to commission PID_3Step with manual PID parameters:
1. Double-click on "PID_3Step > Configuration" in the project tree.
2. Click on "Advanced settings > PID Parameters" in the configuration window.
3. Select the check box "Enable direct input".
4. Enter the PID parameters.
5. Double-click on "PID_3Step > Commissioning" in the project tree.
6. Establish an online connection to the CPU.
7. Load the PID parameters to the CPU.
8. Click on the "Activate controller" icon.

Result
PID_3Step changes to automatic mode and controls using the current PID parameters.

142
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

6.3.2.5 Measuring the motor transition time V1

Introduction
PID_3Step requires the motor transition time to be as accurate as possible for good controller
results. The data in the actuator documentation contains average values for this type of
actuator. The value for the specific actuator used may differ.
You can measure the motor transition time during commissioning if you are using actuators
with position feedback or endstop signals. The output value limits are not taken into
consideration during the motor transition time measurement. The actuator can travel to the
high or the low endstop.
The motor transition time cannot be measured if neither position feedback nor endstop
signals are available.

Actuators with analog position feedback
Proceed as follows to measure motor transition time with position feedback:
Requirement
• Feedback or Feedback_PER has been selected in the basic settings and the signal has been

connected.
• An online connection to the CPU has been established.
1. Select the "Use position feedback" check box.
2. Enter the position to which the actuator is to be moved in the "Target position" input field.

The current position feedback (starting position) will be displayed. The difference between
"Target position" and "Position feedback" must be at least 50% of the valid output value
range.

3. Click the "Start transition time measurement" icon.

Result
The actuator is moved from the starting position to the target position. Time measurement
starts immediately and ends when the actuator reaches the target position. The motor
transition time is calculated according to the following equation:
Motor transition time = (output value high limit – output value low limit) × Measuring time /
AMOUNT (target position – starting position).
The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. PID_3Step will change to "Inactive" mode once transition time
measurement is complete.

NOTE
Click on the icon "Upload measured transition time" to load the motor transition time
measured to the project.

143

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

Actuators with endstop signals
Proceed as follows to measure the transition time of actuators with endstop signals:
Requirement
• The "Endstop signals" check box in the basic settings has been selected and Actuator_H

and Actuator_L are connected.
• An online connection to the CPU has been established.
Proceed as follows to measure motor transition time with endstop signals:
1. Select the "Use actuator endstop signals" check box.
2. Select the direction in which the actuator is to be moved.

– Open - Close - Open
The actuator is moved first to the high endstop, then to the low endstop and then back
to the high endstop.

– Close - Open - Close
The actuator is moved first to the low endstop, then to the high endstop and then back
to the low endstop.

3. Click the "Start transition time measurement" icon.

Result
The actuator is moved in the selected direction. Time measurement will start once the
actuator has reached the first endstop and will end when the actuator reaches this endstop
for the second time. The motor transition time is equal to the time measured divided by two.
The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. PID_3Step will change to "Inactive" mode once transition time
measurement is complete.

Cancelling transition time measurement
PID_3Step will change to "Inactive" mode immediately if you cancel transition time
measurement. The actuator will stop being moved. You can reactive PID-3Step in the curve
plotter.

144
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_3Step
6.3 PID_3Step V1

6.3.3 Simulating PID_3Step V1 with PLCSIM

NOTE
Simulation with PLCSIM
For the simulation with PLCSIM, the time behavior of the simulated PLC is not exactly
identical to that of a "real" PLC. The actual cycle clock of a cyclic interrupt OB can have larger
fluctuations with a simulated PLC than with "real" PLCs.
In the standard configuration, PID_3Step determines the time between calls automatically
and monitors them for fluctuations.
For a simulation of PID_3Step with PLCSIM, for example, a sampling time error (ErrorBits =
DW#16#00000800) can therefore be detected.
This results in ongoing tuning being aborted.
The response in automatic mode depends on the value of the ActivateRecoverMode tag.
To prevent this from happening, you should configure PID_3Step for simulation with PLCSIM
as follows:
• CycleTime.EnEstimation = FALSE
• CycleTime.EnMonitoring = FALSE
• CycleTime.Value: Assign the cycle clock of the calling cyclic interrupt OB in seconds to this

tag.

145

Using PID_3Step
6.3 PID_3Step V1

PID control
Function Manual, 11/2023, A5E35300227-AG

PID control
Function Manual, 11/2023, A5E35300227-AG146

Using PID_Temp 7
7.1 Technology object PID_Temp

The PID_Temp technology object provides a continuous PID controller with integrated tuning.
PID_Temp is especially designed for temperature control and is suited for heating or
heating/cooling applications. Two outputs are available for this purpose, one each for heating
and cooling. PID_Temp can also be used for other control tasks. PID_Temp is cascadable and
can be used in manual or automatic mode.
PID_Temp continuously acquires the measured process value within a control loop and
compares it with the set setpoint. From the resulting control deviations, the instruction
PID_Temp calculates the output value for heating and/or cooling which is used to adjust the
process value to the setpoint. The output values for the PID controller consist of three actions:
• Proportional action

The proportional action of the output value increases in proportion to the control
deviation.

• Integral action
The integral action of the output value increases until the control deviation has been
balanced.

• Derivative action
The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_Temp calculates the proportional, integral and derivative parameters for
your controlled system during "pretuning". "Fine tuning" can be used to tune the parameters
further. You do not need to manually determine the parameters.
Either a fixed cooling factor or two PID parameter sets can be used for heating-and-cooling
applications.

Additional information
• Overview of software controller (Page 41)
• Add technology objects (Page 43)
• Configure technology objects (Page 44)
• Configuring PID_Temp (Page 147)

7.2 Configuring PID_Temp

7.2.1 Basic settings

7.2.1.1 Introduction

Configure the following properties of the "PID_Temp" technology object under "Basic settings"
in the Inspector window or in the configuration window:
• Physical quantity
• Start-up behavior after reset
• Source and input of the setpoint (only in the Inspector window)
• Selection of the process value
• Source and input of the process value (only in the Inspector window)
• Selection of the heating output value
• Source and input of the heating output value (only in the Inspector window)
• Activation and selection of the cooling output value
• Source and input of the cooling output value (only in the Inspector window)
• Activation of PID_Temp as master or slave of a cascade
• Number of slaves
• Selection of the master (only in the Inspector window)

Setpoint, process value, heating output value and cooling output value
You can select the source and enter values or tags for the setpoint, process value, heating
output value and cooling output value in the Inspector window of the programming editor.
Select the source for each value:
• Instance DB:

The value saved in the instance DB is used. The value must be updated by the user
program in the instance DB. There should be no value at the instruction. Can be changed
using HMI.

• Instruction:
The value connected to the instruction is used. The value is written to the instance DB
each time the instruction is called. Cannot be changed using HMI.

147

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

7.2.1.2 Controller type

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and the process value
in the "Controller type" group. The setpoint and the process value are displayed in this unit.

Startup characteristics
1. To switch to "Inactive"mode after CPU restart, clear the "Activate Mode after CPU

restart"check box.
To switch to the operating mode saved in the Mode parameter after CPU restart, select the
"Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a complete
download to the device.
After a complete "Download to device", PID_Temp starts in the selected operating mode.
With each additional restart, PID_Temp starts in the mode that was last saved in Mode.
When selecting pretuning or fine tuning, you also have to set or reset the
Heat.EnableTuning and Cool.EnableTuning tags in order to choose between tuning for
heating and tuning for cooling.

Example:
You have selected the "Activate Mode after CPU restart" check box and the "Pretuning" entry
in the "Set Mode to" list. After a complete "Download to device", PID_Temp starts in the
"Pretuning" mode. If pretuning is still active, PID_Temp starts in "Pretuning" mode again after
restart of the CPU (heating/cooling depends on the tags Heat.EnableTuning and
Cool.EnableCooling). If pretuning was successfully completed and automatic mode is active,
PID_Temp starts in "Automatic mode" after restart of the CPU.

7.2.1.3 Setpoint

Procedure
Proceed as follows to define a fixed setpoint:
1. Select "Instance DB".
2. Enter a setpoint, e.g. 80° C.
3. Delete any entry in the instruction.
Proceed as follows to define a variable setpoint:
1. Select "Instruction".
2. Enter the name of the REAL tag in which the setpoint is saved.

Program-controlled assignment of various values to the REAL tag is possible, for example
for the time-controlled change of the setpoint.

148
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

7.2.1.4 Process value

PID_Temp will scale the value of the analog input to the physical quantity if you use the
analog input value directly.
You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:
1. Select the entry "Input_PER" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the address of the analog input.
Proceed as follows to use the processed process value in floating point format:
1. Select the entry "Input" in the drop-down list "Input".
2. Select "Instruction" as source.
3. Enter the name of the variable in which the processed process value is saved.

7.2.1.5 Heating and cooling output value

The PID_Temp instruction provides a PID controller with integrated tuning for temperature
processes. PID_Temp is suitable for heating or heating-and-cooling applications.
PID_Temp provides the following output values. Your actuator will determine which output
value you use.
• OutputHeat

Heating output value (floating-point format): The output value for heating needs to be
processed by the user program, for example, because of non-linear actuator response.

• OutputHeat_PER
Analog heating output value: The actuator for heating is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V, 4...20 mA.

• OutputHeat_PWM
Pulse-width modulated heating output value: The actuator for heating is controlled via a
digital output. Pulse width modulation creates variable ON and OFF times.

• OutputCool
Cooling output value (floating-point format): The output value for cooling needs to be
processed by the user program, for example because of non-linear actuator response.

• OutputCool_PER
Analog cooling output value: The actuator for cooling is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V, 4...20 mA.

• OutputCool_PWM
Pulse-width modulated cooling output value: The actuator for cooling is controlled via a
digital output. Pulse width modulation creates variable ON and OFF times.

149

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

The cooling output is only available if it was activated via the "Activate cooling" check box.
• If the check box is cleared, the output value of the PID algorithm (PidOutputSum) is scaled

and output at the outputs for heating.
• If the check box is selected, positive output values of the PID algorithm (PidOutputSum)

are scaled and output at the outputs for heating. Negative output values of the PID
algorithm are scaled and output at the outputs for cooling. You can choose between two
methods for output value calculation at the output settings.

NOTE
Note:
• The OutputHeat_PWM, OutputHeat_PER, OutputCool_PWM, OutputCool_PER outputs are

only calculated if you select these correspondingly from the drop-down list.
• The OutputHeat output is always calculated.
• The OutputCool output is calculated if the check box for cooling is selected.
• The "Activate cooling" check box is only available if the controller is not configured as a

master in a cascade.

Procedure
Proceed as follows to use the analog output value:
1. Select the entry "OutputHeat_PER" or "OutputCool_PER" in the drop-down list "OutputHeat"

or "OutputCool".
2. Select "Instruction".
3. Enter the address of the analog output.
Proceed as follows to use the pulse-width modulated output value:
1. Select the entry "OutputHeat_PWM" or "OutputCool_PWM" in the drop-down list

"OutputHeat" or "OutputCool".
2. Select "Instruction".
3. Enter the address of the digital output.
Proceed as follows to process the output value using the user program:
1. Select the entry "OutputHeat" or "OutputCool" in the drop-down list "OutputHeat" or

"OutpuCool".
2. Select "Instruction".
3. Enter the name of the variable you are using to process the output value.
4. Transfer the processed output value to the actuator by means of an analog or digital CPU

output.

150
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

7.2.1.6 Cascade

If a PID_Temp instance receives its setpoint from a higher-level master controller and outputs
its output value in turn to a subordinate slave controller, this PID_Temp instance is both a
master controller and a slave controller simultaneously. Both configurations listed below then
have to be carried out for such a PID_Temp instance. This is the case, for example, for the
middle PID_Temp instance in a cascade control system with three concatenated measured
variables and three PID_Temp instances.

Configuring a controller as master in a cascade
A master controller defines the setpoint of a slave controller with its output.
In order to use PID_Temp as master in a cascade, you have to deactivate the cooling in the
basic settings. In order to configure this PID_Temp instance as a master controller in a
cascade, activate the "Controller is master" check box. The selection of the output value for
heating is set automatically to OutputHeat.
OutputHeat_PWM and OutputHeat_PER cannot be used at a master in a cascade.
Subsequently specify the number of directly subordinate slave controllers that receive their
setpoint from this master controller.
If no own scaling function is used when assigning the OutputHeat parameter of the master to
the Setpoint parameter of the slave, it may be necessary to adapt the output value limits and
the output scaling of the master to the setpoint/process value range of the slave. This can be
done in the output settings of the master in the "OutputHeat / OutputCool" section.

Configuring a controller as a slave in a cascade
A slave controller receives its setpoint (Setpoint parameter) from the output of its master
controller (OutputHeat parameter).
In order to configure this PID_Temp instance as a slave controller in a cascade, activate the
"Controller is slave" check box in the basic settings.
Subsequently select the PID_Temp instance that is to be used as the master controller for this
slave controller in the Inspector window of the programming editor. The Master and Setpoint
parameters of the slave controller are interconnected with the selected master controller
through this selection (the existing interconnections at these parameters are overwritten).
This interconnection allows the exchange of information and the setpoint specification
between master and slave. If required, the interconnection can be changed subsequently at
the Setpoint parameter of the slave controller in order, for example, to insert an additional
filter. The interconnection at the parameter Master may not be changed subsequently.
The "Controller is master" check box has to be selected and the number of slaves has to be
configured correctly at the selected master controller. The master controller has to be called
before the slave controller in the same cyclic interrupt OB.

Additional information
Additional information about program creation, configuration and commissioning when
PID_Temp is used in cascade control systems is available under Cascade control with
PID_Temp (Page 177).

151

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

7.2.2 Process value settings

7.2.2.1 Process value limits

You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can specify how PID_Temp responds to errors in automatic mode in the output
settings.

7.2.2.2 Process value scaling

If you have configured the use of Input_PER in the basic settings, you will need to convert the
value of the analog input into the physical quantity of the process value. The current
configuration is displayed in the Input_PER display.
Input_PER is scaled using a low and high value pair if the process value is directly proportional
to the value of the analog input.

Procedure
To scale the process value, follow these steps:
1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.
2. Enter the high pair of values in the "Scaled high process value" and "High" input fields.
Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:
1. Select the instruction PID_Temp in the programming editor.
2. Interconnect Input_PER with an analog input in the basic settings.
3. Click on the "Automatic setting" button in the process value settings.
The existing values are overwritten with the values from the hardware configuration.

152
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

7.2.3 Output settings

7.2.3.1 Basic settings of output

Method for heating and cooling
If cooling is activated in the basic settings, two methods are available for calculating the PID
output value:
• PID parameter switching (Config.AdvancedCooling = TRUE):

The output value calculation for cooling takes place by means of a separate PID parameter
set. Based on the calculated output value and the control deviation, the PID algorithm
decides whether the PID parameter for heating or cooling is used. This method is suitable
if the heating and cooling actuators have different time responses and different gains.
Pretuning and fine tuning for cooling are only available if this method is selected.

• Cooling factor (Config.AdvancedCooling = FALSE):
Output value calculation for cooling is effected with the PID parameters for heating under
consideration of the configurable cooling factor Config.CoolFactor. This method is suitable
if the heating and cooling actuators have a similar time response but different gains. If this
method is selected, pretuning and fine tuning for cooling as well as the PID parameter set
for cooling are not available. You can only execute the tuning for heating.

Cooling factor
If the cooling factor is selected as the method for heating/cooling, this factor is used in the
calculation of the output value for cooling. This allows different gains of heating and cooling
actuators to be taken into account.
The cooling factor is not set automatically or adjusted during tuning. You have to configure
the correct cooling factor manually by using the ratio "Heating actuator gain/Cooling actuator
gain".
Example: Cooling factor = 2.0 means that the heating actuator gain is twice as high as the
cooling actuator gain.
The cooling factor is only effective and can only be changed if "Cooling factor" is selected as
the method for heating/cooling.

Reaction to error

NOTICE
Your system may be damaged.
If you output "Current value while error is pending " or "Substitute output value while error is
pending" in the event of an error, PID_Temp remains in automatic mode or in manual mode.
This may cause a violation of the process value limits and damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

PID_Temp is preset so that the controller stays active in most cases in the event of an error.

153

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

If errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the ErrorBits parameter and eliminate the cause of the
error.
PID_Temp generates a programmable output value in response to an error:
• Zero (inactive)

At all errors, PID_Temp switches to the "Inactive" operating mode and outputs the
following:
– 0.0 as PID output value (PidOutputSum)
– 0.0 as output value for heating (OutputHeat) and output value for cooling

(OutputCool)
– 0 as analog output value for heating (OutputHeat_PER) and analog output value for

cooling (OutputCool_PER)
– FALSE as PWM output value for heating (OutputHeat_PWM) and PWM output value for

cooling (OutputCool_PWM)
This is independent of the configured output value limits and the scaling. The controller is
only reactivated by a falling edge at Reset or a rising edge at ModeActivate.

• Current value while error is pending
The error response depends on the error occurring and the operating mode.
If one or more of the following errors occur in automatic mode, PID_Temp stays in
automatic mode:
– 0000001h: The Input parameter is outside the process value limits.
– 0000800h: Sampling time error
– 0040000h: Invalid value at Disturbance parameter.
– 8000000h: Error during the calculation of the PID parameters.
If one or more of the following errors occur in automatic mode, PID_Temp switches to
"Substitute output value with error monitoring" mode and outputs the last valid PID output
value (PidOutputSum):
– 0000002h: Invalid value at Input_PER parameter.
– 0000200h: Invalid value at Input parameter.
– 0000400h: Calculation of output value failed.
– 0001000h: Invalid value at Setpoint or SubstituteSetpoint parameter.
The values at the outputs for heating and cooling resulting from the PID output value are
produced by the configured output scaling.
As soon as the errors are no longer pending, PID_Temp switches back to automatic mode.
If an error occurs during manual mode, PID_Temp remains in manual mode and continues
to use the manual value as the PID output value.
If the manual value is invalid, the configured substitute output value is used.
If the manual value and substitute output value are invalid, the low limit of the PID output
value for heating (Config.Output.Heat.PidLowerLimit) is used.
If the following error occurs during pretuning or fine tuning, PID_Temp remains in active
mode:
– 0000020h: Pretuning is not permitted during fine tuning.
When any other error occurs, PID_Temp cancels the tuning and switches to the mode from
which tuning was started.

154
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

• Substitute output value while error is pending
PID_Temp behaves as described at "Current value while error is pending", but outputs the
configured substitute output value (SubstituteOutput) as a PID output value
(PidOutputSum) in "Substitute output value with error monitoring" operating mode.
The values at the outputs for heating and cooling resulting from the PID output value are
produced by the configured output scaling.
In the case of controllers with activated cooling output (Config.ActivateCooling = TRUE),
enter:
– A positive substitute output value to output the value at the outputs for heating.
– A negative substitute output value to output the value at the outputs for cooling.
If the following error occurs, PID_Temp stays in "Substitute output value with error
monitoring" mode and outputs the low limit of the PID output value for heating
(Config.Output.Heat.PidLowerLimit):
– 0020000h: Invalid value at SubstituteOutput tag.

7.2.3.2 Output value limits and scaling

Depending on the operating mode, the PID output value (PidOutputSum) is calculated
automatically by the PID algorithm or by the manual value (ManualValue) or the configured
substitute output value (SubstituteOutput).
The PID output value is limited depending on the configuration:
• If the cooling is deactivated in the basic settings (Config.ActivateCooling = FALSE), the

value is limited to the high limit of the PID output value (heating)
(Config.Output.Heat.PidUpperLimit) and the low limit of the PID output value (heating)
(Config.Output.Heat.PidLowerLimit).
You can configure both limits at the horizontal axis of the scaling characteristic line in the
"OutputHeat / OutputCool" section. These are displayed in the "OutputHeat_PWM /
OutputCool_PWM" and "OutputHeat_PER / OutputCool_PER" sections, but cannot be
changed.

• If the cooling is activated in the basic settings (Config.ActivateCooling = TRUE), the value
is limited to the high limit of the PID output value (Config.Output.Heat.PidUpperLimit) and
the low limit of the PID output value (cooling) (Config.Output.Cool.PidLowerLimit).
You can configure both limits at the horizontal axis of the scaling characteristic line in the
"OutputHeat / OutputCool" section. These are displayed in the "OutputHeat_PWM /
OutputCool_PWM" and "OutputHeat_PER / OutputCool_PER" sections, but cannot be
changed.
The low limit of the PID output value (heating) (Config.Output.Heat.PidLowerLimit) and
the high limit of the PID output value (cooling) (Config.Output.Cool.PidUpperLimit) cannot
be changed and have to be assigned the value 0.0.

155

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

The PID output value is scaled and output at the outputs for heating and cooling. Scaling can
be specified separately for each output and is specified across 2 value pairs each, consisting
of a limit value of the PID output value and a scaling value:

Output Value pair Parameter
Value pair 1 PID output value high limit (heating)

Config.Output.Heat.PidUpperLimit,
Scaled high output value (heating)
Config.Output.Heat.UpperScaling

OutputHeat

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low output value (heating)
Config.Output.Heat.LowerScaling

Value pair 1 PID output value high limit (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high PWM output value (heating)
Config.Output.Heat.PwmUpperScaling

OutputHeat_PWM

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low PWM output value (heating)
Config.Output.Heat.PwmLowerScaling

Value pair 1 PID output value high limit (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high analog output value (heating)
Config.Output.Heat.PerUpperScaling

OutputHeat_PER

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low analog output value (heating)
Config.Output.Heat.PerLowerScaling

Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high output value (cooling)
Config.Output.Cool.UpperScaling

OutputCool

Value pair 2 PID output value high limit (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low output value (cooling)
Config.Output.Cool.LowerScaling

OutputCool_PWM Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high PWM output value (cooling)
Config.Output.Cool.PwmUpperScaling

The low limit of PID output value (heating) (Config.Output.Heat.PidLowerLimit) has to have the value
0.0, if the cooling is activated (Config.ActivateCooling = TRUE).
The high limit of PID output value (cooling) (Config.Output.Cool.PidUpperLimit) must always have the
value 0.0.

156
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

Output Value pair Parameter
OutputCool_PWM Value pair 2 PID output value high limit (cooling)

Config.Output.Cool.PidUpperLimit,
Scaled low PWM output value (cooling)
Config.Output.Cool.PwmLowerScaling

Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high analog output value (cooling)
Config.Output.Cool.PerUpperScaling

OutputCool_PER

Value pair 2 PID output value high limit (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low analog output value (cooling)
Config.Output.Cool.PerLowerScaling

The low limit of PID output value (heating) (Config.Output.Heat.PidLowerLimit) has to have the value
0.0, if the cooling is activated (Config.ActivateCooling = TRUE).
The high limit of PID output value (cooling) (Config.Output.Cool.PidUpperLimit) must always have the
value 0.0.

Example:
Output scaling when the OutputHeat output is used (cooling deactivated. The low limit of PID
output value (heating) (Config.Output.Heat.PidLowerLimit) may be unequal to 0.0):

Example:
Output scaling when the OutputHeat_PWM and OutputCool_PER outputs are used (cooling
activated. The low limit of PID output value (heating) (Config.Output.Heat.PidLowerLimit)
must be 0.0):

With the exception of the "Inactive" operating mode, the value at an output always lies
between its scaled high output value and the scaled low output value, for example for
OutputHeat always between the scaled high output value (heating)
(Config.Output.Heat.UpperScaling) and the scaled low output value (heating)
(Config.Output.Heat.LowerScaling).

157

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

If you want to limit the value at the associated output, you therefore have to adapt these
scaling values as well.
You can configure the scaling values of an output at the vertical axes of the scaling
characteristic line. Each output has two separate scaling values. These can only be changed
for OutputHeat_PWM, OutputCool_PWM, OutputHeat_PER and OutputCool_PER if the
corresponding output is selected in the basic settings. The cooling has to be activated
additionally in the basic settings at all the outputs for cooling.
The trend view in the commissioning dialog box only records the values of OutputHeat and
OutputCool, irrespective of the selected output in the basic settings. Therefore, if necessary,
adapt the scaling values for OutputHeat or OutputCool if you use OutputHeat_PWM or
OutputHeat_PER or OutputCool_PWM or OutputCool_PER and want to use the trend view in
the commissioning dialog.

7.2.4 Advanced settings

7.2.4.1 Process value monitoring

Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning is displayed at the PID_Temp instruction:
• At the InputWarning_H output parameter if the warning high limit has been exceeded
• At the InputWarning_L output parameter if the warning low limit has been undershot
The warning limits must be within the process value high and low limits.
The process value high and low limits are used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C
Warning low limit = 10° C; process value low limit = 0° C
PID_Temp will respond as follows:

Process value InputWarning_H InputWarning_L ErrorBits
> 98 °C TRUE FALSE 0001h

≤ 98° C and > 90° C TRUE FALSE 0000h

≤ 90° C and ≥ 10° C FALSE FALSE 0000h

< 10° C and ≥ 0° C FALSE TRUE 0000h

< 0° C FALSE TRUE 0001h

You can configure the response of PID_Temp when the process value high limit or low limit is
violated in the output settings.

158
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

7.2.4.2 PWM limits

The PID output value PidOutputSum is scaled and transformed via a pulse width modulation
into a pulse train that is output at the output parameter OutputHeat_PWM or
OutputCool_PWM.
The "Sampling time of PID algorithm" represents the time between two calculations of the PID
output value. The sampling time is used as time period of the pulse width modulation.
During heating, the PID output value is always calculated in the "Sampling time of PID
algorithm for heating".
Calculation of the PID output value during cooling depends on the type of cooling selected in
"Basic settings Output":
• If the cooling factor is used, the "Sampling time of PID algorithm for heating" applies.
• If the PID parameter switching is used, the "Sampling time of PID algorithm for cooling"

applies.
The PID algorithm sampling time for heating or cooling is determined during pretuning or
fine tuning. If you set the PID parameters manually, you will also need to configure the PID
algorithm sampling time for heating or cooling.
OutputHeat_PWM and OutputCool_PWM are output in the PID_Temp sampling time. The
PID_Temp sampling time is equivalent to the cycle time of the calling OB.
The pulse duration is proportional to the PID output value and is always an integer multiple of
the PID_Temp sampling time.

Example for OutputHeat_PWM

① PID_Temp sampling time
② PID algorithm sampling time for heating
③ Pulse duration
④ Break time

The "Minimum ON time" and the "Minimum OFF time" can be set separately for heating and
cooling, rounded to an integer multiple of the PID_Temp sampling time.

159

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.

Example for OutputHeat_PWM
PID_Temp sampling time (equivalent to the cycle time of the calling OB) = 100 ms
PID algorithm sampling time (equivalent to the time period) = 1000 ms
Minimum ON time = 200 ms
The PID output value PidOutputSum amounts to a constant 15%. The smallest pulse that
PID_Temp can output corresponds to 20%. In the first cycle, no pulse is output. In the second
cycle, the pulse not output in the first cycle is added to the pulse of the second cycle.

① PID_Temp sampling time
② PID algorithm sampling time for heating
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum
ON and OFF times.
If you have selected OutputHeat/OutputCool or OutputHeat_PER/OutputCool_PER as the
output in the basic settings, the minimum ON time and the minimum OFF time are not
evaluated and cannot be changed.
If the "Sampling time of PID algorithm" (Retain.CtrlParams.Heat.Cycle or
Retain.CtrlParams.Cool.Cycle) and thus the time period of the pulse width modulation is very
high when OutputHeat_PWM or OutputCool_PWM is used, you can specify a deviating shorter
time period at the parameters Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode in order to improve smoothness of the process value (see
also PwmPeriode tag (Page 394)).

NOTE
The minimum ON and OFF times only affect the output parameters OutputHeat_PWM or
OutputCool_PWM and are not used for any pulse generators integrated in the CPU.

160
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

7.2.4.3 PID parameters

The PID parameters are displayed in the "PID Parameters" configuration window.
If cooling is activated in the basic settings and PID parameter switching is selected as the
method for heating/cooling in the output settings, two parameter sets are available: One for
heating and one for cooling.
In this case, the PID algorithm decides on the basis of the calculated output value and the
control deviation whether the PID parameters for heating or cooling are used.
If cooling is deactivated or the cooling factor is selected as the method for heating/cooling,
the parameter set for heating is always used.
During tuning, the PID parameters are adapted to the controlled system with the exception of
the dead zone width that has to be configured manually.

NOTE
The currently active PID parameters are located in the Retain.CtrlParams structure.
Change the currently active PID parameters only in "Inactive" mode online to prevent
malfunction of the PID controller.
If you want to change the PID parameters in "Automatic mode" or "Manual mode" online,
change the PID parameters in the CtrlParamsBackUp structure and apply these changes with
LoadBackUp = TRUE to the Retain.CtrlParams structure.
Online changes to the PID parameters in "Automatic mode" can result in jumps at the output
value.

PID_Temp is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions.
The PID algorithm operates according to the following equation (control zone and dead zone
deactivated):

Symbol Description Associated parameters of the PID_Temp
instruction

y Output value of the PID algorithm -

Kp Proportional gain Retain.CtrlParams.Heat.Gain
Retain.CtrlParams.Cool.Gain
CoolFactor

s Laplace operator -

b Proportional action weighting Retain.CtrlParams.Heat.PWeighting
Retain.CtrlParams.Cool.PWeighting

w Setpoint CurrentSetpoint

x Process value ScaledInput

TI Integration time Retain.CtrlParams.Heat.Ti
Retain.CtrlParams.Cool.Ti

TD Derivative action time Retain.CtrlParams.Heat.Td
Retain.CtrlParams.Cool.Td

a Coefficient for derivative-action delay
(Derivative delay T1 = a × TD)

Retain.CtrlParams.Heat.TdFiltRatio
Retain.CtrlParams.Cool.TdFiltRatio

161

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Symbol Description Associated parameters of the PID_Temp
instruction

c Derivative action weighting Retain.CtrlParams.Heat.DWeighting
Retain.CtrlParams.Cool.DWeighting

DeadZone Dead zone width Retain.CtrlParams.Heat.DeadZone
Retain.CtrlParams.Cool.DeadZone

ControlZone Control zone width Retain.CtrlParams.Heat.ControlZone
Retain.CtrlParams.Cool.ControlZone

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Temp (Downloading technology objects to device (Page 46)).

162
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

PID_Temp block diagram
The following block diagram shows how the PID algorithm is integrated in the PID_Temp.

Proportional gain
The value specifies the proportional gain of the controller. PID_Temp does not operate with a
negative proportional gain and only supports the normal control direction, meaning that an
increase in the process value is achieved by an increase in the PID output value
(PidOutputSum).

163

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Integration time
The integration time determines the time behavior of the integral action. The integral action
is deactivated with integration time = 0.0. When the integration time is changed from a
different value to 0.0 online in "Automatic mode", the previous integral action is deleted and
the output value jumps.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled systems with one dominant

time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is changed.

164
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of "PID algorithm" represents the time between two calculations of the PID output value.
It is calculated during tuning and rounded to a multiple of the PID_Temp sampling time (cycle
time of the cyclic interrupt OB). All other functions of PID_Temp are executed at every call.
If you use OutputHeat_PWM or OutputCool_PWM, the sampling time of the PID algorithm is
used as the period duration of the pulse width modulation. The accuracy of the output signal
is determined by the ratio of the PID algorithm sampling time to the cycle time of the OB. The
cycle time should be no more than a tenth of the PID algorithm sampling time.
The sampling time of the PID algorithm that is used as the period duration of the pulse width
modulation at OutputCool_PWM depends on the method for heating/cooling selected in
"Basic settings Output":
• If the cooling factor is used, the "sampling time of the PID algorithm for heating" also

applies to OutputCool_PWM.
• If PID parameter switching is used, the "sampling time PID algorithm for cooling" applies as

the period duration for OutputCool_PWM.
If the sampling time of the PID algorithm and thus the period duration of the pulse width
modulation is very high when OutputHeat_PWM or OutputCool_PWM is used, you can specify
a deviating shorter period duration at the parameters Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode in order to improve smoothness of the process value.

Dead zone width
If the process value is affected by noise, the noise can also have an effect on the output
value. The output value may fluctuate considerably when controller gain is high and the
derivative action is activated. If the process value lies within the dead zone around the
setpoint, the control deviation is suppressed so that the PID algorithm does not react and
unnecessary fluctuations of the output value are reduced.
The dead zone width for heating or cooling is not set automatically during tuning. You have
to correctly configure the dead zone width manually. The dead zone is deactivated by setting
the dead zone width = 0.0.
When the dead zone is switched on, the result can be a permanent control deviation
(deviation between setpoint and process value). This can have a negative effect on fine
tuning.
If cooling is activated in the basic settings and PID parameter switching is selected as the
method for heating/cooling in the output settings, the dead zone lies between "Setpoint -
dead zone width (heating)" and "Setpoint + dead zone width (cooling)".
If cooling is deactivated in the basic settings or the cooling factor is used, the dead zone lies
symmetrically between "Setpoint - dead zone width (heating)" and "Setpoint + dead zone
width (heating)".

165

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

If values not equal to 1.0 are configured for the proportional action weighting or the
derivative action weighting, setpoint changes even within the dead zone affect the output
value.
Process value changes within the dead zone do not affect the output value, regardless of the
weighting.

Dead zone with deactivated cooling or cooling factor (left) or activated cooling and PID
parameter switching (right). The x / horizontal axis displays the control deviation = setpoint -
process value. The y / vertical axis shows the output signal of the dead zone that is passed to
the PID algorithm.

Control zone width
If the process value exits the control zone around the setpoint, the minimum or maximum
output value is output. This means that the process value reaches the setpoint faster.
If the process value lies within the control zone around the setpoint, the output value is
calculated by the PID algorithm.
The control zone width for heating or cooling is only set automatically during the pretuning,
if "PID (temperature)" is selected as the controller structure for cooling or heating.
The control zone is deactivated by setting the control zone width = 3.402822e+38.
If cooling is deactivated in the basic settings or the cooling factor is used, the control zone lies
symmetrically between "Setpoint - control zone width (heating)" and "Setpoint + control zone
width (heating)".
If cooling is activated in the basic settings and PID parameter switching is selected as the
method for heating/cooling in the output settings, the control zone lies between "Setpoint -
control zone width (heating)" and "Setpoint + control zone width (cooling)".

166
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.2 Configuring PID_Temp

Control zone with deactivated cooling or cooling factor.

Control zone with activated cooling and PID parameter switching.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list. You can specify the rules for tuning for heating and for tuning for cooling
separately.
• PID (temperature)

Calculates PID parameters during pretuning and fine tuning.
Pretuning is designed for temperature processes and results in a slower and rather
asymptotic control response with lower overshoot than with the "PID" option. Fine tuning
is identical to the "PID" option.
The control zone width is determined automatically during pretuning only if this option is
selected.

• PID
Calculates PID parameters during pretuning and fine tuning.

• PI
Calculates PI parameters during pretuning and fine tuning.

• User-defined
The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program or the parameter view.

167

Using PID_Temp
7.2 Configuring PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

7.3 Commissioning PID_Temp

7.3.1 Commissioning
The commissioning window helps you commission the PID controller. You can monitor the
values for the setpoint, process value and the output values for heating and cooling along the
time axis in the trend view. The following functions are supported in the commissioning
window:
• Controller pretuning
• Controller fine tuning

Use fine tuning for fine adjustments to the PID parameters.
• Monitoring the current closed-loop control in the trend view
• Testing the controlled system by specifying a manual PID output value and a substitute

setpoint
• Saving the actual values of the PID parameters to an offline project.
All functions require an online connection to the CPU.
The online connection to the CPU is established, if it does not exist already, and operation of
the commissioning window is enabled by means of the "Monitor all" or "Start" buttons of
the trend view.

Operation of the trend view
• Select the desired sampling time in the "Sampling time" drop-down list.

All the values of the trend view are updated in the selected sampling time.
• Click the "Start" icon in the Measurement group if you want to use the trend view.

Value recording is started. The current values for the setpoint, process value and output
values for heating and cooling are entered in the trend view.

• Click the "Stop" icon if you want to end the trend view.
The values recorded in the trend view can continue to be analyzed.

Closing the commissioning window will terminate recording in the trend view and delete the
recorded values.

168
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.3 Commissioning PID_Temp

7.3.2 Pretuning
The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The tuned PID parameters are calculated as a function of
the maximum slope and dead time of the controlled system. You obtain the best PID
parameters when you perform pretuning and fine tuning.
The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the rate
of rise of the process value is significantly higher compared to the noise. This is most likely
the case in operating modes "Inactive" or "Manual mode". The PID parameters are backed up
before being recalculated.
PID_Temp offers different pretuning types depending on the configuration:
• Pretuning heating

A jump is output at the output value heating, the PID parameters for heating are
calculated and then the setpoint is used as the control variable in automatic mode.

• Pretuning heating and cooling
A jump is output at the output value heating.
As soon as the process value is close to the setpoint, a jump change is output at the
output value cooling.
The PID parameters for heating (Retain.CtrlParams.Heat structure) and cooling
(Retain.CtrlParams.Cool structure) are calculated and then the setpoint is used as the
control variable in automatic mode.

• Pretuning cooling
A jump is output at the output value cooling.
The PID parameters for cooling are calculated and then the setpoint is used as the control
variable in automatic mode.

If you want to tune the PID parameters for heating and cooling, you can expect a better
control response with "Pretuning heating" followed by "Pretuning cooling" rather than with
"Pretuning heating and cooling". However, carrying out pretuning in two steps takes more
time.

General requirements
• The PID_Temp instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• PID_Temp is in one of the following modes: "Inactive", "Manual mode", or "Automatic

mode".
• The setpoint and the process value lie within the configured limits (see Process value

monitoring (Page 158) configuration).

Requirements for pretuning heating
• The difference between setpoint and process value is greater than 30% of the difference

between process value high limit and process value low limit.
• The distance between the setpoint and the process value is greater than 50% of the

setpoint.
• The setpoint is greater than the process value.

169

Using PID_Temp
7.3 Commissioning PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Requirements for pretuning heating and cooling
• The cooling output in the "Basic settings" is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching in the "Basic settings of output value" is activated

(Config.AdvancedCooling = TRUE).
• The difference between setpoint and process value is greater than 30% of the difference

between process value high limit and process value low limit.
• The distance between the setpoint and the process value is greater than 50% of the

setpoint.
• The setpoint is greater than the process value.

Requirements for pretuning cooling
• The cooling output in the "Basic settings" is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching in the "Basic settings of output value" is activated

(Config.AdvancedCooling = TRUE).
• "Pretuning heating" or "Pretuning heating and cooling" has been carried out successfully

(PIDSelfTune.SUT.ProcParHeatOk = TRUE). The same setpoint should be used for all
tunings.

• The difference between setpoint and process value is smaller than 5% of the difference
between process value high limit and process value low limit.

Procedure
To perform pretuning, follow these steps:
1. Double-click the "PID_Temp > Commissioning" entry in the project tree.
2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.
3. Select the desired pretuning entry from the "Tuning mode" drop-down list.
4. Click the "Start" icon.

– Pretuning is started.
– The "Status" field displays the current steps and any errors that may have occurred. The

progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon when the progress bar ("Progress" tag) has not changed for a long
period and it is to be assumed that the tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Temp switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.
If pretuning is not possible, PID_Temp responds with the configured responses in the event of
an error.

170
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.3 Commissioning PID_Temp

7.3.3 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters
are tuned for the operating point from the amplitude and frequency of this oscillation. The
PID parameters are recalculated from the results. PID parameters from fine tuning usually
have better master control and disturbance characteristics than PID parameters from
pretuning. You obtain the best PID parameters when you perform pretuning and fine tuning.
PID_Temp automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.
PID_Temp offers different fine tuning types depending on the configuration:
• Fine tuning heating:

PID_Temp generates an oscillation of the process value with periodic changes at the
output value heating and calculates the PID parameters for heating.

• Fine tuning cooling:
PID_Temp generates an oscillation of the process value with periodic changes at the
output value cooling and calculates the PID parameters for cooling.

Temporary tuning offset for heating/cooling controllers
If PID_Temp is used as a heating/cooling controller (Config.ActivateCooling = TRUE), the PID
output value (PidOutputSum) at the setpoint has to fulfill the following requirements so that
process value oscillation can be generated and fine tuning can be carried out successfully:
• Positive PID output value for fine tuning heating
• Negative PID output value for fine tuning cooling
If this condition is not fulfilled, you can specify a temporary offset for fine tuning that is
output at the opposing output.
• Offset for cooling output (PIDSelfTune.TIR.OutputOffsetCool) at fine tuning heating.

Before starting tuning, enter a negative tuning offset cooling that is smaller than the PID
output value (PidOutputSum) at the setpoint in the stationary state.

• Offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) at fine tuning cooling
Before starting tuning, enter a positive tuning offset heating that is greater than the PID
output value (PidOutputSum) at the setpoint in the stationary state.

The defined offset is balanced by the PID algorithm so that the process value remains at the
setpoint. The height of the offset allows the PID output value to be adapted correspondingly
so that it fulfills the requirement mentioned above.
To avoid larger overshoots of the process value when defining the offset, it can also be
increased in several steps.
If PID_Temp exits the fine tuning mode, the tuning offset is reset.

171

Using PID_Temp
7.3 Commissioning PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Example: Specification of an offset for fine tuning cooling
• Without offset

– Setpoint = Process value (ScaledInput) = 80 °C
– PID output value (PidOutputSum) = 30.0
– Output value heating (OutputHeat) = 30.0
– Output value cooling (OutputCool) = 0.0

Oscillation of the process value around the setpoint cannot be generated with the
cooling output alone. Fine tuning would fail here.

• With offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) = 80.0
– Setpoint = Process value (ScaledInput) = 80 °C
– PID output value (PidOutputSum) = -50.0
– Output value heating (OutputHeat) = 80.0
– Output value cooling (OutputCool) = -50.0

Thanks to the specification of an offset for the heating output, the cooling output can
now generate oscillation of the process value around the setpoint. Fine tuning can
now be carried out successfully.

General requirements
• The PID_Temp instruction is called in a cyclic interrupt OB.
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits (see "Process value

settings" configuration).
• The control loop has stabilized at the operating point. The operating point is reached

when the process value corresponds to the setpoint.
When the dead zone is switched on, the result can be a permanent control deviation
(deviation between setpoint and actual value). This can have a negative effect on fine
tuning.

• No disturbances are expected.
• PID_Temp is in inactive mode, automatic mode or manual mode.

Requirements for fine tuning heating
• Heat.EnableTuning = TRUE
• Cool.EnableTuning = FALSE
• If PID_Temp is configured as a heating-and-cooling controller (Config.ActivateCooling =

TRUE), the heating output has to be active at the operating point where tuning is to be
carried out.
PidOutputSum > 0.0 (see tuning offset)

172
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.3 Commissioning PID_Temp

Requirements for fine tuning cooling
• Heat.EnableTuning = FALSE
• Cool.EnableTuning = TRUE
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE).
• The cooling output has to be active at the operating point where tuning is to be carried

out.
PidOutputSum < 0.0 (see tuning offset)

Process depends on initial situation
Fine tuning can be started from the following operating modes: "Inactive", "automatic mode",
or "manual mode".
Fine tuning proceeds as follows when started from:
• Automatic mode with PIDSelfTune.TIR.RunIn = FALSE (default)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.
PID_Temp controls the system using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

• Inactive, manual mode or automatic mode with PIDSelfTune.TIR.RunIn = TRUE
An attempt is made to reach the setpoint with the minimum or maximum output value
(two-point control):
– With minimum or maximum output value heating at fine tuning heating.
– With minimum or maximum output value cooling for fine tuning cooling.
This can produce increased overshoot. Fine tuning starts when the setpoint is reached.
If the setpoint cannot be reached, PID_Temp does not automatically abort tuning.

173

Using PID_Temp
7.3 Commissioning PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Procedure
To perform fine tuning, follow these steps:
1. Double-click the "PID_Temp > Commissioning" entry in the project tree.
2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.
3. Select the desired fine tuning entry from the "Tuning mode" drop-down list.
4. If required (see tuning offset), specify a tuning offset and wait until the stationary state is

reached again.
5. Click the "Start" icon.

– The process of fine tuning is started.
– The "Status" field displays the current steps and any errors that may have occurred.

The progress bar indicates the progress of the current step.

NOTE
Click the "Stop" icon in the "Tuning mode" group if the progress bar ("Progress" tag) has
not changed for a long period and it is to be assumed that the tuning function is blocked.
Check the configuration of the technology object and, if necessary, restart controller
tuning.
In the following phases in particular, tuning is not aborted automatically if the setpoint
cannot be reached.
– "Attempting to reach setpoint for heating with two-point control."
– "Attempting to reach setpoint for cooling with two-point control."

Result
If fine tuning was performed without errors, the PID parameters have been tuned. PID_Temp
switches to automatic mode and uses the tuned parameters. The tuned PID parameters will
be retained during power OFF and a restart of the CPU.
If errors occurred during fine tuning, PID_Temp responds with the configured response to
errors.

174
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.3 Commissioning PID_Temp

7.3.4 "Manual" mode
The following section describes how you can use "Manual mode" in the commissioning
window of the "PID_Temp" technology object.
Manual mode is also possible when an error is pending.

Requirement
• The "PID_Temp" instruction is called in a cyclic interrupt OB.
• An online connection to the CPU has been established.
• The CPU is in "RUN" mode.

Procedure
If you want to test the controlled system by specifying a manual value, use "Manual mode" in
the commissioning window.
To define a manual value, follow these steps:
1. Double-click the "PID_Temp > Commissioning" entry in the project tree.
2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.
3. Select the "Manual mode" check box in the "Online status of controller" area.

PID_Temp operates in manual mode. The most recent current output value remains in
effect.

4. Enter the manual value in the editable field as a % value.
If cooling is activated in the basic settings, enter the manual value as follows:
– Enter a positive manual value to output the value at the outputs for heating.
– Enter a negative manual value to output the value at the outputs for cooling.

5. Click the icon.

Result
The manual value is written to the CPU and immediately goes into effect.
Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller.
The switchover to automatic mode is bumpless.

175

Using PID_Temp
7.3 Commissioning PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

7.3.5 Substitute setpoint
The following section describes how you can use the substitute setpoint in the
commissioning window of the "PID_Temp" technology object.

Requirement
• The "PID_Temp" instruction is called in a cyclic interrupt OB.
• An online connection to the CPU has been established.
• The CPU is in "RUN" mode.

Procedure
If you want to use a different value as the setpoint than that specified at the "Setpoint"
parameter (for example to tune a slave in a cascade), use the substitute setpoint in the
commissioning window.
Proceed as follows to specify a substitute setpoint:
1. Double-click the "PID_Temp > Commissioning" entry in the project tree.
2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.
3. Select the "Subst.Setpoint" check box in the "Online status of controller" section.

The substitute setpoint (SubstituteSetpoint tag) is initialized with the most recently
updated setpoint and now used.

4. Enter the substitute setpoint in the editable field.
5. Click the icon.

Result
The substitute setpoint is written to the CPU and immediately goes into effect.
Clear the "Subst.Setpoint" check box if the value at the "Setpoint" parameter is to be used
again as setpoint.
The switchover is not bumpless.

176
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.3 Commissioning PID_Temp

7.3.6 Cascade commissioning

Information about cascade commissioning with PID_Temp is available under Commissioning
(Page 181).

7.4 Cascade control with PID_Temp

7.4.1 Introduction
In cascade control, several control loops are nested within each other. In the process, slaves
receive their setpoint (Setpoint) from the output value (OutputHeat) of the respective higher-
level master.
A prerequisite for establishing a cascade control system is that the controlled system can be
divided into subsystems, each with its own measured variable.
Setpoint specification for the controlled variable is carried out at the outmost master.
The output value of the innermost slave is applied to the actuator and thus acts on the
controlled system.
The following major advantages result from the use of a cascade control system in
comparison with a single-loop control system:
• Thanks to the additional subordinate control loops, disturbances which occur there are

corrected quickly. Their influence on the controlled variable is reduced considerably. The
disturbance behavior is thus improved.

• The subordinate control loops act in linearizing form. The negative effects of such non-
linearities on the controlled variable are thus moderated.

PID_Temp offers the following functionality especially for use in cascade control systems:
• Specification of a substitute setpoint
• Exchange of status information between master and slave (for example, current operating

mode)
• Different Anti-Wind-Up modes (response of the master to limitation of its slave)

177

Using PID_Temp
7.4 Cascade control with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Example
The following block diagram shows a cascade control system with PID_Temp using the
simplified example of a chocolate melting unit:

The PID_Temp_1 master compares the process value of the chocolate temperature
(TempChocolate) with the setpoint specification by the user at the Setpoint parameter. Its
output value OutputHeat forms the setpoint of the slave PID_Temp_2.
PID_Temp_2 attempts to regulate the process value of the water-bath temperature
(TempWater) to this setpoint. The output value of PID_Temp_2 acts directly on the actuator of
the controlled system (heating of the water bath) and thus influences the water-bath
temperature. The water-bath temperature in turn has an effect on the chocolate
temperature.

FAQ
For more information, see the following FAQs in the Siemens Industry Online Support:
• Entry ID 103526819 (https://support.industry.siemens.com/cs/ww/en/view/103526819)

See also
Program creation (Page 179)

178
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.4 Cascade control with PID_Temp

https://support.industry.siemens.com/cs/ww/en/view/103526819

7.4.2 Program creation
Observe the following points during program creation:
• Number of PID_Temp instances

The number of different PID_Temp instances called up in a cyclic interrupt OB has to agree
with the number of concatenated measured variables in the process.
There are two concatenated measured variables in the example: TempChocolate and
TempWater. Therefore two PID_Temp instances are required.

• Call sequence
A master has to be called before its slaves in the same cyclic interrupt OB.
The outermost master at which the user setpoint is specified is called first.
The slave whose setpoint is specified by the outermost master is called next, etc.
The innermost slave that acts on the actuator of the process with its output value is called
last.
In the example, PID_Temp_1 is called before PID_Temp_2.

• Interconnection of the measured variables
The outermost master is interconnected with the outermost measured variable that is to
be regulated to the user setpoint.
The innermost slave is interconnected with the innermost measured variable that is
influenced directly by the actuator.
Interconnection of the measured variables with PID_Temp is carried out with the
parameters Input or Input_PER.
In the example, the outermost measured variable TempChocolate is interconnected with
PID_Temp_1 and the innermost measured variable TempWater with PID_Temp_2.

• Interconnection of the output value of the master to the setpoint of the slave
The output value (OutputHeat) of a master has to be assigned to the setpoint (Setpoint) of
its slave.
This interconnection can be carried out in the programming editor or automatically in the
Inspector window of the slave in the basic settings via the selection of the master.
If required, you can insert your own filter or scaling functions, for example in order to
adapt the output value range of the master to the setpoint/process value range of the
slave.
In the example, OutputHeat of PID_Temp_1 is assigned to Setpoint of PID_Temp_2.

• Interconnection of the interface for information exchange between master and slave
The "Slave" parameter of a master has to be assigned to the "Master" parameter of all its
directly subordinate slaves (which receive their setpoint from this master). The
assignment should be carried out via the interface of the slave in order to allow the
interconnection of a master with multiple slaves and the display of the interconnection in
the Inspector window of the slave in the basic settings.
This interconnection can be carried out in the programming editor or automatically in the
Inspector window of the slave in the basic settings via the selection of the master.
The Anti-Wind-Up functionality and the evaluation of the slave operating modes at the
master can only function correctly if this interconnection is carried out.
In the example, the "Slave" parameter of PID_Temp_1 is assigned to the "Master"
parameter of PID_Temp_2.

Program code of the example using SCL (without assignment of the output value of the slave
to the actuator):
"PID_Temp_1"(Input:="TempChocolate");

"PID_Temp_2"(Input:="TempWater", Master := "PID_Temp_1".Slave,
Setpoint := "PID_Temp_1".OutputHeat);

179

Using PID_Temp
7.4 Cascade control with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
PID_Temp ActivateRecoverMode tag (Page 392)

7.4.3 Configuration
You can carry out the configuration via your user program, the configuration editor or the
Inspector window of the PID_Temp call.
When using PID_Temp in a cascade control system, ensure the correct configuration of the
settings specified below.
If a PID_Temp instance receives its setpoint from a superior master controller and outputs its
output value in turn to a subordinate slave controller, this PID_Temp instance is both a master
controller and a slave controller simultaneously. Both configurations listed below have to be
carried out for such a PID_Temp instance. This is the case, for example, for the middle
PID_Temp instance in a cascade control system with three concatenated measured variables
and three PID_Temp instances.

Configuration of a master

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Basic settings → Cascade:
Activate "Controller is master" check box

Config.Cascade.IsMaster = TRUE Activates this controller as a master in a cascade

Basic settings → Cascade:
Number of slaves

Config.Cascade.CountSlaves Number of directly subordinate slaves that
receive their setpoint directly from this master

Basic settings → Input/output paramet
ers:
Selection of the output value (heating) =
OutputHeat

Config.Output.Heat.Select = 0 The master only uses the output parameter
OutputHeat.
OutputHeat_PWM and OutputHeat_PER are deac
tivated.

Basic settings → Input/output paramet
ers:
Clear "Activate cooling" check box

Config.ActivateCooling = FALSE The cooling has to be deactivated at a master.

Output settings → Output limits and
scaling → OutputHeat / OutputCool:
PID output value low limit (heating),
PID output value high limit (heating),
Scaled low output value (heating),
Scaled high output value (heating)

Config.Output.Heat.PidLowerLi
mit,
Config.Output.Heat.PidUpperLi
mit,
Config.Output.Heat.LowerScalin
g,
Config.Output.Heat.UpperScal
ing

If no own scaling function is used when assign
ing OutputHeat of the master to Setpoint of the
slave, it may be necessary to adapt the output
value limits and the output scaling of the master
to the setpoint/process value range of the slave.

This tag is not available in the Inspector
window or in the functional view of the
configuration editor.
You can change it via the parameter
view of the configuration editor.

Config.Cascade.AntiWindUp
Mode

The Anti-Wind-Up mode determines how the
integral action of this master is treated if directly
subordinate slaves reach their output value lim
its.

180
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.4 Cascade control with PID_Temp

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Options are:
• AntiWindUpMode = 0:

The AntiWindUp functionality is deactivated.
The master does not react to the limitation of
its slaves.

• AntiWindUpMode = 1 (default):
The integral action of the master is reduced
in the relationship "Slaves in
limitation/Number of slaves". This reduces
the effects of the limitation on the control
behavior.

• AntiWindUpMode = 2:
The integral action of the master is held as
soon as a slave is in limitation.

Configuration of a slave

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Basic settings → Cascade:
Select the "Controller is slave" check box

Config.Cascade.IsSlave = TRUE Activates this controller as a slave in a cascade

7.4.4 Commissioning
After compiling and loading of the program, you can start commissioning of the cascade
control system.
Begin with the innermost slave at commissioning (implementation of tuning or change to
automatic mode with existing PID parameters) and continue outwards until the outermost
master has been reached.
In the above example, commissioning starts with PID_Temp_2 and is continued with
PID_Temp_1.

Tuning the slave
Tuning of PID_Temp requires a constant setpoint. Therefore, activate the substitute setpoint
of a slave (SubstituteSetpoint and SubstituteSetpointOn tags) to tune the slave or set the
associated master to manual mode with a corresponding manual value. This ensures that the
setpoint of the slave remains constant during tuning.

181

Using PID_Temp
7.4 Cascade control with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tuning the master
In order for a master to influence the process or to carry out tuning, all the downstream
slaves have to be in automatic mode and their substitute setpoint has to be deactivated. A
master evaluates these conditions through the interface for information exchange between
master and slave (Master parameter and Slave parameter) and displays the current state at
the AllSlaveAutomaticState and NoSlaveSubstituteSetpoint tags. Corresponding status
messages are output in the commissioning editor.

Status message in the commissioning
editor of the master

DB parameter of the master Correction

One or more slaves are not in automatic
mode.

AllSlaveAutomaticState = FALSE,
NoSlaveSubstituteSetpoint =
TRUE

One or more slaves have activated the
substitute setpoint.

AllSlaveAutomaticState = TRUE,
NoSlaveSubstituteSetpoint =
FALSE

One or more slaves are not in automatic
mode and have activated the substitute
setpoint.

AllSlaveAutomaticState = FALSE,
NoSlaveSubstituteSetpoint =
FALSE

First, carry out commissioning of all downstream
slaves.
Ensure that the following conditions are fulfilled
before carrying out tuning or activating manual
mode or automatic mode of the master:
• All downstream slaves are in automatic mode

(state = 3).
• All downstream slaves have deactivated the

substitute setpoint (SubstituteSetpointOn =
FALSE).

If pretuning or fine tuning is started for a master, PID_Temp aborts tuning in the following
cases and displays an error with ErrorBits = DW#16#0200000:
• One or more slaves are not in automatic mode (AllSlaveAutomaticState = FALSE)
• One or more slaves have activated the substitute setpoint (NoSlaveSubstituteSetpoint =

FALSE).
The subsequent operating mode changeover depends on ActivateRecoverMode.

7.4.5 Substitute setpoint
In order to specify a setpoint, PID_Temp offers a substitute setpoint at the SubstituteSetpoint
tag in addition to the Setpoint parameter. This can be activated by setting
SubstituteSetpointOn = TRUE or by selecting the corresponding check box in the
commissioning editor.
The substitute setpoint allows you to specify the setpoint temporarily directly at the slave, for
example during commissioning or tuning.
In this case, the interconnection of the output value of the master with the setpoint of the
slave that is required for normal operation of the cascade control system does not have to be
changed in the program
In order for a master to influence the process or to carry out tuning, the substitute setpoint
has to be deactivated at all downstream slaves.
You can monitor the currently effective setpoint as it is used by the PID algorithm for
calculation at the CurrentSetpoint tag.

182
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.4 Cascade control with PID_Temp

7.4.6 Operating modes and fault response
The master or slave of a PID_Temp instance does not change the operating mode of this
PID_Temp instance.
If a fault occurs at one of its slaves, the master remains in its current operating mode.
If a fault occurs at its master, the slave remains in its current operating mode. However,
further operation of the slave then depends on the fault and the configured fault response of
the master since the output value of the master is used as the setpoint of the slave:
• If ActivateRecoverMode = TRUE is configured at the master. and the fault does not prevent

the calculation of OutputHeat, the fault does not have any effect on the slave.
• If ActivateRecoverMode = TRUE is configured at the master and the fault prevents the

calculation of OutputHeat, the master outputs the last output value or the configured
substitute output value SubstituteOutput, depending on SetSubstituteOutput. This is then
used by the slave as the setpoint.
PID_Temp is preconfigured so that the substitute output value 0.0 is output in this case
(ActivateRecoverMode = TRUE, SetSubstituteOutput = TRUE, SubstituteOutput = 0.0).
Configure a suitable substitute output value for your application or activate the use of the
last valid PID output value (SetSubstituteOutput = FALSE).

• If ActivateRecoverMode = FALSE is configured at the master, the master changes to the
"Inactive" mode when a fault occurs and outputs OutputHeat = 0.0. The slave then uses
0.0 as the setpoint.

The fault response is located in the output settings in the configuration editor.

7.5 Multi-zone controlling with PID_Temp

Introduction
In a multi-zone control system, several sections, so-called zones, of a plant are controlled
simultaneously to different temperatures. A multi-zone control system is characterized by the
mutual influence of the temperature zones through thermal coupling, i.e. the process value
of one zone can influence the process value of a different zone through thermal coupling.
The strength that this influence has depends on the structure of the plant and the selected
operating points of the zones.
Example: Extrusion plant as it is used, for example, in plastics processing.
The substance mixture that passes through the extruder has to be controlled to different
temperatures for optimal processing. For example, different temperatures can be required at
the filling point of the extruder than at the outlet nozzle. The individual temperature zones
mutually influence each other through thermal coupling.
When PID_Temp is used in multi-zone control systems, each temperature zone is controlled
by a separate PID_Temp instance.
Observe the following explanations if you want to use the PID_Temp in a multi-zone control
system.

183

Using PID_Temp
7.5 Multi-zone controlling with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Separate pretuning for heating and cooling
Initial commissioning of a plant as a rule begins with the carrying out of pretuning in order to
carry out initial setting of the PID parameters and control to the operating point. The
pretuning for multi-zone control systems is often carried out simultaneously for all zones.
PID_Temp offers the possibility of carrying out pretuning for heating and cooling in one step
(Mode = 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = TRUE) for controllers with
activated cooling and PID parameter switching as the method for heating/cooling
(Config.ActivateCooling = TRUE, Config.AdvancedCooling = TRUE).
However, it is advisable not to use this tuning for simultaneous pretuning of several
PID_Temp instances in a multi-zone control system. Instead, first carry out the pretuning for
heating (Mode = 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = FALSE) and the
pretuning for cooling (Mode = 1, Heat.EnableTuning = FALSE, Cool.EnableTuning = TRUE)
separately.
Pretuning for cooling should not be started until all zones have completed pretuning for
heating and have reached their operating points.
This reduces mutual influencing through thermal coupling between the zones during tuning.

Adapting the delay time
If PID_Temp is used in a multi-zone control system with strong thermal couplings between
the zones, you should ensure that the adaption of the delay time is deactivated for pretuning
with PIDSelfTune.SUT.AdaptDelayTime = 0. Otherwise, the determination of the delay time
can be incorrect if the cooling of a zone is prevented by the thermal influence of other zones
during the adapting of the delay time (heating is deactivated in this phase).

Temporary deactivation of cooling
PID_Temp offers the possibility of deactivating cooling temporarily in automatic mode for
controllers with active cooling (Config.ActivateCooling = TRUE) by setting DisableCooling =
TRUE.
This ensures that this controller does not cool in automatic mode during commissioning
while the controllers of other zones have not yet completed tuning of heating. The tuning
could otherwise be influenced negatively by the thermal coupling between the zones.

Procedure
You can proceed as follows during the commissioning of multi-zone control systems with
relevant thermal couplings:
1. Set DisableCooling = TRUE for all controllers with activated cooling.
2. Set PIDSelfTune.SUT.AdaptDelayTime = 0 for all controllers.
3. Specify the desired setpoints (Setpoint parameter) and start pretuning for heating (Mode

= 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = FALSE) simultaneously for all
controllers.

4. Wait until all the controllers have completed pretuning for heating.
5. Set DisableCooling = FALSE for all controllers with activated cooling.

184
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.5 Multi-zone controlling with PID_Temp

6. Wait until the process values of all the zones are steady and close to the respective
setpoint.
If the setpoint cannot be reached permanently for a zone, the heating or cooling actuator
is too weak.

7. Start pretuning for cooling (Mode = 1, Heat.EnableTuning = FALSE, Cool.EnableTuning =
TRUE) for all controllers with activated cooling.

NOTE
Limit violation of the process value
If the cooling is deactivated in automatic mode with DisableCooling = TRUE, this can cause
the process value to exceed the setpoint and the process value limits while DisableCooling =
TRUE. Observe the process values and intervene, if appropriate, if you use DisableCooling.

NOTE
Multi-zone control systems
For multi-zone control systems, the thermal couplings between the zones can result in
increased overshoots, permanent or temporary violation of limits and permanent or
temporary control deviations during commissioning or operation. Observe the process values
and be ready to intervene. Depending on the system, it can be necessary to deviate from the
procedure described above.

Synchronization of several fine tuning processes
If fine tuning is started from automatic mode with PIDSelfTune.TIR.RunIn = FALSE, PID_Temp
tries to reach the setpoint with PID controlling and the current PID parameters. The actual
tuning does not start until the setpoint is reached. The time required to reach the setpoint
can be different for the individual zones of a multi-zone control system.
If you want to carry out fine tuning for several zones simultaneously, PID_Temp offers the
possibility to synchronize these by waiting with the further tuning steps after the setpoint has
been reached.

Procedure
This ensures that all the controllers have reached their setpoint when the actual tuning steps
start. This reduces mutual influencing through thermal coupling between the zones during
tuning.
Proceed as follows for controllers for whose zones you want to carry out fine tuning
simultaneously:
1. Set PIDSelfTune.TIR.WaitForControlIn = TRUE for all controllers.

These controllers have to be in automatic mode with PIDSelfTune.TIR.RunIn = FALSE.
2. Specify the desired setpoints (Setpoint parameters) and start fine tuning for all controllers.
3. Wait until PIDSelfTune.TIR.ControlInReady = TRUE at all controllers.
4. Set PIDSelfTune.TIR.FinishControlIn = TRUE for all controllers.
All controllers then start the actual tuning simultaneously.

185

Using PID_Temp
7.5 Multi-zone controlling with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

7.6 Override control with PID_Temp

Override control
In case of override control, two or more controllers share one actuator. Only one controller
has access to the actuator at any time and influences the process.
A logic operation decides which controller has access to the actuator. This decision is often
made based on a comparison of the output values of all controllers, for example, in case of a
maximum selection, the controller with the largest output value gets access to the actuator.
The selection based on the output value requires that all controllers operate in automatic
mode. The controllers that do not have an effect on the actuator are updated. This is
necessary to prevent windup effects and their negative impacts on the control response and
the switchover between the controllers.
PID_Temp supports override controls as of version 1.1 by offering a simple process for
updating the controllers that are not active: By using the tags OverwriteInitialOutputValue
and PIDCtrl.PIDInit, you can pre-assign the integral action of the controller in automatic mode
as though the PID algorithm had calculated PidOutputSum = OverwriteInititalOutputValue for
the PID output value in the last cycle. To do this, OverwriteInitialOutputValue is
interconnected with the PID output value of the controller that currently has access to the
actuator. By setting the bit PIDCtrl.PIDInit, you trigger the preassignment of the integral
action as well as the restart of the controller cycle and the PWM period. The subsequent
calculation of the PID output value in the current cycle takes place based on the preassigned
(and synchronized for all controllers) integral action as well as the proportional action and
integral action from the current control deviation. The derivative action is not active during
the call with PIDCtrl.PIDInit = TRUE and therefore does not contribute to the output value.
This procedure ensures that the calculation of the current PID output value and thus the
decision on which controller is to have access to the actuator is only based on the current
process state and the PI parameters. Windup effects for controllers that are not active and
thus incorrect decisions of the switchover logic are prevented.

186
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.6 Override control with PID_Temp

Requirement
• PIDCtrl.PIDInit is only effective if the integral action is activated (tags

Retain.CtrlParams.Heat.Ti and Retain.CtrlParams.Cool.Ti > 0.0).
• You must assign PIDCtrl.PIDInit and OverwriteInitialOutputValue in your user program

yourself (see example below). PID_Temp does not automatically change these tags.
• PIDCtrl.PIDInit is only effective when PID_Temp is in automatic mode (parameter State =

3).
• If possible, select the sampling time of the PID algorithm (Retain.CtrlParams.Heat.Cycle

and Retain.CtrlParams.Cool.Cycle tags) so that it is identical for all controllers, and call all
controllers in the same cyclic interrupt OB. In this way, you ensure that the switchover
does not take place within a controller cycle or a PWM period.

NOTE
Constant adaptation of the output value limits
Instead of the active updating of the controllers without access to the actuator described
here, this is implemented alternatively by constant adaptation of the output value limits in
other controller systems.
This is not possible with PID_Temp, because a change of the output value limits is not
supported in automatic mode.

Example: Control of a large boiler
PID_Temp is used for control of a large boiler.
The main goal is to control the temperature Input1. The controller PID_Temp_1 is used for
this purpose. In addition, the temperature Input2 is to be kept below a high limit at an
additional measuring point with the limiting controller PID_Temp_2.
Both temperatures are influenced by only one heater. The output value of the controller
corresponds to the heating power.

187

Using PID_Temp
7.6 Override control with PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

The heater is controlled with the pulse-width modulated output value of PID_Temp
(parameter OutputHeat_PWM) by writing the program tag ActuatorInput. The setpoint for the
temperature Input1 is specified at the parameter PID_Temp_1.Setpoint. The temperature high
limit for the additional measuring point is specified as setpoint at the parameter
PID_Temp_2.Setpoint.

Both controllers must share one heater as shared actuator. The logic that decides which
controller gets access to the actuator is implemented by a minimum selection of the PID
output value (in Real format, parameter PidOutputSum) in this case. Because the PID output
value corresponds to the heating power, the controller that requires lower heating power
gets the control.
In normal operation of the plant, the process value of the main controlled variable
corresponds to the setpoint. The main controller PID_Temp_1 has settled on a stationary PID
output value PID_Temp_1.PidOutputSum. The process value of the limiting controller Input2
in normal operation is significantly below the high limit that is specified as setpoint for
PID_Temp_2. The limiting controller therefore wants to increase the heating power to
increase its process value, which means it will calculate a PID output value
PID_Temp_2.PidOutputSum that is greater than the output value of the main controller
PID_Temp_1.PidOutputSum. The minimum selection of the switchover logic therefore gives
the main controller PID_Temp_1 continued access to the actuator. In addition, it is ensured
that PID_Temp_2 is updated by means of the assignments
PID_Temp_2.OverwriteInitialOutputValue = PID_Temp_1.PidOutputSum and
PID_Temp_2.PIDCtrl.PIDInit = TRUE.
If Input2 now approaches the high limit or exceeds it, for example due to a fault, the limiting
controller PID_Temp_2 calculates a smaller PID output value to restrict the heating power and
thus reduce Input2. If PID_Temp_2.PidOutputSum is smaller than
PID_Temp_1.PidOutputSum, the limiting controller PID_Temp_2 receives access to the
actuator through the minimum selection and reduces the heating power. It is ensured that
PID_Temp_1 is updated by means of the assignments
PID_Temp_1.OverwriteInitialOutputValue = PID_Temp_2.PidOutputSum and
PID_Temp_1.PIDCtrl.PIDInit = TRUE.
The temperature at the additional measuring point Input2 drops. The temperature of the
main controlled variable Input1 drops as well and cannot be held at the setpoint any longer.

188
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID_Temp
7.6 Override control with PID_Temp

Once the fault has been remedied, the Input2 will continue to drop and the heating power is
further increased by the limiting controller. As soon as the main controller has calculated a
lower heating power as output value, the plant returns to normal operation so that the main
controller PID_Temp_1 once again has access to the actuator. This example can be
implemented with the following SCL program code:

"PID_Temp_1"(Input := "Input1");

"PID_Temp_2"(Input := "Input2");

IF "PID_Temp_1".PidOutputSum <= "PID_Temp_2".PidOutputSum THEN

"ActuatorInput" := "PID_Temp_1".OutputHeat_PWM;

"PID_Temp_1".PIDCtrl.PIDInit := FALSE;

"PID_Temp_2".PIDCtrl.PIDInit := TRUE;

"PID_Temp_2".OverwriteInitialOutputValue := "PID_Temp_1".PidOutputSum;

ELSE
"ActuatorInput" := "PID_Temp_2".OutputHeat_PWM;

"PID_Temp_1".PIDCtrl.PIDInit := TRUE;

"PID_Temp_2".PIDCtrl.PIDInit := FALSE;

"PID_Temp_1".OverwriteInitialOutputValue := "PID_Temp_2".PidOutputSum;

END_IF;

7.7 Simulating PID_Temp with PLCSIM

NOTE
Simulation with PLCSIM
The simulation of PID_Temp with PLCSIM for CPU S7-1200 is not supported.
PID_TEMP can be simulated only for CPU S7-1500 with PLCSIM.
For the simulation with PLCSIM, the time behavior of the simulated PLC is not exactly
identical to that of a "real" PLC. The actual cycle clock of a cyclic interrupt OB can have larger
fluctuations with a simulated PLC than with "real" PLCs.
In the standard configuration, PID_Temp determines the time between calls automatically
and monitors them for fluctuations.
For the simulation of PID_Temp with PLCSIM, for example, a sampling time error (ErrorBits =
DW#16#00000800) can therefore be detected.
This results in ongoing tuning being aborted.
The response in automatic mode depends on the value of the ActivateRecoverMode tag.
To prevent this from happening, you should configure PID_Temp for simulation with PLCSIM
as follows:
• CycleTime.EnEstimation = FALSE
• CycleTime.EnMonitoring = FALSE
• CycleTime.Value: Assign the cycle clock of the calling cyclic interrupt OB in seconds to this

tag.

189

Using PID_Temp
7.7 Simulating PID_Temp with PLCSIM

PID control
Function Manual, 11/2023, A5E35300227-AG

PID control
Function Manual, 11/2023, A5E35300227-AG190

Using PID basic functions 8
8.1 CONT_C

8.1.1 Technology object CONT_C
The technology object CONT_C provides a continual PID-controller for automatic and manual
mode. It corresponds to the instance data block of the instruction CONT_C. You can configure
a pulse controller using the PULSEGEN instruction.
The proportional, integral (INT) and differential components (DIF) are switched parallel to
each other and can be turned on and off individually. With this, P-, I, PI-, PD- and
PID-controller can be set.
S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download CONT_C.

See also
Overview of software controller (Page 41)
Add technology objects (Page 43)
Configure technology objects (Page 44)
Downloading technology objects to device (Page 46)
CONT_C (Page 398)

8.1.2 Configure controller difference CONT_C

Use process value periphery
To use the process value in the periphery format at the PV_PER input parameter, follow these
steps:
1. Select the "Enable I/O" check box.
2. If the process value is available as a physical size, enter the factor and offset for the scaling

in percent.
The process value is then determined according to the following formula:
PV = PV_PER × PV_FAC + PV_OFF

Use internal process values
To use the process value in the floating-point format at the PV_IN input parameter, follow
these steps:
1. Clear the "Enable I/O" check box.

Control deviation
Set a dead zone range under the following requirement:
• The process value signal is noisy.
• The controller gain is high.
• The derivative action is activated.
The noise component of the process value causes strong deviations of the output value in this
case. The dead zone suppresses the noise component in the steady controller state. The dead
zone range specifies the size of the dead zone. With a dead zone range of 0.0, the dead zone
is turned off.

See also
How CONT_C works (Page 399)

8.1.3 Configure the controller algorithm CONT_C

General
To determine which components of the control algorithm are activated, proceed as follows:
1. Select an entry from the "Controller structure" list.

 You can only specify required parameters for the selected controller structure.

Proportional action
1. If the controller structure contains a proportional action, enter the "proportional gain".

Integral action
1. If the controller structure contains an integral action, enter the integral action time.
2. To give the integral action an initialization value, select the check box "Initialize integral

action" and enter the initialization value.
3. In order to permanently set the integral action to this initialization value, select the

"Integral action hold" check box.

Derivative action
1. If the controller structure contains a derivative action, enter the derivative action time, the

derivative action weighting and the delay time.

191

Using PID basic functions
8.1 CONT_C

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
How CONT_C works (Page 399)

8.1.4 Configure the output value CONT_C

General
You can set CONT_C in the manual or automatic mode.
1. To set a manual manipulated value, activate the option "Activate manual mode" option

check box.
You can specify a manual manipulated value on the input parameter MAN.

Manipulated value limits
The manipulated value is limited at the top and bottom so that it can only accept valid values.
You cannot turn off the limitation. Exceeding the limits is displayed through the output
parameters QLMN_HLM and QLMN_LLM.
1. Enter a value for the high and low manipulated value limits.

If the manipulated value is a physical size, the units for the high and low manipulated
value limits must match.

Scaling
The manipulated value can be scaled for output as a floating point and periphery value
through a factor and an offset according to the following formula.
Scaled manipulated value = manipulated value x factor + offset
Default is a factor of 1.0 and an offset of 0.0.
1. Enter a value for the factor and offset.

See also
How CONT_C works (Page 399)

192
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.1 CONT_C

8.1.5 Programming a pulse controller
With the continuous controller CONT_C and the pulse shaper PULSEGEN, you can implement
a fixed setpoint controller with a switching output for proportional actuators. The following
figure shows the signal flow of the control loop.

The continuous controller CONT_C forms the output value LMN that is converted by the pulse
shaper PULSEGEN into pulse/break signals QPOS_P or QNEG_P.

See also
PULSEGEN (Page 408)

8.1.6 Commissioning CONT_C

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Enter new PID parameters in the "P", "I", "D" and "Delay time" fields.
3. Click on the icon "Send parameter to CPU" in the "Tuning" group.
4. Select the "Change setpoint" check box in the "Current values" group.
5. Enter a new setpoint and click the icon in the "Current values" group.
6. Clear the "Manual mode" check box.

The controller works with the new PID parameters and controls the new setpoint.
7. Check the quality of the PID parameter to check the curve points.
8. Repeat steps 2 to 6 until you are satisfied with the controller results.

193

Using PID basic functions
8.1 CONT_C

PID control
Function Manual, 11/2023, A5E35300227-AG

8.2 CONT_S

8.2.1 Technology object CONT_S
The technology object CONT_S provides a step controller for actuators with integrating
behavior and is used to control technical temperature processes with binary output value
output signals. The technology object corresponds to the instance data block of the CONT_S
instruction. The operating principle is based on the PI control algorithm of the sampling
controller. The step controller operates without a position feedback signal. Both manual and
automatic mode are possible.
S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download CONT_S.

See also
Overview of software controller (Page 41)
Add technology objects (Page 43)
Configure technology objects (Page 44)
Downloading technology objects to device (Page 46)
CONT_S (Page 403)

8.2.2 Configure controller difference CONT_S

Use process value periphery
To use the process value in the periphery format at the PV_PER input parameter, follow these
steps:
1. Select the "Enable I/O" check box.
2. If the process value is available as a physical quantity, enter the factor and offset for the

scaling in percent.
The process value is then determined according to the following formula:
PV = PV_PER × PV_FAC + PV_OFF

Use internal process values
To use the process value in the floating-point format at the PV_IN input parameter, follow
these steps:
1. Clear the "Enable I/O" check box.

194
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.2 CONT_S

Control deviation
Set a deadband range under the following requirement:
• The process value signal is noisy.
• The controller gain is high.
• The derivative action is activated.
The noise component of the process value causes strong deviations of the manipulated
variable in this case. The deadband suppresses the noise component in the steady controller
state. The deadband range specifies the size of the deadband. With a deadband range of 0.0,
the deadband is turned off.

See also
Mode of operation CONT_S (Page 403)

8.2.3 Configuring control algorithm CONT_S

PID algorithm
1. Enter the "proportional amplification" for the P-component.
2. Enter the integration time for the time behavior of the I-component.

With an integration time of 0.0, the I-component is switched off.

See also
Mode of operation CONT_S (Page 403)

8.2.4 Configure manipulated value CONT_S

General
You can set CONT_S in the manual or automatic mode.
1. To set a manual manipulated value, activate the "Activate manual mode" option check

box.
Enter a manual manipulated value for the input parameters LMNUP and LMNDN.

Pulse generator
1. Enter the minimum impulse duration and minimum pause duration.

The values must be greater than or equal to the cycle time for the input parameter CYCLE.
The frequency of operation is reduced through this.

2. Enter the motor setting time.
The value must be greater than or equal to the cycle time of the input parameter CYCLE.

195

Using PID basic functions
8.2 CONT_S

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
Mode of operation CONT_S (Page 403)

8.2.5 Commissioning CONT_S

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. In the fields "P" and "I", enter a new proportional value and a new integration time.
3. Click on the icon "Send parameter to CPU" in the "Tuning" group.
4. Select the "Change setpoint" check box in the "Current values" group.
5. Enter a new setpoint and click the icon in the "Current values" group.
6. Clear the "Manual mode" check box.

The controller works with the new parameters and controls the new setpoint.
7. Check the quality of the PID parameter to check the curve points.
8. Repeat steps 2 to 6 until you are satisfied with the controller results.

196
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.2 CONT_S

8.3 TCONT_CP

8.3.1 Technology object TCONT_CP
The technology object TCONT_CP provides a continual temperature controller with pulse
generator. It corresponds to the instance data block of the instruction TCONT_CP. The
operation is based on the PID control algorithm of the sampling controller. Both manual and
automatic mode are possible.
The instruction TCONT_CP calculates the proportional, integral and derivative parameters for
your controlled system during pretuning. "Fine tuning" can be used to tune the parameters
further. You can also enter the PID parameters manually.
S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download TCONT_CP.

See also
Overview of software controller (Page 41)
Add technology objects (Page 43)
Configure technology objects (Page 44)
Downloading technology objects to device (Page 46)
TCONT_CP (Page 416)

8.3.2 Configure TCONT_CP

8.3.2.1 Controller difference

Use process value periphery
To use the input parameter PV_PER, proceed as follows:
1. Select the entry "Periphery" from the "Source" list.
2. Select the "sensor type".

Depending on the sensor type, the process value is scaled according to different formulas.
– Standard

Thermoelements; PT100/NI100
PV = 0.1 × PV_PER × PV_FAC + PV_OFFS

– Cooling;
PT100/NI100
PV = 0.01 × PV_PER × PV_FAC + PV_OFFS

– Current/voltage
PV = 100/27648 × PV_PER × PV_FAC + PV_OFFS

3. Enter the factor and offset for the scaling of the process value periphery.

Use internal process values
To use the input parameter PV_IN, proceed as follows:
1. Select the entry "Internal" from the "Source" list.

197

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

Control deviation
Set a deadband range under the following requirement:
• The process value signal is noisy.
• The controller gain is high.
• The derivative action is activated.
The noise component of the process value causes strong deviations of the manipulated
variable in this case. The deadband suppresses the noise component in the steady controller
state. The deadband range specifies the size of the deadband. With a deadband range of 0.0,
the deadband is turned off.

See also
Mode of operation TCONT_CP (Page 417)

8.3.2.2 Controlling algorithm

General
1. Enter the "Sampling time PID algorithm".

A controller sampling time should not exceed 10 % of the determined integratl action time
of the controller (TI).

2. If the controller structure contains a proportional action, enter the "proportional gain".
A negative proportional gain inverts the rule meaning.

Proportional action
For changes of the setpoint, it may lead to overshooting of the proportional action. Through
the weighting of the proportional action, you can select how strongly the proportional action
should react when setpoint changes are made. The weakening of the proportional action is
reached through a compensation of the integral action.
1. To weaken the proportional action for setpoint changes, enter a "Proportional action

weighting".
– 1.0: Proportional action for setpoint change is fully effective
– 0.0: Proportional action for setpoint change is not effective

Integral action
With a limitation of the manipulated value, the integral action is stopped. With a control
deviation that moves the integral action in the direction of an internal setting range, the
integral action is released again.
1. If the controller structure contains an integral action, enter the "integral action time".

With an integral action time of 0.0, the integral action is switched off.
2. To give the integral action an initialization value, select the "Initialize integral action"

check box and enter the "Initialization value".
Upon restart or COM_RST = TRUE, the integral action is set to this value.

198
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

Derivative action
1. If the controller structure contains a derivative action, enter the derivative action time (TD)

and the coefficients DT1 (D_F).
With switched derivative action, the following equation should be maintained:
TD = 0.5 × CYCLE× D_F.
The delay time is calculated from this according to the formula:
delay time = TD/D_F

Set PD-controller with operating point
1. Enter the integral action time 0.0.
2. Activate the "Initialize integral action" check box.
3. Enter the operating point as the initialization value.

Set P-controller with operating point
1. Set a PD-controller with an operating point.
2. Enter the derivative action time 0.0.

The derivative action is disabled.

Control zone
The control zone limits the value range of the control deviation. If the control deviation is
outside of this value range, the manipulated value limits are used.
With an occurrence in the control zone, the derivative action leads to a very quick reduction
of the manipulated variable. Thus, the control zone only makes sense for switched on
derivative actions. Without control zone, only the reducing proportional action would reduce
the manipulated value. The control zone leads to a quick oscillation without over/under
shooting if the emitted minimum or maximum manipulated values are removed from the
manipulated value required for the new operating point.
1. Activate the "Activate" check box in the "control zone" group.
2. Enter a setpoint value in the "Width" input field from which the process value may deviate

above or below.

See also
Mode of operation TCONT_CP (Page 417)

199

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

8.3.2.3 Manipulated value continual controller

Manipulated value limits
The manipulated value is limited at the top and bottom so that it can only accept valid values.
You cannot turn off the limitation. Exceeding the limits is displayed through the output
parameters QLMN_HLM and QLMN_LLM.
1. Enter a value for the high and low manipulated value limits.

Scaling
The manipulated value can be scaled for output as a floating point and periphery value
through a factor and an offset according to the following formula.
Scaled manipulated value = manipulated value x factor + offset
Default is a factor of 1.0 and an offset of 0.0.
1. Enter a value for the factor and offset.

Pulse generator
The pulse generator must be turned on for a continual controller.
1. Disable the "Activate" option check box in the "Pulse generator" group.

See also
Mode of operation TCONT_CP (Page 417)

200
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.3.2.4 Manipulated value pulse controller

Pulse generator
The analog manipulated value (LmnN) can be emitted through pulse-duration modulation on
the output parameter QPULSE as an impulse sequence.
To use the pulse generator, proceed as follows:
1. Activate the "Activate" option check box in the "pulse generator" group.
2. Enter the "sampling time pulse generator", the "minimum impulse/break duration" and the

"period duration".
The following graphics clarify the connection between the "sampling pulse generator"
(CYCLE_P), the "minimum impulse/break duration" (P_B_TM) and the "period duration"
(PER_TM):

201

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

Sampling time pulse generator
The sampling time pulse generator must agree with the time tact of the cyclic interrupt OB
being called. The duration of the created impulse is always a whole number factor of this
value. For an adequately precise manipulated value resolution, the following relationship
should apply:
CYCLE_P ≤ PER_TM/50

Minimum impulse/break duration
Through the minimum impulse/break duration, short on or off times on the actuator are
avoided. An impulse smaller than P_B_TM is suppressed.
Recommended are values P_B_TM ≤ 0.1 × PER_TM.

Period duration
The period duration should not exceed 20% of the determined integration time of the
controller (TI):
PER_TM ≤ TI/5

Example for the effect of the parameter CYCLE_P, CYCLE and PER_TM:
Period duration PER_TM = 10 s
Sampling time PID-algorithm CYCLE = 1 s
Sampling time pulse generator CYCLE_P = 100 ms.
Every second, a new manipulated value, every 100 ms the comparison of the manipulated
value occurs with the previously emitted impulse length and break length.
• If an impulse is emitted, there are 2 possibilities:

– The calculated manipulated value is larger than the previous impulse length/PER_TM.
Then the impulse is extended.

– The calculated manipulated value is less than or equal to the previous impulse
length/PER_TM. Then no impulse signal will be emitted.

• If no impulse is emitted, there are also 2 possibilities:
– The value (100 % - calculated manipulated value) is greater than the previous break

length / PER_TM. Then the break is extended.
– The value (100 % - calculated manipulated value) is less than or equal to the previous

break length / PER_TM. Then an impulse signal will be emitted.

See also
Mode of operation TCONT_CP (Page 417)
Operating principle of the pulse generator (Page 426)

202
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.3.3 Commissioning TCONT_CP

8.3.3.1 Optimization of TCONT_CP

Application possibilities
The controller optimization for heating or cooling processes from process type I is applicable.
But you can use the block for processes with higher levels like process type II or III.
The PI/PID parameters are automatically determined and set. The controller draft is designed
for an optimal disruption behavior The "precise" parameters resulting from this lead to
overshooting of 10% to 40% of the jump height for setpoint jump heights.

Phases of controller optimization
For the controller optimization, individual phases are run through, which you can read on the
parameter PHASE .

PHASE = 0
No tuning is running. TCONT_CP works in automatic or manual mode.
During PHASE = 0, you can make sure that the controlled system fulfills the requirements for
an optimization.
At the end of the optimization, TCONT_CP changes back into PHASE = 0.

PHASE = 1
TCONT_CP is prepared for optimization. PHASE = 1 may only be started if the requirements
for an optimization are fulfilled.
During PHASE = 1, the following values are determined:
• Process value noise NOISE_PV
• Initial slope PVDT0
• Average of the manipulated variable
• Sampling time PID algorithm CYCLE
• Sampling time pulse generator CYCLE_P

203

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

PHASE = 2
In phase 2, the process value attempts to detect the point of inflection with a constant
manipulated variable. This method prevents the point of inflection from being found too
early as a result of process variable noise.
With the pulse controller, the process variable is averaged over N pulse cycles and then made
available to the controller stage. There is a further averaging of the process variable in the
controller stage: Initially, this averaging is inactive; in other words, averaging always takes
place over 1 cycle. As long as the noise exceeds a certain level, the number of cycles is
doubled.
The period and amplitude of the noise are calculated. The search for the point of inflection is
canceled and phase 2 is exited only when the gradient is always smaller than the maximum
rise during the estimated period. TU and T_P_INF are, however, calculated at the actual point
of inflection.
Tuning, however, is only ended when the following two conditions are met:
1. The process value is more than 2*NOISE_PV away from the point of inflection.
2. The process value has exceeded the point of inflection by 20%.

NOTE
When exciting the process using a setpoint step change, tuning is ended at the latest
when the process value exceeds 75% of the setpoint step change (SP_INT-PV0) (see
below).

PHASE = 3, 4, 5
The phases 3, 4 and 5 last 1 cycle each.
In Phase 3, the valid PI/PID parameters are saved before the optimization and the process
parameter is calculated.
In Phase 4, the new PI/PID parameters are calculated.
In Phase 5, the new manipulated variable is calculated and the controlled system is given.

PHASE = 7
The process type is inspected in Phase 7, because TCONT_CP always changes to automatic
mode after optimization. The automatic mode starts with LMN = LMN0 + 0.75*TUN_DLMN as
a manipulated variable. The testing of the process type occurs in the automatic mode with
the recently recalculated controller parameters and ends at the latest 0.35*TA (equilibrium
time) after the point of inflection. If the process order deviates strongly from the estimated
value, the controller parameters are newly calculated and STATUS_D is counted up by 1,
otherwise, the controller parameters remain unchanged.
Then the optimization mode is complete and TCONT_CP is back in PHASE = 0. At the
STATUS_H parameter, you can identify whether the tuning was successfully completed.

204
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

Premature cancellation of the optimization
In Phase 1, 2 or 3, you can cancel the optimization by resetting TUN_ON = FALSE without
calculating new parameters. The controller starts in the automatic mode with LMN = LMN0 +
TUN_DLMN. If the controller was in manual mode before the tuning, the old manual
manipulated variable is output.
If the tuning is canceled in Phase 4, 5 or 7 with TUN_ON = FALSE, the determined controlled
parameters are contained until then.

8.3.3.2 Requirements for an optimization

Transient response
The process must have a stable, asymptotic transient response with time lag.
The process value must settle to steady state after a step change of the manipulated variable.
This therefore excludes processes that already show an oscillating response without control,
as well as processes with no recovery (integrator in the control system).

WARNING

This may result in death, severe injury or considerable property damage.
During an tuning, the parameter MAN_ON is ineffective. Through this, the output value or
process value may take on undesired - even extreme - values.
The output value is defined through the tuning. To cancel the tuning, you first have to set
TUN_ON = FALSE. This makes MAN_ON effective again.

Guaranteeing a stationary initial state (phase 0)
With lower-frequency oscillations of the process value, for example, due to incorrect
controller parameters, the controller must be put in manual mode before the tuning is started
and wait for the oscillation to stop. Alternatively, you could switch to a "soft" set PI controller
(small loop gain large integration time).
Now you have to wait until the stationary state is reached, this means, until the process value
and output value have a steady state. It is also permissible to have an asymptotic transient
oscillation or slow drifting of the process value (stationary state, see the following image).
The output value must be constant or fluctuate by a constant average.

NOTE
Avoid changing the manipulated variable shortly before starting the tuning. A change of the
manipulated variable can occur in an unintended manner through the establishment of the
test conditions (for example, closing an oven door)! If this does happen, you have to at least
wait until the process value has an asymptotic transient oscillation in a stationary state again.
Better controller parameters can be reached if you wait until the transient effect has
completely subsided.

205

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

In the following image, the transient oscillation is illustrated in the stationary state:

Linearity and operating range
The process response must be linear across the operating range. Non-linear response occurs,
for example, when an aggregation state changes. Tuning must take place in a linear part of
the operating range.
This means, during tuning and normal control operation non-linear effects within the
operating range must be insignificant. It is, however possible to retune the process when the
operating point changes, providing tuning is repeated in the close vicinity of the new
operating point and non-linearity does not occur during tuning.
If a specific static non-linearity (e.g., valve characteristics) is known, it is always advisable to
compensate this with a polyline to linearize the process response.

Disturbance in temperature processes
Disturbances such as thermal transfer to neighboring zones must not influence the overall
temperature process to any great extent. For example, when zones of an extruder are tuned,
all zones must be heated up simultaneously.

206
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.3.3.3 Possibilities for optimization

The following possibilities for tuning exist:
• Pretuning
• Fine tuning
• Manual fine-tuning in control mode

Pretuning
During this tuning, the working point is approached from the cold state through a setpoint
jump.
With TUN_ON = TRUE, you can establish the tuning readiness. The controller switches from
PHASE = 0 to PHASE = 1.

The tuning manipulated variable (LMN0 + TUN_DLMN) is activated by a setpoint change
(transition phase 1 -> 2). The setpoint is not effective until the inflection point has been
reached (automatic mode is not enabled until this point is reached).
The user is responsible for defining the output excitation delta (TUN_DLMN) according to the
permitted process value change. The sign of TUN_DLMN must be set depending on the
intended process value change (take into account the direction in which the control is
operating).
The setpoint step change and TUN_DLMN must be suitably matched. If the value of
TUN_DLMN is too high, there is a risk that the point of inflection will not be found before 75%
of the setpoint step change is reached.
TUN_DLMN must nonetheless be high enough to ensure that the process value reaches at
least 22 % of the setpoint step change. Otherwise, the process will remain in tuning mode
(phase 2).

207

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

Remedy: Reduce the setpoint value during the inflection point search.

NOTE
If processes are extremely sluggish, it is advisable during tuning to specify a target setpoint
that is somewhat lower than the desired operating point and to monitor the status bits and
PV closely (risk of overshooting).
Tuning only in the linear range:
The signals of certain processes (e.g., zinc or magnesium smelters) will pass a non-linear area
at the approach of the operating range (change in the state of aggregation).
By selecting a suitable setpoint step change, tuning can be limited to the linear range. When
the process value has passed 75% of the setpoint step change (SP_INT-PV0), tuning is ended.
At the same time, TUN_DLMN should be reduced to the extent that the point of inflection is
guaranteed to be found before 75% of the setpoint step change is reached.

Fine tuning
During this tuning, the process with a constant setpoint is activated through a output value
jump.

The tuning manipulated variable (LMN0 + TUN_DLMN) is activated by setting the start bit
TUN_ST (transition from phase 1 -> 2). When you modify the setpoint value, the new value
will not take effect until the point of inflection has been reached (automatic mode will not be
enabled until this point has been reached).
The user is responsible for defining the output excitation delta (TUN_DLMN) according to the
permitted process value change. The sign of TUN_DLMN must be set depending on the

208
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

intended process value change (take into account the direction in which the control is
operating).

NOTICE
Safety off at 75% is not available when you excite the process via TUN_ST. Tuning is ended
when the point of inflection is reached. However, in noisy processes the point of inflection
may be significantly exceeded.

Manual fine-tuning in control mode
The following measures can be employed to achieve an overshoot-free setpoint response:
• Adapting the control zone
• Optimize command action
• Attenuation of control parameters
• Modifying control parameters

8.3.3.4 Tuning result

The left digit of STATUS_H displays the tuning status

STATUS_H Result
0 Default or new controller parameters have not yet been found.

10000 Suitable control parameters found.

2xxxx Control parameters have been found via estimated values; check the control
response or check the STATUS_H diagnostic message and repeat controller tun
ing.

3xxxx An operator error has occurred; check the STATUS_H diagnostic message and
repeat controller tuning.

The CYCLE and CYCLE_P sampling times were already checked in phase 1.
The following controller parameters are updated on TCONT_CP:
• P (proportional GAIN)
• I (integration time TI)
• D (derivative time TD)
• Weighting of the proportional action PFAC_SP
• Coefficient DT1 (D_F)
• Control zone on/off CONZ_ON
• Control zone width CON_ZONE
The control zone is only activated if the process type is suitable (process type I and II) and a
PID controller is used (CONZ_ON = TRUE).
Depending on PID_ON, control is implemented either with a PI or a PID controller. The old
controller parameters are saved and can be retrieved with UNDO_PAR. A PI parameter record
and a PID parameter record are saved additionally in the PI_CON and PID_CON structures.
Using LOAD_PID and making a suitable setting for PID_ON, it is also possible to switch later
between the tuned PI or PID parameters.

209

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

8.3.3.5 Parallel tuning of controller channels

Adjacent zones (strong heat coupling)
If two or more controllers are controlling the temperature, on a plate, for example (in other
words, there are two heaters and two measured process values with strong heat coupling),
proceed as follows:
1. OR the two outputs QTUN_RUN.
2. Interconnect each TUN_KEEP input with the output of the OR element.
3. Start both controllers by specifying a setpoint step change at the same time or by setting

TUN_ST at the same time.
The following schematic illustrates the parallel tuning of controller channels.

Advantage:
Both controllers output LMN0 + TUN_DLMN until both controllers have left phase 2. This
prevents the controller that completes tuning first from falsifying the tuning result of the
other controller due to the change in its manipulated variable.

NOTICE
Reaching 75% of the setpoint step change causes an exiting of phase 2 and resetting of
output QTUN_RUN. However, automatic mode does not start until TUN_KEEP is also 0.

Adjacent zones (weak heat coupling)
In general terms, tuning should be carried out to reflect the way in which the controller will
operate subsequently. If zones are operated together during production such that the
temperature differences between the zones remain the same, the temperature of the
adjacent zones ought to be increased accordingly during tuning.
Differences in temperature at the beginning of the tuning are irrelevant since they will be
compensated by the initial heating (-> initial rise = 0).

210
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.3.3.6 Fault descriptions and corrective measures

Compensating operator errors

Operator error STATUS and action Comment
TUN_ON and setpoint step change
or TUN_ST are set simultaneously

Transition to phase 1;
however, tuning is not star
ted.
• SP_INT = SPold or
• TUN_ST = FALSE

The setpoint change is canceled. This
prevents the controller from settling
to the new setpoint value and from
leaving the stationary operating
point unnecessarily.

Effective TUN_DLMN < 5% (end of
phase 1)

STATUS_H = 30002
• Transition to phase 0
• TUN_ON = FALSE
• SP = SPold

Tuning is canceled.
The setpoint change is canceled. This
prevents the controller from settling
to the new setpoint value and from
leaving the stationary operating
point unnecessarily.

Point of inflection not reached (only if excited by setpoint step change)
At the latest, tuning is ended when the process value has passed 75% of the setpoint step
change (SP_INT-PV0). This is signaled by "inflection point not reached" in STATUS_H (2xx2x).
The currently valid setpoint always applies. By reducing the setpoint, it is possible to achieve
an earlier end of the tuning function.
In typical temperature processes, cancelation of tuning at 75% of the setpoint step change is
normally adequate to prevent overshoot. However, caution is advised, particularly in
processes with a greater delay (TU/TA > 0.1, process type III). If manipulated variable
excitation is too strong compared to the setpoint step change, the process value can
overshoot heavily (up to a factor of 3).
In higher-order processes, if the point of inflection is still a long way off after reaching 75% of
the setpoint step change, there will be significant overshoot. In addition, the controller
parameters are too stringent. In this case, you should reduce the controller parameters or
repeat the attempt.

211

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

The following schematic illustrates the overshoot of the process variable when the excitation
is too strong (process type III):

In typical temperature processes, cancelation shortly before reaching the point of inflection is
not critical in terms of the controller parameters.
If you repeat the attempt, reduce TUN_DLMN or increase the setpoint step change.
Principle: The value of the manipulated variable used for tuning must be suitable for the
setpoint step change.

Error estimating the delay time or order
The delay time (STATUS_H = 2x1xx or 2x3xx) or order (STATUS_H = 21xxx or 22xxx) were not
acquired correctly. Operation continues with an estimate that can lead to non-optimum
controller parameters.
Repeat the tuning procedure and ensure that disturbances do not occur at the process value.

NOTE
The special case of a PT1-only process is also indicated by STATUS_H = 2x1xx (TU <=
3*CYCLE). In this case, it is not necessary to repeat the attempt. Reduce the controller
parameters if the control oscillates.

212
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

Quality of measuring signals (measurement noise, low-frequency interference)
The results of tuning can be distorted by measurement noise or by low-frequency
interference. Note the following:
• If you encounter measurement noise, set the sampling frequency higher rather than

lower. During one noise period, the process value should be sampled at least twice. In
pulse mode, integrated mean value filtering can be helpful. This assumes, however, that
the process variable PV is transferred to the instruction in the fast pulse cycle. The degree
of noise should not exceed 5% of the useful signal change.

• High-frequency interference cannot be filtered out by TCONT_CP. This should be filtered
earlier in the measuring sensor to prevent the aliasing effect.
The following schematic illustrates the aliasing effect when the sampling time is too long:

• With low-frequency interference, it is relatively easy to ensure an adequately high
sampling rate. However, the TCONT_CP must then generate a uniform measuring signal
by having a large interval in the mean value filtering. Mean value filtering must extend
over at least two noise periods. Internally in the block, this soon results in higher sampling
times such that the accuracy of the tuning is adversely affected. Adequate accuracy is
guaranteed with at least 40 noise periods up to the point of inflection.
Possible remedy when repeating the attempt:
Increase TUN_DLMN.

Overshoot
Overshoot can occur in the following situations:

Situation Cause Remedy
End of tuning • Excitation by a too high manipulated

value change compared with the set
point step change (see above).

• PI controller activated by
PID_ON = FALSE.

• Increase the setpoint step change or
reduce the manipulated value step
change.

• If the process permits a PID control
ler, start tuning with PID_ON = TRUE.

Tuning in phase
7

Initially, less aggressive controller paramet
ers were determined (process type III);
these can lead to an overshoot in phase 7.

-

Control mode PI controller with PFAC_SP = 1.0 for process
type I.

If the process permits a PID controller,
start tuning with PID_ON = TRUE.

213

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

8.3.3.7 Performing pretuning

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimum PID parameters for initial commissioning, follow these
steps:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Pretuning" from the "Mode" drop-down list.
TCONT_CP is ready for tuning.

3. In the "Output value jump" field, specify how much the output value should be increased.
4. Enter a setpoint in the "Setpoint" field. The output value jump only takes effect when

another setpoint is entered.
5. Click the "Start tuning" icon.

The pretuning starts. The status of the tuning is displayed.

8.3.3.8 Performing fine tuning

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To determine the optimal PID parameters at the operating point, follow these steps:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Fine tuning" from the "Mode" drop-down list.
TCONT_CP is ready for tuning.

3. In the "Output value jump" field, specify how much the output value should be increased.
4. Click the "Start tuning" icon.

Fine tuning starts. The status of the tuning is displayed.

214
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.3.3.9 Cancelling pretuning or fine tuning

To cancel pretuning or fine tuning, click on the icon, "Stop tuning".
If the PID parameters have not yet been calculated and stored, TCONT_CP starts in automatic
mode LMN = LMN0 + TUN_DLMN. If the controller was in manual mode before the tuning,
the old manual manipulated variable is output.
If the calculated PID parameters have already been saved, TCONT_CP starts in automatic
mode and works with the previously determined PID parameters.

8.3.3.10 Manual fine-tuning in control mode

The following measures can be employed to achieve an overshoot-free setpoint response:

Adapting the control zone
During tuning, "TCONT_CP" determines a control zone CON_ZONE and activated if the process
type is suitable (process type I and II) and a PID controller is used (CONZ_ON = TRUE). In
control mode, you can modify the control zone or switch it off completely (with
CONZ_ON = FALSE).

NOTE
Activating the control zone with higher-order processes (process type III) does not normally
provide any benefit since the control zone is then larger than the control range that can be
achieved with a 100% manipulated variable. There is also no advantage in activating the
control zone for PI controllers.
Before you switch on the control zone manually, make sure that the control zone is not too
narrow. If the control zone is set too narrow, oscillations occur in the manipulated variable
and the process value.

Continuous attenuation of the control response with PFAC_SP
The control response can be attenuated with the PFAC_SP parameter. This parameter
specifies the percentage of proportional component that is effective for setpoint step
changes.
Regardless of the process type, PFAC_SP is set to a default value of 0.8 by the tuning function;
you can later modify this value if required. To limit overshoot during setpoint step changes
(with otherwise correct controller parameters) to approximately 2%, the following values are
adequate for PFAC_SP:

Process type I Process type II Process type III
Typical temperature process Intermediate range Higher-order temperature process

PI 0.8 0.82 0.8

PID 0.6 0.75 0.96

215

Using PID basic functions
8.3 TCONT_CP

PID control
Function Manual, 11/2023, A5E35300227-AG

Adjust the default factor (0.8) in the following situations, in particular:
• Process type I with PID (0.8 →0.6): Setpoint step changes within the control zone still lead

to approximately 18% overshoot with PFAC_SP = 0.8.
• Process type III with PID (0.8 →0.96): Setpoint step changes with PFAC_SP = 0.8 are

attenuated too strongly. This leads to a significantly slower response time.

Attenuation of control parameters
When a closed-loop control circuit oscillates or if overshoot occurs after setpoint step
changes, you can reduce the controller GAIN (e.g., to 80% of the original value) and increase
integral time TI (e.g., to 150% of the original value). If the analog output value of the
continuous controller is converted to binary actuating signals by a pulse shaper, quantization
noise may cause minor permanent oscillation. You can eliminate this by increasing the
controller deadband DEADB_W.

Modifying control parameters
Proceed as follows to modify control parameters:
1. Save the current parameters with SAVE_PAR.
2. Modify the parameters.
3. Test the control response.
If the new parameter settings are worse than the old ones, retrieve the old parameters with
UNDO_PAR.

8.3.3.11 Performing fine tuning manually

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Manual" from the "Mode" drop-down list.
3. Enter the new PID parameters.
4. Click on the icon "Send parameter to CPU" in the "Tuning" group.
5. Select the "Change setpoint" check box in the "Current values" group.
6. Enter a new setpoint and click the icon in the "Current values" group.
7. Clear the "Manual mode" check box.

The controller works with the new PID parameters and controls the new setpoint.
8. Check the quality of the PID parameter to check the curve points.
9. Repeat steps 3 to 8 until you are satisfied with the controller results.

216
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.3 TCONT_CP

8.4 TCONT_S

8.4.1 Technology object TCONT_S
The technology object TCONT_S provides a step controller for actuators with integrating
behavior and is used to control technical temperature processes with binary output value
output signals. The technology object corresponds to the instance data block of the TCONT_S
instruction. The operating principle is based on the PI control algorithm of the sampling
controller. The step controller operates without a position feedback signal. Both manual and
automatic mode are possible.
S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download TCONT_S.

See also
Overview of software controller (Page 41)
Add technology objects (Page 43)
Configure technology objects (Page 44)
Downloading technology objects to device (Page 46)
TCONT_S (Page 438)

8.4.2 Configure controller difference TCONT_S

Use process value periphery
To use the input parameter PV_PER, proceed as follows:
1. Select the entry "Periphery" from the "Source" list.
2. Select the "sensor type".

Depending on the sensor type, the process value is scaled according to different formulas.
– Standard

Thermoelements; PT100/NI100
PV = 0.1 × PV_PER × PV_FAC + PV_OFFS

– Cooling;
PT100/NI100
PV = 0.01 × PV_PER × PV_FAC + PV_OFFS

– Current/voltage
PV = 100/27648 × PV_PER × PV_FAC + PV_OFFS

3. Enter the factor and offset for the scaling of the process value periphery.

Use internal process values
To use the input parameter PV_IN, proceed as follows:
1. Select the entry "Internal" from the "Source" list.

217

Using PID basic functions
8.4 TCONT_S

PID control
Function Manual, 11/2023, A5E35300227-AG

Control deviation
Set a dead zone range under the following requirement:
• The process value signal is noisy.
• The controller gain is high.
• The derivative action is activated.
The noise component of the process value causes strong deviations of the output value in this
case. The dead zone suppresses the noise component in the steady controller state. The dead
zone range specifies the size of the dead zone. With a dead zone range of 0.0, the dead zone
is turned off.

See also
Mode of operation TCONT_S (Page 439)

8.4.3 Configure controller algorithm TCONT_S

General
1. Enter the "Sampling time PID algorithm".

A controller sampling time should not exceed 10 % of the determined integral action time
of the controller (TI).

2. If the controller structure contains a proportional action, enter the "proportional gain".
A negative proportional gain inverts the rule meaning.

Proportional action
For changes of the setpoint, it may lead to overshooting of the proportional action. Through
the weighting of the proportional action, you can select how strongly the proportional action
should react when setpoint changes are made. The weakening of the proportional action is
reached through a compensation of the integral action.
1. To weaken the proportional action for setpoint changes, enter a "Proportional action

weighting".
– 1.0: Proportional action for setpoint change is fully effective
– 0.0: Proportional action for setpoint change is not effective

Integral action
1. If the controller structure contains an integral action, enter the "integral action time".

With an integral action time of 0.0, the integral action is switched off.

218
PID control

Function Manual, 11/2023, A5E35300227-AG

Using PID basic functions
8.4 TCONT_S

See also
Mode of operation TCONT_S (Page 439)

8.4.4 Configure manipulated value TCONT_S

Pulse generator
1. Enter the minimum impulse duration and minimum pause duration.

The values must be greater than or equal to the cycle time for the input parameter CYCLE.
The frequency of operation is reduced through this.

2. Enter the motor setting time.
The value must be greater than or equal to the cycle time of the input parameter CYCLE.

See also
Mode of operation TCONT_S (Page 439)

8.4.5 Commissioning TCONT_S

Requirements
• The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:
1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Enter new PID parameters in the "P", "I" and weighting proportional action fields.
3. Click on the icon "Send parameter to CPU" in the "Tuning" group.
4. Select the "Change setpoint" check box in the "Current values" group.
5. Enter a new setpoint and click the icon in the "Current values" group.
6. Clear the "Manual mode" check box.

The controller works with the new parameters and controls the new setpoint.
7. Check the quality of the PID parameter to check the curve points.
8. Repeat steps 2 to 6 until you are satisfied with the controller results.

219

Using PID basic functions
8.4 TCONT_S

PID control
Function Manual, 11/2023, A5E35300227-AG

PID control
Function Manual, 11/2023, A5E35300227-AG220

Auxiliary functions 9
9.1 Polyline

Polyline
The Polyline instruction provides a function with the characteristic curve of the polyline
whose points can be used, for example, to linearize the behavior of non-linear sensors.
The Polyline instruction can be used with an S7-1500 CPU Firmware 2.0 and higher and an
S7-1200 CPU Firmware 4.2 and higher.

Additional information
Description Polyline (Page 449)
Operating principle Polyline (Page 451)
Input parameters of Polyline (Page 454)
Output parameters of Polyline (Page 454)
Static tags of Polyline (Page 455)
ErrorBits parameter (Page 456)

9.2 SplitRange

SplitRange
The SplitRange instruction splits the output value range of the PID controller into multiple
subranges. These subranges enable control of a process that is influenced by multiple
actuators.
The SplitRange instruction can be used with an S7-1500 CPU Firmware 2.0 and higher and an
S7-1200 CPU Firmware 4.2 and higher.

Additional information
SplitRange description (Page 459)
SplitRange input parameters (Page 462)
SplitRange static tags (Page 462)
SplitRange output parameters (Page 462)
ErrorBits parameter (Page 463)

9.3 RampFunction

RampFunction
The RampFunction instruction limits the slew rate of a signal. A signal jump at the input is
output as ramp function of the output value, to achieve a smoother response, for example,
without influencing the disturbance reaction.
The RampFunction instruction can be used with an S7-1500 CPU Firmware 2.0 and higher
and an S7-1200 CPU Firmware 4.2 and higher.

Additional information
RampFunction description (Page 465)
RampFunction mode of operation (Page 469)
RampFunction input parameters (Page 472)
RampFunction output parameters (Page 472)
RampFunction static tags (Page 473)
ErrorBits parameter (Page 474)

9.4 RampSoak

RampSoak
You can use this instruction to generate an output value that follows a configurable profile on
a time-dependent basis. Every point of this profile has a target value and a time value. When
the profile is executed, the target value of the current point is reached within the time value.
The instruction can be used, for example, to provide a setpoint value profile for regulating a
temperature process.
The RampSoak instruction can be used with S7-1500 CPU firmware 2.0 and higher and
S7-1200 CPU firmware 4.2 and higher.

More information
Description of RampSoak (Page 477)
Operating principle RampSoak (Page 479)
Input parameter RampSoak (Page 492)
Output parameter RampSoak (Page 493)
In-out parameter RampSoak (Page 493)
Static tags RampSoak (Page 494)
ErrorBits parameter (Page 496)

221

Auxiliary functions
9.4 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

9.5 Filter_PT1

Filter_PT1
The instruction Filter_PT1 is a proportional transfer element with a first-order lag. You can use
Filter_PT1 as a low-pass filter, delay element or process simulation block.
The Filter_PT1 instruction can be used with an S7-1500 CPU firmware 2.0 and higher and an
S7-1200 CPU firmware 4.2 and higher.

Additional information
Description of Filter_PT1 (Page 500)
Mode of operation of Filter_PT1 (Page 506)
Input parameter Filter_PT1 (Page 508)
Output parameter Filter_PT1 (Page 508)
Static tags Filter_PT1 (Page 508)
Parameter ErrorBits (Page 509)

9.6 Filter_PT2

Filter_PT2
The instruction Filter_PT2 is a proportional transfer element with a second-order lag. You can
use Filter_PT2 as a low-pass filter, delay element or process simulation block.
The Filter_PT2 instruction can be used with S7-1500 CPU firmware 2.0 and higher and
S7-1200 CPU firmware 4.2 and higher.

More information
Description of Filter_PT2 (Page 513)
Mode of operation of Filter_PT2 (Page 519)
Input parameter Filter_PT2 (Page 521)
Output parameter Filter_PT2 (Page 521)
Static tags Filter_PT2 (Page 521)
Parameter ErrorBits (Page 522)

222
PID control

Function Manual, 11/2023, A5E35300227-AG

Auxiliary functions
9.6 Filter_PT2

9.7 Filter_DT1

Filter_DT1
The instruction Filter_DT1 is a differentiator with a first-order lag. You can use Filter_DT1 as a
high-pass filter, differentiator, or feed-forward control.
The Filter_DT1 instruction can be used with S7-1500 CPU firmware 2.0 and higher and
S7-1200 CPU firmware 4.2 and higher.

More information
Description of Filter_DT1 (Page 526)
Mode of operation of Filter_DT1 (Page 533)
Input parameter Filter_DT1 (Page 534)
Output parameter Filter_DT1 (Page 534)
Static tags Filter_DT2 (Page 535)
Parameter ErrorBits (Page 536)

9.8 Filter_Universal

Filter_Universal
The Filter_Universal instruction is a configurable digital filter of the order 1 to 10. You can use
Filter_Universal as a high-pass, low-pass, band-pass or band-stop filter.
The Filter_Universal instruction can be used with S7-1500 CPU as of firmware 2.0.

More information
Description Filter_Universal
Filter_Universal operating principle
Input parameter Filter_Universal
Output parameter Filter_Universal
Static tags Filter_Universal
ErrorBits parameter

223

Auxiliary functions
9.8 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

PID control
Function Manual, 11/2023, A5E35300227-AG224

Instructions

10

10.1 PID_Compact

10.1.1 New features of PID_Compact

PID_Compact V3.0
• Dead zone

If the process value is noisy, unnecessary fluctuations in the output value can be reduced
by manually setting a dead zone width.

• Active limitation of the integral part and change of the output value limits in
automatic mode
In addition to the direction-dependent stopping of the integral component, this is now
actively limited.
This allows the change of the output value limits in automatic mode

• New tags Config.OutputSelect and Retain.CtrlParams.SetByUser
The tags Config.OutputSelect and Retain.CtrlParams.SetByUser replace the previous tags
_Config.OutputSelect and _Retain.CtrlParams.SetByUser, which are only available via the
Openness API.
The tags Config.OutputSelect and Retain.CtrlParams.SetByUser are available both in the
instance data block and via the Openness API.
The existing values for the new tags Config.OutputSelect and Retain.CtrlParams.SetByUser
are transferred to individual instances after switching to V3. For multi-instances, the new
tags will have the default value after switching to V3. You restore the associated settings
manually.
If you have been using _Config.OutputSelect or _Retain.CtrlParams.SetByUser in your
Openness application so far, replace them with the tags Config.OutputSelect and
Retain.CtrlParams.SetByUser when you switch to PID_Compact V3.

PID_Compact V2.4
• Initialization of the integral action

PID_Compact now initializes the integral action if you use OverwriteInitialOutputValue
together with inverted control logic.
If you have been using OverwriteInitialOutputValue together with inverted control logic
up to now, please note that the sign of the output value changes with PID_Compact V2.4.

PID_Compact V2.3
• Response of the output value when switching from "Inactive" operating mode to

"Automatic mode"
The new option IntegralResetMode = 4 was added and defined as default. With
IntegralResetMode = 4, the integral action is automatically preassigned when switching
from "Inactive" operating mode to "Automatic mode" so that a control deviation results in
a jump of the output value with identical sign.

• Initialization of the integral action in automatic mode
The integral action can be initialized in automatic mode with the tags
OverwriteInitialOutputValue and PIDCtrl.PIDInit. This simplifies the use of PID_Compact for
override controls.

PID_Compact V2.2
• Use with S7-1200

As of PID_Compact V2.2, the instruction with V2 functionality can also be used on
S7-1200 with firmware version as of 4.0.

PID_Compact V2.0
• Responses in the event of an error

The response in the event of an error has been completely overhauled. PID_Compact now
responds in a more fault-tolerant manner in the default setting. This reaction is set when
copying PID_Compact V1.X from an S7-1200 CPU to an S7-1500 CPU.

NOTICE
Your system may be damaged.
If you use the default setting, PID_Compact remains in automatic mode when the process
value limits are exceeded. This may damage your system.
It is essential to configure how your controlled system responds in the event of an error
to protect your system from damage.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. Use ErrorAck to
acknowledge the errors and warnings without restarting the controller or clearing the
integral action. Switching operating modes no longer clears errors that are no longer
pending.
You can configure the responses in the event of an error with SetSubstituteOutput and
ActivateRecoverMode.

• Substitute output value
You can configure a substitute output value that is to be output if an error occurs.

• Switching the operating mode
You specify the operating mode at the Mode in/out parameter and use a positive edge at
ModeActivate to start the operating mode. The sRet.i_Mode tag has been omitted.

• Multi-instance capability
You can call up PID_Compact as multi-instance DB.

225

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

• Startup characteristics
The operating mode specified at the Mode parameter is also started on a falling edge at
Reset and during a CPU cold restart, if RunModeByStartup = TRUE.

• ENO characteristics
ENO is set depending on the operating mode.
If State = 0, then ENO = FALSE.
If State ≠ 0, then ENO = TRUE.

• Setpoint value specification during tuning
You configure the permitted fluctuation of the setpoint during tuning at the
CancelTuningLevel tag.

• Value range for output value limits
The value 0.0 no longer has to fall within the output value limits.

• Preassigning the integral action
Using the tags IntegralResetMode and OverwriteInitialOutputValue, you can determine
the preassignment of the integral action when switching from "Inactive" operating mode
to "Automatic mode".

• Switching a disturbance variable on
You can switch a disturbance variable on at the Disturbance parameter.

• Default value of PID parameters
The following default settings have been changed:
– Proportional action weighting (PWeighting) from 0.0 to 1.0
– Derivative action weighting (DWeighting) from 0.0 to 1.0
– Coefficient for derivative delay (TdFiltRatio) from 0.0 to 0.2

• Renaming tags
The static tags have been given new names that are compatible with PID_3Step.

PID_Compact V1.2
• Manual mode on CPU startup

If ManualEnable = TRUE when the CPU starts, PID_Compact starts in manual mode. A
rising edge at ManualEnable is not necessary.

• Pretuning
If the CPU is switched off during pretuning, pretuning starts again when the CPU is
switched back on.

PID_Compact V1.1
• Manual mode on CPU startup

When the CPU starts up, PID_Compact only switches to manual mode with a rising edge at
ManualEnable. Without rising edge, PID_Compact starts in the last operating mode in
which ManualEnable was FALSE.

• Reaction to reset
A rising edge at Reset resets the errors and warnings and clears the integral action. A
falling edge at Reset triggers a switchover to the most recently active operating mode.

• Default of process value high limit
The default value of r_Pv_Hlm has been changed to 120.0.

226
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

• Monitoring the sampling time
– An error is no longer output when the current sampling time is ≥ 1.5 x current mean

value or when the current sampling time is ≤ 0.5 x current mean value. The sampling
time may deviate much more in automatic mode.

– PID_Compact is compatible with FW as of V2.0.
• Access to tags

The following tags can now be used in the user program.
– i_Event_SUT
– i_Event_TIR
– r_Ctrl_Ioutv

• Troubleshooting
PID_Compact now outputs the correct pulses when the shortest ON time is not equal to
the shortest OFF time.

10.1.2 Compatibility with CPU and FW
The following table shows which version of PID_Compact can be used on which CPU.

CPU FW PID_Compact
as of V4.2 V2.3

V2.2
V1.2

V4.0 to V4.1 V2.2
V1.2

V3.x V1.2
V1.1

V2.x V1.2
V1.1

S7-1200

V1.x V1.0

as of V3.1 V3.0
V2.4

V3.0 V2.4

V2.5 to V2.9 V2.4
V2.3
V2.2
V2.1
V2.0

V2.0 and V2.1 V2.3
V2.2
V2.1
V2.0

V1.5 to V1.8 V2.2
V2.1
V2.0

V1.1 V2.1
V2.0

S7-1500

V1.0 V2.0

227

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

10.1.3 CPU processing time and memory requirement PID_Compact as of V2

CPU processing time
Typical CPU processing times of the PID_Compact technology object as of Version V2.0,
depending on CPU type and operating mode for standard, F, T and TF CPUs.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1211

CPU 1212

CPU 1214

CPU 1215

CPU 1217

≥ V4.0 190 µs 270 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

65 µs 80 µs

CPU 1515

CPU 1516

≤ V2.9

50 µs 65 µs

CPU 1517 8 µs 12 µs

CPU 1518

Every

4 µs 6 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

CPU 1514SP

55 µs 70 µs

CPU 1515

CPU 1516

≥ V3.0

40 µs 55 µs

Typical CPU processing times of the PID_Compact technology object as of Version V2.0,
depending on the CPU type and operating mode for R-CPUs in the RUN-Redundant system
state.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1513R 90 µs 140 µs

CPU 1515R

≥ V3.0

70 µs 90 µs

228
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Memory requirement
Memory requirement of an instance DB of the PID_Compact technology object as of Version
V2.0.

Memory requirement Memory requirement of the
instance DB of PID_Compact V2.x

Memory requirement of the
instance DB of PID_Compact V3.x

Load memory requirement Approx. 3700 bytes Approx. 3750 bytes

Total work memory require
ment

788 bytes 802 bytes

Retentive work memory
requirement

44 bytes 52 bytes

10.1.4 PID_Compact as of V2

10.1.4.1 Description of PID_Compact V3

Description
The PID_Compact instruction provides a PID controller with integrated tuning for actuators
with proportional action.
The following operating modes are possible:
• Inactive
• Pretuning
• Fine tuning
• Automatic mode
• Manual mode
• Substitute output value with error monitoring
For a more detailed description of the operating modes, see the State parameter.

229

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

PID algorithm
PID_Compact is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation (dead
zone disabled):

Symbol Description Associated parameters
of the PID_Compact
instruction

y Output value of the PID algorithm -
Kp Proportional gain Retain.CtrlParams.Gain
s Laplace operator -
b Proportional action weighting Retain.CtrlParams.PWei

ghting
w Setpoint CurrentSetpoint
x Process value ScaledInput
TI Integration time Retain.CtrlParams.Ti
TD Derivative action time Retain.CtrlParams.Td
a Derivative delay coefficient (derivative delay T1 = a × TD) Retain.CtrlParams.TdFil

tRatio
c Derivative action weighting Retain.CtrlParams.DWe

ighting
DeadZone Dead zone width Retain.CtrlParams.Dead

Zone

230
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Block diagram of PID_Compact

Block diagram of PIDT1 with anti-windup

231

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Call
PID_Compact is called in the constant time scale of a cyclic interrupt OB.

Download to device
The actual values of retentive variables are only updated when you download PID_Compact
completely.
Download technology object to device

Startup
When the CPU starts up, PID_Compact starts in the operating mode that is saved in the Mode
in/out parameter. To switch to "Inactive" operating mode during startup, set
RunModeByStartup = FALSE.

Responses in the event of an error
The response in the event of an error is determined by the tags SetSubstituteOutput and
ActivateRecoverMode. If ActivateRecoverMode = TRUE, the reaction additionally depends on
the error that occurred.

SetSubstitu
teOutput

ActivateR
ecoverMode

Configuration editor
> output value
> Set Output to

Reaction

Not relevant FALSE Zero (inactive) Switch to "Inactive" mode (State = 0)
The value 0.0 is transferred to the actuator.

FALSE TRUE Current output value while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The current output value is transferred to the actu
ator while the error is pending.

TRUE TRUE Substitute output value while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The value at SubstituteOutput is transferred to the
actuator while the error is pending.

In manual mode, PID_Compact uses ManualValue as output value, unless ManualValue is
invalid. If ManualValue is invalid, SubstituteOutput is used. If ManualValue and
SubstituteOutput are invalid, Config.OutputLowerLimit is used.
The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is reset by
a rising edge at Reset or ErrorAck.

232
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.4.2 Description of PID_Compact V2

Description
The PID_Compact instruction provides a PID controller with integrated tuning for actuators
with proportional action.
The following operating modes are possible:
• Inactive
• Pretuning
• Fine tuning
• Automatic mode
• Manual mode
• Substitute output value with error monitoring
For a more detailed description of the operating modes, see the State parameter.

PID algorithm
PID_Compact is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation:

Symbol Description Associated parameters of the
PID_Compact instruction

y Output value of the PID algorithm -
Kp Proportional gain Retain.CtrlParams.Gain
s Laplace operator -
b Proportional action weighting Retain.CtrlParams.PWeighting
w Setpoint CurrentSetpoint
x Process value ScaledInput
TI Integration time Retain.CtrlParams.Ti
TD Derivative action time Retain.CtrlParams.Td
a Derivative delay coefficient (derivative delay T1 = a

× TD)
Retain.CtrlParams.TdFiltRatio

c Derivative action weighting Retain.CtrlParams.DWeighting

233

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram of PID_Compact

Block diagram of PIDT1 with anti-windup

234
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Call
PID_Compact is called in the constant time scale of a cyclic interrupt OB.

Download to device
The actual values of retentive variables are only updated when you download PID_Compact
completely.
Downloading technology objects to device (Page 46)

Startup
When the CPU starts up, PID_Compact starts in the operating mode that is saved in the Mode
in/out parameter. To switch to "Inactive" operating mode during startup, set
RunModeByStartup = FALSE.

Responses in the event of an error
The response in the event of an error is determined by the tags SetSubstituteOutput and
ActivateRecoverMode. If ActivateRecoverMode = TRUE, the reaction additionally depends on
the error that occurred.

SetSubstitu
teOutput

ActivateR
ecoverMode

Configuration editor
> output value
> Set Output to

Reaction

Not relevant FALSE Zero (inactive) Switch to "Inactive" mode (State = 0)
The value 0.0 is transferred to the actuator.

FALSE TRUE Current output value while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The current output value is transferred to the actu
ator while the error is pending.

TRUE TRUE Substitute output value while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The value at SubstituteOutput is transferred to the
actuator while the error is pending.

In manual mode, PID_Compact uses ManualValue as output value, unless ManualValue is
invalid. If ManualValue is invalid, SubstituteOutput is used. If ManualValue and
SubstituteOutput are invalid, Config.OutputLowerLimit is used.
The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is reset by
a rising edge at Reset or ErrorAck.

235

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

10.1.4.3 PID_Compact as of V2 operating principle

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0001h).
You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warning = 0040h), and the InputWarning_H
or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_Compact automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller range. PID_Compact checks whether this
range falls within the process value limits. If the setpoint is outside these limits, the high or
low limit is used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is
set to TRUE.
The setpoint is limited in all operating modes.

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit tags. Output, ManualValue and SubstituteOutput are limited to
these values. The output value limits must match the control logic.
The valid output value limit values depend on the Output used.

Output -100.0 to 100.0%

Output_PER -100.0 to 100.0%

Output_PWM 0.0 to 100.0%

Rule:
OutputUpperLimit > OutputLowerLimit

NOTE
Use with two or more actuators
PID_Compact is not suitable for use with two or more actuators (for example, in
heating/cooling applications), because different actuators need different PID parameters to
achieve a good control response. Use PID_Temp for applications with two actuators acting in
opposite directions.

Substitute output value
In the event of an error, PID_Compact can output a substitute output value that you define at
the SubstituteOutput tag. The substitute output value must be within the output value limits.

236
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Monitoring signal validity
The values of the following parameters are monitored for validity when used:
• Setpoint
• Input
• Input_PER
• Disturbance
• ManualValue
• SubstituteOutput
• Output
• Output_PER
• Output_PWM

Monitoring of the sampling time PID_Compact
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_Compact
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current
sampling time and this mean value triggers an error (Error = 0800h).
The error occurs during tuning if:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
The error occurs in automatic mode if:
• New mean value >= 1.5 x old mean value
• New mean value <= 0.5 x old mean value
If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_Compact in OB1. You must then accept a lower control quality due to the
deviating sampling time.

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_Compact are executed at every call.
If you use Output_PWM, the sampling time of the PID algorithm is used as the period duration
of the pulse width modulation. The accuracy of the output signal is determined by the ratio of
the PID algorithm sampling time to the cycle time of the OB. It is therefore recommended
that the cycle time is a maximum of one tenth of the PID algorithm sampling time.

237

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control systems,
it may be necessary to invert the control logic. PID_Compact does not work with negative
proportional gain. If InvertControl = TRUE, an increasing control deviation causes a reduction
in the output value. The control logic is also taken into account during pretuning and fine
tuning.

10.1.4.4 Input parameters of PID_Compact as of V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-1

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Input REAL 0.0 A tag of the user program is used as source for the pro
cess value.
If you are using parameter Input, then
Config.InputPerOn = FALSE must be set.

Input_PER INT 0 An analog input is used as the source of the process
value.
If you are using parameter Input_PER, then
Config.InputPerOn = TRUE must be set.

Disturbance REAL 0.0 Disturbance variable or precontrol value

ManualEnable BOOL FALSE • A FALSE -> TRUE edge activates "manual mode",
while State = 4, Mode remains unchanged.
As long as ManualEnable = TRUE, you cannot
change the operating mode via a rising edge at
ModeActivate or use the commissioning dialog.

• A TRUE -> FALSE edge activates the operating mode
that is specified by Mode.

We recommend that you change the operating mode
using ModeActivate only.

ManualValue REAL 0.0 Manual value
This value is used as the output value in manual mode.
Values from Config.OutputLowerLimit to
Config.OutputUpperLimit are permitted.

ErrorAck BOOL FALSE • FALSE -> TRUE edge
ErrorBits and Warning are reset.

Reset BOOL FALSE Restarts the controller.

238
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Parameter Data type Default Description
• FALSE -> TRUE edge

– Switch to "Inactive" mode
– ErrorBits and Warnings are reset.

• As long as Reset = TRUE,
– PID_Compact remains in "Inactive" mode

(State = 0).
– You cannot change the operating mode with

Mode and ModeActivate or ManualEnable.
– You cannot use the commissioning dialog.

• TRUE -> FALSE edge
– If ManualEnable = FALSE, PID_Compact switches

to the operating mode that is saved in Mode.
– If Mode = 3, the integral action is treated as con

figured with the tag IntegralResetMode.

ModeActivate BOOL FALSE • FALSE -> TRUE edge
PID_Compact switches to the operating mode that is
saved in the Mode parameter.

10.1.4.5 Output parameters of PID_Compact as of V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-2

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value

The "Output", "Output_PER", and "Output_PWM" outputs can be used concurrently.

Output REAL 0.0 Output value in REAL format

Output_PER INT 0 Analog output value

Output_PWM BOOL FALSE Pulse-width-modulated output value
The output value is formed by variable On and Off times.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is
reached (Setpoint ≥ Config.SetpointUpperLimit).
The setpoint is limited to Config.SetpointUpperLimit .

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit has
been reached (Setpoint ≤ Config.SetpointLowerLimit).
The setpoint is limited to Config.SetpointLowerLimit .

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or
exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or
fallen below the warning low limit.

State INT 0 The State parameter (Page 252) shows the current operating
mode of the PID controller. You can change the operating
mode using the input parameter Mode and a rising edge at
ModeActivate.

239

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameter Data type Default Description
• State = 0: Inactive
• State = 1: Pre-tuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Substitute output value with error monitoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending in this
cycle.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 255) shows which error mes
sages are pending. ErrorBits is retentive and is reset upon a
rising edge at Reset or ErrorAck.

10.1.4.6 In/out parameter of PID_Compact as of V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-3

Parameter Data type Default Description
Mode INT 4 At Mode, specify the operating mode to

which PID_Compact is to switch. Options are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if

RunModeByStartup = TRUE
Mode is retentive.
A detailed description of the operating modes
can be found in State and Mode as of V2
parameters (Page 252).

See also
State and Mode as of V2 parameters (Page 252)

240
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.4.7 Static tags of PID_Compact as of V2

NOTE
Change the tags identified with (1) only in "Inactive" mode to prevent malfunction of the PID
controller.

Unless otherwise specified, the names of the following variables apply both to the data block
and to access via the Openness API.

Tag Data type Default Description
IntegralResetMode INT Up to V2.2: 1,

as of V2.3: 4
The Tag IntegralResetMode as of V2 (Page 259) determ
ines how the integral action PIDCtrl.IntegralSum is pre
assigned when switching from "Inactive" operating
mode to "Automatic mode". This setting only works for
one cycle.
Options are:
• IntegralResetMode = 0: Smooth
• IntegralResetMode = 1: Delete
• IntegralResetMode = 2: Hold
• IntegralResetMode = 3: Pre-assign
• IntegralResetMode = 4: Like setpoint change (only

for PID_Compact with version ≥ 2.3)

OverwriteInitialOutputValue REAL 0.0 If one of the following conditions is met, the integral
action PIDCtrl.IntegralSum is preassigned automatically
as if Output = OverwriteInitialOutputValue in the previ
ous cycle:
• IntegralResetMode = 3 when switching from

"Inactive" operating mode to "Automatic mode"
• IntegralResetMode = 3, TRUE -> FALSE edge at para

meter Reset and parameter Mode = 3
• PIDCtrl.PIDInit = TRUE in "Automatic mode" (available

as of PID_Compact version 2.3)

RunModeByStartup BOOL TRUE Activate operating mode at Mode parameter after CPU
restart
If RunModeByStartup = TRUE, PID_Compact starts in the
operating mode saved in the Mode parameter after CPU
startup.
If RunModeByStartup = FALSE, PID_Compact remains in
"Inactive" mode after CPU startup.

LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is
reloaded from the CtrlParamsBackUp structure. The set
was saved prior to the last tuning. LoadBackUp is auto
matically set back to FALSE.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint,
e.g., ºC, or ºF.
PhysicalUnit serves the display in the editors and has no
influence on the behavior of the control algorithm in the
CPU.
When importing PID_Compact up to Version 2.4 via the
Openness API, PhysicalUnit is reset to the default value.
As of Version 3.0, the value of PhysicalUnit is retained
when importing.

241

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g.,

temperature.
PhysicalQuantity serves the display in the editors and
has no influence on the behavior of the control
algorithm in the CPU.
When importing PID_Compact up to Version 2.4 via the
Openness API, PhysicalQuantity is reset to the default
value.
As of Version 3.0, the value of PhysicalQuantity is
retained when importing.

ActivateRecoverMode BOOL TRUE The ActivateRecoverMode tag as of V2 (Page 257)
determines the response in the event of an error.

Warning DWORD 0 Warning tag as of V2 (Page 258) shows the warnings
since Reset = TRUE or ErrorAck =TRUE. Warning is retent
ive.

Progress REAL 0.0 Progress of current tuning phase as a percentage
(0.0 - 100.0)

CurrentSetpoint REAL 0.0 CurrentSetpoint always displays the currently effective
setpoint. This value is frozen during tuning.

CancelTuningLevel REAL 10.0 Permissible fluctuation of setpoint during tuning. Tun
ing is not canceled until:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

SubstituteOutput REAL 0.0 Substitute output value
When the following conditions are met, the substitute
output value is used as the output value:
• One or more errors are pending in automatic mode

for which ActivateRecoverMode is in effect.
• SetSubstituteOutput = TRUE
• ActivateRecoverMode = TRUE
Config.OutputUpperLimit ≥ SubstituteOutput ≥
Config.OutputLowerLimit

SetSubstituteOutput BOOL TRUE Selection of the output value while an error is pending
(State = 5):
• If SetSubstituteOutput = TRUE and

ActivateRecoverMode = TRUE, the SubstituteOutput
substitute output value configured is output as long
as an error is pending.

• If SetSubstituteOutput = FALSE and
ActivateRecoverMode = TRUE, the actuator remains
at the current output value as long as an error is
pending.

• If ActivateRecoverMode = FALSE,
SetSubstituteOutput is not effective.

• If SubstituteOutput is invalid (ErrorBits =
16#0002_0000), the substitute output value cannot
be output. In this case, the low limit of the output
value (Config.OutputLowerLimit) is used as output
value.

242
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
Config.InputPerOn(1) BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used

for detecting the process value. If InputPerOn = FALSE,
the Input parameter is used.

Config.InvertControl(1) BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control deviation
causes a reduction in the output value.

Config.OutputSelect INT 0 Selection of the output value (as of Version 3.0):
• OutputSelect = 0: Output_PER (analog)
• OutputSelect = 1: Output
• OutputSelect = 2: Output_PWM
Config.OutputSelect is used for configuring the control
ler in the TIA Portal and has no influence on the calcula
tion of the output values in the CPU.

_Config.OutputSelect INT 0 Selection of the output value (up to Version 2.4):
• OutputSelect = 0: Output_PER (analog)
• OutputSelect = 1: Output
• OutputSelect = 2: Output_PWM
_Config.OutputSelect is used for configuring the con
troller in the TIA Portal and has no influence on the cal
culation of the output values in the CPU.
_Config.OutputSelect is not available in the data block
and can only be configured in the configuration editor
or via the Openness API.
When importing PID_Compact via the Openness API,
_Config.OutputSelect is reset to the default value.

Config.InputUpperLimit(1) REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adherence
to this limit. If the limit is exceeded, an error is output
and the reaction is determined by ActivateRecoverMode.
At the I/O input, the process value can be a maximum of
18% higher than the standard range (overrange). This
means the limit cannot be exceeded when you use an
I/O input with the pre-setting for high limit and process
value scaling.
When pretuning is started, the difference between high
and low limit of the process value is checked to determ
ine whether the distance between setpoint and process
value meets the necessary requirements.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit(1) REAL 0.0 Low limit of the process value
Input and Input_PER are monitored to ensure adherence
to this limit. If the limit is undershot, an error is output
and the reaction is determined by ActivateRecoverMode.
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning(1) REAL 3.402822e+38 Warning high limit of the process value
Input and Input_PER are monitored to ensure adherence
to this limit. If the limit is exceeded, a warning is output
at the parameter.
If you set InputUpperWarning outside the process value
limits, the configured absolute process value high limit
is used as the warning high limit.
If you configure InputUpperWarning within the process
value limits, this value is used as the warning high limit.
InputUpperWarning > InputLowerWarning

243

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
Config.InputLowerWarning(1) REAL -3.402822e+38 Warning low limit of the process value

Input and Input_PER are monitored to ensure adherence
to this limit. If the limit is undershot, a warning is output
at the Warning parameter.
If you set InputLowerWarning outside the process value
limits, the configured absolute process value low limit is
used as the warning low limit.
If you configure InputLowerWarning within the process
value limits, this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning

Config.OutputUpperLimit REAL 100.0 High limit of output value
For details, see OutputLowerLimit
100.0 ≥ OutputUpperLimit > OutputLowerLimit

Config.OutputLowerLimit REAL 0.0 Low limit of output value
For Output and Output_PER, the range of values from
-100.0 to +100.0, including zero, is valid. At -100.0,
Output_PER = -27648; at +100.0, Output_PER = 27648.
For Output_PWM, the value range 0.0 to +100.0 applies.
The output value limits must match the control logic.
As of Version 3.0, PID_Compact supports the change of
the output value limits in automatic mode. Up to version
2.4, these may only be changed in the inactive or manu
al modes.
OutputLowerLimit < OutputUpperLimit

Config.SetpointUpperLimit(1) REAL 3.402822e+38 High limit of setpoint
Setpoint is monitored to ensure adherence to this limit.
If the limit is exceeded, a warning is output at the Warn
ing parameter.
If you configure SetpointUpperLimit outside the process
value limits, the configured process value absolute high
limit is used as the setpoint high limit.
If you configure SetpointUpperLimit within the process
value limits, this value is used as the setpoint high limit.
SetpointUpperLimit > SetpointLowerLimit

Config.SetpointLowerLimit(1) REAL -3.402822e+38 Low limit of the setpoint
Setpoint is monitored to ensure adherence to this limit.
If the limit is undershot, a warning is output at the
Warning parameter.
If you set SetpointLowerLimit outside the process value
limits, the configured process value absolute low limit is
used as the setpoint low limit.
If you set SetpointLowerLimit within the process value
limits, this value is used as the setpoint low limit.
SetpointLowerLimit < SetpointUpperLimit

Config.MinimumOnTime(1) REAL 0.0 The minimum ON time of the pulse width modulation in
seconds is rounded to
MinimumOnTime = n×CycleTime.Value
100000.0 ≥ MinimumOnTime ≥ 0.0

Config.MinimumOffTime(1) REAL 0.0 The minimum OFF time of the pulse width modulation
in seconds is rounded to
MinimumOffTime = n×CycleTime.Value
100000.0 ≥ MinimumOffTime ≥ 0.0

244
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
Config.InputScaling.UpperPointIn(1) REAL 27648.0 Scaling Input_PER high

Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value
detection (Config.InputPerOn = TRUE).
UpperPointIn > LowerPointIn

Config.InputScaling.LowerPointIn(1) REAL 0.0 Scaling Input_PER low
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value
detection Config.InputPerOn = TRUE.
LowerPointIn < UpperPointIn

Config.InputScaling.UpperPointOut(1) REAL 100.0 Scaled high process value
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value
detection Config.InputPerOn = TRUE.
UpperPointOut > LowerPointOut

Config.InputScaling.LowerPointOut(1) REAL 0.0 Scaled low process value
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value
detection Config.InputPerOn = TRUE.
LowerPointOut < UpperPointOut

CycleTime.StartEstimation BOOL TRUE If CycleTime.EnEstimation = TRUE,
CycleTime.StartEstimation = TRUE starts the automatic
determination of the PID_Compact sampling time (cycle
time of the calling OB). Once measurement is complete
CycleTime.StartEstimation = FALSE.

CycleTime.EnEstimation BOOL TRUE If CycleTime.EnEstimation = TRUE, the PID_Compact
sampling time is determined automatically.
If CycleTime.EnEstimation = FALSE, the PID_Compact
sampling time is not determined automatically and must
be configured correctly manually with CycleTime.Value.

CycleTime.EnMonitoring BOOL TRUE If CycleTime.EnMonitoring = FALSE, the PID_Compact
sampling time is not monitored. If PID_Compact cannot
be executed within the sampling time, no error
(ErrorBits=16#0000_0800) is output and PID_Compact
does not respond as configured with
ActivateRecoverMode.

CycleTime.Value(1) REAL 0.1 PID_Compact sampling time (cycle time of the calling
OB) in seconds
CycleTime.Value is determined automatically and is usu
ally equivalent to the cycle time of the calling OB.

You can load values from the CtrlParamsBackUp structure with LoadBackUp = TRUE.

CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser (as of Ver
sion 3.0)

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain

245

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
CtrlParamsBackUp.Ti REAL 20.0 Saved integration time in seconds

CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time in seconds

CtrlParamsBackUp.TdFiltRatio REAL 0.2 Saved derivative delay coefficient

CtrlParamsBackUp.PWeighting REAL 1.0 Saved proportional action weighting factor

CtrlParamsBackUp.DWeighting REAL 1.0 Saved derivative action weighting factor

CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm in seconds

CtrlParamsBackUp.DeadZone REAL 0.0 Saved dead zone width (as of Version 3.0)

PIDSelfTune.SUT.CalculateParams BOOL FALSE The properties of the controlled system are saved during
tuning. If SUT.CalculateParams = TRUE, the parameters
for pretuning are recalculated according to these prop
erties. This enables you to change the parameter calcu
lation method without having to repeat controller tun
ing.
SUT.CalculateParams is set to FALSE after the calcula
tion.

PIDSelfTune.SUT.TuneRule INT 0 Methods used to calculate parameters during pretuning:
• SUT.TuneRule = 0: PID according to Chien, Hrones

and Reswick
• SUT.TuneRule = 1: PI according to Chien, Hrones and

Reswick

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretun
ing:
• State = 0: Initialize pretuning
• State = 100: Calculate the standard deviation
• State = 200: Find the point of inflection
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

PIDSelfTune.TIR.RunIn BOOL FALSE With the RunIn tag, you can specify that fine tuning can
also be performed without pretuning.
• RunIn = FALSE

Pretuning is started when fine tuning is started from
inactive or manual mode. If the requirements for
pretuning are not met, PID_Compact reacts as if
RunIn = TRUE.
If fine tuning is started from automatic mode, the
system uses the existing PID parameters to control to
the setpoint.
Only then will fine tuning start. If pretuning is not
possible, PID_Compact switches to the mode from
which tuning was started.

• RunIn = TRUE
The pre-tuning is skipped. PID_Compact attempts to
reach the setpoint with the minimum or maximum
output value. This can produce increased overshoot.
Fine tuning then starts automatically.
RunIn is set to FALSE after fine tuning.

246
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
PIDSelfTune.TIR.CalculateParams BOOL FALSE The properties of the controlled system are saved during

tuning. If TIR.CalculateParams = TRUE, the parameters
for fine tuning are recalculated according to these prop
erties. This enables you to change the parameter calcu
lation method without having to repeat controller tun
ing.
TIR.CalculateParams is set to FALSE after the calculation.

PIDSelfTune.TIR.TuneRule INT 0 Methods used to calculate parameters during fine tun
ing:
• TIR.TuneRule = 0: PID automatic
• TIR.TuneRule = 1: PID fast (faster control response

with higher amplitudes of the output value than
with TIR.TuneRule = 2)

• TIR.TuneRule = 2: PID slow (slower control response
with lower amplitudes of the output value than with
TIR.TuneRule = 1)

• TIR.TuneRule = 3: Ziegler-Nichols PID
• TIR.TuneRule = 4: Ziegler-Nichols PI
• TIR.TuneRule = 5: Ziegler-Nichols P
To be able to repeat the calculation of the PID paramet
ers with TIR.CalculateParams and TIR.TuneRule = 0, 1 or
2, the previous fine tuning also has to have been
executed with TIR.TuneRule = 0, 1 or 2.
If this is not the case, TIR.TuneRule = 3 is used.
The recalculation of the PID parameters with
TIR.CalculateParams and TIR.TuneRule = 3, 4 or 5 is
always possible.

PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of fine tun
ing:
• State = -100 Fine tuning is not possible. Pretuning

will be performed first.
• State = 0: Initialize fine tuning
• State = 200: Calculate the standard deviation
• State = 300: Attempt to reach setpoint
• State = 400: Attempt to reach setpoint with existing

PID parameters
(if pretuning was successful)

• State = 500: Determine oscillation and calculate
parameters

• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

PIDCtrl.IntegralSum(1) REAL 0.0 Current integral action

PIDCtrl.PIDInit BOOL FALSE PIDCtrl.PIDInit is available as of PID_Compact version
2.3.
If PIDCtrl.PIDInit = TRUE in "Automatic mode", the integ
ral action PIDCtrl.IntegralSum is preassigned automatic
ally as if Output = OverwriteInitialOutputValue in the
previous cycle. This can be used for a Override control
with PID_Compact as of V2 (Page 90).

247

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
Retain.CtrlParams.SetByUser(1) BOOL FALSE Enable manual input of PID parameters (as of Version

3.0)
If Retain.CtrlParams.SetByUser = TRUE, the PID paramet
ers are editable.
Retain.CtrlParams.SetByUser is used for configuring the
controller in the TIA Portal and has no influence on the
behavior of the control algorithm in the CPU.
SetByUser is retentive.

_Retain.CtrlParams.SetByUser(1) BOOL FALSE Enable manual input of PID parameters (up to Version
2.4)
If _Retain.CtrlParams.SetByUser = TRUE, the PID para
meters are editable.
_Retain.CtrlParams.SetByUser is used for configuring the
controller in the TIA Portal and has no influence on the
behavior of the control algorithm in the CPU.
_Retain.CtrlParams.SetByUser is not available in the data
block and can only be configured in the configuration
editor or via the Openness API.
When importing PID_Compact via the Openness API,
_Retain.CtrlParams.SetByUser is reset to the default
value.

Retain.CtrlParams.Gain(1) REAL 1.0 Active proportional gain
PID_Compact does not work with a negative proportion
al gain. To invert the control logic, use the
Config.InvertControl tag.
Gain is retentive.
Gain ≥ 0.0

Retain.CtrlParams.Ti(1) REAL 20.0 • CtrlParams.Ti > 0.0: Active integration time in
seconds

• CtrlParams.Ti = 0.0: Integral action is deactivated
Ti is retentive.
100000.0 ≥ Ti ≥ 0.0

Retain.CtrlParams.Td(1) REAL 0.0 • CtrlParams.Td > 0.0: Active derivative action time in
seconds

• CtrlParams.Td = 0.0: Derivative action is deactivated
Td is retentive.
100000.0 ≥ Td ≥ 0.0

Retain.CtrlParams.TdFiltRatio(1) REAL 0.2 Active derivative delay coefficient
The derivative delay coefficient delays the effect of the
derivative action.
Derivative delay = derivative action time × derivative
delay coefficient
• 0.0: Derivative action is effective for one cycle only

and therefore almost not effective.
• 0.5: This value has proved useful in practice for con

trolled systems with one dominant time constant.
• > 1.0: The greater the coefficient, the longer the

effect of the derivative action is delayed.
TdFiltRatio is retentive.
TdFiltRatio ≥ 0.0

248
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
Retain.CtrlParams.PWeighting(1) REAL 1.0 Active proportional action weighting

The proportional action may weaken with changes to
the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully

effective
• 0.0: Proportional action for setpoint change is not

effective
The proportional action is always fully effective when
the process value is changed.
PWeighting is retentive.
1.0 ≥ PWeighting ≥ 0.0

Retain.CtrlParams.DWeighting(1) REAL 1.0 Active derivative action weighting
The derivative action may weaken with changes to the
setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint

change
• 0.0: Derivative action is not effective upon setpoint

change
The derivative action is always fully effective when the
process value is changed.
DWeighting is retentive.
1.0 ≥ DWeighting ≥ 0.0

Retain.CtrlParams.Cycle(1) REAL 1.0 Active sampling time of the PID algorithm in seconds
CtrlParams.Cycle is calculated during tuning and roun
ded to an integer multiple of CycleTime.Value.
CtrlParams.Cycle is used as time period of the pulse
width modulation.
Cycle is retentive.
100000.0 ≥ Cycle > 0.0

Retain.CtrlParams.DeadZone(1) REAL 0.0 Active dead zone width
CtrlParams.DeadZone is available as of PID_Compact
Version 3.0.
With CtrlParams.DeadZone = 0.0, the dead zone is
switched off.
CtrlParams.DeadZone is not set automatically or adjus
ted during tuning. You must correctly configure
CtrlParams.DeadZone manually.
When the dead zone is switched on, the result can be a
permanent control deviation (deviation between set
point and process value). This can have a negative effect
on fine tuning.
DeadZone is retentive.
DeadZone≥ 0.0

249

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
ActivateRecoverMode tag as of V2 (Page 257)
Warning tag as of V2 (Page 258)
Downloading technology objects to device (Page 46)

10.1.4.8 Changing the interface of PID_Compact as of V2

The following table shows what has changed in the PID_Compact instruction interface.

PID_Compact V1 PID_Compact as of V2 Change
Input_PER Input_PER Data type from Word to Int

Disturbance New

ErrorAck New

ModeActivate New

Output_PER Output_PER Data type from Word to Int

Error ErrorBits Renamed

Error New

Mode New

sb_RunModeByStartup RunModeByStartup Function

IntegralResetMode

OverwriteInitialOutputValue New

SetSubstituteOutput New

CancelTuningLevel New

SubstituteOutput New

The following table shows which variables have been renamed.

PID_Compact V1.x PID_Compact as of V2
sb_GetCycleTime CycleTime.StartEstimation

sb_EnCyclEstimation CycleTime.EnEstimation

sb_EnCyclMonitoring CycleTime.EnMonitoring

sb_RunModeByStartup RunModeByStartup

si_Unit PhysicalUnit

si_Type PhysicalQuantity

sd_Warning Warning

sBackUp.r_Gain CtrlParamsBackUp.Gain

sBackUp.r_Ti CtrlParamsBackUp.Ti

sBackUp.r_Td CtrlParamsBackUp.Td

sBackUp.r_A CtrlParamsBackUp.TdFiltRatio

sBackUp.r_B CtrlParamsBackUp.PWeighting

sBackUp.r_C CtrlParamsBackUp.DWeighting

sBackUp.r_Cycle CtrlParamsBackUp.Cycle

250
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

PID_Compact V1.x PID_Compact as of V2
sPid_Calc.r_Cycle CycleTime.Value

sPid_Calc.b_RunIn PIDSelfTune.TIR.RunIn

sPid_Calc.b_CalcParamSUT PIDSelfTune.SUT.CalculateParams

sPid_Calc.b_CalcParamTIR PIDSelfTune.TIR.CalculateParams

sPid_Calc.i_CtrlTypeSUT PIDSelfTune.SUT.TuneRule

sPid_Calc.i_CtrlTypeTIR PIDSelfTune.TIR.TuneRule

sPid_Calc.r_Progress Progress

sPid_Cmpt.r_Sp_Hlm Config.SetpointUpperLimit

sPid_Cmpt.r_Sp_Llm Config.SetpointLowerLimit

sPid_Cmpt.r_Pv_Norm_IN_1 Config.InputScaling.LowerPointIn

sPid_Cmpt.r_Pv_Norm_IN_2 Config.InputScaling.UpperPointIn

sPid_Cmpt.r_Pv_Norm_OUT_1 Config.InputScaling.LowerPointOut

sPid_Cmpt.r_Pv_Norm_OUT_2 Config.InputScaling.UpperPointOut

sPid_Cmpt.r_Lmn_Hlm Config.OutputUpperLimit

sPid_Cmpt.r_Lmn_Llm Config.OutputLowerLimit

sPid_Cmpt.b_Input_PER_On Config.InputPerOn

sPid_Cmpt.b_LoadBackUp LoadBackUp

sPid_Cmpt.b_InvCtrl Config.InvertControl

sPid_Cmpt.r_Lmn_Pwm_PPTm Config.MinimumOnTime

sPid_Cmpt.r_Lmn_Pwm_PBTm Config.MinimumOffTime

sPid_Cmpt.r_Pv_Hlm Config.InputUpperLimit

sPid_Cmpt.r_Pv_Llm Config.InputLowerLimit

sPid_Cmpt.r_Pv_HWrn Config.InputUpperWarning

sPid_Cmpt.r_Pv_LWrn Config.InputLowerWarning

sParamCalc.i_Event_SUT PIDSelfTune.SUT.State

sParamCalc.i_Event_TIR PIDSelfTune.TIR.State

sRet.i_Mode sRet.i_Mode has been omitted. The operating
mode is changed using Mode and ModeActivate.

sRet.r_Ctrl_Gain Retain.CtrlParams.Gain

sRet.r_Ctrl_Ti Retain.CtrlParams.Ti

sRet.r_Ctrl_Td Retain.CtrlParams.Td

sRet.r_Ctrl_A Retain.CtrlParams.TdFiltRatio

sRet.r_Ctrl_B Retain.CtrlParams.PWeighting

sRet.r_Ctrl_C Retain.CtrlParams.DWeighting

sRet.r_Ctrl_Cycle Retain.CtrlParams.Cycle

251

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

10.1.4.9 State and Mode as of V2 parameters

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.
With a rising edge at ModeActivate, PID_Compact switches to the operating mode saved in
the Mode in-out parameter.
When the CPU is switched on or switches from Stop to RUN mode, PID_Compact starts in the
operating mode that is saved in the Mode parameter. To retain PID_Compact in "Inactive"
mode, set RunModeByStartup = FALSE.

Meaning of values

State / Mode Description of operating mode
0 Inactive

In "Inactive" operating mode, the output value 0.0 is always output, regardless of Config.OutputUpperLimit
and Config.OutputLowerLimit. Pulse width modulation is off.

1 Pretuning
The pretuning determines the process response to a jump change of the output value and searches for the
point of inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the
controlled system. You obtain the best PID parameters when you perform pretuning and fine tuning.
Pretuning requirements:
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * | Config.InputUpperLimit - Config.InputLowerLimit| and
|Setpoint - Input| > 0.5 * |Setpoint|

• The setpoint and the process value lie within the configured limits.
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise the
result will be. Noise on the process value can be tolerated as long as the rate of rise of the process value is sig
nificantly higher compared to the noise.
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
The controller switches to automatic mode following successful pretuning. If pretuning is unsuccessful, the
switchover of the operating mode is dependent on ActivateRecoverMode.
The phase of pretuning is indicated with PIDSelfTune.SUT.State.
For starting pretuning in Automatic mode, it is recommended to perform the required setpoint change simul
taneously with the rising edge at ModeActivate. If the setpoint is changed first and the pretuning is started
later, the output value in automatic mode is adjusted accordingly and causes a change to the process value.
This can have a negative effect on the subsequent pretuning or prevent it from starting.

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are recalculated
based on the amplitude and frequency of this oscillation. PID parameters from fine tuning usually have better
master control and disturbance characteristics than PID parameters from pretuning. You obtain the best PID
parameters when you perform pretuning and fine tuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.

252
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

State / Mode Description of operating mode
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
Requirements for fine tuning:
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.
PID_Compact controls the system using the existing PID parameters until the control loop has stabilized
and the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)
If the requirements for pretuning are met, pretuning is started. The determined PID parameters will be
used for control until the control loop has stabilized and the requirements for fine tuning have been met.
If the process value for pretuning is already too near the setpoint or PIDSelfTune.TIR.RunIn = TRUE, an
attempt is made to reach the setpoint with the minimum or maximum output value. This can produce
increased overshoot.
Only then will fine tuning start.

The controller switches to automatic mode following successful fine tuning. If fine tuning is unsuccessful, the
switchover of the operating mode is dependent on ActivateRecoverMode.
The "Fine tuning" phase is indicated with PIDSelfTune.TIR.State.

3 Automatic mode
In automatic mode, PID_Compact corrects the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

4 Manual mode
In manual mode, you specify a manual output value in the ManualValue parameter.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change the
operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless. Manual mode is also possible when an
error is pending.

5 Substitute output value with error monitoring
The control algorithm is deactivated. The SetSubstituteOutput tag determines which output value is output in
this operating mode.
• SetSubstituteOutput = FALSE: Last valid output value
• SetSubstituteOutput = TRUE: Substitute output value
You cannot activate this operating mode using Mode = 5.
In the event of an error, it is activated instead of "Inactive" operating mode if all the following conditions are
met:
• Automatic mode (Mode = 3)
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode is effective.
As soon as the errors are no longer pending, PID_Compact switches back to automatic mode.

253

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

ENO characteristics
If State = 0, then ENO = FALSE.
If State ≠ 0, then ENO = TRUE.

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following
table shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning successfully completed

n 3 3 Automatic mode is started

PID_Compact automatically switches the operating mode in the event of an error. The
following table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning canceled

n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. At the start of pretuning or fine tuning, PID_Compact has saved the value of State
in the Mode in/out parameter. PID_Compact therefore switches to the operating mode from
which tuning was started.
If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode.

See also
Output parameters of PID_Compact as of V2 (Page 239)

254
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.4.10 ErrorBits as of V2 parameter

If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
In manual mode, PID_Compact uses ManualValue as output value. The exception is Errorbits
= 16#0001_0000.

ErrorBits
 (DW#16#...)

Description

0000_0000 There is no error.

0000_0001 The "Input" parameter is outside the process value limits.
• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.

0000_0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Compact
switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.

0000_0004 Error during fine tuning. The oscillation of the process value could not be maintained.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000_0008 Error at start of pretuning. The process value is too close to the setpoint. Start fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000_0010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000_0020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact remains in fine tuning mode.

0000_0080 Error during pretuning. The output value limits are not configured correctly or the process value is not
reacting as expected.
Make sure that:
• The limits of the output value are configured correctly and match the control logic.
• It is possible to change the output value so that the process value approaches the setpoint. The output

value is not already limited by the corresponding output value limit before the pretuning.
Example: With normal control logic and a process value that is below the setpoint, the output value
must not have reached the high limit before the start of the pretuning.

• The process value does not show a strong oscillation before the start of the pretuning.
For starting a pretuning in automatic mode, it is recommended to perform the required setpoint change
simultaneously with the rising edge at ModeActivate. This prevents the output value from running into
the limitation between the setpoint change and the start of the pretuning. Alternatively, this can also be
achieved by starting from manual mode or "Inactive" mode.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

255

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0000_0100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000_0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Compact
switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.

0000_0400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Compact
switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.

0000_0800 Sampling time error: PID_Compact is not called within the sampling time of the cyclic interrupt OB.
It is recommended to call PID_Compact in a cyclic interrupt OB without conditions and to activate or deac
tivate it via the operating mode at the Mode parameter. Conditional calls or the call in OB1 can have a
negative effect on the control quality.
Monitoring of the sampling time can be disabled with CycleTime.EnMonitoring = FALSE.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.
If this error occurred during simulation with PLCSIM, see the notes under Simulating PID_Compact as of
V2 with PLCSIM (Page 94).

0000_1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Compact
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Compact
switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact switches to the operating mode that is saved in the Mode parameter.

0001_0000 Invalid value at ManualValue parameter. Value has an invalid number format.
If ActivateRecoverMode = TRUE before an error occurred, PID_Compact uses SubstituteOutput as the out
put value. As soon as you specify a valid value in ManualValue, PID_Compact uses it as the output value.

0002_0000 Invalid value at SubstituteOutput tag. Value has an invalid number format.
PID_Compact uses the output value low limit as the output value.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_Compact switches back to automatic mode.

0004_0000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance is
set to zero. PID_Compact remains in automatic mode.
If pretuning or fine tuning mode was active and ActivateRecoverMode = TRUE before the error occurred,
PID_Compact switches to the operating mode saved in the Mode parameter. If Disturbance in the current
phase has no effect on the output value, tuning is not be canceled.

256
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.4.11 ActivateRecoverMode tag as of V2

The ActivateRecoverMode tag determines the response in the event of an error. The Error
parameter indicates if an error is pending. When the error is no longer pending, Error =
FALSE. The ErrorBits parameter shows which errors have occurred.

Automatic mode

NOTICE
Your system may be damaged.
If ActivateRecoverMode = TRUE, PID_Compact remains in automatic mode even if there is an
error and the process limit values are exceeded. This may damage your system.
It is essential to configure how your controlled system responds in the event of an error to
protect your system from damage.

ActivateRecover
Mode

Description

FALSE PID_Compact automatically switches to "Inactive" mode in the event of an error. The controller is only
activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_Compact switches between the calculated output value and the substitute output value at
each error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more of the following errors occur, PID_Compact stays in automatic mode:
• 0001h: The "Input" parameter is outside the process value limits.
• 0800h: Sampling time error
• 40000h: Invalid value at Disturbance parameter.
If one or more of the following errors occur, PID_Compact switches to "Substitute output value with error
monitoring" mode:
• 0002h: Invalid value at Input_PER parameter.
• 0200h: Invalid value at Input parameter.
• 0400h: Calculation of output value failed.
• 1000h: Invalid value at Setpoint parameter.
If the following error occurs, PID_Compact switches to "Substitute output value with error monitoring"
mode and moves the actuator to Config.OutputLowerLimit:
• 20000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.
This characteristics are independent of SetSubstituteOutput.
As soon as the errors are no longer pending, PID_Compact switches back to automatic mode.

257

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Pretuning and fine tuning

ActivateRecover
Mode

Description

FALSE PID_Compact automatically switches to "Inactive" mode in the event of an error. The controller is only
activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If the following error occurs, PID_Compact remains in the active mode:
• 0020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 10000h: Invalid value at ManualValue parameter.
• 20000h: Invalid value at SubstituteOutput tag.
When any other error occurs, PID_Compact cancels the tuning and switches to the mode from which tun
ing was started.

Manual mode
ActivateRecoverMode is not effective in manual mode.

10.1.4.12 Warning tag as of V2

If several warnings are pending simultaneously, the values of the Warning tag are displayed
with binary addition. The display of the warning 16#0000_0003, for example, indicates that
the warnings 0000_0001 and 0000_0002 are pending simultaneously.

Warning
(DW#16#....)

Description

0000_0000 No warning pending.

0000_0001 The point of inflection was not found during pretuning.

0000_0004 The setpoint was limited to the configured limits.

0000_0008 Not all the necessary controlled system properties were defined for the selected method of calculation.
Instead, the PID parameters were calculated using the TIR.TuneRule = 3 method.

0000_0010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.

0000_0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.
Improve results by using shorter OB cycle times.

0000_0040 The process value exceeded one of its warning limits.

0000_0080 Invalid value at Mode. The operating mode is not switched.

0000_0100 The manual value was limited to the limits of the controller output.

0000_0200 The specified rule for tuning is not supported. No PID parameters are calculated.

0000_1000 The substitute output value cannot be reached because it is outside the output value limits.

The following warnings are deleted as soon as the cause is eliminated:
• 16#0000_0001
• 16#0000_0004
• 16#0000_0008
• 16#0000_0040
• 16#0000_0100
All other warnings are cleared with a rising edge at Reset or ErrorAck.

258
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.4.13 Tag IntegralResetMode as of V2

The IntegralResetMode tag determines how the integral action PIDCtrl.IntegralSum is pre-
assigned:
• When switching from "Inactive" operating mode to "Automatic mode"
• With edge TRUE -> FALSE at parameter Reset and parameter Mode = 3
This setting only works for one cycle and is only effective if the integral action is activated
(Retain.CtrlParams.Ti > 0.0 tag).

IntegralReset
Mode

Description

0 Smooth
The value of PIDCtrl.IntegralSum is pre-assigned so that the switchover is bumpless, which means
"Automatic mode" starts with the output value = 0.0 (parameter Output) and there is no jump of the out
put value regardless of the control deviation (setpoint – actual value).

1 Delete
We recommend setting the weighting of the proportional action (Retain.CtrlParams.PWeighting) to 1.0 if
this option is used.
The value of PIDCtrl.IntegralSum is deleted. Any control deviation will cause a jump change of the output
value. The direction of the output value jump depends on the configured weighting of the proportional
action (Retain.CtrlParams.PWeighting tag) and the control deviation:
• Proportional action weighting = 1.0:

Output value jump and control deviation have identical signs.
Example: If the actual value is smaller than the setpoint (positive control deviation), the output value
jumps to a positive value.

• Proportional action weighting < 1.0:
For large control deviations, the output value jump and control deviation have identical signs.
Example: If the actual value is much smaller than the setpoint (positive control deviation), the output
value jumps to a positive value.
For small control deviations, the output value jump and control deviation have different signs.
Example: If the actual value is just below the setpoint (positive control deviation), the output value
jumps to a negative value. This is usually not desirable, because it results in a temporary increase in
the control deviation.
The smaller the configured weighting of the proportional action, the greater the control deviation
must be to receive an output value jump with identical sign.

We recommend setting the weighting of the proportional action (Retain.CtrlParams.PWeighting) to 1.0
when this option is used. Otherwise, you may experience the undesirable behavior described for small
control deviations. Alternatively, you can also use IntegralResetMode = 4. This option guarantees identical
signs of the output value jump and control deviation independent of the configured weighting of the pro
portional action and the control deviation.

2 Hold
The value of PIDCtrl.IntegralSum is not changed. You can define a new value using the user program.

3 Pre-assign
The value of PIDCtrl.IntegralSum is automatically pre-assigned as if Output = OverwriteInitialOutputValue
in the last cycle.

4 Like setpoint change (only for PID_Compact with version ≥ 2.3)
The value of PIDCtrl.IntegralSum is automatically pre-assigned so that a similar output value jump results
as for a PI controller in automatic mode in case of a setpoint change from the current actual value to the
current setpoint.
Any control deviation will cause a jump of the output value. Output value jump and control deviation have
identical signs.
Example: If the actual value is smaller than the setpoint (positive control deviation), the output value
jumps to a positive value. This is independent of the configured weighting of the proportional action and
the control deviation.

259

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

If IntegralResetMode is assigned a value outside the valid value range, PID_Compact behaves
as with the pre-assignment of IntegralResetMode:
• PID_Compact up to V2.2: IntegralResetMode = 1
• PID_Compact as of V2.3: IntegralResetMode = 4
All statements made above regarding the sign of the output value jump are based on a
normal control logic (Config.InvertControl = FALSE tag). With an inverted control logic
(Config.InvertControl = TRUE), the output value jump will have a reverse sign.

10.1.4.14 Example program for PID_Compact V2

In the following example, you are controlling temperature values with the technology object
of the instruction "PID_Compact". The temperature values are simulated based on a block
which simulates a delay element of the third order (PT3 element). The PID parameters of the
technology object can be set automatically via the pretuning.

Data storage
Create seven tags in a global data block for storage of the interconnection data.

260
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Interconnection of the parameters
You call the following interconnections in a cyclic interrupt OB.
Network 1: You interconnect the parameters of the instruction "PID_Compact" as follows.

Network 2: You interconnect the parameters of the block simulating the temperature values
"SLI_PROC_C" as follows.

261

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Technology object
You configure the technology object with the properties of the instruction "PID_Compact" or
by using the path Technology object > Configuration. The controller type and the
input/output parameters are important for the example. With the controller type, you make a
preselection for the unit of the value to the controlled. In this example, "Temperature" with
the unit "°C" is used as controller type. The parameters of the "PID_Compact" are already
interconnected with global tags. Therefore, the information on use of the parameters Input
and Output is sufficient.

Procedure for starting the control
After the download to the CPU the PID_Compact is in manual mode with manual value 0.0.
To start the control, follow these steps:
1. Open the Commissioning of the technology object "SLI_Tech_PID_Compact".
2. Click the "Start" button in the "Measurement" area.

Measurement starts and PID_Compact can be activated.

262
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

3. Pretuning is selected.
Click the "Start" button in the "Tuning mode" area.
A pretuning is performed. The PID parameters are automatically adjusted to the process.
After the completion of the pretuning PID_Compact switches to automatic mode.

NOTE
Alternative to start PID_Compact
Alternatively, you can switch PID_Compact to automatic mode in the "Online status of
controller" area with the "Stop PID_Compact" / "Start PID_Compact" without pretuning. In
this case the controller uses default values for the PID parameters and shows a worse
controller behavior for the application case.

Procedure for stopping control
To stop and exit PID_Compact and the program, follow these steps:
1. Click the "Stop PID_Compact" button in the technology object "SLI_Tech_PID_Compact" in

the "Online status of controller" area.

The instruction "PID_Compact" exits the control and outputs the value "0.0" as
manipulated variable.

2. Click the "Stop" button in the "Measurement" area.
3. To set the process value immediately to the value "0.0", follow these steps:

In the block "SLI_OB_PID_Compact", set the "resetAll" tag to the value "TRUE", and then to
the value "FALSE".

263

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

"PID_Compact" instruction
The setpoint for the temperature that is to be controlled is specified at the parameter
Setpoint ("setpoint"). The control is started when the instruction "PID_Compact" was started
with the technology object. The instruction "PID_Compact" outputs a manipulated variable at
the output parameter Output ("outputValue"). The process value of the temperature is
transferred to the instruction "PID_Compact" with the input parameter Input ("inputValue").
The instruction "PID_Compact" adjusts the manipulated variable ("outputValue") depending
on the history of the difference between setpoint ("setpoint") and process value
("inputValue") . The process is repeated so that the process value ("inputValue") approaches
the setpoint ("setpoint") through the manipulated variable ("outputValue").
The current operating mode of the instruction "PID_Compact" is displayed at the output
parameter State ("state"). After pretuning (the value of "state" is "1"), the PID_Compact
switches to automatic mode (the value is "3").
The output parameter Error ("error") currently shows that no error is pending. The output
parameter ErrorBits ("errorBits") provides information on the error type in case of error. If an
error occurs, this can be acknowledged in the technology object, in the optimization status
area with the "ErrorAck" button.

264
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

"SLI_PROC_C" block
The "SLI_PROC_C" block simulates the process value ("inputValue") of the rising temperature
of a plant. The block "SLI_PROC_C" contains the manipulated variable of the controller
("outputValue) and simulates the temperature behavior of the process. This temperature is
fed as process value ("inputValue") into the controller.
A change in the values of the "resetAll" tag (of the comRst parameter) has the following
effects:

Parameter comRst
("resetAll")

The instruction "PID_Compact" is
running

The instruction "PID_Compact" was
stopped

comRst ("resetAll")
remains set to the value
"FALSE"

The "SLI_PROC_C" block outputs a new
process value ("inputValue") based on
a manipulated variable
("outputValue").

The "SLI_PROC_C" block does not
receive a manipulated variable > "0.0",
but it still outputs a new process value
> "0.0".

comRst ("resetAll"):
Change from "FALSE" to
the value "TRUE"

Both manipulated variable
("outputValue") and output process
value ("inputValue") are reset to "0.0".

The output process value
("inputValue") / the temperature of
the "SLI_PROC_C" block is reset to
"0.0".

comRst ("resetAll"):
Change from "TRUE" to
the value "FALSE"

Temperature control starts again. The output process value / the tem
perature ("inputValue") remains "0.0".

265

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Program code
You can find additional information about the program code for the above-named example
under the keyword "Sample Library for Instructions".

10.1.5 PID_Compact V1

10.1.5.1 Description of PID_Compact V1

Description
The PID_Compact instruction provides a PID controller with integrated tuning for automatic
and manual mode.

Call
PID_Compact is called in the constant interval of the cycle time of the calling OB (preferably in
a cyclic interrupt OB).

Download to device
The actual values of retentive tags are only updated when you download PID_Compact
completely.
Downloading technology objects to device (Page 46)

Startup
At the startup of the CPU, PID_Compact starts in the operating mode that was last active. To
retain PID_ Compact in "Inactive" mode, set sb_RunModeByStartup = FALSE.

Monitoring of the sampling time PID_Compact
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_Compact
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. If the current sampling time deviates too much from
this mean value, Error = 0800 hex occurs and PID_Compact switches to "Inactive" mode.
PID_Compact as of Version 1.1 is set to "Inactive" mode during controller tuning under the
following conditions:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
In automatic mode, PID_Compact, as of Version 1.1, is set to "Inactive" mode under the
following conditions:
• New mean value >= 1.5 x old mean value
• New mean value <= 0.5 x old mean value

266
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

During controller tuning and in automatic mode, PID_Compact 1.0 is set to "Inactive"
operating mode under the following conditions:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
• Current sampling time >= 1.5 x current mean value
• Current sampling time <= 0.5 x current mean value

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_Compact are executed at every call.

PID algorithm
PID_Compact is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The following equation is used to calculate the output value.

Symbol Description
y Output value
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (T1 = a × TD)

Derivative action time
c Derivative action weighting

267

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram of PID_Compact

Block diagram of PIDT1 with anti-windup

268
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Responses in the event of an error
If errors occur, they are output in parameter Error, and PID_Compact changes to "Inactive"
mode. Reset the errors using the Reset parameter.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control systems,
it may be necessary to invert the control logic. PID_Compact does not work with negative
proportional gain. If InvertControl = TRUE, an increasing control deviation causes a reduction
in the output value. The control logic is also taken into account during pretuning and fine
tuning.

See also
Control mode V1 (Page 95)

10.1.5.2 Input parameters of PID_Compact V1

Table 10-4

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Input REAL 0.0 A variable of the user program is used as source for the process value.
If you are using parameter Input, then
sPid_Cmpt.b_Input_PER_On = FALSE must be set.

Input_PER WORD W#16#0 Analog input as the source of the process value
If you are using parameter Input_PER, then
sPid_Cmpt.b_Input_PER_On = TRUE must be set.

ManualEnable BOOL FALSE • A FALSE -> TRUE edge selects "Manual mode", while State = 4,
sRet.i_Mode remains unchanged.

• A TRUE -> FALSE edge selects the most recently active operating
mode, State =sRet.i_Mode.

A change of sRet.i_Mode will not take effect during ManualEnable =
TRUE. The change of sRet.i_Mode will only be considered upon a
TRUE -> FALSE edge at ManualEnable .
PID_Compact V1.2 and PID_Compact V1.0
If at start of the CPU ManualEnable = TRUE, PID_Compact starts in manu
al mode. A rising edge (FALSE > TRUE) at ManualEnable is not neces
sary.
PID_Compact V1.1
At the start of the CPU, PID_Compact only switches to manual mode
with a rising edge (FALSE->TRUE) at ManualEnable . Without rising
edge, PID_Compact starts in the last operating mode in which
ManualEnable was FALSE.

ManualValue REAL 0.0 Manual value
This value is used as the output value in manual mode.

Reset BOOL FALSE The Reset parameter (Page 278) restarts the controller.

269

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

10.1.5.3 Output parameters of PID_Compact V1

Table 10-5

Parameter Data type Default Description
ScaledInput REAL 0.0 Output of the scaled process value

Outputs "Output", "Output_PER", and "Output_PWM" can be used concurrently.

Output REAL 0.0 Output value in REAL format

Output_PER WORD W#16#0 Analog output value

Output_PWM BOOL FALSE Pulse-width-modulated output value
The output value is formed by minimum On and Off times.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the setpoint absolute high limit is reached.
The setpoint in the CPU is limited to the configured setpoint absolute
high limit. The configured process value absolute high limit is the
default for the setpoint high limit.
If you set sPid_Cmpt.r_Sp_Hlm to a value within the process value lim
its, this value is used as the setpoint high limit.

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the setpoint absolute low limit has been
reached. In the CPU, the setpoint is limited to the configured setpoint
absolute low limit. The configured process value absolute low limit is
the default setting for the setpoint low limit.
If you set sPid_Cmpt.r_Sp_Llm to a value within the process value lim
its, this value is used as the setpoint low limit.

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or exceeded
the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or fallen
below the warning low limit.

State INT 0 The State parameter (Page 275) shows the current operating mode of
the PID controller. To change the operating mode, use variable
sRet.i_Mode.
• State = 0: Inactive
• State = 1: pretuning
• State = 2: fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode

Error DWORD W#16#0 The Error parameter (Page 277) indicates the error messages.
Error = 0000: No error pending.

270
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.1.5.4 Static tags of PID_Compact V1

NOTE
You must not change tags that are not listed. These are used for internal purposes only.
Change the tags identified with (1) only in "Inactive" mode to prevent malfunction of the PID
controller. "Inactive" mode is forced by setting the "sRet.i_Mode" tag to "0".

Table 10-6

Tag Data type Default Description
sb_GetCycleTime BOOL TRUE If sb_GetCycleTime = TRUE, the automatic determina

tion of the cycle time is started.
CycleTime.StartEstimation = FALSE once measurement
is complete.

sb_EnCyclEstimation BOOL TRUE If sb_EnCyclEstimation = TRUE, the PID_Compact
sampling time is calculated.

sb_EnCyclMonitoring BOOL TRUE If sb_EnCyclMonitoring = FALSE, the PID_Compact
sampling time is not monitored. If it is not possible to
execute PID_Compact within the sampling time, an
0800 error is not output and PID_Compact does not
change to "Inactive" mode.

sb_RunModeByStartup BOOL TRUE Activate Mode after CPU restart
If sb_RunModeByStartup = FALSE, the controller
remains inactive after a CPU startup.
If sb_RunModeByStartup = TRUE, the controller returns
to the last active operating mode after a CPU restart.

si_Unit INT 0 Unit of measurement of the process value and set
point, e.g., ºC, or ºF.

si_Type INT 0 Physical quantity of the process value and setpoint,
e.g., temperature.

sd_Warning DWORD DW#16#0 Variable sd_warning (Page 279) displays the warnings
generated since the reset, or since the last change of
the operating mode.

sBackUp.r_Gain REAL 1.0 Saved proportional gain
You can reload values from the sBackUp structure with
sPid_Cmpt.b_LoadBackUp = TRUE.

sBackUp.r_Ti REAL 20.0 Saved integral action time [s]

sBackUp.r_Td REAL 0.0 Saved derivative action time [s]

sBackUp.r_A REAL 0.0 Saved derivative delay coefficient

sBackUp.r_B REAL 0.0 Saved proportional action weighting factor

sBackUp.r_C REAL 0.0 Saved derivative action weighting factor

sBackUp.r_Cycle REAL 1.0 Saved sampling time of PID algorithm

sPid_Calc.r_Cycle(1) REAL 0.1 Sampling time of the PID_Compact instruction
r_Cycle is determined automatically and is usually
equivalent to the cycle time of the calling OB.

271

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
sPid_Calc.b_RunIn BOOL FALSE • b_RunIn = FALSE

Pretuning is started when fine tuning is started
from inactive or manual mode. If the requirements
for pretuning are not met, PID_Compact reacts as if
b_RunIn = TRUE.
If fine tuning is started from automatic mode, the
system uses the existing PID parameters to control
to the setpoint.
Only then will fine tuning start. If pretuning is not
possible, PID_Compact switches to "Inactive" mode.

• b_RunIn = TRUE
The pretuning is skipped. PID_3Compact tries to
reach the setpoint with minimum or maximum out
put value. This can produce increased overshoot.
Fine tuning then starts automatically.
b_RunIn is set to FALSE after fine tuning.

sPid_Calc.b_CalcParamSUT BOOL FALSE The parameters for pretuning will be recalculated if
b_CalcParamSUT = TRUE. This enables you to change
the parameter calculation method without having to
repeat controller tuning.
b_CalcParamSUT is set to FALSE after the calculation.

sPid_Calc.b_CalcParamTIR BOOL FALSE The parameters for fine tuning will be recalculated if
b_CalcParamTIR = TRUE. This enables you to change
the parameter calculation method without having to
repeat controller tuning.
b_CalcParamTIR will be set to FALSE after calculation.

sPid_Calc.i_CtrlTypeSUT INT 0 Methods used to calculate parameters during pretun
ing:
• i_CtrlTypeSUT = 0: PID according to Chien, Hrones

and Reswick
• i_CtrlTypeSUT = 1: PI according to Chien, Hrones

and Reswick

sPid_Calc.i_CtrlTypeTIR INT 0 Methods used to calculate parameters during fine tun
ing:
• i_CtrlTypeTIR = 0: PID automatic
• i_CtrlTypeTIR = 1: PID fast (faster control response

with higher amplitudes of the output value than
with i_CtrlTypeTIR = 2)

• i_CtrlTypeTIR = 2: PID slow (slower control response
with lower amplitudes of the output value than
with i_CtrlTypiTIR = 1)

• i_CtrlTypeTIR = 3: Ziegler-Nichols PID
• i_CtrlTypeTIR = 4: Ziegler-Nichols PI
• i_CtrlTypeTIR = 5: Ziegler-Nichols P
To be able to repeat the calculation of the PID paramet
ers with b_CalcParamTIR and i_CtrlTypeTIR = 0, 1 or 2,
the previous fine tuning also has to have been
executed with i_CtrlTypeTIR = 0, 1 or 2.
If this is not the case, i_CtrlTypeTIR = 3 is used.
The recalculation of the PID parameters with
b_CalcParamTIR and i_CtrlTypeTIR = 3, 4 or 5 is always
possible.

sPid_Calc.r_Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)

272
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
sPid_Cmpt.r_Sp_Hlm(1) REAL +3.402822e+

38
High limit of setpoint
If you configure sPid_Cmpt.r_Sp_Hlm outside the pro
cess value limits, the configured process value abso
lute high limit is used as the setpoint high limit.
If you configure sPid_Cmpt.r_Sp_Hlm within the pro
cess value limits, this value is used as the setpoint high
limit.

sPid_Cmpt.r_Sp_Llm(1) REAL -3.402822e+3
8

Low limit of the setpoint
If you set sPid_Cmpt.r_Sp_Llm outside the process
value limits, the configured process value absolute low
limit is used as the setpoint low limit.
If you set sPid_Cmpt.r_Sp_Llm within the process value
limits, this value is used as the setpoint low limit.

sPid_Cmpt.r_Pv_Norm_IN_1(1) REAL 0.0 Scaling Input_PER low
Input_PER is converted to a percentage based on the
two value pairs r_Pv_Norm_OUT_1, r_Pv_Norm_IN_1
and r_Pv_Norm_OUT_2, r_Pv_Norm_IN_2 of the
sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_IN_2(1) REAL 27648.0 Scaling Input_PER high
Input_PER is converted to a percentage based on the
two value pairs r_Pv_Norm_OUT_1, r_Pv_Norm_IN_1
and r_Pv_Norm_OUT_2, r_Pv_Norm_IN_2 of the
sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_OUT_1(1) REAL 0.0 Scaled low process value
Input_PER is converted to a percentage based on the
two value pairs r_Pv_Norm_OUT_1, r_Pv_Norm_IN_1
and r_Pv_Norm_OUT_2, r_Pv_Norm_IN_2 of the
sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_OUT_2(1) REAL 100.0 Scaled high process value
Input_PER is converted to a percentage based on the
two value pairs r_Pv_Norm_OUT_1, r_Pv_Norm_IN_1
and r_Pv_Norm_OUT_2, r_Pv_Norm_IN_2 of the
sPid_Cmpt structure.

sPid_Cmpt.r_Lmn_Hlm(1) REAL 100.0 Output value high limit for output parameter "Output"

sPid_Cmpt.r_Lmn_Llm(1) REAL 0.0 Low output value limit for output parameter "Output"

sPid_Cmpt.b_Input_PER_On(1) BOOL TRUE If b_Input_PER_On = TRUE, the Input_PER parameter is
used. If b_Input_PER_On = FALSE, the Input parameter
is used.

sPid_Cmpt.b_LoadBackUp BOOL FALSE Activate the back-up parameter set. If an optimization
has failed, you can reactivate the previous PID para
meters by setting this bit.

sPid_Cmpt.b_InvCtrl(1) BOOL FALSE Invert control logic
If b_InvCtrl = TRUE, an increasing control deviation
causes a reduction in the output value.

sPid_Cmpt.r_Lmn_Pwm_PPTm(1) REAL 0.0 The minimum ON time of the pulse width modulation
in seconds is rounded to
r_Lmn_Pwm_PPTm = r_Cycle or
r_Lmn_Pwm_PPTm = n*r_Cycle

273

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
sPid_Cmpt.r_Lmn_Pwm_PBTm(1) REAL 0.0 The minimum OFF time of the pulse width modulation

in seconds is rounded to
r_Lmn_Pwm_PBTm = r_Cycle or
r_Lmn_Pwm_PBTm = n*r_Cycle

sPid_Cmpt.r_Pv_Hlm(1) REAL 120.0 High limit of the process value
At the I/O input, the process value can be a maximum
of 18% higher than the standard range (overrange). An
error is no longer reported for a violation of the
"Process value high limit". Only a wire-break and a
short-circuit are recognized and the PID_Compact
switches to "Inactive" mode.
r_Pv_Hlm > r_Pv_Llm

sPid_Cmpt.r_Pv_Llm(1) REAL 0.0 Low limit of the process value
r_Pv_Llm < r_Pv_Hlm

sPid_Cmpt.r_Pv_HWrn(1) REAL +3.402822e+
38

Warning high limit of the process value
If you set r_Pv_HWrn outside the process value limits,
the configured process value absolute high limit is
used as the warning high limit.
If you configure r_Pv_HWrn within the process value
limits, this value is used as the warning high limit.
r_Pv_HWrn > r_Pv_LWrn
r_Pv_HWrn ≤ r_Pv_Hlm

sPid_Cmpt.r_Pv_LWrn(1) REAL -3.402822e+3
8

Warning low limit of the process value
If you set r_Pv_LWrn outside the process value limits,
the configured process value absolute low limit is used
as the warning low limit.
If you configure r_Pv_LWrn within the process value
limits, this value is used as the warning low limit.
r_Pv_LWrn < r_Pv_HWrn
r_Pv_LWrn ≥ r_Pv_LWrn

sPidCalc.i_Ctrl_IOutv(1) REAL 0.0 Current integral action

sParamCalc.i_Event_SUT INT 0 Variable i_Event_SUT (Page 280) indicates the current
phase of "pretuning":

sParamCalc.i_Event_TIR INT 0 Variable i_Event_TIR (Page 280) indicates the current
phase of "fine tuning":

sRet.i_Mode INT 0 The operating mode is changed edge-triggered.
The following operating mode is enabled on a change
to
• i_Mode = 0: "Inactive" mode (controller stop)
• i_Mode = 1: "Pretuning" mode
• i_Mode = 2: "Fine tuning" mode
• i_Mode = 3: "Automatic" mode
• i_Mode = 4: "Manual" mode
i_Mode is retentive.

sRet.r_Ctrl_Gain(1) REAL 1.0 Active proportional gain
Gain is retentive.

sRet.r_Ctrl_Ti(1) REAL 20.0 • r_Ctrl_Ti > 0.0: Active integral action time
• r_Ctrl_Ti = 0.0: Integral action is deactivated
r_Ctrl_Ti is retentive.

274
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Tag Data type Default Description
sRet.r_Ctrl_Td(1) REAL 0.0 • r_Ctrl_Td > 0.0: Active derivative action time

• r_Ctrl_Td = 0.0: Derivative action is deactivated
r_Ctrl_Td is retentive.

sRet.r_Ctrl_A(1) REAL 0.0 Active derivative delay coefficient
r_Ctrl_A is retentive.

sRet.r_Ctrl_B(1) REAL 0.0 Active proportional action weighting
r_Ctrl_B is retentive.

sRet.r_Ctrl_C(1) REAL 0.0 Active derivative action weighting
r_Ctrl_C is retentive.

sRet.r_Ctrl_Cycle(1) REAL 1.0 Active sampling time of the PID algorithm
r_Ctrl_Cycle is calculated during tuning and rounded to
an integer multiple of r_Cycle.
r_Ctrl_Cycle is used as time period of the pulse width
modulation.
r_Ctrl_Cycle is retentive.

See also
Downloading technology objects to device (Page 46)

10.1.5.5 Parameters State and sRet.i_Mode V1

Correlation of the parameters
The State parameter indicates the current operating mode of the PID controller. You cannot
modify the State parameter.
You need to modify the sRet.i_Mode tag to change the operating mode. This also applies
when the value for the new operating mode is already in sRet.i_Mode. First set sRet.i_Mode =
0 and then sRet.i_Mode = 3. Provided the current operating mode of the controller supports
this change, State is set to the value of sRet.i_Mode.
When PID_Compact automatically switches the operating mode, the following applies: State
!= sRet.i_Mode.
Examples:
• Successful pretuning

State = 3 and sRet.i_Mode = 1
• Error

State = 0 and sRet.i_Mode remains at the same value, e.g sRet.i_Mode = 3
• ManualEnalbe = TRUE

State = 4 and sRet.i_Mode remain at the previous value, for example, sRet.i_Mode = 3

NOTE
You wish to repeat successful fine tuning without exiting automatic mode with
i_Mode = 0.
Setting sRet.i_Mode to an invalid value such as 9999 for one cycle has no effect on State.
Set Mode = 2 in the next cycle. You can generate a change to sRet.i_Mode without first
switching to "inactive" mode.

275

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Meaning of values

State /
sRet.i_Mode

Description of the operating mode

0 Inactive
The controller is switched off.
The controller was in "inactive" mode before pretuning was performed.
The PID controller will change to "inactive" mode when running if an error occurs or if the "Deactivate
controller" icon is clicked in the commissioning window.

1 Pretuning
The pretuning determines the process response to a jump of the output value and searches for the point of
inflection. The optimized PID parameters are calculated as a function of the maximum rate of rise and dead
time of the controlled system.
Pretuning requirements:
• The controller is in inactive mode or manual mode
• ManualEnable = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |sPid_Cmpt.r_Pv_Hlm - sPid_Cmpt.r_Pv_Llm| and
|Setpoint - Input| > 0.5 * |Setpoint|

• The setpoint may not be changed during pretuning.
The higher the stability of the process value, the easier it is to calculate the PID parameters and increase preci
sion of the result. Noise on the process value can be tolerated as long as the rate of rise of the process value is
significantly higher compared to the noise.
PID parameters are backed up before they are recalculated and can be reactivated with
sPid_Cmpt.b_LoadBackUp.
There is a change to automatic mode following successful pretuning and to "inactive" mode following unsuc
cessful pretuning.
The phase of pretuning is indicated with Tag i_Event_SUT V1 (Page 280).

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are optimized
based on the amplitude and frequency of this oscillation. The differences between the process response dur
ing pretuning and fine tuning are analyzed. All PID parameters are recalculated on the basis of the findings.
PID parameters from fine tuning usually have better master control and disturbance behavior than PID para
meters from pretuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
PID parameters are backed up before they are recalculated and can be reactivated with
sPid_Cmpt.b_LoadBackUp.
Requirements for fine tuning:
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• The setpoint may not be changed during fine tuning.
• ManualEnable = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started in:
• Automatic mode (State = 3)

Start fine tuning in automatic mode if you wish to improve the existing PID parameters using controller
tuning.
PID_Comact will regulate using the existing PID parameters until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual (State = 4) mode
If the requirements for pretuning are met, pretuning is started. The PID parameters established will be
used for adjustment until the control loop has stabilized and the requirements for fine tuning have been
met. Only then will fine tuning start. If pretuning is not possible, PID_Compact will change to "Inactive"
mode.

276
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

State /
sRet.i_Mode

Description of the operating mode

An attempt is made to reach the setpoint with a minimum or maximum output value if the process value
for pretuning is already too near the setpoint or sPid_Calc.b_RunIn = TRUE. This can produce increased
overshoot.

The controller will change to "automatic mode" after successfully completed "fine tuning" and to "inactive"
mode if "fine tuning" has not been successfully completed.
The "Fine tuning" phase is indicated with Tag i_Event_TIR V1 (Page 280).

3 Automatic mode
In automatic mode, PID_Compact corrects the controlled system in accordance with the parameters specified.
The controller changes to automatic mode if one the following conditions is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Change of variable sRet.i_Mode to the value 3.
After CPU startup or change from Stop to RUN mode, PID_Compact will start in the most recently active oper
ating mode. To retain PID_Compact in "Inactive" mode, set sb_RunModeByStartup = FALSE.

4 Manual mode
In manual mode, you specify a manual output value in the ManualValue parameter.
This operating mode is enabled if sRet.i_Mode = 4, or at the rising edge on ManualEnable. If ManualEnable
changes to TRUE, only State will change. sRet.i_Mode will retain its current value. PID_Compact will return to
the previous operating mode upon a falling edge at ManualEnable.
The change to automatic mode is bumpless.

See also
Output parameters of PID_Compact V1 (Page 270)
Pretuning V1 (Page 106)
Fine tuning V1 (Page 107)
"Manual" mode V1 (Page %getreference)
Tag i_Event_SUT V1 (Page 280)
Tag i_Event_TIR V1 (Page 280)

10.1.5.6 Parameter Error V1

If several errors are pending simultaneously, the values of the error codes are displayed with
binary addition. The display of error code 0003, for example, indicates that the errors 0001
and 0002 are pending simultaneously.

Error
 (DW#16#...)

Description

0000 There is no error.

0001 The "Input" parameter is outside the process value limits.
• Input > sPid_Cmpt.r_Pv_Hlm or
• Input < sPid_Cmpt.r_Pv_Llm
You cannot move the actuator again until you eliminate the error.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.

0004 Error during fine tuning. Oscillation of the process value could not be maintained.

0008 Error at start of pretuning. The process value is too close to the setpoint. Start fine tuning.

0010 The setpoint was changed during tuning.

0020 Pretuning is not permitted in automatic mode or during fine tuning.

277

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

Error
 (DW#16#...)

Description

0080 Error during pretuning. The output value limits are not configured correctly or the actual value does not
react as expected.
Check whether the limits of the output value are configured correctly and match the control logic.
Also make sure that the actual value does not oscillate strongly before starting pretuning.

0100 Error during tuning resulted in invalid parameters.

0200 Invalid value at "Input" parameter: Value has an invalid number format.

0400 Calculation of output value failed. Check the PID parameters.

0800 Sampling time error: PID_Compact is not called within the sampling time of the cyclic interrupt OB.
If this error occurred during simulation with PLCSIM, see the notes under Simulating PID_Compact V1 with
PLCSIM (Page 110).

1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.

See also
Output parameters of PID_Compact V1 (Page 270)

10.1.5.7 Reset V1 parameter

The response to Reset = TRUE depends on the version of the PID_Compact instruction.

Reset response PID_Compact as of Version 1.1
A rising edge at Reset triggers a change to "Inactive" mode; errors and warnings are reset and
the integral action is deleted. A falling edge at Reset triggers a change to the most recently
active operating mode. If automatic mode was active before, the integral action is pre-
assigned in such a way that the switchover is bumpless.

① Activation
② Error
③ Reset

278
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

Reset response PID_Compact V.1.0
A rising edge at Reset triggers a change to "Inactive" mode; errors and warnings are reset and
the integral action is deleted. The controller is not reactivated until the next edge at i_Mode.

① Activation
② Error
③ Reset

10.1.5.8 Tag sd_warning V1

If several warnings are pending, the values of variable sd_warning are displayed by means of
binary addition. The display of warning 0003, for example, indicates that the warnings 0001
and 0002 are also pending.

sd_warning
(DW#16#....)

Description

0000 No warning pending.

0001 The point of inflection was not found during pretuning.

0002 Oscillation increased during fine tuning.

0004 The setpoint was outside the set limits.

0008 Not all the necessary controlled system properties were defined for the selected method of calculation. The
PID parameters were instead calculated using the "i_CtrlTypeTIR = 3" method.

0010 The operating mode could not be changed because ManualEnable = TRUE.

0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.
Improve results by using shorter OB cycle times.

0040 The process value exceeded one of its warning limits.

279

Instructions
10.1 PID_Compact

PID control
Function Manual, 11/2023, A5E35300227-AG

The following warnings are deleted as soon as the cause is dealt with:
• 0004
• 0020
• 0040
All other warnings are cleared with a rising edge at Reset.

10.1.5.9 Tag i_Event_SUT V1

i_Event_SUT Name Description
0 SUT_INIT Initialize pretuning

100 SUT_STDABW Calculate the standard deviation

200 SUT_GET_POI Find the point of inflection

9900 SUT_IO Pretuning successful

1 SUT_NIO Pretuning not successful

See also
Static tags of PID_Compact V1 (Page 271)
Parameters State and sRet.i_Mode V1 (Page 275)

10.1.5.10 Tag i_Event_TIR V1

i_Event_TIR Name Description
-100 TIR_FIRST_SUT Fine tuning is not possible. Pretuning will be executed first.

0 TIR_INIT Initialize fine tuning

200 TIR_STDABW Calculate the standard deviation

300 TIR_RUN_IN Attempt to reach the setpoint

400 TIR_CTRLN Attempt to reach the setpoint with the existing PID parameters
(if pretuning has been successful)

500 TIR_OSZIL Determine oscillation and calculate parameters

9900 TIR_IO Fine tuning successful

1 TIR_NIO Fine tuning not successful

See also
Static tags of PID_Compact V1 (Page 271)
Parameters State and sRet.i_Mode V1 (Page 275)

280
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.1 PID_Compact

10.2 PID_3Step

10.2.1 New features of PID_3Step

PID_3Step V2.3
• As of PID_3Step Version 2.3 the monitoring and limiting of the travel time can be

deactivated with Config.VirtualActuatorLimit = 0.0.

PID_3Step V2.2
• Use with S7-1200

As of PID_3Step V2.2, the instruction with V2 functionality can also be used on S7-1200
with firmware version 4.0 or higher.

PID_3Step V2.0
• Reaction to error

The reaction to ActivateRecoverMode = TRUE has been completely overhauled. PID_3Step
reacts in a more fault tolerant manner in the default setting.

NOTICE
Your system may be damaged.
If you use the default setting, PID_3Step remains in automatic mode even if the process
value limits are exceeded. This may damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

You use the ErrorAck input parameter to acknowledge the errors and warnings without
restarting the controller or clearing the integral action.
Switching operating modes does not acknowledge errors that are no longer pending.

• Switching the operating mode
You specify the operating mode at the Mode in/out parameter and use a positive edge at
ModeActivate to start the operating mode. The Retain.Mode tag has been omitted.
The transition time measurement can no longer be started with GetTransitTime.Start, but
only with Mode = 6 and a positive edge at ModeActivate.

• Multi-instance capability
You can call up PID_3Step as multi-instance DB.

• Startup characteristics
The operating mode specified at the Mode parameter is also started on a negative edge at
Reset and during a CPU cold restart, if RunModeByStartup = TRUE.

• ENO characteristics
ENO is set depending on the operating mode.
If State = 0, then ENO = FALSE.
If State ≠ 0, then ENO = TRUE.

281

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

• Manual mode
The Manual_UP and Manual_DN input parameters no longer function as edge-triggered
parameters. Edge-triggered manual mode continues to be possible using the
ManualUpInternal and ManualDnInternal tags.
In "Manual mode without endstop signals" (Mode = 10), the endstop signals Actuator_H
and Actuator_L are ignored even though they are activated.

• Default value of PID parameters
The following default settings have been changed:
– Proportional action weighting (PWeighting) from 0.0 to 1.0
– Derivative action weighting (DWeighting) from 0.0 to 1.0
– Coefficient for derivative delay (TdFiltRatio) from 0.0 to 0.2

• Limiting of motor transition time
You configure the maximum percentage of the motor transition time that the actuator will
travel in one direction in the Config.VirtualActuatorLimit tag.

• Setpoint value specification during tuning
You configure the permitted fluctuation of the setpoint during tuning at the
CancelTuningLevel tag.

• Switching a disturbance variable on
You can switch a disturbance variable on at the Disturbance parameter.

• Troubleshooting
If the endstop signals are not activated (ActuatorEndStopOn = FALSE), ScaledFeedback is
determined without Actuator_H or Actuator_L.

PID_3Step V1.1
• Manual mode on CPU startup

If ManualEnable = TRUE when the CPU starts, PID_3Step starts in manual mode. A positive
edge at ManualEnable is not necessary.

• Reaction to error
The ActivateRecoverMode tag is no longer effective in manual mode.

• Troubleshooting
The Progress tag is reset following successful tuning or transition time measurement.

10.2.2 Compatibility with CPU and FW
The following table shows which version of PID_3Step can be used on which CPU.

CPU FW PID_3Step
V4.2 or higher V2.3

V2.2
V1.1

V4.0 to V4.1 V2.2
V1.1

V3.x V1.1
V1.0

S7-1200

V2.x V1.1
V1.0

282
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

CPU FW PID_3Step
S7-1200 V1.x -

V3.0 or higher V2.3

V2.0 to V2.9 V2.3
V2.2
V2.1
V2.0

V1.5 to V1.8 V2.2
V2.1
V2.0

V1.1 V2.1
V2.0

S7-1500

V1.0 V2.0

283

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

10.2.3 CPU processing time and memory requirement PID_3Step V2.x

CPU processing time
Typical CPU processing times of the PID_3Step technology object as of Version V2.0,
depending on CPU type and operating mode for standard, F, T and TF CPUs.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1211

CPU 1212

CPU 1214

CPU 1215

CPU 1217

≥ V4.0 260 µs 310 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

80 µs 95 µs

CPU 1515

CPU 1516

≤ V2.9

70 µs 80 µs

CPU 1517 11 µs 15 µs

CPU 1518

Every

5 µs 7 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

CPU 1514SP

65 µs 85 µs

CPU 1515

CPU 1516

≥ V3.0

50 µs 70 µs

Typical CPU processing times of the PID_3Step technology object as of Version V2.0,
depending on the CPU type and operating mode for R-CPUs in the RUN-Redundant system
state.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1513R 110 µs 150 µs

CPU 1515R

≥ V3.0

85 µs 100 µs

284
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Memory requirement
Memory requirement of an instance DB of the PID_3Step technology object as of Version
V2.0.

Memory requirement Memory requirement of the instance DB of PID_3Step
V2.x

Load memory requirement Approx. 4400 bytes

Total work memory requirement 1040 bytes

Retentive work memory requirement 60 bytes

10.2.4 PID_3Step V2

10.2.4.1 Description of PID_3Step V2

Description
You use the PID_3Step instruction to configure a PID controller with self tuning for valves or
actuators with integrating behavior.
The following operating modes are possible:
• Inactive
• Pretuning
• Fine tuning
• Automatic mode
• Manual mode
• Approach substitute output value
• Transition time measurement
• Error monitoring
• Approach substitute output value with error monitoring
• Manual mode without endstop signals
For a more detailed description of the operating modes, see the State parameter.

285

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

PID algorithm
PID_3Step is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation:

Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
TD Derivative action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
c Derivative action weighting

Block diagram without position feedback

286
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Block diagram with position feedback

287

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram of PIDT1 with anti-windup

Call
PID_3Step is called in the constant time scale of a cyclic interrupt OB.

Download to device
The actual values of retentive tags are only updated when you download PID_3Step
completely.
Downloading technology objects to device (Page 46)

Startup
When the CPU starts up, PID_3Step starts in the operating mode that is saved in the Mode
in/out parameter. To retain PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.

288
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Responses in the event of an error
In automatic mode and during commissioning, the response in the event of an error depends
on the ErrorBehaviour and ActivateRecoverMode tags. In manual mode, the reaction is
independent of ErrorBehaviour and ActivateRecoverMode. If ActivateRecoverMode = TRUE,
the reaction additionally depends on the error that occurred.

ErrorBeha
viour

ActivateRecov
erMode

Configuration editor
> actuator setting
> Set Output to

Reaction

FALSE FALSE Current output value Switch to "Inactive" mode (State = 0)
The actuator remains in the current posi
tion.

FALSE TRUE Current output value while
error is pending

Switch to "Error monitoring" mode
(State = 7)
The actuator remains in the current posi
tion while the error is pending.

TRUE FALSE Substitute output value Switch to "Approach substitute output
value" mode (State = 5)
The actuator moves to the configured sub
stitute output value.
Switch to "Inactive" mode (State = 0)
The actuator remains in the current posi
tion.

TRUE TRUE Substitute output value while
error is pending

Switch to "Approach substitute output
value with error monitoring" mode
(State = 8)
The actuator moves to the configured sub
stitute output value.
Switch to "Error monitoring" mode
(State = 7)

In manual mode, PID_3Step uses ManualValue as output value, unless the following errors
occur:
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.
You can only change the position of the actuator with Manual_UP and Manual_DN, not with
ManualValue.
The Error parameter indicates whether an error has occurred in this cycle. The ErrorBits
parameter shows which errors have occurred. ErrorBits is reset by a rising edge at Reset or
ErrorAck.

See also
State and Mode V2 parameters (Page 305)
ErrorBits V2 parameter (Page 310)
Configuring PID_3Step V2 (Page 112)

289

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

10.2.4.2 Mode of operation of PID_3Step V2

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0001h).
You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warning = 0040h), and the InputWarning_H
or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_3Step automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller range. PID_3Step checks whether this
range falls within the process value limits. If the setpoint is outside these limits, the high or
low limit is used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is
set to TRUE.
The setpoint is limited in all operating modes.

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit tags. The output value limits must be within "Low endstop" and
"High endstop".
• High endstop: Config.FeedbackScaling.UpperPointOut
• Low endstop: Config.FeedbackScaling.LowerPointOut
Rule:
UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut
The valid values for "High endstop" and "Low endstop" depend upon:
• FeedbackOn
• FeedbackPerOn
• OutputPerOn

OutputPerOn FeedbackOn FeedbackPerOn LowerPointOut UpperPointOut
FALSE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)

FALSE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%

FALSE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

TRUE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)

TRUE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%

TRUE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

If OutputPerOn = FALSE and FeedbackOn = FALSE, you cannot limit the output value.
Output_UP and Output_DN are then reset upon Actuator_H = TRUE or Actuator_L = TRUE. If
endstop signals are also not present, Output_UP and Output_DN are reset after a travel time

290
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

of Config.VirtualActuatorLimit × Retain.TransitTime/100. As of PID_3Step Version 2.3 the
monitoring and limiting of the travel time can be deactivated with
Config.VirtualActuatorLimit = 0.0.
The output value is 27648 at 100% and -27648 at -100%. PID_3Step must be able to
completely close the valve.

NOTE
Use with two or more actuators
PID_3 Step is not suitable for use with two or more actuators (for example, in heating/cooling
applications), because different actuators need different PID parameters to achieve a good
control response.

Substitute output value
If an error has occurred, PID_3Step can output a substitute output value and move the
actuator to a safe position that is specified in the SavePosition tag. The substitute output
value must be within the output value limits.

Monitoring signal validity
The values of the following parameters are monitored for validity when used:
• Setpoint
• Input
• Input_PER
• Input_PER
• Feedback
• Feedback_PER
• Disturbance
• ManualValue
• SavePosition
• Output_PER

Monitoring the PID_3Step sampling time
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_3Step
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current
sampling time and this mean value triggers an error (ErrorBits = 0800h).
The error occurs during tuning if:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
The error occurs in automatic mode if:
• New mean value >= 1.5 x old mean value
• New mean value <= 0.5 x old mean value

291

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_3Step in OB1. You must then accept a lower control quality due to the deviating
sampling time.

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_3Step are executed at every call.

Measuring the motor transition time
The motor transition time is the time in seconds the motor requires to move the actuator
from the closed to the opened state. The actuator is moved in one direction for a maximum
time of Config.VirtualActuatorLimit × Retain.TransitTime/100. PID_3Step requires the motor
transition time to be as accurate as possible for good controller results. The data in the
actuator documentation contains average values for this type of actuator. The value for the
specific actuator used may differ. You can measure the motor transition time during
commissioning. The output value limits are not taken into consideration during the motor
transition time measurement. The actuator can travel to the high or the low endstop.
The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior. You should therefore configure
the motor transition time with the value that the motor requires to move the actuator from
the closed to the opened state.
If no relevant motor transition time is in effect in your process (e.g. with solenoid valves), so
that the output value has a direct and full effect on the process, use PID_Compact instead.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control systems,
it may be necessary to invert the control logic. PID_3Step does not work with negative
proportional gain. If InvertControl = TRUE, an increasing control deviation causes a reduction
in the output value. The control logic is also taken into account during pretuning and fine
tuning.

See also
Configuring PID_3Step V1 (Page 129)

292
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

10.2.4.3 Changing the PID_3Step V2 interface

The following table shows what has changed in the PID_3Step instruction interface.

PID_3Step V1 PID_3Step V2 Change
Input_PER Input_PER Data type from Word to Int

Feedback_PER Feedback_PER Data type from Word to Int

Disturbance New

Manual_UP Manual_UP Function

Manual_DN Manual_DN Function

ErrorAck New

ModeActivate New

Output_PER Output_PER Data type from Word to Int

ManualUPInternal New

ManualDNInternal New

CancelTuningLevel New

VirtualActuatorLImit New

Config.Loadbackup Loadbackup Renamed

Config.TransitTime Retain.TransitTime Renamed and retentivity added

GetTransitTime.Start Replaced by Mode and ModeActivate

SUT.CalculateSUTParams SUT.CalculateParams Renamed

SUT.TuneRuleSUT SUT.TuneRule Renamed

TIR.CalculateTIRParams TIR.CalculateParams Renamed

TIR.TuneRuleTIR TIR.TuneRule Renamed

Retain.Mode Mode Function
Declaration of static for in-out parameters

10.2.4.4 Input parameters of PID_3Step V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-7

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Input REAL 0.0 A tag of the user program is used as source for the process
value.
If you are using parameter Input, then
Config.InputPerOn = FALSE must be set.

Input_PER INT 0 An analog input is used as the source of the process value.
If you are using parameter Input_PER, then
Config.InputPerOn = TRUE must be set.

Actuator_H BOOL FALSE Digital position feedback of the valve for the high endstop
If Actuator_H = TRUE, the valve is at the high endstop and is no
longer moved towards this direction.

293

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameter Data type Default Description
Actuator_L BOOL FALSE Digital position feedback of the valve for the low endstop

If Actuator_L = TRUE, the valve is at the low endstop and is no
longer moved towards this direction.

Feedback REAL 0.0 Position feedback of the valve
If you are using parameter Feedback, then
Config.FeedbackPerOn = FALSE must be set.

Feedback_PER INT 0 Analog position feedback of a valve
If you are using parameter Feedback_PER, then
Config.FeedbackPerOn = TRUE must be set.
Feedback_PER is scaled based on the tags:
• Config.FeedbackScaling.LowerPointIn
• Config.FeedbackScaling.UpperPointIn
• Config.FeedbackScaling.LowerPointOut
• Config.FeedbackScaling.UpperPointOut

Disturbance REAL 0.0 Disturbance variable or precontrol value

ManualEnable BOOL FALSE • A FALSE -> TRUE edge activates "manual mode", while State
= 4, Mode remains unchanged.
As long as ManualEnable = TRUE, you cannot change the
operating mode via a rising edge at ModeActivate or use the
commissioning dialog.

• A TRUE -> FALSE edge activates the operating mode that is
specified by Mode.

We recommend that you change the operating mode using
ModeActivate only.

ManualValue REAL 0.0 In manual mode, the absolute position of the valve is specified.
ManualValue is only evaluated if you are using Output_PER, or if
position feedback is available.

Manual_UP BOOL FALSE • Manual_UP = TRUE
The valve is opened even if you are using Output_PER or a
position feedback. The valve is no longer moved if the high
endstop has been reached.
See also Config.VirtualActuatorLimit

• Manual_UP = FALSE
If you are using Output_PER or a position feedback, the
valve is moved to ManualValue. Otherwise, the valve is no
longer moved.

If Manual_UP and Manual_DN are set to TRUE simultaneously,
the valve is not moved.

Manual_DN BOOL FALSE • Manual_DN = TRUE
The valve is closed even if you are using Output_PER or a
position feedback. The valve is no longer moved if the low
endstop has been reached.
See also Config.VirtualActuatorLimit

• Manual_DN = FALSE
If you are using Output_PER or a position feedback, the
valve is moved to ManualValue. Otherwise, the valve is no
longer moved.

294
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Parameter Data type Default Description
ErrorAck BOOL FALSE • FALSE -> TRUE edge

ErrorBits and Warning are reset.

Reset BOOL FALSE Restarts the controller.
• FALSE -> TRUE edge

– Switch to "Inactive" mode
– ErrorBits and Warnings are reset.

• As long as Reset = TRUE,
– PID_3Step remains in "Inactive" mode (State = 0).
– You cannot change the operating mode with Mode and

ModeActivate or ManualEnable.
– You cannot use the commissioning dialog.

• TRUE -> FALSE edge
– If ManualEnable = FALSE, PID_3Step switches to the

operating mode that is saved in Mode.
– If Mode = 3, the switchover to Automatic mode is bump

less.

ModeActivate BOOL FALSE • FALSE -> TRUE edge
PID_3Step switches to the operating mode that is saved in
the Mode parameter.

10.2.4.5 Output parameters of PID_3Step V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-8

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value

ScaledFeedback REAL 0.0 Scaled position feedback
For an actuator without position feedback, the position of the
actuator indicated by ScaledFeedback is very imprecise.
ScaledFeedback may only be used for rough estimation of the
current position in this case.

Output_UP BOOL FALSE Digital output value for opening the valve
If Config.OutputPerOn = FALSE, the Output_UP parameter is
used.

Output_DN BOOL FALSE Digital output value for closing the valve
If Config.OutputPerOn = FALSE, the Output_DN parameter is
used.

Output_PER INT 0 Analog output value
If Config.OutputPerOn = TRUE, Output_PER is used.
Use Output_PER if you are using a valve as actuator which is
triggered via an analog output and controlled with a continu
ous signal, e.g. 0...10 V or 4...20 mA.
The value at Output_PER corresponds to the target position of
the valve, e.g. Output_PER = 13824, when the valve is to be
opened by 50%.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is
reached (Setpoint ≥ Config.SetpointUpperLimit).
The setpoint is limited to Config.SetpointUpperLimit .

295

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameter Data type Default Description
SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit has

been reached (Setpoint ≤ Config.SetpointLowerLimit).
The setpoint is limited to Config.SetpointLowerLimit .

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or
exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or
fallen below the warning low limit.

State INT 0 The State parameter (Page 305) shows the current operating
mode of the PID controller. You can change the operating
mode using the input parameter Mode and a rising edge at
ModeActivate.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Approach substitute output value
• State = 6: Transition time measurement
• State = 7: Error monitoring
• State = 8: Approach substitute output value with error

monitoring
• State = 10: Manual mode without endstop signals

Error BOOL FALSE If Error = TRUE, at least one error message is pending in this
cycle.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 310) shows which error mes
sages are pending. ErrorBits is retentive and is reset upon a
rising edge at Reset or ErrorAck.

See also
State and Mode V2 parameters (Page 305)
ErrorBits V2 parameter (Page 310)

10.2.4.6 In/out parameters of PID-3Step V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-9

Parameter Data type Default Description
Mode INT 4 At the Mode parameter, you specify the operating mode to

which PID_3Step is to switch. Options are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
• Mode = 6: Transition time measurement
• Mode = 10: Manual mode without endstop signals

296
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Parameter Data type Default Description
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if RunModeByStartup = TRUE
Mode is retentive.
A detailed description of the operating modes can be found in
State and Mode V2 parameters (Page 305).

10.2.4.7 Static tags of PID_3Step V2

NOTE
Change the tags identified with (1) only in "Inactive" mode to prevent malfunction of the PID
controller.

The names of the following variables apply both to the data block and to access via the
Openness API.

Tag Data type Default Description
ManualUpInternal BOOL FALSE In manual mode, each rising edge opens the valve by 5% of the total

control range or for the duration of the minimum motor transition
time. ManualUpInternal is only evaluated if you are not using
Output_PER or a position feedback. This tag is used in the commis
sioning dialog.

ManualDnInternal BOOL FALSE In manual mode, every rising edge closes the valve by 5% of the
total control range or for the duration of the minimum motor trans
ition time. ManualDnInternal is only evaluated if you are not using
Output_PER or position feedback. This tag is used in the commission
ing dialog.

ActivateRecoverMode BOOL TRUE The ActivateRecoverMode V2 (Page 312) tag determines the reac
tion to error.

RunModeByStartup BOOL TRUE Activate operating mode at Mode parameter after CPU restart
If RunModeByStartup = TRUE, PID_3Step starts in the operating
mode saved in the Mode parameter after CPU startup.
If RunModeByStartup = FALSE, PID_3Step remains in "Inactive" mode
after CPU startup.

LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is reloaded. The
set was saved prior to the last tuning. LoadBackUp is automatically
set back to FALSE.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint, e.g., ºC, or
ºF.
PhysicalUnit serves the display in the editors and has no influence on
the behavior of the control algorithm in the CPU.
When importing PID_3Step via the Openness API, PhysicalUnit is
reset to the default value.

297

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g., temperat

ure
PhysicalQuantity serves the display in the editors and has no influ
ence on the behavior of the control algorithm in the CPU.
When importing PID_3Step via the Openness API, PhysicalQuantity is
reset to the default value.

ErrorBehaviour BOOL FALSE If ErrorBehaviour = FALSE and an error has occurred, the valve stays
at its current position and the controller switches directly to
"Inactive" or "Error monitoring" mode.
If ErrorBehaviour = TRUE and an error occurs, the actuator moves to
the substitute output value and only then switches to "Inactive" or
"Error monitoring" mode.
If the following errors occur, you can no longer move the valve to a
configured substitute output value.
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.
• 20000h: Invalid value at SavePosition tag.

Warning DWORD DW#16#0 The Warning tag (Page 305) shows the warnings since Reset = TRUE
or ErrorAck =TRUE. Warning is retentive.
Cyclic warnings (for example, process value warning) are shown
until the cause of the warning is removed. They are automatically
deleted once their cause has gone. Non-cyclic warnings (for
example, point of inflection not found) remain and are deleted like
errors.

SavePosition REAL 0.0 Substitute output value
If ErrorBehaviour = TRUE, the actuator is moved to a position that is
safe for the plant when an error occurs. As soon as the substitute
output value has been reached, PID_3Step switches the operating
mode according to ActivateRecoverMode.
The permitted value range is determined by the configuration.
• Config.FeedbackOn = FALSE and Config.OutputPerOn = FALSE:

SavePosition = 0.0 or 100.0
• Config.FeedbackOn = TRUE or Config.OutputPerOn = TRUE:

Config.OutputUpperLimit ≥ SavePosition ≥
Config.OutputLowerLimit

CurrentSetpoint REAL 0.0 Currently active setpoint. This value is frozen at the start of tuning.

CancelTuningLevel REAL 10.0 Permissible fluctuation of setpoint during tuning. Tuning is not can
celed until:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)

Config.InputPerOn(1) BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used. If
InputPerOn = FALSE, the Input parameter is used.

Config.OutputPerOn(1) BOOL FALSE If OutputPerOn = TRUE, the Output_PER parameter is used. If
OutputPerOn = FALSE, the Ouput_UP and Output_DN parameters
are used.

Config.InvertControl(1) BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value.

298
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
Config.FeedbackOn(1) BOOL FALSE If FeedbackOn = FALSE, a position feedback is simulated.

Position feedback is generally activated when FeedbackOn = TRUE.

Config.FeedbackPerOn(1) BOOL FALSE FeedbackPerOn is only effective when FeedbackOn = TRUE.
If FeedbackPerOn = TRUE, the analog input is used for the position
feedback (Feedback_PER parameter).
If FeedbackPerOn = FALSE, the Feedback parameter is used for the
position feedback.

Config.ActuatorEndStopOn(1) BOOL FALSE If ActuatorEndStopOn = TRUE, the digital position feedback
Actuator_L and Actuator_H are taken into consideration.

Config.InputUpperLimit(1) REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adherence to this limit.
At the I/O input, the process value can be a maximum of 18% higher
than the standard range (overrange). An error is no longer signaled
due to a violation of the "Process value high limit". Only a wire-break
and a short-circuit are recognized and PID_3Step reacts according to
the configured reaction to error.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit(1) REAL 0.0 Low limit of the process value
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning(1) REAL +3.40282
2e+38

Warning high limit of the process value
If you set InputUpperWarning outside the process value limits, the
configured absolute process value high limit is used as the warning
high limit.
If you configure InputUpperWarning within the process value limits,
this value is used as the warning high limit.
InputUpperWarning > InputLowerWarning
InputUpperWarning ≤ InputUpperLimit

Config.InputLowerWarning(1) REAL -3.402822
e+38

Warning low limit of the process value
If you set InputLowerWarning outside the process value limits, the
configured absolute process value low limit is used as the warning
low limit.
If you configure InputLowerWarning within the process value limits,
this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning
InputLowerWarning ≥ InputLowerLimit

Config.OutputUpperLimit(1) REAL 100.0 High limit of output value
The following value range is permitted:
UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit
For more details, see OutputLowerLimit.

Config.OutputLowerLimit(1) REAL 0.0 Low limit of output value
The following value range is permitted:
OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut
When using Output_PER, an output value limit of -100% corresponds
to the value Output_PER = -27648; 100% correspond to the value
Output_PER = 27648.
If OutputPerOn = FALSE and FeedbackOn = FALSE,
OutputLowerLimit and OutputUpperLimit are not evaluated.
Output_UP and Output_DN are then reset at Actuator_H = TRUE or
Actuator_L = TRUE (if ActuatorEndStopOn = TRUE) or after a travel
time of Config.VirtualActuatorLimit * Retain.TransitTime/100 (if
ActuatorEndStopOn = FALSE).

299

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
Config.SetpointUpperLimit(1) REAL +3.40282

2e+38
High limit of setpoint
If you set SetpointUpperLimit outside the process value limits, the
configured absolute process value high limit is preassigned as the
setpoint high limit.
If you configure SetpointUpperLimit within the process value limits,
this value is used as the setpoint high limit.

Config.SetpointLowerLimit(1) REAL -
3.402822e
+38

Low limit of the setpoint
If you set SetpointLowerLimit outside the process value limits, the
configured absolute process value low limit is preassigned as the set
point low limit.
If you set SetpointLowerLimit within the process value limits, this
value is used as the setpoint low limit.

Config.MinimumOnTime(1) REAL 0.0 Minimum ON time
Minimum time in seconds for which the servo drive must be
switched on.
Config.MinimumOnTime is only effective if Output_UP and
Output_DN are used (Config.OutputPerOn = FALSE).

Config.MinimumOffTime(1) REAL 0.0 Minimum OFF time
Minimum time in seconds for which the servo drive must be
switched off.
Config.MinimumOffTime is only effective if Output_UP and
Output_DN are used (Config.OutputPerOn = FALSE).

Config.VirtualActuatorLimit(1) REAL 150.0 If all the following conditions have been satisfied, the actuator is
moved in one direction for the maximum period of
VirtualActuatorLimit × Retain.TransitTime/100 and the warning
2000h is output:
• Config.OutputPerOn = FALSE
• Config.ActuatorEndStopOn = FALSE
• Config.FeedbackOn = FALSE
If Config.OutputPerOn = FALSE and Config.ActuatorEndStopOn =
TRUE or Config.FeedbackOn = TRUE, only the warning 2000h is out
put.
If Config.OutputPerOn = TRUE, VirtualActuatorLimit is not taken into
consideration.
As of PID_3Step Version 2.3 the monitoring and limiting of the travel
time can be deactivated with Config.VirtualActuatorLimit = 0.0.

Config.InputScaling.Upper
PointIn(1)

REAL 27648.0 Scaling Input_PER high
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.InputScaling.Lower
PointIn(1)

REAL 0.0 Scaling Input_PER low
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.InputScaling.UpperPoin
tOut(1)

REAL 100.0 Scaled high process value
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.InputScaling.LowerPoin
tOut(1)

REAL 0.0 Scaled low process value
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

300
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
Config.FeedbackScaling.Upper
PointIn(1)

REAL 27648.0 Scaling Feedback_PER high
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.

Config.FeedbackScaling.Lower
PointIn(1)

REAL 0.0 Scaling Feedback_PER low
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.

Config.FeedbackScaling.Upper
PointOut(1)

REAL 100.0 High endstop
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.
The permitted value range is determined by the configuration.
• FeedbackOn = FALSE:

UpperPointOut = 100.0
• FeedbackOn = TRUE:

UpperPointOut = 100.0 or 0.0
UpperPointOut ≠ LowerPointOut

Config.FeedbackScaling.Lower
PointOut(1)

REAL 0.0 Low endstop
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.
The permitted value range is determined by the configuration.
• FeedbackOn = FALSE:

LowerPointOut = 0.0
• FeedbackOn = TRUE:

LowerPointOut = 0.0 or -100.0
LowerPointOut ≠ UpperPointOut

GetTransitTime.InvertDirection BOOL FALSE If InvertDirection = FALSE, the valve is fully opened, closed, and then
reopened in order to determine the valve transition time.
If InvertDirection = TRUE, the valve is fully closed, opened, and then
closed again.

GetTransitTime.SelectFeedback BOOL FALSE If SelectFeedback = TRUE, then Feedback_PER, or Feedback is taken
into consideration in the transition time measurement.
If SelectFeedback = FALSE, then Actuator_H and Actuator_L are
taken into consideration in the transition time measurement.

GetTransitTime.State INT 0 Current phase of the transition time measurement
• State = 0: Inactive
• State = 1: Open valve completely
• State = 2: Close valve completely
• State = 3: Move valve to target position (NewOutput)
• State = 4: Transition time measurement successfully completed
• State = 5: Transition time measurement canceled

GetTransitTime.NewOutput REAL 0.0 Target position for transition time measurement with position feed
back
The target position must be between "High endstop" and "Low
endstop". The difference between NewOutput and ScaledFeedback
must be at least 50% of the permissible control range.

CycleTime.StartEstimation BOOL TRUE If StartEstimation = TRUE, the measurement of the PID_3Step
sampling time is started. CycleTime.StartEstimation = FALSE once
measurement is complete.

301

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
CycleTime.EnEstimation BOOL TRUE If EnEstimation = TRUE, the PID_3Step sampling time is calculated.

If CycleTime.EnEstimation = FALSE, the PID_3Step sampling time is
not calculated and you need to correct the configuration of
CycleTime.Value manually.

CycleTime.EnMonitoring BOOL TRUE If EnMonitoring = TRUE, the PID_3Step sampling time is monitored.
If it is not possible to execute PID_3Step within the sampling time,
the error 0800h is output and the operating mode is switched.
ActivateRecoverMode and ErrorBehaviour determine which operat
ing mode is switched to.
If EnMonitoring = FALSE, the PID_3Step sampling time is not mon
itored, the error 0800h is not output, and the operating mode is not
switched.

CycleTime.Value(1) REAL 0.1 PID_3Step sampling time in seconds
CycleTime.Value is determined automatically and is usually equival
ent to the cycle time of the calling OB.

CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser
You can reload values from the CtrlParamsBackUp structure with
LoadBackUp = TRUE.

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain

CtrlParamsBackUp.Ti REAL 20.0 Saved integration time in seconds

CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time in seconds

CtrlParamsBackUp.TdFiltRatio REAL 0.2 Saved derivative delay coefficient

CtrlParamsBackUp.PWeighting REAL 1.0 Saved proportional action weighting

CtrlParamsBackUp.DWeighting REAL 1.0 Saved derivative action weighting

CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm in seconds

CtrlParamsBackUp.InputDead
Band

REAL 0.0 Saved deadzone width of the control deviation

PIDSelfTune.SUT.Calculate
Params

BOOL FALSE The properties of the controlled system are saved during tuning. If
CalculateParams = TRUE, the PID parameters are recalculated on the
basis of these properties. The PID parameters are calculated using
the method set in TuneRule. CalculateParams is set to FALSE follow
ing calculation.

PIDSelfTune.SUT.TuneRule INT 1 Methods used to calculate parameters during pretuning:
• SUT.TuneRule = 0: PID fast I (faster control response with higher

amplitudes of the output value than with SUT.TuneRule =1)
• SUT.TuneRule = 1: PID slow I (slower control response with lower

amplitudes of the output value than with SUT.TuneRule = 0)
• SUT.TuneRule = 2: Chien, Hrones and Reswick PID
• SUT.TuneRule = 3: Chien, Hrones, Reswick PI
• SUT.TuneRule = 4: PID fast II (faster control response with higher

amplitudes of the output value than with SUT.TuneRule = 5)
• SUT.TuneRule = 5: PID slow II (slower control response with

lower amplitudes of the output value than with SUT.TuneRule =
4)

The methods SUT.TuneRule = 0 and 1 differ from the methods
SUT.TuneRule = 4 and 5 only in the calculation of the proportional
gain:
When SUT.TuneRule = 0 and 1, the proportional gain is calculated
based on the compensation time of the process. When
SUT.TuneRule = 4 and 5, this happens based on the delay time of
the process.

302
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
SUT.TuneRule = 4 and 5 returns a higher value for the proportional
gain and thus a faster control response with higher amplitudes of
the output value than with SUT.TuneRule = 0 and 1.

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretuning:
• State = 0: Initialize pretuning
• State = 50: Determine start position without position feedback
• State = 100: Calculate the standard deviation
• State = 200: Find the point of inflection
• State = 300: Determine the rise time
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

PIDSelfTune.TIR.RunIn BOOL FALSE With the RunIn tag, you can specify that fine tuning can also be per
formed without pretuning.
• RunIn = FALSE

Pretuning is started when fine tuning is started from inactive or
manual mode.
If fine tuning is started from automatic mode, the system uses
the existing PID parameters to control to the setpoint.
Only then will fine tuning start. If pretuning is not possible,
PID_3Step switches to the mode from which tuning was started.

• RunIn = TRUE
The pretuning is skipped. PID_3Step attempts to reach the set
point with the minimum or maximum output value. This can pro
duce increased overshoot. Only then will fine tuning start.
RunIn is set to FALSE after fine tuning.

PIDSelfTune.TIR.Calculate
Params

BOOL FALSE The properties of the controlled system are saved during tuning. If
CalculateParams = TRUE, the PID parameters are recalculated on the
basis of these properties. The PID parameters are calculated using
the method set in TuneRule. CalculateParams is set to FALSE follow
ing calculation.

PIDSelfTune.TIR.TuneRule INT 0 Methods used to calculate parameters during fine tuning:
• TIR.TuneRule = 0: PID automatic
• TIR.TuneRule = 1: PID fast (faster control response with higher

amplitudes of the output value than with TIR.TuneRule = 2)
• TIR.TuneRule = 2: PID slow (slower control response with lower

amplitudes of the output value than with TIR.TuneRule = 1)
• TIR.TuneRule = 3: Ziegler-Nichols PID
• TIR.TuneRule = 4: Ziegler-Nichols PI
• TIR.TuneRule = 5: Ziegler-Nichols P
To be able to repeat the calculation of the PID parameters with
TIR.CalculateParams and TIR.TuneRule = 0, 1 or 2, the previous fine
tuning also has to have been executed with TIR.TuneRule = 0, 1 or 2.
If this is not the case, TIR.TuneRule = 3 is used.
The recalculation of the PID parameters with TIR.CalculateParams
and TIR.TuneRule = 3, 4 or 5 is always possible.

PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of fine tuning:
• State = -100 Fine tuning is not possible. Pretuning will be per

formed first.
• State = 0: Initialize fine tuning
• State = 200: Calculate the standard deviation
• State = 300: Attempt to reach the setpoint with the maximum or

minimum output value

303

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
• State = 400: Attempt to reach the setpoint with existing PID

parameters (if pretuning was successful)
• State = 500: Determine oscillation and calculate parameters
• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

Retain.TransitTime(1) REAL 30.0 Motor transition time in seconds
Time in seconds the actuating drive requires to move the valve from
the closed to the opened state.
TransitTime is retentive.

Retain.CtrlParams.SetByUser(1) BOOL FALSE If SetByUser = FALSE, the PID parameters are determined automatic
ally and PID_3Step operates with a dead zone at the output value.
The deadzone width is calculated during tuning on the basis of the
standard deviation of the output value and saved in
Retain.CtrlParams.OutputDeadBand.
If SetByUser = TRUE, the PID parameters are entered manually and
PID_3 Step operates without a dead zone at the output value.
Retain.CtrlParams.OutputDeadBand = 0.0
SetByUser is retentive.

Retain.CtrlParams.Gain(1) REAL 1.0 Active proportional gain
To invert the control logic, use the Config.InvertControl tag. Negat
ive values at Gain also invert the control logic. We recommend you
use only InvertControl to set the control logic. The control logic is
also inverted if InvertControl = TRUE and Gain < 0.0.
Gain is retentive.

Retain.CtrlParams.Ti(1) REAL 20.0 • Ti > 0.0: Active integration time in seconds
• Ti = 0.0: Integral action is deactivated
Ti is retentive.

Retain.CtrlParams.Td(1) REAL 0.0 • Td > 0.0: Active derivative action time in seconds
• Td = 0.0: Derivative action is deactivated
Td is retentive.

Retain.CtrlParams.TdFiltRatio(1) REAL 0.2 Active derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative
action.
Derivative delay = derivative action time × derivative delay coeffi
cient
• 0.0: Derivative action is effective for one cycle only and therefore

almost not effective.
• 0.5: This value has proved useful in practice for controlled sys

tems with one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect of the

derivative action is delayed.
TdFiltRatio is retentive.

Retain.CtrlParams.PWeighting(1) REAL 1.0 Active proportional action weighting
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process
value is changed.
PWeighting is retentive.

304
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
Retain.CtrlParams.DWeighting(1) REAL 1.0 Active derivative action weighting

The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value
is changed.
DWeighting is retentive.

Retain.CtrlParams.Cycle(1) REAL 1.0 Active sampling time of PID algorithm in seconds, rounded to an
integer multiple of the cycle time of the calling OB.
Cycle is retentive.

Retain.CtrlParams.InputDead
Band(1)

REAL 0.0 Deadzone width of the control deviation
InputDeadBand is retentive.

See also
State and Mode V2 parameters (Page 305)
Tag ActivateRecoverMode V2 (Page 312)
Downloading technology objects to device (Page 46)

10.2.4.8 State and Mode V2 parameters

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.
With a rising edge at ModeActivate, PID_3Step switches to the operating mode saved in the
Mode in-out parameter.
When the CPU is switched on or switches from Stop to RUN mode, PID_3Step starts in the
operating mode that is saved in the Mode parameter. To retain PID_3Step in "Inactive" mode,
set RunModeByStartup = FALSE.

Meaning of values

State Description of operating mode
0 Inactive

The controller is switched off and no longer changes the valve position.
The change from Inactive mode to Automatic mode is bumpless.

1 Pretuning
The pretuning determines the process response to a pulse of the output value and searches for the point of
inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the controlled
system. You obtain the best PID parameters when you perform pretuning and fine tuning.
Pretuning requirements:
• The motor transition time has been configured or measured.
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits.

305

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

State Description of operating mode
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise the
result will be. Noise on the process value can be tolerated as long as the rate of rise of the process value is sig
nificantly higher as compared to the noise. This is most likely the case in operating modes "Inactive" and
"manual mode".
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
The controller switches to automatic mode following successful pretuning. If pretuning is unsuccessful, the
switchover of operating mode is dependent on ActivateRecoverMode and ErrorBehaviour.
The phase of pretuning is indicated with PIDSelfTune.SUT.State.

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are recalculated
based on the amplitude and frequency of this oscillation. PID parameters from fine tuning usually have better
master control and disturbance characteristics than PID parameters from pretuning. You obtain the best PID
parameters when you perform pretuning and fine tuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the process value. Fine
tuning is only minimally influenced by the stability of the process value.
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
The PID parameters are backed up before fine tuning. They can be reactivated with LoadBackUp.
Requirements for fine tuning:
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.
PID_3Step controls the system using the existing PID parameters until the control loop has stabilized and
the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)
If the requirements for pretuning are met, pretuning is started. The determined PID parameters will be
used for control until the control loop has stabilized and the requirements for fine tuning have been met.
If PIDSelfTune.TIR.RunIn = TRUE, pretuning is skipped and an attempt is made to reach the setpoint with
the minimum or maximum output value. This can produce increased overshoot. Fine tuning then starts
automatically.

The controller switches to automatic mode following successful fine tuning. If fine tuning is unsuccessful, the
switchover of operating mode is dependent on ActivateRecoverMode and ErrorBehaviour.
The phase of fine tuning is indicated with PIDSelfTune.TIR.State.

3 Automatic mode
In automatic mode, PID_3Step controls the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

306
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

State Description of operating mode
4 Manual mode

In manual mode, you specify manual output values in the Manual_UP and Manual_DN parameters or
ManualValue parameter. Whether or not the actuator can be moved to the output value in the event of an
error is described in the ErrorBits parameter.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change the
operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless. Manual mode is also possible when an
error is pending.

5 Approach substitute output value
This operating mode is activated in the event of an error, if Errorbehaviour = TRUE and ActivateRecoverMode
= FALSE..
PID_3Step moves the actuator to the substitute output value and then switches to "Inactive" mode.

6 Transition time measurement
The time that the motor needs to completely open the valve from the closed condition is determined.
This operating mode is activated when Mode = 6 and ModeActivate = TRUE is set.
If endstop signals are used to measure the transition time, the valve will be opened completely from its cur
rent position, closed completely, and opened completely again. If GetTransitTime.InvertDirection = TRUE, this
behavior is inverted.
If position feedback is used to measure the transition time, the actuator will be moved from its current posi
tion to a target position.
The output value limits are not taken into consideration during the transition time measurement. The actuat
or can travel to the high or the low endstop.

7 Error monitoring
The control algorithm is switched off and no longer changes the valve position.
This operating mode is activated instead of "Inactive" mode in the event of an error.
All the following conditions must be met:
• Automatic mode (Mode = 3)
• Errorbehaviour = FALSE
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 312) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

8 Approach substitute output value with error monitoring
This operating mode is activated instead of "approach substitute output value" mode when an error occurs.
PID_3Step moves the actuator to the substitute output value and then switches to "error monitoring" mode.
All the following conditions must be met:
• Automatic mode (Mode = 3)
• Errorbehaviour = TRUE
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 312) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

10 Manual mode without endstop signals
The endstop signals are not taken into consideration, even though Config.ActuatorEndStopOn = TRUE. The
output value limits are not taken into consideration. Otherwise, PID_3Step behaves the same as in manual
mode.

ENO characteristics
If State = 0, then ENO = FALSE.
If State ≠ 0, then ENO = TRUE.

307

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following
table shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning successfully completed

n 3 3 Automatic mode is started

PID_3Step automatically switches the operating mode in the event of an error. The following
table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning canceled

n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. At the start of transition time measurement, pretuning, or fine tuning, PID_3Step
saved the value of State in the Mode in/out parameter. PID_3Step therefore switches to the
operating mode from which transition time measurement or tuning was started.
If ActivateRecoverMode = FALSE, "Inactive" or "Approach substitute output value" mode is
activated.

Automatic switchover of operating mode after transition time measurement
If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated after successful transition time measurement.
If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode after
successful transition time measurement.

308
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Automatic switchover of operating mode in automatic mode
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error
Automatic switchover of operating mode once the current operation has been completed.
Automatic switchover of operating mode when error is no longer pending.

See also
Tag ActivateRecoverMode V2 (Page 312)
ErrorBits V2 parameter (Page 310)

309

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

10.2.4.9 ErrorBits V2 parameter

If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
If there is a position feedback, PID_3Step uses ManualValue as output value in manual mode.
The exception is Errorbits = 16#0001_0000.

ErrorBits
 (DW#16#...)

Description

0000_0000 There is no error.

0000_0001 The "Input" parameter is outside the process value limits.
• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
remains in automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As soon
as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_0004 Error during fine tuning. The oscillation of the process value could not be maintained.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step remains in fine tuning mode.

0000_0080 Error during pretuning. The output value limits are not configured correctly or the process value is not
reacting as expected.
Make sure that:
• The limits of the output value are configured correctly and match the control logic.
• It is possible to change the output value so that the process value approaches the setpoint. The output

value is not already limited by the corresponding output value limit before the start of pretuning and
the actuator has not yet reached the corresponding endstop.
Example: With normal control logic and a process value that is below the setpoint, the output value
must not have reached the high limit and the actuator must not have reached the high endstop before
the start of the pretuning.

• The process value does not show a strong oscillation before the start of the pretuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

310
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

ErrorBits
 (DW#16#...)

Description

0000_0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As soon
as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_0400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As soon
as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_0800 Sampling time error: PID_3Step is not called within the sampling time of the cyclic interrupt OB.
It is recommended to call PID_3Step in a cyclic interrupt OB without conditions and to activate or deactiv
ate it via the operating mode at the Mode parameter. Conditional calls or the call in OB1 can have a neg
ative effect on the control quality.
Monitoring of the sampling time can be disabled with CycleTime.EnMonitoring = FALSE.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
remains in automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.
If this error occurred during simulation with PLCSIM, see the notes under Simulating PID_3Step V2 with
PLCSIM (Page 128).

0000_1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As soon
as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_2000 Invalid value at Feedback_PER parameter.
Check whether an error is pending at the analog input.
The actuator cannot be moved to the substitute output value and remains in its current position. In manu
al mode, you can change the position of the actuator only with Manual_UP and Manual_DN, and not with
ManualValue.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0000_4000 Invalid value at Feedback parameter. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position. In manu
al mode, you can change the position of the actuator only with Manual_UP and Manual_DN, and not with
ManualValue.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

311

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0000_8000 Error during digital position feedback. Actuator_H = TRUE and Actuator_L = TRUE.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state.
In order to move the actuator from this state, you must deactivate the "Actuator endstop"
(Config.ActuatorEndStopOn = FALSE) or switch to manual mode without endstop signals (Mode = 10).
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0001_0000 Invalid value at ManualValue parameter. Value has an invalid number format.
The actuator cannot be moved to the manual value and remains in its current position.
Specify a valid value in ManualValue or move the actuator in manual mode with Manual_UP and
Manual_DN.

0002_0000 Invalid value at SavePosition tag. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position.

0004_0000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance is
set to zero. PID_3Step remains in automatic mode.
If pretuning or fine tuning mode was active and ActivateRecoverMode = TRUE before the error occurred,
PID_3Step switches to the operating mode saved in the Mode parameter. If Disturbance in the current
phase has no effect on the output value, tuning is not be canceled.
The error has no effect during transition time measurement.

10.2.4.10 Tag ActivateRecoverMode V2

The ActivateRecoverMode tag determines the reaction to error. The Error parameter indicates
if an error is pending. When the error is no longer pending, Error = FALSE. The ErrorBits
parameter shows which errors have occurred.

NOTICE
Your system may be damaged.
If ActivateRecoverMode = TRUE, PID_3Step remains in automatic mode even if the process
limit values are exceeded. This may damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

312
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Automatic mode

ActivateRecover
Mode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" mode. The
controller is only activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_3Step switches between the calculated output value and the substitute output value at each
error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more of the following errors occur, PID_3Step stays in automatic mode:
• 0001h: The "Input" parameter is outside the process value limits.
• 0800h: Sampling time error
• 40000h: Invalid value at Disturbance parameter.
If one or more of the following errors occur, PID_3Step switches to "Approach substitute output value
with error monitoring" or "Error monitoring" mode:
• 0002h: Invalid value at Input_PER parameter.
• 0200h: Invalid value at Input parameter.
• 0400h: Calculation of output value failed.
• 1000h: Invalid value at Setpoint parameter.
If one or more of the following errors occur, PID_3Step can no longer move the actuator:
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.
• 20000h: Invalid value at SavePosition tag. Value has an invalid number format.
The characteristics are independent of ErrorBehaviour.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

Pretuning, fine tuning, and transition time measurement

ActivateRecover
Mode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" mode. The
controller is only activated by a falling edge at Reset or a rising edge at ModeActivate.
The controller changes to "Inactive" mode after successful transition time measurement.

TRUE If the following error occurs, PID_3Step remains in the active mode:
• 0020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 10000h: Invalid value at ManualValue parameter.
• 20000h: Invalid value at SavePosition tag.
When any other error occurs, PID_3Step cancels the tuning and switches to the mode from which tuning
was started.

Manual mode
ActivateRecoverMode is not effective in manual mode.

313

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
Static tags of PID_3Step V2 (Page 297)
State and Mode V2 parameters (Page 305)

10.2.4.11 Tag Warning V2

If several warnings are pending simultaneously, their values are displayed with binary
addition. The display of warning 16#0000_0005, for example, indicates that the warnings
16#0000_0001 and 16#0000_0004 are pending simultaneously.

Warning
 (DW#16#...)

Description

0000_0000 No warning pending.

0000_0001 The point of inflection was not found during pretuning.

0000_0004 The setpoint was limited to the configured limits.

0000_0008 Not all the necessary controlled system properties were defined for the selected method of calculation.
Instead, the PID parameters were calculated using the TIR.TuneRule = 3 method.

0000_0010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.

0000_0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.
Improve results by using shorter OB cycle times.

0000_0040 The process value exceeded one of its warning limits.

0000_0080 Invalid value at Mode. The operating mode is not switched.

0000_0100 The manual value was limited to the limits of the controller output.

0000_0200 The specified rule for tuning is not supported. No PID parameters are calculated.

0000_0400 The transition time cannot be measured because the actuator settings do not match the selected measur
ing method.

0000_0800 The difference between the current position and the new output value is too small for transition time
measurement. This can produce incorrect results. The difference between the current output value and
new output value must be at least 50% of the entire control range.

0000_1000 The substitute output value cannot be reached because it is outside the output value limits.

0000_2000 The actuator was moved in one direction for longer than Config.VirtualActuatorLimit × Retain.TransitTime.
Check whether the actuator has reached an endstop signal.

The following warnings are deleted as soon as the cause is eliminated:
• 16#0000_0001
• 16#0000_0004
• 16#0000_0008
• 16#0000_0040
• 16#0000_0100
• 16#0000_2000
All other warnings are cleared with a rising edge at Reset or ErrorAck.

314
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

10.2.5 PID_3Step V1

10.2.5.1 Description PID_3Step V1

Description
You use the PID_3Step instruction to configure a PID controller with self tuning for valves or
actuators with integrating behavior.
The following operating modes are possible:
• Inactive
• Pretuning
• Fine tuning
• Automatic mode
• Manual mode
• Approach substitute output value
• Transition time measurement
• Approach substitute output value with error monitoring
• Error monitoring
For a more detailed description of the operating modes, see the State parameter.

PID algorithm
PID_3Step is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The following equation is used to calculate the output value.

Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integration time
a Derivative delay coefficient (T1 = a × TD)
TD Derivative action time
c Derivative action weighting

315

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram without position feedback

316
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Block diagram with position feedback

317

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram of PIDT1 with anti-windup

Call
PID_3Step is called in the constant time interval of the cycle time of the calling OB (preferably
in a cyclic interrupt OB).

Download to device
The actual values of retentive tags are only updated when you download PID_3Step
completely.
Downloading technology objects to device (Page 46)

Startup
At the startup of the CPU, PID_3Step starts in the operating mode that was last active. To
retain PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.

318
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Responses in the event of an error
If errors occur, these are output in the Error parameter. You configure the reaction of
PID_3Step using the ErrorBehaviour and ActivateRecoverMode tags.

ErrorBeha
viour

ActivateRecov
erMode

Actuator setting configura
tion
Set Output to

Reaction

0 FALSE Current output value Switch to "Inactive" mode (Mode = 0)

0 TRUE Current output value while
error is pending

Switch to "Error monitoring" mode
(Mode = 7)

1 FALSE Substitute output value Switch to "Approach substitute output
value" mode (Mode = 5)
Switch to "Inactive" mode (Mode = 0)

1 TRUE Substitute output value while
error is pending

Switch to "Approach substitute output
value with error monitoring" mode
(Mode = 8)
Switch to "Error monitoring" mode
(Mode = 7)

The ErrorBits parameter shows which errors have occurred.

See also
State and Retain.Mode V1 parameters (Page 332)
Parameter ErrorBits V1 (Page 338)
Configuring PID_3Step V1 (Page 129)

10.2.5.2 Operating principle PID_3Step V1

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0001hex).
You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warnings = 0040hex), and the
InputWarning_H or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_3Step automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller range. PID_3Step checks whether this
range falls within the process value limits. If the setpoint is outside these limits, the high or
low limit is used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is
set to TRUE.
The setpoint is limited in all operating modes.

319

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit tags. The output value limits must be within "Low endstop" and
"High endstop".
• High endstop: Config.FeedbackScaling.UpperPointOut
• Low endstop: Config.FeedbackScaling.LowerPointOut
Rule:
UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut
The valid values for "High endstop" and "Low endstop" depend upon:
• FeedbackOn
• FeedbackPerOn
• OutputPerOn

OutputPerOn FeedbackOn FeedbackPerOn LowerPointOut UpperPointOut
FALSE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)

FALSE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%

FALSE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

TRUE FALSE FALSE Cannot be set (100.0%) Cannot be set (100.0%)

TRUE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%

TRUE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

If OutputPerOn = FALSE and FeedbackOn = FALSE, you cannot limit the output value. The
digital outputs are reset with Actuator_H = TRUE or Actuator_L = TRUE, or after a travel time
amounting to 110% of the motor transition time.
The output value is 27648 at 100% and -27648 at -100%. PID_3Step must be able to
completely close the valve. Therefore, zero must be included in the output value limits.

NOTE
Use with two or more actuators
PID_3 Step is not suitable for use with two or more actuators (for example, in heating/cooling
applications), because different actuators need different PID parameters to achieve a good
control response.

Substitute output value
If an error has occurred, PID_3Step can output a substitute output value and move the
actuator to a safe position that is specified in the SavePosition tag. The substitute output
value must be within the output value limits.

320
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Monitoring signal validity
The values of the following parameters are monitored for validity:
• Setpoint
• Input
• Input_PER
• Feedback
• Feedback_PER
• Output

Monitoring the PID_3Step sampling time
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_3Step
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current
sampling time and this mean value triggers an error (ErrorBits = 0800 hex).
PID_3Step is set to "Inactive" mode during tuning under the following conditions:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
In automatic mode, PID_3Step is set to "Inactive" mode under the following conditions:
• New mean value >= 1.5 x old mean value
• New mean value <= 0.5 x old mean value

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time. All other functions
of PID_3Step are executed at every call.

Measuring the motor transition time
The motor transition time is the time in seconds the motor requires to move the actuator
from the closed to the opened state. The maximum time that the actuator is moved in one
direction is 110% of the motor transition time. PID_3Step requires the motor transition time
to be as accurate as possible for good controller results. The data in the actuator
documentation contains average values for this type of actuator. The value for the specific
actuator used may differ. You can measure the motor transition time during commissioning.
The output value limits are not taken into consideration during the motor transition time
measurement. The actuator can travel to the high or the low endstop.
The motor transition time is taken into consideration in the calculation of the analog output
value as well as in the calculation of the digital output values. It is mainly required for correct
operation during auto-tuning and the anti-windup behavior. You should therefore configure
the motor transition time with the value that the motor requires to move the actuator from
the closed to the opened state.

321

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

If no relevant motor transition time is in effect in your process (e.g. with solenoid valves), so
that the output value has a direct and full effect on the process, use PID_Compact instead.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control systems,
it may be necessary to invert the control logic. PID_3Step does not work with negative
proportional gain. If InvertControl = TRUE, an increasing control deviation causes a reduction
in the output value. The control logic is also taken into account during pretuning and fine
tuning.

See also
Configuring PID_3Step V1 (Page 129)

10.2.5.3 PID_3Step V1 input parameters

Table 10-10

Parameters Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Input REAL 0.0 A tag of the user program is used as source for the process
value.
If you are using parameter Input, then
Config.InputPerOn = FALSE must be set.

Input_PER WORD W#16#0 An analog input is used as the source of the process value.
If you are using parameter Input_PER, then
Config.InputPerOn = TRUE must be set.

Actuator_H BOOL FALSE Digital position feedback of the valve for the high endstop
If Actuator_H = TRUE, the valve is at the high endstop and is no
longer moved towards this direction.

Actuator_L BOOL FALSE Digital position feedback of the valve for the low endstop
If Actuator_L = TRUE, the valve is at the low endstop and is no
longer moved towards this direction.

Feedback REAL 0.0 Position feedback of the valve
If you are using parameter Feedback, then
Config.FeedbackPerOn = FALSE must be set.

Feedback_PER WORD W#16#0 Analog position feedback of a valve
If you are using parameter Feedback_PER, then
Config.FeedbackPerOn = TRUE must be set.
Feedback_PER is scaled based on the tags:
• Config.FeedbackScaling.LowerPointIn
• Config.FeedbackScaling.UpperPointIn
• Config.FeedbackScaling.LowerPointOut
• Config.FeedbackScaling.UpperPointOut

322
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Parameters Data type Default Description
ManualEnable BOOL FALSE • A FALSE -> TRUE edge selects "Manual mode", while State =

4, Retain.Mode remains unchanged.
• A TRUE -> FALSE edge selects the most recently active oper

ating mode
A change of Retain.Mode will not take effect during
ManualEnable = TRUE. The change of Retain.Mode will only be
considered upon a TRUE -> FALSE edge at ManualEnable .
PID_3Step V1.1If ManualEnable = TRUE when the CPU starts,
PID_3Step starts in manual mode. A rising edge (FALSE > TRUE)
at ManualEnable is not necessary.
PID_3Step V1.0
At the start of the CPU, PID_3Step only switches to manual
mode with a rising edge (FALSE->TRUE) at ManualEnable .
Without rising edge, PID_3Step starts in the last operating mode
in which ManualEnable was FALSE.

ManualValue REAL 0.0 In manual mode, you specify the absolute position of the valve.
ManualValue will only be evaluated if you are using OutputPer,
or if position feedback is available.

Manual_UP BOOL FALSE In manual mode, every rising edge opens the valve by 5% of the
total control range, or for the duration of the minimum motor
transition time. Manual_UP is evaluated only if you are not
using Output_PER and there is no position feedback available.

Manual_DN BOOL FALSE In manual mode, every rising edge closes the valve by 5% of the
total control range, or for the duration of the minimum motor
transition time. Manual_DN is evaluated only if you are not
using Output_PER and there is no position feedback available.

Reset BOOL FALSE Restarts the controller.
• FALSE -> TRUE edge

– Switch to "Inactive" mode
– ErrorBits and Warning are reset
– Intermediate controller values are reset

(PID parameters are retained)
• TRUE -> FALSE edge

– Change in most recent active mode
– If automatic mode was active before, switchover to

automatic mode is bumpless.

10.2.5.4 PID_3Step V1 output parameters

Table 10-11

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value

ScaledFeedback REAL 0.0 Scaled position feedback
For an actuator without position feedback, the position of the
actuator indicated by ScaledFeedback is very imprecise.
ScaledFeedback may only be used for rough estimation of the
current position in this case.

Output_UP BOOL FALSE Digital output value for opening the valve
If Config.OutputPerOn = FALSE, the Output_UP parameter is
used.

323

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameter Data type Default Description
Output_DN BOOL FALSE Digital output value for closing the valve

If Config.OutputPerOn = FALSE, the Output_DN parameter is
used.

Output_PER WORD W#16#0 Analog output value
If Config.OutputPerOn = TRUE, Output_PER is used.
Use Output_PER if you are using a valve as actuator which is
triggered via an analog output and controlled with a continuous
signal, e.g. 0...10 V or 4...20 mA.
The value at Output_PER corresponds to the target position of
the valve, e.g. Output_PER = 13824, when the valve is to be
opened by 50%.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is
reached. In the CPU, the setpoint is limited to the configured
absolute setpoint high limit. The configured absolute process
value high limit is the default for the setpoint high limit.
If you configure Config.SetpointUpperLimit to a value within
the process value limits, this value is used as the setpoint high
limit.

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit has
been reached. In the CPU, the setpoint is limited to the con
figured absolute setpoint low limit. The configured absolute
process value low limit is the default setting for the setpoint low
limit.
If you configure Config.SetpointLowerLimit to a value within
the process value limits, this value is used as the setpoint low
limit.

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or
exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or
fallen below the warning low limit.

State INT 0 The State parameter (Page 332) shows the current operating
mode of the PID controller. You change the operating mode
with the Retain.Mode tag.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Approach substitute output value
• State = 6: Transition time measurement
• State = 7: Error monitoring
• State = 8: Approach substitute output value with error mon

itoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 338) indicates the error mes
sages.

324
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

See also
State and Retain.Mode V1 parameters (Page 332)
Parameter ErrorBits V1 (Page 338)

10.2.5.5 PID_3Step V1 static tags

NOTE
You must not change tags that are not listed. These are used for internal purposes only.
Change the tags identified with (1) only in "Inactive" mode to prevent malfunction of the PID
controller. "Inactive" mode is forced by setting the "Retain.Mode" tag to "0".

Table 10-12

Tag Data type Default Description
ActivateRecoverMode BOOL TRUE The ActivateRecoverMode tag (Page 340) determines the reaction to

error.

RunModeByStartup BOOL TRUE Activate Mode after CPU restart
If RunModeByStartup = TRUE, the controller returns to the last active
operating mode after a CPU restart.
If RunModeByStartup = FALSE, the controller remains inactive after a
CPU startup.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint, e.g., ºC, or
ºF.

PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g., temperat
ure

ErrorBehaviour INT 0 If ErrorBehaviour = 0 and an error has occurred, the valve stays at its
current position and the controller switches directly to "Inactive" or
"Error monitoring" mode.
If ErrorBehaviour = 1 and an error occurs, the actuator moves to the
substitute output value and only then switches to "Inactive" or "Error
monitoring" mode.
If the following errors occur, you can no longer move the valve to a
configured substitute output value.
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.

Warning DWORD DW#16#0 The Warning tag (Page 332) displays the warnings generated since a
Reset or since the last operating mode switchover.
Cyclic warnings (for example, process value warning) are shown
until the cause of the warning is removed. They are automatically
deleted once their cause has gone. Non-cyclic warnings (for
example, point of inflection not found) remain and are deleted like
errors.

SavePosition REAL 0.0 Substitute output value
If ErrorBehaviour = 1 and an error occurs, the actuator moves to a
safe position for the plant and only then switches to "Inactive" mode.

325

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
The permitted value range is determined by the configuration.
• Config.FeedbackOn = FALSE and Config.OutputPerOn = FALSE:

SavePosition = 0.0 or 100.0
• Config.FeedbackOn = TRUE or Config.OutputPerOn = TRUE:

Config.OutputUpperLimit ≥ SavePosition ≥
Config.OutputLowerLimit

CurrentSetpoint REAL 0.0 Currently active setpoint. This value is frozen at the start of tuning.

Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)

Config.InputPerOn(1) BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used. If
InputPerOn = FALSE, the Input parameter is used.

Config.OutputPerOn(1) BOOL FALSE If OutputPerOn = TRUE, the Output_PER parameter is used. If
OutputPerOn = FALSE, the Ouput_UP and Output_DN parameters
are used.

Config.LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is reloaded. The
set was saved prior to the last tuning. LoadBackUp is automatically
set back to FALSE.

Config.InvertControl(1) BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value.

Config.FeedbackOn(1) BOOL FALSE If FeedbackOn = FALSE, a position feedback is simulated.
Position feedback is generally activated when FeedbackOn = TRUE.

Config.FeedbackPerOn(1) BOOL FALSE FeedbackPerOn is only effective when FeedbackOn = TRUE.
If FeedbackPerOn = TRUE, the analog input is used for the position
feedback (Feedback_PER parameter).
If FeedbackPerOn = FALSE, the Feedback parameter is used for the
position feedback.

Config.ActuatorEndStopOn(1) BOOL FALSE If ActuatorEndStopOn = TRUE, the digital position feedback
Actuator_L and Actuator_H are taken into consideration.

Config.InputUpperLimit(1) REAL 120.0 High limit of the process value
At the I/O input, the process value can be a maximum of 18% higher
than the standard range (overrange). An error is no longer signaled
due to a violation of the "Process value high limit". Only a wire-break
and a short-circuit are recognized and PID_3Step reacts according to
the configured reaction to error.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit(1) REAL 0.0 Low limit of the process value
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning(1) REAL +3.40282
2e+38

Warning high limit of the process value
If you set InputUpperWarning outside the process value limits, the
configured absolute process value high limit is used as the warning
high limit.
If you configure InputUpperWarning within the process value limits,
this value is used as the warning high limit.
InputUpperWarning > InputLowerWarning
InputUpperWarning ≤ InputUpperLimit

326
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
Config.InputLowerWarning(1) REAL -3.402822

e+38
Warning low limit of the process value
If you set InputLowerWarning outside the process value limits, the
configured absolute process value low limit is used as the warning
low limit.
If you configure InputLowerWarning within the process value limits,
this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning
InputLowerWarning ≥ InputLowerLimit

Config.OutputUpperLimit(1) REAL 100.0 High limit of output value
The following value range is permitted:
UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit
For more details, see OutputLowerLimit.

Config.OutputLowerLimit(1) REAL 0.0 Low limit of output value
The following value range is permitted:
OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut
When using Output_PER, an output value limit of -100% corresponds
to the value Output_PER = -27648; 100% correspond to the value
Output_PER = 27648.
If OutputPerOn = FALSE and FeedbackOn = FALSE,
OutputLowerLimit and OutputUpperLimit are not evaluated.
Output_UP and Output_DN are then reset at Actuator_H = TRUE or
Actuator_L = TRUE (if ActuatorEndStopOn = TRUE) or after a travel
time of 110% * Config.TransitTime (if ActuatorEndStopOn = FALSE).

Config.SetpointUpperLimit(1) REAL +3.40282
2e+38

High limit of setpoint
If you set SetpointUpperLimit outside the process value limits, the
configured absolute process value high limit is preassigned as the
setpoint high limit.
If you configure SetpointUpperLimit within the process value limits,
this value is used as the setpoint high limit.

Config.SetpointLowerLimit(1) REAL -
3.402822e
+38

Low limit of the setpoint
If you set SetpointLowerLimit outside the process value limits, the
configured absolute process value low limit is preassigned as the set
point low limit.
If you set SetpointLowerLimit within the process value limits, this
value is used as the setpoint low limit.

Config.MinimumOnTime(1) REAL 0.0 Minimum ON time
Minimum time in seconds for which the servo drive must be
switched on.
Config.MinimumOnTime is only effective if Output_UP and
Output_DN are used (Config.OutputPerOn = FALSE).

Config.MinimumOffTime(1) REAL 0.0 Minimum OFF time
Minimum time in seconds for which the servo drive must be
switched off.
Config.MinimumOffTime is only effective if Output_UP and
Output_DN are used (Config.OutputPerOn = FALSE).

Config.TransitTime(1) REAL 30.0 Motor transition time
Time in seconds the actuating drive requires to move the valve from
the closed to the opened state.

Config.InputScaling.Upper
PointIn(1)

REAL 27648.0 Scaling Input_PER high
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

327

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
Config.InputScaling.Lower
PointIn(1)

REAL 0.0 Scaling Input_PER low
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.InputScaling.UpperPoin
tOut(1)

REAL 100.0 Scaled high process value
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.InputScaling.LowerPoin
tOut(1)

REAL 0.0 Scaled low process value
Input_PER is converted to a percentage based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut, LowerPointIn of
the InputScaling structure.

Config.FeedbackScaling.Upper
PointIn(1)

REAL 27648.0 Scaling Feedback_PER high
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.

Config.FeedbackScaling.Lower
PointIn(1)

REAL 0.0 Scaling Feedback_PER low
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.

Config.FeedbackScaling.Upper
PointOut(1)

REAL 100.0 High endstop
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.
The permitted value range is determined by the configuration.
• FeedbackOn = FALSE:

UpperPointOut = 100.0
• FeedbackOn = TRUE:

UpperPointOut = 100.0 or 0.0
UpperPointOut ≠ LowerPointOut

Config.FeedbackScaling.Lower
PointOut(1)

REAL 0.0 Low endstop
Feedback_PER is converted to a percentage based on the two value
pairs UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn of the FeedbackScaling structure.
The permitted value range is determined by the configuration.
• FeedbackOn = FALSE:

LowerPointOut = 0.0
• FeedbackOn = TRUE:

LowerPointOut = 0.0 or -100.0
LowerPointOut ≠ UpperPointOut

GetTransitTime.InvertDirection BOOL FALSE If InvertDirection = FALSE, the valve is fully opened, closed, and then
reopened in order to determine the valve transition time.
If InvertDirection = TRUE, the valve is fully closed, opened, and then
closed again.

GetTransitTime.SelectFeedback BOOL FALSE If SelectFeedback = TRUE, then Feedback_PER, or Feedback is taken
into consideration in the transition time measurement.
If SelectFeedback = FALSE, then Actuator_H and Actuator_L are
taken into consideration in the transition time measurement.

GetTransitTime.Start BOOL FALSE If Start = TRUE, the transition time measurement is started.

328
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
GetTransitTime.State INT 0 Current phase of the transition time measurement

• State = 0: Inactive
• State = 1: Open valve completely
• State = 2: Close valve completely
• State = 3: Move valve to target position (NewOutput)
• State = 4: Transition time measurement successfully completed
• State = 5: Transition time measurement canceled

GetTransitTime.NewOutput REAL 0.0 Target position for transition time measurement with position feed
back
The target position must be between "High endstop" and "Low
endstop". The difference between NewOutput and ScaledFeedback
must be at least 50% of the permissible control range.

CycleTime.StartEstimation BOOL TRUE If StartEstimation = TRUE, the measurement of the PID_3Step
sampling time is started. CycleTime.StartEstimation = FALSE once
measurement is complete.

CycleTime.EnEstimation BOOL TRUE If EnEstimation = TRUE, the PID_3Step sampling time is calculated.

CycleTime.EnMonitoring BOOL TRUE If EnMonitoring = TRUE, the PID_3Step sampling time is monitored.
If it is not possible to execute PID_3Step within the sampling time,
the error 0800h is output and the operating mode is switched.
ActivateRecoverMode and ErrorBehaviour determine which operat
ing mode is switched to.
If EnMonitoring = FALSE, the PID_3Step sampling time is not mon
itored, the error 0800h is not output, and the operating mode is not
switched.

CycleTime.Value(1) REAL 0.1 PID_3Step sampling time in seconds
CycleTime.Value is determined automatically and is usually equival
ent to the cycle time of the calling OB.

CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser
You can reload values from the CtrlParamsBackUp structure with
Config.LoadBackUp = TRUE.

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain

CtrlParamsBackUp.Ti REAL 20.0 Saved integral action time

CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time

CtrlParamsBackUp.TdFiltRatio REAL 0.0 Saved derivative delay coefficient

CtrlParamsBackUp.PWeighting REAL 0.0 Saved proportional action weighting

CtrlParamsBackUp.DWeighting REAL 0.0 Saved derivative action weighting

CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm

CtrlParamsBackUp.InputDead
Band

REAL 0.0 Saved deadzone width of the control deviation

PIDSelfTune.SUT.CalculateSUTP
arams

BOOL FALSE The properties of the controlled system are saved during tuning. If
CalculateSUTParams = TRUE, the PID parameters are recalculated on
the basis of these properties. The PID parameters are calculated
using the method set in TuneRuleSUT. CalculateSUTParams is set to
FALSE following calculation.

329

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
PIDSelfTune.SUT.TuneRuleSUT INT 1 Methods used to calculate parameters during pretuning:

• TuneRuleSUT = 0: PID fast I (faster control response with higher
amplitudes of the output value than with TuneRuleSUT = 1)

• TuneRuleSUT = 1: PID slow I (slower control response with lower
amplitudes of the output value than with TuneRuleSUT = 0)

• TuneRuleSUT = 2: Chien, Hrones and Reswick PID
• TuneRuleSUT = 3: Chien, Hrones, Reswick PI
• TuneRuleSUT = 4: PID fast II (faster control response with higher

amplitudes of the output value than with TuneRuleSUT = 5)
• TuneRuleSUT = 5: PID slow II (slower control response with lower

amplitudes of the output value than with TuneRuleSUT = 4)
The methods TuneRuleSUT = 0 and 1 differ from the methods
TuneRuleSUT = 4 and 5 only in the calculation of the proportional
gain:
When TuneRuleSUT = 0 and 1, the proportional gain is calculated
based on the compensation time of the process. When
TuneRuleSUT = 4 and 5, this happens based on the delay time of the
process.
TuneRuleSUT = 4 and 5 returns a higher value for the proportional
gain and thus a faster control response with higher amplitudes of
the output value than with TuneRuleSUT = 0 and 1.

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretuning:

PIDSelfTune.TIR.RunIn BOOL FALSE • RunIn = FALSE
Pretuning is started when fine tuning is started from inactive or
manual mode.
If fine tuning is started from automatic mode, the system uses
the existing PID parameters to control to the setpoint.
Only then will fine tuning start. If pretuning is not possible,
PID_3Step switches to "Inactive" mode.

• RunIn = TRUE
The pretuning is skipped. PID_3Step attempts to reach the set
point with the minimum or maximum output value. This can pro
duce increased overshoot. Only then will fine tuning start.
RunIn is set to FALSE after fine tuning.

PIDSelfTune.TIR.CalculateTIRPa
rams

BOOL FALSE The properties of the controlled system are saved during tuning. If
CalculateTIRParams = TRUE, the PID parameters are recalculated on
the basis of these properties. The PID parameters are calculated
using the method set in TuneRuleTIR. CalculateTIRParams is set to
FALSE following calculation.

PIDSelfTune.TIR.TuneRuleTIR INT 0 Methods used to calculate parameters during fine tuning:
• TuneRuleTIR = 0: PID automatic
• TuneRuleTIR = 1: PID fast (faster control response with higher

amplitudes of the output value than with TuneRuleTIR = 2)
• TuneRuleTIR = 2: PID slow (slower control response with lower

amplitudes of the output value than with TuneRuleTIR = 1)
• TuneRuleTIR = 3: Ziegler-Nichols PID
• TuneRuleTIR = 4: Ziegler-Nichols PI
• TuneRuleTIR = 5: Ziegler-Nichols P
To be able to repeat the calculation of the PID parameters with Cal
culateTIRParams and TuneRuleTIR = 0, 1 or 2, the previous fine tun
ing also has to have been executed with TuneRuleTIR = 0, 1 or 2.
If this is not the case, TuneRuleTIR = 3 is used.
The recalculation of the PID parameters with CalculateTIRParams and
TuneRuleTIR = 3, 4 or 5 is always possible.

330
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Tag Data type Default Description
PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of "fine tuning":

Retain.Mode INT 0 A change to the value of Retain.Mode initiates a switch to another
operating mode.
The following operating mode is enabled upon a change of Mode to:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
• Mode = 5: Approach substitute output value
• Mode = 6: Transition time measurement
• Mode = 7: Error monitoring
• Mode = 8: Approach substitute output value with error monitor

ing
Mode is retentive.

Retain.CtrlParams.SetByUser(1) BOOL FALSE If SetByUser = FALSE, the PID parameters are determined automatic
ally and PID_3Step operates with a dead zone at the output value.
The deadzone width is calculated during tuning on the basis of the
standard deviation of the output value and saved in
Retain.CtrlParams.OutputDeadBand.
If SetByUser = TRUE, the PID parameters are entered manually and
PID_3 Step operates without a dead zone at the output value.
Retain.CtrlParams.OutputDeadBand = 0.0
SetByUser is retentive.

Retain.CtrlParams.Gain(1) REAL 1.0 Active proportional gain
Gain is retentive.

Retain.CtrlParams.Ti(1) REAL 20.0 • Ti > 0.0: Active integral action time
• Ti = 0.0: Integral action is deactivated
Ti is retentive.

Retain.CtrlParams.Td(1) REAL 0.0 • Td > 0.0: Active derivative action time
• Td = 0.0: Derivative action is deactivated
Td is retentive.

Retain.CtrlParams.TdFiltRatio(1) REAL 0.0 Active derivative delay coefficient
TdFiltRatio is retentive.

Retain.CtrlParams.PWeighting(1) REAL 0.0 Active proportional action weighting
PWeighting is retentive.

Retain.CtrlParams.DWeighting(1) REAL 0.0 Active derivative action weighting
DWeighting is retentive.

Retain.CtrlParams.Cycle(1) REAL 1.0 Active sampling time of PID algorithm in seconds, rounded to an
integer multiple of the cycle time of the calling OB.
Cycle is retentive.

Retain.CtrlParams.InputDead
Band(1)

REAL 0.0 Deadzone width of the control deviation
InputDeadBand is retentive.

331

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
State and Retain.Mode V1 parameters (Page 332)
Tag ActivateRecoverMode V1 (Page 340)
Downloading technology objects to device (Page 46)

10.2.5.6 State and Retain.Mode V1 parameters

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.
To switch from one operating mode to another, you must change the Retain.Mode tag. This
also applies when the value for the new operating mode is already in Retain.Mode. For
example, set Retain.Mode = 0 first and then Retain.Mode = 3. Provided the current operating
mode of the controller permits this switchover, State will be set to the value of Retain.Mode.
When PID_3Step automatically switches from one operating mode to another, the following
applies: State != Retain.Mode.
Examples:
• After successful pretuning

State = 3 and Retain.Mode = 1
• In the event of an error

State = 0 and Retain.Mode remain at the previous value, for example, Retain.Mode = 3
• ManualEnalbe = TRUE

State = 4 and Retain.Mode remain at the previous value, e.g., Retain.Mode = 3

NOTE
You want, for example, to repeat successful fine tuning without exiting automatic mode
with Mode = 0.
Setting Retain.Mode to an invalid value such as 9999 for one cycle has no effect on State.
Set Mode = 2 in the next cycle. In this way, you can generate a change to Retain.Mode
without first switching to "Inactive" mode.

Meaning of values

State /
Retain.Mode

Description

0 Inactive
The controller is switched off and no longer changes the valve position.

 1 Pretuning
The pretuning determines the process response to a pulse of the output value and searches for the point of
inflection. The optimized PID parameters are calculated as a function of the maximum rate of rise and dead
time of the controlled system.

332
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

State /
Retain.Mode

Description

Pretuning requirements:
• State = 0 or State = 4
• ManualEnable = FALSE
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise the
result will be. Noise on the process value can be tolerated as long as the rate of rise of the process value is sig
nificantly higher as compared to the noise.
Before the PID parameters are recalculated, they are backed up and can be reactivated with
Config.LoadBackUp. The setpoint is frozen in the CurrentSetpoint tag.
The controller switches to automatic mode following successful pretuning and to "Inactive" mode following
unsuccessful pretuning.
The pretuning phase is indicated with the SUT.State tag.

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are tuned based
on the amplitude and frequency of this oscillation. The differences between the process response during pre
tuning and fine tuning are analyzed. All PID parameters are recalculated from the results. PID parameters from
fine tuning usually have better master control and disturbance characteristics than PID parameters from pre
tuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the process value. Fine
tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before fine tuning. They can be reactivated with Config.LoadBackUp. The
setpoint is frozen in the CurrentSetpoint tag.
Requirements for fine tuning:
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.
PID_3Step controls the system using the existing PID parameters until the control loop has stabilized and
the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)
Pretuning is always started first. The determined PID parameters will be used for control until the control
loop has stabilized and the requirements for fine tuning have been met.
If PIDSelfTune.TIR.RunIn = TRUE, pretuning is skipped and an attempt is made to reach the setpoint with
the minimum or maximum output value. This can produce increased overshoot. Fine tuning then starts
automatically.

The controller switches to automatic mode following successful fine tuning. If fine tuning was not successful,
the controller switches to "Inactive" mode.
The fine tuning phase is indicated with the TIR.State tag.

3 Automatic mode
In automatic mode, PID_3Step controls the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing the Retain.Mode tag to the value 3.
When the CPU is switched on or switches from Stop to RUN mode, PID_3Step starts in the most recently active
operating mode. To retain PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

333

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

State /
Retain.Mode

Description

4 Manual mode
In manual mode, you specify manual output values in the Manual_UP and Manual_DN parameters or
ManualValue parameter. Whether or not the actuator can be moved to the output value in the event of an
error is described in the ErrorBits parameter.
This operating mode is enabled if Retain.Mode = 4, or on a rising edge at ManualEnable.
If ManualEnable changes to TRUE, only State changes. Retain.Mode retains its current value. On a falling edge
at ManualEnable, PID_3Step returns to the previous operating mode.
The switchover to automatic mode is bumpless.
PID_3Step V1.1
Manual mode is always possible in the event of an error.
PID_3Step V1.0
Manual mode is dependent on the ActivateRecoverMode tag in the event of an error.

5 Approach substitute output value
This operating mode is activated in the event of an error or when Reset = TRUE if Errorbehaviour = 1 and
ActivateRecoverMode = FALSE..
PID_3Step moves the actuator to the substitute output value and then switches to "Inactive" mode.

6 Transition time measurement
The time that the motor needs to completely open the valve from the closed condition is determined.
This operating mode is activated when GetTransitTime.Start = TRUE is set.
If endstop signals are used to measure the transition time, the valve will be opened completely from its cur
rent position, closed completely, and opened completely again. If GetTransitTime.InvertDirection = TRUE, this
behavior is inverted.
If position feedback is used to measure the transition time, the actuator will be moved from its current posi
tion to a target position.
The output value limits are not taken into consideration during the transition time measurement. The actuat
or can travel to the high or the low endstop.

7 Error monitoring
The control algorithm is switched off and no longer changes the valve position.
This operating mode is activated instead of "Inactive" mode in the event of an error.
All the following conditions must be met:
• Mode = 3 (automatic mode)
• Errorbehaviour = 0
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 340) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

8 Approach substitute output value with error monitoring
This operating mode is activated instead of "Approach substitute output value" mode in the event of an error.
PID_3Step moves the actuator to the substitute output value and then switches to "Error monitoring" mode.
All the following conditions must be met:
• Mode = 3 (automatic mode)
• Errorbehaviour = 1
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 340) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

334
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Automatic switchover of operating mode during commissioning
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour on the switchover of operating mode from
transition time measurement, pretuning, and fine tuning modes.

Automatic switchover of operating mode in the event of an error
Automatic switchover of operating mode once the current operation has been completed.

335

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

Automatic switchover of operating mode in automatic mode (PID_3Step V1.1)
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error
Automatic switchover of operating mode once the current operation has been completed.

336
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

Automatic switchover of operating mode in automatic and manual modes (PID_3Step V1.0)
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error
Automatic switchover of operating mode once the current operation has been completed.
Automatic switchover of operating mode when error is no longer pending.

See also
Tag ActivateRecoverMode V1 (Page 340)
Parameter ErrorBits V1 (Page 338)

337

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

10.2.5.7 Parameter ErrorBits V1

If several errors are pending simultaneously, the values of the error codes are displayed with
binary addition. The display of error code 0003, for example, indicates that the errors 0001
and 0002 are pending simultaneously.

ErrorBits
 (DW#16#...)

Description

0000 There is no error.

0001 The "Input" parameter is outside the process value limits.
• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If ActivateRecoverMode = TRUE and ErrorBehaviour = 1, the actuator moves to the substitute output
value. If ActivateRecoverMode = TRUE and ErrorBehaviour = 0, the actuator stops in its current position. If
ActivateRecoverMode = FALSE, the actuator stops in its current position.
PID_3Step V1.1
You can move the actuator in manual mode.
PID_3Step V1.0
Manual mode is not possible in this state. You cannot move the actuator again until you eliminate the
error.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

0004 Error during fine tuning. Oscillation of the process value could not be maintained.

0020 Pretuning is not permitted in automatic mode or during fine tuning.

0080 Error during pretuning. The output value limits are not configured correctly or the actual value does not
react as expected.
Check whether the limits of the output value are configured correctly and match the control logic.
Also make sure that the actual value does not oscillate strongly before starting pretuning.

0100 Error during fine tuning resulted in invalid parameters.

0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

0400 Calculation of output value failed. Check the PID parameters.

0800 Sampling time error: PID_3Step is not called within the sampling time of the cyclic interrupt OB.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.
If this error occurred during simulation with PLCSIM, see the notes under Simulating PID_3Step V1 with
PLCSIM (Page 145).

1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

2000 Invalid value at Feedback_PER parameter.
Check whether an error is pending at the analog input.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state. You must deactivate position feedback (Config. FeedbackOn = FALSE) to
move the actuator from this state.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

338
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

ErrorBits
 (DW#16#...)

Description

4000 Invalid value at Feedback parameter. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state. You must deactivate position feedback (Config. FeedbackOn = FALSE) to
move the actuator from this state.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

8000 Error during digital position feedback. Actuator_H = TRUE and Actuator_L = TRUE.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state.
In order to move the actuator from this state, you must deactivate the "Actuator endstop"
(Config.ActuatorEndStopOn = FALSE).
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is no
longer pending, PID_3Step switches back to automatic mode.

10.2.5.8 Reset V1 parameter

A rising edge at Reset triggers a change to "Inactive" mode, and errors and warnings are reset.
A falling edge at Reset triggers a change to the most recently active operating mode. If
automatic mode was active before, switchover to automatic mode is bumpless.

① Activation
② Error
③ Reset

339

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

10.2.5.9 Tag ActivateRecoverMode V1

The effect of the ActivateRecoverMode variable depends on the version of the PID_3Step.

Behavior in version 1.1
The ActivateRecoverMode variable determines the behavior in the event of an error in
automatic mode. ActivateRecoverMode is not effective during pretuning, fine tuning and
transition time measurement.

ActivateRecover
Mode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" operating
mode. The controller is activated by a reset or a change in Retain.Mode.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response. In
this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more errors occur, PID_3Step switches to "Approach substitute output value with error
monitoring" or "Error monitoring" mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, PID_3Step cannot approach the configured substitute output
value.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

Behavior in version 1.0
The ActivateRecoverMode variable determines the behavior in the event of an error in
automatic and manual mode. ActivateRecoverMode is not effective during pretuning, fine
tuning and transition time measurement.

ActivateRecover
Mode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" operating
mode. The controller is activated by a reset or a change in Retain.Mode.

TRUE Errors in automatic mode
If errors occur frequently in automatic mode, this setting has a negative effect on the control response. In
this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more errors occur, PID_3Step switches to "Approach substitute output value with error
monitoring" or "Error monitoring" mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, PID_3Step cannot approach the configured substitute output
value.

340
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

ActivateRecover
Mode

Description

As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.
Errors in manual mode
If one or more of the following errors occur, PID_3Step stays in manual mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, you cannot move the valve to a suitable position.

See also
PID_3Step V1 static tags (Page 325)
State and Retain.Mode V1 parameters (Page 332)

10.2.5.10 Tag Warning V1

If several warnings are pending simultaneously, their values are displayed with binary
addition. The display of warning 0003, for example, indicates that the warnings 0001 and
0002 are pending simultaneously.

Warning
(DW#16#...)

Description

0000 No warning pending.

0001 The point of inflection was not found during pretuning.

0002 Oscillation increased during fine tuning.

0004 The setpoint was limited to the configured limits.

0008 Not all the necessary controlled system properties were defined for the selected method of calculation.
The PID parameters were instead calculated using the TuneRuleTIR = 3 method.

0010 The operating mode could not be changed because ManualEnable = TRUE.

0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.
Improve results by using shorter OB cycle times.

0040 The process value exceeded one of its warning limits.

0080 Invalid value at Retain.Mode. The operating mode is not switched.

0100 The manual value was limited to the limits of the controller output.

0200 The rule used for tuning produces an incorrect result, or is not supported.

0400 Method selected for transition time measurement not suitable for actuator.
The transition time cannot be measured because the actuator settings do not match the selected measur
ing method.

0800 The difference between the current position and the new output value is too small for transition time
measurement. This can produce incorrect results. The difference between the current output value and
new output value must be at least 50% of the entire control range.

1000 The substitute output value cannot be reached because it is outside the output value limits.

341

Instructions
10.2 PID_3Step

PID control
Function Manual, 11/2023, A5E35300227-AG

The following warnings are deleted as soon as the cause is eliminated:
• 0004
• 0020
• 0040
• 0100
All other warnings are cleared with a rising edge at Reset.

10.2.5.11 Tag SUT.State V1

SUT.State Name Description
0 SUT_INIT Initialize pretuning

50 SUT_TPDN Determine start position without position feedback

100 SUT_STDABW Calculate the standard deviation

200 SUT_GET_POI Find the point of inflection

300 SUT_GET_RISETM Determine the rise time

9900 SUT_IO Pretuning successful

1 SUT_NIO Pretuning not successful

10.2.5.12 Tag TIR.State V1

TIR.State Name Description
-100 TIR_FIRST_SUT Fine tuning is not possible. Pretuning will be executed first.

0 TIR_INIT Initialize fine tuning

200 TIR_STDABW Calculate the standard deviation

300 TIR_RUN_IN Attempt to reach the setpoint with the maximum or minimum output value

400 TIR_CTRLN Attempt to reach the setpoint with the existing PID parameters
(if pretuning has been successful)

500 TIR_OSZIL Determine oscillation and calculate parameters

9900 TIR_IO Fine tuning successful

1 TIR_NIO Fine tuning not successful

342
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.2 PID_3Step

10.3 PID_Temp

10.3.1 New features of PID_Temp

PID_Temp V1.1
• Response of the output value on switchover from "Inactive" operating mode to

"Automatic mode"
The new option IntegralResetMode = 4 was added and defined as default. With
IntegralResetMode = 4, the integral action is automatically pre-assigned when switching
from "Inactive" operating mode to "Automatic mode" so that a control deviation results in
a jump of the PID output value with identical sign.

• Initialization of the integral action in automatic mode
The integral action can be initialized in automatic mode with the tags
OverwriteInitialOutputValue and PIDCtrl.PIDInit. This simplifies the use of PID_Temp for
override controls.

10.3.2 Compatibility with CPU and FW
The following table shows which version of PID_Temp can be used on which CPU.

CPU FW PID_Temp
as of V4.2 V1.1

V1.0
S7-1200

V4.1 V1.0

as of V3.0 V1.1

V2.0 to V2.9 V1.1
V1.0

S7-1500

V1.7 to V1.8 V1.0

343

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

10.3.3 CPU processing time and memory requirement PID_Temp V1

CPU processing time
Typical CPU processing times of the PID_Temp technology object as of Version V1.0,
depending on CPU type and operating mode for standard, F, T and TF CPUs.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1211

CPU 1212

CPU 1214

CPU 1215

CPU 1217

≥ V4.1 290 µs 450 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

85 µs 140 µs

CPU 1515

CPU 1516

≤ V2.9

80 µs 110 µs

CPU 1517 12 µs 18 µs

CPU 1518

≥ V1.7

6 µs 9 µs

CPU 1510SP

CPU 1511

CPU 1511C

CPU 1512C

CPU 1512SP

CPU 1513

CPU 1514SP

75 µs 110 µs

CPU 1515

CPU 1516

≥ V3.0

55 µs 90 µs

Typical CPU processing times of the PID_Temp technology object as of Version V1.0,
depending on the CPU type and operating mode for R-CPUs in the RUN-Redundant system
state.

CPU FW Typ. CPU processing time
Automatic mode

Typ. CPU processing time pre-
tuning and fine tuning

CPU 1513R 110 µs 160 µs

CPU 1515R

≥ V3.0

95 µs 130 µs

344
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Memory requirement
Memory requirement of an instance DB of the PID_Temp technology object as of Version
V1.0.

Memory requirement Memory requirement of the instance DB of PID_Temp V1

Load memory requirement Approx. 4700 bytes

Total work memory requirement 1280 bytes

Retentive work memory requirement 100 bytes

10.3.4 PID_Temp

10.3.4.1 Description of PID_Temp

Description
The PID_Temp instruction provides a PID controller with integrated tuning for temperature
processes. PID_Temp can be used for pure heating or heating/cooling applications.
The following operating modes are possible:
• Inactive
• Pretuning
• Fine tuning
• Automatic mode
• Manual mode
• Substitute output value with error monitoring
For a more detailed description of the operating modes, see the State parameter.

PID algorithm
PID_Temp is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation (control
zone and dead zone deactivated):

The table below shows the meaning of the icons used in the equation and in the subsequent
figures.

Icon Description Associated parameters of the
PID_Temp instruction

y Output value of the PID algorithm -

Kp Proportional gain Retain.CtrlParams.Heat.Gain
Retain.CtrlParams.Cool.Gain
CoolFactor

s Laplace operator -

345

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Icon Description Associated parameters of the
PID_Temp instruction

b Proportional action weighting Retain.CtrlParams.Heat.PWeighting
Retain.CtrlParams.Cool.PWeighting

w Setpoint CurrentSetpoint

x Process value ScaledInput

TI Integration time Retain.CtrlParams.Heat.Ti
Retain.CtrlParams.Cool.Ti

TD Derivative action time Retain.CtrlParams.Heat.Td
Retain.CtrlParams.Cool.Td

a Derivative delay coefficient (derivative
delay T1 = a × TD)

Retain.CtrlParams.Heat.TdFiltRatio
Retain.CtrlParams.Cool.TdFiltRatio

c Derivative action weighting Retain.CtrlParams.Heat.DWeighting
Retain.CtrlParams.Cool.DWeighting

DeadZone Dead zone width Retain.CtrlParams.Heat.DeadZone
Retain.CtrlParams.Cool.DeadZone

ControlZone Control zone width Retain.CtrlParams.Heat.ControlZone
Retain.CtrlParams.Cool.ControlZone

346
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

PID_Temp block diagram

347

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram of PIDT1 with anti-windup

Call
PID_Temp is called in the constant time scale of a cyclic interrupt OB.

Download to device
The process values of retentive tags are only updated when you download PID_Temp
completely.
Download technology object to device (Page 46)

Startup
When the CPU starts up, PID_Temp starts in the operating mode that is saved in the Mode
in/out parameter. To switch to "Inactive" operating mode during startup, set
RunModeByStartup = FALSE.

348
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Responses in the event of an error
The response in the event of an error is determined by the tags SetSubstituteOutput and
ActivateRecoverMode. If ActivateRecoverMode = TRUE, the behavior also depends on the
error that occurred.

SetSubstitu
teOutput

ActivateR
ecoverMode

Configuration editor
> Basic settings of output
> Set PidOutputSum to

Reaction

Not relevant FALSE Zero (inactive) Switch to "Inactive" (State = 0) mode
The output value of the PID algorithm and all out
puts for heating and cooling are set to 0. The scal
ing of the outputs for heating and cooling is not
active.

FALSE TRUE Current value for error while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The current output value is transferred to the actu
ator while the error is pending.

TRUE TRUE Substitute output value while error is
pending

Switch to "Substitute output value with error
monitoring" mode (State = 5)
The value at SubstituteOutput is transferred to the
actuator while the error is pending.

In manual mode, PID_Temp uses ManualValue as output value, unless ManualValue is invalid.
• If ManualValue is invalid, SubstituteOutput is used.
• If ManualValue and SubstituteOutput are invalid, Config.Output.Heat.PidLowerLimit is

used.
The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is reset by
a rising edge at Reset or ErrorAck.

10.3.4.2 Mode of operation of PID_Temp

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0000001h).
You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warning = 0000040h), and the
InputWarning_H or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_Temp automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller area. PID_Temp checks whether this area
is within the process value limits. If the setpoint is outside these limits, the high or low limit is
used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is set to TRUE.
The setpoint is limited in all operating modes.

349

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Substitute setpoint
You can specify a substitute setpoint at the SubstituteSetpoint tag and activate it with
SubstituteSetpointOn = TRUE. In this way, you can temporarily specify the setpoint directly,
for example for a slave controller in a cascade, without having to change the user program.
The limits set for the setpoint also apply to the substitute setpoint.

Heating and cooling
With the default setting, PID_Temp only uses the outputs for heating (OutputHeat,
OutputHeat_PWM, OutputHeat_PER). The output value of the PID algorithm (PidOutputSum)
is scaled and output at the outputs for heating. You specify with Config.Output.Heat.Select if
OutputHeat_PWM or OutputHeat_PER is calculated. OutputHeat is always calculated.
With Config.ActivateCooling = TRUE, you can also activate the outputs for cooling
(OutputCool, OutputCool_PWM, OutputCool_PER). Positive output values of the PID algorithm
(PidOutputSum) are scaled and output at the outputs for heating. Negative output values of
the PID algorithm are scaled and output at the outputs for cooling. You specify with
Config.Output.Cool.Select if OutputCool_PWM or OutputCool_PER is calculated. OutputCool is
always calculated.
Two methods are available to calculate the PID output value with activated cooling:
• Cooling factor (Config.AdvancedCooling = FALSE):

The output value calculation for cooling takes place with the PID parameters for heating,
taking into consideration the configurable cooling factor Config.CoolFactor. This method
is suitable if the heating and cooling actuators have a similar time response but different
gains. If this method is selected, pretuning and fine tuning for cooling as well as the PID
parameter set for cooling are not available. You can only execute the tuning for heating.

• PID parameter switching (Config.AdvancedCooling = TRUE):
The output value calculation for cooling takes place by means of a separate PID parameter
set. Based on the calculated output value and the control deviation, the PID algorithm
decides whether the PID parameter for heating or cooling is used. This method is suitable
if the heating and cooling actuator have different time responses and different gains.
Pretuning and fine tuning for cooling are only available if this method is selected.

Output value limits and scaling
Depending on the operating mode, the PID output value (PidOutputSum) is calculated
automatically by the PID algorithm or defined by the manual value (ManualValue) or the
configured substitute output value (SubstituteOutput).
The PID output value is limited according to the configuration:
• If cooling is deactivated (Config.ActivateCooling = FALSE),

Config.Output.Heat.PidUpperLimit is the high limit and Config.Output.Heat.PidLowerLimit
the low limit.

• If cooling is activated (Config.ActivateCooling = TRUE), Config.Output.Heat.PidUpperLimit
is the high limit and Config.Output.Cool.PidLowerLimit the low limit.

350
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

The PID output value is scaled and output at the outputs for heating and cooling. Scaling can
be defined separately for each output and is specified in the structures Config.Output.Heat or
Config.Output.Cool with 2 value pairs each:

Output Value pair Parameter
Value pair 1 PID output value high limit (heating)

Config.Output.Heat.PidUpperLimit,
Scaled high output value (heating)
Config.Output.Heat.UpperScaling

OutputHeat

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low output value (heating)
Config.Output.Heat.LowerScaling

Value pair 1 PID output value high limit (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high PWM output value (heating)
Config.Output.Heat.PwmUpperScaling

OutputHeat_PWM

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low PWM output value (heating)
Config.Output.Heat.PwmLowerScaling

Value pair 1 PID output value high limit (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high analog output value (heating)
Config.Output.Heat.PerUpperScaling

OutputHeat_PER

Value pair 2 PID output value low limit (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low analog output value (heating)
Config.Output.Heat.PerLowerScaling

Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high output value (cooling)
Config.Output.Cool.UpperScaling

OutputCool

Value pair 2 PID output value high limit (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low output value (cooling)
Config.Output.Cool.LowerScaling

OutputCool_PWM Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high PWM output value (cooling)
Config.Output.Cool.PwmUpperScaling

If cooling is activated (Config.ActivateCooling = TRUE), Config.Output.Heat.PidLowerLimit must have
the value 0.0.
Config.Output.Cool.PidUpperLimit must always have the value 0.0.

351

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Output Value pair Parameter
OutputCool_PWM Value pair 2 PID output value high limit (cooling)

Config.Output.Cool.PidUpperLimit,
Scaled low PWM output value (cooling)
Config.Output.Cool.PwmLowerScaling

Value pair 1 PID output value low limit (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high analog output value (cooling)
Config.Output.Cool.PerUpperScaling

OutputCool_PER

Value pair 2 PID output value high limit (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low analog output value (cooling)
Config.Output.Cool.PerLowerScaling

If cooling is activated (Config.ActivateCooling = TRUE), Config.Output.Heat.PidLowerLimit must have
the value 0.0.
Config.Output.Cool.PidUpperLimit must always have the value 0.0.

Example:
Output scaling when using output OutputHeat (cooling deactivated;
Config.Output.Heat.PidLowerLimit may be unequal to 0.0):

Example:
Output scaling when using output OutputHeat_PWM and OutputCool_PER (cooling activated;
Config.Output.Heat.PidLowerLimit must be 0.0):

With the exception of the "Inactive" operating mode, the value at an output is always located
between its scaled high output value and scaled low output value, for example, for
OutputHeat always between Config.Output.Heat.UpperScaling and
Config.Output.Heat.LowerScaling.
If you want to limit the value at the associated output, you therefore have to adapt these
scaling values as well.

352
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Cascading
PID_Temp supports you when you use cascade control (see: Program creation (Page 179)).

Substitute output value
In the event of an error, PID_Temp can output a substitute output value that you define at the
SubstituteOutput tag. The substitute output value must be within the limits for the PID output
value. The values at the outputs for heating and cooling resulting from the substitute output
value are the result of the configured output scaling.

Monitoring signal validity
The values of the following parameters are monitored for validity when used:
• Setpoint
• SubstituteSetpoint
• Input
• Input_PER
• Disturbance
• ManualValue
• SubstituteOutput
• PID parameters in the structures Retain.CtrlParams.Heat and Retain.CtrlParams.Cool.

Monitoring the sampling time PID_Temp
Ideally, the sampling time is equivalent to the cycle time of the cyclic interrupt OB. The
PID_Temp instruction measures the time interval between two calls. This is the current
sampling time. On every switchover of operating mode and during the initial startup, the
mean value is formed from the first 10 sampling times. Too great a difference between the
current sampling time and this mean value triggers an error (Error = 0000800h).
The error occurs during tuning if:
• New mean value >= 1.1 x old mean value
• New mean value <= 0.9 x old mean value
The error occurs in automatic mode if:
• New mean value >= 1.5 x old mean value
• New mean value <= 0.5 x old mean value
If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_Temp in OB1. You must then accept a lower control quality due to the deviating
sampling time.

353

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value.
It is calculated during tuning and rounded to a multiple of the cycle time of the cyclic
interrupt OB (sampling time PID_Temp). All other functions of the PID_Temp are executed at
every call.
If cooling and PID parameter switching are activated, PID_Temp uses a separate sampling
time of the PID algorithm for heating and cooling. In all other configurations, only the
sampling time of the PID algorithm for heating is used.
If you use OutputHeat_PWM or OutputCool_PWM, the sampling time of the PID algorithm is
used as the period duration of the pulse width modulation. The accuracy of the output signal
is determined by the ratio of the PID algorithm sampling time to the cycle time of the OB. The
cycle time should be no more than a tenth of the PID algorithm sampling time.
If the PID algorithm sampling time and thus the time period of the pulse width modulation is
very high when you use OutputHeat_PWM or OutputCool_PWM, you can define a deviating
shorter period duration at the Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode parameters to improve the smoothness of the process value.

Control logic
PID_Temp can be used for heating or heating/cooling applications and always works with
normal control logic.
An increase of the PID output value (PidOutputSum) is intended to increase the process value.
The values at the outputs for heating and cooling resulting from the PID output value are the
result of the configured output scaling.
An inverted control logic or negative proportional gain are not supported.
If you only need an output value for your application in which an increase is to reduce the
process value (for example, discharge control), you can use PID_Compact with inverted
control logic.

10.3.4.3 Input parameters of PID_Temp

The names of the following parameters apply both to the data block and to access via the
Openness API.

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Valid range of values:
Config.SetpointUpperLimit ≥ Setpoint ≥ Config.SetpointLowerLimit
Config.InputUpperLimit ≥ Setpoint ≥ Config.InputLowerLimit

Input REAL 0.0 A tag of the user program is used as source for the process value.
If you are using the Input parameter, Config.InputPerOn = FALSE must be set.

Input_PER INT 0 An analog input is used as the source of the process value.
If you are using the Input_PER parameter, Config.InputPerOn = TRUE must be
set.

Disturbance REAL 0.0 Disturbance variable or precontrol value

354
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Parameter Data type Default Description
ManualEnable BOOL FALSE • A FALSE -> TRUE edge activates "Manual mode", whileState = 4, Mode

remains unchanged.
As long as ManualEnable = TRUE, you cannot change the operating mode
via a rising edge at ModeActivate or use the commissioning dialog.

• A TRUE -> FALSE edge activates the operating mode that is specified by
Mode.

We recommend that you change the operating mode using Mode and
ModeActivate only.

ManualValue REAL 0.0 Manual value
This value is used in manual mode as PID output value (PidOutputSum).
The values at the outputs for heating and cooling resulting from this manual
value are the result of the configured output scaling (structures
Config.Output.Heat and Config.Output.Cool).
For controllers with activated cooling output (Config.ActivateCooling = TRUE),
define:
• a positive manual value to output the value at the outputs for heating
• a negative manual value to output the value at the outputs for cooling
The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling = FALSE):

Config.Output.Heat.PidUpperLimit ≥ ManualValue ≥
Config.Output.Heat.PidLowerLimit

• Cooling output activated (Config.ActivateCooling = TRUE):
Config.Output.Heat.PidUpperLimit ≥ ManualValue ≥
Config.Output.Cool.PidLowerLimit

ErrorAck BOOL FALSE • FALSE -> TRUE edge
ErrorBits and Warning are reset.

Reset BOOL FALSE Restarts the controller.
• FALSE -> TRUE edge

– Switch to "Inactive" mode
– ErrorBits and Warning are reset.

• As long as Reset = TRUE,
– PID_Temp remains in "Inactive" mode (State = 0).
– you cannot change the operating mode with Mode and ModeActivate

or ManualEnable
– You cannot use the commissioning dialog.

• TRUE -> FALSE edge
– If ManualEnable = FALSE, PID_Temp switches to the operating mode

that is saved in Mode.
– If Mode = 3 (automatic mode), the integral action is treated as con

figured with the tag IntegralResetMode.

ModeActivate BOOL FALSE • FALSE -> TRUE edge
PID_Temp switches to the operating mode that is saved at the Mode input.

355

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

10.3.4.4 Output parameters of PID_Temp

The names of the following parameters apply both to the data block and to access via the
Openness API.

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value

OutputHeat REAL 0.0 Output value (heating) in REAL format
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.UpperScaling and Con
fig.Output.Heat.PidLowerLimit, Config.Output.Heat.LowerScaling and output
in REAL format at OutputHeat.
OutputHeat is always calculated.

OutputCool REAL 0.0 Output value (cooling) in REAL format
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.LowerScaling and Con
fig.Output.Cool.PidLowerLimit, Config.Output.Cool.UpperScaling and output in
REAL format at OutputCool.
OutputCool is only calculated if the cooling output is activated
(Config.ActivateCooling = TRUE).

OutputHeat_PER INT 0 Analog output value (heating)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.PerUpperScaling and
Config.Output.Heat.PidLowerLimit, Config.Output.Heat.PerLowerScaling and
output as analog value at OutputHeat_PER.
OutputHeat_PER is only calculated if Config.Output.Heat.Select = 2.

OutputCool_PER INT 0 Analog output value (cooling)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.PerLowerScaling and
Config.Output.Cool.PidLowerLimit, Config.Output.Cool.PerUpperScaling and
output as analog value at OutputCool_PER.
OutputCool_PER is only calculated if the cooling output is activated
(Config.ActivateCooling = TRUE) and Config.Output.Cool.Select = 2.

OutputHeat_PW
M

BOOL FALSE Pulse-width modulated output value (heating)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.PwmUpperScaling and
Config.Output.Heat.PidLowerLimit, Config.Output.Heat.PwmLowerScaling and
output as pulse-width modulated value (variable switch on and switch off
times) at OutputHeat_PWM.
OutputHeat_PWM is only calculated if Config.Output.Heat.Select = 1.

OutputCool_PW
M

BOOL FALSE Pulse-width modulated output value (cooling)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.PwmLowerScaling and
Config.Output.Cool.PidLowerLimit, Config.Output.Cool.PwmUpperScaling and
output as pulse-width modulated value (variable switch on and switch off
times) at OutputCool_PWM.
OutputCool_PWM is only calculated if the cooling output is activated
(Config.ActivateCooling = TRUE) and Config.Output.Cool.Select = 1.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is reached
(Setpoint ≥ Config.SetpointUpperLimit) or Setpoint ≥ Config.InputUpperLimit.
The setpoint high limit is the minimum of Config.SetpointUpperLimit and Con
fig.InputUpperLimit.

356
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Parameter Data type Default Description
SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit is reached (Setpoint ≤

Config.SetpointLowerLimit) or Setpoint ≤ Config.InputLowerLimit.
The setpoint low limit is the maximum of Config.SetpointLowerLimit and Con
fig.InputLowerLimit.

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or exceeded the
warning high limit (ScaledInput ≥ Config.InputUpperWarning).

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or fallen below the
warning low limit (ScaledInput ≤ Config.InputLowerWarning).

State INT 0 The PID_Temp state and mode parameters (Page 383) shows the current oper
ating mode of the PID controller. You can change the operating mode using
the input parameter Mode and a rising edge at ModeActivate. For pretuning
and fine tuning, you specify with Heat.EnableTuning and Cool.EnableTuning
whether tuning takes place for heating or cooling.
• State = 0: Inactive
• State = 1: Pre-tuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Substitute output value with error monitoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending in this cycle.

ErrorBits DWORD DW#16#0 The PID_Temp ErrorBits parameter (Page 389) shows the pending error mes
sages.
ErrorBits is retentive and is reset with a rising edge at Reset or ErrorAck.

10.3.4.5 In/out parameters of PID_Temp V2

The names of the following parameters apply both to the data block and to access via the
Openness API.

Parameter Data type Default Description
Mode INT 4 At Mode, specify the operating mode to which PID_Temp is to switch. Options

are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if RunModeByStartup = TRUE
For pretuning and fine tuning, you specify with Heat.EnableTuning and
Cool.EnableTuning whether tuning takes place for heating or cooling.
Mode is retentive.
A detailed description of the operating modes can be found in State and Mode
parameters (Page 383).

357

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameter Data type Default Description
Master DWORD DW#16#0 Interface for cascade control

If this PID_Temp instance is used as slave controller in a cascade
(Config.Cascade.IsSlave = TRUE), assign the Master parameter at the instruction
call with the Slave parameter of the master controller.
Example:
Call of a slave controller "PID_Temp_2" with master controller "PID_Temp_1" in
SCL:
--
"PID_Temp_2"(Master := "PID_Temp_1".Slave, Setpoint :=
"PID_Temp_1".OutputHeat);

--
You use this interface to exchange slave controller information about operating
mode, limit and substitute setpoint with your master controller. Keep in mind that
the call of the master controller has to take place before the call of the slave con
troller in the same cyclic interrupt OB.
Assignment:
• Bits 0 to 15: Unassigned
• Bits 16 to 23 – Limit counter:

A slave controller whose output value is limited increments this counter.
Depending on the configured number of slaves (Config.Cascade.CountSlaves)
and of the anti-windup mode (Config.Cascade.AntiWindUpMode), the master
controller reacts accordingly.

• Bit 24 – Automatic mode of the slave controllers:
TRUE, if all slave controllers are in automatic mode

• Bit 25 – Substitute setpoint of the slave controllers:
TRUE, if a slave controller has activated the substitute setpoint
(SubstituteSetpointOn = TRUE)

Slave DWORD DW#16#0 Interface for cascade control
You use this interface to exchange slave controller information about operating
mode, limit and substitute setpoint with your master controller.
See description of Master parameter

See also
PID_Temp state and mode parameters (Page 383)
Program creation (Page 179)
Cascade control with PID_Temp (Page 177)

358
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

10.3.4.6 PID_Temp static tags

NOTE
Change the tags identified with (1) only in "Inactive" mode to prevent malfunction of the PID
controller.

The names of the following variables apply both to the data block and to access via the
Openness API.

Tag Data
type

Default Description

IntegralResetMode Int V1.0: 1,
as of version
V1.1: 4

The IntegralResetMode tag (Page 396) determines how the
integral action PIDCtrl.IOutputOld is preassigned when switch
ing from "Inactive" operating mode to "Automatic mode".
This setting only works for one cycle.
• IntegralResetMode = 0: Smooth
• IntegralResetMode = 1: Delete
• IntegralResetMode = 2: Hold
• IntegralResetMode = 3: Pre-assign
• IntegralResetMode = 4: Like setpoint change (only for

PID_Temp with version ≥ 1.1)

OverwriteInitialOutputValue REAL 0.0 If one of the following conditions is met, the integral action
PIDCtrl.IOutputOld is preassigned automatically as if
PIDOutputSum = OverwriteInitialOutputValue in the previous
cycle:
• IntegralResetMode = 3 when switching from "Inactive"

operating mode to "Automatic mode"
• IntegralResetMode = 3, TRUE -> FALSE edge at parameter

Reset and parameter Mode = 3
• PIDCtrl.PIDInit = TRUE in "Automatic mode" (available as of

PID_Temp version 1.1)

RunModeByStartup BOOL TRUE Activate operating mode at Mode parameter after CPU restart
• If RunModeByStartup = TRUE, PID_Temp starts in the oper

ating mode saved in the Mode parameter after CPU startup.
• If RunModeByStartup = FALSE, PID_Temp remains in

"Inactive" mode after CPU startup.

LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is reloaded
from the CtrlParamsBackUp structure. The set was saved prior
to the last tuning. LoadBackUp is automatically set back to
FALSE. The acceptance is bumpless.

SetSubstituteOutput BOOL TRUE Selection of the output value while an error is pending
(State = 5):
• If SetSubstituteOutput = TRUE and

ActivateRecoverMode = TRUE, the configured substitute
output value SubstituteOutput is output as PID output value
as long as an error is pending.

• If SetSubstituteOutput = FALSE and
ActivateRecoverMode = TRUE, the actuator remains at the
current PID output value as long as an error is pending.

359

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

• If ActivateRecoverMode = FALSE, SetSubstituteOutput is not
effective.

• If SubstituteOutput is invalid (ErrorBits = 0020000h), the
substitute output value cannot be output. In this case, the
low limit of the PID output value for heating
(Config.Output.Heat.PidLowerLimit) is used as PID output
value.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint, e.g.,
ºC, or ºF.
PhysicalUnit serves the display in the editors and has no influ
ence on the behavior of the control algorithm in the CPU.
When importing PID_Temp via the Openness API, PhysicalUnit
is reset to the default value.

PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g., tem
perature.
PhysicalQuantity serves the display in the editors and has no
influence on the behavior of the control algorithm in the CPU.
When importing PID_Temp via the Openness API,
PhysicalQuantity is reset to the default value.

ActivateRecoverMode BOOL TRUE The ActivateRecoverMode tag determines the response in the
event of an error.

Warning DWORD 0 The Warning tag shows the warnings since Reset = TRUE or
ErrorAck =TRUE. Warning is retentive.

Progress REAL 0.0 Progress of current tuning phase as a percentage (0.0 - 100.0)

CurrentSetpoint REAL 0.0 CurrentSetpoint always displays the currently effective set
point. This value is frozen during tuning.

CancelTuningLevel REAL 10.0 Permissible fluctuation of setpoint during tuning. Tuning is not
canceled until:
• Setpoint > CurrentSetpoint + CancelTuningLevel
or
• Setpoint < CurrentSetpoint - CancelTuningLevel

SubstituteOutput REAL 0.0 The substitute output value is used as PID output value as long
as the following conditions are met:
• One or more errors are pending in automatic mode for

which ActivateRecoverMode is in effect
• SetSubstituteOutput = TRUE
• ActivateRecoverMode = TRUE
The values at the outputs for heating and cooling resulting
from the substitute output value are the result of the con
figured output scaling (structures Config.Output.Heat and Con
fig.Output.Cool).
For controllers with activated cooling output
(Config.ActivateCooling = TRUE), define:
• a positive substitute output value to output the value at the

outputs for heating
• a negative substitute output value to output the value at

the outputs for cooling

360
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling =

FALSE):
Config.Output.Heat.PidUpperLimit ≥ SubstituteOutput ≥
Config.Output.Heat.PidLowerLimit

• Cooling output activated (Config.ActivateCooling = TRUE):
Config.Output.Heat.PidUpperLimit ≥ SubstituteOutput ≥
Config.Output.Cool.PidLowerLimit

PidOutputSum REAL 0.0 PID output value
PidOutputSum displays the output value of the PID algorithm.
Depending on the operating mode, it is either calculated auto
matically or defined by the manual value or the configured sub
stitute output value.
The values at the outputs for heating and cooling resulting
from the PID output value are the result of the configured out
put scaling (structures Config.Output.Heat and
Config.Output.Cool).
The PidOutputSum is limited as defined in the configuration.
• Cooling output deactivated (Config.ActivateCooling =

FALSE):
Config.Output.Heat.PidUpperLimit ≥ PidOutputSum ≥ Con
fig.Output.Heat.PidLowerLimit

• Cooling output activated (ConfigActivateCooling = TRUE):
Config.Output.Heat.PidUpperLimit ≥ PidOutputSum ≥ Con
fig.Output.Cool.PidLowerLimit

PidOutputOffsetHeat REAL 0.0 Offset of the PID output value heating
PidOutputOffsetHeat is added to the value that results from
PidOutputSum for the heating branch. Enter a positive value for
PidOutputOffsetHeat to receive a positive offset at the outputs
for heating.
The resulting values at the outputs for heating are the result of
the configured output scaling (Config.Output.Heat structure).
This offset can be used for actuators which need a fixed minim
um value, for example, fans with minimum speed.

PidOutputOffsetCool REAL 0.0 Offset of the PID output value cooling
PidOutputOffsetCool is added to the value that results from
PidOutputSum for the cooling branch. Enter a negative value
for PidOutputOffsetCool to receive a positive offset at the out
puts for cooling.
The resulting values at the outputs for cooling are the result of
the configured output scaling (Config.Output.Cool structure).
This offset can be used for actuators which need a fixed minim
um value, for example, fans with minimum speed.

SubstituteSetpointOn BOOL FALSE Activates the substitute setpoint as controller setpoint.
• FALSE = the Setpoint parameter is used.
• TRUE = the SubstituteSetpoint parameter is used as setpoint
SubstituteSetpointOn can be used to specify the setpoint of a
slave controller in a cascade directly without having to change
the user program.

361

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

SubstituteSetpoint REAL 0.0 Substitute setpoint
If SubstituteSetpointOn = TRUE, the SubstituteSetpoint para
meter is used as setpoint.
Permissible value range:
Config.SetpointUpperLimit ≥
SubstituteSetpoint ≥ Config.SetpointLowerLimit,
Config.InputUpperLimit ≥
SubstituteSetpoint ≥ Config.InputLowerLimit

DisableCooling BOOL FALSE DisableCooling = TRUE deactivates the cooling branch for heat
ing/cooling controllers (Config.ActivateCooling = TRUE) in Auto
matic mode by setting PidOutputSum to 0.0 as low limit.
PidOutputOffsetCool and the output scaling for the cooling out
puts remain active.
DisableCooling can be used for tuning of multi-zone applica
tions to temporarily deactivate the cooling branch as long as all
controllers have not completed their tuning yet.
This parameter is set/reset by the user manually and is not
automatically reset by the PID_Temp instruction.

AllSlaveAutomaticState BOOL FALSE If this PID_Temp instance is used as master controller in a cas
cade (Config.Cascade.IsMaster = TRUE), AllSlaveAutomaticState
= TRUE indicates that all slave controllers are in automatic
mode.
Tuning, manual mode or automatic mode of the master con
troller can only be executed accurately if all slave controllers
are in automatic mode.
AllSlaveAutomaticState is only determined if you interconnect
the master controller and slave controller with the Master and
Slave parameters.
For details, see the Master parameter.

NoSlaveSubstituteSetpoint BOOL FALSE If this PID_Temp instance is used as master controller in a cas
cade (Config.Cascade.IsMaster = TRUE),
NoSlaveSubstituteSetpoint = TRUE indicates that no slave con
troller has activated its substitute setpoint.
Tuning, manual mode or automatic mode of the master con
troller can only be executed accurately if no slave controller has
activated its substitute setpoint.
NoSlaveSubstituteSetpoint is only determined if you intercon
nect the master controller and slave controller with the Master
and Slave parameters.
For details, see the Master parameter.

Heat.EnableTuning BOOL TRUE Enabling of tuning for heating
Heat.EnableTuning must be set for the following tunings (at
the same time or prior to the start with Mode and
ModeActivate):
• Pretuning heating
• Pretuning heating and cooling
• Fine tuning heating
This parameter is not automatically reset by the PID_Temp
instruction.

362
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Cool.EnableTuning BOOL FALSE Enabling of tuning for cooling
Cool.EnableTuning must be set for the following tunings (at
the same time or prior to the start with Mode and
ModeActivate):
• Pretuning cooling
• Pretuning heating and cooling
• Fine tuning cooling
Only effective if the cooling output and PID parameter switch
ing are activated ("Config.ActivateCooling" = TRUE and
"Config.AdvancedCooling" = TRUE).
This parameter is not automatically reset by the PID_Temp
instruction.

Config.InputPerOn(1) BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used for
detecting the process value. If InputPerOn = FALSE, the Input
parameter is used.

Config.InputUpperLimit(1) REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adherence to this
limit. If the limit is exceeded, an error is output and the reac
tion is determined by ActivateRecoverMode.
At the I/O input, the process value can be a maximum of 18%
higher than the nominal range (overrange). This means the
limit cannot be exceeded when you use an I/O input with the
pre-setting for high limit and process value scaling.
When pretuning is started, the difference between high and
low limit of the process value is checked to determine whether
the distance between setpoint and process value meets the
necessary requirements.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit(1) REAL 0.0 Low limit of the process value
Input and Input_PER are monitored to ensure adherence to this
limit. If the limit is undershot, an error is output and the reac
tion is determined by ActivateRecoverMode.
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning(1) REAL 3.402822e+
38

Warning high limit of the process value
Input and Input_PER are monitored to ensure adherence to this
limit. If the limit is exceeded, a warning is output at the Warn
ing parameter.
• If you set InputUpperWarning outside the process value lim

its, the configured absolute process value high limit is used
as the warning high limit.

• If you configure InputUpperWarning within the process
value limits, this value is used as the warning high limit.

InputUpperWarning > InputLowerWarning

Config.InputLowerWarning(1) REAL -3.402822e
+38

Warning low limit of the process value
Input and Input_PER are monitored to ensure adherence to this
limit. If the limit is undershot, a warning is output at the Warn
ing parameter.
• If you set InputLowerWarning outside the process value lim

its, the configured absolute process value low limit is used
as the warning low limit.

• If you configure InputLowerWarning within the process
value limits, this value is used as the warning low limit.

InputLowerWarning < InputUpperWarning

363

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Config.SetpointUpperLimit(1) REAL 3.402822e+
38

High limit of setpoint
Setpoint and SubstituteSetpoint are monitored to ensure
adherence to this limit. If the limit is exceeded, a warning is
output at the Warning parameter.
• If you configure SetpointUpperLimit outside the process

value limits, the configured absolute process value high lim
it is used as the setpoint high limit.

• If you configure SetpointUpperLimit within the process
value limits, this value is used as the setpoint high limit.

SetpointUpperLimit > SetpointLowerLimit

Config.SetpointLowerLimit(1) REAL -3.402822e
+38

Low limit of the setpoint
Setpoint and SubstituteSetpoint are monitored to ensure
adherence to this limit. If the limit is undershot, a warning is
output at the Warning parameter.
• If you set SetpointLowerLimit outside the process value lim

its, the configured process value absolute low limit is used
as the setpoint low limit.

• If you configure SetpointLowerLimit within the process
value limits, this value is used as the setpoint low limit.

SetpointLowerLimit < SetpointUpperLimit

Config.ActivateCooling(1) BOOL FALSE Activate cooling output
• Config.ActivateCooling = FALSE

Only the outputs for heating are used.
• Config.ActivateCooling = TRUE

The outputs for heating and cooling are used.
If you are using the cooling output, the controller must not be
configured as master controller (Config.Cascade.IsMaster must
be FALSE) .

Config.AdvancedCooling(1) BOOL TRUE Method for heating/cooling
• Cooling factor (Config.AdvancedCooling = FALSE)

The output value calculation for cooling takes place with
the PID parameters for heating (Retain.CtrlParams.Heat
structure) taking into consideration the configurable cool
ing factor Config.CoolFactor.
This method is suitable if the heating and cooling actuators
have a similar time response but different gains.
Pretuning and fine tuning for cooling are not available
when you select this method. You can only execute the tun
ing for heating.

• PID parameter switching (Config.AdvancedCooling = TRUE)
The output value calculation for cooling takes place by
means of a separate PID parameter set
(Retain.CtrlParams.Cool structure).
This method is suitable if the heating and cooling actuator
have different time responses and different gains.
Pretuning and fine tuning for cooling are only available
when you select this method (Mode = 1 or 2,
Cool.EnableTuning = TRUE).

Config.AdvancedCooling is only calculated if the cooling output
is activated (Config.ActivateCooling = TRUE).

364
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Config.CoolFactor(1) REAL 1.0 Cooling factor
If Config.AdvancedCooling = FALSE, Config.CoolFactor is con
sidered as factor in the calculation of the output value for cool
ing. This allows different gains of heating and cooling actuators
to be taken into account.
Config.CoolFactor is not set automatically or adjusted during
tuning. You must correctly configure Config.CoolFactor manu
ally with the ratio "heating actuator gain/cooling actuator gain".
Example: Config.CoolFactor = 2.0 means that the gain of the
heating actuator is twice as high as the gain of the cooling
actuator.
Config.CoolFactor is only effective if the cooling output is activ
ated (Config.ActivateCooling = TRUE) and cooling factor is
selected as method for heating/cooling
(Config.AdvancedCooling = FALSE).
Config.CoolFactor > 0.0

Config.InputScaling.UpperPointIn(1) REAL 27648.0 Scaling Input_PER high
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value detection
(Config.InputPerOn = TRUE).
UpperPointIn > LowerPointIn

Config.InputScaling.LowerPointIn(1) REAL 0.0 Scaling Input_PER low
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value detection
(Config.InputPerOn = TRUE).
LowerPointIn < UpperPointIn

Config.InputScaling.UpperPointOut
(1)

REAL 100.0 Scaled high process value
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value detection
(Config.InputPerOn = TRUE).
UpperPointOut > LowerPointOut

Config.InputScaling.LowerPointOut
(1)

REAL 0.0 Scaled low process value
Input_PER is scaled based on the two value pairs
UpperPointOut, UpperPointIn and LowerPointOut,
LowerPointIn.
Only effective if Input_PER is used for process value detection
(Config.InputPerOn = TRUE).
LowerPointOut < UpperPointOut

Config.Output.Heat.Select(1) INT 1 Selecting the output value for heating
Config.Output.Heat.Select specifies which outputs are used for
heating:
• Heat.Select = 0 - OutputHeat is used
• Heat.Select = 1 - OutputHeat and OutputHeat_PWM are

used
• Heat.Select = 2 -OutputHeat and OutputHeat_PER are used
Outputs that are not used are not calculated and remain at
their default value.

365

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Config.Output.Heat.PwmPeriode(1) REAL 0.0 Period duration of the pulse width modulation (PWM) for heat
ing (OutputHeat_PWM output) in seconds:
• Heat.PwmPeriode = 0.0

The sampling time of the PID algorithm for heating
(Retain.CtrlParams.Heat.Cycle) is used as period duration of
the PWM.

• Heat.PwmPeriode > 0.0
The value is rounded off to an integer multiple of the
PID_Temp sampling time (CycleTime.Value) and used as
period duration of the PWM.
This setting can be used to improve the smoothing of the
process value with a long sampling time of the PID
algorithm.
The value must meet the following conditions:
– Heat.PwmPeriode ≤ Retain.CtrlParams.Heat.Cycle,
– Heat.PwmPeriode >

Config.Output.Heat.MinimumOnTime
– Heat.PwmPeriode >

Config.Output.Heat.MinimumOffTime

Config.Output.Heat.PidUpperLimit(

1)
REAL 100.0 High limit of the PID output value for heating

The PID output value (PidOutputSum) is limited to the high lim
it.
Heat.PidUpperLimit forms a value pair together with the follow
ing parameters for scaling of the PID output value
(PidOutputSum) to the outputs for heating:
• Heat.UpperScaling for OutputHeat
• Heat.PwmUpperScaling for OutputHeat_PWM
• Heat.PerUpperScaling for OutputHeat_PER
If you want to limit the value at the associated output, you
must also adjust these scaling values.
Heat.PidUpperLimit > Heat.PidLowerLimit

Config.Output.Heat.PidLowerLimit(

1)
REAL 0.0 Low limit of the PID output value for heating

For controllers with deactivated cooling output
(Config.ActivateCooling = FALSE), the PID output value
(PidOutputSum) is limited to this low limit.
For controllers with activated cooling output
(Config.ActivateCooling = TRUE), the value must be 0.0.
Heat.PidLowerLimit forms a value pair together with the follow
ing parameters for scaling of the PID output value
(PidOutputSum) to the outputs for heating:
• Heat.LowerScaling for OutputHeat
• Heat.PwmLowerScaling for OutputHeat_PWM
• Heat.PerLowerScaling for OutputHeat_PER
If you want to limit the value at the associated output, you
must also adjust these scaling values.
The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling =

FALSE):
Heat.PidLowerLimit < Heat.PidUpperLimit

• Cooling output activated (Config.ActivateCooling = TRUE):
Heat.PidLowerLimit = 0.0

366
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Config.Output.Heat.UpperScaling(1) REAL 100.0 Scaled high output value for heating
Heat.UpperScaling and Heat.PidUpperLimit form a value pair
for scaling of the PID output value (PidOutputSum) to the out
put value for heating (OutputHeat).
The OutputHeat value is always located between
Heat.UpperScaling and Heat.LowerScaling.
Heat.UpperScaling ≠ Heat.LowerScaling

Config.Output.Heat.LowerScaling(1) REAL 0.0 Scaled low output value for heating
Heat.LowerScaling and Heat.PidLowerLimit form a value pair
for scaling of the PID output value (PidOutputSum) to the out
put value for heating (OutputHeat).
The OutputHeat value is always located between
Heat.UpperScaling and Heat.LowerScaling.
Heat.UpperScaling ≠ Heat.LowerScaling

Config.Output.Heat.PwmUpperScal
ing(1)

REAL 100.0 Scaled high PWM output value for heating
Heat.PwmUpperScaling and Heat.PidUpperLimit form a value
pair for scaling of the PID output value (PidOutputSum) to the
pulse-width modulated output value for heating
(OutputHeat_PWM).
The OutputHeat_PWM value is always located between
Heat.PwmUpperScaling and Heat.PWMLowerScaling.
Heat.PwmUpperScaling is only effective if OutputHeat_PWM is
selected as output for heating (Heat.Select = 1)
100.0 ≥ Heat.PwmUpperScaling ≥ 0.0
Heat.PwmUpperScaling ≠ Heat.PwmLowerScaling

Config.Output.Heat.PwmLowerScal
ing(1)

REAL 0.0 Scaled low PWM output value for heating
Heat.PwmLowerScaling and Heat.PidLowerLimit form a value
pair for scaling of the PID output value (PidOutputSum) to the
pulse-width modulated output value for heating
(OutputHeat_PWM).
The OutputHeat_PWM value is always located between
Heat.PwmUpperScaling and Heat.PwmLowerScaling.
Heat.PwmLowerScaling is only effective if OutputHeat_PWM is
selected as output for heating (Heat.Select = 1)
100.0 ≥ Heat.PwmLowerScaling ≥ 0.0
Heat.PwmUpperScaling ≠ Heat.PwmLowerScaling

Config.Output.Heat.PerUpperScal
ing(1)

REAL 27648.0 Scaled high analog output value for heating
Heat.PerUpperScaling and Heat.PidUpperLimit form a value pair
for scaling of the PID output value (PidOutputSum) to the ana
log output value for heating (OutputHeat_PER).
The OutputHeat_PER value is always located between
Heat.PerUpperScaling and Heat.PerLowerScaling.
Heat.PerUpperScaling is only effective if OutputHeat_PER is
selected as output for heating (Heat.Select = 2)
32511.0 ≥ Heat.PerUpperScaling ≥ -32512.0
Heat.PerUpperScaling ≠ Heat.PerLowerScaling

Config.Output.Heat.PerLowerScal
ing(1)

REAL 0.0 Scaled low analog output value for heating
Heat.PerLowerScaling and Heat.PidLowerLimit form a value
pair for scaling of the PID output value (PidOutputSum) to the
analog output value for heating (OutputHeat_PER).
The OutputHeat_PER value is always located between
Heat.PerUpperScaling and Heat.PerLowerScaling.
Heat.PerLowerScaling is only effective if OutputHeat_PER is
selected as output for heating (Heat.Select = 2)

367

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

32511.0 ≥ Heat.PerLowerScaling ≥ -32512.0
Heat.PerUpperScaling ≠ Heat.PerLowerScaling

Config.Output.Heat.MinimumOn
Time(1)

REAL 0.0 Minimum on time of the pulse width modulation for heating
(OutputHeat_PWM output)
A PWM pulse is never shorter than this value.
The value is rounded off to:
Heat.MinimumOnTime = n × CycleTime.Value
Heat.MinimumOnTime is only effective if the output for heat
ing OutputHeat_PWM is selected (Heat.Select = 1)".
100000.0 ≥ Heat.MinimumOnTime ≥ 0.0

Config.Output.Heat.MinimumOff
Time(1)

REAL 0.0 Minimum off time of the pulse width modulation for heating
(OutputHeat_PWM output)
A PWM pause is never shorter than this value.
The value is rounded off to:
Heat.MinimumOffTime = n × CycleTime.Value
Heat.MinimumOffTime is only effective if the output for heat
ing OutputHeat_PWM is selected (Heat.Select = 1)".
100000.0 ≥ Heat.MinimumOffTime ≥ 0.0

Config.Output.Cool.Select(1) INT 1 Selecting the output value for cooling
Config.Output.Cool.Select specifies which outputs are used for
cooling:
• Cool.Select = 0 - OutputCool is used
• Cool.Select = 1 -OutputCool and OutputCool_PWM are used
• Cool.Select = 2 - OutputCool and OutputCool_PER are used
Outputs that are not used are not calculated and remain at
their default value.
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).

Config.Output.Cool.PwmPeriode(1) REAL 0.0 Period duration of the pulse width modulation for cooling
(OutputCool_PWM output) in seconds:
• Cool.PwmPeriode = 0.0 and Config.AdvancedCooling =

FALSE:
sampling time of the PID algorithm for heating
(Retain.CtrlParams.Heat.Cycle) is used as period duration of
the PWM.

• Cool.PwmPeriode = 0.0 and Config.AdvancedCooling =
TRUE:
The sampling time of the PID algorithm for cooling
(Retain.CtrlParams.Cool.Cycle) is used as period duration of
the PWM.

• Cool.PwmPeriode > 0.0:
The value is rounded off to an integer multiple of the
PID_Temp sampling time (CycleTime.Value) and used as
period duration of the PWM.
This setting can be used to improve the smoothing of the
process value with a long sampling time of the PID
algorithm.
The value must meet the following conditions:
– Cool.PwmPeriode ≤ Retain.CtrlParams.Cool.Cycle or

Retain.CtrlParams.Heat.Cycle
– Cool.PwmPeriode >

Config.Output.Cool.MinimumOnTime
– Cool.PwmPeriode >

Config.Output.Cool.MinimumOffTime

368
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).

Config.Output.Cool.PidUpperLimit(1) REAL 0.0 High limit of the PID output value for cooling
The value must be 0.0.
Cool.PidUpperLimit forms a value pair together with the follow
ing parameters for scaling of the PID output value
(PidOutputSum) to the outputs for cooling:
• Cool.LowerScaling for OutputCool
• Cool.PwmLowerScaling for OutputCool_PWM
• Cool.PerLowerScaling for OutputCool_PER
If you want to limit the value at the associated output, you
must also adjust these scaling values.
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
Cool.PidUpperLimit = 0.0

Config.Output.Cool.PidLowerLimit(1

)
REAL -100.0 Low limit of the PID output value for cooling

For controllers with activated cooling output
(Config.ActivateCooling = TRUE), the PID output value
(PidOutputSum) is limited to this low limit.
Cool.PidLowerLimit forms a value pair together with the follow
ing parameters for scaling of the PID output value
(PidOutputSum) to the outputs for cooling:
• Cool.UpperScaling for OutputCool
• Cool.PwmUpperScaling for OutputCool_PWM
• Cool.PerUpperScaling for OutputCool_PER
If you want to limit the value at the associated output, you
must also adjust these scaling values.
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
Cool.PidLowerLimit < Cool.PidUpperLimit

Config.Output.Cool.UpperScaling(1) REAL 100.0 Scaled high output value for cooling
Cool.UpperScaling and Cool.PidLowerLimit form a value pair for
scaling of the PID output value (PidOutputSum) to the output
value for cooling (OutputCool).
The OutputCool value is always located between
Cool.UpperScaling and Cool.LowerScaling.
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
Cool.UpperScaling ≠ Cool.LowerScaling

Config.Output.Cool.LowerScaling(1) REAL 0.0 Scaled low output value for cooling
Cool.LowerScaling and Cool.PidUpperLimit form a value pair for
scaling of the PID output value (PidOutputSum) to the output
value for cooling (OutputCool).
The OutputCool value is always located between
Cool.UpperScaling and Cool.LowerScaling.
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
Cool.UpperScaling ≠ Cool.LowerScaling

369

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Config.Output.Cool.PwmUpperScal
ing(1)

REAL 100.0 Scaled high PWM output value for cooling
Cool.PwmUpperScaling and Cool.PidLowerLimit form a value
pair for scaling of the PID output value (PidOutputSum) to the
pulse-width modulated output value for cooling
(OutputCool_PWM).
The OutputCool_PWM value is always located between
Cool.PwmUpperScaling and Cool.PwmLowerScaling.
Cool.PwmUpperScaling is only effective if the cooling output is
activated (Config.ActivateCooling = TRUE) and
OutputCool_PWM is selected as output for cooling (Cool.Select
= 1).
100.0 ≥ Cool.PwmUpperScaling ≥ 0.0
Cool.PwmUpperScaling ≠ Cool.PwmLowerScaling

Config.Output.Cool.PwmLowerScal
ing(1)

REAL 0.0 Scaled low PWM output value for cooling
Cool.PwmLowerScaling and Cool.PidUpperLimit form a value
pair for scaling of the PID output value (PidOutputSum) to the
pulse-width modulated output value for cooling
(OutputCool_PWM).
The OutputCool_PWM value is always located between
Cool.PwmUpperScaling and CoolPwm.LowerScaling.
Cool.PwmLowerScaling is only effective if the cooling output is
activated (Config.ActivateCooling = TRUE) and
OutputCool_PWM is selected as output for cooling (Cool.Select
= 1).
100.0 ≥ Cool.PwmLowerScaling ≥ 0.0
Cool.PwmUpperScaling ≠ Cool.PwmLowerScaling

Config.Output.Cool.PerUpperScal
ing(1)

REAL 27648.0 Scaled high analog output value for cooling
Cool.PerUpperScaling and Cool.PidLowerLimit form a value pair
for scaling of the PID output value (PidOutputSum) to the ana
log output value for cooling (OutputCool_PER).
The OutputCool_PER value is always located between
Cool.PerUpperScaling and Cool.PerLowerScaling.
Cool.PerUpperScaling is only effective if the cooling output is
activated (Config.ActivateCooling = TRUE) and OutputCool_PER
is selected as output for cooling (Cool.Select = 2).
32511.0 ≥ Cool.PerUpperScaling ≥ -32512.0
Cool.PerUpperScaling ≠ Cool.PerLowerScaling

Config.Output.Cool.PerLowerScal
ing(1)

REAL 0.0 Scaled low analog output value for cooling
Cool.PerLowerScaling and Cool.PidUpperLimit form a value pair
for scaling of the PID output value (PidOutputSum) to the ana
log output value for cooling (OutputCool_PER).
The OutputCool_PER value is always located between
Cool.PerUpperScaling and Cool.PerLowerScaling.
Cool.PerLowerScaling is only effective if the cooling output is
activated (Config.ActivateCooling = TRUE) and OutputCool_PER
is selected as output for cooling (Cool.Select = 2).
32511.0 ≥ Cool.PerLowerScaling ≥ -32512.0
Cool.PerUpperScaling ≠ Cool.PerLowerScaling

370
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Config.Output.Cool.MinimumOn
Time(1)

REAL 0.0 Minimum on time of the pulse width modulation for cooling
(OutputCool_PWM output)
A PWM pulse is never shorter than this value.
The value is rounded off to:
Cool.MinimumOnTime = n × CycleTime.Value
Cool.MinimumOnTime is only effective if the output for cooling
OutputCool_PWM is selected (Cool.Select = 1).
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
100000.0 ≥ Cool.MinimumOnTime ≥ 0.0

Config.Output.Cool.MinimumOff
Time(1)

REAL 0.0 Minimum off time of the pulse width modulation for cooling
(OutputCool_PWM output)
A PWM pause is never shorter than this value.
The value is rounded off to:
Cool.MinimumOffTime = n × CycleTime.Value
Cool.MinimumOffTime is only effective if the output for cooling
OutputCool_PWM is selected (Cool.Select = 1).
Only effective if the cooling output is activated
(Config.ActivateCooling = TRUE).
100000.0 ≥ Cool.MinimumOffTime ≥ 0.0

If you are using PID_Temp in a cascade, the master controller and slave controller exchange information via the Master and
Slave parameters.
You need to make the interconnection. For details, see the Master parameter.

Config.Cascade.IsMaster(1) BOOL FALSE The controller is master in a cascade and provides the slave set
point.
Set IsMaster = TRUE if you are using this PID_Temp instance as
master controller in a cascade.
A master controller defines the setpoint of a slave controller
with its output. A PID_Temp instance can be master controller
and slave controller at the same time.
If the controller is used as master controller, the cooling output
must be deactivated (Config.ActivateCooling = FALSE).

Config.Cascade.IsSlave(1) BOOL FALSE The controller is slave in a cascade and receives its setpoint
from the master.
Set IsSlave = TRUE if you are using this PID_Temp instance as
slave controller in a cascade.
A slave controller receives its setpoint (Setpoint parameter)
from the output of its master controller (OutputHeat
parameter). A PID_Temp instance can be master controller and
slave controller at the same time.

Config.Cascade.AntiWindUpMode(1) INT 1 Anti-windup behavior in the cascade
Options are:
• Anti-windup = 0

The AntiWindUp functionality is deactivated. The master
controller does not respond to the limit of its slave control
lers.

• Anti-windup = 1
The integral action of the master controller is reduced in the
ratio "Slaves in limit" to "Number of slaves" ("CountSlaves"
parameter). This reduces the effects of the limitation on the
control behavior.

• Anti-windup = 2
The integral action of the master controller is held as soon
as a slave controller is in the limit.

371

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Only effective if the controller is configured as master control
ler (Config.Cascade.IsMaster = TRUE).

Config.Cascade.CountSlaves(1) INT 1 Number of subordinate slaves
Here you enter the number of directly subordinate slave con
trollers which receive their setpoint from this master controller.
Only effective if the controller is configured as master control
ler (Config.Cascade.IsMaster = TRUE).
255 ≥ CountSlaves ≥ 1

CycleTime.StartEstimation BOOL TRUE If CycleTime.EnEstimation = TRUE, CycleTime.StartEstimation =
TRUE starts automatic determination of the PID_Temp sampling
time (cycle time of the calling OB).
CycleTime.StartEstimation = FALSE is set once measurement is
complete.

CycleTime.EnEstimation BOOL TRUE If CycleTime.EnEstimation = TRUE, the PID_Temp sampling time
is determined automatically.
If CycleTime.EnEstimation = FALSE, the sampling time
PID_Temp is not determined automatically and must be con
figured correctly manually with CycleTime.Value.

CycleTime.EnMonitoring BOOL TRUE If CycleTime.EnMonitoring = FALSE, the PID_Temp sampling
time is not monitored. If PID_Temp cannot be executed within
the sampling time, no error (ErrorBits=0000800h) is output
and PID_Temp does not respond as configured with
ActivateRecoverMode.

CycleTime.Value(1) REAL 0.1 PID_Temp sampling time (cycle time of the calling OB) in
seconds
CycleTime.Value is determined automatically and is usually
equivalent to the cycle time of the calling OB.

You can reload values from the CtrlParamsBackUp structure with LoadBackUp = TRUE.

CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser

CtrlParamsBackUp.Heat.Gain REAL 1.0 Saved proportional gain for heating

CtrlParamsBackUp.Heat.Ti REAL 20.0 Saved integration time for heating in seconds

CtrlParamsBackUp.Heat.Td REAL 0.0 Saved derivative action time for heating in seconds

CtrlParamsBackUp.Heat.TdFiltRatio REAL 0.2 Saved derivative delay coefficient for heating

CtrlParamsBackUp.Heat.PWeighting REAL 1.0 Saved weighting of the proportional action for heating

CtrlParamsBackUp.Heat.DWeighting REAL 1.0 Saved weighting of the derivative action for heating

CtrlParamsBackUp.Heat.Cycle REAL 1.0 Saved sampling time of the PID algorithm for heating in
seconds

CtrlParamsBackUp.Heat.Con
trolZone

REAL 3.402822e+
38

Saved control zone width for heating

CtrlParamsBackUp.Heat.DeadZone REAL 0.0 Saved dead zone width for heating

CtrlParamsBackUp.Cool.Gain REAL 1.0 Saved proportional gain for cooling

CtrlParamsBackUp.Cool.Ti REAL 20.0 Saved integration time for cooling in seconds

CtrlParamsBackUp.Cool.Td REAL 0.0 Saved derivative action time for cooling in seconds

CtrlParamsBackUp.Cool.TdFiltRatio REAL 0.2 Saved derivative delay coefficient for cooling

CtrlParamsBackUp.Cool.PWeighting REAL 1.0 Saved proportional action weighting factor for cooling

CtrlParamsBackUp.Cool.DWeighting REAL 1.0 Saved derivative action weighting factor for cooling

372
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

CtrlParamsBackUp.Cool.Cycle REAL 1.0 Saved sampling time of the PID algorithm for cooling in
seconds

CtrlParamsBackUp.Cool.Con
trolZone

REAL 3.402822e+
38

Saved control zone width for cooling

CtrlParamsBackUp.Cool.DeadZone REAL 0.0 Saved dead zone width for cooling

PIDSelfTune.SUT.CalculateParam
sHeat

BOOL FALSE The properties of the heating branch of the controlled system
are saved during pretuning for heating. If
SUT.CalculateParamsHeat = TRUE, the PID parameters for heat
ing (Retain.CtrlParams.Heat structure) are recalculated on the
basis of these properties. This enables you to change the para
meter calculation method (PIDSelfTune.SUT.TuneRuleHeat
parameter) without having to repeat the tuning.
SUT.CalculateParamsHeat is set to FALSE after the calculation.
Only possible if the pretuning was successful
(SUT.ProcParHeatOk = TRUE).

PIDSelfTune.SUT.CalculateParams
Cool

BOOL FALSE The properties of the cooling branch of the controlled system
are saved during tuning for cooling. If
SUT.CalculateParamsCool = TRUE, the PID parameters for cool
ing (Retain.CtrlParams.Cool structure) are recalculated on the
basis of these properties. This enables you to change the para
meter calculation method (PIDSelfTune.SUT.TuneRuleCool
parameter) without having to repeat the tuning.
SUT.CalculateParamsCool is set to FALSE after the calculation.
Only possible if the pretuning was successful
(SUT.ProcParCoolOk = TRUE).
Only effective if Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE.

PIDSelfTune.SUT.TuneRuleHeat INT 2 Method for PID parameter calculation with pretuning for heat
ing
Options are:
• SUT.TuneRuleHeat = 0: PID according to CHR
• SUT.TuneRuleHeat = 1: PI according to CHR
• SUT.TuneRuleHeat = 2: PID for temperature processes

according to CHR (results in a slower and rather asympto
matic control response with lower overshoot than
SUT.TuneRuleHeat = 0)

(CHR = Chien, Hrones and Reswick)
Only with SUT.TuneRuleHeat = 2 is the control zone
Retain.CtrlParams.Heat.ControlZone automatically set during
pretuning for heating.

PIDSelfTune.SUT.TuneRuleCool INT 2 Method for PID parameter calculation with pretuning for cool
ing
Options are:
• SUT.TuneRuleCool = 0: PID according to CHR
• SUT.TuneRuleCool = 1: PI according to CHR
• SUT.TuneRuleCool = 2: PID for temperature processes

according to CHR (results in a slower and rather asympto
matic control response with lower overshoot than
SUT.TuneRuleCool = 0)

(CHR = Chien, Hrones and Reswick)
Only with SUT.TuneRuleCool = 2 is the control zone
Retain.CtrlParams.Cool.ControlZone automatically set during
pretuning for cooling.

373

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

SUT.TuneRuleCool is only effective if the cooling output and
PID parameter switching are activated (Config.ActivateCooling
= TRUE, Config.AdvancedCooling = TRUE).

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretuning:
• State = 0: Initialize pretuning
• State = 100: Calculate standard deviation for heating
• State = 200: Calculate standard deviation for cooling
• State = 300: Determine point of inflection for heating
• State = 400: Determine point of inflection for cooling
• State = 500: Set heating to setpoint after reaching point of

inflection
• State = 600: Set cooling to setpoint after reaching point of

inflection
• State = 700: Compare efficiency of the heating actuator and

cooling actuator
• State = 800: Heating and cooling activated
• State = 900: Cooling activated
• State = 1000: Determine delay time after switching off

heating
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

PIDSelfTune.SUT.ProcParHeatOk BOOL FALSE TRUE: The calculation of the process parameters for pretuning
heating was successful.
This tag is set during tuning.
It must be TRUE for calculation of the PID parameters for heat
ing.

PIDSelfTune.SUT.ProcParCoolOk BOOL FALSE TRUE: The calculation of the process parameters for pretuning
cooling was successful.
This tag is set during tuning.
It must be TRUE for calculation of the PID parameters for cool
ing.

PIDSelfTune.SUT.AdaptDelayTime INT 0 The AdaptDelayTime tag determines the adaptation of the
delay time for heating at the operating point (for "Pretuning
heating" and "Pretuning heating and cooling").
Options are:
• SUT.AdaptDelayTime = 0:

No adaptation of delay time. The SUT.State = 1000 phase is
skipped. This option results in a shorter tuning time than
with SUT.AdaptDelayTime = 1.

• SUT.AdaptDelayTime = 1:
Adaptation of the delay time to the setpoint in SUT.State =
1000 phase by switching off heating temporarily.
This option results in a longer tuning time than
withSUT.AdaptDelayTime = 0. It can improve the control
response if the process behavior depends significantly on
the operating point (non-linearity). This option should not
be used for multi-zone applications with strong thermal
connections.

374
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

PIDSelfTune.SUT.CoolingMode INT 0 The CoolingMode tag determines the manipulated variable out
put to determine the cooling parameters (for pretuning heating
and cooling).
Options are:
• SUT.CoolingMode = 0:

Switch off heating and switch on cooling after reaching the
setpoint.
The SUT.State = 700 phase is skipped.
Phase SUT.State = 500 is followed by phase SUT.State =
900.
This option can improve the control response if the gain of
the cooling actuator is low compared to the gain of the
heating actuator. It results in a shorter tuning time than
with SUT.CoolingMode = 1 or 2.

• SUT.CoolingMode = 1:
Switch on cooling in addition to heating after reaching the
setpoint.
The SUT.State = 700 phase is skipped.
Phase SUT.State = 500 is followed by phase SUT.State =
800.
This option can improve the control response if the gain of
the cooling actuator is high compared to the gain of the
heating actuator.

• SUT.CoolingMode = 2:
After heating up to the setpoint, a decision is automatically
made in phase SUT.State = 700 as to whether heating is
switched off. Phase SUT.State = 500 is followed by phase
SUT.State = 700 and then SUT.State = 800 or SUT.State =
900.
This option requires more time than options 0 and 1.

PIDSelfTune.TIR.RunIn BOOL FALSE Use the RunIn tag to specify the sequence of fine tuning during
start from automatic mode.
• RunIn = FALSE

If fine tuning is started from automatic mode, the system
uses the existing PID parameters to control to the setpoint
(TIR.State = 500 or 600). Only then will fine tuning start.

• RunIn = TRUE
PID_Temp tries to reach the setpoint with minimum or max
imum output value (TIR.State = 300 or 400). This can pro
duce increased overshoot. Fine tuning then starts automat
ically.

RunIn is set to FALSE after fine tuning.
During start of fine tuning from Inactive or Manual mode,
PID_Temp reacts as described under RunIn = TRUE.

PIDSelfTune.TIR.CalculateParam
sHeat

BOOL FALSE The properties of the heating branch of the controlled system
are saved during fine tuning for heating. If
TIR.CalculateParamsHeat= TRUE, the PID parameters for heating
(Retain.CtrlParams.Heat structure) are recalculated on the basis
of these properties. This enables you to change the parameter
calculation method (PIDSelfTune.TIR.TuneRuleHeat parameter)
without having to repeat the tuning.
TIR.CalculateParamsHeat is set to FALSE after the calculation.
Only possible if fine tuning heating was successful beforehand
(TIR.ProcParHeatOk = TRUE).

375

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

PIDSelfTune.TIR.CalculateParams
Cool

BOOL FALSE The properties of the cooling branch of the controlled system
are saved during fine tuning for cooling. If
TIR.CalculateParamsCool= TRUE, the PID parameters for cooling
(Retain.CtrlParams.Cool structure) are recalculated on the basis
of these properties. This enables you to change the parameter
calculation method (PIDSelfTune.TIR.TuneRuleCool parameter)
without having to repeat the tuning.
TIR.CalculateParamsCool is set to FALSE after the calculation.
Only possible if fine tuning cooling was successful beforehand
(TIR.ProcParCoolOk = TRUE).
Only effective if Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE

PIDSelfTune.TIR.TuneRuleHeat INT 0 Method for parameter calculation during fine tuning for heat
ing
Options are:
• TIR.TuneRuleHeat = 0: PID automatic
• TIR.TuneRuleHeat = 1: PID fast (faster control response with

higher amplitudes of the output value than with
TIR.TuneRuleHeat = 2)

• TIR.TuneRuleHeat = 2: PID slow (slower control response
with lower amplitudes of the output value than with
TIR.TuneRuleHeat = 1)

• TIR.TuneRuleHeat = 3: ZN PID
• TIR.TuneRuleHeat = 4: ZN PI
• TIR.TuneRuleHeat = 5: ZN P
(ZN=Ziegler-Nichols)
To be able to repeat the calculation of the PID parameters for
heating with TIR.CalculateParamsHeat and TIR.TuneRuleHeat =
0, 1 or 2, the previous fine tuning also has to have been
executed with TIR.TuneRuleHeat = 0, 1 or 2. If this is not the
case, TIR.TuneRuleHeat = 3 is used.
The recalculation of the PID parameters for heating with
TIR.CalculateParamsHeat and TIR.TuneRuleHeat = 3, 4 or 5 is
always possible.

PIDSelfTune.TIR.TuneRuleCool INT 0 Method for parameter calculation during fine tuning for cool
ing
Options are:
• TIR.TuneRuleCool = 0: PID automatic
• TIR.TuneRuleCool = 1: PID fast (faster control response with

higher amplitudes of the output value than with
TIR.TuneRuleCool = 2)

• TIR.TuneRuleCool = 2: PID slow (slower control response
with lower amplitudes of the output value than with
TIR.TuneRuleCool = 1)

• TIR.TuneRuleCool = 3: ZN PID
• TIR.TuneRuleCool = 4: ZN PI
• TIR.TuneRuleCool = 5: ZN P
(ZN=Ziegler-Nichols)
To be able to repeat the calculation of the PID parameters for
cooling with TIR.CalculateParamsCool and TIR.TuneRuleCool =
0, 1 or 2, the previous fine tuning also has to have been
executed with TIR.TuneRuleCool = 0, 1 or 2. If this is not the
case, TIR.TuneRuleCool = 3 is used.

376
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

The recalculation of the PID parameters for cooling with
TIR.CalculateParamsCool and TIR.TuneRuleCool = 3, 4 or 5 is
always possible.
Only effective if the cooling output and PID parameter switch
ing are activated (ConfigActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).

PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of "fine tuning":
• State = 0: Initialize fine tuning
• State = 100: Calculate standard deviation for heating
• State = 200: Calculate standard deviation for cooling
• State = 300: Attempting to reach setpoint for heating with

two-step control using heating
• State = 400: Attempting to reach setpoint for cooling with

two-step control using cooling
• State = 500: Attempting to reach setpoint for heating with

PID control
• State = 600: Attempting to reach setpoint for cooling with

PID control
• State = 700: Calculate standard deviation for heating
• State = 800: Calculate standard deviation for cooling
• State = 900: Determine oscillation and calculate parameters

for heating
• State = 1000: Determine oscillation and calculate paramet

ers for cooling
• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

PIDSelfTune.TIR.ProcParHeatOk BOOL FALSE TRUE: The calculation of the process parameters for fine tuning
heating was successful.
This tag is set during tuning.
It must be met for calculation of the PID parameters for heat
ing.

PIDSelfTune.TIR.ProcParCoolOk BOOL FALSE TRUE: The calculation of the process parameters for fine tuning
cooling was successful.
This tag is set during tuning.
It must be met for calculation of the PID parameters for cooling.

PIDSelfTune.TIR.OutputOffsetHeat REAL 0.0 Tuning offset heating of the PID output value
TIR.OutputOffsetHeat is added to the value that results from
PidOutputSum for the heating branch.
To receive a positive offset at the outputs for heating, define a
positive value for TIR.OutputOffsetHeat.
The resulting values at the outputs for heating are the result of
the configured output scaling (Struktur Config.Output.Heat).
This tuning offset can be used in controllers with activated
cooling output and PID parameter switching
(Config.ActivateCooling = TRUE, Config.AdvancedCooling =
TRUE) for fine tuning cooling. If the outputs for cooling are not
active at the setpoint that is to be tuned (PidOutputSum > 0.0),
fine tuning cooling is not possible. In this case, define a positive
tuning offset heating which is greater than the PID output
value (PidOutputSum) at the setpoint in the steady state before
you start tuning. This step increases the values at the outputs
for heating and activates the outputs for cooling
(PidOutputSum < 0.0). Fine tuning cooling is now possible.

377

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

When fine tuning is complete, TIR.OutputOffsetHeat is reset to
0.0.
Major changes at TIR.OutputOffsetHeat in one step can result
in temporary overshoots.
Config.Output.Heat.PidUpperLimit ≥
PIDSelfTune.TIR.OutputOffsetHeat ≥
Config.Output.Heat.PidLowerLimit

PIDSelfTune.TIR.OutputOffsetCool REAL 0.0 Tuning offset cooling of the PID output value
TIR.OutputOffsetCool is added to the value that results from
PidOutputSum for the cooling branch.
To receive a positive offset at the outputs for cooling, define a
negative value for TIR.OutputOffsetCool.
The resulting values at the outputs for cooling are the result of
the configured output scaling (Struktur Config.Output.Coool).
This tuning offset can be used in controllers with activated
cooling output (Config.ActivateCooling = TRUE) for fine tuning
heating. If the outputs for heating are not active at the setpoint
that is to be tuned (PidOutputSum < 0.0), fine tuning heating is
not possible. In this case, define a negative tuning offset cool
ing which is less than the PID output value (PidOutputSum) at
the setpoint in the steady state before you start tuning. This
step increases the values at the outputs for cooling and activ
ates the outputs for heating (PidOutputSum > 0.0). Fine tuning
heating is now possible.
When fine tuning is complete, TIR.OutputOffsetCool is reset to
0.0.
Major changes at TIR.OutputOffsetCool in one step can result in
temporary overshoots.
Config.Output.Cool.PidUpperLimit ≥
PIDSelfTune.TIR.OutputOffsetCool ≥
Config.Output.Cool.PidLowerLimit

PIDSelfTune.TIR.WaitForControlIn BOOL FALSE Waiting with fine tuning after reaching the setpoint
If TIR.WaitForControlIn = TRUE, fine tuning waits in between
reaching the setpoint (TIR.State = 500 or 600) and calculation
of the standard deviation (TIR.State = 700 or 800) until a FALSE
-> TRUE edge is given at TIR.FinishControlIn.
TIR.WaitForControlIn can be used for simultaneous fine tuning
of several controllers in multi-zone applications to synchronize
tuning of the individual zones. It ensures that all zones have
reached their setpoints before the actual tuning starts. The
influence of thermal connections between the zones on tuning
can be reduced in this way.
TIR.WaitForControlIn is only effective if fine tuning is started
from automatic mode with PIDSelfTune.TIR.RunIn = FALSE.

PIDSelfTune.TIR.ControlInReady BOOL FALSE If TIR.WaitForControlIn = TRUE, PID_Temp sets
TIR.ControlInReady = TRUE as soon as the setpoint has been
reached and waits with additional tuning steps until a FALSE ->
TRUE edge is given at TIR.FinishControlIn.

PIDSelfTune.TIR.FinishControlIn BOOL FALSE If TIR.ControlInReady = TRUE, a FALSE -> TRUE edge at
TIR.FinishControlIn stops the wait and fine tuning resumes.

PIDCtrl.IOutputOld(1) REAL 0.0 Integral action in last cycle

378
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

PIDCtrl.PIDInit BOOL FALSE PIDCtrl.PIDInit is available as of PID_Temp version 1.1.
If PIDCtrl.PIDInit = TRUE in "Automatic mode", the integral
action PIDCtrl.IOutputOld is preassigned automatically as if
PidOutputSum = OverwriteInitialOutputValue in the previous
cycle. This can be used for a Override control with PID_Temp
(Page 186).

Retain.CtrlParams.SetByUser(1) BOOL FALSE Enable manual input of PID parameters
If Retain.CtrlParams.SetByUser = TRUE, the PID parameters are
editable.
Retain.CtrlParams.SetByUser is used for configuring the control
ler in the TIA Portal and has no influence on the behavior of the
control algorithm in the CPU.
SetByUser is retentive.

Retain.CtrlParams.Heat.Gain(1) REAL 1.0 Active proportional gain for heating
Heat.Gain is retentive.
Heat.Gain ≥ 0.0

Retain..CtrlParams.Heat.Ti(1) REAL 20.0 Active integration time for heating in seconds
The integral action for heating is switched off with
Heat.CtrlParams.Ti = 0.0.
Heat.Ti is retentive.
100000.0 ≥ Heat.Ti ≥ 0.0

Retain.CtrlParams.Heat.Td(1) REAL 0.0 Active derivative action time for heating in seconds
The derivative action for heating is switched off with
Heat.CtrlParams.Td = 0.0.
Heat.Td is retentive.
100000.0 ≥ Heat.Td ≥ 0.0

Retain.CtrlParams.Heat.TdFiltRatio(1) REAL 0.2 Active derivative delay coefficient for heating
The derivative delay coefficient delays the effect of the derivat
ive action.
Derivative delay = derivative action time × derivative delay
coefficient
• 0.0: Derivative action is effective for one cycle only and

therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled

systems with one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect of

the derivative action is delayed.
Heat.TdFiltRatio is retentive.
Heat.TdFiltRatio ≥ 0.0

Retain.CtrlParams.Heat.PWeighting(

1)
REAL 1.0 Active weighting of the proportional action for heating

The proportional action may weaken with changes to the set
point.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the pro
cess value is changed.
Heat.PWeighting is retentive.
1.0 ≥ Heat.PWeighting ≥ 0.0

379

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Retain.CtrlParams.Heat.DWeighting
(1)

REAL 1.0 Active weighting of the derivative action for heating
The derivative action may weaken with changes to the set
point.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process
value is changed.
Heat.DWeighting is retentive.
1.0 ≥ Heat.DWeighting ≥ 0.0

Retain.CtrlParams.Heat.Cycle(1) REAL 1.0 Active sampling time of the PID algorithm for heating in
seconds
CtrlParams.Heat.Cycle is calculated during tuning and rounded
to an integer multiple of CycleTime.Value.
If Config.Output.Heat.PwmPeriode = 0.0, Heat.Cycle is used as
period duration of the pulse width modulation for heating.
If Config.Output.Cool.PwmPeriode = 0.0 and
Config.AdvancedCooling = FALSE, Heat.Cycle is used as period
duration of the pulse width modulation for cooling.
Heat.Cycle is retentive.
100000.0 ≥ Heat.Cycle > 0.0

Retain.CtrlParams.Heat.ControlZone
(1)

REAL 3.402822e+
38

Active control zone width for heating
The control zone for heating is switched off with
Heat.ControlZone = 3.402822e+38.
Heat.ControlZone is only set automatically during pretuning
heating or pretuning heating and cooling if
PIDSelfTune.SUT.TuneRuleHeat = 2 is selected as method of the
parameter calculation.
For controllers with deactivated cooling output
(Config.ActivateCooling = FALSE) or controllers with activated
cooling output and cooling factor (Config.AdvancedCooling =
FALSE), the control zone is symmetrically located between Set
point – Heat.ControlZone and Setpoint + Heat.ControlZone.
For controllers with activated cooling output and PID parameter
switching (Config.ActivateCooling = TRUE,
Config.AdvancedCooling = TRUE), the control zone is located
between Setpoint – Heat.ControlZone and Setpoint +
Cool.ControlZone.
Heat.ControlZone is retentive.
Heat.ControlZone > 0.0

Retain.CtrlParams.Heat.DeadZone(1) REAL 0.0 Active dead zone width for heating (see PID parameters (Page
161))
The dead zone for heating is switched off with Heat.DeadZone
= 0.0.
Heat.DeadZone is not set automatically or adjusted during tun
ing. You must correctly configure Heat.DeadZone manually.
When the dead zone is switched on, the result can be a per
manent control deviation (deviation between setpoint and pro
cess value). This can have a negative effect on fine tuning.
For controllers with deactivated cooling output
(Config.ActivateCooling = FALSE) or controllers with activated
cooling output and cooling factor (Config.AdvancedCooling =
FALSE), the dead zone is symmetrically located between Set
point – Heat.DeadZone and Setpoint + Heat.DeadZone.

380
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

For controllers with activated cooling output and PID parameter
switching (Config.ActivateCooling = TRUE,
Config.AdvancedCooling = TRUE), the dead zone is located
between Setpoint – Heat.DeadZone and Setpoint +
Cool.DeadZone.
Heat.DeadZone is retentive.
Heat.DeadZone ≥ 0.0

Retain.CtrlParams.Cool.Gain(1) REAL 1.0 Active proportional gain for cooling
Cool.Gain is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
Cool.Gain ≥ 0.0

Retain.CtrlParams.Cool.Ti(1) REAL 20.0 Active integration time for cooling in seconds
The integral action for cooling is switched off with
Cool.CtrlParams.Ti = 0.0.
Cool.Ti is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Ti ≥ 0.0

Retain.CtrlParams.Cool.Td(1) REAL 0.0 Active derivative action time for cooling in seconds
The derivative action for cooling is switched off with
Cool.CtrlParams.Td = 0.0.
Cool.Td is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Td ≥ 0.0

Retain.CtrlParams.Cool.TdFiltRatio(1) REAL 0.2 Active derivative delay coefficient for cooling
The derivative delay coefficient delays the effect of the derivat
ive action.
Derivative delay = derivative action time × derivative delay
coefficient
• 0.0: Derivative action is effective for one cycle only and

therefore almost not effective.
• 0.5: This value has proved useful in practice for controlled

systems with one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect of

the derivative action is delayed.
Cool.TdFiltRatio is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
Cool.TdFiltRatio ≥ 0.0

Retain.CtrlParams.Cool.PWeighting(

1)
REAL 1.0 Active weighting of the proportional action for cooling

The proportional action may weaken with changes to the set
point.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the pro
cess value is changed.

381

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data
type

Default Description

Cool.PWeighting is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
1.0 ≥ Cool.PWeighting ≥ 0.0

Retain.CtrlParams.Cool.DWeighting
(1)

REAL 1.0 Active weighting of the derivative action for cooling
The derivative action may weaken with changes to the set
point.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process
value is changed.
Cool.DWeighting is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
1.0 ≥ Cool.DWeighting ≥ 0.0

Retain.CtrlParams.Cool.Cycle(1) REAL 1.0 Active sampling time of the PID algorithm for cooling in
seconds
CtrlParams.Cool.Cycle is calculated during tuning and rounded
off to an integer multiple of CycleTime..
If Config.Output.Cool.PwmPeriode = 0.0 and
Config.AdvancedCooling = TRUE, Cool.Cycle is used as period
duration of the pulse width modulation for cooling.
If Config.Output.Cool.PwmPeriode = 0.0 and
Config.AdvancedCooling = FALSE, Heat.Cycle is used as period
duration of the pulse width modulation for cooling.
Cool.Cycle is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Cycle > 0.0

Retain.CtrlParams.Cool.ControlZone
(1)

REAL 3.402822e+
38

Active control zone width for cooling
The control zone for cooling is switched off with
Cool.ControlZone = 3.402822e+38.
Cool.ControlZone is only set automatically during pretuning
cooling or pretuning heating and cooling if
PIDSelfTune.SUT.TuneRuleCool = 2 is selected as method of the
parameter calculation.
Cool.ControlZone is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
Cool.ControlZone > 0.0

Retain.CtrlParams.Cool.DeadZone(1) REAL 0.0 Active dead zone width for cooling (see PID parameters (Page
161))
The dead zone for cooling is switched off with Cool.DeadZone
= 0.0.
Cool.DeadZone is not set automatically or adjusted during tun
ing. You must correctly configure Cool.DeadZone manually.
When the dead zone is switched on, the result can be a per
manent control deviation (deviation between setpoint and
actual value). This can have a negative effect on fine tuning.

382
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Tag Data
type

Default Description

Cool.DeadZone is retentive.
Only effective if the cooling output and PID parameter switch
ing are activated (Config.ActivateCooling = TRUE and
Config.AdvancedCooling = TRUE).
Cool.DeadZone ≥ 0.0

See also
PID_Temp ActivateRecoverMode tag (Page 392)
PID_Temp Warning tag (Page 393)
Multi-zone controlling with PID_Temp (Page 183)

10.3.4.7 PID_Temp state and mode parameters

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.
With a rising edge at ModeActivate, PID_Temp switches to the operating mode saved in the
Mode in-out parameter.
Heat.EnableTuning and Cool.EnableTuning specify for pretuning and fine tuning, if tuning
takes place for heating or cooling.
If the CPU is switched on or switches from Stop to RUN mode, PID_Temp starts in the
operating mode that is saved in the Mode parameter. To leave PID_Temp in "Inactive" mode,
set RunModeByStartup = FALSE.

Meaning of values

State / Mode Description of operating mode
0 Inactive

The following output values are output in "Inactive" mode:
• 0.0 as PID output value (PidOutputSum)
• 0.0 as output value for heating (OutputHeat) and output value for cooling (OutputCool)
• 0 as analog output value for heating (OutputHeat_PER) and analog output value for cooling

(OutputCool_PER)
• FALSE as PWM output value for heating (OutputHeat_PWM) and PWM output value for cooling

(OutputCool_PWM)
This does not depend on the configured output value limits and scaling in the structures Config.Output.Heat
and Config.Output.Cool.

1 Pretuning
The pretuning determines the process response to a jump change of the output value and searches for the
point of inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the
controlled system. You obtain the best PID parameters when you perform pretuning and fine tuning.

383

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

State / Mode Description of operating mode
PID_Temp offers different pretuning types depending on the configuration:
• Pretuning heating:

A jump change is output at the output value heating, the PID parameters for heating are calculated
(Retain.CtrlParams.Heat structure), and control to the setpoint then takes place in automatic mode.
If the process behavior strongly depends on the operating point, an adaptation of the delay time can be
activated at the setpoint with PIDSelfTune.SUT.AdaptDelayTime.

• Pretuning heating and cooling:
A jump is output at the output value heating. As soon as the process value is close to the setpoint, a jump
change is output at the output value cooling. The PID parameters for heating (Retain.CtrlParams.Heat
structure) and cooling (Retain.CtrlParams.Cool structure) are calculated. Then, control to the setpoint
takes place in automatic mode.
If the process behavior strongly depends on the operating point, an adaptation of the delay time can be
activated at the setpoint with PIDSelfTune.SUT.AdaptDelayTime.
Depending on the effect of the cooling actuator compared to the heating actuator, the quality of tuning
can be influenced by whether or not the heating and cooling outputs are operated simultaneously during
tuning. You can specify this with PIDSelfTune.SUT.CoolingMode.

• Pretuning cooling:
A jump change is output at the output value cooling and the PID parameters for cooling are calculated
(Struktur Retain.CtrlParams.Cool). Then, control to the setpoint takes place in automatic mode.

If you want to tune the PID parameters for heating and cooling, you can expect a better control response with
"Pretuning heating" followed by "Pretuning cooling" rather than with "Pretuning heating and cooling".
However, carrying out pretuning in two steps takes more time.

General requirements for pretuning:
• The PID_Temp instruction is called in a cyclic interrupt OB.
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits.

Requirements for pretuning heating:
• Heat.EnableTuning = TRUE
• Cool.EnableTuning = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |Config.InputUpperLimit - Config.InputLowerLimit| and
|Setpoint - Input| > 0.5 * |Setpoint|

• The setpoint is greater than the process value.
Setpoint > Input

Requirements for pretuning heating and cooling:
• Heat.EnableTuning = TRUE·
• Cool.EnableTuning = TRUE
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE).
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |Config.InputUpperLimit - Config.InputLowerLimit| and
|Setpoint - Input| > 0.5 * |Setpoint|

• The setpoint is greater than the process value.
Setpoint > Input

Requirements for pretuning cooling:
• Heat.EnableTuning = FALSE·
• Cool.EnableTuning = TRUE·
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE).

384
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

State / Mode Description of operating mode
• A "pretuning heating" or "pretuning heating and cooling" has been successful

(PIDSelfTune.SUT.ProcParHeatOk = TRUE), if possible at the same setpoint.
• The process value must be close to the setpoint.

|Setpoint - Input| < 0.05 * |Config.InputUpperLimit - Config.InputLowerLimit|

The more stable the process value is, the easier it is to calculate the PID parameters and the more precise the
result will be. Noise on the process value can be tolerated as long as the rate of rise of the process value is sig
nificantly higher compared to the noise. This is most likely the case in operating modes "Inactive" or "Manual
mode".
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

The method for calculation of the PID parameters can be specified separately for heating and cooling with
PIDSelfTune.SUT.TuneRuleHeat and PIDSelfTune.SUT.TuneRuleCool.
Before the PID parameters are recalculated, they are backed up in the CtrlParamsBackUp structure and can be
reactivated with LoadBackUp.
After successful pretuning, the switch is made to automatic mode.
After unsuccessful pretuning, the switch to the mode is determined by ActivateRecoverMode.
The phase of pretuning is indicated with PIDSelfTune.SUT.State.
For starting pretuning of heating or pretuning of heating and cooling in Automatic mode, it is recommended
to perform the required setpoint change simultaneously with the rising edge at ModeActivate. If the setpoint
is changed first and the pretuning is started later, the output value in automatic mode is adjusted accordingly
and causes a change to the process value. This can have a negative effect on the subsequent pretuning or
prevent it from starting.

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are tuned for
the operating point from the amplitude and frequency of this oscillation. PID parameters from fine tuning
usually have better master control and disturbance characteristics than PID parameters from pretuning. You
obtain the best PID parameters when you perform pretuning and fine tuning.
PID_Temp automatically attempts to generate an oscillation greater than the noise of the process value. Fine
tuning is only minimally influenced by the stability of the process value.
PID_Temp offers different fine tuning types depending on the configuration:
• Fine tuning heating:

PID_Temp generates an oscillation of the process value with periodic changes at the output value heating
and calculates the PID parameters for heating (Struktur Retain.CtrlParams.Heat).

• Fine tuning cooling:
PID_Temp generates an oscillation of the process value with periodic changes at the output value cooling
and calculates the PID parameters for cooling (Struktur Retain.CtrlParams.Cool).

Temporary tuning offset for heating/cooling controllers
If PID_Temp is used as heating/cooling controller (Config.ActivateCooling = TRUE), the PID output value
(PidOutputSum) at the setpoint must meet the following requirements for a process value oscillation to be
generated and fine tuning to be successful:
• Positive PID output value for fine tuning heating
• Negative PID output value for fine tuning cooling
If this requirement is not met, you can define a temporary offset for fine tuning which is output at the output
with the opposite effect:
• Offset for cooling output (PIDSelfTune.TIR.OutputOffsetCool) with fine tuning heating.

Define a negative tuning offset cooling which is less than the PID output value (PidOutputSum) at the set
point in the steady state before you start tuning.

• Offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) with fine tuning cooling.
Define a positive tuning offset heating which is greater than the PID output value (PidOutputSum) at the
setpoint in the steady state before you start tuning.

385

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

State / Mode Description of operating mode
The defined offset is balanced by the PID algorithm so that the process value remains at the setpoint. The
height of the offset allows the PID output value to be adapted correspondingly so that it fulfills the require
ment mentioned above.
To avoid larger overshoots of the process value when defining the offset, it can also be increased in several
steps.
If PID_Temp exits the fine tuning mode, the tuning offset is reset.
Example for definition of an offset for fine tuning cooling:
• Without offset:

– Setpoint = Process value (ScaledInput) = 80°C
– PID output value (PidOutputSum) = 30.0
– Output value heating (OutputHeat) = 30.0
– Output value cooling (OutputCool) = 0.0

Oscillation of the process value around the setpoint cannot be generated with the cooling output
alone.
Fine tuning would fail here.

• With definition of an offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) = 80.0
– Setpoint = process value (ScaledInput) = 80°C
– PID output value (PidOutputSum) = -50.0
– Output value heating (OutputHeat) = 80.0
– Output value cooling (OutputCool) = -50.0

By defining an offset for the heating output, the cooling output can now create an oscillation of the
process value around the setpoint.
Fine tuning can now be carried out successfully.

General requirements for fine tuning:
• The PID_Temp instruction is called in a cyclic interrupt OB.
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• The control loop has stabilized at the operating point. The operating point is reached when the process

value corresponds to the setpoint.
When the dead zone is switched on, the result can be a permanent control deviation (deviation between
setpoint and actual value). This can have a negative effect on fine tuning.

• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode

Requirements for fine tuning heating:
• Heat.EnableTuning = TRUE
• Cool.EnableTuning = FALSE
• If PID_Temp is configured as heating/cooling controller (Config.ActivateCooling = TRUE), the heating out

put must be active at the operating point at which tuning is to take place (PidOutputSum > 0.0 (see tuning
offset)).

Requirements for fine tuning cooling:
• Heat.EnableTuning = FALSE
• Cool.EnableTuning = TRUE
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE)
• The cooling output must be active at the operating point at which tuning is to take place (PidOutputSum <

0.0 (see tuning offset)).

386
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

State / Mode Description of operating mode
The course of fine tuning is determined by the mode from which it is started:
• Automatic mode (State = 3) with PIDSelfTune.TIR.RunIn = FALSE (default)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.
PID_Temp controls the system using the existing PID parameters until the control loop has stabilized and
the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3) with PIDSelfTune.TIR.RunIn =
TRUE
Attempts are made to reach the setpoint with the minimum or maximum output value:
– with minimum or maximum output value heating for fine tuning heating
– With minimum or maximum output value cooling for fine tuning cooling.
This can produce increased overshoot. Fine tuning starts when the setpoint is reached.
If the setpoint cannot be reached, PID_Temp does not automatically abort tuning.

The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
The method for calculation of the PID parameters can be specified separately for heating and cooling with
PIDSelfTune.TIR.TuneRuleHeat and PIDSelfTune.TIR.TuneRuleCool.
Before the PID parameters are recalculated, they are backed up in the CtrlParamsBackUp structure and can be
reactivated with LoadBackUp.
The controller changes to automatic mode after successful fine tuning.
After unsuccessful fine tuning, the switch to the mode is determined by ActivateRecoverMode.
The "Fine tuning" phase is indicated with PIDSelfTune.TIR.State.

3 Automatic mode
In automatic mode, PID_Temp corrects the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is met:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

4 Manual mode
In manual mode, you specify a manual PID output value in the ManualValue parameter. The values at the out
puts for heating and cooling resulting from this manual value are the result of the configured output scaling.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change the
operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless.
The ActivateRecoverMode tag is taken into consideration in manual mode.

5 Substitute output value with error monitoring
The control algorithm is deactivated. The SetSubstituteOutput tag determines which PID output value
(PidOutputSum) is output in this operating mode.
• SetSubstituteOutput = FALSE: Last valid PID output value
• SetSubstituteOutput = TRUE: Substitute output value (SubstituteOutput)
You cannot activate this operating mode using Mode = 5.
In the event of an error, it is activated instead of "Inactive" operating mode if all the following conditions are
met:
• Automatic mode (State = 3)
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode is effective.
As soon as the errors are no longer pending, PID_Temp switches back to automatic mode.

387

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

ENO characteristics
If State = 0, then ENO = FALSE.
If State ≠ 0, then ENO = TRUE.

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following
table shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning successfully completed

n 3 3 Automatic mode is started

PID_Temp automatically switches the operating mode in the event of an error.
The following table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1

1 1 4 Set ModeActivate = TRUE

1 4 1 Value of State is saved in Mode parameter
Pretuning is started

n 4 1 Pretuning canceled

n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. When you start pretuning or fine tuning, PID_Temp has saved the value of State in
the Mode in-out parameter. This means PID_Temp switches to the mode from which tuning
was started.
If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode.

See also
Output parameters of PID_Temp (Page 356)
In/out parameters of PID_Temp V2 (Page 357)

388
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

10.3.4.8 PID_Temp ErrorBits parameter

If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.

ErrorBits
 (DW#16#...)

Description

0000_0000 There is no error.

0000_0001 The "Input" parameter is outside the process value limits.
• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000_0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp out
puts the configured substitute output value. As soon as the error is no longer pending, PID_Temp switches
back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000_0004 Error during fine tuning. The oscillation of the process value could not be maintained.
If PID_Temp is used as a heating cooling controller (Config.ActivateCooling = TRUE), then in order to gen
erate a process value oscillation and successfully carry out the fine tuning, the PID output value
(PidOutputSum) at the setpoint must be
• positive for fine tuning heating
• negative for fine tuning cooling
If this requirement is not met, use the tuning offsets (PIDSelfTune.TIR.OutputOffsetCool and
PIDSelfTune.TIR.OutputOffsetHeat tags), see Fine tuning (Page 171).
If ActivateRecoverMode was = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000_0008 Error at start of pretuning. The process value is too close to the setpoint or greater than the setpoint. Start
fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp remains in fine tuning mode.

0000_0040 Error during pretuning. Cooling could not reduce the process value.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0000_0100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

389

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0000_0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp out
puts the configured substitute output value. As soon as the error is no longer pending, PID_Temp switches
back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000_0400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp out
puts the configured substitute output value. As soon as the error is no longer pending, PID_Temp switches
back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000_0800 Sampling time error: PID_Temp is not called within the sampling time of the cyclic interrupt OB.
It is recommended to call PID_Temp in a cyclic interrupt OB without conditions and to activate or deactiv
ate it via the operating mode at the Mode parameter. Conditional calls or the call in OB1 can have a negat
ive effect on the control quality.
Monitoring of the sampling time can be disabled with CycleTime.EnMonitoring = FALSE.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.
If this error occurred during simulation with PLCSIM, see the notes under Simulating PID_Temp with
PLCSIM (Page 189).

0000_1000 Invalid value at "Setpoint" parameter or "SubstituteSetpoint": Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp out
puts the configured substitute output value. As soon as the error is no longer pending, PID_Temp switches
back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter.

0001_0000 Invalid value at ManualValue parameter. Value has an invalid number format.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp remains in manual mode and uses
SubstituteOutput as PID output value. As soon as you specify a valid value in ManualValue, PID_Temp uses
it as the PID output value.

0002_0000 Invalid value at SubstituteOutput tag. Value has an invalid number format.
PID_Temp remains in the "Substitute output value with error monitoring" mode or manual mode and uses
the low limit of the PID output value for heating (Config.Output.Heat.PidLowerLimit) as PID output value.
As soon as you specify a valid value in SubstituteOutput, PID_Temp uses it as the PID output value.

0004_0000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance is
set to zero. PID_Temp remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Temp switches to the operating mode that is saved in the Mode parameter. If Disturbance in the cur
rent phase has no effect on the output value, tuning is not be canceled.

0020_0000 Error in master in the cascade: Slaves are not in automatic mode or have enabled a substitute setpoint and
are preventing tuning of the master.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

390
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

ErrorBits
 (DW#16#...)

Description

0040_0000 Pretuning heating is not permitted while cooling is active.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0080_0000 The process value must be close to the setpoint to start pretuning cooling.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0100_0000 Error at start of tuning: Heat.EnableTuning and Cool.EnableTuning are not set or do not match the config
uration.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0200_0000 Pretuning cooling requires successful pretuning heating.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0400_0000 Error at start of fine tuning: Heat.EnableTuning and Cool.EnableTuning must not be set simultaneously.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches to
the operating mode that is saved in the Mode parameter.

0800_0000 Error during calculation of the PID parameters resulted in invalid parameters.
The invalid parameters are discarded and the original PID parameters are retained unchanged.
If this error occurs during pretuning, make sure that:
• Pretuning heating or pretuning heating and cooling: The PID output value is not already limited by the

high limit for heating before the start of the pretuning.
• Pretuning cooling: The PID output value is not already limited by the low limit for cooling before the

start of the pretuning.
For starting a pretuning of heating or pretuning of heating and cooling in automatic mode, it is recom
mended to perform the required setpoint change simultaneously with the rising edge at ModeActivate.
This prevents the PID output value from running into the limitation between the setpoint change and the
start of the pretuning. Alternatively, this can also be achieved by starting from manual mode or "Inactive"
mode.
A distinction is made between the following scenarios:
• If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp

remains in automatic mode.
• If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp

remains in manual mode.
• If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =

TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

391

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

10.3.4.9 PID_Temp ActivateRecoverMode tag

The ActivateRecoverMode tag determines the reaction to error. The Error parameter indicates
if an error is pending. When the error is no longer pending, Error = FALSE. The ErrorBits
parameter shows which errors have occurred.

Automatic mode and manual mode

NOTICE
Your system may be damaged.
If ActivateRecoverMode = TRUE, PID_Temp remains in automatic mode or in manual mode
even if there is an error and the process limit values are exceeded.
This may damage your system.
It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

ActivateRecover
Mode

Description

FALSE PID_Temp switches to "Inactive" mode in the event of an error. The controller is only activated by a falling
edge at Reset or a rising edge at ModeActivate.

Automatic mode
If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_Temp switches between the calculated PID output value and the substitute output value at
each error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or several of the following errors occur and automatic mode was active before the error occurred,
PID_Temp remains in automatic mode:
• 0000001h: The "Input" parameter is outside the process value limits.
• 0000800h: Sampling time error
• 0040000h: Invalid value at Disturbance parameter.
• 8000000h: Error during calculation of the PID parameters

If one or several of the following errors occur and automatic mode was active before the error occurred,
PID_Temp switches to "Substitute output value with error monitoring" mode:
• 0000002h: Invalid value at Input_PER parameter.
• 0000200h: Invalid value at Input parameter.
• 0000400h: Calculation of output value failed.
• 0001000h: Invalid value at Setpoint parameter or SubstituteSetpoint.

As soon as the errors are no longer pending, PID_Temp switches back to automatic mode.
If the following error occurs in "Substitute output value with error monitoring" mode, PID_Temp sets the
PID output value to Config.Output.Heat.PidLowerLimit as long as this error is pending:
• 0020000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.

This behavior is independent of SetSubstituteOutput.

TRUE

Manual mode
If one or several errors occur and manual mode was active before the error occurred, PID_Temp remains in
manual mode.
If the following error occurs in manual mode, as long as this error is pending, PID_Temp sets the PID out
put value to SubstituteOutput:
• 0010000h: Invalid value at ManualValue parameter. Value has an invalid number format.

392
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

ActivateRecover
Mode

Description

If the error 0010000h is pending in manual mode and the following error occurs, PID_Temp sets the PID
output value to Config.Output.Heat.PidLowerLimit as long as this error is pending:
• 0020000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.
This behavior is independent of SetSubstituteOutput.

Pretuning and fine tuning

ActivateRecover
Mode

Description

FALSE PID_Temp switches to "Inactive" mode in the event of an error. The controller is only activated by a falling
edge at Reset or a rising edge at ModeActivate.

TRUE If the following error occurs, PID_Temp remains in the active mode:
• 0000020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 0010000h: Invalid value at ManualValue parameter.
• 0020000h: Invalid value at SubstituteOutput tag.
When any other error occurs, PID_Temp cancels the tuning and switches to the mode from which tuning
was started.

10.3.4.10 PID_Temp Warning tag

If several warnings are pending simultaneously, the values of the Warning tag are displayed
with binary addition. The display of warning 16#0000_0003, for example, indicates that the
warnings 16#0000_0001 and 16#0000_0002 are pending simultaneously.

Warning
(DW#16#....)

Description

0000_0000 No warning pending.

0000_0001 The point of inflection was not found during pretuning.

0000_0004 The setpoint was limited to the configured limits.

0000_0008 Not all the necessary controlled system properties were defined for the selected method of calculation.
Instead, the PID parameters were calculated using the method TIR.TuneRuleHeat = 3 or
TIR.TuneRuleCool = 3.

0000_0010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.

0000_0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.
Improve results by using shorter OB cycle times.

0000_0040 The process value exceeded one of its warning limits.

0000_0080 Invalid value at Mode. The operating mode is not switched.

0000_0100 The manual value was limited to the limits of the PID output value.

0000_0200 The specified rule for tuning is not supported. No PID parameters are calculated.

0000_1000 The substitute output value cannot be reached because it is outside the output value limits.

0000_4000 The specified selection of the output value for heating and/or cooling is not supported.
Only the output OutputHeat or OutputCool is used.

0000_8000 Invalid value at PIDSelfTune.SUT.AdaptDelayTime. The default value 0 is used.

393

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Warning
(DW#16#....)

Description

0001_0000 Invalid value at PIDSelfTune.SUT.CoolingMode. The default value 0 is used.

0002_0000 The activation of cooling (Config.ActivateCooling tag) is not supported by the controller that is used as mas
ter (Config.Cascade.IsMaster tag). PID_Temp works as heating controller.
Set the Config.ActivateCooling tag to FALSE.

0004_0000 Invalid value at Retain.CtrlParams.Heat.Gain, Retain.CtrlParams.Cool.Gain or Config.CoolFactor. PID_Temp
supports only positive values for proportional gain (heating and cooling) and cooling factor. Automatic
mode remains active with PID output value 0.0. The integral component is stopped.

The following warnings are deleted as soon as the cause has been remedied or you repeat
the action with valid parameters:
• 16#0000_0001
• 16#0000_0004
• 16#0000_0008
• 16#0000_0040
• 16#0000_0100
All other warnings are cleared with a rising edge at Reset or ErrorAck.

10.3.4.11 PwmPeriode tag

If the PID algorithm sampling time (Retain.CtrlParams.Heat.Cycle or
Retain.CtrlParams.Heat.Cycle) and thus the time period of the pulse width modulation is very
high when you use OutputHeat_PWM or OutputCool_PWM, you can define a deviating
shorter time period at the Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode parameters to improve the smoothness of the process value.

Time period of the pulse width modulation at OutputHeat_PWM
Time period of the PWM at output OutputHeat_PWM depending on
Config.Output.Heat.PwmPeriode:
• Heat.PwmPeriode = 0.0 (default)

The sampling time of the PID algorithm for heating (Retain.CtrlParams.Heat.Cycle) is used
as period duration of the PWM.

• Heat.PwmPeriode > 0.0
The value is rounded off to an integer multiple of the PID_Temp sampling time
(CycleTime.Value) and used as period duration of the PWM.
The value must meet the following conditions:
– Heat.PwmPeriode ≤ Retain.CtrlParams.Heat.Cycle
– Heat.PwmPeriode > Config.Output.Heat.MinimumOnTime
– Heat.PwmPeriode > Config.Output.Heat.MinimumOffTime

394
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

Time period of the pulse width modulation at OutputCool_PWM
Time period of the PWM at output OutputCool_PWM depending on
Config.Output.Cool.PwmPeriode and the method for heating/cooling:
• Cool.PwmPeriode = 0.0 and cooling factor (Config.AdvancedCooling = FALSE):

The sampling time of the PID algorithm for heating (Retain.CtrlParams.Heat.Cycle) is used
as period duration of the PWM.

• Cool.PwmPeriode = 0.0 and PID parameter switching (Config.AdvancedCooling = TRUE):
The sampling time of the PID algorithm for cooling (Retain.CtrlParams.Cool.Cycle) is used
as period duration of the PWM.

• Cool.PwmPeriode > 0.0:
The value is rounded off to an integer multiple of the PID_Temp sampling time
(CycleTime.Value) and used as period duration of the PWM.
The value must meet the following conditions:
– Cool.PwmPeriode ≤ Retain.CtrlParams.Cool.Cycle or Retain.CtrlParams.Heat.Cycle
– Cool.PwmPeriode > Config.Output.Cool.MinimumOnTime
– Cool.PwmPeriode > Config.Output.Cool.MinimumOffTime

Config.Output.Cool.PwmPeriode is only effective if the cooling output is activated
(Config.ActivateCooling =TRUE).
When you use PwmPeriode, the accuracy of the PWM output signal is determined by the
relationship of PwmPeriode to the PID_Temp sampling time (cycle time of the
OB). PwmPeriode should be at least 10 times the PID_Temp sampling time.
If the sampling time of the PID algorithm is not an integer multiple of PwmPeriode, each last
period of the PWM within the sampling time of the PID algorithm is extended accordingly.

395

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

Example for OutputHeat_PWM

① PID_Temp sampling time = 100.0 ms (cycle time of the calling cyclic interrupt OB, CycleTime.Value tag)
② PID algorithm sampling time = 2000.0 ms (Retain.CtrlParams.Heat.Cycle tag)
③ Time period of the PWM for heating = 600.0 ms (Config.Output.Heat.PwmPeriode tag)

10.3.4.12 IntegralResetMode tag

The IntegralResetMode tag determines how the integral action PIDCtrl.IOutputOld is pre-
assigned:
• When switching from "Inactive" operating mode to "Automatic mode"
• With edge TRUE -> FALSE at parameter Reset and parameter Mode = 3
This setting only works for one cycle and is only effective if the integral action is activated
(Retain.CtrlParams.Heat.Ti and Retain.CtrlParams.Cool.Ti > 0.0 tags).

IntegralReset
Mode

Description

0 Smooth
The value of PIDCtrl.IOutputOld is pre-assigned so that the switchover is bumpless, which means
"Automatic mode" starts with the output value = 0.0 (parameter PidOutputSum) and there is no jump of
the output value regardless of the control deviation (setpoint – process value).

396
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.3 PID_Temp

IntegralReset
Mode

Description

1 Delete
We recommend setting the weighting of the proportional action (Retain.CtrlParams.Heat.PWeighting and
Retain.CtrlParams.Cool.PWeighting tags) to 1.0 if this option is used.
The value of PIDCtrl.IOutputOld is deleted. Any control deviation will cause a jump of the PID output value.
The direction of the output value jump depends on the active weighting of the proportional action
(Retain.CtrlParams.Heat.PWeighting and Retain.CtrlParams.Cool.PWeighting tags) and the control devi
ation:
• Active proportional action weighting = 1.0:

Output value jump and control deviation have identical signs.
Example: If the process value value is smaller than the setpoint (positive control deviation), the PID
output value jumps to a positive value.

• Active proportional action weighting < 1.0:
For large control deviations, the PID output value jump and control deviation have identical signs.
Example: If the process value is much smaller than the setpoint (positive control deviation), the PID
output value jumps to a positive value.
For small control deviations, the PID output value jump and control deviation have different signs.
Example: If the process value is just below the setpoint (positive control deviation), the PID output
value jumps to a negative value. This is usually not desirable, because it results in a temporary increase
in the control deviation.
The smaller the configured weighting of the proportional action, the greater the control deviation
must be to receive a PID output value jump with identical sign.

We recommend setting the weighting of the proportional action (Retain.CtrlParams.Heat.PWeighting and
Retain.CtrlParams.Cool.PWeighting tags) to 1.0 when this option is used. Otherwise, you may experience
the undesirable behavior described for small control deviations. Alternatively, you can also use
IntegralResetMode = 4. This option guarantees identical signs of the PID output value jump and control
deviation independent of the configured weighting of the proportional action and the control deviation.

2 Hold
The value of PIDCtrl.IOutputOld is not changed. You can define a new value using the user program.

3 Pre-assign
The value of PIDCtrl.IOutputOld is automatically pre-assigned as if PidOutputSum =
OverwriteInitialOutputValue in the last cycle.

4 Like setpoint change (only for PID_Temp with version ≥ 1.1)
The value of PIDCtrl.IOutputOld is automatically pre-assigned so that a similar PID output value jump res
ults as for a PI controller in automatic mode in case of a setpoint change from the current process value to
the current setpoint.
Any control deviation will cause a jump of the PID output value. The PID output value jump and control
deviation have identical signs.
Example: If the process value value is smaller than the setpoint (positive control deviation), the PID output
value jumps to a positive value. This is independent of the configured weighting of the proportional action
and the control deviation.

If IntegralResetMode is assigned a value outside the valid value range, PID_Temp behaves as
with the pre-assignment of IntegralResetMode:
• PID_Temp up to V1.0: IntegralResetMode = 1
• PID_Temp as of V1.1: IntegralResetMode = 4

397

Instructions
10.3 PID_Temp

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4 PID basic functions

10.4.1 CONT_C

10.4.1.1 Description CONT_C

The CONT_C instruction is used on SIMATIC S7 automation systems to control technical
processes with continuous input and output variables. You can assign parameters to enable
or disable sub-functions of the PID controller and adapt it to the process. In addition to the
functions in the setpoint and process value branches, the instruction implements a complete
PID controller with continuous output value output and the option of manually influencing
the value of the output value.

Application
You can use the controller as a PID fixed setpoint controller, or in multi-loop control systems,
also as a cascade, blending or ratio controller. The functions of the controller are based on
the PID control algorithm of the sampling controller with an analog signal, if necessary
extended by including a pulse shaper stage to generate pulse-width modulated output
signals for two or three step controllers with proportional actuators.

Call
The CONT_C instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. During initialization, the integral action is set to the
initialization value I_ITVAL. All the signal outputs are set to zero. COM_RST = FALSE has to be
set after the initialization routine has been completed.
The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

Error information
The error message word RET_VAL is not evaluated by the block.

398
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.1.2 How CONT_C works

Setpoint branch
The setpoint is entered in floating-point format at the SP_INT input.

Process value branch
The process value can be input in I/O or floating-point format. The function CRP_IN converts
the I/O value PV_PER to a floating-point format -100 to +100 % in accordance with the
following rule:
Output of CRP_IN = PV_PER * 100 / 27648
The PV_NORM function scales the output of CRP_IN according to the following rule:
Output of PV_NORM = (output of CRP_IN) *PV_FAC + PV_OFF
PV_FAC has a default of 1 and PV_OFF a default of 0.

Forming the error signal
The difference between the setpoint and process value is the error signal. To suppress a
minor sustained oscillation due to manipulated variable quantization (e.g. with a pulse width
modulation with PULSEGEN), the error signal is applied to a dead band (DEADBAND). With
DEADB_W = 0, the dead band is switched off.

PID Algorithm
The PID algorithm operates as a position algorithm. The proportional, integral (INT), and
differential (DIF) actions are connected in parallel and can be activated or deactivated
individually. This allows P, PI, PD, and PID controllers to be configured. Pure I controllers are
also possible.

Manual value processing
It is possible to switch over between manual and automatic mode. In manual mode, the
manipulated variable is corrected to a manually selected value.
The integral action (INT) is set internally to LMN - LMN_P - DISV and the derivative action (DIF)
is set to 0 and synchronized internally. Changeover to automatic mode is therefore bumpless.

399

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Manipulated value processing
You can use the LMNLIMIT function to limit the manipulated value to selected values. Alarm
bits indicate when a limit is exceeded by the input variable.
The LMN_NORM function normalizes the output of LMNLIMIT according to the following rule:
LMN = (output of LMNLIMIT) * LMN_FAC + LMN_OFF
LMN_FAC has a default of 1 and LMN_OFF a default of 0.
The manipulated value is also available in I/O format. The CRP_OUT function converts the
LMN floating-point value to a I/O value according to the following rule:
LMN_PER = LMN * 27648 / 100

Feedforward control
A disturbance variable can be added at the DISV input.

10.4.1.3 CONT_C block diagram

400
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.1.4 Input parameter CONT_C

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-13

Parameters Data
type

Default Description

COM_RST BOOL FALSE  The instruction has an initialization routine that is  processed when the "Restart" input is
set.

MAN_ON BOOL TRUE If the input "Enable manual mode" is set then the control loop is interrupted. A manual
value  is set as the manipulated value.

PVPER_ON BOOL FALSE If the process value is to be read in from the I/Os, the PV_PER input must be interconnec
ted with the I/Os and the "Enable process value I/Os" input must be set.

P_SEL BOOL TRUE The PID actions can be switched on and off individually in the PID algorithm. P-action is on
when the "Enable P-action" input is set.

I_SEL BOOL TRUE The PID actions can be switched on and off individually in the PID algorithm. I action is on
when the input  "I-action on" is set.

INT_HOLD BOOL FALSE The output of the integral action can be frozen. For this the input "I-action hold" must be
set.

I_ITL_ON BOOL FALSE The output of the integral action can be set at the I_ITLVAL input. For this the input "Set
I-action" must be set.

D_SEL BOOL FALSE The PID actions can be switched on and off individually in the PID algorithm. D-action is on
when the  input "Enable D-action" is set.

CYCLE TIME T#1s The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

SP_INT REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_IN REAL 0.0 At the "Process value input" you can assign parameters to a commissioning value or you
can interconnect an external process value in floating-point format.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_PER WORD W#16#
0000

The process value in I/O format is interconnected with the controller at the "Process value
I/0" input.

MAN REAL 0.0 The "Manual value" input is used to set a  manual value using the operator interface
 functions.
Permissible are values from -100 to 100 % or a physical variable 2).

GAIN REAL 2.0 The "Proportional gain" input specifies controller amplification.

TI TIME T#20s  The "Integration time" input determines the time  response of the integral action.
TI >= CYCLE

TD TIME T#10s  The "Derivative action time" input determines the time  response of the derivative action.
TD >= CYCLE

TM_LAG TIME T#2s Time lag of the D-action
The algorithm of the D-action contains a delay for which parameters can be assigned at
the input "Time lag of the D-action".
TM_LAG >= CYCLE/2

DEADB_W REAL 0.0 A dead band is applied to the system deviation. The "Dead band width" input determines
the size of the dead band.
DEADB_W >= 0.0 (%) or a physical variable 1)

401

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Data
type

Default Description

LMN_HLM REAL 100.0 The manipulated value is always restricted to a high limit and low limit. The "High limit of
manipulated value" input specifies the high limit.
Permissible are real values starting at LMN_LLM (%) or a physical variable 2).

LMN_LLM REAL 0.0 The manipulated value is always restricted to a high limit and low limit. The "Low limit of
manipulated value" input specifies the low limit.
Permissible are real values up to LMN_HLM (%) or a physical variable 2).

PV_FAC REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is used to
scale the process value range.

PV_OFF REAL 0.0 The input "Process value offset" is added to the process value. The input is used to scale
the process value range.

LMN_FAC REAL 1.0 The "Manipulated value factor" input is multiplied with the manipulated value. The input is
used to scale the manipulated value range.

LMN_OFF REAL 0.0 The input "Manipulated value offset" is added to the process value. The input is used to
scale the manipulated value range.

I_ITLVAL REAL 0.0 The output of the integral action can be set at the I_ITL_ON input. The initialization value
is indicated at the input "Initialization value of the integral-action."
Permissible are values of -100.0 to 100.0 (%) or a physical variable 2).

DISV REAL 0.0 For feedforward control, the disturbance variable is interconnected to the "Disturbance
variable" input.
Permissible are values of -100.0 to 100.0 (%) or a physical variable 2).

1) Parameters in the setpoint and process value branches with the same unit
2) Parameters in the manipulated value branch with the same unit

10.4.1.5 Output parameters CONT_C

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-14

Parameter Data
type

Default Description

LMN REAL 0.0 The effective "Manipulated value" is output in  floating point format at the "Manipulated
 value" output.

LMN_PER WORD W#16#
0000

The manipulated value in I/O format is interconnected on the input "Manipulated value
I/O" with the controller.

QLMN_HLM BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The output "High
 limit of manipulated value reached"  indicates that the high limit has been  reached.

QLMN_LLM BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The output "Low
 limit of manipulated value reached"  indicates that the low limit has been  reached.

LMN_P REAL 0.0 The "P-action" output contains the proportional action of the manipulated variable.

LMN_I REAL 0.0 The "I-action" output contains the integral action of the manipulated variable.

LMN_D REAL 0.0 The "D-action" output contains the derivative action of the manipulated variable.

PV REAL 0.0 The effective process value is output at the "Process value" output.

ER REAL 0.0 The effective system deviation is output at the "Error signal" output.

402
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.2 CONT_S

10.4.2.1 Description CONT_S

The CONT_S instruction is used on SIMATIC S7 automation systems to control technical
processes with binary output value output signals for actuators with integrating behavior.
During parameter assignment, you can activate or deactivate sub-functions of the PI step
controller to adapt the controller to the controlled system. In addition to the functions in the
process value branch, the instruction implements a complete proportional-plus-integral-
action controller with binary output value output and the option of manually influencing the
value of the output value. The step controller operates without a position feedback signal.

Application
You can use the controller as a PI fixed setpoint controller or in secondary control loops in
cascade, blending or ratio controllers, however you cannot use it as the primary controller.
The functions of the controller are based on the PI control algorithm of the sampling
controller supplemented by the functions for generating the binary output signal from the
analog actuating signal.

Call
The CONT_S instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. All the signal outputs are set to zero. COM_RST = FALSE
has to be set after the initialization routine has been completed.
The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

Error information
The error message word RET_VAL is not evaluated by the block.

10.4.2.2 Mode of operation CONT_S

Setpoint branch
The setpoint is entered in floating-point format at the SP_INT input.

Process value branch
The process value can be input in I/O or floating-point format. The function CRP_IN converts
the I/O value PV_PER to a floating-point format -100 to +100 % in accordance with the
following rule:
Output of CRP_IN = PV_PER * 100 / 27648
The PV_NORM function normalizes the output of CRP_IN according to the following rule:
Output of PV_NORM = (output of CRP_IN) * PV_FAC + PV_OFF
PV_FAC has a default of 1 and PV_OFF a default of 0.

403

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Forming the error signal
The difference between the setpoint and process value is the error signal. To suppress a small
constant oscillation due to the manipulated variable quantization (for example, due to a
limited resolution of the manipulated value by the control valve), a dead band is applied to
the error signal (DEADBAND). With DEADB_W = 0, the dead band is switched off.

PI step algorithm
The instruction operates without position feedback. The I-action of the PI algorithm and the
assumed position feedback signal are calculated in one integral action (INT) and compared
with the remaining P-action as a feedback value. The difference is applied to a three-step
element (THREE_ST) and a pulse shaper (PULSEOUT) that generates the pulses for the control
valve. The switching frequency of the controller can be reduced by adapting the response
threshold of the three-step element.

Feedforward control
A disturbance variable can be added at the DISV input.

404
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.2.3 Block diagram CONT_S

405

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.2.4 Input parameters CONT_S

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-15

Parameters Data
type

Default Description

COM_RST BOOL FALSE  The block has an initialization routine that is  processed when the "Restart" input is set.

LMNR_HS BOOL FALSE The signal "Control valve at high endstop" is interconnected at the input "High endstop
signal of position feedback". LMNR_HS=TRUE means: The  control valve is at high end
stop.

LMNR_LS BOOL FALSE The signal "Control valve at low endstop" is interconnected on the input "Low endstop
signal of position feedback". LMNR_LS=TRUE means The  control valve is at low endstop.

LMNS_ON BOOL FALSE Manipulated value signal processing is switched to manual mode at the "Enable manual
mode of manipulated signal".

LMNUP BOOL FALSE The output signal QLMNUP is operated in manual mode of the manipulated value signals
at the input "Manipulated value signal up".

LMNDN BOOL FALSE The output signal QLMNDN is operated in manual mode of the manipulated value signals
at the input "Manipulated value signal down"

PVPER_ON BOOL FALSE If the process value is to be read from the I/O then the input PV_PER must be interconnec
ted with the I/O and the input "Enable process value I/O" must be set.

CYCLE TIME T#1s The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

SP_INT REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_IN REAL 0.0 At the "Process value input" you can assign parameters to a commissioning value or you
can interconnect an external process value in floating-point format.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_PER WORD W#16#0
000

The process value in I/O format is interconnected with the controller at the "Process value
I/O" input.

GAIN REAL 2.0 The "Proportional gain" input specifies controller amplification.

TI TIME T#20s  The "Integration time" input determines the time  response of the integral action.
TI >= CYCLE

DEADB_W REAL 1.0 A dead band is applied to the system deviation. The "Dead band width" input determines
the size of the dead band.
Permissible are values from 0 to 100 % or a physical variable 1).

PV_FAC REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is used to
scale the process value range.

PV_OFF REAL 0.0 The input "Process value offset" is added to the process value. The input is used to scale
the process value range.

PULSE_TM TIME T#3s You can assign a minimum pulse time at the parameter "Minimum pulse time".
PULSE_TM >= CYCLE

406
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Parameters Data
type

Default Description

BREAK_TM TIME T#3s You can assign a minimum break time at the parameter "Minimum break time".
BREAK_TM >= CYCLE

MTR_TM TIME T#30s  The time required by the actuator to move from  limit stop to limit stop is entered at the
"Motor  actuating time" parameter.
MTR_TM >= CYCLE

DISV REAL 0.0 For feedforward control, the disturbance variable is interconnected to the "Disturbance
variable" input.
Permissible are values from -100 to 100 % or a physical variable 2).

1) Parameters in setpoint and process value branches with identical unit
2) Parameters in the manipulated value branch with same unit

10.4.2.5 Output parameters CONT_S

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-16

Parameters Data
type

Default Description

QLMNUP BOOL FALSE If the output "Manipulated value signal up" is set then the control valve should be
open.

QLMNDN BOOL FALSE If the output "Manipulated value signal down" is set then the control valve should
be closed.

PV REAL 0.0 The effective process value is output at the "Process value" output.

ER REAL 0.0 The effective system deviation is output at the "Error signal" output.

407

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.3 PULSEGEN

10.4.3.1 Description PULSEGEN

The instruction PULSEGEN serves as the structure of a PID controller with impulse output for
proportional actuators. PULSEGEN transforms the input value INV (= LMN of the PID
controller) through modulation of the impulse width in an impulse sequence with a constant
period duration, which corresponds with the cycle time with which the input value is
updated.

Application
You can use the PULSEGEN instruction to configure two- or three-step PID controllers with
pulse width modulation. The function is normally used in conjunction with the continuous
controller CONT_C.

Call
The PULSEGEN instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. All the signal outputs are set to zero. COM_RST = FALSE
has to be set after the initialization routine has been completed.
The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

Responses in the event of an error
The error message word RET_VAL is not evaluated by the block.

408
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.3.2 Mode of operation PULSEGEN

Impulse width modulation
The duration of a pulse per period duration is proportional to the input variable. The cycle
assigned via PER_TM is not identical to the processing cycle of the PULSEGEN instruction.
Rather, a PER_TM cycle is made up of several processing cycles of the PULSEGEN instruction,
whereby the number of PULSEGEN calls per PER_TM cycle determines the accuracy of the
pulse width.

An input variable of 30% and 10 PULSEGEN calls per PER_TM mean the following:
• "One" at the QPOS_P output for the first three calls of PULSEGEN (30% of 10 calls)
• "Zero" at the QPOS_P output for seven further calls of PULSEGEN (70% of 10 calls)

409

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Block diagram

Accuracy of the manipulated value
With a "Sampling ratio" of 1:10 (CONT_C calls to PULSEGEN calls) the accuracy of the
manipulated value in this example is restricted to 10%, in other words, set input values INV
can only be simulated by a pulse duration at the QPOS_P output in steps of 10 %.
The accuracy is increased as the number of PULSEGEN calls per CONT_C call is increased.
If PULSEGEN is called, for example, 100 times more often than CONT_C, a resolution of 1 % of
the manipulated value range is achieved.

NOTE
The reduction ratio of the call frequency must be programmed by the user.

Automatic synchronization
It is possible to automatically synchronize the pulse output with the instruction that updates
the input variable INV (e.g. CONT_C). This ensures that a change in the input variable is
output as quickly as possible as a pulse.
The pulse shaper evaluates the input value INV at intervals corresponding to the period
duration PER_TM and converts the value into a pulse signal of corresponding length.
Since, however, INV is usually calculated in a slower cyclic interrupt class, the pulse shaper
should start the conversion of the discrete value into a pulse signal as soon as possible after
the updating of INV.
To allow this, the block can synchronize the start of the period using the following procedure:

410
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

If INV changes and if the block call is not in the first or last two call cycles of a period, a
synchronization is performed. The pulse duration is recalculated and in the next cycle is
output with a new period.

The automatic synchronization is switched off, if SYN_ON = FALSE.

NOTE
The start of a new period and subsequent synchronization usually leads to a certain
imprecision when the old value of INV (i.e. of LMN) is mapped to the pulse signal.

411

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.3.3 Mode of operation PULSEGEN

Modes
Depending on the parameters assigned to the pulse shaper, PID controllers with a three-step
output or with a bipolar or unipolar two-step output can be configured. The following table
illustrates the setting of the switch combinations for the possible modes.

Mode MAN_ON STEP3_ON ST2BI_ON
Three-step control FALSE TRUE Any

Two-step control with bi-polar
Manipulating range (-100 % to 100 %)

FALSE FALSE TRUE

Two-step control with unipolar
Manipulating range (0 % to 100 %)

FALSE FALSE FALSE

Manual mode TRUE Any Any

Manual mode in two/three-step control
In the manual mode (MAN_ON = TRUE), the binary outputs of the three-step or two-step
controller can be set using the signals POS_P_ON and NEG_P_ON regardless of INV.

Control POS_P_ON NEG_P_ON QPOS_P QNEG_P
FALSE FALSE FALSE FALSE

TRUE FALSE TRUE FALSE

FALSE TRUE FALSE TRUE

Three-step control

TRUE TRUE FALSE FALSE

FALSE Any FALSE TRUETwo-step control

TRUE Any TRUE FALSE

10.4.3.4 Three-step control

Three-step control
In "Three-step control" mode, it is possible to generate three statuses of the actuating signal.
For this, the status values of the binary output signals QPOS_P and QNEG_P are assigned to
the respective operating statuses of the actuator. The table shows the example of a
temperature control:

Output signals Heat Off Cool
QPOS_P TRUE FALSE FALSE

QNEG_P FALSE FALSE TRUE

The pulse duration is calculated from the input variable via a characteristic curve. The form of
the characteristic curve is defined by the minimum pulse duration or minimum interval and
the ratio factor. The normal value for the ratio factor is 1.
The "doglegs" in the curves are caused by the minimum pulse duration or minimum interval.
Minimum pulse duration or minimum interval

412
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

A correctly assigned minimum pulse duration or minimum interval P_B_TM can prevent short
on/off times, which reduce the working life of switching elements and actuators. Small
absolute values of input variable LMN that could otherwise generate a pulse duration shorter
than P_B_TM are suppressed. Large input values that would generate a pulse duration longer
than PER_TM - P_B_TM are set to 100% or -100%.
The duration of positive or negative pulses is calculated by multiplying the input variable (in
%) by the period duration:
Pulse duration = INV / 100 * PER_TM
The following figure shows a symmetrical characteristic curve of the three-step controller
(ratio factor = 1).

413

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Asymmetrical three-step control
Using the ratio factor RATIOFAC, the ratio of the duration of positive to negative pulses can
be changed. In a thermal process, for example, this would allow different system time
constants for heating and cooling.
Ratio factor < 1
The pulse duration at the negative pulse output, calculated by multiplying the input variable
by the period duration, is multiplied by the ratio factor.
Positive pulse duration = INV /100 * PER_TM
Negative pulse duration = INV / 100 * PER_TM * RATIOFAC
The following figure shows the asymmetrical characteristic curve of the three-step controller
(ratio factor = 0.5):

Ratio factor > 1
The pulse duration at the positive pulse output, calculated by multiplying the input variable
by the period duration, is divided by the ratio factor.
Positive pulse duration = INV / 100 * PER_TM / RATIOFAC
Negative pulse duration = INV / 100 * PER_TM

10.4.3.5 Two-step control

In two-step control, only the positive pulse output QPOS_P of PULSEGEN is connected to the
on/off actuator. Depending on the manipulated value range used, the two-step controller has
a bipolar or a unipolar manipulated value range.
Two-step control with bipolar manipulated variable range  (-100% to 100%)

414
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Two-step control with unipolar manipulated variable range  (0% to 100%)

The negated output signal is available at QNEG_P if the connection of the two-step controller
in the control loop requires a logically inverted binary signal for the actuating pulses.

Pulse Actuator On Actuator Off
QPOS_P TRUE FALSE

QNEG_P FALSE TRUE

10.4.3.6 Input parameters PULSEGEN

The values of the input parameters are not limited in the block. There is no parameter check.
Table 10-17

Parameters Data
type

Default Description

INV REAL 0.0 At the input parameter "Input variable" an analog manipulated variable is connected.
Values from -100 to 100 % are permitted.

PER_TM TIME T#1s At the parameter "Period duration" the constant period duration of the pulse width modu
lation is entered. This corresponds to the  sampling time of the controller. The ratio
 between the sampling time of the pulse  shaper and the sampling time of the  controller
determines the accuracy of the  pulse width modulation.
PER_TM >=20*CYCLE

P_B_TM TIME T#50 ms You can assign a minimum pulse/break time at the parameter "Minimum pulse/break
time".
P_B_TM >= CYCLE

RATIOFAC REAL 1.0 Using the "Ratio factor" input parameter the ratio of the duration of positive to negative
pulses can be changed. In a thermal  process, this would, for example, allow  different
time constants for heating and  cooling to be compensated (for example, in  a process
with electrical heating and water  cooling).
Values from 0.1 to 10.0 are permitted.

STEP3_ON BOOL TRUE At the input parameter "Enable three-step control" the appropriate mode is activated. In
three-step control  both output signals are active.

ST2BI_ON BOOL FALSE At the input parameter "Enable two-step control for bipolar manipulated value range" you
can select from the modes "Two-step control for bipolar manipulated value range" and
"Two-step control for unipolar manipulated value range". STEP3_ON = FALSE is required.

MAN_ON BOOL FALSE Setting the input parameter "Enable manual mode" allows the output signals to be set
manually.

415

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Data
type

Default Description

POS_P_ON BOOL FALSE For manual mode three-step control, the output signal QPOS_P can be operated on the
input parameter "Positive pulse on". In  manual mode with two-step control, QNEG_P is
always set inversely to  QPOS_P.

NEG_P_ON BOOL FALSE For manual mode three-step control, the output signal QNEG_P can be operated on the
input parameter "Negative pulse on". In  manual mode with two-step control, QNEG_P is
always set inversely to  QPOS_P.

SYN_ON BOOL TRUE By setting the input parameter  "Enable synchronization", it is possible to  synchronize the
pulse output automatically with the block  that updates the input variable INV. This
ensures that a change in the input variable is output as quickly as possible as a pulse.

COM_RST BOOL FALSE  The block has an initialization routine that is  processed when the input "Restart" is set.

CYCLE TIME T#10ms The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

10.4.3.7 Output parameter PULSEGEN

Table 10-18

Parameters Data type Default Description
QPOS_P BOOL FALSE The output parameter "Output signal positive pulse" is set if a

pulse will be output. In three-step control, this is  always the
positive pulse. In two-step control, the QNEG_P  is always set
inversely to QPOS_P.

QNEG_P BOOL FALSE The output parameter "Output signal negative pulse" is set if a
pulse will be output. In three-step control, this is  always the
negative pulse. In two-step control, QNEG_P  is always set
inversely to QPOS_P.

10.4.4 TCONT_CP

10.4.4.1 Description TCONT_CP

The instruction TCONT_CP is used to control temperature processes with continuous or
pulsed control signals. The controller functionality is based on the PID control algorithm with
additional functions for temperature processes. To improve the control response with
temperature processes, the block includes a control zone and reduction of the proportional
component if there is a setpoint step change.
The instruction can set the PI/PID parameters itself using the controller optimization function.

Application
The controller controls one actuator; in other words, with one controller you can either heat
or cool but not both. If you use the block for cooling, GAIN must be assigned a negative
value. This inversion of the controller means that if the temperature rises, for example, the
manipulated variable LMN and with it the cooling action is increased.

416
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Call
The instruction TCONT_CP must be called with a constant bus cycle time. To achieve this, use
a cyclic interrupt priority class (for example, OB35 for an S7-300).
The TCONT_CP instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. During initialization, the integral action is set to the
initialization value I_ITVAL. All the signal outputs are set to zero. Following execution of the
initialization routine, the block sets COM_RST back to FALSE. If you require initialization when
the CPU restarts, call the block in OB100 with COM_RST = TRUE.

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

10.4.4.2 Mode of operation TCONT_CP

Setpoint branch
The setpoint is entered at input SP_INT in floating-point format as a physical value or
percentage. The setpoint and process value used to form the control deviation must have the
same unit.

Process value options (PVPER_ON)
Depending on PVPER_ON, the process value can be read in, in the I/O or floating-point format.

PVPER_ON Process Value Input
TRUE The process value is read in via the analog I/Os

(PIW xxx) at input PV_PER.

FALSE The process value is acquired in floating-point
format at input PV_IN.

Process value format conversion CRP_IN (PER_MODE)
The CRP_IN function converts the I/O value PV_PER to floating-point format depending on the
PER_MODE switch according to the following rules:

PER_MODE Output of CRP_IN Analog Input Type Unit
0 PV_PER * 0.1 Thermoelements;

PT100/NI100; standard
°C;°F

1 PV_PER * 0.01 PT100/NI100; climate; °C;°F

2 PV_PER * 100/27648 Voltage/current %

417

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Process value scaling PV_NORM (PF_FAC, PV_OFFS)
The PV_NORM function calculates the output of CRP_IN according to the following rule:
"Output of PV_NORM" = "Output of CRP_IN" * PV_FAC + PV_OFFS
It can be used for the following purposes:
• Process value adjustment with PV_FAC as process value factor and PV_OFFS as process

value offset.
• Scaling of temperature to percentage

You want to enter the setpoint as a percentage and must now convert the measured
temperature value to a percentage.

• Scaling of percentage to temperature
You want to enter the setpoint in the physical temperature unit and must now convert the
measured voltage/current value to a temperature.

Calculation of the parameters:
• PV_FAC = range of PV_NORM/range of CRP_IN;
• PV_OFFS = LL (PV_NORM) - PV_FAC * LL(CRP_IN);

where LL: Low limit
The scaling is switched off with the default values (PV_FAC = 1.0 and PV_OFFS = 0.0). The
effective process value is output at the PV output.

NOTE
With pulse control, the process value must be transferred to the block in the fast pulse call
(reason: mean value filtering). Otherwise, the control quality can deteriorate.

Example of Process Value Scaling
If you want to enter the setpoint as a percentage, and you have a temperature range of -20 to
85 °C applied to , CRP_IN you must normalize the temperature range as a percentage.
The diagram below shows an example of adapting the temperature range -20 to 85 °C to an
internal scale of 0 to 100 %:

418
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Forming the control deviation
The difference between the setpoint and process value is the control deviation before the
dead zone.
The setpoint and process value must exist in the same unit.

Dead zone (DEADB_W)
To suppress a minor sustained oscillation due to the manipulated variable quantization (for
example, in pulse width modulation with PULSEGEN) a dead zone is applied to the
(DEADBAND) control deviation. With DEADB_W = 0.0, the dead zone is disabled. The effective
control deviation is indicated by the ER parameter.

PID algorithm
The following figure shows the block diagram of the PID algorithm.

 Parameter configuration interface
 Instruction call interface

419

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

PID algorithm (GAIN, TI, TD, D_F)
The PID algorithm operates as a position algorithm. The proportional, integral (INT), and
derivative (DIF) actions are connected in parallel and can be activated or deactivated
individually. This allows P, PI, PD, and PID controllers to be configured.
Controller tuning supports PI and PID controllers. Controller inversion is implemented using a
negative GAIN (cooling controller).
If you set TI and TD to 0.0, you obtain a pure P controller at the operating point.
The step response in the time range is:

Where:
LMN_Sum(t) the manipulated variable in the controller's automatic mode
ER (0) is the step height of the normalized control deviation
GAIN is the controller gain
TI is the integration time
TD is the derivative action time
D_F is the derivative factor

Integral action (TI, I_ITL_ON, I_ITLVAL)
In manual mode, it is corrected as follows: LMN_I = LMN - LMN_P - DISV.
If the output value is limited, the integral action is halted. If the control deviation moves the
integral action back in the direction of the output range, the integral action is enabled again.
The integral action is also modified by the following measures:
• The integral action of the controller is deactivated by TI = 0.0
• Weakening of the proportional action when setpoint changes occur
• Control zone
• The output value limits can be modified online

420
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Weakening of the proportional action when setpoint changes occur (PFAC_SP)
To prevent overshoot, you can weaken the proportional action using the "Proportional factor
for setpoint changes" parameter (PFAC_SP). Using PFAC_SP, you can select continuously
between 0.0 and 1.0 to decide the effect of the proportional action when the setpoint
changes:
• PFAC_SP = 1.0: Proportional action for setpoint change is fully effective
• PFAC_SP = 0.0: Proportional action for setpoint change is not effective
The weakening of the proportional action is achieved by compensating the integral action.

Derivative action (TD, D_F)
• The derivative action of the controller is deactivated by TD = 0.0
• If the derivative action is active, the following relationship should apply:

TD = 0.5 * CYCLE * D_F

Parameter Settings of a P or PD Controller with Operating Point
In the user interface, deactivate the integral action (TI = 0.0) and possibly also the derivative
action (TD = 0.0). Then make the following parameter settings:
• I_ITL_ON = TRUE
• I_ITLVAL = operating point;

Feedforward control (DISV)
A disturbance variable can be added at the DISV input.

421

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Calculating the output value
The diagram below is the block diagram of the output value calculation:

 Parameter configuration interface
 Instruction call interface
 Parameter configuration interface, call interface

Control zone (CONZ_ON, CON_ZONE)
If CONZ_ON = TRUE, the controller operates with a control zone. This means that the
controller operates according to the following algorithm:
• If process value PV exceeds the setpoint SP_INT by more than CON_ZONE, the value

LMN_LLM is output as the manipulated variable.
• If the process value PV falls below setpoint SP_INT by more than CON_ZONE, LMN_HLM is

output.
• If the process value PV is within the control zone (CON_ZONE), the output value takes its

value from the PID algorithm LMN_Sum.

NOTE
Changing the manipulated variable from LMN_LLM or LMN_HLM to LMN_Sum occurs
under compliance of a hysteresis of 20% of the control zone.

422
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

NOTE
Before enabling the control zone manually, make sure that the control zone band is not
too narrow. If the control zone band is too small, oscillations will occur in the manipulated
variable and process value.

Advantage of the Control Zone
When the process value enters the control zone, the D-action causes an extremely fast
reduction of the manipulated variable. This means that the control zone is only useful when
the D-action is activated. Without a control zone, only the reducing proportional action would
essentially reduce the manipulated variable. The control zone leads to faster settling without
overshoot or undershoot if the output minimum or maximum manipulated variable is a long
way from the manipulated variable required for the new operating point.

Manual value processing (MAN_ON, MAN)
You can change over between manual and automatic mode. In manual mode, the
manipulated variable is corrected to a manually selected value.
The integral action (INT) is set internally to LMN - LMN_P - DISV and the derivative action (DIF)
is set to 0 and synchronized internally. Changeover to automatic mode is therefore bumpless.

NOTE
The MAN_ON parameter has no effect during tuning.

423

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Output value limit LMNLIMIT (LMN_HLM, LMN_LLM)
The LMNLIMIT function is used to limit the output value to the limits LMN_HLM and
LMN_LLM. If these limits are reached, this is indicated by the message bits QLMN_HLM and
QLMN_LLM.
If the output value is limited, the integral action is halted. If the control deviation moves the
integral action back in the direction of the output range, the integral action is enabled again.

Changing the Manipulated Value Limits Online
If the range of the output value is reduced and the new unlimited value of the output value is
outside the limits, the integral action and therefore the output value shifts.
The output value is reduced by the same amount as the output value limit changed. If the
output value was unlimited prior to the change, it is set exactly to the new limit (described
here for the high output value limit).

Scaling of output value LMN_NORM (LMN_FAC, LMN_OFFS)
The LMN_NORM function normalizes the output value according to the following rule:
LMN = LmnN * LMN_FAC + LMN_OFFS
It can be used for the following purposes:
• Output value scaling with LMN_FAC as output value factor and LMN_OFFS as output value

offset.
The output value is also available in I/O format. The CRP_OUT function converts the LMN
floating-point value to an I/O value according to the following rule:
LMN_PER = LMN * 27648/100
The scaling is switched off with the default values (LMN_FAC = 1.0 and LMN_OFFS = 0.0).
The effective output value is sent to output LMN.

Save controller parameters SAVE_PAR
 If you classify the current controller parameters as utilizable, you can save these before a
manual change in structure parameters provided specifically for this in the instance DB of the
instruction TCONT_CP. If you optimize the controller, the saved parameters are overwritten
by the values that were valid prior to tuning.
PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON and CONZONE are written to the structure PAR_SAVE.

Reloading Saved Controller Parameters UNDO_PAR
The last controller parameter settings you saved can be activated for the controller again
using this function (in manual mode only).

424
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Change between PI and PID parameters LOAD_PID (PID_ON)
Following tuning, the PI and PID parameters are stored in the PI_CON and PID_CON
structures. Depending on PID_ON, you can use LOAD_PID in manual mode to write the PI or
PID parameters to the effective controller parameters.

PID parameters PID_ON = TRUE PI parameters PID_ON = FALSE
• GAIN = PID_CON.GAIN
• TI = PID_CON.TI
• TD = PID_CON.TD

• GAIN = PI_CON.GAIN
• TI = PI_CON.TI

NOTE
The controller parameters are only written back to the controller with UNDO_PAR or
LOAD_PID, if the controller gain is not equal to 0:
With LOAD_PID, the parameters are only copied if the corresponding GAIN <> 0 is (either the
PI or PID parameters). This strategy takes into account the situation that no tuning has yet
been made or that PID parameters are missing. If PID_ON = TRUE and PID.GAIN = FALSE,
PID_ON is set to FALSE and the PI parameter is copied.
• D_F, PFAC_SP are preset by the tuning. These can then be modified by the user. LOAD_PID

does not change these parameters.
• With LOAD_PID, the control zone is always recalculated

(CON_ZONE = 250/GAIN), even if CONZ_ON = FALSE.

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

425

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.4.3 Operating principle of the pulse generator

The function PULSEGEN transforms the analog manipulated value LmnN through pulse width
module into an impulse sequence with the period duration PER_TM. PULSEGEN is switched on
with PULSE_ON = TRUE and is processed in the cycle CYCLE_P.

A manipulated value of LmnN = 30% and 10 PULSEGEN calls per PER_TM therefore means:
• TRUE at output QPULSE for the first three PULSEGEN calls

(30% of 10 calls)
• FALSE at output QPULSE for seven further PULSEGEN calls

(70% of 10 calls)
The duration of a pulse per pulse repetition period is proportional to the manipulated variable
and is calculated as follows:
Pulse duration = PER_TM * LmnN /100
By suppressing the minimum pulse or break time, the characteristic curve of the conversion
develops "knees" in the start and end regions.

426
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

The following diagram illustrates two-step control with a unipolar manipulated variable range
(0% to 100%):

Minimum pulse or minimum break time (P_B_TM)
Short on or off times hinder the lifespan of actuators and fine controlling units. These can be
avoided by setting a minimum pulse duration or minimum break time P_B_TM.
Small absolute values of input variable LmnN that could otherwise generate a pulse duration
shorter than P_B_TM are suppressed.
Large input values that would generate a pulse duration greater than
PER_TM - P_B_TM are set to 100%. This reduces the dynamic response of pulse generation.
Set values of P_B_TM ≤ 0,1 * PER_TM are recommended for the minimum pulse duration and
the minimum break duration.
The "knees" in the curves in the diagram above are caused by the minimum pulse or
minimum break times.
The following schematic illustrates the switching response of the pulse output:

427

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Accuracy of pulse generation
The smaller the pulse generator CYCLE_P is compared to the period duration PER_TM, the
more precise the pulse width modulation is. To achieve sufficiently accurate control, the
following relationship should apply:
CYCLE_P ≤ PER_TM/50
The manipulated value is transformed with a resolution of ≤ 2 % into an impulse.

NOTE
When calling the controller in the pulse shaper cycle, you must note the following:
Calling the controller in the pulse shaper cycle will cause the process value to be averaged. As
a result, at output PV, different values may be at input PV_IN and PV_PER. If you want to track
the setpoint value, you must save the process value at input parameter PV_IN at the call times
for complete controller processing (QC_ACT = TRUE). For pulse shaper calls occurring
between these times, you must supply the input parameters PV_IN and SP_INT with the saved
process value.

See also
Description TCONT_CP (Page 416)
Mode of operation TCONT_CP (Page 417)
Block diagram TCONT_CP (Page 429)
Input parameters TCONT_CP (Page 430)
Output parameters TCONT_CP (Page 431)
In/out parameters TCONT_CP (Page 431)
Static variables TCONT_CP (Page 432)
Parameter STATUS_H (Page 436)
Parameters STATUS_D (Page 437)

428
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.4.4 Block diagram TCONT_CP

429

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

See also
Description TCONT_CP (Page 416)
Mode of operation TCONT_CP (Page 417)
Operating principle of the pulse generator (Page 426)
Input parameters TCONT_CP (Page 430)
Output parameters TCONT_CP (Page 431)
In/out parameters TCONT_CP (Page 431)
Static variables TCONT_CP (Page 432)
Parameter STATUS_H (Page 436)
Parameters STATUS_D (Page 437)

10.4.4.5 Input parameters TCONT_CP

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-19

Parameters Addre
ss

Data
type

Default Description

PV_IN 0.0 REAL 0.0 At the "Process value input" you can assign parameters to a commissioning value or
you can interconnect an external process value in floating-point format. The valid
values depend on the sensors used.

PV_PER 4.0 INT 0 The process value in I/O format is interconnected with the controller at the "Process
value I/O" input.

DISV 6.0 REAL 0.0 For feedforward control, the disturbance variable is interconnected to the
"Disturbance variable" input.

INT_HPOS 10.0 BOOL FALSE The output of the integral action can be held in the positive direction. For this, the
input INT_HPOS must be set to TRUE. In a cascade control, INT_HPOS of the
primary controller is connected to QLMN_HLM of the secondary controller.

INT_HNEG 10.1 BOOL FALSE The output of the integral action can be held in the negative direction. For this, the
input INT_HNEG must be set to TRUE. In a cascade control, INT_HNEG of the
primary controller is connected to QLMN_LLM of the secondary controller.

SELECT 12.0 INT 0 If the pulse shaper is on, there are several ways of calling the PID algorithm and
pulse shaper:
• SELECT = 0: The controller is called in a fast cyclic interrupt priority class and

the PID algorithm and pulse shaper are processed.
• SELECT = 1: The controller is called in OB1 and only the PID algorithm is pro

cessed.
• SELECT = 2: The controller is called in a fast cyclic interrupt priority class and

only the pulse shaper is processed.
• SELECT = 3: The controller is called a slow cyclic interrupt priority class and only

the PID algorithm is processed.

430
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

10.4.4.6 Output parameters TCONT_CP

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-20

Parameter Addres
s

Data
type

Default Description

PV 14.0 REAL 0.0 The effective process value is output at the "Process value" output.
The valid values depend on the sensors used.

LMN 18.0 REAL 0.0 The effective "Manipulated value" is output in  floating point format at the
"Manipulated  value" output.

LMN_PER 22.0 INT 0 The manipulated value in I/O format is interconnected with the controller on the
output "Manipulated value I/O".

QPULSE 24.0 BOOL FALSE The manipulated value is pulse-width-modulated at the QPULSE output.

QLMN_HLM 24.1 BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The out
put QLMN_HLM signals that the high limit has been reached.

QLMN_LLM 24.2 BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The out
put QLMN_LLM signals that the low limit has been reached.

QC_ACT 24.3 BOOL TRUE This parameter indicates whether continuous control component will be pro
cessed the next time the block is called (relevant only when SELECT has the value
0 or 1).

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)
Parameter STATUS_H (Page 436)
Parameters STATUS_D (Page 437)

10.4.4.7 In/out parameters TCONT_CP

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-21

Parameters Addres
s

Data
type

Default Description

CYCLE 26.0 REAL 0.1 s Sets the sampling time for the PID algorithm. In phase 1, the tuner calculates
the sampling time and enters it in CYCLE.
CYCLE > 0.001 s

CYCLE_P 30.0 REAL 0.02 s At this input, you set the sampling time for the pulse shaper action. In phase 1,
the TCONT_CP instruction calculates the sampling time and enters it in CYCLE_P.
CYCLE_P > 0.001 s

431

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Addres
s

Data
type

Default Description

SP_INT 34.0 REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
The valid values depend on the sensors used.

MAN 38.0 REAL 0.0 The "Manual value" input is used to set a manual value. In automatic mode, it
tracks the manipulated value.

COM_RST 42.0 BOOL FALSE The block has an initialization routine that is processed when the COM_RST input
is set.

MAN_ON 42.1 BOOL TRUE If the input "Enable manual mode" is set then the control loop is interrupted. The
manual value MAN is set as manipulated value.

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

10.4.4.8 Static variables TCONT_CP

The names of the following variables apply both to the data block and to access via the
Openness API.

Table 10-22

Parameters Address Data
type

Default Description

DEADB_W 44.0 REAL 0.0 A deadband is applied to the control deviation. The "Deadband width" input
determines the size of the deadband.
The valid values depend on the sensors used.

I_ITLVAL 48.0 REAL 0.0 The output of the integrator can be set at the I_ITL_ON input. The initialization
value is applied to the "Initialization value of the I-action" input. During a restart
COM_RST = TRUE, the I-action is set to the initialization value.
Values from -100 to 100 % are permitted.

LMN_HLM 52.0 REAL 100.0 The output value is always restricted to a high limit and low limit. The
"Manipulated value high limit" input specifies the high limit.
LMN_HLM > LMN_LLM

LMN_LLM 56.0 REAL 0.0 The output value is always restricted to a high limit and low limit. The
"Manipulated value low limit" input specifies the low limit.
LMN_LLM < LMN_HLM

PV_FAC 60.0 REAL 1.0 The "Process value factor" input is multiplied by the "Process value I/O". The input
is used to scale the process value range.

PV_OFFS 64.0 REAL 0.0 The "Process value offset" input is added to the "Process value I/O". The input is
used to scale the process value range.

LMN_FAC 68.0 REAL 1.0 The "Output value factor" input is multiplied with the output value. The input is
used to scale the output value range.

LMN_OFFS 72.0 REAL 0.0 The "Output value offset" input is added to the output value. The input is used to
scale the output value range.

PER_TM 76.0 REAL 1.0 s The period duration of the pulse width modulation is entered at the PER_TM para
meter. The relationship of the period duration to the sampling time of the pulse
shaper determines the accuracy of the pulse width modulation.
PER_TM ≥ CYCLE

432
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Parameters Address Data
type

Default Description

P_B_TM 80.0 REAL 0.02 s You can assign a minimum pulse or break time at the parameter "Minimum
pulse/break time". P_B_TM is internally limited to > CYCLE_P.

TUN_DLMN 84.0 REAL 20.0 Process excitation for controller tuning results from a output value step change at
TUN_DLMN.
Values from -100 to 100 % are permitted.

PER_MODE 88.0 INT 0 You can use this switch to enter the type of I/O module. The process value at input
PV_PER is then scaled as follows at the PV output.
• PER_MODE = 0: Thermocouples; PT100/NI100; standard

PV_PER * 0.1
Unit: C, °F

• PER_MODE = 1: PT100/NI100; climate
PV_PER * 0.01
Unit: C, °F

• PER_MODE = 2: Current/voltage
PV_PER * 100/27648
Unit: %

PVPER_ON 90.0 BOOL FALSE If the process value is to be read in from the I/Os, the PV_PER input must be inter
connected with the I/Os and the "Enable process value I/Os" input must be set.

I_ITL_ON 90.1 BOOL FALSE The output of the integrator can be set at the I_ITLVAL input. The "Set I-action"
input must be set for this.

PULSE_ON 90.2 BOOL FALSE If PULSE_ON = TRUE is set, the pulse shaper is activated.

TUN_KEEP 90.3 BOOL FALSE The mode changes to automatic only when TUN_KEEP changes to FALSE.

ER 92.0 REAL 0.0 The effective control deviation is output at the "Control deviation" output.
The valid values depend on the sensors used.

LMN_P 96.0 REAL 0.0 The "P-action" output contains the proportional action of the manipulated tag.

LMN_I 100.0 REAL 0.0 The "integral action" output contains the integral action of the manipulated tag.

LMN_D 104.0 REAL 0.0 The "D-action" output contains the derivative action of the manipulated tag.

PHASE 108.0 INT 0 The current phase of controller tuning is indicated at the PHASE output.
• PHASE = 0: No optimization mode; automatic or manual mode
• PHASE = 1: Ready to start tuning; check parameters, wait for excitation, meas

ure the sampling times
• PHASE = 2: Actual tuning: Searching for point of inflection with constant out

put value. Entering the sampling time in instance DB.
• PHASE = 3: Calculating the process parameters. Saving valid controller para

meters prior to tuning.
• PHASE = 4: Controller design
• PHASE = 5: Following up the controller to the new manipulated variable
• PHASE = 7: Validating the process type

STATUS_H 110.0 INT 0 STATUS_H indicates the diagnostic value via the search for the point of inflection
during the heating process.

STATUS_D 112.0 INT 0 STATUS_D indicates the diagnostic value via the controller design during the heat
ing process.

QTUN_RUN 114.0 BOOL 0 The tuning manipulated tag has been applied, tuning has started and is still in
phase 2 (searching for point of inflection).

PI_CON 116.0 STRUCT PI controller parameters

GAIN +0.0 REAL 0.0 PI controller gain
%/phys. Unit

433

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Address Data
type

Default Description

TI +4.0 REAL 0.0 s PI integration time [s]

PID_CON 124.0 STRUCT PID controller parameters

GAIN +0.0 REAL 0.0 PID controller gain

TI +4.0 REAL 0.0s PID integration time [s]

TD +8.0 REAL 0.0s PID derivative action time [s]

PAR_SAVE 136.0 STRUCT The PID parameters are saved in this structure.

PFAC_SP +0.0 REAL 1.0 Proportional factor for setpoint changes
Values from 0.0 to 1.0 are permitted.

GAIN +4.0 REAL 0.0 Controller gain
%/phys. Unit

TI +8.0 REAL 40.0 s Integration time [s]

TD +12.0 REAL 10.0 s Derivative action time (s)

D_F +16.0 REAL 5.0 Derivative factor
Values from 5.0 to 10.0 are permitted.

CON_ZONE +20.0 REAL 100.0 Control zone band
If the control deviation is greater than the control zone band, the high output
value limit is output as output value. If the control deviation is less than the negat
ive control zone band, the low output value limit is output as the output value.
CON_ZONE ≥ 0.0

CONZ_ON +24.0 BOOL FALSE Enable control zone

PFAC_SP 162.0 REAL 1.0 PFAC_SP specifies the effective P-action when there is a setpoint change. This is
set between 0 and 1.
• 1: P-action has full effect if the setpoint changes.
• 0: P-action has no effect if the setpoint changes.
Values from 0.0 to 1.0 are permitted.

GAIN 166.0 REAL 2.0 The "Proportional gain" input specifies controller amplification. The direction of
control can be reversed by giving GAIN a negative sign.
%/phys. Unit

TI 170.0 REAL 40.0 s The "Integration time" (integral-action time) input defines the integrator's time
response.

TD 174.0 REAL 10.0 s The "Derivative-action time" (rate time) input decides the time response of the dif
ferentiator.

D_F 178.0 REAL 5.0 The derivative factor decides the lag of the D-action.
D_F = derivative-action time/"Lag of the D-action"
Values from 5.0 to 10.0 are permitted.

CON_ZONE 182.0 REAL 100.0 If the control deviation is greater than the control zone band, the high output
value limit is output as output value.
If the control deviation is less than the negative control zone band, the low output
value limit is output as the output value.
The valid values depend on the sensors used.

CONZ_ON 186.0 BOOL FALSE You can use CONZ_ON =TRUE to enable the control zone.

TUN_ON 186.1 BOOL FALSE If TUN_ON=TRUE, the output value is averaged until the output value excitation
TUN_DLMN is enabled either by a setpoint step-change or by TUN_ST=TRUE.

TUN_ST 186.2 BOOL FALSE If the setpoint is to remain constant during controller tuning at the operating
point, a output value step-change by the amount of TUN_DLMN is activated by
TUN_ST=1.

434
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Parameters Address Data
type

Default Description

UNDO_PAR 186.3 BOOL FALSE Loads the controller parametersPFAC_SP, GAIN, TI, TD, D_FCONZ_ON and
CON_ZONE from the data structure PAR_SAVE (only in manual mode).

SAVE_PAR 186.4 BOOL FALSE Saves the controller parameters PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON and
CON_ZONE in the data structure PAR_SAVE.

LOAD_PID 186.5 BOOL FALSE Loads the controller parametersGAIN, TI,TD depending on PID_ON from the data
structure PI_CON or PID_CON (only in manual mode)

PID_ON 186.6 BOOL TRUE At the PID_ON input, you can specify whether or not the tuned controller will
operate as a PI or PID controller.
• PID controller: PID_ON = TRUE
• PI controller: PID_ON = FALSE
With certain process types it is nevertheless possible that only a PI controller will
be designed despite PID_ON = TRUE.

GAIN_P 188.0 REAL 0.0 Identified process gain. In the case of process type I, GAIN_P tends to be estimated
too low.

TU 192.0 REAL 0.0 Identified time lag of the process.
TU ≥ 3*CYCLE

TA 196.0 REAL 0.0 Identified recovery time of the process. In the case of process type I, TA tends to
be estimated too low.

KIG 200.0 REAL 0.0 Maximum process value rise at manipulated tag excitation from 0 to 100 % [1/s]
GAIN_P = 0.01 * KIG * TA

N_PTN 204.0 REAL 0.0 The parameter specifies the order of the process. "Non-integer values" are also
possible.
Values from 1.01 to 10.0 are permitted.

TM_LAG_P 208.0 REAL 0.0 Time constants of a PTN model (practical values only for N_PTN >= 2).

T_P_INF 212.0 REAL 0.0 Time from process excitation until the point of inflection.

P_INF 216.0 REAL 0.0 Process value change from process excitation until the point of inflection.
The valid values depend on the sensors used.

LMN0 220.0 REAL 0.0 Output value at the start of tuning
Detected in phase 1 (mean value).
Values from 0 to 100 % are permitted.

PV0 224.0 REAL 0.0 Process value at the start of tuning

PVDT0 228.0 REAL 0.0 Process value slew rate at start of tuning [1/s]
Sign adapted.

PVDT 232.0 REAL 0.0 Current process value slew rate [1/s]
Sign adapted.

PVDT_MAX 236.0 REAL 0.0 Max. change in the process value per second [1/s]
Maximum derivative of the process value at the point of inflection (sign adapted,
always > 0); is used to calculate TU and KIG.

NOI_PVDT 240.0 REAL 0.0 Noise action in PVDT_MAX in %
The higher the noise action, the less accurate (less aggressive) the control para
meters.

NOISE_PV 244.0 REAL 0.0 Absolute noise in process value
Difference between maximum and minimum process value in phase 1.

435

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Address Data
type

Default Description

FIL_CYC 248.0 INT 1 Number of cycles of the mean value filter
The process value is determined through FIL_CYC cycles. FIL_CYC is increased
from 1 to a max. of 1024 if needed.

POI_CMAX 250.0 INT 2 Maximum number of cycles after point of inflection
This time is used to find another (i.e. better) inflection point for measuring noise.
The tuning is completed only after this time.

POI_CYCL 252.0 INT 0 Number of cycles after inflection point

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

10.4.4.9 Parameter STATUS_H

STATUS_H Description Remedy
0 Default, or no/no new controller para

meters

10000 Tuning completed + suitable control
ler parameters found

2xxxx Tuning completed + controller para
meters uncertain

2xx2x Point of inflection not reached (only if
excited via setpoint step-change)

If the controller oscillates, weaken the controller
parameters, or repeat the test with a smaller
manipulated value difference TUN_DLMN.

2x1xx Estimation error (TU < 3*CYCLE) Reduce CYCLE and repeat attempt.
Special case for PT1-only process: Do not repeat
test, if necessary reduce controller parameters.

2x3xx Estimation error TU too high Repeat test under better conditions.

21xxx Estimation error N_PTN < 1 Repeat test under better conditions.

22xxx Estimation error N_PTN > 10 Repeat test under better conditions.

3xxxx Tuning canceled in phase 1 owing to
faulty parameter assignment:

30002 Effective manipulated value
differential < 5%

Correct manipulated value differential
TUN_DLMN.

30005 The sampling times CYCLE and
CYCLE_P differ by more than 5% of
the measured values.

Compare CYCLE and CYCLE_P with the cycle time
of the cyclic interrupt priority class and note any
loop scheduler.
Check CPU load. An excessively loaded CPU can
result in prolonged sampling times that are
inconsistent with CYCLE or CYCLE_P.

436
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

NOTE
If you cancel tuning in phase 1 or 2, STATUS_H = 0 is set. However, STATUS_D still displays
the status of the last controller calculation.
The higher the value of STATUS_D, the higher the order of the control process, the greater
the TU/TA ratio and the gentler the controller parameters will be.

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

10.4.4.10 Parameters STATUS_D

STATUS_D Description
0 No controller parameters were calculated.

110 N_PTN <= 1.5 Process type I fast

121 N_PTN > 1.5 Process type I

200 N_PTN > 1.9 Process type II (transition range)

310 N_PTN >= 2.1 Process type III fast

320 N_PTN > 2.6 Process type III

111, 122, 201, 311, 321 Parameters have been corrected from phase 7.

NOTE
The higher the value of STATUS_D, the higher the order of the control process, the greater
the TU/TA ratio and the gentler the controller parameters will be.

See also
Operating principle of the pulse generator (Page 426)
Block diagram TCONT_CP (Page 429)

437

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.5 TCONT_S

10.4.5.1 Description TCONT_S

The TCONT_S instruction is used on SIMATIC S7 automation systems to control technical
temperature processes with binary manipulated value output signals for actuators with
integrating behavior. The functionality is based on the PI control algorithm of the sampling
controller. The step controller operates without a position feedback signal.

Application
You can also use the controller in a cascade control as a secondary position controller. You
specify the actuator position via the setpoint input SP_INT. In this case, you must set the
process value input and the parameter TI (integration time) to zero. An application might be,
for example, temperature control with heating power control using pulse-break activation
and cooling control using a butterfly valve. To close the valve completely, the manipulated
variable (ER*GAIN) should be negative.

Call
The instruction TCONT_S must be called with a constant bus cycle time. To achieve this, use a
cyclic interrupt level (e.g. OB35 with S7-300). The sampling time is specified at the CYCLE
parameter.

CYCLE sampling time
The CYCLE sampling time match the time difference between two calls (cycle time of the
cyclic interrupt OB taking into account the reduction ratios).
The controller sampling time should not exceed 10% of the calculated integration time of the
controller (TI). Generally, you must set the sampling time to a much lower value to achieve
the required accuracy of the step controller.

Required accuracy
G

MTR_TM CYCLE = MTR_TM*G Comment

0.5% 10 s 0.05 s The sampling time is determined by
the required accuracy of the step
controller.

Start-up
The TCONT_S instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. Following execution of the initialization routine, the block
sets COM_RST back to FALSE. All outputs are set to their initial values. If you require
initialization when the CPU restarts, call the block in OB100 with COM_RST = TRUE.

438
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

See also
Block diagram TCONT_S (Page 443)

10.4.5.2 Mode of operation TCONT_S

Setpoint branch
The setpoint is entered at input SP_INT in floating-point format as a physical value or
percentage. The setpoint and process value used to form the control deviation must have the
same unit.

Process value options (PVPER_ON)
Depending on PVPER_ON, the process value can be read in, in the I/O or floating-point format.

PVPER_ON Process Value Input
TRUE The process value is read in via the analog I/Os (PIW xxx) at input PV_PER.

FALSE The process value is acquired in floating-point format at input PV_IN.

Process value format conversion CRP_IN (PER_MODE)
The CRP_IN function converts the I/O value PV_PER to floating-point format depending on the
PER_MODE switch according to the following rules:

PER_MODE Output of CRP_IN Analog Input Type Unit
0 PV_PER * 0.1 Thermoelements;

PT100/NI100; standard
°C;°F

1 PV_PER * 0.01 PT100/NI100; climate; °C;°F

2 PV_PER * 100/27648 Voltage/current %

Process value scaling PV_NORM (PF_FAC, PV_OFFS)
The PV_NORM function calculates the output of CRP_IN according to the following rule:
"Output of PV_NORM" = "Output of CRP_IN" * PV_FAC + PV_OFFS
It can be used for the following purposes:
• Process value adjustment with PV_FAC as process value factor and PV_OFFS as process

value offset.
• Scaling of temperature to percentage

You want to enter the setpoint as a percentage and must now convert the measured
temperature value to a percentage.

• Scaling of percentage to temperature
You want to enter the setpoint in the physical temperature unit and must now convert the
measured voltage/current value to a temperature.

439

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Calculation of the parameters:
• PV_FAC = range of PV_NORM/range of CRP_IN;
• PV_OFFS = LL (PV_NORM) - PV_FAC * LL(CRP_IN);

where LL: low limit
The scaling is switched off with the default values (PV_FAC = 1.0 and PV_OFFS = 0.0). The
effective process value is output at the PV output.

Example of Process Value Scaling
If you want to enter the setpoint as a percentage, and you have a temperature range of -20 to
85 °C applied to , CRP_IN you must normalize the temperature range as a percentage.
The diagram below shows an example of adapting the temperature range -20 to 85 °C to an
internal scale of 0 to 100 %:

Forming the control deviation
The difference between the setpoint and process value is the control deviation before the
dead zone.
The setpoint and process value must exist in the same unit.

440
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

Dead zone (DEADB_W)
To suppress a minor sustained oscillation due to the manipulated variable quantization (for
example, in pulse width modulation with PULSEGEN) a dead zone is applied to the
(DEADBAND) control deviation. With DEADB_W = 0.0, the dead zone is disabled.

PI step controller algorithm
The instruction TCONT_S operates without position feedback. The I-action of the PI algorithm
and the assumed position feedback signal are calculated in an integrator (INT) and compared
as a feedback value with the remaining proportional action. The difference is applied to a
three-step element (THREE_ST) and a pulse shaper (PULSEOUT) that generates the pulses for
the control valve. Adapting the response threshold of the three-step element reduces the
switching frequency of the controller.

Weakening of the proportional action when setpoint changes occur
To prevent overshoot, you can weaken the proportional action using the "Proportional factor
for setpoint changes" parameter (PFAC_SP). Using PFAC_SP, you can now select continuously
between 0.0 and 1.0 to decide the effect of the proportional action when the setpoint
changes:
• PFAC_SP = 1.0: Proportional action for setpoint change is fully effective
• PFAC_SP = 0.0: Proportional action has no effect in the setpoint change
As in the case of the continuous controller, a value of PFAC_SP < 1.0 can reduce the
overshoot if the motor run time MTR_TM is small compared with the recovery time TA and
the ratio is TU/TA < 0.2. If MTR_TM reaches 20% of TA, only a slight improvement can still be
achieved.

Feedforward control
A disturbance variable can be added at the DISV input.

441

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Manual value processing (LMNS_ON, LMNUP, LMNDN)
With LMNS_ON, you can change between manual and automatic mode. In manual mode, the
actuator is halted and the integral action (INT) is set to 0 internally. Using LMNUP and
LMNDN, the actuator can be adjusted to OPEN and CLOSED. Switching over to automatic
mode therefore involves a bump. As a result of the GAIN, the existing control deviation leads
to a step change in the internal manipulated variable. The integral component of the
actuator, however, results in a ramp-shaped excitation of the process.

See also
Block diagram TCONT_S (Page 443)

442
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.5.3 Block diagram TCONT_S

 Parameter configuration interface
 Instruction call interface
 Parameter configuration interface, call interface

See also
Description TCONT_S (Page 438)
Mode of operation TCONT_S (Page 439)
Input paramters TCONT_S (Page 444)
Output parameters TCONT_S (Page 445)
In/out parameters TCONT_S (Page 445)
Static variables TCONT_S (Page 445)

443

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.5.4 Input paramters TCONT_S

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-23

Paramet
ers

Addr
ess

Data
type

Defa
ult

Description

CYCLE 0.0 REAL 0.1 s At this input, you enter the sampling time for the controller.
CYCLE ≥ 0.001

SP_INT 4.0 REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
The valid values depend on the sensors used.

PV_IN 8.0 REAL 0.0 At the "Process variable input" you can assign parameters to a com
missioning value or you can interconnect an external process value
in floating-point format.
The valid values depend on the sensors used.

PV_PER 12.0 INT 0 The process value in I/O format is interconnected with the controller
at the "Process value I/O" input.

DISV 14.0 REAL 0.0 For feedforward control, the disturbance variable is interconnected
to the "Disturbance variable" input.

LMNR_HS 18.0 BOOL FALSE The signal "Control valve at high endstop" is interconnected on the
input "High endstop signal of position feedback".
• LMNR_HS=TRUE: The control valve is located at the high endstop.

LMNR_LS 18.1 BOOL FALSE The signal "Control valve at low endstop" is interconnected on the
input "Low endstop signal of position feedback".
• LMNR_LS=TRUE:

The control valve is located at the low endstop.

LMNS_ON 18.2 BOOL TRUE Manipulated value signal processing is switched to manual mode at
the "Enable manual mode of manipulated signal".

LMNUP 18.3 BOOL FALSE In manual mode of manipulated signals, the output parameter
QLMNUP is operated at the input parameter "Manipulated signal up".

LMNDN 18.4 BOOL FALSE In manual mode of the manipulated signals, the output parameter
QLMNDN is operated at the input parameter "Manipulated signal
down".

See also
Block diagram TCONT_S (Page 443)

444
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.5.5 Output parameters TCONT_S

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-24

Paramet
ers

Addr
ess

Data
type

Defa
ult

Description

QLMNUP 20.0 BOOL FALSE If the output "Manipulated value signal up" is set then the control
valve should be open.

QLMNDN 20.1 BOOL FALSE If the output "Manipulated value signal down" is set then the control
valve should be closed.

PV 22.0 REAL 0.0 The effective process value is output at the "Process value" output.

ER 26.0 REAL 0.0 The effective system deviation is output at the "Error signal" output.

See also
Block diagram TCONT_S (Page 443)

10.4.5.6 In/out parameters TCONT_S

The names of the following parameters apply both to the data block and to access via the
Openness API.

Table 10-25

Paramet
ers

Addr
ess

Data
type

Defa
ult

Description

COM_RST 30.0 BOOL FALSE The block has an initialization routine that is processed when the
COM_RST input is set.

See also
Block diagram TCONT_S (Page 443)

10.4.5.7 Static variables TCONT_S

The names of the following variables apply both to the data block and to access via the
Openness API.

Table 10-26

Parameters Addre
ss

Data
type

Default Description

PV_FAC 32.0 REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is used
to scale the process value range.

PV_OFFS 36.0 REAL 0.0 The input "Process value offset" is added to the process value. The input is used to
scale the process value range.
The valid values depend on the sensors used.

DEADB_W 40.0 REAL 0.0 A deadband is applied to the control deviation. The "Deadband width" input
determines the size of the deadband.
DEADB_W ≥ 0.0

445

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

Parameters Addre
ss

Data
type

Default Description

PFAC_SP 44.4 REAL 1.0 PFAC_SP specifies the effective P-action when there is a setpoint change.
• 1: P-action has full effect if the setpoint changes.
• 0: P-action has no effect if the setpoint changes.
Values from 0.0 to 1.0 are permitted.

GAIN 48.0 REAL 2.0 The "Proportional gain" input specifies controller amplification. The direction of
control can be reversed by giving GAIN a negative sign.
%/phys. Unit

TI 52.0 REAL 40.0 s The "Integration time" (integral-action time) input defines the integrator's time
response.

MTR_TM 56.0 REAL 30 s The runtime from endstop to endstop of the control valve is entered at the "Motor
actuating time" parameter.
MTR_TM ≥ CYCLE

PULSE_TM 60.0 REAL 0.0 s A minimum pulse time can be configured at the "Minimum pulse time" parameter.

BREAK_TM 64.0 REAL 0.0 s You can assign a minimum break time at the parameter "Minimum break time".

PER_MODE 68.0 INT 0 You can use this switch to enter the type of I/O module. The process value at input
PV_PER is then scaled as follows at the PV output.
• PER_MODE = 0: Thermocouples; PT100/NI100; standard

PV_PER * 0.1
Unit: C, °F

• PER_MODE = 1: PT100/NI100; climate
PV_PER * 0.01
Unit: C, °F

• PER_MODE = 2: Current/voltage
PV_PER * 100/27648
Unit: %

PVPER_ON 70.0 BOOL FALSE If the process value is to be read in from the I/Os, the PV_PER input must be inter
connected with the I/Os and the "Enable process value I/Os" input must be set.

See also
Block diagram TCONT_S (Page 443)

446
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.4 PID basic functions

10.4.6 Integrated system functions

10.4.6.1 CONT_C_SF

CONT_C_SF
The instruction CONT_C_SF is integrated in the S7-300 compact CPUs. The instruction must
not be transmitted to the S7-300 CPU during loading. The scope of function corresponds with
the instruction CONT_C.

See also
Description CONT_C (Page 398)
How CONT_C works (Page 399)
CONT_C block diagram (Page 400)
Input parameter CONT_C (Page 401)
Output parameters CONT_C (Page 402)

10.4.6.2 CONT_S_SF

CONT_S_SF
The instruction CONT_S_SF is integrated in the S7-300 compact CPUs. The instruction must
not be transmitted to the S7-300 CPU during loading. The scope of function corresponds with
the instruction CONT_S.

See also
Description CONT_S (Page 403)
Mode of operation CONT_S (Page 403)
Block diagram CONT_S (Page 405)
Input parameters CONT_S (Page 406)
Output parameters CONT_S (Page 407)

447

Instructions
10.4 PID basic functions

PID control
Function Manual, 11/2023, A5E35300227-AG

10.4.6.3 PULSEGEN_SF

PULSEGEN_SF
The instruction PULSEGEN_SF is integrated in the S7-300 compact CPUs. The instruction must
not be transmitted to the S7-300 CPU during loading. The scope of function corresponds with
the instruction PULSEGEN.

See also
Description PULSEGEN (Page 408)
Mode of operation PULSEGEN (Page 409)
Mode of operation PULSEGEN (Page 412)
Three-step control (Page 412)
Two-step control (Page 414)
Input parameters PULSEGEN (Page 415)
Output parameter PULSEGEN (Page 416)

10.5 Polyline

10.5.1 Compatibility with CPU and FW
The following table shows which version of Polyline can be used on which CPU:

CPU FW Polyline
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

448
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

10.5.2 Description Polyline

Description
The Polyline instruction maps input value Input onto output value Output using a
characteristic curve. The characteristic curve is defined as a polyline with maximum 50 points.
Linear interpolation is performed between the points. You can fit the polyline to the desired
characteristic curve using the number and configuration of the points.
The Polyline instruction can be used, for example, to linearize non-linear characteristics of
sensors or actuators.

Interpolation calculation
Polyline calculates the output value at the Output parameter for the input value at the Input
parameter that lies between point values xi and xi+1 with a linear interpolation. The linear
interpolation is calculated according to the following formula:

With parameter Reset = TRUE, an alternative output value can also be specified using the
SubstituteOutput parameter.

Polyline data
The value pairs for the polyline are contained in the Static area of the instruction.

NOTE
• The minimum number of value pairs to be configured is 2.
• The maximum number of value pairs to be configured is 50.
• For a valid configuration, the x values must be specified in ascending order.

To allow the polyline data to be changed without the changes taking effect immediately, the
value pairs of the polyline are duplicated and contained in the following structures:
• UserData

The polyline data in this structure can be edited.
Make use of this structure to specify or change the polyline data. Changes in this structure
do not affect the interpolation calculation until the check and duplication of the data to
the WorkingData structure is initiated. This happens by setting Validate = TRUE or
automatically during the first processing of Polyline after the operating state transition of
the CPU from STOP to RUN.
The preassignment of values in this structure does not represent a valid configuration. To
use the values for the interpolation calculation, change the tags to valid values.

• WorkingData
The polyline data in this structure cannot be edited. This data is used for the interpolation
calculation. Do not manually change the data in this structure.

449

Instructions
10.5 Polyline

PID control
Function Manual, 11/2023, A5E35300227-AG

Both structures have the same data type and thus the same content:
• NumberOfUsedPoints

Number of points used for the interpolation calculation.
• Point

The array with 50 elements contains value pairs of points Point[i].x and Point[i].y with
index "i" from 1 to 50.

The following figure shows a polyline with four points.

Call
Polyline is called in an OB as a single-instance DB, Polyline is called in an FC as a single-
instance DB or parameter instance DB; Polyline can be called as a single-instance DB, as a
multi-instance DB and as a parameter instance DB in an FB.
When the instruction is called, no technology object is created. Polyline configuration is
available in the Inspector window of the programming editor.

Startup
The tags in the UserData and WorkingData structures are not retentive. These tags are
initialized with the start values after each operating state transition of the CPU from STOP to
RUN.
If you change the actual values in the UserData structure in online mode and these values are
to be retained after the operating state transition of the CPU from STOP to RUN, back up
these values in the start values of the data block.
At the first call of the Polyline instruction after the operating state transition of the CPU from
STOP to RUN, the data in the UserData structure is automatically checked for validity. If the
check is successful, the data is transferred to the WorkingData structure.

450
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

Responses in the event of an error
The Polyline instruction detects different errors that may occur during interpolation
calculation. The result of the interpolation calculation can be output at the output despite a
pending error. If an error prevents correct calculation of the interpolation result, a substitute
output value is output at the output.
You specify the substitute output value that is output if an error occurs that prevents correct
calculation of the interpolation result as follows at the ErrorMode tag:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 The last valid result of interpolation calculation
0.0 if there is no valid result

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range of the data type REAL. Only then

is the substitute output value output at the Output parameter.
• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =

TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

10.5.3 Operating principle Polyline

Polyline data
To change the polyline, you edit the values in the UserData structure. The values are then
checked for validity and transferred to the WorkingData structure. Only in the WorkingData
structure are the values used for the interpolation calculation.
The values are checked and transferred when
• You set the Validate parameter to TRUE while the Reset parameter is set to FALSE.
• Polyline is called for the first time after the change of operating state of the CPU from

STOP to RUN while the Reset parameter is set to FALSE.
If Polyline has already been called, for example in OB100, another automatic check of the
values is not performed at the subsequent calls.

If the polyline data in the UserData structure is invalid, the previous polyline data in the
WorkingData structure remains unchanged and a corresponding error message is output. If
the check was performed for the first time, no valid values are available in the WorkingData
structure and a corresponding error message is output. In this case, the Output parameter is
specified with the substitute output value that you configure with the ErrorMode tag.
The check and transfer of the values from the UserData structure requires more CPU
processing time than the interpolation calculation. In time-critical applications, the first
execution of Polyline can be in startup OB 100. In this way, the time-consuming one-time
check and transfer of the polyline data can be completed before the cyclic application
program sections.

451

Instructions
10.5 Polyline

PID control
Function Manual, 11/2023, A5E35300227-AG

Validity of the polyline data
When the values in the UserData structure are checked, they must meet the following
conditions so that a valid polyline is available for the interpolation calculation:
• 2 ≤ UserData.NumberOfUsedPoints ≤ 50
• UserData.Point[j].x < UserData.Point[j+1].x with index j =

1..(UserData.NumberOfUsedPoints – 1)
• -3.402823e+38 ≤ UserData.Point[i].x ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• -3.402823e+38 ≤ UserData.Point[i].y ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• UserData.Point[i].x and UserData.Point[i].y are valid REAL values (≠ NaN) with index i =

1..UserData.NumberOfUsedPoints
If one or more conditions are not met during the check, the values in the UserData structure
are not transferred to the WorkingData structure. A corresponding error message is output at
the ErrorBits (Page 456) parameter.
The preassignment of values in the UserData structure does not represent a valid
configuration. Change the tags to valid values so that the tags can be used for the
interpolation calculation.

NOTE
If more than the maximum number of 50 points are needed for your application, use two or
more instances of Polyline.

Calculating the output value
If the input value at the Input parameter is below the first x-value or above the last x-value of
the utilized points, configure the preassignment of the Output parameter with the following
settings at the OutOfRangeMode tag:
• OutOfRangeMode = 0

The output value is extrapolated with the slope of the first or last two points.

452
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

If the OutOfRangeMode tag lies outside the permissible value range of 0 to 1, the default
preassignment 0 becomes effective.

• OutOfRangeMode = 1
The output value is limited to the y-value of the first or last point.

The Output parameter has a permissible value range of a REAL data type of -3.402823e+38 to
3.402823e+38. The output value at the Output parameter is checked for validity each time
the Polyline instruction is executed. If the interpolation calculation yields an invalid REAL
value, the output value is replaced with the setting at the ErrorMode tag.

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

453

Instructions
10.5 Polyline

PID control
Function Manual, 11/2023, A5E35300227-AG

Currently utilized points

The NextXIndex index outputs the index of the next higher x-value for the current input
value. You can use this to determine the points that are being used for the current
interpolation calculation.
WorkingData.Point[NextXIndex-1].x < Input ≤ WorkingData.Point[NextXIndex].x
Example:
• If the value of the Input parameter is between WorkingData.Point[3].x and

WorkingData.Point[4].x, the NextXIndex tag has the value 4.
• If the value of the Input parameter is less than WorkingData.Point[1].x, the NextXIndex

tag has the value 1.
• If the value of the Input parameter is greater than

WorkingData.Point[WorkingData.NumberOfUsedPoints].x and is thus greater than the last
x-value of the polyline, the NextXIndex tag has the value of the
WorkingData.NumberOfUsedPoints + 1 tag. Consequently, maximum permissible value of
the NextXIndex tag is 51.

10.5.4 Input parameters of Polyline

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents correct cal

culation of the interpolation result, and the configured value of ErrorMode
is 1 .

Validate BOOL FALSE If Validate is set to TRUE, the polyline data in UserData is checked for validity
and transferred to WorkingData.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the interpolation calculation is performed.

10.5.5 Output parameters of Polyline

Parameter Data type Default Description
Output REAL 0.0 Output value

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 456) shows which error messages are pending.
ErrorBits is retentive and is reset at a positive edge at Reset or ErrorAck .

454
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

10.5.6 Static tags of Polyline

Tag Data type Default Description
UserData AuxFct_Point

Table
- Input area for polyline data

The polyline data in the UserData structure can
be edited.
Changes in this structure do not affect the inter
polation calculation until the check and duplica
tion of the data to the WorkingData structure is
initiated.

UserData.NumberOfUsedPoints INT 0 Number of points used for the interpolation cal
culation
Permissible value range: 2 to 50

UserData.Point Array[1..50] of
AuxFct_Point

- Points for the interpolation calculation
The array with 50 elements of data type
AuxFct_Point contains the value pairs of the
points.

UserData.Point[i] AuxFct_Point - Point for the interpolation calculation
An element with index "i" from the "Point" array.

UserData.Point[i].x REAL 0.0 x-value of the point
Permissible value range: Point[i].x < Point[i+1].x

UserData.Point[i].y REAL 0.0 y-value of the point

WorkingData AuxFct_Point
Table

- Display area of the currently active polyline data
The polyline data in the WorkingData structure
cannot be edited. It is used for the interpolation
calculation.

WorkingData.NumberOfUsedPoints INT 0 Number of points used for the interpolation cal
culation
Permissible value range: 2 to 50

WorkingData.Point Array[1..50] of
AuxFct_Point

- Points for the interpolation calculation
The array with 50 elements of type AuxFct_Point
contains the value pairs of the points.

WorkingData.Point[i] AuxFct_Point - Point for the interpolation calculation
An element with index "i" from the "Point" array.

WorkingData.Point[i].x REAL 0.0 x-value of the point
Permissible value range: Point[i].x < Point[i+1].x

WorkingData.Point[i].y REAL 0.0 y-value of the point

ErrorMode INT 0 Selection of the substitute output value following
an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid output value
Permissible value range: 0 to 2

OutOfRangeMode INT 0 Selection of the output value if the input value
lies outside the defined x-values
• 0 = Maintain slope
• 1 = y-value of the first/last point
Permissible value range: 0 to 1

455

Instructions
10.5 Polyline

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
NextXIndex INT 2 Index of the next x-value

Used for monitoring the index of the breakpoints
that are being used for the current interpolation
calculation.
The following condition applies:
WorkingData.Point[NextXIndex-1].x < Input ≤
WorkingData.Point[NextXIndex].x
Do not change this value manually.

10.5.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For Polyline, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending, Polyline
reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, interpolation calculation
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If the interpolation value is output at the output (Reset = FALSE and ErrorBits < 16#0001_0000), check the
following tags used in the interpolation calculation:
• Input
• WorkingData.Point[i].x
• WorkingData.Point[i].y
When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the ErrorMode tag:
• Input
• SubstituteOutput
When Reset = TRUE, check the SubstituteOutput parameter.

456
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

ErrorBits
 (DW#16#...)

Description

0000_0002 Cause of error:
One or more tags in the UserData structure have invalid values while the polyline data is checked
(Validate = TRUE and Reset = FALSE).
Response to error:
The polyline data in the UserData structure is not transferred to the WorkingData structure so that the
changes made in the UserData structure will not become effective.
The Polyline FB continues the interpolation calculation with the unchanged and valid polyline data in the
WorkingData structure.
Solution:
Ensure that the following conditions are met when the Validate parameter is set to TRUE:
• 2 ≤ UserData.NumberOfUsedPoints ≤ 50
• UserData.Point[j].x < UserData.Point[j+1].x with index j = 1..(UserData.NumberOfUsedPoints - 1)
• -3.402823e+38 ≤ UserData.Point[i].x ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• -3.402823e+38 ≤ UserData.Point[i].y ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• UserData.Point[i].x and UserData.Point[i].y are valid REAL values (≠ NaN) with index i =

1..UserData.NumberOfUsedPoints

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending, Polyline
reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000, Polyline
reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, interpolation calculation
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput or Input parameter that is being used as the output value has no valid REAL value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the parameter used as output value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF). The
parameter that is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

0001_0000

TRUE - SubstituteOutput

457

Instructions
10.5 Polyline

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0002_0000 Cause of error:
The Input parameter has no valid REAL value, while the interpolation calculation is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
The NextXIndex tag is not updated as long as the Input parameter has an invalid REAL value
Solution:
Make sure that the parameter Input is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The interpolation calculation yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
The NextXIndex tag can have an invalid value as long as this error is pending.
Solution:
Check the REAL values in the WorkingData structure for validity.
Additional information:
If you want to change the polyline data, first edit the UserData structure and then set parameter
Validate = TRUE. Do not manually change the data of the WorkingData structure.

0008_0000 Cause of error:
One or more tags in the UserData structure have invalid values while the polyline data is checked.
Response to error:
The polyline data in the UserData structure is not transferred to the WorkingData structure so that the val
ues in the UserData structure do not become effective.
FB Polyline does not output the interpolation value at the Output parameter because no valid polyline
data is contained in the WorkingData structure. The substitute output value that is configured at the
ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met when the polyline data is checked:
• 2 ≤ UserData.NumberOfUsedPoints ≤ 50
• UserData.Point[j].x < UserData.Point[j+1].x with index j = 1..(UserData.NumberOfUsedPoints – 1)
• -3.402823e+38 ≤ UserData.Point[i].x ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• -3.402823e+38 ≤ UserData.Point[i].y ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• UserData.Point[i].x and UserData.Point[i].y are valid REAL values (≠ NaN) with index i =

1..UserData.NumberOfUsedPoints
Additional information:
The polyline data in the UserData structure is checked when
• The Validate parameter is set to TRUE while the Reset parameter is set to FALSE
or
• Polyline is called for the first time with parameter Reset = FALSE after the operating state transition of

the CPU from STOP to RUN.
Note that all tags in the UserData and WorkingData structures are not retentive. These tags are initialized
with the start values after each operating state transition of the CPU from STOP to RUN.

458
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.5 Polyline

10.6 SplitRange

10.6.1 Compatibility with CPU and FW
The following table shows which version of SplitRange can be used on which CPU:

CPU FW SplitRange
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

10.6.2 SplitRange description

Description
The SplitRange instruction converts the input value into an output value. The input value is
located in the value range that is limited by Points.x1 and Points.x2. The output value is
located in the value range that is limited by Points.y1 and Points.y2.
The following figure shows the relevant characteristic of an example configuration of the
SplitRange instruction:

Use SplitRange when you need to control a process that is influenced by multiple actuators.
SplitRange splits the output value range of the PID controller into multiple subranges. Assign
a subrange to each actuator. The user program calls the block once per subrange. The input
value of each SplitRange instance is connected to the output value of the PID controller.

459

Instructions
10.6 SplitRange

PID control
Function Manual, 11/2023, A5E35300227-AG

The figure below shows an example of a control loop with two SplitRange instances and two
actuators:

Validity of the SplitRange data
The value pairs in the Points structure define the input and output value range of SplitRange.
The two value pairs are located in the static area of the block SplitRange.
SplitRange checks whether the following conditions are met for each call so that valid values
are available for the calculation of the output value:
• Points.x1 < Points.x2
• Points.x1, Points.y1, Points.x2 and Points.y2 are within the permitted value range from

-3.402823e+38 to 3.402823e+38
• Points.x1, Points.y1, Points.x2 and Points.y2 are valid REAL values (≠ NaN e.g.

16#7FFF_FFFF)
If one or more of these conditions are not met, correct calculation of the output value is not
possible. A corresponding error message is output at the ErrorBits parameter.
The preassignment of the x and y values with 0.0 does not represent a valid configuration.
Change the tags to valid values so that the tags can be used for the calculation of the output
value.

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

460
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.6 SplitRange

Call
In an OB or FC, SplitRange is called as single-instance DB. In an FB, SplitRange can be called as
a single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the SplitRange parameters
directly using the instance DB and commission SplitRange using a watch table of the user
program in the CPU or HMI.

Startup
The tags in the static area of SplitRange are not retentive. These tags are initialized with the
start values after each operating state transition of the CPU from STOP to RUN.
If you change the actual values in the Points structure in online mode and these values are to
be retained after the operating state transition of the CPU from STOP to RUN, back up these
values in the start values of the data block.

Responses in the event of an error
The SplitRange instruction detects different errors that can occur during the calculation of the
output value. The result of the calculation can be output at the output despite a pending
error. If an error prevents correct calculation of the output value, a substitute output value is
output at the output.
You specify the substitute output value that is output if an error occurs that prevents correct
calculation of the output value as follows at the ErrorMode tag:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 The last valid result of output value calculation
0.0 if there is no valid result

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range of the data type REAL. Only then

is the substitute output value output at the Output parameter.
• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =

TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

461

Instructions
10.6 SplitRange

PID control
Function Manual, 11/2023, A5E35300227-AG

10.6.3 SplitRange input parameters

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents correct cal

culation of the output value, and the configured value of ErrorMode is 1.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the calculation of the output value is per

formed.

10.6.4 SplitRange output parameters

Parameter Data type Default Description
Output REAL 0.0 Output value

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 463) shows which error messages are pending.
ErrorBits is retentive and is reset at a positive edge at Reset or ErrorAck .

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

10.6.5 SplitRange static tags

Tag Data type Default Description
Points AuxFct_SplitRang

e_Points
- Points data

Points.x1 REAL 0.0 x-value of point 1
Permissible value range: Points.x1 < Points.x2

Points.y1 REAL 0.0 y-value of point 1

Points.x2 REAL 0.0 x-value of point 2
Permissible value range: Points.x1 < Points.x2

Points.y2 REAL 0.0 y-value of point 2

ErrorMode INT 0 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid output value
Permissible value range: 0 to 2

462
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.6 SplitRange

10.6.6 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For SplitRange, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending, SplitRange
reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the ErrorMode tag:
• Input
• SubstituteOutput
When Reset = TRUE, check the SubstituteOutput parameter.

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending, SplitRange
reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
SplitRange reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.

463

Instructions
10.6 SplitRange

PID control
Function Manual, 11/2023, A5E35300227-AG

The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput or Input parameter that is being used as the output value has no valid REAL value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the parameter used as output value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF). The
parameter that is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

0001_0000

TRUE - SubstituteOutput

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF).

0004_0000 Possible causes of error:
• One or more tags in the Points structure have invalid values.
• The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met:
1. Points.x1 < Points.x2
2. Points.x1, Points.y1, Points.x2 and Points.y2 are within the permitted value range from

-3.402823e+38 to 3.402823e+38
3. Points.x1, Points.y1, Points.x2 and Points.y2 are valid REAL values (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
Note that all tags in the Points structure are not retentive. These tags are initialized with the start values
after each operating state transition of the CPU from STOP to RUN.

10.7 RampFunction

10.7.1 Compatibility with CPU and FW
The following table shows which version of RampFunction can be used on which CPU:

CPU FW RampFunction
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

464
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

10.7.2 RampFunction description

Description
The RampFunction instruction limits the slew rate of a signal. RampFunction outputs a signal
jump at the input as ramp function of the output value.
Use the RampFunction to prevent signal jumps, for example, in the following cases:
• Between setpoint source and setpoint input of the controller to achieve a smoother

response without influencing the disturbance reaction.
• Between the controller output and the actuator input to preserve the actuator, for

example, a motor with gears or the process.
The following limits can be set for the slew rate:
• Increasing slew rate in positive value range
• Decreasing slew rate in positive value range
• Increasing slew rate in negative value range
• Decreasing slew rate in negative value range
In addition, the RampFunction instruction limits the output value to the high and low limit.
When the slew rate limit or the low or high limit are reached, RampFunction sets the
associated output bit to TRUE.

465

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

Function chart
The following figure shows the RampFunction instruction and a function chart as an example:

Call
In an OB or FC, RampFunction is called as single-instance DB. In an FB, RampFunction can be
called as a single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the RampFunction parameters
directly using the instance DB and commission RampFunction using a watch table of the user
program in the CPU or HMI.

466
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

Startup
The tags in the static area of RampFunction are not retentive. These tags are initialized with
the start values after each operating state transition of the CPU from STOP to RUN.
If you change the actual values of the limits in online mode and these values are to be
retained after the operating state transition of the CPU, back up these values in the start
values of the data block.
Specify the initialization value for the Output parameter at the StartMode tag.
During the first call of RampFunction after the
• Operating state transition of the CPU
or
• Execution of "Load start values as actual values" (only with "All values" option, not with

"Only setpoints" option)
the initialization value is output at the Output parameter.
For subsequent calls, RampFunction calculates the output value, starting from this
initialization value, based on the input value and the slew rate limits.
The following table shows the dependency between the StartMode tag and the Output
parameter. The values in the Output column are output at the Output parameter after the
operating state transition of the CPU.

StartMode Output Example
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 Remains unchanged. Output parameter
is retentive.

3 0.0

467

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

StartMode Output Example
4 Value of the LowerLimit tag

5 Value of the UpperLimit tag

The following applies in addition for all values of the StartMode tag:
• When the values of the UpperLimit and LowerLimit tags are valid, the initialization value is

limited to the value range of these tags. Only then is the initialization value output at the
Output parameter.

• If the initialization value is not a valid REAL value, the substitute output value is output at
the Output parameter. The substitute output value is configured by the ErrorMode tag.
The substitute output value is limited by the value range of the tags UpperLimit and
LowerLimit. If the substitute output value is also not a valid REAL value, 0.0 is output at
the Output parameter. For subsequent calls, the instruction calculates the output value
starting from this substitute output value.

• The StartMode tag is only effective when the Reset = FALSE parameter is set at the first
call of the instruction and at the same time no error with error message ErrorBits ≥
16#0002_0000 is pending. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

Responses in the event of an error
The RampFunction instruction detects different errors that can occur during the calculation of
the output value. The result of this calculation can be output at the output despite a pending
error. If an error prevents correct calculation of the output value, a substitute output value is
output at the output.
Specify the substitute output value that is output if an error occurs that prevents correct
calculation of the output value at the ErrorMode tag.
The following table shows the dependency between the ErrorMode tag and the substitute
output value that is output by the RampFunction at the Output parameter:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 The last valid output value at the Output parameter

468
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

ErrorMode Output
3 0.0

4 Value of the LowerLimit tag

5 Value of the UpperLimit tag

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• When the values of the UpperLimit and LowerLimit tags are valid, the substitute output

value is limited to the value range of these tags. Only then is the substitute output value
output at the Output parameter.

• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =
TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

• If an error is pending that prevents correct calculation of the output value, RampFunction
changes at the Output parameter from the calculated output value to the substitute
output value. A jump of the output value can occur, depending on the value of the
ErrorMode tag.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

10.7.3 RampFunction mode of operation

Limiting the slew rate
You can configure four limits for the slew rate of the input signal. The following factors
determine which limit is currently in effect:
• Sign of the output value at the Output parameter
• Change of direction of the absolute value of the output value at the Output parameter
The following table shows the effective tags for the slew rate limit depending on the Output
parameter:

Output Effective tag
Output ≥ 0 and |Output| rising PositiveRisingSlewRate

Output ≥ 0 and |Output| falling PositiveFallingSlewRate

Output < 0 and |Output| rising NegativeRisingSlewRate

Output < 0 and |Output| falling NegativeFallingSlewRate

The absolute value of the slew rate limits defines the maximum change of the output value
per second.
Example:
The following scenario applies for the example:
• PositiveRisingSlewRate = 10.0
• Call time of RampFunction = 0.1 s
• Input > Output ≥ 0.0
Result:

469

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

The output value Output increases by 1.0 per call (10.0 per second) until the value at the
Input parameter has been reached.
To disable the slew rate limit for one or more areas, set the corresponding tag to the value
3.402823e+38.
When the output value Output is currently limited by a slew rate limit, RampFunction sets the
associated output bit to TRUE:
• PositiveRisingSlewRate_Active
• PositiveFallingSlewRate_Active
• NegativeRisingSlewRate_Active
• NegativeFallingSlewRate_Active
When the Reset parameter is set to TRUE, the slew rate limits are not in effect. This means
jumps at the SubstituteOutput parameter result in jumps at the Output parameter.
RampFunction checks whether the following conditions for the tags PositiveRisingSlewRate,
PositiveFallingSlewRate, NegativeRisingSlewRate and NegativeFallingSlewRate are met for
each call:
• Values are within the permitted value range greater than 0.0 up to 3.402823e+38
• Values are valid REAL values (≠ NaN e.g. 16#7FFF_FFFF)
If one or more conditions are not met, the substitute output value is output at the Output
parameter. A corresponding error message is output at the ErrorBits parameter.

Limiting the output value
The output value Output is always limited to the value range of the tags UpperLimit and
LowerLimit as long as these tags have valid values.
When the output value Output is currently limited by this value range, RampFunction sets the
associated output bit to TRUE:
• UpperLimit_Active
• LowerLimit_Active
The limit of the output value has a higher priority than the limit of the slew rate. Changes of
the tags UpperLimit and LowerLimit therefore result in jumps of the output value Output, if
this is required to observe the limits of the tags UpperLimit and LowerLimit. The limiting of
the slew rate is not taken into account in this case.
Example:
If the UpperLimit is reduced from 100.0 to 80.0 while the values of the parameters Input and
Output are 90.0, the output value Output jumps to 80.0. The output value Output jumps to
80.0 regardless whether or not it violates the configured limit for the slew rate.
RampFunction checks whether the following conditions are met for each call:
• LowerLimit < UpperLimit
• LowerLimit and UpperLimit are within the permitted value range from -3.402823e+38 to

3.402823e+38
• LowerLimit and UpperLimit are valid REAL values (≠ NaN e.g. 16#7FFF_FFFF)
If one or more conditions are not met, the substitute output value is output at the Output
parameter. A corresponding error message is output at the ErrorBits parameter.
In addition, RampFunction checks for each call whether the output value Output has the
permitted value range of a REAL data type from -3.402823e+38 to 3.402823e+38. If the
calculation of the output value yields an invalid REAL value, the substitute output value is
output at the Output parameter. You configure the substitute output value at the ErrorMode
tag.

470
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

Measuring the cycle time automatically
To calculate the slew rate of the output value RampFunction needs the time that has expired
since the last call of RampFunction.
By default, the cycle time is measured automatically and output as of the second call at the
CycleTime.Value tag. RampFunction measures the cycle time for each call of the instruction
and can therefore be used in non-isochronous call cycles, e.g. in OB1.
Note that conditional calls of the instruction, active breakpoints, or the loading of snapshots
as actual values during automatic measurement of the cycle time will extend the cycle time
value.
If measurement of the cycle time returns no valid result, RampFunction calculates the current
output value with the last valid cycle time. In addition, RampFunction outputs an error
message at the ErrorBits parameter.
When you disable automatic measurement of the cycle time by setting the
CycleTime.EnableMeasurement tag = FALSE, you must enter the cycle time manually at the
CycleTime.Value tag. RampFunction checks the CycleTime.Value tag for validity at each call.

Automatic measurement of the cycle time with breakpoints
When breakpoints are active between two calls of RampFunction, automatic measurement of
the cycle time results in the actual time that has elapsed between two calls. When one
breakpoint is active, the CPU is in HOLD operating state.

NOTE
The active breakpoints extend the time period between two calls of RampFunction.
The longer the time period between two calls, the greater the maximum permitted change of
the output value at the Output parameter.

Example:
The following scenario applies for the example:
• PositiveRisingSlewRate = 10.0
• Call time of RampFunction = 0.1 s
• Input > Output ≥ 0.0
Result without breakpoints:
The output value Output increases by 1.0 per call until the value at the Input parameter has
been reached.
Result with an active breakpoint of ten seconds:
With the next call, the output value Output increases by 100.0.

471

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

If you do not need the calculation of the output value based on the actual time with active
breakpoints, follow these steps:
• Disable automatic measurement of the cycle time by setting the tag

CycleTime.EnableMeasurement = FALSE.
• Enter the cycle time manually at the CycleTime.Value tag.

10.7.4 RampFunction input parameters

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents correct cal

culation of the output value, and the configured value of ErrorMode is 1.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the calculation of the output value is per

formed.

10.7.5 RampFunction output parameters

Parameter Data type Default Description
Output REAL 0.0 Output value

PositiveRisingSle
wRate_Active

BOOL FALSE When PositiveRisingSlewRate_Active = TRUE, the output value is cur
rently limited by PositiveRisingSlewRate .

PositiveFallingSle
wRate_Active

BOOL FALSE When PositiveFallingSlewRate_Active = TRUE, the output value is cur
rently limited by PositiveFallingSlewRate.

NegativeRisingSle
wRate_Active

BOOL FALSE When NegativeRisingSlewRate_Active = TRUE, the output value is cur
rently limited by NegativeRisingSlewRate.

NegativeFallingSle
wRate_Active

BOOL FALSE When NegativeFallingSlewRate_Active = TRUE, the output value is cur
rently limited by NegativeFallingSlewRate.

UpperLimit_Active BOOL FALSE When UpperLimit_Active = TRUE, the output value is currently limited by
UpperLimit.

LowerLimit_Active BOOL FALSE When LowerLimit_Active = TRUE, the output value is currently limited by
LowerLimit.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 474) shows which error messages are
pending. ErrorBits is retentive and is reset at a positive edge at Reset or
ErrorAck .

Error BOOL FALSE When Error = TRUE, at least one error is currently pending.

472
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

10.7.6 RampFunction static tags

Tag Data type Default Description
PositiveRisingSlewRate REAL 10.0 Limit for slew rate of the output value per second in positive

range with rising absolute value
With PositiveRisingSlewRate = 3.402823e+38, this slew rate
limit is disabled.
Permissible value range: > 0.0

PositiveFallingSlewRate REAL 10.0 Limit for slew rate of the output value per second in positive
range with falling absolute value
With PositiveFallingSlewRate = 3.402823e+38, this slew rate
limit is disabled.
Permissible value range: > 0.0

NegativeRisingSlewRate REAL 10.0 Limit for slew rate of the output value per second in negative
range with rising absolute value
With NegativeRisingSlewRate = 3.402823e+38, this slew rate
limit is disabled.
Permissible value range: > 0.0

NegativeFallingSle
wRate

REAL 10.0 Limit for slew rate of the output value per second in negative
range with falling absolute value
With NegativeFallingSlewRate = 3.402823e+38, this slew rate
limit is disabled.
Permissible value range: > 0.0

UpperLimit REAL 100.0 High limit of output value
Permissible value range: > LowerLimit

LowerLimit REAL 0.0 Low limit of output value
Permissible value range: < UpperLimit

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid output value
• 3 = 0.0
• 4 = LowerLimit
• 5 = UpperLimit
Permissible value range: 0 to 5

StartMode INT 2 Selecting the output value for the first call of the instruction
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last output value
• 3 = 0.0
• 4 = LowerLimit
• 5 = UpperLimit
Permissible value range: 0 to 5

CycleTime AuxFct_CycleTime - Cycle time data

CycleTime.Value REAL 0.1 Time interval between two calls of the instruction in seconds
Permissible value range: > 0.0

CycleTime.EnableMeas
urement

BOOL TRUE Automatic measurement of the cycle time
• FALSE = Deactivated
• TRUE = Activated

473

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

10.7.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For RampFunction, the errors output at the ErrorBits parameter are divided into two
categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending,
RampFunction reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0002 Cause of error:
The measurement of the cycle time yields in an invalid value while the output value is being calculated
(Reset = FALSE).
Response to error:
If a valid value of the cycle time has already been measured, RampFunction calculates the output value
based on the last value of the CycleTime.Value tag.
If no valid value of the cycle time was previously measured, RampFunction still outputs the output value
configured with the StartMode tag at the Output parameter.

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending,
RampFunction reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
• The output value limit remains active as long as the tags LowerLimit and UpperLimit have

valid values.
• The slew rate limit is no longer active. Jumps at the output value can occur in one of the

following scenarios:
– When the error is detected, RampFunction switches from the calculated output value

to the replacement output value. Whether a jump occurs depends on the value of the
tag ErrorMode.

– The substitute output value is changed while it is active.

474
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
RampFunction reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or a different tag that is being used as output value has no valid REAL
value.
Response to error:
The output is set to 0.0 and limited by the tags LowerLimit and UpperLimit.
Solution:
Make sure that the tag used as output value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF). The tag that
is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

FALSE 4 LowerLimit

FALSE 5 UpperLimit

0001_0000

TRUE - SubstituteOutput

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value is output at the Output parameter that is configured at the ErrorMode tag and
is limited by the tags UpperLimit and LowerLimit.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value is output at the Output parameter that is configured at the ErrorMode tag and
is limited by the tags UpperLimit and LowerLimit.
Solution:
Check all tags involved in the calculation of the output value:
• Input
• PositiveRisingSlewRate
• PositiveFallingSlewRate
• NegativeRisingSlewRate
• NegativeFallingSlewRate
• CycleTime.Value
These tags have valid values. The calculation of the output value fails in this combination of tags.

475

Instructions
10.7 RampFunction

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0008_0000 Cause of error:
The LowerLimit or UpperLimit tag has an invalid value.
Response to error:
The following value is output at the Output parameter, depending on the Reset parameter:
• Reset = FALSE

The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
• Reset = TRUE

The value of the SubstituteOutput parameter is output at the Output parameter.
In both cases, the Ouput parameter is limited to the value range of the REAL data type from
-3.402823e+38 to 3.402823e+38.
Solution:
Ensure that the following conditions are met:
1. LowerLimit < UpperLimit
2. LowerLimit and UpperLimit are within the permitted value range from -3.402823e+38 to

3.402823e+38
3. LowerLimit and UpperLimit are valid REAL values (≠ NaN e.g. 16#7FFF_FFFF)

0010_0000 Cause of error:
At least one of the following tags has invalid values while the calculation of the output value is being per
formed (Reset = FALSE):
1. PositiveRisingSlewRate
2. PositiveFallingSlewRate
3. NegativeRisingSlewRate
4. NegativeFallingSlewRate
Response to error:
The substitute output value is output at the Output parameter that is configured at the ErrorMode tag and
is limited by the tags UpperLimit and LowerLimit.
Solution:
Ensure that the following conditions are met for all four tags listed above:
• The values are within the permitted value range greater than 0.0 up to 3.402823e+38
• The values are valid REAL values (≠ NaN e.g. 16#7FFF_FFFF)

0020_0000 Cause of error:
The tag (configured with StartMode) for the initialization of the Output parameter at the first call of the
instruction does not have a valid REAL value.
Response to error:
The substitute output value is output with the first call of the instruction at the Output parameter that is
configured at the ErrorMode tag and is limited by the tags LowerLimit and UpperLimit. For subsequent
calls, RampFunction calculates the output value starting from this substitute output value.
Solution:
Make sure that the tag for initializing the parameter Output is a valid REAL value (≠ NaN e.g.
16#7FFF_FFFF). When Reset = FALSE is set, the initialization takes effect with the first call of the instruc
tion after the operating state transition of the CPU from STOP to RUN. The tag that is used for the initializ
ation of the Output parameter depends on StartMode:
• StartMode = 1: Substitute Output
• StartMode = 2: Output

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value is output at the Output parameter that is configured at the ErrorMode tag and
is limited by the tags UpperLimit and LowerLimit.
Solution:

476
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.7 RampFunction

ErrorBits
 (DW#16#...)

Description

Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the CycleTime.Value tag, set the CycleTime.EnableMeasurement
tag to TRUE.

10.8 RampSoak

10.8.1 Compatibility with CPU and FW
The following table shows which version of RampSoak can be used on which CPU:

CPU FW RampSoak
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

10.8.2 Description of RampSoak

Description
You can use the RampSoak instruction to generate an output value that follows a
configurable profile on a time-dependent basis. Every point of this profile has a target value
and a time value. When the profile is executed, the target value of the current point is
reached within the time value.
The following figure shows a profile with 4 points:

The RampSoak instruction can be used, for example, to provide a setpoint value profile for
regulating a temperature process.

477

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

Calculation of the output value
The output value is calculated with an interpolation between the current point and the
previous point according to the following formula:

The i represents the value of the CurrentPoint parameter.
On the basis of the time that has elapsed, a determination is made as to which points from
the profile are currently used for calculating the output value.

Call
In an OB or FC, RampSoak is called as single-instance DB. In an FB, RampSoak can be called as
a single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the RampSoak parameters
directly using the instance DB and commission RampSoak using a watch table of the user
program in the CPU or HMI.

Startup
The tags in the static area of RampSoak and hence also the profile data in the UserData and
WorkingData structures are not retentive. These tags are initialized with the start values after
each operating state transition of the CPU from STOP to RUN.
If you change the actual values in the UserData structure in online mode and these values are
to be retained after the operating state transition of the CPU from STOP to RUN, back up
these values in the start values of the data block.
At the first call of the RampSoak instruction after the operating state transition of the CPU
from STOP to RUN, the data in the UserData structure is automatically validated. If the check
is successful, the data is transferred to the WorkingData structure.
With the tag StartMode (Page 486), you can define the starting behavior of the RampSoak
instruction at the first call after the operating state transition of the CPU from STOP to RUN.

Responses in the event of an error
If the output value cannot be correctly calculated, the RampSoak instruction instead outputs a
substitute output value and an error with an error message ErrorBits >= 16#0002_0000. You
can use the tag ErrorMode (Page 496) to define the substitute output value as follows:

Error
Mode

Output

0 Value of the WorkingData.StartValue tag
Make sure that the profile data in UserData is validated with the Validate parameter and
accepted after WorkingData. If the profile data has never been verified and accepted, the
default value 0.0 of WorkingData.StartValue is used.

478
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

Error
Mode

Output

1 Value of the SubstituteOutput parameter

2 The last valid output value of the profile execution
0.0, if no valid output value of the profile execution is available.

3 0.0

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range -3.402823e+38 ..

+3.402823e+38 of the data type REAL. Only then is the substitute output value output at
the Output parameter.

• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =
TRUE parameter is set, the value of the SubstituteOutput parameter or 0.0 is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

10.8.3 Operating principle RampSoak

10.8.3.1 Configuring and validating profile data

Configuring profile data
You can configure the profile in the static structure UserData.
It contains the following elements:
• NumberOfUsedPoints

Number of points used for the profile.
• StartValue

Optional output value when the profile execution is started (Page 486), stopped (Page
489) or ended.

• Point
The array with 50 elements contains value pairs of the points Point[i].Value and
Point[i].Time:
– Point[i].Value

The output value is changed to this value in steps as long as the point is active, and
reaches this value within the time Point[i].Time.

– Point[i].Time
This value defines the duration of the point in seconds.

479

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

The following figure shows a profile with 6 points. Point number 5 has a duration of 0
seconds, which results in skipping of the output value.

Validating the profile data
Before the profile data is used for the profile execution, a validation of the profile data in the
UserData structure is necessary.
The validation is triggered as follows:
• When you set the Validate parameter to TRUE.
• When the parameter Enable is set to TRUE for the first time after the operating state

change of the CPU from STOP to RUN and no validation of the profile data has been
carried out previously.

The following conditions are checked for the profile data in the UserData structure:
• 1 ≤ UserData.NumberOfUsedPoints ≤ 50
• NextPoint ≤ UserData.NumberOfUsedPoints
• When the profile execution is activated (Enable = TRUE):

– CurrentPoint ≤ UserData.NumberOfUsedPoints
• -3.402823e+38 ≤ UserData.StartValue ≤ 3.402823e+38
• -3.402823e+38 ≤ UserData.Point[i].Value ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• 0.0 ≤ UserData.Point[i].Time ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• 0.0 < UserData.Point[1].Time + UserData.Point[2].Time +…+

UserData.Point[UserData.NumberOfUsedPoints].Time ≤ 3.402823e+38

480
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

Effects of the profile data validation and possible error messages
When the conditions are fulfilled, the new profile data in the UserData structure is transferred
to the WorkingData structure and used for the profile execution. The TotalTime parameter is
updated. The RemainingTime_Total parameter is updated when the profile is executed.

NOTE
The value and duration of the current point are temporarily stored and also remain
unchanged after a successful validation of the new profile data until the current point is
completed. The new profile data is used from the start of the next point.

If one of the conditions is not fulfilled, the existing profile data in the WorkingData structure
remains unchanged. An error with the error message ErrorBits = 16#0000_0004 (Page 496) is
pending.
If the Enable parameter or the Next parameter is set to TRUE, but there is no valid profile data
present in the WorkingData structure, then an error with the error message ErrorBits =
16#0008_0000 (Page 496) will be pending.

NOTE
If you do not change the default values in the UserData structure, the validation of the profile
data fails.

NOTE
You cannot change the offline values of the WorkingData structure. If you want to change
the profile data, first edit the UserData structure and then set parameter Validate = TRUE.

10.8.3.2 Executing a profile

To execute a profile and calculate the output value, you need validated profile data and a
positive edge at the Enable parameter.

Starting and stopping profile execution - Enable parameter
You can start the profile execution and calculation of the output value with a positive edge at
the Enable parameter. The profile execution starts with the point that is specified at the in-
out parameter NextPoint.
You can stop the profile execution with a negative edge at the parameter Enable.
If the profile is stopped or completely run, the in-out parameter NextPoint is automatically set
to 1. Thus, the next profile execution starts from the first point of the profile if the in-out
parameter NextPoint is not changed.
You can configure the behavior at the start, stop and completion of the profile execution with
the static tags StartMode (Page 486) and StopMode (Page 489).
The profile execution only determines the output value at the Output parameter, if Reset =
FALSE. If RESET = TRUE is set, then an activated profile execution is continued in the
background.

481

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

The following graphic shows how the input parameters Enable, Reset and Hold determine the
execution of the profile:

In this example, the starting and stopping behavior of the profile execution (marked with an
*) is shown with the default StartMode = StopMode = 2 (start from last output value / keep
last output value).

482
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

Holding profile execution - Hold parameter
You can use the parameter Hold = TRUE to pause the activated profile execution.
The Hold = TRUE parameter has the following effect:
• The Output, CurrentPoint, NextPoint, RemainingTime_Total, and RemainingTime_Point

parameters remain unchanged.
• An edge at the parameters Enable or Next is delayed and only becomes effective when

Hold = FALSE.
• If the Reset parameter changes from TRUE to FALSE, the Hold parameter influences the

changes at the Output parameter. You can find more information in the description of the
Reset parameter.

The Hold parameter has no effect on the processing of the Validate and ErrorAck parameters.

Overwrite output value - Reset parameter
With the parameter Reset = TRUE, you can reset the instruction and overwrite the output
value at the Output parameter with the value of the SubstituteOutput parameter.
An activated profile execution is continued in the background. Using the parameters Enable,
Hold and Next continues to be possible.
If the profile execution is still active (Enable=TRUE and the profile not yet fully run through)
and the parameter Reset changes from TRUE to FALSE, the behavior depends on the Hold
parameter:
• Hold = FALSE

The Output parameter is changed in increments from the SubstituteOutput to the value of
the current point and reaches it within the remaining time of the current point
(RemainingTime_Point).

• Hold = TRUE
The Output parameter jumps from the SubstituteOutput to the value of the paused profile
execution.

If the profile execution is no longer active (Enable=FALSE or the profile fully run through) and
the Reset parameter changes from TRUE to FALSE, the Output parameter jumps to the last
value of the profile execution.

Continuing the profile execution with a certain point - Next parameter
With a positive edge at the Next parameter, you can continue the profile execution with
Point[NextPoint].
When the profile execution is deactivated, the parameter Next = TRUE has the following
effect:
• The Output parameter assumes the value of Point[NextPoint].Value.
• The CurrentPoint parameter assumes the value of NextPoint.
• The NextPoint parameter is increased. If NextPoint is the last point of the profile, then the

value of NextPoint becomes 1.
When the profile execution is activated, the parameter Next = TRUE has the following effect:
• The Output parameter is changed in increments from its current value to the value of

Point[NextPoint].Value and reaches it during Point[NextPoint].Time.
• The RemainingTime_Point parameter assumes the value of Point[NextPoint].Time.
• The RemainingTime_Total parameter is updated accordingly.

483

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

• The CurrentPoint parameter assumes the value of NextPoint.
• The NextPoint parameter is increased. If NextPoint is the last point of the profile, then the

new value is dependent on StopMode. You can find more information in the description of
the NextPoint parameter.

NOTE
At the first call of the RampSoak instruction after the operating state transition of the CPU
from STOP to RUN, the behavior is determined by StartMode. The Next parameter is only
effective with the following calls.

An example profile with the Next parameter is available in the following section "Continuing
the profile execution with a certain point - NextPoint parameter".

Continuing the profile execution with a certain point - NextPoint parameter
The NextPoint parameter determines with which point the profile execution is continued.
If the current point has been completed, the RampSoak instruction automatically updates the
value of the NextPoint parameter to the next point of the profile.
Through a change in the value of the NextPoint parameter, you can determine that the
profile execution should be continued with another point.
The NextPoint parameter can influence the behavior of the profile execution in the following
manner, if it is deactivated:
• If there is a positive edge at parameter Next then parameter Output assumes the value of

Point[NextPoint].Value.
• When the profile execution is started, NextPoint represents the first CurrentPoint. The

Output parameter is changed in increments from the value that is defined by StartMode to
the value of Point[NextPoint].Value and reaches it during Point[NextPoint].Time.

The NextPoint parameter can influence the behavior of the profile execution in the following
manner, if it is activated:
• Without positive edge at parameter Next:

When the current point has been completed, the process continues with NextPoint.
• With positive edge at parameter Next:

The process continues with NextPoint.
While the last point of the profile execution is active (CurrentPoint =
WorkingData.NumberOfUsedPoints), StopMode determines, in the following manner, how
the value of NextPoint is updated automatically:
• StopMode <> 4

While the last point is active: NextPoint = CurrentPoint =
WorkingData.NumberOfUsedPoints.
The profile execution finished after the last point.

• StopMode = 4
While the last point is active: NextPoint = 1.
The profile execution restarts after the last point.

If the profile is stopped or completely run, the in-out parameter NextPoint is automatically set
to 1. Thus, the next profile execution starts from the first point of the profile if the in-out
parameter NextPoint is not changed.

484
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

The following graphic shows how the Next and NextPoint parameters determine the profile
execution: If the automatic change of NextPoint is subsequently overwritten by a user input,
this is marked with →:

In this example, the stopping behavior of the profile execution is shown with StopMode <> 4.

485

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

10.8.3.3 Configuring the starting behavior - static tag StartMode

With the StartMode tag, you can define the behavior of the RampSoak instruction in the
following cases.
• When the RampSoak instruction is executed after the operating state transition of the CPU

from STOP to RUN (restart).
• The profile execution is started.
• Execution of "Load start values as actual values" (only with "All values" option, not with

"Only setpoints" option).
The following settings of the StartMode tag are possible:
• StartMode = 0

The Output parameter assumes the value of WorkingData.StartValue.
The profile execution starts from this value if, after a restart of the CPU, Enable = TRUE is
set or if Enable changes from FALSE to TRUE.
The following graphic shows the start of the profile execution and restart of the CPU with
StartMode = 0:

NOTE
With this setting, the profile data must be validated with the first call of the instruction
after the CPU restart and assumed by the WorkingData. Otherwise, the default value 0.0
of WorkingData.StartValue is used.

486
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

• StartMode = 1
The Output parameter assumes the value of SubstituteOutput.
The profile execution starts from this value if, after a restart of the CPU, Enable = TRUE is
set or if Enable changes from FALSE to TRUE.
The following graphic shows the start of the profile execution and restart of the CPU with
StartMode = 1:

• StartMode = 2
The Output parameter remains unchanged.
The profile execution starts from the unchanged value of the Output parameter, if, after a
restart of the CPU, Enable = TRUE is set or if Enable changes from FALSE to TRUE.
The following graphic shows the start of the profile execution and restart of the CPU with
StartMode = 2:

487

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

• StartMode = 3
The Output parameter adopts the value 0.0.
The profile execution starts from this value if, after a restart of the CPU, Enable = TRUE is
set or if Enable changes from FALSE to TRUE.
The following graphic shows the start of the profile execution and restart of the CPU with
StartMode = 3:

• StartMode = 4
The Output parameter remains unchanged.
The profile execution continues if, after the restart of the CPU, Enable = TRUE remains set
and the profile execution was activated before the restart.
The profile execution starts from the unchanged value of the Output parameter, if, after a
restart of the CPU, Enable = TRUE is set and the profile execution was deactivated before
the restart or if Enable changes from FALSE to TRUE.
The following graphic shows the start of the profile execution and restart of the CPU with
StartMode = 4:

The following applies in addition for all values of the StartMode tag:
• The Enable parameter, the StartMode tag and the profile data in the UserData and

WorkingData structures are not retentive. These tags are initialized with the start values
after each operating state transition of the CPU from STOP to RUN. Make sure that at the
first call of the RampSoak instruction, after the operating status transition of the CPU from
STOP to RUN, these tags have suitable values to achieve the desired behavior.

• The value selected through StartMode is limited to the value range of the REAL data type.
Only then is it output at the Output parameter.

488
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

• If the value selected through StartMode is not a valid REAL value, the substitute output
value is output at the Output parameter. The substitute output value is configured by
means of the ErrorMode tag and is limited to the value range of the REAL data type. If the
profile execution is activated, it starts from this substitute output value.

• Only if the parameter Reset = FALSE has been set and, at the same time, there is no error
pending with an error message ErrorBits ≥ 16#0002_0000, does the StartMode tag act on
the Output parameter. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

10.8.3.4 Configuring the stopping behavior - static tag StopMode

With the StopMode tag, you can define the behavior of the RampSoak instruction in the
following cases.
• The profile execution is finished in that the last point has been reached.
• The profile execution is stopped by resetting Enable.
The value that is set through StopMode is used as the output value until a new action, for
example the start of the profile execution, is triggered.
The following settings of the StopMode tag are possible:
• StopMode = 0

The Output parameter assumes the value of WorkingData.StartValue.
The following graphic shows how the execution of a profile with 5 points is ended and
stopped with StopMode = 0:

489

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

• StopMode = 1
The Output parameter assumes the value of SubstituteOutput.
The following graphic shows how the execution of a profile with 5 points is ended and
stopped with StopMode = 1:

• StopMode = 2
The Output parameter assumes the last valid value of the profile execution.
The following graphic shows how the execution of a profile with 5 points is ended and
stopped with StopMode = 2:

• StopMode = 3
The Output parameter adopts the value 0.0.
The following graphic shows how the execution of a profile with 5 points is ended and
stopped with StopMode = 3:

490
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

• StopMode = 4
If the profile execution has ended with the last point, it is automatically restarted and it is
continued with WorkingData.Point[1]. As long as Enable is not reset, the profile execution
is repeated.
If the profile execution is stopped with Enable = FALSE, then the Output parameter
assumes the last valid value of the profile execution.
The following graphic shows how the execution of a profile with 5 points is ended and
stopped with StopMode = 4:

The following applies in addition for all values of the StopMode tag:
• The value selected through StopMode is limited to the value range of the REAL data type.

Only then is it output at the Output parameter.
• If the value selected through StopMode is not a valid REAL value, the substitute output

value is output at the Output parameter and then retained. The substitute output value is
configured by means of the ErrorMode tag and is limited to the value range of the REAL
data type.

• Only if the parameter Reset = FALSE has been set and, at the same time, there is no error
pending with an error message ErrorBits ≥ 16#0002_0000, does the StopMode tag act on
the Output parameter. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

10.8.3.5 Measuring the cycle time

Measuring the cycle time automatically
To calculate the output value, RampSoak needs the time that has expired since the last call
of RampSoak.
By default, the cycle time is measured automatically and output as of the second call at
the CycleTime.Value tag. RampSoak measures the cycle time for each call of the instruction
and can therefore be used in non-isochronous call cycles, e.g. in OB1.
Note that conditional calls of the instruction, active breakpoints, or the loading of snapshots
as actual values during automatic measurement of the cycle time will extend the cycle time
value.
If measurement of the cycle time does not return a valid result, RampSoak calculates the
current output value with the last valid cycle time. In addition, RampSoak outputs an error
message at the ErrorBits parameter.

491

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

When you disable automatic measurement of the cycle time by setting the
CycleTime.EnableMeasurement = FALSE tag, you must enter the cycle time manually at the
CycleTime.Value tag. RampSoak checks the CycleTime.Value tag for validity at each call.

Automatic measurement of the cycle time with breakpoints
When breakpoints are active between two calls of RampSoak, automatic measurement of the
cycle time gives the actual time that has elapsed between two calls. When one breakpoint is
active, the CPU is in the HOLD operating state.

NOTE
The active breakpoints extend the time period between two calls of RampSoak.
The longer the time period between two calls, the greater the change of the output value at
the Output parameter. Points can be skipped depending on the elapsed time and the
configured profile data.

If you do not need the calculation of the output value based on the actual time with active
breakpoints, follow these steps:
• Disable automatic measurement of the cycle time by setting the tag

CycleTime.EnableMeasurement = FALSE.
• Enter the cycle time manually for the CycleTime.Value tag.

10.8.3.6 Enable behavior EN/ENO

If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and an error with the error message ErrorBits ≥

16#0001_0000 is pending.
• Enable input EN is set to FALSE.
In all other cases the enable output ENO is set to TRUE.

10.8.4 Input parameter RampSoak

Parameter Data type Default Description
Enable BOOL FALSE The profile execution and calculation of the output value is started with a posit

ive edge at the Enable parameter.
The profile execution is stopped with a negative edge at the Enable parameter.

Hold BOOL FALSE If Hold is set to TRUE, the execution of the profile is paused. The output value
remains constant.

Next BOOL FALSE With a positive edge at the Next parameter the profile execution is continued
with Point[NextPoint].

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as a substitute output value when Reset = TRUE or one
of the following modes is currently in effect:
• ErrorMode = 1
• StartMode = 1
• StopMode = 1

492
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

Parameter Data type Default Description
Validate BOOL FALSE If Validate is set to TRUE, the profile data in UserData is checked for validity and

transferred to WorkingData.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset.

Reset BOOL FALSE Resets the instruction.
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output. If the profile is executed at the same time, then that
process runs in the background.

• As long as Reset is set to FALSE, the output value is determined by the pro
file execution.

10.8.5 Output parameter RampSoak

Parameter Data type Default Description
Output REAL 0.0 Output value

The output value is retentive.

CurrentPoint INT 0 Number of the point that is currently being used for the profile execution and
calculation of the output value.

TotalTime REAL 0.0 Total time of the profile (summation of the times of all the points used) in
seconds

Remaining
Time_Total

REAL 0.0 Remaining time of the profile in seconds

Remaining
Time_Point

REAL 0.0 Remaining time of the current point in seconds

ErrorBits DWORD 16#0 The ErrorBits (Page 496) parameter shows which error messages are present.
ErrorBits is retentive and is reset when there is a positive edge at Reset or
ErrorAck.

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

10.8.6 In-out parameter RampSoak

Parameter Data type Default Description
NextPoint Int 1 Number of the point that will be used next.

Permissible value range: 1 to WorkingData.NumberOfUsedPoints

493

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

10.8.7 Static tags RampSoak

Tag Data type Default Description
UserData AuxFct_RampSoa

k_Profile
- The profile data is input in the UserData structure.

The profile data in the UserData structure can be edited.
Changes in this structure affect the execution of the profile only
when the validation and copying of the data into the WorkingData
structure are initiated.

UserData.Num
berOfUsedPoints

INT 0 Number of points of the profile used
Permissible value range: 1 to 50

UserData.Start
Value

REAL 0.0 StartValue is used as an optional output value if one of the following
modes is currently in effect:
• ErrorMode = 0
• StartMode = 0
• StopMode = 0

UserData.Point Array[1..50] of
AuxFct_RampSoa
k_Point

- Points of the profile

UserData.Point[i].
Value

REAL 0.0 Output value of this point

UserData.Point[i].
Time

REAL 0.0 Duration of this point in seconds
Permissible value range: Point[i].Time ≥ 0.0

WorkingData AuxFct_RampSoa
k_Profile

- The profile data currently in effect is displayed in the WorkingData
structure.
The profile data in the WorkingData structure cannot be edited.

WorkingData.Nu
mberOfUsed
Points

INT 0 Number of points of the profile used
Permissible value range: 1 to 50

WorkingData.Star
tValue

REAL 0.0 WorkingData.StartValue is used as an optional output value if one of
the following modes is currently in effect:
• ErrorMode = 0
• StartMode = 0
• StopMode = 0

WorkingData.Poi
nt

Array[1..50] of
AuxFct_RampSoa
k_Point

- Points of the profile

WorkingData.Poi
nt[i].Value

REAL 0.0 Output value of this point

WorkingData.Poi
nt[i].Time

REAL 0.0 Duration of this point in seconds
Permissible value range: Point[i].Time ≥ 0.0

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = WorkingData.StartValue
• 1 = SubstituteOutput
• 2 = last valid output value of the profile execution
• 3 = 0.0
Permissible value range: 0 to 3
If the value of ErrorMode does not correspond to the valid range of
values, then ErrorMode = 2.

494
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

Tag Data type Default Description
StartMode INT 2 Selection of the starting behavior

• 0 = WorkingData.StartValue
• 1 = SubstituteOutput
• 2 = start from the last output value
• 3 = 0.0
• 4 = continue from the last output value
Permissible value range: 0 to 4
If the value of StartMode does not correspond to the valid range of
values, then StartMode = 2.

StopMode 2 Selection of the stopping behavior
• 0 = WorkingData.StartValue
• 1 = SubstituteOutput
• 2 = last valid output value of the profile execution
• 3 = 0.0
• 4 = cyclical operation
Permissible value range: 0 to 4
If the value of StopMode does not correspond to the valid range of
values, then StopMode = 2.

CycleTime AuxFct_CycleTime - Cycle time data

CycleTime.Value REAL 0.1 Cycle time in seconds (time interval between two calls)
Permissible value range: CycleTime.Value > 0.0

CycleTime.Enable
Measurement

BOOL TRUE Automatic measurement of the cycle time
• FALSE = Deactivated
• TRUE = Activated

495

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

10.8.8 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
With RampSoak, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000

The output value can be calculated despite the error.
• Errors with error messages ErrorBits ≥ 16#0001_0000

The error prevents a calculation of the output value. A substitute output value is output.

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 is/are pending,
RampSoak reacts as follows:
• The output value is determined as follows despite this error:

– If Reset = FALSE output value calculation through the execution of the profile
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If ErrorBits < 16#0001_0000 and Reset = FALSE, the output value is limited, while it is determined through
StartMode or StopMode. In this case, check the following parameters depending on the set value at the
StartMode or StopMode tags:
• WorkingData.StartValue
• SubstituteOutput
When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the tag ErrorMode:
• WorkingData.StartValue
• SubstituteOutput
When Reset = TRUE, check the SubstituteOutput parameter.
Additional information:
If you want to change the WorkingData.StartValue, first edit the UserData.StartValue and then set the
parameter Validate = TRUE. Do not manually change the data of the WorkingData structure.

0000_0002 Cause of error:
The measurement of the cycle time yields an invalid value while the execution of the profile is activated
(Enable = TRUE).
Response to error:
If a valid value of the cycle time has already been measured, RampSoak continues execution of the profile
based on this last value of the CycleTime.Value tag.
If no valid value of the cycle time was previously measured, RampSoak still outputs the output value con
figured with the tag StartMode at the Output parameter.

496
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

ErrorBits
 (DW#16#...)

Description

0000_0004 Cause of error:
One or more tags in the UserData structure have invalid values while the profile data is checked.
Response to error:
The profile data in the UserData structure is not transferred to the WorkingData structure, so the changes
made in the UserData structure do not become effective.
Solution:
Ensure that the following conditions are met when the profile data is checked:
• 1 ≤ UserData.NumberOfUsedPoints ≤ 50
• -3.402823e+38 ≤ UserData.Point[i].Value ≤ 3.402823e+38 with index i =

1..UserData.NumberOfUsedPoints
• 0.0 ≤ UserData.Point[i].Time ≤ 3.402823e+38 with index i = 1..UserData.NumberOfUsedPoints
• -3.402823e+38 ≤ UserData.StartValue ≤ 3.402823e+38
• NextPoint ≤ UserData.NumberOfUsedPoints
• 0.0 < UserData.Point[1].Time + UserData.Point[2].Time +…+

UserData.Point[UserData.NumberOfUsedPoints].Time ≤ 3.402823e+38
• With execution of the profile activated: CurrentPoint ≤ UserData.NumberOfUsedPoints
Additional information:
The profile data in the UserData structure are checked in the following cases:
• If the Validate parameter is set to TRUE.
• Or if RampSoak is called after the operating state transition of the CPU from STOP to RUN for the first
time with the parameter Enable = TRUE and there was no validation of the profile data carried out previ
ously.
Note that all tags in the UserData and WorkingData structures are not retentive. These tags are initialized
with the start values after each operating state transition of the CPU from STOP to RUN.

0000_0008 Cause of error:
The NextPoint parameter has an invalid value.
Response to error:
NextPoint is reset to the last valid value.
Solution:
Ensure that the following condition is met:
• 1 ≤ NextPoint ≤ WorkingData.NumberOfUsedPoints

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 is/are pending,
RampSoak reacts as follows:
• The output value cannot be determined as expected. The table below shows the reaction

of the Output parameter and the execution of the profile.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
RampSoak reacts as follows:
• The output value is determined as follows:

– If Reset = FALSE, output value through the execution of the profile
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.

497

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or the WorkingData.StartValue tag is currently used for determining the out
put value, but does not have any valid REAL value.
Response to error:
If Reset = TRUE and SubstituteOutput is a valid REAL value, then SubstituteOutput continues to be output at
the parameter Output.
In all other cases, parameter Output is set to 0.0.
Solution:
Make sure that the SubstituteOutput parameter and the WorkingData.StartValue tag are valid REAL values
(≠NaN, e.g. 16#7FFF_FFFF). The tag that is used depends on Reset the pending errors and ErrorMode:

Reset ErrorBits ErrorMode Tag used

- >= 16#0002_0000 0 WorkingData.StartValue

- >= 16#0002_0000 1 SubstituteOutput

TRUE - - SubstituteOutput

0001_0000

Additional information:
If you want to change the WorkingData.StartValue, first edit the UserData.StartValue and then set the para
meter Validate = TRUE. Do not manually change the data of the WorkingData structure.

0004_0000 Cause of error:
The calculation during the execution of the profile yields an invalid REAL value.
Response to error:
Execution of the profile is aborted.
If Reset = FALSE, the substitute output value that is configured at the ErrorMode tag is output at the Output
parameter and then retained.
If Reset = TRUE, then SubstituteOutput continues to be output at the Output parameter.
Solution:
Validate the REAL values in the WorkingData structure and, if required, start execution of the profile once
again.
Additional information:
If you want to change the profile data, first edit the UserData structure and then set parameter Validate =
TRUE. Do not manually change the data of the Struktur WorkingData.

0008_0000 Cause of error:
The Enable parameter or the Next parameter is set to TRUE, but there is no valid profile data present in the
WorkingData structure.
Response to error:
Parameter Enable and parameter Next are not effective.
If Reset = FALSE, the substitute output value that is configured at the ErrorMode tag is output at the Output
parameter.
If Reset = TRUE, then SubstituteOutput continues to be output at the Output parameter.
Solution:
Input valid profile data in the UserData structure and then set the parameter Validate = TRUE. In this manner,
the profile data is transferred after validation to the WorkingData structure.
Additional information:
If parameter Enable or parameter Next is still set to TRUE, they become effective as soon as valid profile data
is present in the WorkingData structure. A fresh positive edge is not required.
Note that all tags in the UserData and WorkingData structures are not retentive. These tags are initialized
with the start values after each operating state transition of the CPU from STOP to RUN.

498
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.8 RampSoak

ErrorBits
 (DW#16#...)

Description

0010_0000 Cause of error:
The tag (configured with StopMode) which determines the output value when the execution of the profile
has ended or been stopped does not have any valid REAL value.
Response to error:
If Reset = FALSE, the substitute output value that is configured at the ErrorMode tag is output at the Output
parameter and then retained.
If Reset = TRUE, then SubstituteOutput continues to be output at the Output parameter.
Solution:
Make sure that the tag is a valid REAL value (≠ NaN for example, 16#7FFF_FFFF). The tag that is used
depends on StopMode:
• StopMode = 0: WorkingData.StartValue
• StopMode = 1: SubstituteOutput
Additional information:
If you want to change the WorkingData.StartValue, first edit the UserData.StartValue and then set the para
meter Validate = TRUE. Do not manually change the data of the WorkingData structure.

0020_0000 Cause of error:
The tag (configured with StartMode), which determines the output value when the instruction is called for
the first time, or the execution of the profile is started, does not have a valid REAL value.
Response to error:
If Reset = FALSE, the substitute output value that is configured at the ErrorMode tag is output at the Output
parameter and then retained.
If the execution of the profile is activated (Enable = TRUE), it starts initially from this substitute output value.
If Reset = TRUE, then SubstituteOutput continues to be output at the Output parameter.
Solution:
Make sure that the tag is a valid REAL value (≠ NaN for example, 16#7FFF_FFFF). The tag that is used
depends on StartMode:
• StartMode = 0: WorkingData.StartValue
• StartMode = 1: SubstituteOutput
• StartMode = 2: Output
Additional information:
If you want to change the WorkingData.StartValue, first edit the UserData.StartValue and then set the para
meter Validate = TRUE. Do not manually change the data of the WorkingData structure.

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value while the execution of the profile is activated (Enable = TRUE).
Response to error:
Execution of the profile is paused.
If Reset = FALSE, the substitute output value that is configured at the ErrorMode tag is output at the Output
parameter.
If Reset = TRUE, then SubstituteOutput continues to be output at the Output parameter.
Execution of the profile is continued as soon as this error is not present any more. If execution of the profile
is stopped beforehand, the substitute output value is retained.
Solution:
Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the tag CycleTime.Value, set the tag CycleTime.EnableMeasurement
to TRUE.

499

Instructions
10.8 RampSoak

PID control
Function Manual, 11/2023, A5E35300227-AG

10.9 Filter_PT1

10.9.1 Compatibility with CPU and FW
The following table shows which version of Filter_PT1 can be used on which CPU:

CPU FW Filter_PT1
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

10.9.2 Description of Filter_PT1

Description
The instruction Filter_PT1 is a proportional transfer element with a first-order lag, also
referred to as PT1 element.
You can use Filter_PT1 for the following purposes:
• Low-pass filter to attenuate high frequency components, such as noise, in a signal.
• Delay element to smooth signal step changes, for example, from the setpoint or the

output value of a controller.
• Process simulation block to implement a closed control loop within the CPU. This means,

for example, that you can test controllers before commissioning.
You can specify the following filter parameters:
• Proportional gain (Gain)
• Lag time constant (Lag)

NOTE
Differences between a continuous-time PT1 element and Filter_PT1
Because Filter_PT1 is executed in a PLC program, Filter_PT1 is a discrete-time implementation
of a PT1 element. Discrete-time systems cannot have the same properties as the
corresponding continuous-time model. Depending on the cycle time, discrete-time systems
can emulate a continuous-time system well: The smaller and more constant the cycle time,
the smaller the conformity error between the properties of Filter_PT1 and the properties of a
continuous-time PT1 element. The properties of a continuous-time PT1 element are the
transfer function, the time response and the frequency response which are described below.
For a good simulation of the frequency response, a maximum cycle time of one-tenth of the
shortest period duration of the input signal components is recommended. For example, a
signal with frequency components of up to 50 Hz has a minimum period duration of 20 ms.
To achieve good simulation of the frequency response, a maximum cycle time of 2 ms is
recommended for this example.

500
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

Transfer function of a PT1 element
The following formula shows the transfer function of a PT1 element, whereby s is equal to
the Laplace operator:

Time response of a PT1 element
The step response is the response of the output value to a step change of the input value.
The step response for a step change of the input value from 0 to ΔInput can be calculated
using the following formula:

The following figure shows the step response of a PT1 element:

501

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

Frequency response of a PT1 element
The frequency response of a transfer element is described by the amplitude response and the
phase response.
The amplitude response describes the gain of a signal through the transfer element
depending on the angular frequency of the signal.
The following equation describes the amplitude response of a PT1 element:

|G(ω)| Signal gain as a function of the angular frequency
ω Angular frequency

The following figure shows the amplitude response of a PT1 element:

The phase response describes the phase offset of a signal through the transfer element
depending on the angular frequency of the signal.
The following equation describes the phase response of a PT1 element:

φ(ω) Phase offset as a function of the angular frequency
ω Angular frequency

502
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

The following figure shows the phase response of a PT1 element:

Call
In an OB or FC, Filter_PT1 is called as single-instance DB. In an FB, Filter_PT1 can be called as a
single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the Filter_PT1 parameters
directly using the instance DB and commission Filter_PT1 using a watch table of the user
program in the CPU or HMI.

503

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

Startup
The tags in the static area of Filter_PT1 are not retentive. These tags are initialized with the
start values after each operating state transition of the CPU from STOP to RUN. If you change
the actual values in online mode and these values are to be retained after the operating state
transition of the CPU, back up these values in the start values of the data block.
Specify the initialization value for the Output parameter at the StartMode tag.
During the first call of Filter_PT1 after the
• Operating state transition of the CPU
or
• Execution of "Load start values as actual values" (only with "All values" option, not with

"Only setpoints" option)
the initialization value is output at the Output parameter.
For subsequent calls, Filter_PT1 calculates the output value, starting from this initialization
value, based on the input value and the filter configuration.
The following table shows the dependency between the StartMode tag and the Output
parameter. The values in the Output column are output at the Output parameter after the
operating state transition of the CPU.

StartMode Output Example
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 Remains unchanged
Output parameter is retentive
Default setting
Is used when StartMode is not in the
range 0...4

504
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

StartMode Output Example
3 0.0

4 Value of the Input * Gain product

The following applies in addition for all values of the StartMode tag:
• The initialization value is limited to the value range of the data type REAL. Only then is the

initialization value output at the Output parameter.
• If the initialization value is not a valid REAL value, the substitute output value is output at

the Output parameter. The substitute output value is configured by the ErrorMode tag.
The substitute output value is limited to the value range of the data type REAL before it is
output at the Output parameter. If the substitute output value is also not a valid REAL
value, 0.0 is output at the Output parameter. For subsequent calls, the instruction
calculates the output value starting from this substitute output value.

• The StartMode tag is only effective when the Reset = FALSE parameter is set at the first
call of the instruction and at the same time no error with error message ErrorBits ≥
16#0002_0000 is pending. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

Responses in the event of an error
The Filter_PT1 instruction detects different errors that can occur during the calculation of the
output value. The result of this calculation can be output at the output despite a pending
error. If an error prevents correct calculation of the output value, a substitute output value is
output at the output.

Specify the substitute output value that is output if an error occurs that prevents correct
calculation of the output value at the ErrorMode tag.
The following table shows the dependency between the ErrorMode tag and the substitute
output value that is output by the Filter_PT1 at the Output parameter:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

505

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorMode Output
2 The last valid filter output value

0.0, if no valid filter output value exists
Default setting
Is used when ErrorMode is not in the range 0...4

3 0.0

4 Value of the Input * Gain product

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range of the data type REAL. Only then

is the substitute output value output at the Output parameter.
• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =

TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

10.9.3 Operating principle Filter_PT1

Reset response
Filter_PT1 behaves as follows depending on the Reset parameter:
• If the Reset =TRUE parameter is set, the value of the SubstituteOutput parameter is output

at the Output parameter.
• If the Reset = FALSE parameter is set, the value that is output at the Output parameter is

calculated by the filter algorithm.
• When the Reset parameter is set from FALSE to TRUE, the value at the Output parameter

changes directly to the value of the SubstituteOutput parameter. An output jump can
occur during this transition. In addition, the ErrorBits parameter is reset.

• When the Reset parameter is set from TRUE to FALSE, the filtering algorithm is added so
that the transition is bumpless.

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

506
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

Measuring the cycle time automatically
To calculate the output value, Filter_PT1 needs the time that has expired since the last call of
Filter_PT1.
By default, the cycle time is measured automatically and output as of the second call at the
CycleTime.Value tag. Filter_PT1 measures the cycle time for each call of the instruction and
can therefore be used in non-isochronous call cycles, e.g. in OB1.
Note that conditional calls of the instruction, active breakpoints, or the loading of snapshots
as actual values during automatic measurement of the cycle time will extend the cycle time
value. A cycle time that is too long is identified as error with error message ErrorBits =
16#0008_0000.
If measurement of the cycle time returns no valid result, Filter_PT1 calculates the current
output value with the last valid cycle time. In addition, Filter_PT1 outputs an error message at
the ErrorBits parameter.
When you disable automatic measurement of the cycle time by setting the
CycleTime.EnableMeasurement tag = FALSE, you must enter the cycle time manually at the
CycleTime.Value tag. Filter_PT1 checks the CycleTime.Value tag for validity at each call.

Automatic measurement of the cycle time with breakpoints
When breakpoints are active between two calls of Filter_PT1, automatic measurement of the
cycle time results in the actual time that has elapsed between two calls. When one breakpoint
is active, the CPU is in HOLD operating state.

NOTE
The active breakpoints extend the time period between two calls of Filter_PT1.
The longer the time period between two calls, the greater the change of the output value at
the Output parameter.
Furthermore, it is possible that the longer time intervals violate the condition
Lag ≥ CycleTime.Value/2 and an error with the error message ErrorBits = 16#0008_0000 is
therefore identified.

If you do not need the calculation of the output value based on the actual time with active
breakpoints, follow these steps:
• Disable automatic measurement of the cycle time by setting the tag

CycleTime.EnableMeasurement = FALSE.
• Enter the cycle time manually at the CycleTime.Value tag.

507

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

10.9.4 Input parameter Filter_PT1

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents the correct

calculation of the output value, and ErrorMode is configured to the value 1.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset.

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the calculation of the output value is per

formed.

10.9.5 Output parameter Filter_PT1

Parameter Data type Default Description
Output REAL 0.0 Output value

The output value is retentive.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 509) shows which error messages are pending.
ErrorBits is retentive and is reset upon a positive edge at Reset or ErrorAck.

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

10.9.6 Static tags Filter_PT1

Tag Data type Default Description
Gain REAL 1.0 Proportional gain

Lag REAL 25.0 Lag time constant in seconds
Permissible value range: Lag ≥ CycleTime.Value/2

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid filter output value
• 3 = 0.0
• 4 = Input * Gain
Permissible value range: 0 to 4

508
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

Tag Data type Default Description
StartMode INT 2 Selecting the output value for the first call of the instruction

• 0 = Input
• 1 = SubstituteOutput
• 2 = Last output value
• 3 = 0.0
• 4 = Input * Gain
Permissible value range: 0 to 4

CycleTime AuxFct_CycleTime - Cycle time data

CycleTime.Value REAL 0.1 Cycle time in seconds (time interval between two calls)
Permissible value range: CycleTime.Value > 0.0

CycleTime.Enable
Measurement

BOOL TRUE Automatic measurement of the cycle time
• FALSE = Deactivated
• TRUE = Activated

10.9.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For Filter_PT1, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending, Filter_PT1
reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If the value determined by the filter function is output at the output (Reset = FALSE and ErrorBits <
16#0001_0000), check the following tags used in the filter calculation:
• Input
• Gain
• Lag
• CycleTime.Value

509

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the tag ErrorMode:
• Input
• SubstituteOutput
• The product of Input and Gain
When Reset = TRUE, check the SubstituteOutput parameter.

0000_0002 Cause of error:
The measurement of the cycle time yields in an invalid value while the output value is being calculated
(Reset = FALSE).
Response to error:
If a valid value of the cycle time has already been measured, Filter_PT1 calculates the output value based
on the last value of the CycleTime.Value tag.
If no valid value of the cycle time was previously measured, Filter_PT1 still outputs the output value con
figured with the StartMode tag at the Output parameter.

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending, Filter_PT1
reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
Filter_PT1 reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or a different tag that is being used as output value has no valid REAL
value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the tag used as output value is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF). The tag that
is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

FALSE 4 Product of Input and Gain

0001_0000

TRUE - SubstituteOutput

510
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.9 Filter_PT1

ErrorBits
 (DW#16#...)

Description

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Check all tags involved in the calculation of the output value:
• Input
• Gain
• Lag
• CycleTime.Value
These tags have valid values. The calculation of the output value fails in this combination of tags.

0008_0000 Cause of error:
The Lag or Gain tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions for the values of the Gain and Lag tags are met:
• -3.402823e+38 ≤ Gain ≤ 3.402823e+38
• CycleTime.Value/2 ≤ Lag ≤ 3.402823e+38
• The values are valid REAL values (≠ NaN, for example 16#7FFF_FFFF)
Additional information:
Note that the condition CycleTime.Value/2 ≤ Lag may be violated in the following scenarios:
• The time interval between two calls of Filter_PT1 is longer than 2 * Lag, for example, due to condition

al calls in the program sequence or active breakpoints.
• A snapshot of the Filter_PT1 instance DB is loaded into the CPU as actual values, and the snapshot was

created more than 2 * Lag ago.
In these scenarios, an error message ErrorBits = 16#0008_0000 is detected during automatic measure
ment of the cycle time.

0020_0000 Cause of error:
The tag (configured with StartMode) for the initialization of the Output parameter at the first call of the
instruction does not have a valid REAL value.
Response to error:
The substitute output value is output with the first call of the instruction at the Output parameter that is
configured at the ErrorMode tag. For subsequent calls, Filter_PT1 calculates the output value starting from
this substitute output value.
Solution:
Make sure that the tag for initializing the parameter Output is a valid REAL value (≠ NaN e.g.
16#7FFF_FFFF). When Reset = FALSE is set, the initialization takes effect with the first call of the instruc
tion after the operating state transition of the CPU from STOP to RUN. The tag that is used for the initializ
ation of the Output parameter depends on StartMode:
• StartMode = 1: SubstituteOutput
• StartMode = 2: Output
• StartMode = 4: Product of Input and Gain

511

Instructions
10.9 Filter_PT1

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the CycleTime.Value tag, set the CycleTime.EnableMeasurement
tag to TRUE.

10.10 Filter_PT2

10.10.1 Compatibility with CPU and FW
The following table shows which version of Filter_PT2 can be used on which CPU:

CPU FW Filter_PT2
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

512
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

10.10.2 Description of Filter_PT2

Description
The instruction Filter_PT2 is a proportional transfer element with a second-order lag, also
referred to as PT2 element.
You can use Filter_PT2 for the following purposes:
• Low-pass filter to attenuate high frequency components, such as noise, in a signal.
• Delay element to smooth signal step changes, for example, from the setpoint or the

output value of a controller.
• Process simulation block to implement a closed control loop within the CPU. This means,

for example, that you can test controllers before commissioning.
You can specify the following filter parameters:
• Proportional gain (Gain)
• Time constant (TimeConstant)
• Damping (Damping)

NOTE
Differences between a continuous-time PT2 element and Filter_PT2
Because Filter_PT2 is executed in a PLC program, Filter_PT2 is a discrete-time implementation
of a PT2 element. Discrete-time systems cannot have the same properties as the
corresponding continuous-time model. Depending on the cycle time, discrete-time systems
can emulate a continuous-time system well: The smaller and more constant the cycle time,
the smaller the conformity error between the properties of Filter_PT2 and the properties of a
continuous-time PT2 element. The properties of a continuous-time PT2 element are the
transfer function, the time response and the frequency response which are described below.
For a good simulation of the frequency response, a maximum cycle time of one-tenth of the
shortest period duration of the input signal components is recommended. For example, a
signal with frequency components of up to 50 Hz has a minimum period duration of 20 ms.
To achieve good simulation of the frequency response, a maximum cycle time of 2 ms is
recommended for this example.

Transfer function of a PT2 element
The following formula shows the transfer function of a PT2 element, whereby s is equal to
the Laplace operator:

If Damping ≥ 1, the PT2 element can be described as two PT1 elements switched in series:

The lag time constants of the PT1 elements switched in series are calculated as follows:

513

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

Time response of a PT2 element
The step response is the response of the output value to a step change of the input value.
The step response for a step change of the input value from 0 to ΔInput can be calculated
using the following formulas:
The following formula applies to Damping < 1:

The following formula applies to Damping = 1:

The following formula with the above calculated Lag1 and Lag2 applies to Damping > 1:

The following figure shows the step response of a PT2 element with various values for the
damping:

514
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

Frequency response of a PT2 element
The frequency response of a transfer element is described by the amplitude response and the
phase response.
The amplitude response describes the gain of a signal through the transfer element
depending on the angular frequency of the signal.
The following equation describes the amplitude response of a PT2 element:

|G(ω)| Signal gain as a function of the angular frequency
ω Angular frequency

The following figure shows the amplitude response of a PT2 element with a damping of 0.4
and 1.0:

NOTE
When Damping < 1/√2, a resonance peak appears in the amplitude response.

The phase response describes the phase offset of a signal through the transfer element
depending on the angular frequency of the signal.

515

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

The following equation describes the phase response of a PT2 element:

φ(ω) Phase offset as a function of the angular frequency
ω Angular frequency

The following figure shows the phase response of a PT2 element:

Call
In an OB or FC, Filter_PT2 is called as single-instance DB. In an FB, Filter_PT2 can be called as a
single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the Filter_PT2 parameters
directly using the instance DB and commission Filter_PT2 using a watch table of the user
program in the CPU or HMI.

516
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

Startup
The tags in the static area of Filter_PT2 are not retentive. These tags are initialized with the
start values after each operating state transition of the CPU from STOP to RUN. If you change
the actual values in online mode and these values are to be retained after the operating state
transition of the CPU, back up these values in the start values of the data block.
Specify the initialization value for the Output parameter at the StartMode tag.
During the first call of Filter_PT2 after the
• Operating state transition of the CPU
or
• Execution of "Load start values as actual values" (only with "All values" option, not with

"Only setpoints" option)
the initialization value is output at the Output parameter.
For subsequent calls, Filter_PT2 calculates the output value, starting from this initialization
value, based on the input value and the filter configuration.
The following table shows the dependency between the StartMode tag and the Output
parameter. The values in the Output column are output at the Output parameter after the
operating state transition of the CPU.

StartMode Output Example
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 Remains unchanged
Output parameter is retentive
Default setting
Is used when StartMode is not in the
range 0...4

517

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

StartMode Output Example
3 0.0

4 Value of the Input * Gain product

The following applies in addition for all values of the StartMode tag:
• The initialization value is limited to the value range of the data type REAL. Only then is the

initialization value output at the Output parameter.
• If the initialization value is not a valid REAL value, the substitute output value is output at

the Output parameter. The substitute output value is configured by the ErrorMode tag.
The substitute output value is limited to the value range of the data type REAL before it is
output at the Output parameter. If the substitute output value is also not a valid REAL
value, 0.0 is output at the Output parameter. For subsequent calls, the instruction
calculates the output value starting from this substitute output value.

• The StartMode tag is only effective when the Reset = FALSE parameter is set at the first
call of the instruction and at the same time no error with error message ErrorBits ≥
16#0002_0000 is pending. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

Responses in the event of an error
The Filter_PT2 instruction detects different errors that can occur during the calculation of the
output value. The result of this calculation can be output at the output despite a pending
error. If an error prevents correct calculation of the output value, a substitute output value is
output at the output.
Specify the substitute output value that is output if an error occurs that prevents correct
calculation of the output value at the ErrorMode tag.
The following table shows the dependency between the ErrorMode tag and the substitute
output value that is output by the Filter_PT2 at the Output parameter:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

518
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

ErrorMode Output
2 The last valid filter output value

0.0, if no valid filter output value exists
Default setting
Is used when ErrorMode is not in the range 0...4

3 0.0

4 Value of the Input * Gain product

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range of the data type REAL. Only then

is the substitute output value output at the Output parameter.
• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =

TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

10.10.3 Operating principle Filter_PT2

Reset response
Filter_PT2 behaves as follows depending on the Reset parameter:
• If the Reset =TRUE parameter is set, the value of the SubstituteOutput parameter is output

at the Output parameter.
• If the Reset = FALSE parameter is set, the value that is output at the Output parameter is

calculated by the filter algorithm.
• When the Reset parameter is set from FALSE to TRUE, the value at the Output parameter

changes directly to the value of the SubstituteOutput parameter. An output jump can
occur during this transition. In addition, the ErrorBits parameter is reset.

• When the Reset parameter is set from TRUE to FALSE, the filtering algorithm is added so
that the transition is bumpless.

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

519

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

Measuring the cycle time automatically
To calculate the output value, Filter_PT2 needs the time that has expired since the last call of
Filter_PT2.
By default, the cycle time is measured automatically and output as of the second call at the
CycleTime.Value tag. Filter_PT2 measures the cycle time for each call of the instruction and
can therefore be used in non-equidistant call cycles, e.g. in OB1.
Note that conditional calls of the instruction, active breakpoints, or the loading of snapshots
as actual values during automatic measurement of the cycle time will extend the cycle time
value. A cycle time that is too long is identified as error with error message ErrorBits =
16#0008_0000.
If measurement of the cycle time returns no valid result, Filter_PT2 calculates the current
output value with the last valid cycle time. In addition, Filter_PT2 outputs an error message at
the ErrorBits parameter.
When you disable automatic measurement of the cycle time by setting the
CycleTime.EnableMeasurement tag = FALSE, you must enter the cycle time manually at the
CycleTime.Value tag. Filter_PT2 checks the CycleTime.Value tag for validity at each call.

Automatic measurement of the cycle time with breakpoints
When breakpoints are active between two calls of Filter_PT2, automatic measurement of the
cycle time results in the actual time that has elapsed between two calls. When one breakpoint
is active, the CPU is in HOLD operating state.

NOTE
The active breakpoints extend the time period between two calls of Filter_PT2.
The longer the time period between two calls, the greater the change of the output value at
the Output parameter.
Furthermore, it is possible that the longer time intervals violate the condition
TimeConstant ≥ CycleTime.Value/2 and an error with the error message
ErrorBits = 16#0008_0000 is therefore identified.

If you do not need the calculation of the output value based on the actual time with active
breakpoints, follow these steps:
• Disable automatic measurement of the cycle time by setting the

CycleTime.EnableMeasurement tag = FALSE.
• Enter the cycle time manually at the CycleTime.Value tag.

520
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

10.10.4 Input parameter Filter_PT2

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents the correct

calculation of the output value, and ErrorMode is configured to the value 1.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset.

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the calculation of the output value is per

formed.

10.10.5 Output parameter Filter_PT2

Parameter Data type Default Description
Output REAL 0.0 Output value

The output value is retentive.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 522) shows which error messages are pending.
ErrorBits is retentive and is reset upon a positive edge at Reset or ErrorAck.

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

10.10.6 Static tags Filter_PT2

Tag Data type Default Description
Gain REAL 1.0 Proportional gain

TimeConstant REAL 25.0 Time constant in seconds
Permissible value range: TimeConstant ≥ CycleTime.Value/2

Damping REAL 1.0 Damping
Permissible value range: Damping > 0.0

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid filter output value
• 3 = 0.0
• 4 = Input * Gain
Permissible value range: 0 to 4

521

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
StartMode INT 2 Selecting the output value for the first call of the instruction

• 0 = Input
• 1 = SubstituteOutput
• 2 = Last output value
• 3 = 0.0
• 4 = Input * Gain
Permissible value range: 0 to 4

CycleTime AuxFct_CycleTime - Cycle time data

CycleTime.Value REAL 0.1 Cycle time in seconds (time interval between two calls)
Permissible value range: CycleTime.Value > 0.0

CycleTime.Enable
Measurement

BOOL TRUE Automatic measurement of the cycle time
• FALSE = Deactivated
• TRUE = Activated

10.10.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For Filter_PT2, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending, Filter_PT2
reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If the value determined by the filter function is output at the output (Reset = FALSE and ErrorBits <
16#0001_0000), check the following tags used in the filter calculation:
• Input
• Gain
• TimeConstant
• Damping
• CycleTime.Value

522
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

ErrorBits
 (DW#16#...)

Description

When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the tag ErrorMode:
• Input
• SubstituteOutput
• The product of Input and Gain
When Reset = TRUE, check the SubstituteOutput parameter.

0000_0002 Cause of error:
The measurement of the cycle time yields in an invalid value while the output value is being calculated
(Reset = FALSE).
Response to error:
If a valid value of the cycle time has already been measured, Filter_PT2 calculates the output value based
on the last value of the CycleTime.Value tag.
If no valid value of the cycle time was previously measured, Filter_PT2 still outputs the output value con
figured with the StartMode tag at the Output parameter.

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending, Filter_PT2
reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
Filter_PT2 reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or a different tag that is being used as output value has no valid REAL
value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the tag used as output value is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF). The tag that
is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

FALSE 4 Product of Input and Gain

0001_0000

TRUE - SubstituteOutput

523

Instructions
10.10 Filter_PT2

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Check all tags involved in the calculation of the output value:
• Input
• Gain
• TimeConstant
• Damping
• CycleTime.Value
These tags have valid values. The calculation of the output value fails in this combination of tags.

0008_0000 Cause of error:
The Gain, TimeConstant or Damping tag has an invalid value, while the calculation of the output value is
being performed (Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions for the values of the Gain, TimeConstant and Damping tags are met:
• -3.402823e+38 ≤ Gain ≤ 3.402823e+38
• CycleTime.Value/2 ≤ TimeConstant ≤ 3.402823e+38
• 0.0 < Damping ≤ 3.402823e+38
• The values are valid REAL values (≠ NaN, for example 16#7FFF_FFFF)
Additional information:
Note that the condition CycleTime.Value/2 ≤ TimeConstant may be violated in the following scenarios:
• The time interval between two calls of Filter_PT2 is longer than 2 * TimeConstant, for example, due to

conditional calls in the program sequence or active breakpoints.
• A snapshot of the Filter_PT2 instance DB is loaded into the CPU as actual values, and the snapshot was

created more than 2 * TimeConstant ago.
In these scenarios, an error message ErrorBits = 16#0008_0000 is detected during automatic measure
ment of the cycle time.

0020_0000 Cause of error:
The tag (configured with StartMode) for the initialization of the Output parameter at the first call of the
instruction does not have a valid REAL value.
Response to error:
The substitute output value is output with the first call of the instruction at the Output parameter that is
configured at the ErrorMode tag. For subsequent calls, Filter_PT2 calculates the output value starting from
this substitute output value.
Solution:

524
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.10 Filter_PT2

ErrorBits
 (DW#16#...)

Description

Make sure that the tag for initializing the parameter Output is a valid REAL value (≠ NaN e.g.
16#7FFF_FFFF). When Reset = FALSE is set, the initialization takes effect with the first call of the instruc
tion after the operating state transition of the CPU from STOP to RUN. The tag that is used for the initializ
ation of the Output parameter depends on StartMode:
• StartMode = 1: SubstituteOutput
• StartMode = 2: Output
• StartMode = 4: Product of Input and Gain

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the CycleTime.Value tag, set the CycleTime.EnableMeasurement
tag to TRUE.

10.11 Filter_DT1

10.11.1 Compatibility with CPU and FW
The following table shows which version of Filter_DT1 can be used on which CPU:

CPU FW Filter_DT1
S7-1200 as of V4.2 V1.0

S7-1500-based CPUs as of version V2.0 V1.0

525

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

10.11.2 Description of Filter_DT1

Description
The instruction Filter_DT1 is a differentiator with a first-order lag, also referred to as DT1
element.
You can use Filter_DT1 for the following purposes:
• High-pass filter to attenuate low frequency components in a signal.
• Differentiator to calculate the derivation of a signal, such as the speed from position

values.
• Feedforward control to lessen the effect of measurable disturbances on the process.
You can specify the following filter parameters:
• Derivative action time (Td)
• Lag time constant (Lag)

NOTE
Differences between a continuous-time DT1 element and Filter_DT1
Because Filter_DT1 is executed in a PLC program, Filter_DT1 is a discrete-time
implementation of a DT1 element. Discrete-time systems cannot have the same properties as
the corresponding continuous-time model. Depending on the cycle time, discrete-time
systems can emulate a continuous-time system well: The smaller and more constant the cycle
time, the smaller the conformity error between the properties of Filter_DT1 and the
properties of a continuous-time DT1 element. The properties of a continuous-time DT1
element are the transfer function, the time response and the frequency response which are
described below.
For a good simulation of the frequency response, a maximum cycle time of one-tenth of the
shortest period duration of the input signal components is recommended. For example, a
signal with frequency components of up to 50 Hz has a minimum period duration of 20 ms.
To achieve good simulation of the frequency response, a maximum cycle time of 2 ms is
recommended for this example.

Transfer function of a DT1 element
The following formula shows the transfer function of a DT1 element, whereby s is equal to
the Laplace operator:

526
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

Time response of a DT1 element
The step response is the response of the output value to a step change of the input value.
The step response for a step change of the input value from 0 to ΔInput can be calculated
using the following formula:

The following figure shows the step response of a DT1 element:

To disable the lag, set the Lag parameter to the minimum value CycleTime.Value / 2. In this
case, changes to the input value are multiplied by Td / CycleTime.Value and output at the
Output parameter. After one cycle, the output value is 0.0.

527

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

The following figure shows the step response in case of Lag = CycleTime.Value / 2:

Frequency response of a DT1 element
The frequency response of a transfer element is described by the amplitude response and the
phase response.
The amplitude response describes the gain of a signal through the transfer element
depending on the angular frequency of the signal.
The following equation describes the amplitude response of a DT1 element:

|G(ω)| Signal gain as a function of the angular frequency
ω Angular frequency

528
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

The following figure shows the amplitude response of a DT1 element:

The phase response describes the phase offset of a signal through the transfer element
depending on the angular frequency of the signal.
The following equation describes the phase response of a DT1 element:

φ(ω) Phase offset as a function of the angular frequency
ω Angular frequency

529

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

The following figure shows the phase response of a DT1 element:

Call
In an OB or FC, Filter_DT1 is called as single-instance DB. In an FB, Filter_DT1 can be called as
a single-instance DB, as a multi-instance DB, and as a parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the Filter_DT1 parameters
directly using the instance DB and commission Filter_DT1 using a watch table of the user
program in the CPU or HMI.

530
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

Startup
The tags in the static area of Filter_DT1 are not retentive. These tags are initialized with the
start values after each operating state transition of the CPU from STOP to RUN. If you change
the actual values in online mode and these values are to be retained after the operating state
transition of the CPU, back up these values in the start values of the data block.
Specify the initialization value for the Output parameter at the StartMode tag.
During the first call of Filter_DT1 after the
• Operating state transition of the CPU
or
• Execution of "Load start values as actual values" (only with "All values" option, not with

"Only setpoints" option)
the initialization value is output at the Output parameter.
For subsequent calls, Filter_DT1 calculates the output value, starting from this initialization
value, based on the input value and the filter configuration.
The following table shows the dependency between the StartMode tag and the Output
parameter. The values in the Output column are output at the Output parameter after the
operating state transition of the CPU.

StartMode Output Example
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 Remains unchanged
Output parameter is retentive
Default setting
Is used when StartMode is not in the
range 0...3

3 0.0

531

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

The following applies in addition for all values of the StartMode tag:
• The initialization value is limited to the value range of the data type REAL. Only then is the

initialization value output at the Output parameter.
• If the initialization value is not a valid REAL value, the substitute output value is output at

the Output parameter. The substitute output value is configured by the ErrorMode tag.
The substitute output value is limited to the value range of the data type REAL before it is
output at the Output parameter. If the substitute output value is also not a valid REAL
value, 0.0 is output at the Output parameter. For subsequent calls, the instruction
calculates the output value starting from this substitute output value.

• The StartMode tag is only effective when the Reset = FALSE parameter is set at the first
call of the instruction and at the same time no error with error message ErrorBits ≥
16#0002_0000 is pending. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

Responses in the event of an error
The Filter_DT1 instruction detects different errors that can occur during the calculation of the
output value. The result of this calculation can be output at the output despite a pending
error. If an error prevents correct calculation of the output value, a substitute output value is
output at the output.
Specify the substitute output value that is output if an error occurs that prevents correct
calculation of the output value at the ErrorMode tag.
The following table shows the dependency between the ErrorMode tag and the substitute
output value that is output by the Filter_DT1 at the Output parameter:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 The last valid filter output value
0.0, if no valid filter output value exists
Default setting
Is used when ErrorMode is not in the range 0...3

3 0.0

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range of the data type REAL. Only then

is the substitute output value output at the Output parameter.
• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =

TRUE parameter is set, the value of the SubstituteOutput parameter is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.

532
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

10.11.3 Operating principle Filter_DT1

Reset response
Filter_DT1 behaves as follows depending on the Reset parameter:
• If the Reset =TRUE parameter is set, the value of the SubstituteOutput parameter is output

at the Output parameter.
• If the Reset = FALSE parameter is set, the value that is output at the Output parameter is

calculated by the filter algorithm.
• When the Reset parameter is set from FALSE to TRUE, the value at the Output parameter

changes directly to the value of the SubstituteOutput parameter. An output jump can
occur during this transition. In addition, the ErrorBits parameter is reset.

• When the Reset parameter is set from TRUE to FALSE, the filtering algorithm is added so
that the transition is bumpless.

Enable behavior EN/ENO
If one of the following conditions is met, enable output ENO is set to FALSE.
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

Measuring the cycle time automatically
To calculate the output value, Filter_DT1 needs the time that has expired since the last call of
Filter_DT1.
By default, the cycle time is measured automatically and output as of the second call at the
CycleTime.Value tag. Filter_DT1 measures the cycle time for each call of the instruction and
can therefore be used in non-isochronous call cycles, e.g. in OB1.
Note that conditional calls of the instruction, active breakpoints, or the loading of snapshots
as actual values during automatic measurement of the cycle time will extend the cycle time
value. A cycle time that is too long is identified as error with error message ErrorBits =
16#0008_0000.
If measurement of the cycle time returns no valid result, Filter_DT1 calculates the current
output value with the last valid cycle time. In addition, Filter_DT1 outputs an error message at
the ErrorBits parameter.
When you disable automatic measurement of the cycle time by setting the
CycleTime.EnableMeasurement tag = FALSE, you must enter the cycle time manually at the
CycleTime.Value tag. Filter_DT1 checks the CycleTime.Value tag for validity at each call.

533

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

Automatic measurement of the cycle time with breakpoints
When breakpoints are active between two calls of Filter_DT1, automatic measurement of the
cycle time results in the actual time that has elapsed between two calls. When one breakpoint
is active, the CPU is in HOLD operating state.

NOTE
The active breakpoints extend the time period between two calls of Filter_DT1.
The longer the time period between two calls, the greater the change of the output value at
the Output parameter.
Furthermore, it is possible that the longer time intervals violate the conditions
Lag ≥ CycleTime.Value/2 or Td ≥ CycleTime.Value. An error is then detected with the error
message ErrorBits = 16#0008_0000 .

If you do not need the calculation of the output value based on the actual time with active
breakpoints, follow these steps:
• Disable automatic measurement of the cycle time by setting the

CycleTime.EnableMeasurement tag = FALSE.
• Enter the cycle time manually at the CycleTime.Value tag.

10.11.4 Input parameter Filter_DT1

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as the substitute output value when
• Reset = TRUE
or
• An error with error message ErrorBits ≥ 16#0001_0000 prevents the correct

calculation of the output value, and ErrorMode is configured to the value 1.

ErrorAck BOOL FALSE Deletes the error messages
• Edge FALSE -> TRUE

ErrorBits is reset.

Reset BOOL FALSE Performs a restart of the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value SubstituteOutput

is output at the output.
• As long as Reset is set to FALSE, the calculation of the output value is per

formed.

10.11.5 Output parameter Filter_DT1

Parameter Data type Default Description
Output REAL 0.0 Output value

The output value is retentive.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 536) shows which error messages are pending.
ErrorBits is retentive and is reset upon a positive edge at Reset or ErrorAck.

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

534
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

10.11.6 Static tags Filter_DT1

Tag Data type Default Description
Td REAL 25.0 Derivative action time in seconds

Permissible value range: Td ≥ CycleTime.Value

Lag REAL 5.0 Lag time constant in seconds
Permissible value range: Lag ≥ CycleTime.Value/2

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid filter output value
• 3 = 0.0
Permissible value range: 0 to 3

StartMode INT 2 Selecting the output value for the first call of the instruction
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last output value
• 3 = 0.0
Permissible value range: 0 to 3

CycleTime AuxFct_CycleTime - Cycle time data

CycleTime.Value REAL 0.1 Cycle time in seconds (time interval between two calls)
Permissible value range: CycleTime.Value > 0.0

CycleTime.Enable
Measurement

BOOL TRUE Automatic measurement of the cycle time
• FALSE = Deactivated
• TRUE = Activated

535

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

10.11.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
For Filter_DT1, the errors output at the ErrorBits parameter are divided into two categories:
• Errors with error messages ErrorBits < 16#0001_0000
• Errors with error messages ErrorBits ≥ 16#0001_0000

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 are pending, Filter_DT1
reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If the value determined by the filter function is output at the output (Reset = FALSE and ErrorBits <
16#0001_0000), check the following tags used in the filter calculation:
• Input
• Td
• Lag
• CycleTime.Value
When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the tag ErrorMode:
• Input
• SubstituteOutput
When Reset = TRUE, check the SubstituteOutput parameter.

0000_0002 Cause of error:
The measurement of the cycle time yields in an invalid value while the output value is being calculated
(Reset = FALSE).
Response to error:
If a valid value of the cycle time has already been measured, Filter_DT1 calculates the output value based
on the last value of the CycleTime.Value tag.
If no valid value of the cycle time was previously measured, Filter_DT1 still outputs the output value con
figured with the StartMode tag at the Output parameter.

536
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 are pending, Filter_DT1
reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
Filter_DT1 reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or a different tag that is being used as output value has no valid REAL
value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the tag used as output value is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF). The tag that
is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

0001_0000

TRUE - SubstituteOutput

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Check all tags involved in the calculation of the output value:
• Input
• Td
• Lag
• CycleTime.Value
These tags have valid values. The calculation of the output value fails in this combination of tags.

537

Instructions
10.11 Filter_DT1

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0008_0000 Cause of error:
The Lag or Td tag has an invalid value, while the calculation of the output value is being performed (Reset
= FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions for the values of the Td and Lag tags are met:
• CycleTime.Value ≤ Td ≤ 3.402823e+38
• CycleTime.Value/2 ≤ Lag ≤ 3.402823e+38
• The values are valid REAL values (≠ NaN, for example 16#7FFF_FFFF)
Additional information:
Note that the conditions CycleTime.Value/2 ≤ Lag and CycleTime.Value ≤ Td may be violated in the follow
ing scenarios:
• The time interval between two calls of Filter_DT1 is longer than 2 * Lag or Td, for example, due to

conditional calls in the program sequence or active breakpoints.
• A snapshot of the Filter_DT1 instance DB is loaded into the CPU as actual values, and the snapshot was

created more than 2 * Lag or Td ago.
In these scenarios, an error message ErrorBits = 16#0008_0000 is detected during automatic measure
ment of the cycle time.

0020_0000 Cause of error:
The tag (configured with StartMode) for the initialization of the Output parameter at the first call of the
instruction does not have a valid REAL value.
Response to error:
The substitute output value is output with the first call of the instruction at the Output parameter that is
configured at the ErrorMode tag. For subsequent calls, Filter_DT1 calculates the output value starting
from this substitute output value.
Solution:
Make sure that the tag for initializing the parameter Output is a valid REAL value (≠ NaN e.g.
16#7FFF_FFFF). When Reset = FALSE is set, the initialization takes effect with the first call of the instruc
tion after the operating state transition of the CPU from STOP to RUN. The tag that is used for the initializ
ation of the Output parameter depends on StartMode:
• StartMode = 1: SubstituteOutput
• StartMode = 2: Output

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the CycleTime.Value tag, set the CycleTime.EnableMeasurement
tag to TRUE.

538
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.11 Filter_DT1

10.12 Filter_Universal

10.12.1 Compatibility with CPU and FW
The following table shows which version of Filter_Universal can be used on which CPU:

CPU FW Filter_Universal
S7-1500-based CPUs as of version V2.0 V1.0

10.12.2 Description Filter_Universal

Description
The Filter_Universal instruction is a configurable filter of the order 1 to 10.
It is used to manipulate a signal in such a way that specific frequency components of this
signal are either allowed through or attenuated.
Filter_Universal can be used for the following purposes:
• High-pass filter
• Low-pass filter
• Bandpass filter
• Bandstop filter
The following filter parameters can be specified based on the corresponding tags in order to
achieve the desired filter behavior:
• Type (Type tag)
• Frequency (Frequency tag)
• Bandwidth (Bandwidth tag)
• Order (Order tag)
• Characteristic (Characteristic tag)
An extended description of the filter parameters and corresponding tags can be found in
section Filter parameters (Page 541).

Call
Filter_Universal requires a constant cycle time and therefore needs to be called in a cyclic
interrupt OB.
In an OB or FC, Filter_Universal is called as a single-instance DB. In a function
block, Filter_Universal can be called as a single-instance DB, as a multi-instance DB, and as a
parameter instance DB.
When the instruction is called, no technology object is created. No parameter assignment
interface or commissioning interface is available. You assign the Filter_Universal parameters
directly using the instance DB and commission Filter_Universal using a watch table of the
user program in the CPU or HMI.

539

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

Startup
The tags in the static area of Filter_Universal are not retentive. These tags are initialized with
the start values after each operating state transition of the CPU from STOP to RUN. If you
change the actual values in online mode and these values are to be retained after the
operating state transition of the CPU from STOP to RUN, back up these values in the start
values of the data block.
With the tag StartMode (Page 546), you can define the start behavior of the Filter_Universal
instruction at the first call after the operating state transition of the CPU from STOP to RUN.

Responses in the event of an error
If the output value cannot be correctly calculated, the Filter_Universalinstruction instead
outputs a substitute output value and an error with an error message
ErrorBits >= 16#0002_0000. You can use the tag ErrorMode (Page 553) to define the
substitute output value as follows:

ErrorMode Output
0 Value of the Input parameter

1 Value of the SubstituteOutput parameter

2 Last valid filter output value
0.0, if no valid filter output value exists.

3 0.0

The following applies in addition for all values of the ErrorMode tag:
• If the substitute output value is not a valid REAL value, 0.0 is output as output value.
• The substitute output value is limited to the value range -3.402823e+38 ..

+3.402823e+38 of the data type REAL. Only then is the substitute output value output at
the Output parameter.

• The ErrorMode tag is only effective when the Reset = FALSE parameter is set. If the Reset =
TRUE parameter is set, the value of the SubstituteOutput parameter or 0.0 is output at the
Output parameter.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error is set to FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
retentive and is reset only by a positive edge at the Reset or ErrorAck parameter.
Filter_Universal returns to output value calculation through the filter algorithm as soon as
there are no more pending errors with error messages ErrorBits ≥ 16 0002_0000. Switchover
depends on the filter type:
• For high-pass and bandpass filters (Type = 1 or 2), the filter algorithm is set up as if it were

in a steady state with Output = 0.0. If the Input parameter remains constant, the output
value will jump to Output = 0.0. If the Input parameter changes, the output value jumps to
an appropriate value.

• For low-pass and bandstop filters (Type = 0 or 3), the filter algorithm is set up as if it were
in a steady state with Output = SubstituteOutput. Switchover is bumpless.

540
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

10.12.3 Operating principle Filter_Universal

10.12.3.1 Filter parameters

The filter parameters Type, Frequency, Bandwidth, Characteristic and Order can be specified
based on the corresponding tags in order to achieve the desired filter behavior.

Filter type
The filter type determines the general transfer behavior for the different frequency
components of the input signal. It is defined by the Type tag.
The following table shows the different filter types:

Type Description Application example
0 Low-pass filter:

The filter allows frequency components below the
cutoff frequency through, and attenuates frequency
components above the cutoff frequency.

Noise reduction at a measured input value to obtain
smoother signal characteristics

1 High-pass filter:
The filter allows frequency components above the
cutoff frequency through, and attenuates frequency
components below the cutoff frequency.

Suppression of DC or low frequency components, e.g. DC
component in signal

2 Bandpass filter:
The filter allows frequency components within a spe
cific range around the center frequency through, and
attenuates frequency components outside of this
range.

Determination of the wanted signal with a specific fre
quency range from a signal that contains additional fre
quency components

3 Bandstop filter:
The filter attenuates frequency components within a
specific range around the center frequency, and allows
frequency components outside of this range through.

Attenuation of interferences in a specific frequency range,
e.g. interruptions due to the line frequency

541

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

Frequency and bandwidth
For low-pass and high-pass filters, the cutoff frequency is determined by the Frequency tag.
The cutoff frequency is the frequency at which the gain is reduced to 1/√2≈0.707≈−3dB. A
sinusoidal input signal with amplitude 1.0 and a frequency equal to the cutoff frequency will
result in a sinusoidal output signal with amplitude 0.707.
The ratio of output value to input value (gain) depending on the frequency can be shown in
the amplitude response. The value 0 dB corresponds to a gain = 1.0.
The following figure shows the amplitude response of a low-pass filter with
Frequency = 100 Hz (Order = 10, Characteristic = 2):

Bandpass and bandstop filters have a low and a high cutoff frequency whose position is
defined by the center frequency and bandwidth. The following table shows the
corresponding tags that are configured for such filters:

Tag Description
Frequency Determines the center frequency that is the geometrical mean of the low and high cutoff fre

quency. In logarithmic frequency scaling, the center frequency is midway between the low and high
cutoff frequency.

Bandwidth The bandwidth determines the difference between the low and high cutoff frequency. It defines the
width of the frequency range that is attenuated or allowed through.

542
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

The following figure shows the amplitude response of a bandpass filter with Frequency = 100
Hz and different values for the tag Bandwidth (Order = 10, Characteristic = 2):

The maximum cutoff or center frequency that can be used depends on the cycle time. The
permitted range of values is Frequency < 0.5 / CycleTime.Value.
The maximum bandwidth that can be used depends on the cycle time and the center
frequency. The permitted range of values is Bandwidth < 0.5 / CycleTime.Value - Frequency.

NOTE
To avoid aliasing, the sampling rate for the Filter_Universal (= 1 / cycle time) must be at least
double the maximum frequency of the processed signals or signal components. The
recommendation is to set a cycle time that is lower than this limit.
Example: A signal with frequency components up to 100 Hz requires a sampling rate greater
than 200 Hz. This corresponds to a maximum cycle time of 5 ms, but the recommendation is
to set a lower value.

543

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

Order
The filter order determines how quickly attenuation increases beyond the cutoff frequency.
This corresponds to the slope of the amplitude response beyond the cutoff frequency. The
filter order is defined by the Order tag.
With a higher-order filter:
• The same frequency is attenuated more strongly beyond the cutoff frequency. The

amplitude response shows a higher slope.
• Increases the execution time of Filter_Universal.
• The overshoot of the step response increases after an input jump for Butterworth and

Chebyshev filter characteristic (Characteristic tag = 1 or 2).
For bandpass and bandstop filters, the recommendation is to use only higher order filters;
otherwise, the desired filter effect in the frequency range around the center frequency may
not be reached.
Values from 0 to 10 can be configured at the Order tag for the filter order.
With the setting Order = 0, the filter has no effect and Output = Input.

Characteristic
The filter characteristic is defined by the Characteristic tag.
This affects:
• The ripple of the amplitude response in the passband
• The slope of the amplitude response beyond the cutoff frequency (how fast attenuation

increases)
• The overshoot in the step response after an input jump
Three characteristics can be configured for Filter_Universal based on the Characteristic tag:

Characteristic Description
0 Bessel:

This filter has a flat amplitude response in the passband. The slope of the amplitude response bey
ond the cutoff frequency is smaller as compared to the Butterworth filter and Chebyshev filter. The
step response only shows a small overshoot.

1 Butterworth:
This filter has a flat amplitude response in the passband. The slope of the amplitude response bey
ond the cutoff frequency is greater as compared to the Bessel filter and smaller as compared to the
Chebyshev filter. The overshoot of the step response is greater as compared to the Bessel filter and
smaller as compared to the Chebyshev filter.

2 Chebyshev Type I:
This filter has a 0.5 dB ripple of the amplitude response in the passband. The slope of the amplitude
response beyond the cutoff frequency is greater as compared to the Bessel filter and to the Butter
worth filter. The step response shows a greater overshoot as compared to the Bessel filter and the
Butterworth filter.

544
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

The following figure shows the effect of different order and characteristic values on the
amplitude response of the low-pass filter:

Changing filter parameters
Before the filter algorithm calculates the output value, Filter_Universal needs to determine
the filter coefficients once based on the filter parameters. This is triggered in the following
situations:
• On the first execution after the change of operating state of the CPU from STOP to RUN
• Every time the filter parameters are changed
• When "Load start values as actual values" is executed
The following conditions for the filter parameters are checked in this process:
• 0.0 < Frequency < 0.5 / CycleTime.Value
• 0.0 ≤ Bandwidth < 0.5 / CycleTime.Value - Frequency
• 0 ≤ Type ≤ 3
• 0 ≤ Characteristic ≤ 2
• 0 ≤ Order ≤ 10

545

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

If one of these conditions is not met and Reset = FALSE at the same time, correct calculation
of the output value by the filter algorithm is not possible. In this case, an error message is
output and a substitute output value is output at the Output parameter until all filter
parameters have a valid value.
When all values are valid, the filter coefficients are determined once and saved internally for
the filter algorithm calculation.
The reaction of the output value to valid changes to the filter parameters depends on the
filter type:
• For high-pass and bandpass filters (Type = 1 or 2), the filter algorithm is set up as if it were

in a steady state with Output = 0.0. If the Input parameter remains constant, the output
value will jump to Output = 0.0. If the Input parameter changes, the output value jumps to
an appropriate value.

• For low-pass and bandstop filters (Type = 0 or 3), the filter algorithm is set up as if it were
in a steady state with Output = SubstituteOutput. Switchover is bumpless.

For time-critical applications, it should be taken into account that determining the filter
coefficient requires a multiple of the execution time for calculating the filter algorithm.

10.12.3.2 Initializing output values

The first value of the Output parameter is initialized after the following actions for the first
execution:
• Operating state change of the CPU from STOP to RUN
• Execution of "Load start values as actual values" with the option "All values"
The first value of the Output parameter depends on the filter type:
• For high-pass and bandpass filters (Type = 1 or 2), the first value of the parameter Output

= 0.0.
• For low-pass and bandstop filters (Type = 0 or 3), the first value of the Output parameter

can be configured via the StartMode tag.
For subsequent calls, Filter_Universal calculates the output value, starting from this
initialization value, with consideration of the input value and the filter parameters.
The following settings of the StartMode tag are possible for low-pass and bandstop filters:
• StartMode = 0

The Output parameter assumes the value of the Input parameter.

546
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

• StartMode = 1
The Output parameter assumes the value of the SubstituteOutput parameter.

• StartMode = 2
The Output parameter remains unchanged.

• StartMode = 3
The Output parameter adopts the value 0.0.

The following applies in addition for all values of the StartMode tag:
• The StartMode tag and the filter parameters are not retentive. These tags are initialized

with the start values after each operating state transition of the CPU from STOP to RUN.
Make sure that at the first call of the Filter_Universal instruction, after the operating state
transition of the CPU from STOP to RUN, these tags have suitable values to achieve the
desired behavior.

• The value selected through StartMode is limited to the value range of the REAL data type.
Only then is it output at the Output parameter.

• If the value selected through StartMode is not a valid REAL value, the substitute output
value is output at the Output parameter. The substitute output value is configured by
means of the ErrorMode tag and is limited to the value range of the REAL data type. If the
substitute output value is also not a valid REAL value, 0.0 is output at the Output
parameter. For subsequent calls, the instruction calculates the output value starting from
this substitute output value.

• Only if the parameter Reset = FALSE has been set and, at the same time, there is no error
pending with an error message ErrorBits ≥ 16#0002_0000, does the StartMode tag act on
the Output parameter. If the Reset = TRUE parameter is set, the value of the
SubstituteOutput parameter is output at the Output parameter. If an error with error
message ErrorBits ≥ 16#0002_0000 is pending, the substitute output value that is
configured at the ErrorMode tag is output at the Output parameter.

547

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

10.12.3.3 Final value in steady state

If the input value is constant, the output value of the Filter_Universal should also reach a
constant final value after some time:
• Output = 0.0 for high-pass and bandpass filters (Type = 1 or 2)
• Output = Input for low-pass and bandstop filters (Type = 0 or 3)
The limited accuracy of the floating point arithmetic can have the result that this final value is
not reached exactly.
This is more common with odd ordered filters (tag Order = 1, 3, 5, 7, or 9) than with even
ordered filters.
In addition to choosing a even filter order, setting the tag FinalValueMode = 1 can help to
achieve the final value. If the absolute value of the output value does not change for several
cycles, this setting converts the output value to the final value. This option is only effective
with a constant input value.
Using the FinalValueMode = 1 option can almost double the calculation time of the filter
algorithm. The effect on the execution time depends on the filter parameters, input value and
cycle time. For time-critical applications, you can check whether use of the FinalValueMode =
1 tag is necessary or whether the behavior with FinalValueMode = 0 is adequate.
Depending on the filter parameters, input value and cycle time, it is possible that the final
value is already reached exactly with the FinalValueMode = 0 option and the
FinalValueMode = 1 option is not necessary.
Example:
The following table shows the effect of the FinalValueMode tag on the output value of a low-
pass filter with Frequency = 120.0, Order = 1, Characteristic = 2 and CycleTime.Value = 0.001,
on an input jump from 1.0 to 0.0:

Time in seconds Input Output with FinalValueMode = 0 Output with FinalValueMode = 1
-0.001 1.0 1.0000000 1.0000000

0.000 0.0 0.7163693 0.7163693

0.001 0.0 0.3100007 0.3100007

… 0.0

0.075 0.0 -4.597156E-17 -4.597156E-17

0.076 0.0 4.597156E-17 4.597156E-17

0.077 0.0 -4.597156E-17 -4.597156E-17

0.078 0.0 4.597156E-17 0.0000000

0.079 0.0 -4.597156E-17 0.0000000

... 0.0 +/-4.597156E-17 0.0000000

548
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

10.12.3.4 Use in time-critical applications

The execution time of Filter_Universal depends to a significant effect on its configuration.
With a standard configuration (CycleTime.EnableDetection = TRUE, FinalValueMode = 1), it is
not possible for all CPU types to execute a higher order filter in the fastest possible cycle time.
When Filter_Universal is used for high signal frequencies, such fast cycle times can be
necessary. For example, signal frequencies of up to 2 kHz require a cycle time of at most
250 µsec.
The following adjustments to the configuration can help to reduce the execution time of
Filter_Universal in a time-critical application:
• Reduction of the filter order (Order tag) if the desired filter behavior can still be achieved

in this way.
• Setting of FinalValueMode to 0 if this does not cause a relevant difference in the filter

behavior for constant input values as compared to FinalValueMode = 1.
• Setting of CycleTime.EnableDetection to FALSE and manual specification of the

CycleTime.Value tag. This only has an effect on the execution time of the first call, or after
the filter parameters have been changed.

The current operating state of Filter_Universal has an effect on the execution time.
Determining the filter coefficients during the first execution or after a change to the filter
parameters requires a multiple of the execution time required to calculate the filter algorithm
with constant parameters.

10.12.3.5 Call environment and automatic detection of the cycle time

To calculate the output value, Filter_Universal requires a constant cycle time and therefore
needs to be called in a cyclic interrupt OB. With the default configuration, Filter_Universal
detects the cycle time of the OB automatically and saves it in the CycleTime.Value tag. This
happens in the following situations:
• On the first execution after the change of operating state of the CPU from STOP to RUN
• Every time the filter parameters are changed
• When "Load start values as actual values" is executed
If the automatic detection of the cycle time does not return a valid result or Filter_Universal is
not called in a cyclic interrupt OB, correct calculation of the Output parameter is not possible.
In this case, an error message is output and a substitute output value is output at the
parameter until until a valid cycle time of a cyclic interrupt OB is detected.
Please note that changes to the call rate due to conditional calls of Filter_Universal lead to
deviations between the detected and actual cycle time, which influences the filter behavior.
Therefore, avoid conditional calls of Filter_Universal.
Active breakpoints or the loading of snapshots as actual values have no effect on the
automatic detection of the cycle time.
When you disable automatic detection of the cycle time by setting the
CycleTime.EnableDetection = FALSE tag, you must enter the cycle time manually at the
CycleTime.Value tag. Filter_Universal checks the Variable CycleTime.Value tag for validity at
each call.
Deactivating the automatic detection of the cycle time reduces the execution time of the
Filter_Universal, which can be helpful for time-critical applications. Calls outside of a cyclic
interrupt OB can have a negative effect on the filter behavior, because the actual cycle time is
not constant in this case.

549

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

10.12.3.6 Reset response

The Filter_Universal instruction behaves as follows depending on the Reset parameter:
• If the parameter Reset = TRUE is set, the value of the SubstituteOutput parameter is output

at the Output parameter.
• If the parameter Reset = FALSE, the value that is output at the Output parameter is

calculated by the filter algorithm.
• When the Reset parameter is set from FALSE to TRUE, the value at the Output parameter

changes directly to the value of the SubstituteOutput parameter. An output jump can
occur during this transition. In addition, the ErrorBits parameter is reset.

• If the Reset parameter is set from TRUE to FALSE, the behavior depends on the filter type:
– For high-pass and bandpass filters (Type = 1 or 2), the filter algorithm is set up as if it

were in a steady state with Output = 0.0. If the Input parameter remains constant, the
output value will jump to Output = 0.0. If the Input parameter changes, the output
value jumps to an appropriate value.

– For low-pass and bandstop filters (Type = 0 or 3), the filter algorithm is set up as if it
were in a steady state with Output = SubstituteOutput. Switchover is bumpless.

10.12.3.7 Enable behavior EN/ENO

If one of the following conditions is met, enable output ENO is set to FALSE:
• Enable input EN is set to TRUE and the Output parameter is specified by a substitute

output value in case of error messages ErrorBits ≥ 16#0001_0000.
• Enable input EN is set to FALSE.
Otherwise, the enable output ENO is set to TRUE.

10.12.4 Input parameter Filter_Universal

Parameter Data type Default Description
Input REAL 0.0 Input value

Substitu
teOutput

REAL 0.0 SubstituteOutput is used as a substitute output value when Reset = TRUE
or one of the following modes is currently in effect:
• ErrorMode = 1
• StartMode = 1

ErrorAck BOOL FALSE Deletes the error messages.
• Edge FALSE -> TRUE

ErrorBits is reset.

Reset BOOL FALSE Resets the instruction
• Edge FALSE -> TRUE

ErrorBits is reset.
• As long as Reset is set to TRUE, the substitute output value

SubstituteOutput is output.

550
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

Parameter Data type Default Description
• As long as Reset is set to FALSE, the calculation of the output value is

performed.
• Edge TRUE -> FALSE

– For high-pass and bandpass filters (Type 1 or 2), the filter
algorithm is set up as if it were in a steady state with Output = 0.0.

– For low-pass and bandstop filters (Type 0 or 3), the filter algorithm
is set up as if it were in a steady state with Output
= SubstituteOutput.

10.12.5 Output parameter Filter_Universal

Parameter Data type Default Description
Output REAL 0.0 Output value

The output value is retentive.

ErrorBits DWORD 16#0 The ErrorBits parameter (Page 553) shows which error messages are
pending. ErrorBits is retentive and is reset upon a rising edge at Reset or
ErrorAck.

Error BOOL FALSE When Error is set to TRUE, at least one error is currently pending.

10.12.6 Static tags Filter_Universal

Tag Data type Default Description
Frequency REAL 50.0 Cutoff frequency of low-pass and high-pass or center frequency of

bandpass and bandstop in Hz
Permissible value range: 0.5/CycleTime.Value > Frequency > 0.0

Bandwidth REAL 0.0 Bandwidth of bandpass and bandstop in Hz
Permissible value range: 0.5/CycleTime.Value - Frequency > Band
width ≥ 0.0

Type INT 0 Filter type
• 0 = Low-pass filter
• 1 = High-pass filter
• 2 = Bandpass filter
• 3 = Bandstop filter
Permissible value range: 0 to 3

Characteristic INT 0 Filter characteristic
• 0 = Bessel
• 1 = Butterworth
• 2 = Chebyshev with 0.5 dB ripple in the passband
Permissible value range: 0 to 2

Order INT 2 Filter order (at Order = 0, Output = Input)
Permissible value range: 0 to 10

ErrorMode INT 2 Selection of the substitute output value following an error
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last valid filter output value
• 3 = 0.0
Permissible value range: 0 to 3

551

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

Tag Data type Default Description
If the value of ErrorMode does not correspond to the permissible
range of values, then ErrorMode = 2.

StartMode INT 2 Selection of the first output value for low-pass and bandstop filter
• 0 = Input
• 1 = SubstituteOutput
• 2 = Last output value
• 3 = 0.0
Permissible value range: 0 to 3
If the value of StartMode does not correspond to the permissible
range of values, then StartMode = 2.

FinalValueMode INT 1 Selection of the behavior in steady state
• 0 = Deviations between output value and final value possible
• 1 = Output value reaches final value exactly
Permissible value range: 0 to 1
If the value of FinalValueMode does not correspond to the permiss
ible range of values, then FinalValueMode = 1.

CycleTime AuxFct_CycleTimeDe
tection

- Cycle time data

CycleTime.Value REAL 0.001 Cycle time in seconds (interval between two calls)
Permissible value range: CycleTime.Value > 0.0

CycleTime.EnableDe
tection

BOOL TRUE Automatic detection of the cycle time
• FALSE = Deactivated
• TRUE = Activated

552
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

10.12.7 ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 16#0000_0003, for example, indicates that the
errors 16#0000_0001 and 16#0000_0002 are pending simultaneously.
With Filter_Universal, the errors output at the ErrorBits parameter are divided into two
categories:
• Errors with error messages ErrorBits < 16#0001_0000

The output value can be calculated despite the error.
• Errors with error messages ErrorBits ≥ 16#0001_0000

The error prevents calculation of the output value. A substitute output value is output.

Errors with error messages ErrorBits < 16#0001_0000
If one or more errors with error messages ErrorBits < 16#0001_0000 is/are pending,
Filter_Universal reacts as follows:
• The output value is determined as follows despite this error:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The output parameter Error is set.
• The enable output ENO is not changed.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

0000_0000 No error is pending.

0000_0001 Cause of error and response to error:
The Output parameter was limited to -3.402823e+38 or +3.402823e+38.
Solution:
If the value determined by the filter function is output at the output (Reset = FALSE and ErrorBits <
16#0001_0000), check the Input parameter.
When ErrorBits ≥ 16#0001_0000 and Reset = FALSE, the substitute output value is limited on its output. In
this case, check the following parameters depending on the set value at the tag ErrorMode:
• Input
• SubstituteOutput
When Reset = TRUE, check the SubstituteOutput parameter.

553

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

Errors with error messages ErrorBits ≥ 16#0001_0000
If one or more errors with error messages ErrorBits ≥ 16#0001_0000 is/are pending,
Filter_Universal reacts as follows:
• The output value cannot be determined as expected. The substitute output value is output

instead.
• The output parameter Error is set.
• The enable output ENO is set to FALSE.
As soon as there are no longer errors with error messages ErrorBits ≥ 16#0001_0000,
Filter_Universal reacts as follows:
• The output value is determined as follows:

– When Reset = FALSE, output value calculation by the filter algorithm
– When Reset = TRUE, output of SubstituteOutput

• The enable output ENO is set to TRUE.
The output parameter Error is deleted as soon as there are no longer any errors.

ErrorBits
 (DW#16#...)

Description

Cause of error:
The SubstituteOutput parameter or a different tag that is being used as output value has no valid REAL
value.
Response to error:
The output is set to 0.0.
Solution:
Make sure that the tag used as output value is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF). The tag that
is used as output value depends on Reset and ErrorMode:

Reset ErrorMode Output value

FALSE 0 Input

FALSE 1 SubstituteOutput

0001_0000

TRUE - SubstituteOutput

0002_0000 Cause of error:
The Input parameter has no valid REAL value while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
When ErrorMode = 0, 0.0 is used as output value.
Solution:
Make sure that the parameter Input is a valid REAL value (≠NaN e.g. 16#7FFF_FFFF).

0004_0000 Cause of error:
The calculation of the output value yields an invalid REAL value for the Output parameter.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Check all tags involved in the calculation of the output value:
• Input
• Frequency
• Bandwidth
• Type
• Characteristic
• Order
• CycleTime.Value
These tags have valid values. The calculation of the output value fails in this combination of tags.

554
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

ErrorBits
 (DW#16#...)

Description

0008_0000 Cause of error:
One or more filter parameters have an invalid value while the calculation of the output value is being per
formed (Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions for the values of the filter parameters are met:
• 0.0 < Frequency < 0.5 / CycleTime.Value
• 0.0 ≤ Bandwidth < 0.5 / CycleTime.Value - Frequency
• 0 ≤ Type ≤ 3
• 0 ≤ Characteristic ≤ 2
• 0 ≤ Order ≤ 10

0010_0000 Cause of error:
Automatic detection of the cycle time failed because Filter_Universal is not called in a cyclic interrupt OB.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Make sure that Filter_Universal is called in a cyclic interrupt OB.
Additional information:
Automatic detection of the cycle time can be disabled by setting the tag CycleTime.EnableDetection =
FALSE. You then need to specify the cycle time manually at the Variable CycleTime.Value. Calling of
Filter_Universal outside of a cyclic interrupt OB can have a negative effect on the filter behavior, because
the actual cycle time fluctuates in this case.

0020_0000 Cause of error:
The tag (configured with StartMode) for the initialization of the Output parameter at the first call of the
instruction does not have a valid REAL value.
Response to error:
The substitute output value is output with the first call of the instruction at the Output parameter that is
configured at the ErrorMode tag. For subsequent calls, Filter_Universal calculates the output value start
ing from this substitute output value.
Solution:
Make sure that the tag for initializing the parameter Output is a valid REAL value (≠ NaN e.g.
16#7FFF_FFFF). When Reset = FALSE is set, the initialization takes effect with the first call of the instruc
tion after the operating state transition of the CPU from STOP to RUN. The tag that is used for the initializ
ation of the Output parameter depends on StartMode:
• StartMode = 1: SubstituteOutput
• StartMode = 2: Output

0040_0000 Cause of error:
The CycleTime.Value tag has an invalid value, while the calculation of the output value is being performed
(Reset = FALSE).
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Ensure that the following conditions are met:
• 0.0 < CycleTime.Value ≤ 3.402823e+38
• CycleTime.Value is a valid REAL value (≠ NaN e.g. 16#7FFF_FFFF)
Additional information:
To automatically calculate the value of the CycleTime.Value tag, set the CycleTime.EnableDetection tag to
TRUE.

555

Instructions
10.12 Filter_Universal

PID control
Function Manual, 11/2023, A5E35300227-AG

ErrorBits
 (DW#16#...)

Description

0080_0000 Cause of error:
An internal error occurred during automatic detection of the cycle time.
Response to error:
The substitute output value that is configured at the ErrorMode tag is output at the Output parameter.
Solution:
Make sure that Filter_Universal is called in a cyclic interrupt OB.
If the error continues to occur, contact SIMATIC Customer Support.
Additional information:
Automatic detection of the cycle time can be disabled by setting the tag CycleTime.EnableDetection =
FALSE. You then need to specify the cycle time manually at the CycleTime.Value tag.

556
PID control

Function Manual, 11/2023, A5E35300227-AG

Instructions
10.12 Filter_Universal

557
PID control
Function Manual, 11/2023, A5E35300227-AG

C
CONT_C

Mode of operation, 399
Block diagram, 400
Input parameters, 401
Output parameters, 402

CONT_S
Instruction, 403
Mode of operation, 403
Block diagram, 405
Input parameters, 406
Output parameters, 407

F
Filter_DT1, 525
Filter_PT1, 500
Filter_PT2, 512
Filter_Universal, 539

I
Icon

For value comparison, 50

P
PID_3Step

Instruction, 285
Input parameters, 293
Output parameters, 295
In/out parameters, 296
Instruction, 315
Input parameters, 322
Output parameters, 323
Static tags, 325

PID_Compact
Input parameters, 238
Output parameters, 239
In/out parameters, 240
Instruction, 266
Input parameters, 269
Output parameters, 270
Static tags, 271

PID_Temp
Cascading, 177
Multi-zone applications, 183
Operating principle, 349
Input parameters, 354
Output parameters, 356
In/out parameters, 357
Mode, 357
Cascade, 357
PID_Temp state and mode parameters, 383
ErrorBits parameter, 389
ActivateRecoverMode tag, 392
Tag Warning, 393
PwmPeriode, 394

Polyline, 448
PULSEGEN

Instruction, 408
Operating principle, 409

PULSEGEN
Input parameters, 415
Output parameters, 416

R
RampFunction, 464
RampSoak, 477

S
Software controller

Configuring, 41
SplitRange, 459

Index

PID control
Function Manual, 11/2023, A5E35300227-AG558

T
TCONT_CP

Instruction, 416
Operating principle, 417
Input parameters, 430
Output parameters, 431
In/out parameters, 431
Static tags, 432

TCONT_S
Instruction, 438
Operating principle, 439
Input parameters, 444
Output parameters, 445
In/out parameters, 445
Static tags, 445

Technology objects
PID_Compact, 71
PID_3Step, 111
PID_Temp, 146
CONT_C, 190
CONT_S, 194
TCONT_CP, 197
TCONT_S, 217

V
Values

Comparing, 50

Index

	PID control
	Legal information
	Table of contents
	1 Introduction
	1.1 Purpose, conventions and supplementary information
	1.2 Guide to the Function Manuals documentation
	1.2.1 Information classes Function Manuals
	1.2.2 Basic tools
	1.2.3 SIMATIC Technical Documentation

	2 Safety instructions
	2.1 Cybersecurity information

	3 Principles for control
	3.1 Controlled system and actuators
	3.2 Controlled systems
	3.3 Characteristic values of the control section
	3.4 Pulse controller
	3.5 Response to setpoint changes and disturbances
	3.6 Control Response at Different Feedback Structures
	3.7 Selection of the controller structure for specified controlled systems
	3.8 PID parameter settings

	4 Configuring a software controller
	4.1 Overview of software controller
	4.2 Steps for the configuration of a software controller
	4.3 Add technology objects
	4.4 Configure technology objects
	4.5 Call instruction in the user program
	4.6 Downloading technology objects to device
	4.7 Commissioning software controller
	4.8 Save optimized PID parameter in the project
	4.9 Working with multi-instance objects
	4.10 Comparing values
	4.10.1 Comparison display and boundary conditions
	4.10.2 Comparing values

	4.11 Parameter view
	4.11.1 Introduction to the parameter view
	4.11.2 Structure of the parameter view
	4.11.2.1 Toolbar
	4.11.2.2 Navigation
	4.11.2.3 Parameter table

	4.11.3 Opening the parameter view
	4.11.4 Default setting of the parameter view
	4.11.5 Working with the parameter view
	4.11.5.1 Overview
	4.11.5.2 Filtering the parameter table
	4.11.5.3 Sorting the parameter table
	4.11.5.4 Transferring parameter data to other editors
	4.11.5.5 Indicating errors
	4.11.5.6 Editing start values in the project
	4.11.5.7 Status of configuration (offline)
	4.11.5.8 Monitoring values online in the parameter view
	4.11.5.9 Change display format of value
	4.11.5.10 Create snapshot of monitor values
	4.11.5.11 Modifying values
	4.11.5.12 Comparing values
	4.11.5.13 Applying values from the online program as start values
	4.11.5.14 Initializing setpoints in the online program

	4.12 Display instance DB of a technology object.

	5 Using PID_Compact
	5.1 Technology object PID_Compact
	5.2 PID_Compact as of V2
	5.2.1 Configuring PID_Compact as of V2
	5.2.1.1 Basic settings as of V2
	5.2.1.2 Process value settings as of V2
	5.2.1.3 Advanced settings as of V2

	5.2.2 Commissioning PID_Compact as of V2
	5.2.2.1 Pretuning as of V2
	5.2.2.2 Fine tuning as of V2
	5.2.2.3 "Manual" mode as of V2

	5.2.3 Override control with PID_Compact as of V2
	5.2.4 Simulating PID_Compact as of V2 with PLCSIM

	5.3 PID_Compact V1
	5.3.1 Configuring PID_Compact V1
	5.3.1.1 Basic settings V1
	5.3.1.2 Process value settings V1
	5.3.1.3 Advanced settings V1

	5.3.2 Commissioning PID_Compact V1
	5.3.2.1 Commissioning V1
	5.3.2.2 Pretuning V1
	5.3.2.3 Fine tuning V1
	5.3.2.4 "Manual" mode V1

	5.3.3 Simulating PID_Compact V1 with PLCSIM

	6 Using PID_3Step
	6.1 Technology object PID_3Step
	6.2 PID_3Step V2
	6.2.1 Configuring PID_3Step V2
	6.2.1.1 Basic settings V2
	6.2.1.2 Process value settings V2
	6.2.1.3 Actuator settings V2
	6.2.1.4 Advanced settings V2

	6.2.2 Commissioning PID_3Step V2
	6.2.2.1 Pretuning V2
	6.2.2.2 Fine tuning V2
	6.2.2.3 Commissioning with manual PID parameters V2
	6.2.2.4 Measuring the motor transition time V2

	6.2.3 Simulating PID_3Step V2 with PLCSIM

	6.3 PID_3Step V1
	6.3.1 Configuring PID_3Step V1
	6.3.1.1 Basic settings V1
	6.3.1.2 Process value settings V1
	6.3.1.3 Actuator settings V1
	6.3.1.4 Advanced settings V1

	6.3.2 Commissioning PID_3Step V1
	6.3.2.1 Commissioning V1
	6.3.2.2 Pretuning V1
	6.3.2.3 Fine tuning V1
	6.3.2.4 Commissioning with manual PID parameters V1
	6.3.2.5 Measuring the motor transition time V1

	6.3.3 Simulating PID_3Step V1 with PLCSIM

	7 Using PID_Temp
	7.1 Technology object PID_Temp
	7.2 Configuring PID_Temp
	7.2.1 Basic settings
	7.2.1.1 Introduction
	7.2.1.2 Controller type
	7.2.1.3 Setpoint
	7.2.1.4 Process value
	7.2.1.5 Heating and cooling output value
	7.2.1.6 Cascade

	7.2.2 Process value settings
	7.2.2.1 Process value limits
	7.2.2.2 Process value scaling

	7.2.3 Output settings
	7.2.3.1 Basic settings of output
	7.2.3.2 Output value limits and scaling

	7.2.4 Advanced settings
	7.2.4.1 Process value monitoring
	7.2.4.2 PWM limits
	7.2.4.3 PID parameters

	7.3 Commissioning PID_Temp
	7.3.1 Commissioning
	7.3.2 Pretuning
	7.3.3 Fine tuning
	7.3.4 "Manual" mode
	7.3.5 Substitute setpoint
	7.3.6 Cascade commissioning

	7.4 Cascade control with PID_Temp
	7.4.1 Introduction
	7.4.2 Program creation
	7.4.3 Configuration
	7.4.4 Commissioning
	7.4.5 Substitute setpoint
	7.4.6 Operating modes and fault response

	7.5 Multi-zone controlling with PID_Temp
	7.6 Override control with PID_Temp
	7.7 Simulating PID_Temp with PLCSIM

	8 Using PID basic functions
	8.1 CONT_C
	8.1.1 Technology object CONT_C
	8.1.2 Configure controller difference CONT_C
	8.1.3 Configure the controller algorithm CONT_C
	8.1.4 Configure the output value CONT_C
	8.1.5 Programming a pulse controller
	8.1.6 Commissioning CONT_C

	8.2 CONT_S
	8.2.1 Technology object CONT_S
	8.2.2 Configure controller difference CONT_S
	8.2.3 Configuring control algorithm CONT_S
	8.2.4 Configure manipulated value CONT_S
	8.2.5 Commissioning CONT_S

	8.3 TCONT_CP
	8.3.1 Technology object TCONT_CP
	8.3.2 Configure TCONT_CP
	8.3.2.1 Controller difference
	8.3.2.2 Controlling algorithm
	8.3.2.3 Manipulated value continual controller
	8.3.2.4 Manipulated value pulse controller

	8.3.3 Commissioning TCONT_CP
	8.3.3.1 Optimization of TCONT_CP
	8.3.3.2 Requirements for an optimization
	8.3.3.3 Possibilities for optimization
	8.3.3.4 Tuning result
	8.3.3.5 Parallel tuning of controller channels
	8.3.3.6 Fault descriptions and corrective measures
	8.3.3.7 Performing pretuning
	8.3.3.8 Performing fine tuning
	8.3.3.9 Cancelling pretuning or fine tuning
	8.3.3.10 Manual fine-tuning in control mode
	8.3.3.11 Performing fine tuning manually

	8.4 TCONT_S
	8.4.1 Technology object TCONT_S
	8.4.2 Configure controller difference TCONT_S
	8.4.3 Configure controller algorithm TCONT_S
	8.4.4 Configure manipulated value TCONT_S
	8.4.5 Commissioning TCONT_S

	9 Auxiliary functions
	9.1 Polyline
	9.2 SplitRange
	9.3 RampFunction
	9.4 RampSoak
	9.5 Filter_PT1
	9.6 Filter_PT2
	9.7 Filter_DT1
	9.8 Filter_Universal

	10 Instructions
	10.1 PID_Compact
	10.1.1 New features of PID_Compact
	10.1.2 Compatibility with CPU and FW
	10.1.3 CPU processing time and memory requirement PID_Compact as of V2
	10.1.4 PID_Compact as of V2
	10.1.4.1 Description of PID_Compact V3
	10.1.4.2 Description of PID_Compact V2
	10.1.4.3 PID_Compact as of V2 operating principle
	10.1.4.4 Input parameters of PID_Compact as of V2
	10.1.4.5 Output parameters of PID_Compact as of V2
	10.1.4.6 In/out parameter of PID_Compact as of V2
	10.1.4.7 Static tags of PID_Compact as of V2
	10.1.4.8 Changing the interface of PID_Compact as of V2
	10.1.4.9 State and Mode as of V2 parameters
	10.1.4.10 ErrorBits as of V2 parameter
	10.1.4.11 ActivateRecoverMode tag as of V2
	10.1.4.12 Warning tag as of V2
	10.1.4.13 Tag IntegralResetMode as of V2
	10.1.4.14 Example program for PID_Compact V2

	10.1.5 PID_Compact V1
	10.1.5.1 Description of PID_Compact V1
	10.1.5.2 Input parameters of PID_Compact V1
	10.1.5.3 Output parameters of PID_Compact V1
	10.1.5.4 Static tags of PID_Compact V1
	10.1.5.5 Parameters State and sRet.i_Mode V1
	10.1.5.6 Parameter Error V1
	10.1.5.7 Reset V1 parameter
	10.1.5.8 Tag sd_warning V1
	10.1.5.9 Tag i_Event_SUT V1
	10.1.5.10 Tag i_Event_TIR V1

	10.2 PID_3Step
	10.2.1 New features of PID_3Step
	10.2.2 Compatibility with CPU and FW
	10.2.3 CPU processing time and memory requirement PID_3Step V2.x
	10.2.4 PID_3Step V2
	10.2.4.1 Description of PID_3Step V2
	10.2.4.2 Mode of operation of PID_3Step V2
	10.2.4.3 Changing the PID_3Step V2 interface
	10.2.4.4 Input parameters of PID_3Step V2
	10.2.4.5 Output parameters of PID_3Step V2
	10.2.4.6 In/out parameters of PID-3Step V2
	10.2.4.7 Static tags of PID_3Step V2
	10.2.4.8 State and Mode V2 parameters
	10.2.4.9 ErrorBits V2 parameter
	10.2.4.10 Tag ActivateRecoverMode V2
	10.2.4.11 Tag Warning V2

	10.2.5 PID_3Step V1
	10.2.5.1 Description PID_3Step V1
	10.2.5.2 Operating principle PID_3Step V1
	10.2.5.3 PID_3Step V1 input parameters
	10.2.5.4 PID_3Step V1 output parameters
	10.2.5.5 PID_3Step V1 static tags
	10.2.5.6 State and Retain.Mode V1 parameters
	10.2.5.7 Parameter ErrorBits V1
	10.2.5.8 Reset V1 parameter
	10.2.5.9 Tag ActivateRecoverMode V1
	10.2.5.10 Tag Warning V1
	10.2.5.11 Tag SUT.State V1
	10.2.5.12 Tag TIR.State V1

	10.3 PID_Temp
	10.3.1 New features of PID_Temp
	10.3.2 Compatibility with CPU and FW
	10.3.3 CPU processing time and memory requirement PID_Temp V1
	10.3.4 PID_Temp
	10.3.4.1 Description of PID_Temp
	10.3.4.2 Mode of operation of PID_Temp
	10.3.4.3 Input parameters of PID_Temp
	10.3.4.4 Output parameters of PID_Temp
	10.3.4.5 In/out parameters of PID_Temp V2
	10.3.4.6 PID_Temp static tags
	10.3.4.7 PID_Temp state and mode parameters
	10.3.4.8 PID_Temp ErrorBits parameter
	10.3.4.9 PID_Temp ActivateRecoverMode tag
	10.3.4.10 PID_Temp Warning tag
	10.3.4.11 PwmPeriode tag
	10.3.4.12 IntegralResetMode tag

	10.4 PID basic functions
	10.4.1 CONT_C
	10.4.1.1 Description CONT_C
	10.4.1.2 How CONT_C works
	10.4.1.3 CONT_C block diagram
	10.4.1.4 Input parameter CONT_C
	10.4.1.5 Output parameters CONT_C

	10.4.2 CONT_S
	10.4.2.1 Description CONT_S
	10.4.2.2 Mode of operation CONT_S
	10.4.2.3 Block diagram CONT_S
	10.4.2.4 Input parameters CONT_S
	10.4.2.5 Output parameters CONT_S

	10.4.3 PULSEGEN
	10.4.3.1 Description PULSEGEN
	10.4.3.2 Mode of operation PULSEGEN
	10.4.3.3 Mode of operation PULSEGEN
	10.4.3.4 Three-step control
	10.4.3.5 Two-step control
	10.4.3.6 Input parameters PULSEGEN
	10.4.3.7 Output parameter PULSEGEN

	10.4.4 TCONT_CP
	10.4.4.1 Description TCONT_CP
	10.4.4.2 Mode of operation TCONT_CP
	10.4.4.3 Operating principle of the pulse generator
	10.4.4.4 Block diagram TCONT_CP
	10.4.4.5 Input parameters TCONT_CP
	10.4.4.6 Output parameters TCONT_CP
	10.4.4.7 In/out parameters TCONT_CP
	10.4.4.8 Static variables TCONT_CP
	10.4.4.9 Parameter STATUS_H
	10.4.4.10 Parameters STATUS_D

	10.4.5 TCONT_S
	10.4.5.1 Description TCONT_S
	10.4.5.2 Mode of operation TCONT_S
	10.4.5.3 Block diagram TCONT_S
	10.4.5.4 Input paramters TCONT_S
	10.4.5.5 Output parameters TCONT_S
	10.4.5.6 In/out parameters TCONT_S
	10.4.5.7 Static variables TCONT_S

	10.4.6 Integrated system functions
	10.4.6.1 CONT_C_SF
	10.4.6.2 CONT_S_SF
	10.4.6.3 PULSEGEN_SF

	10.5 Polyline
	10.5.1 Compatibility with CPU and FW
	10.5.2 Description Polyline
	10.5.3 Operating principle Polyline
	10.5.4 Input parameters of Polyline
	10.5.5 Output parameters of Polyline
	10.5.6 Static tags of Polyline
	10.5.7 ErrorBits parameter

	10.6 SplitRange
	10.6.1 Compatibility with CPU and FW
	10.6.2 SplitRange description
	10.6.3 SplitRange input parameters
	10.6.4 SplitRange output parameters
	10.6.5 SplitRange static tags
	10.6.6 ErrorBits parameter

	10.7 RampFunction
	10.7.1 Compatibility with CPU and FW
	10.7.2 RampFunction description
	10.7.3 RampFunction mode of operation
	10.7.4 RampFunction input parameters
	10.7.5 RampFunction output parameters
	10.7.6 RampFunction static tags
	10.7.7 ErrorBits parameter

	10.8 RampSoak
	10.8.1 Compatibility with CPU and FW
	10.8.2 Description of RampSoak
	10.8.3 Operating principle RampSoak
	10.8.3.1 Configuring and validating profile data
	10.8.3.2 Executing a profile
	10.8.3.3 Configuring the starting behavior - static tag StartMode
	10.8.3.4 Configuring the stopping behavior - static tag StopMode
	10.8.3.5 Measuring the cycle time
	10.8.3.6 Enable behavior EN/ENO

	10.8.4 Input parameter RampSoak
	10.8.5 Output parameter RampSoak
	10.8.6 In-out parameter RampSoak
	10.8.7 Static tags RampSoak
	10.8.8 ErrorBits parameter

	10.9 Filter_PT1
	10.9.1 Compatibility with CPU and FW
	10.9.2 Description of Filter_PT1
	10.9.3 Operating principle Filter_PT1
	10.9.4 Input parameter Filter_PT1
	10.9.5 Output parameter Filter_PT1
	10.9.6 Static tags Filter_PT1
	10.9.7 ErrorBits parameter

	10.10 Filter_PT2
	10.10.1 Compatibility with CPU and FW
	10.10.2 Description of Filter_PT2
	10.10.3 Operating principle Filter_PT2
	10.10.4 Input parameter Filter_PT2
	10.10.5 Output parameter Filter_PT2
	10.10.6 Static tags Filter_PT2
	10.10.7 ErrorBits parameter

	10.11 Filter_DT1
	10.11.1 Compatibility with CPU and FW
	10.11.2 Description of Filter_DT1
	10.11.3 Operating principle Filter_DT1
	10.11.4 Input parameter Filter_DT1
	10.11.5 Output parameter Filter_DT1
	10.11.6 Static tags Filter_DT1
	10.11.7 ErrorBits parameter

	10.12 Filter_Universal
	10.12.1 Compatibility with CPU and FW
	10.12.2 Description Filter_Universal
	10.12.3 Operating principle Filter_Universal
	10.12.3.1 Filter parameters
	10.12.3.2 Initializing output values
	10.12.3.3 Final value in steady state
	10.12.3.4 Use in time-critical applications
	10.12.3.5 Call environment and automatic detection of the cycle time
	10.12.3.6 Reset response
	10.12.3.7 Enable behavior EN/ENO

	10.12.4 Input parameter Filter_Universal
	10.12.5 Output parameter Filter_Universal
	10.12.6 Static tags Filter_Universal
	10.12.7 ErrorBits parameter

	Index
	C
	F
	I
	P
	R
	S
	T
	V

