
SIMATIC

Openness: Automating creation of 
projects

System Manual

Printing the Online Help

10/2018

Security note 1
Readme TIA Portal 
Openness 2
What's new in TIA Portal 
Openness? 3

Basics 4

Introduction 5

Configurations 6

TIA Portal Openness API 7

Export/import 8

Major Changes 9



Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent 
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert 
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are 
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be 
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property 
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific 
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified 
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding 
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical 
documentation. If products and components from other manufacturers are used, these must be recommended or 
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and 
maintenance are required to ensure that the products operate safely and without any problems. The permissible 
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication 
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described. 
Since variance cannot be precluded entirely, we cannot guarantee full consistency.  However, the information in 
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 10/2018 Subject to change
Copyright © Siemens AG 2018.
All rights reserved



Table of contents

1 Security note...............................................................................................................................................11

2 Readme TIA Portal Openness....................................................................................................................13

2.1 Readme..................................................................................................................................13

2.2 Major changes in TIA Portal Openness V15.1.......................................................................16

2.3 Announcement of major changes in future releases..............................................................19

2.4 Hints for writing long-term stable code...................................................................................20

3 What's new in TIA Portal Openness?.........................................................................................................23

4 Basics.........................................................................................................................................................25

4.1 Requirements for TIA Portal Openness.................................................................................25

4.2 Installation..............................................................................................................................27
4.2.1 Installing TIA Openness.........................................................................................................27
4.2.2 Adding users to the "Siemens TIA Openness" user group....................................................28
4.2.3 Accessing the TIA Portal........................................................................................................33

4.3 Openness tasks.....................................................................................................................34
4.3.1 Applications............................................................................................................................34
4.3.2 Export/import..........................................................................................................................35

4.4 Object list...............................................................................................................................36

4.5 Standard libraries...................................................................................................................40

4.6 Notes on performance of TIA Portal Openness.....................................................................41

5 Introduction.................................................................................................................................................43

6 Configurations............................................................................................................................................45

7 TIA Portal Openness API...........................................................................................................................49

7.1 Introduction............................................................................................................................49

7.2 Programming steps................................................................................................................50

7.3 TIA Portal Openness object model........................................................................................51

7.4 Blocks and types of the TIA Portal Openness object model..................................................56

7.5 Hierarchy of hardware objects of the object model................................................................64

7.6 Information about installed TIA Portal Openness versions....................................................66

7.7 Example program...................................................................................................................67

7.8 Use of the code examples......................................................................................................72

7.9 General functions...................................................................................................................74
7.9.1 TIA Portal Openness IntelliSense support.............................................................................74
7.9.2 Connecting to the TIA Portal..................................................................................................74
7.9.3 TIA Portal Openness firewall..................................................................................................79

Openness: Automating creation of projects
System Manual, 10/2018 3



7.9.4 Event handlers.......................................................................................................................80
7.9.5 Program-controlled acknowledgement of dialogs with system events...................................82
7.9.6 Terminating the connection to the TIA Portal.........................................................................83
7.9.7 Diagnostic interfaces on TIA Portal........................................................................................84
7.9.8 Exclusive access....................................................................................................................89
7.9.9 Transaction handling..............................................................................................................91
7.9.10 Creating a DirectoryInfo/FileInfo object..................................................................................94
7.9.11 Self-description support for attributes, navigators, actions, and services..............................94

7.10 Functions for projects and project data..................................................................................97
7.10.1 Opening a project...................................................................................................................97
7.10.2 Creating a project.................................................................................................................101
7.10.3 Accessing general settings of the TIA Portal.......................................................................102
7.10.4 Accessing read-only TIA Portal project................................................................................106
7.10.5 Accessing languages...........................................................................................................107
7.10.6 Determining the object structure and attributes...................................................................109
7.10.7 Access software target ........................................................................................................111
7.10.8 Accessing and enumerating multilingual texts.....................................................................112
7.10.9 Read project related attributes.............................................................................................113
7.10.10 Deleting project graphics......................................................................................................116
7.10.11 Compiling a project..............................................................................................................116
7.10.12 Saving a project...................................................................................................................119
7.10.13 Closing a project..................................................................................................................120

7.11 Functions for Connections...................................................................................................122
7.11.1 Configurable attributes of a port-to-port connection.............................................................122

7.12 Functions on libraries...........................................................................................................125
7.12.1 Functions for objects and instances.....................................................................................125
7.12.2 Accessing global libraries.....................................................................................................126
7.12.3 Accessing global library languages......................................................................................128
7.12.4 Opening libraries..................................................................................................................130
7.12.5 Enumerating open libraries..................................................................................................131
7.12.6 Saving and closing libraries.................................................................................................132
7.12.7 Archiving and retrieving a library..........................................................................................133
7.12.8 Creating global libraries.......................................................................................................136
7.12.9 Accessing folders in a library...............................................................................................137
7.12.10 Accessing types...................................................................................................................140
7.12.11 Accessing type versions.......................................................................................................142
7.12.12 Accessing instances.............................................................................................................146
7.12.13 Accessing master copies.....................................................................................................148
7.12.14 Create master copy from a project in library........................................................................151
7.12.15 Create an object from a master copy...................................................................................152
7.12.16 Copying master copies.........................................................................................................154
7.12.17 Determining out-of-date type instances...............................................................................155
7.12.18 Updating the project.............................................................................................................158
7.12.19 Updating a library.................................................................................................................160
7.12.20 Deleting library content........................................................................................................161

7.13 Functions for accessing devices, networks and connections...............................................164
7.13.1 Open the "Devices & networks" editor.................................................................................164
7.13.2 Querying PLC and HMI targets............................................................................................165
7.13.3 Accessing attributes of an address object............................................................................166
7.13.4 Accessing the channels of a module....................................................................................169

Table of contents

Openness: Automating creation of projects
4 System Manual, 10/2018



7.13.5 Working with associations....................................................................................................170
7.13.6 Working with compositions...................................................................................................171
7.13.7 Verifying object equality.......................................................................................................172
7.13.8 Read operations for attributes..............................................................................................173

7.14 Functions on networks.........................................................................................................175
7.14.1 Creating a subnet.................................................................................................................175
7.14.2 Accessing subnets...............................................................................................................176
7.14.3 Accessing internal subnets..................................................................................................177
7.14.4 Get type identifier of subnets...............................................................................................178
7.14.5 Accessing attributes of a subnet..........................................................................................179
7.14.6 Deleting a global subnet.......................................................................................................185
7.14.7 Enumerate all participants of a subnet.................................................................................185
7.14.8 Enumerate io systems of a subnet.......................................................................................186
7.14.9 Accessing nodes..................................................................................................................186
7.14.10 Accessing attributes of a node.............................................................................................187
7.14.11 Connecting a node to a subnet............................................................................................191
7.14.12 Disconnect a node from a subnet........................................................................................191
7.14.13 Creating an io system..........................................................................................................192
7.14.14 Accessing the attributes of an io system..............................................................................193
7.14.15 Connecting an io connector to an io system........................................................................193
7.14.16 Get master system or io system of an interface...................................................................194
7.14.17 Get an IO Controller.............................................................................................................195
7.14.18 Get an IO Connector............................................................................................................196
7.14.19 Disconnecting an io connector from an io system or a dp mastersystem............................196
7.14.20 Accessing attributes of a dp mastersystem..........................................................................197
7.14.21 Accessing attributes of a profinet io system.........................................................................198
7.14.22 Deleting a dp mastersystem.................................................................................................199
7.14.23 Deleting a profinet io system................................................................................................200
7.14.24 Creating a dp master system...............................................................................................200
7.14.25 Accessing port interconnection information of port device item...........................................201
7.14.26 Attributes of port inter-connection........................................................................................202
7.14.27 Accessing the attributes of a port.........................................................................................205
7.14.28 Enumerate dp master systems of a subnet..........................................................................206
7.14.29 Enumerate assigned io connectors......................................................................................207
7.14.30 Connecting a dp io connector to a dp mastersystem...........................................................208

7.15 Functions on devices...........................................................................................................209
7.15.1 Mandatory attributes of devices...........................................................................................209
7.15.2 Get type identifier of devices and device items....................................................................210
7.15.3 Creating a device.................................................................................................................213
7.15.4 Enumerating devices............................................................................................................214
7.15.5 Accessing devices................................................................................................................217
7.15.6 Deleting a device..................................................................................................................219

7.16 Functions on device items....................................................................................................221
7.16.1 Mandatory attributes of device items...................................................................................221
7.16.2 Creating and plugging a device item....................................................................................222
7.16.3 Moving device items into another slot..................................................................................226
7.16.4 Copying a device item..........................................................................................................227
7.16.5 Deleting a device item..........................................................................................................228
7.16.6 Enumerate device items ......................................................................................................228
7.16.7 Accessing device items........................................................................................................230
7.16.8 Accessing device item as interface......................................................................................234

Table of contents

Openness: Automating creation of projects
System Manual, 10/2018 5



7.16.9 Accessing attributes of an I/O device interface....................................................................235
7.16.10 Accessing attributes of IoController.....................................................................................237
7.16.11 Accessing attributes of IoConnector....................................................................................238
7.16.12 Accessing address controller...............................................................................................240
7.16.13 Accessing addresses...........................................................................................................241
7.16.14 Accessing hardware identifiers............................................................................................243
7.16.15 Accessing hardware identifier controller..............................................................................244
7.16.16 Accessing channels of device items....................................................................................245

7.17 Functions for accessing the data of an HMI device.............................................................247
7.17.1 Screens................................................................................................................................247
7.17.1.1 Creating user-defined screen folders...................................................................................247
7.17.1.2 Deleting a screen from a folder............................................................................................247
7.17.1.3 Deleting a screen template from a folder.............................................................................248
7.17.1.4 Deleting all screens from a folder.........................................................................................249
7.17.2 Cycles..................................................................................................................................250
7.17.2.1 Deleting a cycle....................................................................................................................250
7.17.3 Text lists...............................................................................................................................250
7.17.3.1 Deleting a text list.................................................................................................................250
7.17.4 Graphic lists.........................................................................................................................251
7.17.4.1 Deleting a graphic list...........................................................................................................251
7.17.5 Connections.........................................................................................................................252
7.17.5.1 Deleting a connection...........................................................................................................252
7.17.6 Tag table..............................................................................................................................252
7.17.6.1 Creating user-defined folders for HMI tags..........................................................................252
7.17.6.2 Enumerating tags of an HMI tag table..................................................................................253
7.17.6.3 Deleting an individual tag from an HMI tag table.................................................................253
7.17.6.4 Deleting a tag table from a folder.........................................................................................254
7.17.7 VB scripts.............................................................................................................................255
7.17.7.1 Creating user-defined script folders.....................................................................................255
7.17.7.2 Deleting a VB script from a folder........................................................................................255
7.17.8 Deleting a user-defined folder of an HMI device .................................................................256

7.18 Functions for accessing the data of a PLC device...............................................................257
7.18.1 Determining the status of a PLC..........................................................................................257
7.18.2 Accessing parameters of an online connection....................................................................258
7.18.3 Setting PLC online of R/H system........................................................................................262
7.18.4 Accessing software container from primary PLC of R/H system .........................................264
7.18.5 Downloading PLCs of R/H System......................................................................................265
7.18.6 Functions for downloading data to PLC device....................................................................271
7.18.6.1 Downloading hardware and software components to PLC device.......................................271
7.18.6.2 Running and stopping PLC..................................................................................................281
7.18.6.3 Supporting callbacks............................................................................................................282
7.18.6.4 Protecting PLC through password.......................................................................................284
7.18.6.5 Handling PLC block binding passwords...............................................................................285
7.18.7 Uploading hardware, software and files to PLC device........................................................286
7.18.8 Accessing fingerprints..........................................................................................................292
7.18.9 Comparing PLC software.....................................................................................................293
7.18.10 Comparing PLC hardware....................................................................................................296
7.18.11 Establishing or disconnecting the online connection to the PLC..........................................297
7.18.12 Blocks...................................................................................................................................299
7.18.12.1 Querying the "Program blocks" group..................................................................................299
7.18.12.2 Querying the system group for system blocks.....................................................................299

Table of contents

Openness: Automating creation of projects
6 System Manual, 10/2018



7.18.12.3 Enumerating system subgroups...........................................................................................300
7.18.12.4 Enumerating user-defined block groups..............................................................................301
7.18.12.5 Enumerating all blocks.........................................................................................................302
7.18.12.6 Querying information of a block/user data type....................................................................303
7.18.12.7 Setting and removing protections from a block....................................................................305
7.18.12.8 Deleting block.......................................................................................................................307
7.18.12.9 Creating group for blocks.....................................................................................................308
7.18.12.10 Deleting group for blocks.....................................................................................................309
7.18.12.11 Accessing attributes of all blocks.........................................................................................309
7.18.12.12 Creating a ProDiag-FB.........................................................................................................310
7.18.12.13 Accessing supervisions and properties of ProDiag-FB........................................................311
7.18.12.14 Reading ProDiag-FB blocks and attributes..........................................................................313
7.18.12.15 Adding an external file..........................................................................................................313
7.18.12.16 Generate source from block.................................................................................................314
7.18.12.17 Generating blocks from source............................................................................................316
7.18.12.18 Deleting user data type........................................................................................................317
7.18.12.19 Deleting an external file........................................................................................................318
7.18.12.20 Starting the block editor.......................................................................................................319
7.18.13 Technology objects..............................................................................................................319
7.18.13.1 Overview of functions for technology objects.......................................................................319
7.18.13.2 Overview of technology objects and versions......................................................................320
7.18.13.3 Overview of data types.........................................................................................................322
7.18.13.4 Querying the composition of technology objects..................................................................323
7.18.13.5 Creating technology object...................................................................................................323
7.18.13.6 Deleting technology object...................................................................................................324
7.18.13.7 Compiling technology object................................................................................................325
7.18.13.8 Enumerating technology object............................................................................................326
7.18.13.9 Finding technology object....................................................................................................327
7.18.13.10 Enumerating parameters of technology object.....................................................................328
7.18.13.11 Finding parameters of technology object.............................................................................328
7.18.13.12 Reading parameters of technology object............................................................................329
7.18.13.13 Writing parameters of technology object..............................................................................330
7.18.13.14 S7-1200 Motion Control.......................................................................................................331
7.18.13.15 S7-1500 Motion Control.......................................................................................................339
7.18.13.16 PID control...........................................................................................................................357
7.18.13.17 Counting...............................................................................................................................358
7.18.13.18 Easy Motion Control.............................................................................................................358
7.18.14 Tags and Tag tables............................................................................................................359
7.18.14.1 Starting the "PLC Tags" editor.............................................................................................359
7.18.14.2 Querying system groups for PLC tags.................................................................................360
7.18.14.3 Creating PLC tag table.........................................................................................................360
7.18.14.4 Enumerating user-defined groups for PLC tags...................................................................361
7.18.14.5 Creating user-defined groups for PLC tags..........................................................................362
7.18.14.6 Deleting user-defined groups for PLC tags..........................................................................363
7.18.14.7 Enumerating PLC tag tables in a folder...............................................................................363
7.18.14.8 Querying information from a PLC tag table..........................................................................364
7.18.14.9 Reading the time of the last changes of a PLC tag table.....................................................366
7.18.14.10 Deleting a PLC tag table from a group.................................................................................366
7.18.14.11 Enumerating PLC tags.........................................................................................................367
7.18.14.12 Accessing PLC tags.............................................................................................................367
7.18.14.13 Accessing PLC constants....................................................................................................369

7.19 Functions on OPC................................................................................................................372

Table of contents

Openness: Automating creation of projects
System Manual, 10/2018 7



7.19.1 Configuring OPC UA server secure communication protocol..............................................372
7.19.2 Setting OPC UA security policy............................................................................................374

7.20 SiVArc Openness.................................................................................................................376
7.20.1 Introduction..........................................................................................................................376

7.21 Openness for CP 1604/CP 1616/CP 1626...........................................................................377

7.22 Openness for SIMATIC Ident...............................................................................................381
7.22.1 Openness for SIMATIC Ident...............................................................................................381
7.22.2 ASM 456..............................................................................................................................382
7.22.3 ASM 475..............................................................................................................................387
7.22.4 RF120C................................................................................................................................388
7.22.5 RF170C................................................................................................................................396
7.22.6 RF180C................................................................................................................................401
7.22.7 RF18xC................................................................................................................................403
7.22.8 RF615R/RF680R/RF685R...................................................................................................405
7.22.9 MV400/MV500.....................................................................................................................406

7.23 Exceptions............................................................................................................................407
7.23.1 Handling exceptions.............................................................................................................407

8 Export/import............................................................................................................................................411

8.1 Overview..............................................................................................................................411
8.1.1 Basic principles of importing/exporting.................................................................................411
8.1.2 Field of application for Import/Export...................................................................................413
8.1.3 Version Specific Simatic ML Import.....................................................................................414
8.1.4 Editing the XML file..............................................................................................................415
8.1.5 Exporting configuration data................................................................................................415
8.1.6 Importing configuration data.................................................................................................417

8.2 Import/export of project data................................................................................................419
8.2.1 Project graphics...................................................................................................................419
8.2.1.1 Exporting/importing graphics................................................................................................419
8.2.1.2 Exporting all graphics of a project........................................................................................420
8.2.1.3 Importing graphics to a project.............................................................................................421
8.2.2 Project texts.........................................................................................................................422
8.2.2.1 Export of project texts..........................................................................................................422
8.2.2.2 Import of project texts...........................................................................................................423

8.3 Importing/exporting data of an HMI device..........................................................................425
8.3.1 Structure of an XML file........................................................................................................425
8.3.2 Structure of the data for importing/exporting........................................................................427
8.3.3 Cycles..................................................................................................................................430
8.3.3.1 Exporting cycles...................................................................................................................430
8.3.3.2 Importing cycles...................................................................................................................431
8.3.4 Tag tables............................................................................................................................432
8.3.4.1 Exporting HMI tag tables......................................................................................................432
8.3.4.2 Importing HMI tag table........................................................................................................435
8.3.4.3 Exporting an individual tag from an HMI tag table...............................................................436
8.3.4.4 Importing an individual tag into an HMI tag table.................................................................437
8.3.4.5 Special considerations for the export/import of HMI tags.....................................................437
8.3.5 VB scripts.............................................................................................................................439
8.3.5.1 Exporting VB scripts.............................................................................................................439
8.3.5.2 Exporting VB scripts from a folder........................................................................................440

Table of contents

Openness: Automating creation of projects
8 System Manual, 10/2018



8.3.5.3 Importing VB scripts.............................................................................................................441
8.3.6 Text lists...............................................................................................................................442
8.3.6.1 Exporting text lists from an HMI device................................................................................442
8.3.6.2 Importing a text list into an HMI device................................................................................443
8.3.6.3 Advanced XML formats for export/import of text lists...........................................................444
8.3.7 Graphic lists.........................................................................................................................446
8.3.7.1 Exporting graphic lists..........................................................................................................446
8.3.7.2 Importing a graphic list.........................................................................................................446
8.3.8 Connections.........................................................................................................................447
8.3.8.1 Exporting connections..........................................................................................................447
8.3.8.2 Importing connections..........................................................................................................448
8.3.9 Screens................................................................................................................................449
8.3.9.1 Overview of exportable screen objects................................................................................449
8.3.9.2 Exporting all screens of an HMI device................................................................................453
8.3.9.3 Exporting a screen from a screen folder..............................................................................454
8.3.9.4 Importing screens to an HMI device.....................................................................................456
8.3.9.5 Exporting permanent areas..................................................................................................458
8.3.9.6 Importing permanent areas..................................................................................................459
8.3.9.7 Exporting all screen templates of an HMI device.................................................................460
8.3.9.8 Exporting screen templates from a folder............................................................................461
8.3.9.9 Importing screen templates..................................................................................................463
8.3.9.10 Exporting a pop-up screen...................................................................................................464
8.3.9.11 Importing a pop-up screen...................................................................................................465
8.3.9.12 Exporting a slide-in screen...................................................................................................467
8.3.9.13 Importing a slide-in screen...................................................................................................468
8.3.9.14 Exporting a screen with a faceplate instance.......................................................................469
8.3.9.15 Importing a screen with a faceplate instance.......................................................................471

8.4 Importing/exporting data of a PLC device............................................................................475
8.4.1 Blocks...................................................................................................................................475
8.4.1.1 XML structure of the block interface section .......................................................................475
8.4.1.2 Changes of the object model and XML file format...............................................................485
8.4.1.3 Exporting blocks ..................................................................................................................486
8.4.1.4 Exporting DBs with snapshots.............................................................................................492
8.4.1.5 Exporting blocks with know-how protection.........................................................................495
8.4.1.6 Export/Import of SCL blocks................................................................................................495
8.4.1.7 Export/Import of structured types of SCL blocks..................................................................509
8.4.1.8 Export/Import of SCL call blocks..........................................................................................515
8.4.1.9 Exporting failsafe blocks......................................................................................................532
8.4.1.10 Exporting system blocks......................................................................................................532
8.4.1.11 Exporting GRAPH blocks with multi-language text..............................................................533
8.4.1.12 Importing block.....................................................................................................................534
8.4.1.13 Importing blocks/UDT with open reference..........................................................................535
8.4.1.14 Importing blocks/UDT for structural change object..............................................................537
8.4.2 Tag tables............................................................................................................................538
8.4.2.1 Exporting PLC tag tables.....................................................................................................538
8.4.2.2 Importing PLC tag table.......................................................................................................539
8.4.2.3 Exporting an individual tag or constant from a PLC tag table..............................................540
8.4.2.4 Importing an individual tag or constant into a PLC tag table................................................541
8.4.3 Exporting user data type......................................................................................................542
8.4.4 Importing user data type......................................................................................................543
8.4.5 Export of data in OPC UA XML format.................................................................................544

Table of contents

Openness: Automating creation of projects
System Manual, 10/2018 9



8.5 Importing/exporting hardware data......................................................................................546
8.5.1 AML file format.....................................................................................................................546
8.5.2 Pruned AML.........................................................................................................................546
8.5.3 Overview of the objects and parameters of the CAx import/export......................................548
8.5.4 Structure of the CAx data for importing/exporting................................................................550
8.5.5 AML type identifiers..............................................................................................................555
8.5.6 Export of CAx data...............................................................................................................558
8.5.7 Export/Import of sub modules..............................................................................................562
8.5.8 Import of CAx data...............................................................................................................566
8.5.9 Exceptions during import and export of CAx data................................................................568
8.5.10 Round trip exchange of devices and modules.....................................................................569
8.5.11 Export/Import topology.........................................................................................................572
8.5.12 Export of a device object......................................................................................................574
8.5.13 Import of a device object......................................................................................................576
8.5.14 Export/Import of device with set address.............................................................................579
8.5.15 Export/Import of device with channels.................................................................................582
8.5.16 Export of device item objects...............................................................................................584
8.5.17 Import of device item objects...............................................................................................587
8.5.18 Export/Import of GSD/GSDML based devices and device items.........................................590
8.5.19 Export/Import of subnets......................................................................................................594
8.5.20 Export/Import of PLC tags....................................................................................................600
8.5.21 Export/Import of IO-systems................................................................................................602
8.5.22 Export/Import of multilingual comments...............................................................................604
8.5.23 AML attributes versus TIA Portal Openness attributes........................................................606

9 Major Changes.........................................................................................................................................609

9.1 Major changes in TIA Portal Openness V15........................................................................609

9.2 Major changes in V14 SP1...................................................................................................611
9.2.1 Major changes in V14 SP1...................................................................................................611
9.2.2 Major changes in the object model......................................................................................614
9.2.3 Changes on pilot functionality..............................................................................................618
9.2.4 Changes for export and import.............................................................................................623
9.2.4.1 Changes for export and import.............................................................................................623
9.2.4.2 Changes in API....................................................................................................................623
9.2.4.3 Schema extension................................................................................................................624
9.2.4.4 Schema changes.................................................................................................................627
9.2.4.5 Behaviour changes..............................................................................................................630
9.2.4.6 Block attribute changes........................................................................................................641

9.3 Major changes in V14..........................................................................................................643
9.3.1 Major changes of the object model......................................................................................643
9.3.2 Before updating an application to TIA Portal Openness V14...............................................645
9.3.3 Major string changes............................................................................................................645
9.3.4 Import of files generated with TIA Portal Openness V13 SP1 and previous........................649

Index.........................................................................................................................................................651

Table of contents

Openness: Automating creation of projects
10 System Manual, 10/2018



Security note 1
Security information

Siemens provides products and solutions with industrial security functions that support the 
secure operation of plants, systems, machines, equipment and/or networks. 

In order to protect plants, systems, machines and networks against cyber threats, it is 
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial 
security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and 
networks. Systems, machines and components should only be connected to the enterprise 
network or the internet if and to the extent necessary and with appropriate security measures 
(e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be taken into 
account. For more information about industrial security, please visit

http://www.siemens.com/industrialsecurity (http://www.industry.siemens.com/topics/global/
en/industrial-security/Pages/Default.aspx) 

Siemens’ products and solutions undergo continuous development to make them more secure. 
Siemens strongly recommends to apply product updates as soon as available and to always 
use the latest product versions. Use of product versions that are no longer supported, and 
failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS 
Feed under

http://www.siemens.com/industrialsecurity (http://www.industry.siemens.com/topics/global/
en/industrial-security/Pages/Default.aspx)

Openness: Automating creation of projects
System Manual, 10/2018 11

http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx


Security note

Openness: Automating creation of projects
12 System Manual, 10/2018



Readme TIA Portal Openness 2
2.1 Readme

Security measures for TIA Portal Openness applications
It is recommended

● to install a TIA Portal Openness application with admin rights to the programs folder.

● to avoid the dynamical loading of program parts like assemblies or dlls from the users area.

● to run the TIA Portal Openness application with user rights.

Hardware parameters
A description of hardware parameters is available in the installation folder of TIA Portal at  
Siemens\Automation\Portal V15.1\PublicAPI\V15.1\HW Parameter Description
\Openness_hardware_parameter_description.pdf

Copying a TIA Portal Openness application
When you copy an executable TIA Portal Openness application, it may occur under certain 
circumstances that the directory path in which the TIA Portal Openness application was 
originally created is read out by the TIA Portal Openness application. 

Remedy: 

If you have copied the TIA Portal Openness application to a new directory, open and close the 
properties dialog to update the Windows cache.

Support of specific features in a TIA Portal project

Multiuser
TIA Portal Openness doesn't support administrative multiuser operations. Because of that it's 
not recommended to use TIA Portal Openness in Multiuser projects. Be aware that there are 
TIA Portal Openness actions that actually interfere with the multiuser workflow that is enforced 
by the GUI of the TIA portal. If you want to make modifications with TIA Portal Openness, 
export the multiuser project to a single user project before.

Failsafe
When you are using TIA Portal Openness there are restrictions regarding failsafe. Please 
consider the documentation "SIMATIC Safety - Configuring and Programming" for further 
information.

Openness: Automating creation of projects
System Manual, 10/2018 13



Improvement of the TIA Portal Openness performance
To achieve the maximum performance of TIA Portal Openness you can switch off the global 
search feature of the TIA Portal. To switch off the global search use the GUI or the TIA Portal 
Openness API call. When the TIA Portal Openness script is finished the global search could 
be switched on again. Although this is improving the performance, all TIA Portal Openness 
features work fine even with global search switched on.

Thread-safe program code
Take care that your code is thread-safe, an event appears in a different thread.

Export behaviour of screen items with style enabled 
Export of a screen items with style enabled will not export the attributes of the style item, but 
those of the screen item before activating the style. If a style is selected and 
UseDesignColorSchema for the screen item is checked, the screen item fetches the attribute 
values from the style in the user interface but the attribute values of the screen item that were 
set before selecting the style are still stored in the database for this screen item. TIA Portal 
Openness exports these actual values that are stored in the database. 

After disabling and enabling the style and exporting the screen item again, the same attribute 
values will be exported for the screen item like in the style item. If UseDesignColorSchema is 
unchecked, the attribute values of the selected style item are saved to the database for that 
screen item.

This problem can be solved by following the steps below:

1. Associate the screen item to the style item:

– The database contains the attribute values before activating the style.

– The user interfaces fetches attributes from the style item directly.

2. Export the screen item associated to the style item:

– The XML file contains the attribute values from the database which are those before 
activating style.

3. Disable the UseDesignColorSchema:

– The attribute values of style item are written in the attributes of the screen item in the 
database.

4. Enable the UseDesignColorSchema:

–  The attribute values of the screen item in the database are not changed and are still 
the ones from 3. 

– The user interfaces fetches attributes from the style item directly.

5. Export the screen item associated to the style item: 

– The XML file contains the attribute values from the database which were set at step 3, 
which are the same as the values in the style item.

Readme TIA Portal Openness
2.1 Readme

Openness: Automating creation of projects
14 System Manual, 10/2018



Copying S7-1500 Motion Control technology objects
A copy of TO_CamTrack, TO_OutputCam or TO_MeasuringInput from the project library or 
global library to the project is not possible.

Importing ASi slaves via AML
If one of the following ASi slaves is imported via an aml-file the firmware version of the device 
item will be set to V13.0 in all cases:

● ASIsafe FS400 RCV-B: 3SF7 844-*B***-***1

● ASIsafe FS400 RCV-M: 3SF7 844-*M***-***1

● ASIsafe FS400 TRX-M: 3SF7 844-*M***-**T0

● ASIsafe FS400 RCV-C: 3SF7 844-*T***-***1

Exporting and importing function keys
Function keys are synchronized during the import. If a function key is created in the global 
screen and the key is empty in the screen, the corresponding function key will use the global 
definition in all screens. 

If you want to disable the global use of function keys after the import, define empty keys in the 
screens and import the screen types in the following order: Global screen, templates, screens. 

If you want to ensure when exporting the screens that the global definition of a function key is 
not used by the template or by the global screen, create an empty function key in the screen. 
Select the required function key in the screen, then enable the "Use global assignment" 
property and disable it again.

Accessing a device while Online
Writing attributes of a device that is Online is not supported. Reading attributes is supported.

Disconnecting a subnet is not supported when the device is online.

Instance-specific attributes when importing blocks via TIA Openness
In certain situations, the import rules can mean the loss of instance-specific attributes, such 
as start values, for example.

Information on specific features 
Please See FAQ entries in Siemens Industry Online Support for further information concerning 
the following Openness functionalities:

● Archive/retrieve project

● Export/import watch tables

Readme TIA Portal Openness
2.1 Readme

Openness: Automating creation of projects
System Manual, 10/2018 15



2.2 Major changes in TIA Portal Openness V15.1

Changes
If you have considered the hints concerning programming across versions and you do not 
upgrade your project to V15.1 your applications will run without any restrictions on any 
computer even if only a TIA Portal V15.1 is installed. 

If you upgrade your project to V15.1 it is necessary to recompile your application using the 
SiemensEngineering.dll of V15.1. In some cases it might be necessary to adapt the code of 
your application

Type identifiers
The type identifier for racks and devices of "PC with ports" and "Ethernet devices with ports" 
have been renamed.

PC with ports Type identifier before V15.1 Type identifier as of V15.1
Device System:DesktopPC.Device System:Device.DesktopPC
Rack System:DesktopPC.Rack System:Rack.DesktopPC
Device item System:DesktopPC.Port<X>

<X> denotes the number of ports
System:DeviceItem.EthernetDe‐
vice.Port<X>
<X> denotes the number of ports

Ethernet devices with ports   
Device System:DummyPC.Device System:Device.EthernetDevice
Rack System:Rack.DummyPC System:Rack.EthernetDevice
Device item System:DummyPC.Port<X>

<X> denotes the number of ports
 

Failures when trying to connect to TIA Portal
The messages in case of failures when trying to connect to TIA Portal have been enhanced 
in a more specific way.

Cross-thread operations
Access to Openness objects is not inherently thread-safe.
If you use multi-threading to improve the performance of your Openness application, it is 
recommended to create your TiaPortal instance with an MTA. 
If TiaPortal is created or attached within an STA thread, all Openness objects associated with 
that Portal instance should be accessed from the same STA thread; otherwise, an exception 
will be thrown.

Submodules do not have attributes Author and TypeName
The attributes Author and TypeName have been removed from submodules which cannot be 
plugged.

Readme TIA Portal Openness
2.2 Major changes in TIA Portal Openness V15.1

Openness: Automating creation of projects
16 System Manual, 10/2018



Opening of a global library
As of TIA Portal Openness V15.1 a global library can be opened via Openness independant 
of a persisted preview mode of the library.

Application exit codes
In case of an application exit code 

● Up to TIA Portal Openness V15 you get a non recoverable exception

● As of TIA Portal Openness V15.1 you get a EngineeringRuntimeException or a 
EngineeringTargetInvocationException if the error code is known and a non recoverable 
exception if the error code is unknown.

Schema extension for nameless parameters
The import of SCL blocks is possible even if ENO is used at a nonformal call..

Header of indexed parameters
As of TIA Portal Openness V15.1 the header of indexed parameters my not be changed via 
Openness.

Attribute TransmissionRateAndDuplex
Some faulty enum values for attribute TransmissionRateAndDuplex have been corrected.

Attribute AutoNumber for know how protected blocks
As of V15.1 the attribute AutoNumber can not be changed via TIA Portal Openness if a block 
is know how protected.

Number of channels listed by ChannelInfo interfaace
Up to TIA Portal Openness V15 the ChannelInfo interface the number of available channels 
hasn't been correct for some mdoules. 

Access to ProDiag FB attributes 
The following attributes of a ProDiag FB can be accessed via TIA Portal Openness:

● Version

● Initial values acquisition 

● Use central timestamp

Import/Export of failsafe blocks
Import offailsafe blocks from previous versions is not possible.

Readme TIA Portal Openness
2.2 Major changes in TIA Portal Openness V15.1

Openness: Automating creation of projects
System Manual, 10/2018 17



Export of system generated failsafe blocks will be prevented as of TIA Openness V15.1.

R/H systems
Download for R/H devices is available at device.

Online Provider is not available for R/H devices.

For PLC2 of an R/H systemSoftwareContainer will not be available.

Readme TIA Portal Openness
2.2 Major changes in TIA Portal Openness V15.1

Openness: Automating creation of projects
18 System Manual, 10/2018



2.3 Announcement of major changes in future releases

Announcement of changes
The TIA Portal Openness API will be changed in a later version. There is no need to change 
the code of your application immediately, because applications based on former releases will 
run without any restriction. But for new applications it is recommended to use the new 
functionality and to plan the recoding of your appllication, as of V17 the following methods will 
not be supported any longer.

● Type of compositions

Type of compositions
The following types will be changed to indicate the snapshot behaviour:

● AddressAssociation

● AddressComposition

● AddressControllerAssociation

● ChannelComposition

● DeviceItemAssociation

● DeviceItemComposition

● HwIdentifierAssociation

● HwIdentifierComposition

● HwIdentifierControllerAssociation

● IoConnectorComposition

● IoControllerComposition

Simocode Openness
Please note that while all Truth Table parameters will be available for use in Openness in 
V15.1, their implementation will change in V16. 

Instead of having to set each bit individually, it will be possible to set all outputs bits of a Truth 
Table in one quick array operation.

If you want to keep using your existing Openness scripts in V16, you may have to adapt your 
code to the new situation.

Readme TIA Portal Openness
2.3 Announcement of major changes in future releases

Openness: Automating creation of projects
System Manual, 10/2018 19



2.4 Hints for writing long-term stable code

Version change 
If you consider some hints for writing long-term stable code you will be able to use your 
application with other versions of the TIA Portal without modifying the code of your application.

Registry path and appconfig file
Modifications are necessary to change registry path and appconfig file, for instance: 
“C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\V14 
SP1\Siemens.Engineering.dll” 
has to be changed to
“C:\Program Files\Siemens\Automation\Portal V15\PublicAPI\V14 
SP1\Siemens.Engineering.dll”

To write long-term stable code, the registry path should be configurable and the appcondif 
must be updated.

Installation path
Modifications are necessary to change the installation path of TIA Portal, for instance:
“C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\V14 
SP1\Siemens.Engineering.dll”
has to be changed to 
“C:\Program Files\Siemens\Automation\Portal V15\PublicAPI\V14 
SP1\Siemens.Engineering.dll”

To write long-term stable code, the installation path should be configurable. 

Path of AmiHost
Modifications are necessary to change the path of AmiHost, for instance:
“C:\Program Files\Siemens\Automation\Portal V14\bin
\Siemens.Automation.Cax.AmiHost.exe”
has to be changed to “C:\Program Files\Siemens\Automation\Portal V15\bin
\Siemens.Automation.Cax.AmiHost.exe”

To write long-term stable code, the path of AmiHost should be configurable. 

Extensions of TIA Portal project files and libraries
Modifications are necessary to change the extensions of TIA Portal project file and of libraries, 
for instance:
*.ap14
has to be changed to 
*.ap15

To write long-term stable code, the extensions of TIA Portal project files and libraries should 
be configurable.

Readme TIA Portal Openness
2.4 Hints for writing long-term stable code

Openness: Automating creation of projects
20 System Manual, 10/2018



Opening a project
To write long-term stable code, the Projects.OpenWithUpgrade method should be used 
instead of the Projects.Open method.

Hierarchy of compare, compile or download results 
The hierarchy and/or the order of compare, compile or download results might change across 
versions.

To write long-term stable code, you should avoid making assumptions about the depth and 
order of specific results.

The class layout is actually considered long term stable, mention explicit type names 
CompilerResult, CompareResult, DownloadResult, UploadResult. There is also a new results 
class: UploadResult. Content, hierarchy and order follow what is presented on the TIA Portal 
user interface of the currently executed or installed TIA Portal.

Readme TIA Portal Openness
2.4 Hints for writing long-term stable code

Openness: Automating creation of projects
System Manual, 10/2018 21



Readme TIA Portal Openness
2.4 Hints for writing long-term stable code

Openness: Automating creation of projects
22 System Manual, 10/2018



What's new in TIA Portal Openness? 3
New TIA Portal Openness object model

The following new features and innovations are available in TIA Portal Openness V15.1. You 
can find additional details on the various topics in the individual sections of the product 
documentation.

● Openness DLLs of V14 SP1, V15 and V15.1 in scope of delivery
Because the Openness DLLs of V14 SP1, V15 and V15.1 are included in the scope of 
delivery, applications based on V14 SP1 and V15 also run in V15.1 without modification. 
To make use of the functions of V15.1, you must integrate the DLL of V15.1 and recompile 
the application

● Siemens.Engineering.dll files are available for V14 SP1, V15, and V15.1.
They can be found in the installation directory under "PublicAPI\[version]\".   
 For example, the V14 SP1 dll can be found as "C:\Program Files\Siemens\Automation
\Portal V15_1\PublicAPI\V14 SP1\Siemens.Engineering.dll".

● Accessing projects 
Multiple projects in a TIA Portal instance can be opened via Openness. 
Projects can be archived and restored via Openness. 
For UMAC-protected projects Openness enables read access to objects. The same 
restrictions apply to this type of access as for a user with the "Read only" authorization.

● Online/offline comparison 
The online and offline comparison of data is possible via Openness.

● Accessing protection levels
A protection level can be set or removed for blocks.

● Accessing fingerprints
The fingerprint can be queried for blocks and PLC data types (UDTs).

● Accessing names
The name can be set for blocks, data blocks and UDTs.

● Fault-tolerant import
In addition to the strict import that can still be used, a fault-tolerant import is now available. 
The import is still possible even if linked user data types or called blocks do not match, for 
example.

● Export and import
Watch tables as well as force tables can be exported and imported. Snapshots of the current 
values can be exported as XML from an offline DB. This means different snapshots can be 
compared with the help of the XML files.

● ET200SP
Read and write access is possible for most attributes of the ET200SP modules.

Openness: Automating creation of projects
System Manual, 10/2018 23



● R/H systems
Download to the primary PLC and the backup PLC is possible for R/H systems.

● Fail-safe PLC
The upload is now also possible indirectly via NAT router.
Recipes, archives, user files and the passwords of the protection levels are also taken into 
account during the upload.

For changes to the object model see Major Changes in TIA Portal Openness V15.1 (Page 16) 
for further information. 

See also
TIA Portal Openness object model (Page 51)

Announcement of major changes in future releases (Page 19)

Major changes in TIA Portal Openness V15.1 (Page 16)

Major changes in TIA Portal Openness V15 (Page 609)

Major changes in V14 SP1 (Page 611)

Major changes in V14 (Page 643)

What's new in TIA Portal Openness?

Openness: Automating creation of projects
24 System Manual, 10/2018



Basics 4
4.1 Requirements for TIA Portal Openness

Requirements for using TIA Openness applications
● A product based on the TIA Portal is installed on the PC, for example, "STEP 7 Professional" 

or "WinCC Professional".

● The "TIA Openness" is installed on the PC. 
See Installing TIA Openness (Page 27)

Supported Windows operating systems
The following table shows which combinations of Windows operating system, TIA Portal and 
user application are mutually compatible:

Windows operating system TIA Portal User application
64-bit 64-bit 32-bit, 64-bit and "Any CPU"

Requirements for programming TIA Portal Openness applications
● Microsoft Visual Studio 2015 Update 1 or later with .Net 4.6.2

Necessary user knowledge   
● Knowledge as a system engineer

● Advanced knowledge of Microsoft Visual Studio 2015 Update 1 or later with .Net 4.6.2

● Advanced knowledge of C# / VB.net and .Net

● User knowledge of the TIA Portal

TIA Portal Openness remoting channels
The TIA Portal Openness remoting channels are registered as type IpcChannel with the 
“ensureSecurity” parameter set to "false".

Note

You should avoid registering another IpcChannel using a “ensureSecurity” parameter value 
other than "false" with a priority higher than or equal to “1”.

Openness: Automating creation of projects
System Manual, 10/2018 25



The IpcChannel is defined with the following attributes:

Attribute Settings
"name" and "portName" Set to $”{Process.Name}_{Process.Id}” or $”{Proc‐

ess.Name}_{Process.Id}_{AppDomain.Id}” when registered 
in an AppDomain other than the application’s default.

“priority” Set with the default value of “1”.
“typeFilterLevel” Set to “Full”.
“authorizedGroup” Set to the NTAccount value string for the built-in user account 

(i.e. everyone).

See also
Adding users to the "Siemens TIA Openness" user group (Page 28)

Basics
4.1 Requirements for TIA Portal Openness

Openness: Automating creation of projects
26 System Manual, 10/2018



4.2 Installation

4.2.1 Installing TIA Openness

Introduction
The "TIA Openness" is installed via TIA portal setup program by selecting the TIA Openness 
checkbox (under Options) during TIA portal installation.

Requirements
● Hardware and software of the programming device or PC meet the system requirements.

● You have administrator rights.

● Running programs are closed.

● Autorun is disabled.

● WinCC and/or STEP 7 are installed. 

● The version number of the "TIA Portal Openness" matches the version numbers of WinCC 
and STEP 7.

Note

If a previous version of TIA Openness is already installed, the current version will be installed 
side by side.

Procedure
To install the TIA Openness, ensure the TIA Openness checkbox is selected during the 
instllation of TIA Portal. Follow the below steps to check the TIA Openness installation.

1. Under Configuration menu, select the folder Options.

2. Check the TIA Openness checkbox. 

3. Click "Next" and select the required option.

Follow the installation procedure of TIA portal to complete the TIA Openness installation.

Basics
4.2 Installation

Openness: Automating creation of projects
System Manual, 10/2018 27



Result
"TIA Portal Openness" is installed on the PC. Moreover, the local user group "Siemens TIA 
Openness" is generated. 

Note

You still do not have access to the TIA Portal with the "TIA Openness" add-on package. You 
need to be a member of the "Siemens TIA Openness" user group (see Adding users to the 
"Siemens TIA Openness" user group (Page 28)). 

4.2.2 Adding users to the "Siemens TIA Openness" user group

Introduction
When you install TIA Portal Openness on the PC, the "Siemens TIA Openness" user group is 
automatically created.

Whenever you access the TIA Portal with your TIA Portal Openness application, the TIA Portal 
verifies that you are a member of the "Siemens TIA Openness" user group, either directly or 
indirectly by way of another user group. If you are a member of the "Siemens TIA Openness" 
user group, the TIA Portal Openness application starts and establishes a connection to the 
TIA Portal.

Procedure 
You add a user to the "Siemens TIA Openness" user group with applications from your 
operating system. The TIA Portal does not support this operation. 

Note

Depending on the configuration of your domain or computer, you may need to log on with 
administrator rights to expand the user group. 

Basics
4.2 Installation

Openness: Automating creation of projects
28 System Manual, 10/2018



In a Windows 7 operating system (English language setting), for example, you can add a user 
to the user group as follows: 

1. Select "Start" > "Control Panel".

2. Double-click "Administrative Tools" in the Control Panel.

3. Click "Computer Management" to open the configuration dialog of the same name.

4. Select "Local Users and Groups > Groups", in order to display all created user groups.

Basics
4.2 Installation

Openness: Automating creation of projects
System Manual, 10/2018 29



5. Select the "Siemens TIA Openness" entry from the list of user groups in the right pane.

Basics
4.2 Installation

Openness: Automating creation of projects
30 System Manual, 10/2018



6. Select the "Action > Add to Group..." menu command.

The attributes dialog of the user group opens: 

Basics
4.2 Installation

Openness: Automating creation of projects
System Manual, 10/2018 31



7. Click "Add".
The selection dialog that opens displays the users that can be selected: 

8. Enter a valid user name in the input field.

Note

Click "Check Names" to verify that the user entered has a valid user account for this domain 
or computer. 

The "From this location" field displays the domain or computer name for the user name 
entered. For more information, contact your system administrator. 

9. Confirm your selection with "OK".
The new user is now displayed in the attributes dialog of the user group. 

You register additional users by clicking the "Add" button. 

Basics
4.2 Installation

Openness: Automating creation of projects
32 System Manual, 10/2018



10.Click "OK" to end this operation.

11.Log on to the PC again for the changes to take effect. 

4.2.3 Accessing the TIA Portal

Overview

Procedure
1. Set up the development environment to access and start the TIA Portal.

2. Instantiate the object of the portal application in your program to start the portal.

3. Find the desired project and open it.

4. Access the project data.

5. Close the project and exit the TIA Portal.

See also
Connecting to the TIA Portal (Page 74)

Terminating the connection to the TIA Portal (Page 83)

Basics
4.2 Installation

Openness: Automating creation of projects
System Manual, 10/2018 33



4.3 Openness tasks

4.3.1 Applications

Introduction
TIA Portal Openness provides you with various ways to access the TIA Portal and offers a 
selection of functions for defined tasks. 

You access the following areas of the TIA Portal by using the TIA Portal Openness API 
interface :

● Project data

● PLC data 

● HMI data  

Note

You must not use the TIA Portal Openness API to execute checks or generate data for the 
acceptance/approval of a fail-safe system. Acceptance/approval may only be carried out with 
a safety printout using the STEP 7 Safety add-on package or with the function test. The TIA 
Portal Openness API is no substitute.

Accessing the TIA Portal
TIA Portal Openness offers various ways to access the TIA Portal. You create an external TIA 
Portal instance in the process either with or without UI. You can also access ongoing TIA Portal 
processes at the same time.

Accessing projects and project data
When accessing projects and project data, you mainly use TIA Portal Openness for the 
following tasks:

● Close, open and save the project

● Enumerate and query objects

● Create objects

● Delete objects

Basics
4.3 Openness tasks

Openness: Automating creation of projects
34 System Manual, 10/2018



4.3.2 Export/import

Introduction
TIA Portal Openness supports the import and export of project data by means of XML files. 
The import/export function supports external configuration of existing engineering data. You 
use this function to make the engineering process effective and free of error.

Application
You use the import/export function for the following purposes:

● Data exchange

● Copying parts of a project

● External processing of configuration data, for example, for bulk data operations using find 
and replace

● External processing of configuration data for new projects based on existing configurations 

● Importing externally-created configuration data, for example, text lists and tags

● Providing project data for external applications 

Basics
4.3 Openness tasks

Openness: Automating creation of projects
System Manual, 10/2018 35



4.4 Object list

Introduction
The following tables show the available objects up to and including Runtime Advanced, and 
indicate whether these objects are supported by TIA Portal Openness. 

Neither Runtime Professional nor device proxy files are supported by TIA Portal Openness in 
WinCC. 

Objects 
You can control the following project data depending on which HMI device you are using:

Table 4-1 Screens

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Screen Yes Yes Yes Yes
Global screen Yes Yes Yes Yes
Templates Yes Yes Yes Yes
Permanent area No Yes Yes Yes
Pop-up screen No Yes Yes Yes
Slide-in screen No Yes Yes Yes

Table 4-2 Screen objects

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Line Yes Yes Yes Yes
Polyline No Yes Yes Yes
Polygon No Yes Yes Yes
Ellipse Yes Yes Yes Yes
Ellipse segment No No No No
Circle segment No No No No
Elliptical arc No No No No
Camera view No No No No
Circular arc No No No No
Circle Yes Yes Yes Yes
PDF view No No No No
Rectangle Yes Yes Yes Yes
Connector No No No No
Text field Yes Yes Yes Yes
Graphic view Yes Yes Yes Yes
Pipe No No No No
Double T-piece No No No No
T-piece No No No No

Basics
4.4 Object list

Openness: Automating creation of projects
36 System Manual, 10/2018



Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Pipe bends No No No No
I/O field Yes Yes Yes Yes
Date/time field Yes Yes Yes Yes
Graphic I/O field Yes Yes Yes Yes
Editable text field No No No No
List box No No No No
Combo box No No No No
Button Yes Yes Yes Yes
Round button No No No No
Illuminated button No No Yes No
Switch Yes Yes Yes Yes
Symbolic I/O field Yes Yes Yes Yes
Key-operated switch No No Yes No
Bar Yes Yes Yes Yes
Symbol library No Yes Yes Yes
Slider No Yes Yes Yes
Scroll bar No No No No
Check box No No No No
Option buttons No No No No
Gauge No Yes Yes Yes
Clock No Yes Yes Yes
Memory space view No No No No
Function keys Yes Yes Yes Yes
Faceplate instances No Yes Yes Yes
Screen window No No No No
User view Yes Yes Yes Yes
HTML Browser No No No No
Print job/script diagnos‐
tics

No No No No

Recipe view No No No No
Alarm view No No No No
Alarm indicator No No No No
Alarm window No No No No
Criteria analysis view No Yes 1) Yes Yes
ProDiag overview No Yes 1) Yes Yes
GRAPH overview No Yes 1) Yes Yes
PLC code view No Yes 1) Yes Yes
f(x) trend view No No No No
f(t) trend view No No No No
Table view No No No No
Value table No No No No

Basics
4.4 Object list

Openness: Automating creation of projects
System Manual, 10/2018 37



Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Media Player No No No No
Channel diagnostics No No No No
WLAN reception No No No No
Zone name No No No No
Zone signal No No No No
Effective range name No No No No
Effective range name 
(RFID)

No No No No

Effective range signal No No No No
Charge condition No No No No
Handwheel No No Yes No
Help indicator No No No No
Sm@rtClient view No No No No
Status/Force No No No No
System diagnostic view No No No No
System diagnostic win‐
dow

No No No No

1) Only Mobile Panels with the device version greater than 12.0.0.0 support this screen object

Table 4-3 Dynamic

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Display Yes Yes Yes Yes
Operability No Yes Yes Yes
Visibility Yes Yes Yes Yes
Movements Yes Yes Yes Yes

Table 4-4 Additional objects

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Groups Yes Yes Yes Yes
Soft keys Yes Yes Yes Yes
Cycles Yes Yes Yes Yes
VB scripts No Yes Yes Yes
Function lists Yes Yes Yes Yes
Project graphics Yes Yes Yes Yes

Table 4-5 Tags

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Multiplex tags Yes Yes Yes Yes
Arrays Yes Yes Yes Yes

Basics
4.4 Object list

Openness: Automating creation of projects
38 System Manual, 10/2018



Object Basic Panels Comfort Panels Mobile Panels RT Advanced
User data types Yes Yes Yes Yes
Internal No Yes Yes Yes
Points of use of ele‐
mentary data types

Yes Yes Yes Yes

Points of use of user 
data types

Yes Yes Yes Yes

Points of use of arrays Yes Yes Yes Yes

TIA Portal Openness also supports all value ranges which are supported by the communication 
drivers.

Connections 

TIA Portal Openness supports non-integrated connections that are also supported by the 
respective HMI devices. You can find additional information in the online help for the TIA Portal 
under "Process visualization > Controller communication > Device-dependent".

Table 4-6 Lists

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Text lists Yes Yes Yes Yes
Graphic lists Yes Yes Yes Yes

Table 4-7 Texts

Object Basic Panels Comfort Panels Mobile Panels RT Advanced
Multilingual texts Yes Yes Yes Yes
Formatted texts and 
their instances

No Yes Yes Yes

Basics
4.4 Object list

Openness: Automating creation of projects
System Manual, 10/2018 39



4.5 Standard libraries
Insert the following namespace statements at the beginning of the relevant code example to 
ensure that the code examples work:

 
using System;
using Siemens.Engineering;
using Siemens.Engineering.CAx;
using Siemens.Engineering.HW;
using Siemens.Engineering.HW.Extension;
using Siemens.Engineering.HW.Features;
using Siemens.Engineering.HW.Utilities;
using Siemens.Engineering.SW;
using Siemens.Engineering.SW.Blocks;
using Siemens.Engineering.SW.TechnologicalObjects;
using Siemens.Engineering.SW.TechnologicalObjects.Motion; 
using Siemens.Engineering.SW.ExternalSources;
using Siemens.Engineering.SW.Tags;
using Siemens.Engineering.SW.Types;
using Siemens.Engineering.Hmi;
using Siemens.Engineering.Hmi.Tag;
using Siemens.Engineering.Hmi.Screen;
using Siemens.Engineering.Hmi.Cycle;
using Siemens.Engineering.Hmi.Communication;
using Siemens.Engineering.Hmi.Globalization;
using Siemens.Engineering.Hmi.TextGraphicList;
using Siemens.Engineering.Hmi.RuntimeScripting;
using System.Collections.Generic; 
using Siemens.Engineering.Online;
using Siemens.Engineering.Compiler;
using Siemens.Engineering.Library;
using Siemens.Engineering.Library.Types;
using Siemens.Engineering.Library.MasterCopies;
using Siemens.Engineering.Compare;
using System.IO;

Basics
4.5 Standard libraries

Openness: Automating creation of projects
40 System Manual, 10/2018



4.6 Notes on performance of TIA Portal Openness

Root objects
You can specify several root objects in import files.

Example: You can create several text lists in an XML file instead of one text list for each XML 
file.

TIA Portal Openness functions
The first call of a TIA Portal Openness function can take longer than any subsequent calls of 
the TIA Portal Openness function.

Example: If you perform multiple configuration data exports one after the other, the first export 
can take longer than the subsequent exports. 

Basics
4.6 Notes on performance of TIA Portal Openness

Openness: Automating creation of projects
System Manual, 10/2018 41



Basics
4.6 Notes on performance of TIA Portal Openness

Openness: Automating creation of projects
42 System Manual, 10/2018



Introduction 5
Introduction    

TIA Portal Openness describes open interfaces for engineering with the TIA Portal. You will 
find further information about "TIA Portal Openness - Efficient generation of program code 
using code generators" in the SIEMENS YouTube channel (www.youtube.com/watch?
v=Ki12pLbEcxs).

You automate the engineering with TIA Portal Openness by controlling the TIA Portal externally 
from a program you have created.

You can perform the following actions with TIA Portal Openness:

● Create project data

● Modify projects and project data

● Delete project data

● Read in project data

● Make projects and project data available for other applications.

Note

Siemens is not liable for and does not guarantee the compatibility of the data and information 
transported via these interfaces with third-party software. 

We expressly point out that improper use of the interfaces can result in data loss or production 
downtimes.

Note

The code snippets contained in this documentation are written in C# syntax. 

Due to the shortness of the used code snippets the error handling description has been 
shortened as well.

Application
The TIA Portal Openness interface is used to do the following:

● Provide project data.

● Access the TIA Portal process.

● Use project data.

Using defaults from the field of automation engineering
● By importing externally generated data

● By remote control of the TIA Portal for generating projects

Openness: Automating creation of projects
System Manual, 10/2018 43

http://www.youtube.com/watch?v=Ki12pLbEcxs
http://www.youtube.com/watch?v=Ki12pLbEcxs


Providing project data of the TIA Portal for external applications
● By exporting project data

Ensuring competitive advantages through efficient engineering
● You do not have to configure existing engineering data in the TIA Portal.

● Automated engineering processes replace manual engineering.

● Low engineering costs strengthen the bidding position as compared to the competition.

Working together on project data
● Test routines and bulk data processing can take place in parallel to the ongoing 

configuration.

See also
Configurations (Page 45)

Introduction

Openness: Automating creation of projects
44 System Manual, 10/2018



Configurations 6
You can work with two variants of the TIA Portal Openness:  

Application and the TIA Portal are on different computers

   

● Data exchange takes place by XML files. The XML files can be exported or imported by 
your programs.

● The data exported from the TIA Portal project to PC2 can be modified on PC1 and re-
imported.

Note

You have to develop an executable program "Your Program 2" for PC2, such as 
"program2.exe". The TIA Portal runs with this program in the background.

Import and export of XML files takes place exclusively via the TIA Portal Openness API.

● You can archive exchanged files for verification purposes.

● Exchanged data can be processed at different locations and times.

Openness: Automating creation of projects
System Manual, 10/2018 45



Application and the TIA Portal are on the same computer

   

● Your program launches the TIA Portal either with or without the user interface. Your 
program opens, saves and/or closes a project. The program can also connect to a running 
TIA Portal. 

● You can then use the TIA Portal functionality to request, generate and modify project data 
or to initiate import or export processes.

● The data is created under control of the TIA Portal processing and stored in the project 
data.

Configurations

Openness: Automating creation of projects
46 System Manual, 10/2018



Typical application in modular mechanical engineering

● An efficient automation system is to be applied to similar machines.

● A project is available in the TIA Portal, which contains the components of all machine 
variants.

● The Generator tool controls the creation of the project for a specific machine variant.

● The Generator tool obtains the defaults by reading in the parameters for the requested 
machine variant.

● The Generator tool filters out the relevant elements from the overall TIA Portal project, 
modifies them if necessary and generates the requested machine project.

Configurations

Openness: Automating creation of projects
System Manual, 10/2018 47



Configurations

Openness: Automating creation of projects
48 System Manual, 10/2018



TIA Portal Openness API 7
7.1 Introduction

Overview
TIA Portal Openness supports a selection of functions for defined tasks that you can call 
outside the TIA Portal by means of the  TIA Portal Openness API.

Note

If a previous version of TIA Portal Openness is already installed, the current version will be 
installed side by side.

You are provided with an overview of the typical programming steps in the sections below. 
You can learn how the individual code sections interact and how to integrate the respective 
functions into a complete program. You also get an overview of the code components that 
have to be adapted for each task.

Example program
The individual programming steps are explained using the "Creating API access in a console 
application" function as an example. You integrate the provided functions in this program code 
and adapt the respective code components for this task.

Functions
The section below lists the functions for defined tasks that you can call with TIA Portal 
Openness outside the TIA Portal.

See also
Applications (Page 34)

Object list (Page 36)

Openness: Automating creation of projects
System Manual, 10/2018 49



7.2 Programming steps

Overview
TIA Portal Openness requires the following programming steps for access by means of the 
TIA Portal Openness API:

1. Make the TIA Portal known in the development environment

2. Set up program access to the TIA Portal

3. Activate program access to the TIA Portal

4. Publish and start the TIA Portal

5. Open project

6. Execute commands

7. Save and close the project

8. Terminate the connection to the TIA Portal

Note
Permitted strings

Only certain characters are allowed in strings in the TIA portal. All strings passed to the TIA 
Portal via the TIA Portal Openness application are subject to these rules. If you pass an invalid 
character in a parameter, an exception is thrown.

See also
Example program (Page 67)

Use of the code examples (Page 72)

TIA Portal Openness API
7.2 Programming steps

Openness: Automating creation of projects
50 System Manual, 10/2018



7.3 TIA Portal Openness object model

Overview
The following diagram describes the highest level of the TIA Portal Openness object model:

The following diagramm describes the objects which are located under GlobalLibrary.

The following diagramm describes the objects which are located under ProjectLibrary.

The following diagramm describes the objects which are located under HmiTarget.

TIA Portal Openness API
7.3 TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 51



The following diagramm describes the objects which are located under PlcSoftware.

TIA Portal Openness API
7.3 TIA Portal Openness object model

Openness: Automating creation of projects
52 System Manual, 10/2018



TIA Portal Openness API
7.3 TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 53



Access to objects in lists
You have the following options for addressing an object in a list:

● Address via the index. The counting within the lists starts with 0. 

● Use Find method. 
Use this method to address an object via its name. You can use this method for an 
composition or list. The Find method is not recursive. 
Example: 
ScreenComposition screens = folder.Screens;
Screen screen = screens.Find("myScreen");

● Use symbolic names.  

Relationship between TIA Portal and TIA Portal Openness object model
The figure below shows the relationship between the object model and a project in the TIA 
Portal: 

Project

HmiTarget

PlcSoftware

DeviceItem

TIA Portal Openness API
7.3 TIA Portal Openness object model

Openness: Automating creation of projects
54 System Manual, 10/2018



See also
Blocks and types of the TIA Portal Openness object model (Page 56)

Hierarchy of hardware objects of the object model (Page 64)

TIA Portal Openness API
7.3 TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 55



7.4 Blocks and types of the TIA Portal Openness object model

Introduction
The following diagram describes the domain model of the PLCs to give an overview of the 
current modeling in TIA Portal Openness.

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
56 System Manual, 10/2018



Representation of blocks and types in the TIA Portal Openness API
The simplified model part of blocks and for the structure is based on the attributes in the TIA 
Portal Openness API. These classes provide the export function and for blocks also the 
compile function.

Class diagrams
In the TIA Portal Openness object model all classes are defined as abstract which aren't directly 
instantiated.

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 57



Data

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
58 System Manual, 10/2018



TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 59



Code and Type

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
60 System Manual, 10/2018



Representation of groups for blocks and types in the TIA Portal Openness API
The two high level groups "PlcBlocks" ("Program blocks" in the GUI of TIA Portal) and 
"PlcTypes" ("Plc data types" in the GUI of TIA Portal) contain blocks and type definitions. These 
groups provide the import and the compile functions for blocks. Due to the fact that most of 
the methods of functionalities of the groups are only achievable via collections, there is an 
"embedded" or "compacted" representation of the collections and their methods at the "host" 
classes.

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 61



Blocks and Types

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
62 System Manual, 10/2018



External Sources

See also
TIA Portal Openness object model (Page 51)

Hierarchy of hardware objects of the object model (Page 64)

TIA Portal Openness API
7.4 Blocks and types of the TIA Portal Openness object model

Openness: Automating creation of projects
System Manual, 10/2018 63



7.5 Hierarchy of hardware objects of the object model

Relation between the visible elements in the TIA Portal and the modeled elements in the object model

Hardware object Explanation
Device 
(Device)

The container object for a central or distributed configuration. 

Device item 
(DeviceItem)

Each device item object has a container object. 
The logical relation is "Items". 

The container relation is comparable to the relation of the modules for the device item objects. 

Example: A device includes one or more slots. A slot includes modules. A module includes 
submodules.

This is the relation similar to the representation in the network view and device view of the TIA 
Portal. The "PositionNumber" attribute of a device item is unique in the items area, within a 
container.

The parent-child relation between device item objects is a purely logical relation in the object 
model. A child cannot exist without its parents. 

● If a submodule is modeled as part of a module (child), the submodule cannot be removed 
without the module.

● If you add and then remove a submodule from the module, this child has the same parents 
as the module.

The diagrams below show the hierarchy relationship between devices, and device items of 
PLC and HMI devices. 

Hierarchy relationships of PLC devices

Hierarchy when iterating via .Items Hierarchy when iterating via .DeviceItems

TIA Portal Openness API
7.5 Hierarchy of hardware objects of the object model

Openness: Automating creation of projects
64 System Manual, 10/2018



Hierarchy relationships of HMI devices

Hierarchy when iterating via .Items Hierarchy when iterating via .DeviceItems

See also
TIA Portal Openness object model (Page 51)

Blocks and types of the TIA Portal Openness object model (Page 56)

TIA Portal Openness API
7.5 Hierarchy of hardware objects of the object model

Openness: Automating creation of projects
System Manual, 10/2018 65



7.6 Information about installed TIA Portal Openness versions

Requirement
● TIA Portal Openness and TIA Portal are installed

Application
Starting from TIA Portal Openness V14 each installed version has a registry key that contains 
information about the version. This enables an automatic generation of app.config files for 
each installed version of TIA Portal Openness. 

The registry keys can be located under the following path:

HKEY_LOCAL_MACHINE\Software\Siemens\Automation\Openness
\14.0\PublicAPI

Note

The version number in this path, is always the number of the currently installed version of TIA 
Portal. If there are multiple side-by-side installations there are multiple sets of entries for TIA 
Portal Openness in the registry.

There is a single key for each version of TIA Portal Openness. The names of the Versions will 
be the same as in the assembly described, for example, the registry entries for TIA Portal 
Openness: 

 
[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\PublicAPI
\14.0.1.0]"PublicKeyToken"="d29ec89bac048f84"
"Siemens.Engineering"="C:\Program Files\Siemens\Automation\Portal V14\PublicAPI
\V14\Siemens.Engineering.dll"
"Siemens.Engineering.Hmi"="C:\Program Files\Siemens\Automation\Portal V14\PublicAPI
\V14\Siemens.Engineering.Hmi.dll"
"EngineeringVersion"="V14 SP1"
"AssemblyVersion"="14.0.1.0"

Note

If you want to generate an app.config file (Page 74) you can get the path of the 
Siemens.Engineering.dll, the Siemens.Engineering.Hmi.dll and the public key token from the 
registry key. 

TIA Portal Openness API
7.6 Information about installed TIA Portal Openness versions

Openness: Automating creation of projects
66 System Manual, 10/2018



7.7 Example program

Application example: Creating API access in an application   
The complete program code of the application example is shown below. The typical 
programming steps are explained next based on this example. 

Note

The application example requires an application configuration file (Page 74). 

TIA Portal Openness API
7.7 Example program

Openness: Automating creation of projects
System Manual, 10/2018 67



 
using System;
using Siemens.Engineering;
using Siemens.Engineering.HW;
using Siemens.Engineering.HW.Features;
using Siemens.Engineering.SW;
using Siemens.Engineering.SW.Blocks;
using Siemens.Engineering.SW.ExternalSources;
using Siemens.Engineering.SW.Tags;
using Siemens.Engineering.SW.Types;
using Siemens.Engineering.Hmi;
using HmiTarget = Siemens.Engineering.Hmi.HmiTarget;
using Siemens.Engineering.Hmi.Tag;
using Siemens.Engineering.Hmi.Screen;
using Siemens.Engineering.Hmi.Cycle;
using Siemens.Engineering.Hmi.Communication;
using Siemens.Engineering.Hmi.Globalization;
using Siemens.Engineering.Hmi.TextGraphicList;
using Siemens.Engineering.Hmi.RuntimeScripting;
using System.Collections.Generic; 
using Siemens.Engineering.Compiler;
using Siemens.Engineering.Library;
using System.IO;
 
 
namespace HelloTIA
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            RunTiaPortal();
        }
 
        private static void RunTiaPortal()
        {
            Console.WriteLine("Starting TIA Portal");
            using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
            {
                Console.WriteLine("TIA Portal has started");
                ProjectComposition projects = tiaPortal.Projects;
 
                Console.WriteLine("Opening Project...");
 
                FileInfo projectPath = new FileInfo("C:\Demo\AnyCompanyProject.ap14"); //
edit the path according to your project
                Project project = null;
                try
                {
                    project = projects.Open(projectPath);
                }
                catch (Exception)
                {
                    Console.WriteLine(String.Format("Could not open project {0}", 
projectPath.FullName));
                    Console.WriteLine("Demo complete hit enter to exit");

TIA Portal Openness API
7.7 Example program

Openness: Automating creation of projects
68 System Manual, 10/2018



 
                    Console.ReadLine();
                    return;
                }
 
                Console.WriteLine(String.Format("Project {0} is open", 
project.Path.FullName));
 
                IterateThroughDevices(project);
 
                project.Close();
 
                Console.WriteLine("Demo complete hit enter to exit");
                Console.ReadLine();
            }
        }
 
        private static void IterateThroughDevices(Project project)
        {
            if (project == null)
            {
                Console.WriteLine("Project cannot be null");
                return;
            }
 
            Console.WriteLine(String.Format("Iterate through {0} device(s)", 
project.Devices.Count));
 
            foreach (Device device in project.Devices)
            {
                Console.WriteLine(String.Format("Device: \"{0}\".", device.Name));
            }
 
            Console.WriteLine();
        }
    }
}

Procedure in steps

1. Make the TIA Portal known in the development environment
In your development environment, create a reference to all "dll files" in the "C:\Program Files
\Siemens\Automation\PortalV..\PublicAPI\V.." directory.

The following provides a description of this process using the "Siemens.Engineering.dll" file 
as an example.

The "Siemens.Engineering.dll" file is available in the directory "C:\Program Files\Siemens
\Automation\PortalV..\PublicAPI\V..". Create a reference to the "Siemens.Engineering.dll" file 
in your development environment.

Note

Ensure that parameter "CopyLocal" is assigned the value "False" in the reference attributes. 

TIA Portal Openness API
7.7 Example program

Openness: Automating creation of projects
System Manual, 10/2018 69



2. Publish the name space for the TIA Portal
Add the following code:

 
using Siemens.Engineering;

3. Publish and start the TIA Portal
In order to publish and start the TIA Portal, insert the following code: 

 
using (TiaPortal tiaPortal = new TiaPortal())
{
    // Add your code here
}

4. Open project
You can use the following code, for example, to open a project:

 
ProjectComposition projects = tiaPortal.Projects;
Console.WriteLine("Opening Project...");
FileInfo projectPath = new FileInfo("C:\Demo\AnyCompanyProject.ap14");
Project project = null;
try
{ 
    project = projects.Open(projectPath);
}
catch (Exception)
{ 
    Console.WriteLine(String.Format("Could not open project {0}", projectPath.FullName)); 
    Console.WriteLine("Demo complete hit enter to exit"); 
    Console.ReadLine(); 
    return;
}
Console.WriteLine(String.Format("Project {0} is open", project.Path.FullName));

TIA Portal Openness API
7.7 Example program

Openness: Automating creation of projects
70 System Manual, 10/2018



5. Enumerate devices of a project
Insert the following code to enumerate all devices of the project:

 
static private void IterateThroughDevices(Project project)
    {
        if (project == null)
        {
            Console.WriteLine("Project cannot be null");
            return;
        }
 
        Console.WriteLine();
        Console.WriteLine(String.Format("Iterate through {0} device(s)", 
project.Devices.Count));
        foreach (Device device in project.Devices)
        {
            Console.WriteLine(String.Format("Device: \"{0}\".", device.Name));
        }
        Console.WriteLine();
    }

6. Save and close the project
Insert the following code to save and close the project: 

 
project.Save();
project.Close();

TIA Portal Openness API
7.7 Example program

Openness: Automating creation of projects
System Manual, 10/2018 71



7.8 Use of the code examples

Structure of the code-snippets
Each code-snippet in this documentation is implemented as a function without return value 
with an object reference as transfer parameter. Disposing of objects is omitted for the sake of 
readability. Objects of the TIA Portal are addressed by their name using the Find method.

 
//Deletes a single screen from a user folder or a system folder
private static void DeleteScreenFromFolder(HmiTarget hmiTarget)
{
    //The screen "MyScreen" will be deleted if it is existing in the folder 
"myScreenFolder". 
    //If "myScreen" is stored in a subfolder of "myScreenFolder" it will not be deleted.  
    string screenName = "MyScreen";
    ScreenUserFolder folder = hmiTarget.ScreenFolder.Folders.Find("myScreenFolder");
    ScreenComposition screens = folder.Screens;
    Screen screen = screens.Find(screenName);
    if (screen != null)
    {
        screen.Delete();
    }
}

You need the following to execute this code-snippet: 

● A WinCC project with an HMI device that includes a group with at least one screen.

● A function that instantiates the HMI device.

Note

When you specify directory paths, use the absolute directory path, for example, "C:/path/
file.txt".

Relative directory paths are only allowed in the XML files for import and export, for example, 
"file.txt" or "C:/path01/.../path02/file.txt".

TIA Portal Openness API
7.8 Use of the code examples

Openness: Automating creation of projects
72 System Manual, 10/2018



Example for execution of the code-snippet
Use the following example to execute the code-snippet "DeleteScreenFromFolder" as part of 
the "Hello TIA" example program: 

 
//In the sample program "Hello TIA" replace the function call 
//"IterateThroughDevices(project)" by the following functions calls: 
    HmiTarget hmiTarget = GetTheFirstHmiTarget(project);
    DeleteScreenFromFolder(hmiTarget);
 
//Put the following function definitions before or after the 
//function definition of "private static void IterateThroughDevices(Project project)": 
private static HmiTarget GetTheFirstHmiTarget(Project project)
{
    if (project == null)
    {
        Console.WriteLine("Project cannot be null");
        throw new ArgumentNullException("project");
    }
    foreach (Device device in project.Devices)
    //This example looks for devices located directly in the project.
    //Devices which are stored in a subfolder of the project will not be affected by this 
example.
    {
        foreach (DeviceItem deviceItem in device.DeviceItems)
        {
            DeviceItem deviceItemToGetService = deviceItem as DeviceItem;
            SoftwareContainer container = 
deviceItemToGetService.GetService<SoftwareContainer>();
            if (container != null)
            {
                HmiTarget hmi = container.Software as HmiTarget;
                if (hmi != null)
                {
                    return hmi;
                }
            }
        }
    }
    return null;
}
 
//Deletes a single screen from a user folder or a system folder
private static void DeleteScreenFromFolder(HmiTarget hmiTarget)
{
    string screenName = "MyScreen";
    ScreenUserFolder folder = hmiTarget.ScreenFolder.Folders.Find("myScreenFolder");
    ScreenComposition screens = folder.Screens;
    Screen screen = screens.Find(screenName);
    if (screen != null)
    {
        screen.Delete();
    }
}

TIA Portal Openness API
7.8 Use of the code examples

Openness: Automating creation of projects
System Manual, 10/2018 73



7.9 General functions

7.9.1 TIA Portal Openness IntelliSense support

Application
The Intellisense support of TIA Portal Openness helps you at available attributes or methods 
via tooltip information. It could contain information about the number, names and types of the 
required parameters. At the following example the bold parameter in the first line indicates the 
next parameter that is required as you type the function. 

You can manually invoke Parameter Info by clicking Edit IntelliSense/Parameter Info, typing 
CTRL+SHIFT+SPACE, or clicking the Parameter Info button on the editor toolbar.   

7.9.2 Connecting to the TIA Portal

Introduction
You start the TIA Portal with TIA Portal Openness or connect to a TIA Portal already running. 
When using a TIA Portal Openness application to start the TIA Portal, you specify if the TIA 
Portal should be started with or without graphical user interface. When you operate the TIA 
Portal without user interface, the TIA Portal is only started as a process by the operating 
system. You create several instances of the TIA Portal with a TIA Portal Openness application, 
if necessary.

Note

If you use TIA Portal Openness with the TIA Portal interface, you cannot use an HMI editor. 
You can open the "Devices & Networks" editors or the programming editor manually or with 
TIA Portal Openness API.

You have the following options to start the TIA Portal with a TIA Portal Openness application: 

● Use an application configuration file (recommended in most use cases).

● Use the "AssemblyResolve" method (recommended when you use copy deploy etc.).

● Copy the Siemens.Engineering.dll  in the TIA Portal Openness application directory.

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
74 System Manual, 10/2018



Note

It is recommended to load the Siemens.Engineering.dll by using the app.config file. By using 
this method the strong names are considered and malicious modifications to the 
engineering.dll will result in a loading error. By using the AssemblyResolve method this can't 
be detected. 

Starting the TIA Portal with an application configuration file
Reference all required program libraries in the application configuration file. You distribute the 
application configuration file together with the TIA Portal Openness application. 

Store the application configuration file "app.config" in the same directory as the TIA Portal 
Openness application and likewise incorporate this in your application. Check whether the file 
path in each code matches the TIA Portal installation path.

You can use the following code snippet for the application configuration file:  

 
<?xml version="1.0"?>
<configuration>
    <runtime>
        <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
            <dependentAssembly>
                <assemblyIdentity name="Siemens.Engineering" culture="neutral" 
publicKeyToken="d29ec89bac048f84"/>
                <!-- Edit the following path according to your installation -->
                <codeBase version="15.1.0.0" href="FILE://C:\Program Files\Siemens\Automation
\Portal V15.1\PublicAPI\V15.1\Siemens.Engineering.dll"/>
            </dependentAssembly>
            <dependentAssembly>
                <assemblyIdentity name="Siemens.Engineering.Hmi" culture="neutral" 
publicKeyToken="d29ec89bac048f84"/>
                <!-- Edit the following path according to your installation -->
                <codeBase version="15.1.0.0" href="FILE://C:\Program Files\Siemens\Automation
\Portal V15.1\PublicAPI\V15.1\Siemens.Engineering.Hmi.dll"/>
            </dependentAssembly>
        </assemblyBinding>
    </runtime>
</configuration>

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 75



Use the following program code to open a new TIA Portal Instance by means of the application 
configuration file:

 
//Connect a TIA Portal Openness application via API using  
using System;
using System.IO;
using Siemens.Engineering;
 
namespace UserProgram
{
    internal class MyProgram
    {
        public static void Main(string[] args)
        {
            // To start TIA Portal with user interface:
            // using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
            //
            // To start TIA Portal without user interface:
            // using (TiaPortal tiaPortal = new 
TiaPortal(TiaPortalMode.WithoutUserInterface))
            using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
            {
                //begin of code for further implementation
                //...
                //end of code
            }
        }
    }
}

Starting the TIA Portal using the "AssemblyResolve" method
Design the program code of the TIA Portal Openness application in such a way that you register 
on the event "AssemblyResolve" as early as possible. Encapsulate the access to the TIA Portal 
in an additional object or method.

Caution must be taken when resolving the engineering assembly using an assembly resolver 
method. If any types from the engineering assembly are used before the assembly resolver 
has had run, the program will crash. The reason for this is that the Just-in-time compiler (JIT 
compiler) doesn't compile methods until it needs to execute them. If engineering assembly 
types are used in Main, for example, the JIT compiler will attempt to compile Main when the 
program runs and fail because it doesn't know where to find the engineering assembly. The 
registration of the assembly resolver in Main doesn't change this. The method needs to run 
before the assembly resolver is registered, and it needs to be compiled before it can be run. 
The solution for this problem, is to place the business logic that uses types from the engineering 
assembly into a separate method that uses only types that the JIT compiler already 
understands. In the example, a method that returns void and has no parameters and place all 
business logic inside it is used. When the JIT compiler compiles Main, it will succeed because 
it knows all the types in Main. At runtime, when we call RunTiaPortal, the assembly resolver 
will already be registered, so when the JIT compiler tries to find our business logic types, it will 
know where to find the engineering assembly.  

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
76 System Manual, 10/2018



Use the following program code to open a new TIA Portal Instance.

 
using System;
using System.IO;
using System.Reflection;
using Siemens.Engineering; 
 
namespace UserProgram
{ 
    static class MyProgram 
    { 
        public static void Main(string[] args) 
        { 
            AppDomain.CurrentDomain.AssemblyResolve += MyResolver; 
            RunTiaPortal(); 
        } 
        private static void RunTiaPortal() 
        { 
            // To start TIA Portal with user interface: 
            // using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
            // 
            // To start TIA Portal without user interface: 
            // using (TiaPortal tiaPortal = new 
TiaPortal(TiaPortalMode.WithoutUserInterface)) 
            using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface)) 
            { 
                //begin of code for further implementation 
                //... 
                //end of code 
            } 
        } 
        private static Assembly MyResolver(object sender, ResolveEventArgs args) 
        { 
            int index = args.Name.IndexOf(',');
            if (index == -1)
            {
                return null;
            }
            string name = args.Name.Substring(0, index) + ".dll";
            // Edit the following path according to your installation
            string path = Path.Combine(@"C:\Program Files\Siemens\Automation\Portal 
V14\PublicAPI\V14 SP1\", name);
            string fullPath = Path.GetFullPath(path);
            if (File.Exists(fullPath))
            {
                return Assembly.LoadFrom(fullPath);
            }
            return null;
        }
    }
}

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 77



Accessing running instances of the TIA Portal
In order to connect to a running instance of the TIA Portal with a TIA Portal Openness 
application, start by enumerating the instances of the TIA Portal. You can connect to multiple 
instances within a Windows session. The running instance can be TIA Portal with or without 
a started user interface: 

 
foreach (TiaPortalProcess tiaPortalProcess in TiaPortal.GetProcesses())
    {
        //...
    }

If you know the process ID of the instance of the TIA Portal, use this process ID to access the 
object. TIA Portal requires a certain amount of time to start up before you can connect the TIA 
Portal Openness application to the TIA Portal. 

When you connect to a running instance of the TIA Portal, a connection prompt of the TIA 
Portal Openness firewall appears. The connection prompt offers the following options: 

● Allow connection once

● Do not allow connection

● Always allow connections from this application
See TIA Portal Openness firewall (Page 79) for further information.

Note

If the registry prompt is rejected three times, the system throws an exception of the type 
EngineeringSecurityException. 

Once you have connected to the process, you can use the following attributes to retrieve 
information on the instances of the TIA Portal: 

Attribute Information
InstalledSoftware as 
IList<TiaPortalProduct>

Returns information about the installed products.

Mode as TiaPortalMode Returns the mode in which the TIA Portal was started (WithoutUserInterface/WithUserIn‐
terface).

AttachedSessions as 
IList<TiaPortalSession>

Returns a list of applications connected to the TIA Portal.

ProjectPath as FileInfo Returns the file name of the project opened in the TIA Portal, including the folder, for 
example, 
"D:\WinCCProjects\ColorMixing\ColorMixing.ap14"
If no project is open, a null string is returned.

ID as int Returns the process ID of the TIA Portal instance
Path as FileInfo Returns the path to the TIA Portal executable

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
78 System Manual, 10/2018



7.9.3 TIA Portal Openness firewall

TIA Portal Openness firewall prompt
When you try to connect to a running TIA Portal via TIA Portal Openness, the TIA Portal will 
prompt you to accept or reject the connection like the following screenshot is showing.

Allow connection to the TIA Portal once
If you just want to connect your TIA Portal Oppenness application to the TIA Portal once, klick 
"Yes" at the prompt. The next time your TIA Portal Openness application tries to connect the 
TIA Portal, the prompt will be shown again.     

Addition of a whitelist entry by connecting the TIA Portal
To create a whitlist entry for your TIA Portal Openness application follow these steps:

1. Click "Yes to all" at the prompt to display an User Account Control Dialog.

2. Click "Yes" at the User Account Control Dialog to add your application to the whitelist in the 
windows registry and to attach the application to the TIA Portal.

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 79



Addition of a whitelist entry without using the TIA Portal
If you want to add an entry to the whitelist without using TIA portal you can create a reg file 
like this:

 
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\Whitelist
\CustomerApplication.exe]
[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\Whitelist
\CustomerApplication.exe\Entry]
"Path"="E:\\Work\\Openness\\CustomerApplication\\bin\\Release\\CustomerApplication.exe"
"DateModified"="2014/06/10 15:09:44.406"
"FileHash"="0rXRKUCNzMWHOMFrT52OwXzqJef10ran4UykTeBraaY="

The following example shows how you can calculate the file hash and last modified date:

 
string applicationPath = @"E:\\Work\\Openness\\CustomerApplication\\bin\\Release\
\CustomerApplication.exe"; 
string lastWriteTimeUtcFormatted = String.Empty; 
DateTime lastWriteTimeUtc;  
HashAlgorithm hashAlgorithm = SHA256.Create();  
FileStream stream = File.OpenRead(applicationPath); 
byte[] hash = hashAlgorithm.ComputeHash(stream); 
// this is how the hash should appear in the .reg file
string convertedHash = Convert.ToBase64String(hash);  
lastWriteTimeUtc = fileInfo.LastWriteTimeUtc; 
// this is how the last write time should be formatted
lastWriteTimeUtcFormatted = lastWriteTimeUtc.ToString(@"yyyy/MM/dd HH:mm:ss.fff"); 

7.9.4 Event handlers

Event handlers in TIA Portal Openness application 
An instance of the TIA Portal provides the following events to which you can react with an 
event handler in a TIA Portal Openness application. You can access the attributes of 
notifications and define the responses accordingly. 

Event Response
Disposed Use this event to respond to the closing of the TIA Portal with a TIA Portal Openness 

application. 
Notification Use this event to respond to notifications of the TIA Portal with a TIA Portal Openness 

application. Notifications require only an acknowledgment, e.g. "OK".
Confirmation Use this event to respond to confirmations of the TIA Portal with a TIA Portal Openness 

application. Confirmations always require a decision, e.g. "Do you want to save the 
project?".

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
80 System Manual, 10/2018



Program code
Modify the following program code to register event handlers in a TIA Portal Openness 
application: 

 
 
//Register event handler for Disposed-Event
    ....
        tiaPortal.Disposed +=TiaPortal_Disposed;
....
 
private static void TiaPortal_Disposed(object sender, EventArgs e)
{
    ....
}
 
//Register event handler for Notification-Event
    ....
        tiaPortal.Notification += TiaPortal_Notification;
....
 
private static void TiaPortal_Notification(object sender, NotificationEventArgs e)
 
{
    ....
}
 
//Register event handler for Confirmation-Event
    ....
        tiaPortal.Confirmation += TiaPortal_Confirmation;
....
 
private static void TiaPortal_Confirmation(object sender, ConfirmationEventArgs e)
{
    ....
}

Attributes of TIA Portal notifications
TIA Portal notifications have the following attributes:

Attribute Description
Caption Returns the name of the confirmation.
DetailText Returns the detail text of the confirmation.
Icon Returns the icon of the confirmation.
IsHandled Returns the confirmation or specifies if it is still pending.
Text Returns the text of the confirmation.

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 81



Attributes of confirmations
Confirmations have the following attributes:

Attribute Description
Caption Returns the name of the confirmation.
Choices Returns the option to acknowledge the confirmation. 
DetailText Returns the detail text of the confirmation.
Icon Returns the icon of the confirmation.
IsHandled Returns the confirmation or specifies if it is still pending.
Result Returns the result of the acknowledgment or specifies it.
Text Returns the text of the confirmation.

See also
Program-controlled acknowledgement of dialogs with system events (Page 82)

7.9.5 Program-controlled acknowledgement of dialogs with system events

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● Event handlers are registered.
See Connecting to the TIA Portal (Page 74)

Application
When you operate the TIA Portal with the user interface, dialogs with system events are 
displayed for some program sequences. You decide how you want to proceed based on these 
system events.

When the TIA Portal is accessed with a TIA Portal Openness application, these system events 
must be acknowledged by means of corresponding ".NET" events.

The permitted confirmations are contained in the Choices list:

● Abort
● Cancel
● Ignore
● No
● NoToAll
● None

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
82 System Manual, 10/2018



● OK
● Retry
● Yes
● YesToAll
The value of ConfirmationEventArgs.Result must be one of the above-mentioned 
entries. Otherwise, an exception is thrown. 

Program code
Modify the following program code to respond to a confirmation event:

 
...
    tiaPortal.Confirmation += TiaPortalConfirmation;
...
private void TiaPortalConfirmation(object sender, ConfirmationEventArgs e)
{ 
    ...
}

Modify the following program code to notify the project engineer about executed actions of a 
TIA Portal Openness application: 

 
//Handles notifications 
using (TiaPortal tiaPortal = new TiaPortal())
{
    tiaPortal.Notification += Notification;
    try
        {
            //perform actions that will result in a notification event
        }
    finally
        {
            tiaPortal.Notification -= Notification;
        }
}

7.9.6 Terminating the connection to the TIA Portal

Introduction
If you started the TIA Portal instance without a user interface and if your application is the only 
TIA Portal Openness client attached to the TIA Portal, you can close the TIA Portal instance 
with the TIA Portal Openness application. Otherwise, you disconnect the TIA Portal Openness 
application from the TIA Portal instance. 

Use the IDisposable.Dispose() method to separate or close the active instance of the 
TIA Portal.

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 83



You can use the IDisposable.Dispose() method as follows:

● With a using statement.

● Surround the object description with a try-finally block and call the 
IDispose.Dispose() method within the finally block.

You can no longer access the TIA Portal when you close the active instance of the TIA Portal.

Note

When a configuration engineer closes the TIA Portal instance despite ongoing access of a TIA 
Portal Openness application, an exception of the class "NonRecoverableException" is thrown 
in the TIA Portal Openness application on the next API access. You can subscribe to the 
dispose event to get a call when the TIA Portal is closed.

Program code
Modify the following program code to separate or close the connection to the TIA Portal:

 
// Add code to dispose the application if the application is still instantiated
if (tiaPortal != null)
{
    tiaPortal.Dispose();
}

See also
Event handlers (Page 80)

7.9.7 Diagnostic interfaces on TIA Portal

Application
You can retrieve certain diagnostic information from running instances of TIA Portal via a static 
method. The diagnostic interface is implemented on the TiaPortalProcess object, which can 
be retrieved for any currently running instance of the TIA Portal. 

The diagnostic interface is not blocking, so you can retrieve the TiaPortalProcess object and 
access it's members, regardless of if the TIA Portal is busy or not. The diagnostic interface 
includes the following Members: 

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
84 System Manual, 10/2018



Class TiaPortalProcess

Member Type Function
AcquisitionTime DateTime The time when the TiaPortalPro‐

cess object was acquired. Since 
the TiaPortalProcess object rep‐
resents a completely static snap‐
shot of the state of the TIA Portal 
at a given point in time, the infor‐
mation it contains may become 
outdated. 

Attach TiaPortal Attaches to the given TiaPortal‐
Process, it returns a TiaPortal in‐
stance. 

AttachedSessions IList<TiaPortalSession> A collection of all other sessions 
currently attached to the same 
TIA Portal. This collection can be 
empty. Each session is represen‐
ted by a TiaPortalSession object. 

Attaching EventHandler<AttachingEven‐
tArgs>

This event enables an applica‐
tion to approve any attempts to 
attach to the TIA Portal. When 
another application attempts to 
attach to the TIA Portal, the sub‐
scribers of this event are notified 
and given 10 seconds to approve 
the attachment. If any subscriber 
ignores this event or does not re‐
spond in time, it is understood to 
be denying the other application 
permission to attach. Crashed 
applications, being unable to re‐
spond to this event and cannot 
cause an application to be de‐
nied permission to attach. 

Dispose void Closes the associated TIA Portal 
instance. 

Id int The Process ID of the TIA Portal. 
InstalledSoftware IList<TiaPortalProduct> A collection of all the products 

currently installed as part of the 
TIA Portal. Each product is rep‐
resented by a TiaPortalProduct 
object, which is described below. 

Mode TiaPortalMode The mode in which the TIA Portal 
was started. The current values 
are WithUserInterface and With‐
outUserInterface. 

Path FileInfo The path to the executable of the 
TIA Portal. 

ProjectPath FileInfo The path to the project which is 
currently open in the TIA Portal. 
If no project is open, this attribute 
will be null. 

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 85



Class TiaPortalSession

Member Type Function
AccessLevel TiaPortalAccessLevel The level access of the session. 

It is represented as a flags enum, 
where multiple levels of access 
are possible. TiaPortalAcces‐
sLevel is described in detail be‐
low. 

AttachTime DateTime The time when the connection to 
the TIA Portal was established. 

Id int The Id of the current session. 
IsActive bool Returns "true" if the TIA Portal is 

currently processing a call from 
the running session. 

Dispose void Severs the process's connection 
to the TIA Portal. This method 
does not kill the process itself in 
the way that System.Diagnos‐
tics.Process.Kill would do. The 
application whose connection is 
terminated will still get a dis‐
posed event, but there is no oth‐
er indication of why the connec‐
tion was terminated. 

ProcessId int The process ID of the attached 
process. 

ProcessPath FileInfo The path to the executable of the 
attached process. 

TrustAuthority TiaPortalTrustAuthority Indicates if the current session 
was started by a process that 
was signed, and if it is a TIA Por‐
tal Openness certificate or not. 
TrustAuthority is a flags enum 
and is described below. 

UtilizationTime TimeSpan The period of time the process 
has spent actively using the TIA 
Portal.Combined with the Attach‐
Time attribute, this could be used 
to determine usage percentages 
or similar data.

Version string The version of the Siemens.En‐
gineering.dll to which the ses‐
sion is attached to. 

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
86 System Manual, 10/2018



Enum TiaPortalAccessLevel

Enum Value Function
None This is not a valid value. It is included because 

TiaPortalAccessLevel is a flags enum which 
needs an appropriate "zero value" to represent no 
flags being set, but it will never appear in actual 
use because no session can be started that has 
no access.

Published The session has access to published functionality.
Modify The session has modify access.

Enum TiaPortalTrustAuthority

Enum Value Function
None The main module of the attached process is not 

signed with a certificate. 
Signed The main module is signed with a certificate, which 

is not a TIA Portal Openness certificate. 
Certified The main module is signed with a TIA Portal Open‐

ness certificate. 
CertifiedWithExpiration The main module is signed with a TIA Portal Open‐

ness certificate that will become invalid at the end 
of its lifetime.

Class TiaPortalProduct

Member Type Function
Name string The name of the product (e.g. 

STEP 7 Professional). 
Options IList<TiaPortalProduct> A collection of all optional pack‐

ages that belong to the connec‐
ted TIA Portal, represented as 
TiaPortalProduct objects. If an 
option package itself has option 
packages, this nesting could con‐
tinue. 

Version string The version string of the product. 

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 87



The following code snippet provides an example of how to use the diagnostic Interface to query 
information and of how to use them in your application.

 
public void TiaPortalDiagnostics() 
{ 
    IList<TiaPortalProcess> tiaPortalProcesses = TiaPortal.GetProcesses(); 
    foreach (TiaPortalProcess tiaPortalProcess in tiaPortalProcesses) 
    { 
        Console.WriteLine("Process ID: {0}", tiaPortalProcess.Id); 
        Console.WriteLine("Path: {0}", tiaPortalProcess.Path); 
        Console.WriteLine("Project: {0}", tiaPortalProcess.ProjectPath); 
        Console.WriteLine("Timestamp: {0}", tiaPortalProcess.AcquisitionTime);
        Console.WriteLine("UI Mode: {0}", tiaPortalProcess.Mode); 
        //See method body below.
        Console.WriteLine("Installed Software:"); 
        EnumerateInstalledProducts(tiaPortalProcess.InstalledSoftware);  
        Console.WriteLine("Attached Openness Applications:"); 
        foreach (TiaPortalSession session in tiaPortalProcess.AttachedSessions)
        { 
            Console.WriteLine("Process: {0}", session.ProcessPath); 
            Console.WriteLine("Process ID: {0}", session.ProcessId); 
            DateTime attachTime = session.AttachTime; 
            TimeSpan timeSpentAttached = DateTime.Now - attachTime; 
            TimeSpan utilizationTime = session.UtilizationTime; 
            long percentageTimeUsed = (utilizationTime.Ticks / timeSpentAttached.Ticks) * 
100; 
            Console.WriteLine("AttachTime: {0}", attachTime); 
            Console.WriteLine("Utilization Time: {0}", utilizationTime); 
            Console.WriteLine("Time spent attached: {0}", timeSpentAttached); 
            Console.WriteLine("Percentage of attached time spent using TIA Portal: {0}", 
percentageTimeUsed); 
            Console.WriteLine("AccessLevel: {0}", session.AccessLevel); 
            Console.WriteLine("TrustAuthority: {0}", session.TrustAuthority); 
            if ((session.TrustAuthority & TiaPortalTrustAuthority.Certified) != 
TiaPortalTrustAuthority.Certified) 
            { 
                Console.WriteLine("TrustAuthority doesn't match required level, attempting 
to terminate connection to TIA Portal."); session.Dispose(); 
            } 
        } 
    } 
} 
public void EnumerateInstalledProducts(IEnumerable<TiaPortalProduct> products) 
{ 
    foreach (TiaPortalProduct product in products) 
    { 
        Console.WriteLine("Name: {0}", product.Name); 
        Console.WriteLine("Version: {0}", product.Version); 
        //recursively enumerate all option packages 
        Console.WriteLine("Option Packages \n:");
        EnumerateInstalledProducts(product.Options);
    } 
}

Security Relevant Information

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
88 System Manual, 10/2018



Because of the fact that no connection to the TIA Portal is needed to use the diagnostics 
interface, it's possible to write a Windows service that uses the attaching event to check any 
application attempting to attach to a TIA Portal, e.g. only applications that begin with your 
company's name are allowed to attach. Another option might be to always grant access, but 
write information about attaching processes to a log. The following program code is an example 
event handler to check incoming connections:  

 
public void OnAttaching(object sender, AttachingEventArgs e) 
{ 
    string name = Path.GetFileNameWithoutExtension(e.ProcessPath); 
    TiaPortalAccessLevel requestedAccessLevel = e.AccessLevel & 
TiaPortalAccessLevel.Published;
    TiaPortalTrustAuthority certificateStatus = e.TrustAuthority 
&TiaPortalTrustAuthority.Certified;
    if (requestedAccessLevel == TiaPortalAccessLevel.Published && 
       certificateStatus == TiaPortalTrustAuthority.Certified && 
       name.StartsWith("SampleCustomerName")) 
    { 
        e.GrantAccess(); 
    } 
}

7.9.8 Exclusive access

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The "TIA Portal" class provides the method "ExclusiveAccess(String text)" to establish an 
exclusive access to an attached TIA Portal process. The usage of an exclusive access is highly 
recommended even if it is not mandatory.

Use "ExclusiveAccess" in an "using" statement to ensure it is disposed attribute even when 
exceptions occur or the application is shutdown.

Note

Any attempt to create a second exclusive access within the scope of an open exclusive access 
will result in an recoverable exception being raised.

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 89



Modify the following example to get "ExclusiveAccess" to an instance:

 
...
[assembly: AssemblyTitle("MyApplication")] 
// This will be used for the exclusive access dialog when present....
TiaPortal tiaPortal = ...;
using (ExclusiveAccess exclusiveAccess = tiaPortal.ExclusiveAccess("My Activity"))
{ 
    ...
}

After acquiring an "ExclusiveAccess" instance for a given TIA Portal process a dialog will be 
displayed. This dialog will display the message provided during instantiation. In addition the 
following information of the client application will be displayed:

● the assembly title of the manifest data if available; otherwise, the process name 

● the process ID

● the SID 

Note

There can be multiple sessions active for a given TIA Portal Openness client application 
because there can be multiple instances of TiaPortal each associated with the same TIA Portal 
process. 

The client application can also update the displayed content of the exclusive access dialog by 
setting the "Text" attribute with new values. Modify the following program code to invoke this 
behavior:

 
exclusiveAccess = ...;
...
exclusiveAccess.Text = "My Activity Phase 1";
...
exclusiveAccess.Text = "My Activity Phase 2";
...
exclusiveAccess.Text = String.Empty; // or null;
...

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
90 System Manual, 10/2018



You can request that the exclusive access could be cancelled by selecting the "Cancel" button. 
Modify the following program code to invoke this behavior: 

 
exclusiveAccess = ...;
...
if (exclusiveAccess.IsCancellationRequested)
{ 
    // stop your activity 
    ...
}
else
{ 
    // continue your activity 
    ...
}
...

7.9.9 Transaction handling

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Operation
A persistence (project, library, etc.) opened within an associated TIA Portal process can be 
modified by a TIA Portal Openness client application. You can produce this modification from 
a single operation or by a series of operations. Depending on the activity, it is reasonable to 
group these operations into a single undo unit for more logical workflows. Additionally there 
are performance advantages provided by grouping operations into a single undo unit. To 
support this, the "ExclusiveAccess" class provides the method 
"Transaction(ITransactionSupport persistence, string undoDescription)". The invocation of this 
method results in the instantiation of a new disposable object of type "Transaction". You have 
to provide a description of the transaction's contents (the text attribute cannot be null or Empty). 
While this instance has not been disposed, all client application operations will be grouped into 
a in a single undo unit within the associated TIA Portal process.

Modify the following program code to acquire a "Transaction" instance: 

 
ExclusiveAccess exclusiveAccess = ...;
Project project = ...;
using (Transaction transaction = exclusiveAccess.Transaction(project, "My Operation"))
{ 
    ...
}

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 91



Note

Use a "using" statement to instatiate a "Transaction" to ensure it is disposed properly even 
when exceptions occur, thus rolling back the transaction.

Consistent commit or rollback
The use of a "Transaction" within a client application helps you to ensure that there is a 
predictable way to commit or rollback a set of modifications. Your client application must decide 
whether or not to commit their modifications to a persistence. To do this your application must 
request that the modifications within the scope of an open transaction be committed when the 
transaction is disposed by invoking the 'Transaction.CommitOnDispose()' method. If this 
method is never invoked in the code flow, the modifications within the scope of the open 
transaction will automatically be rolled back when it is disposed. 

If an exception occur after making the request, all modifications within the scope of an open 
transaction will still be rolled back on its disposal.

Modify the following program code to create a single undo unit in the attached TIA Portal 
containing two "Create" modifications:

 
ExclusiveAccess exclusiveAccess = ...;
Project project = ...;
using (Transaction transaction = exclusiveAccess.Transaction(project, "My Operation")
{ 
    project.DeviceGroups.Create("My Group 1"); 
    project.DeviceGroups.Create("My Group 2"); 
    transaction.CommitOnDispose();
}

Restrictions
The following actions are not allowed inside of a transaction. Calling these will result in a 
recoverable exception:

● Compile

● Go Online

● Go Offline

● ProjectText Import

● ProjectText Export 

● Open Global Library

● Close Global Library

● Project Create

● Project Open

● Project OpenWithUpgrade

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
92 System Manual, 10/2018



● Project Save

● Project Close

Undo behavior
Actions performed by a TIA Portal Openness client application can result in undo units within 
the attached TIA Portal process. Each of these undo entries will be grouped under a location 
entry. This location entry will compose the following information from the client application: 

● the assembly title from the manifest data if available; otherwise, the process name 

● the process ID 

● the SID

●  optionally an indication that the client process is still running

These entries will be one of the following two kinds:

1. The operations that are gathered into one undo transaction as a result of using a 
"Transaction" have the description as provided by the client application when the 
"Transaction" was instantiated.

– Undo entry for a running client application:

– Undo entry for a stopped client application:

2. The operations that are executed individually have individual undo entries describing the 
operation as defined in the respective command meta data.

– Undo entry for a running client application:

– Undo entry for a stopped client application:

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 93



7.9.10 Creating a DirectoryInfo/FileInfo object

Application
The instances of DirectoryInfo and FileInfo classes have to contain an absolute path. 
Otherwise the methods using the DirectoryInfo or  FileInfo objects.will lead to an 
exception. 

Program code
Modify the following program code to create a DirectoryInfo or a FileInfo object.

 
..
    //Create a DirectoryInfo object
    string directoryPath = @"D:\Test\Project 1"; 
    DirectoryInfo directoryInfo = new DirectoryInfo(directoryPath);
　 　 
 
    //Create a FileInfo object
    string fileName = @"D:\Test\Project 1\Project 1.ap14");
    FileInfo fileInfo = new FileInfo(fileName);
...

7.9.11 Self-description support for attributes, navigators, actions, and services

Application
In TIA Portal Openness each IEngineeringServiceProvider of the TIA Portal Openness API 
describes its capabilities to potential calls.

Self-description Support on IEngineeringObject

Method Name Return values
GetCompositionInfos Returns a collection of EngineeringCompositionIn‐

fo objects describing the different compositions of 
these objects. EngineeringCompositionInfo is de‐
scribed below. 

GetAttributeInfos Returns a collection of EngineeringAttributeInfo 
objects describing the different attributes of these 
objects. EngineeringAttributeInfo is described be‐
low. 

GetInvocationInfos Returns a collection of EngineeringInvocationInfo 
objects describing the different actions of these 
objects. EngineeringInvocationInfo is described 
below. 

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
94 System Manual, 10/2018



Self-description Support on IEngineeringServiceProvider

Method Name Return values
GetServiceInfos Returns a collection of EngineeringServiceInfo ob‐

jects describing the different services of these ob‐
jects. EngineeringServiceInfo is described below.

Class EngineeringCompositionInfo 

Attribute Name Return values
Name The name of the composition

Class EngineeringAttributeInfo 

Attribute Name Return values
AccessMode The level of access supported by the attribute. This 

attribute is combinable and is described in detail 
below. 

Name The name of the attribute. 

Class EngineeringInvocationInfo 

Attribute Name Return values
Name The name of the action. 
ParameterInfos A collection of EngineeringInvocationParameterIn‐

fo objects describing any parameters that the ac‐
tion might require. EngineeringInvocationParame‐
terInfo is described below. 

Class EngineeringServiceInfo

Attribute Name Return values
Type The type of the service as a System.Type object. 

Enum AccessMode

Enum Value Return values
None This is not a valid option. 
Read The attribute can be read. 
Write The attribute can be written. 

 Class EngineeringInvocationParameterInfo 

Attribute Name Return values
Name The name of the parameter. 
Type The type of the parameter as a System.Type object

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
System Manual, 10/2018 95



Program code
AccessMode is a flags enum and its values can be combined like the following program code: 

 
EngineeringAttributeAccessMode value = EngineeringAttributeAccessMode.Read|
EngineeringAttributeAccessMode.Write;

Modify the following program code to find all attributes of an IEngineeringObject and to do 
changes on the access mode of those attributes. 

 
... 
IEngineeringObject engineeringObject = ...; 
IList<EngineeringAttributeInfo> attributeInfos = engineeringObject.GetAttributeInfos(); 
foreach(EngineeringAttributeInfo attributeInfo in attributeInfos) 
{ 
    switch (attributeInfo.AccessMode) 
        { 
        case EngineeringAttributeAccessMode.Read: 
            ... 
            break; 
        case EngineeringAttributeAccessMode.Write: 
            ... 
            break; 
        case EngineeringAttributeAccessMode.Read|EngineeringAttributeAccessMode.Write: 
            ... 
            break; 
        } 
} 
...

TIA Portal Openness API
7.9 General functions

Openness: Automating creation of projects
96 System Manual, 10/2018



7.10 Functions for projects and project data

7.10.1 Opening a project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74) 

● The project to be opened is not open in any other instance of the TIA Portal.

Note
Undo of project upgrade

If you undo an upgrade of a project to V14SP1 after you have connected it to TIA Portal 
Openness, conflicts will occur.

Application
Use the Projects.Open method to open a project. Enter a path to the desired project in the 
Projects.Open method.

The Projects.Open method only accesses projects that were created with the current 
version of TIA Portal or which have been upgraded to the current version. If you access a 
project of a previous version with the  Projects.Open method, an exception will be returned. 
Use the OpenWithUpgrade method, to open projects which have been made with previous 
versions of TIA Portal. 

Note
No access to read-only projects

TIA Portal Openness can only access projects with read and write privileges. 

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 97



Program code
Modify the following program code to open a project:

 
Project project =tiaPortal.Projects.Open(new FileInfo(@"D:\Project_1\Project_1.apXX"));
if (project != null)
{
    try
    {
        ...
    }
    finally
    {
        project.Close();
    }
}

Opening a UMAC protected project
You can also open a UMAC protected project. The overload of Open function takes an 
additional parameter of type UmacDelegate. This additional parameter allows the caller to 
specify a handler to be used during UMAC authentication. The new UmacDelegate is 
implemented with a method cotaining one parameter of type UmacCredentials. The 
UmacCredentials has two properties, 'Name' of type string, and 'Type' of type UmacUserType; 
and one method SetPassword with one parameter of type SecureString. The use of 
UmacUserType.Project indicates a UMAC scope of project whereas the use of 
UmacUserType.Global indicates a UMAC scope of application (i.e. controlled by a UMAC 
server). 

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
98 System Manual, 10/2018



Program code

 
...
  Siemens.Engineering.Project project = tiaPortal.Projects.Open(new FileInfo(@"D:
\Project_3\Project_2.apXX"), MyUmacDelegate);
 if (project != null)
 {
     try
       {
        ...
       }
     finally
       {
         project.Close();
       }
 }
 ... 
 private static void MyUmacDelegate(UmacCredentials umacCredentials)
     {
       SecureString password = ...; // Get password from a secure location 
       umacCredentials.Type = UmacUserType.Project;
       umacCredentials.Name = "SomeUser";
       umacCredentials.SetPassword(password);
     }
 ...
 }

Opening multiple projects
You can open multiple projects in an instance of the TIA Portal. In this case you have to decide 
to open a project as a primary or a secondary project. If a project is opened as primary, then 
this project is represented in the project navigation if the Openness application is attached to 
a TIA Portal. If a project is opened as secondary, the project will not be reflected in the user 
interface. However, you can always open the UMAC protected project as secondary in read-
only mode even with read and write privileges.  A primary project does not need to be open in 
order to open a secondary project.

Any opened projects can be enumerated by using the ProjectComposition available on the 
TiaPortal instance. The order of the projects in the composition will be determined by the order 
in which the projects were opened. If a project is closed, the index of all projects will be 
recalculated. 

Program code

 
TiaPortal tiaPortal = ...;
Project project1 = tiaPortal.Projects.Open(new FileInfo(@"D:
\Project_1\Project_1.apXX"), null, ProjectOpenMode.Primary);
Project project3 = tiaPortal.Projects.Open(new FileInfo(@"D:
\Project_3\Project_3.apXX"), null, ProjectOpenMode.Secondary);
bool isPrimary = project3.IsPrimary

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 99



Opening projects created with previous versions
Use the OpenWithUpgrade method to open a project which was created with the previous 
version of TIA Portal. The method will create a new, upgraded project and open it.

If you access a project created with an elder version than the previous, an exception will be 
returned.

Note

If you access a  project created with the current version the project will just be opened. 

Program code
Modify the following program code to open a project via the OpenWithUpgrade method:

 
Project project = tiaPortal.Projects.OpenWithUpgrade(new FileInfo(@"D:\Some
\Path\Here\Project.apXX"));
if (project != null)
{
    try
    {
        ...
    }
    finally
    {
        project.Close();
    }
}

Program code for UMAC protected project
You can also open a UMAC protected which has been created with a previous version of TIA 
Portal. An overload function of OpenWithUpgrade takes an additional parameter of type 
UmacDelegate.

 
    ...
    Siemens.Engineering.Project project = tiaPortal.Projects.OpenWithUpgrade(new 
FileInfo(@"D:\Project_1\Project.apXX"), MyUmacDelegate);
    ...

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
100 System Manual, 10/2018



7.10.2 Creating a project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74) 

Application
Projects can be created via TIA Portal Openness API

● by calling the Create method on ProjectComposition

● by calling the Create method on IEngineeringComposition

ProjectComposition.Create
Modify the following program code:

 
TiaPortal tiaPortal = ...;
ProjectComposition projectComposition = tiaPortal.Projects;
DirectoryInfo targetDirectory = new DirectoryInfo(@"D:\TiaProjects");
 
// Create a project with name MyProject
Project project = projectComposition.Create(targetDirectory, "MyProject"); 

According to this example

● a folder "D:\TiaProjects\MyProject" will be created.

● a project file "D:\TiaProjects\MyProject\MyProject.aPXX" will be created.

Note
About parameter targetDirectory

The parameter targetDirectory can also represent an UNC (Universal Naming Convention) 
path, therefore a project can also be created on a network shared drive.

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 101



IEngineeringComposition.Create
Modify the following program code:

 
TiaPortal tiaPortal = ...;
ProjectComposition projectComposition = tiaPortal.Projects;
 
//allows the user to give optional create parameters like author, comment in addition to 
mandatory create parameters (targetdirectory, projectname)
 
IEnumerable<KeyValuePair<string, object>> createParameters = new [] {
           new KeyValuePair<string, object>("TargetDirectory", new DirectoryInfo(@"D:
\TiaProjects")), // Mandatory 
           new KeyValuePair<string, object>("Name", "MyProject"), // Mandatory
           new KeyValuePair<string, object>("Author", "Bob"), // Optional
           new KeyValuePair<string, object>("Comment", "This project was created with 
Openness") // Optional };
 
// Create a project with both mandatory and optional parameters
((IEngineeringComposition)projectComposition).Create(typeof (Project), createParameters);

According to this example

● a folder "D:\TiaProjects\MyProject" will be created.

● a project file "D:\TiaProjects\MyProject\MyProject.aPXX" will be created with project 
attributes Author as "Bob" and Comment as "This project was created with openness".

Parameters for creating project with optional project attributes

Parameter Data Type Is Manda‐
tory

Description

Author String No Author of a project.
Comment String No Comment for the project.
Name String Yes Name of a project,
TargetDirecto‐
ry

DirectoryInfo Yes Directory that will contain the created proeject fold‐
er.

7.10.3 Accessing general settings of the TIA Portal

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
102 System Manual, 10/2018



Application
Via TIA Portal Openness you can access general settings of the TIA portal: 

● Current user interface language

● "Search in project" option to create the search index needed for searching within a project.

The following table shows the details of the accessible settings in the "General" section of the 
TIA portal settings. The TiaPortalSettingsFolder instance will have the name "General". 

Setting name Data type  Writeable Description 
"SearchInProj
ect" 

System.Boolean r/w Enables or disables the creation of the 
search index needed for searching 
within a project. 

"UserInterfac
eLanguage" 

System.CultureInfo r/w Indicates the active user interface lan‐
guage of the TIA Portal or the specifi‐
cation of the active user interface lan‐
guage. 

The access to these settings is provided via the TiaPortalSettingsFolder class. The 
TiaPortalSettingsFolder class will be accessible via the Settings attribute on the 
TiaPortal class. 

The following figure shows the specific settings in TIA Portal Openness:

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 103



TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
104 System Manual, 10/2018



Program code: Search in project
Modify the following program code to activate/deactivate the "Search in project" option.

 
private static void SetSearchInPoject(Project project)  
{ 
    TiaPortalSettingsFolder generalSettingsFolder = 
tiaPortal.SettingsFolders.Find("General"); 
    TiaPortalSetting searchSetting = 
generalSettingsFolder.Settings.Find("SearchInProject");  
 
        if (((bool)searchSetting.Value))  
        {     
            searchSetting.Value = false;   
        }  
   }

Program code: User interface language
Modify the following program code to access the current user interface language.

 
private static void SetUILanguage(Project project)  
{ 
      
    TiaPortalSettingsFolder generalSettingsFolder = 
tiaPortal.SettingsFolders.Find("General"); 
    
    TiaPortalSetting UILanguageSetting = 
generalSettingsFolder.Settings.Find("UserInterfaceLanguage");  
 
        if (((CultureInfo)UILanguageSetting.Value) != CultureInfo.GetCultureInfo("de-DE"))
        {     
            UILanguageSetting .Value = CultureInfo.GetCultureInfo("de-DE");
        }  
 
}

See also
Hierarchy of hardware objects of the object model (Page 64)

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 105



7.10.4 Accessing read-only TIA Portal project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open
See Opening a project (Page 97)

Application
Using TIA Portal Openness, you can perform select operations while working with a read-only 
TIA Portal project.  You can have access to read-only project, but you will not be able to use 
full set of features that are available to a user with read-write access. For example, a user with 
read-only credentials can use Openness to open a UMAC protected project as described in 
Opening a project (Page 97). This functionality does not include Reference projects. 

The list of Openness features that are available to you while accessing a read-only project can 
be categorized into two sets of features - Inherent and Enabled non-modifying actions: 

Inherent functionality

● GetAttribute(s) or using the getter for any attribute on any accessible object

● GetComposition on any accessible object 

● GetService on any accessible object 

● Find actions on any accessible object

● Navigation on any accessible object 

● Determining the existence of accessible objects and accessing those objects in 
compositions and associations 

● System.Object methods on any accessible object 

Enabled non-modifying actions

● Project.Close (...) 

● PlcBlock.ShowInEditor ()

● CaxProvider.Export (Device,...)

● CaxProvider.Export (Project,...)

See also
Opening a project (Page 97)

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
106 System Manual, 10/2018



7.10.5 Accessing languages

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
In the TIA Portal you can set and manage the project language in the Editor "Project 
languages". 

TIA Portal Openness supports the following access to the project languages:

● Iterating through supported languages. 

● Searching through the collection of supported languages by 
System.Globalization.CultureInfo. 

● Accessing individual languages. Each Language object will contain a single read-only 
attribute Culture of type System.Globalization.CultureInfo.

● Accessing a collection of active languages. 

● Searchring through the collection of active languages by 
System.Globalization.CultureInfo.

● Adding a language to a collection of active languages. 

● Removing a language from a collection of active languages.

● Setting an editing language. 

● Setting a reference language.

The functionalities are provided by the LanguageSettings object. The following figure 
shows model, which is provided by TIA Portal Openness:

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 107



Program code: Setting languages
Modify the following program code to set a language. If you set an inactive language via TIA 
Portal Openness, the language will be added to the active languages collection.

 
Project project = ...; 
 
    LanguageSettings languageSettings = project.LanguageSettings;  
 
    LanguageComposition supportedLanguages = languageSettings.Languages;  
    LanguageAssociation activeLanguages = languageSettings.ActiveLanguages;  
 
    Language supportedGermanLanguage = 
supportedLanguages.Find(CultureInfo.GetCultureInfo("de-DE"));  
    activeLanguages.Add(supportedGermanLanguage); 
  
    languageSettings.EditingLanguage = supportedGermanLanguage;  
    languageSettings.ReferenceLanguage = supportedGermanLanguage;

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
108 System Manual, 10/2018



Program code: Deactivating an active language
Modify the following program code to deactivate an active language. If you deactivate a 
language which is used as reference or editing language the language selected will be 
consistent with the behavior in the user interface.

 
Project project = ...; 
 
    LanguageSettings languageSettings = project.LanguageSettings;  
    LanguageAssociation activeLanguages = languageSettings.ActiveLanguages;  
    Language activeGermanLanguage = activeLanguages.Find(CultureInfo.GetCultureInfo("de-
DE"));  
    activeLanguages.Remove(activeGermanLanguage);

See also
Hierarchy of hardware objects of the object model (Page 64)

7.10.6 Determining the object structure and attributes

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
You can determine the navigation structure through the object hierarchy with the 
IEngineeringObject interface. The result is returned as a list:

● Child objects

● Child compositions

● All attributes

Signature
Use the GetAttributeInfos method to determine attributes. 

IList<EngineeringAttributeInfo> 
IEngineeringObject.GetAttributeInfos();

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 109



Program code: Determining objects or compositions
Use the following program code to display alll composition names:

 
public static void DisplayCompositionInfos(IEngineeringObject obj) 
{ 
    IList<EngineeringCompositionInfo> compositionInfos = obj.GetCompositionInfos();
    foreach (EngineeringCompositionInfo compositionInfo in compositionInfos)
    { 
        Console.WriteLine(compositionInfo.Name); 
    } 
}

Modify the following program code if you know the return value:

 
public static DeviceItemComposition GetDeviceItemComposition(Device device) 
{ 
    IEngineeringCompositionOrObject composition = ((IEngineeringObject) 
device).GetComposition("DeviceItems"); 
    DeviceItemComposition deviceItemComposition = (DeviceItemComposition)composition; 
    return deviceItemComposition; 
}

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
110 System Manual, 10/2018



Program code: Determining attributes
Modify the following program code to return attributes of an object with specific access rights 
in a list:

 
public static void DisplayAttributenInfos(IEngineeringObject obj)
{ 
    IList<EngineeringAttributeInfo> attributeInfos = obj.GetAttributeInfos(); 
    foreach (EngineeringAttributeInfo attributeInfo in attributeInfos) 
    { 
        Console.WriteLine("Attribute: {0} - AccessMode {1} ", 
        attributeInfo.Name, attributeInfo.AccessMode); 
        switch (attributeInfo.AccessMode) 
        { 
            case EngineeringAttributeAccessMode.Read: Console.WriteLine("Attribute: {0} - 
Read Access", attributeInfo.Name); 
            break; 
            case EngineeringAttributeAccessMode.Write: Console.WriteLine("Attribute: {0} - 
Write Access", attributeInfo.Name); 
            break;
            case EngineeringAttributeAccessMode.Read | EngineeringAttributeAccessMode.Write: 
Console.WriteLine("Attribute: {0} - Read and Write Access", attributeInfo.Name); 
            break; 
        } 
    } 
} 
public static string GetNameAttribute(IEngineeringObject obj)
{ 
    Object nameAttribute = obj.GetAttribute("Name"); 
    return (string)nameAttribute;
}

7.10.7 Access software target 

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 111



Programm code
Modify the following programm code to make a software target available:

 
SoftwareContainer softwareContainer = 
((IEngineeringServiceProvider)deviceItem).GetService<SoftwareContainer>();
if (softwareContainer != null) 
{ 
    Software software = softwareContainer.Software;
}

Modify the following programm code to access the software attributes:

 
SoftwareContainer softwareContainer = 
((IEngineeringServiceProvider)deviceItem).GetService<SoftwareContainer>();
if (softwareContainer != null) 
{ 
    PlcSoftware software = softwareContainer.Software as PlcSoftware; 
    string name = software.Name;
}

7.10.8 Accessing and enumerating multilingual texts

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Multilingual texts in the TIA Portal are e. g. Project.Comment, PlcTag.Comment etc. In TIA 
Portal Opennes, the multilingual texts are represented by the MultilingualText object. A 
MultilingualText object is composed of MultilingualTextItemComposition. 

MultilingualTextItemComposition supports the following  Find method: 

● Find(<language: 
Siemens.Engineering.Language>):MultilingualTextItem

Each MultilingualTextItem provides the following attributes:

Attribute name Data type  Writable Description 
Language Siemens.Engineering.Language r/o Language of this item. 
Text System.String r/w Text provided for this language. 

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
112 System Manual, 10/2018



Program code: Set multilingual text

 
...
    Language englishLanguage = project.LanguageSettings.Languages.Find(new CultureInfo("en-
US"));
    MultilingualText comment = project.Comment;  
    MultilingualTextItemComposition mltItemComposition = comment.Items;  
    MultilingualTextItem englishComment = mltItemComposition.Find(englishLanguage);  
    englishComment.Text = "English comment";  
...

Program code: Set multilingual text for devices
Modify the following program code to set the multilingual text for devices and device items:

 
...
    var mltObject = device.GetAttribute("CommentML");
    MultilingualText multilingualText = mltObject as MultilingualText;  
    if (multilingualText != null)
    {  
        Language englishLanguage = project.LanguageSettings.Languages.Find(new 
CultureInfo("en-US"));
        MultilingualTextItem multilingualTextItem = 
multilingualText.Items.Find(englishLanguage);  
        if (multilingualTextItem != null)
        {
            multilingualTextItem.Text = comment;
        }
    }
...

7.10.9 Read project related attributes

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
By using this function you can get project related attributes from the TIA Portal Openness API. 
The provided information contains project attributes, project history and products utilized by 
the project. 

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 113



Project attributes
The project attributes provide the following information:

Attribute name Data type Writeable Description
Author  System.String  r/o The author of the project 
Comment Siemens.Engineering.MultilingualText r/o The comment of the project
Copyright System.String r/o The copyright statement of the project 
CreationTime System.DateTime r/o The time when project has been created
Family System.String r/o The family of the project 
IsModified System.Boolean r/o Returns true if the project has been modified
LanguageSettings Siemens.Engineering.LanguageSettings r/o Handles proct languages 
LastModified System.DateTime r/o The time when project was last modified
LastModifiedBy System.String r/o Who made the last modification
Name System.String  r/o The name of the project 
Path System.IO.FileInfo  r/o The absolute path of the project 
 Size System.Int64  r/o  The size of the project in KB
 Version  System.String  r/o The version of the project 

Modify the following program code to access project related attributes:

 
Project project = ...;
string author = project.Author;
string name = project.Name;
string path = project.Path;
DateTime creationTime = project.CreationTime;
DateTime modificationTime = project.LastModified;
string lastModifiedBy = project.LastModifiedBy;
string version = project.Version;
MultilingualText comment = project.Comment;
string copyright = project.Copyright;
string family = project.Family;
Int64 size = project.Size;
LanguageSettings languageSettings = project.LanguageSettings;

Modify the following programm code to enumerate the project languages:

 
Project project = ...;
LanguageComposition languages = project.LanguageSettings.Languages;
foreach (Language language in languages)
{
    CultureInfo lang = language.Culture;
}

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
114 System Manual, 10/2018



Modify the following program code to get comment text:

 
Project project = ...;
Language english = 
project.LanguageSettings.ActiveLanguages.Find(CultureInfo.GetCultureInfo("en-US"));
 
MultilingualText projectComment = project.Comment;
MultilingualTextItem textItem = project.Comment.Items.Find(english);
string text = textItem.Text;

Project history
The project history is a composition of HistoryEntry objects, which contain the following 
information:

Attribute name Data type Writeable Description
Text System.String  r/o The event description 
 DateTime  System.DateTime  r/o The time when the 

event was occured

Modify the following program code to enumerate through HistoryEntries and access their 
attributes:

 
Project project = ...; 
HistoryEntryComposition historyEntryComposition = project.HistoryEntries; 
foreach (HistoryEntry historyEntry in historyEntryComposition) 
{
    string entryText = historyEntry.Text; 
    DateTime entryTime = historyEntry.DateTime;
}

Note

The text attribute of HistoryEntry contains a string in the same language as UI. If a TIA 
Portal Openness application is attached to a TIA Portal with no UI, the string is always in 
English 

Used Products
The object UsedProduct includes the following information: 

Attribute name Data type Writeable Description
Name  System.String  r/o The name of the prod‐

uct used 
 Version  System.String  r/o The version of the prod‐

uct

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 115



Modify the following program code to enumerate through UsedProduct and access the 
attributes.

 
Project project = ...;
UsedProductComposition usedProductComposition = project.UsedProducts;
foreach (UsedProduct usedProduct in usedProductComposition)
{ 
    string productName = usedProduct.Name; 
    string productVersion = usedProduct.Version;
}

7.10.10 Deleting project graphics

Requirement       
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

Program code
Modify the following program code to delete a project graphics:

 
//Deletes a single project graphic entry 
public static void DeletesSingleProjectGraphicEntry(Project project) 
{ 
    MultiLingualGraphicComposition graphicsAggregation = project.Graphics; 
    MultiLingualGraphic graphic = graphicsAggregation.Find("Graphic XYZ"); 
    graphic.Delete(); 
}

7.10.11 Compiling a project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● All devices are "Offline".

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
116 System Manual, 10/2018



Application
The API interface supports the compilation of devices and program blocks. The compilation 
result is returned as an object. Depending on type of the object HW or SW or HW/SW 
compilation will be provided. The following object types are supported: 

● Device - HW & SW
– Device with failsafe CPU - SW with switched-off F-activation property 

● DeviceItem - HW 

● CodeBlock - SW 
● DataBlock - SW
● HmiTarget - SW 
● PlcSoftware - SW 
● PlcType - SW 
● PlcBlockSystemGroup - SW 
● PlcBlockUserGroup - SW 
● PlcTypeSystemGroup - SW 
● PlcTypeUserGroup - SW 

Note
Time stamp format

All time stamps are in UTC. If you want to see the local time you can use 
DateTime.ToLocalTime().

Signature
Use the ICompilable method for compilation.

ICompilable compileService = 
iEngineeringServiceProvider.GetService<ICompilable>();
CompilerResult result = compileService.Compile();

Note

All devices must be "Offline" before you start compiling.

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 117



Program code
Modify the following program code to compile the software changes of an object of the type 
HmiTarget: 

 
public static void CompileHmiTarget(HmiTarget hmiTarget)
{
    ICompilable compileService = hmiTarget.GetService<ICompilable>();
    CompilerResult result = compileService.Compile();
}

Modify the following program code to compile the software changes of an object of the type 
PlcSoftware: 

 
public static void CompilePlcSoftware(PlcSoftware plcSoftware)
{
    ICompilable compileService = plcSoftware.GetService<ICompilable>();
    CompilerResult result = compileService.Compile();
}

Modify the following program code to compile the software changes of an object of the type 
CodeBlock: 

 
public static void CompileCodeBlock(PlcSoftware plcSoftware)
{
    CodeBlock block = plcSoftware.BlockGroup.Blocks.Find("MyCodeBlock") as CodeBlock;
    if (block != null)
    {
        ICompilable compileService = block.GetService<ICompilable>();
        CompilerResult result = compileService.Compile();
    }
}

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
118 System Manual, 10/2018



Modify the following program code to evaluate the compilation result: 

 
private void WriteCompilerResults(CompilerResult result)
{
    Console.WriteLine("State:" + result.State);
    Console.WriteLine("Warning Count:" + result.WarningCount);
    Console.WriteLine("Error Count:" + result.ErrorCount);
    RecursivelyWriteMessages(result.Messages);
}
private void RecursivelyWriteMessages(CompilerResultMessageComposition messages, string
indent = "")
{
    indent += "\t";
    foreach (CompilerResultMessage message in messages)
    {
        Console.WriteLine(indent + "Path: " + message.Path);
        Console.WriteLine(indent + "DateTime: " + message.DateTime);
        Console.WriteLine(indent + "State: " + message.State);
        Console.WriteLine(indent + "Description: " + message.Description);
        Console.WriteLine(indent + "Warning Count: " + message.WarningCount);
        Console.WriteLine(indent + "Error Count: " + message.ErrorCount);
        RecursivelyWriteMessages(message.Messages, indent);
    }
}

See also
Importing configuration data (Page 417)

7.10.12 Saving a project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
To save a project

● Use the Save() method to save a project

● Use the SaveAs() method to save a project with a different name or in a different directory

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 119



Program code
Modify the following program code open and save a project:

 
public static void SaveProject(TiaPortal tiaPortal)
{
    Project project = null;    
    //Use the code in the try block to open and save a project
    try
    {
        project = tiaPortal.Projects.Open(new FileInfo(@"Some\Path\MyProject.ap14"));
        //begin of code for further implementation
        //...
        //end of code
        project.Save();
    }
        //Use the code in the final block to close a project
    finally
    {
      if (project != null)     
      project.Close();
    }
}

Modify the following program code save a project with a different name or in a different location:

 
...
    TiaPortal portal = new TiaPortal(TiaPortalMode.WithUserInterface);    
    FileInfo fileInfoExistingProject = new FileInfo(@"D:\SampleProjects
\SampleProject.apXX");
    DirectoryInfo dirInfoSaveAsProject = new DirectoryInfo(@"D:\SampleProjects
\SampleProjectSaveAs");
    Project sampleProject = portal.Projects.Open(fileInfoExistingProject );
    sampleProject.SaveAs(dirInfoSaveAsProject);
...

7.10.13 Closing a project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
120 System Manual, 10/2018



Program code
Modify the following program code to close a project:

 
public static void CloseProject(Project project) 
{ 
    project.Close(); 
}

TIA Portal Openness API
7.10 Functions for projects and project data

Openness: Automating creation of projects
System Manual, 10/2018 121



7.11 Functions for Connections

7.11.1 Configurable attributes of a port-to-port connection

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Opening a project (Page 97)

● A project is open.
See Opening a project (Page 97)

Application
The attributes of a port interconnection are located at the port device item. The read and write 
access of attributes via TIA Portal Openness is the same as at the UI. 

Port interface settings
The following attributes are provided for port interface settings: 

Attribute name Data type Writeable Access Description
MediumAttachmentType MediumAttachment‐

Type
 r/o  Dynamic at‐

tribute 
 

CableName CableName  r/w  Dynamic at‐
tribute 

 

AlternativePartnerPorts Boolean  r/w  Dynamic at‐
tribute 

 Only available if toolchanger 
functionality is supported, e.g. at 
CPU1516. 

SignalDelaySelection SignalDelaySelection  r/w  Dynamic at‐
tribute 

 

CableLength CableLength  r/w  Dynamic at‐
tribute 

 

SignalDelayTime  Double  r/w  Dynamic at‐
tribute 

 

The following ENUM values are provided for the attribute MediumAttachmentType:

Value Description
MediumAttachmentType.None Attachment type cannot be determined.  
MediumAttachmentType.Copper Attachment type is copper.  
MediumAttachmentType.FibreOp
tic

Attachment type is fiber optic.

TIA Portal Openness API
7.11 Functions for Connections

Openness: Automating creation of projects
122 System Manual, 10/2018



The following ENUM values are provided for the attribute Cablename:

Value Description 
CableName.None No cable name is specified 
CableName.FO_Standard_Cable_9 FO standard cable GP (9 µm) 
CableName.Flexible_FO_Cable_9 Flexible FO cable (9 µm) 
CableName.FO_Standard_Cable_GP_50 FO standard cable GP (50 µm) 
CableName.FO_Trailing_Cable_GP FO trailing cable / GP 
CableName.FO_Ground_Cable FO ground cable 
CableName.FO_Standard_Cable_62_5 FO standard cable (62.5 µm) 
CableName.Flexible_FO_Cable_62_5 Flexible FO cable (62.5 µm) 
CableName.POF_Standard_Cable_GP POF standard cable GP 
CableName.POF_Trailing_Cable POF trailing cable 
CableName.PCF_Standard_Cable_GP PCF standard cable GP 
CableName.PCF_Trailing_Cable_GP PCF trailing cable / GP 
CableName.GI_POF_Standard_Cable GI-POF standard cable 
CableName.GI_POF_Trailing_Cable GI-POF trailing cable 
CableName.GI_PCF_Standard_Cable GI-PCF standard cable 
CableName.GI_PCF_Trailing_Cable GI-PCF trailing cable 

The following ENUM values are provided for the attribute SignalDelaySelection:

Value Description 
SignalDelaySelection.None  
SignalDelaySelection.CableLength CableLength is used to define the signal delay. 
SignalDelaySelection.SignalDelayTime SignalDelayTime is used to define the signal de‐

lay. 

The following ENUM values are provided for the attribute CableLength:

 Value Description 
CableLength.None Cable length is not specified. 
CableLength.Length20m Cable length is 20m. 
CableLength.Length50m Cable length is 50m. 
CableLength.Length100m Cable length is 100m. 
CableLength.Length1000m Cable length is 1000m.
CableLength.Length3000m Cable length is 3000m. 

Port options
The following attributes are provided for port options: 

Attribute name Data type Writeable Access
PortActivation  bool  r/w  Dynamic attribute 
TransmissionRateAndDuplex TransmissionRateAndDuplex  r/w  Dynamic attribute 
PortMonitoring  bool  r/w  Dynamic attribute 

TIA Portal Openness API
7.11 Functions for Connections

Openness: Automating creation of projects
System Manual, 10/2018 123



Attribute name Data type Writeable Access
TransmissionRateAutoNegoti
ation 

 bool  r/w  Dynamic attribute 

EndOfDetectionOfAccessible
Devices 

 bool  r/w  Dynamic attribute 

EndOfTopologyDiscovery  bool  r/w  Dynamic attribute 
EndOfSyncDomain  bool  r/w  Dynamic attribute

The following ENUM values are provided for the attribute TransmissionRateAndDuplex:

Value  Description 
TransmissionRateAndDuplex.None 　

TransmissionRateAndDuplex.Automatic Automatic 
TransmissionRateAndDuplex.AUI10Mbps 10 Mbps AUI 
TransmissionRateAndDuplex.TP10MbpsHa
lfDuplex 

TP 10 Mbps half duplex 

TransmissionRateAndDuplex.TP10MbpsFu
llDuplex 

TP 10 Mbps full duplex 

TransmissionRateAndDuplex.AsyncFiber
10MbpsHalfDuplex 

async fiber 10Mbit/s half duplex mode 

TransmissionRateAndDuplex.AsyncFiber
10MbpsFullDuplex 

async fiber 10Mbit/s full duplex mode 

TransmissionRateAndDuplex.TP100MbpsH
alfDuplex 

TP 100 Mbps half duplex 

TransmissionRateAndDuplex.TP100MbpsF
ullDuplex 

TP 100 Mbps full duplex 

TransmissionRateAndDuplex.FO100MbpsF
ullDuplex

FO 100 Mbps full duplex 

TransmissionRateAndDuplex.X1000MbpsF
ullDuplex 

X1000 Mbps full Duplex 

TransmissionRateAndDuplex.FO1000Mbps
FullDuplexLD 

FO 1000 Mbps full duplex LD 

TransmissionRateAndDuplex.FO1000Mbps
FullDuplex 

FO 1000 Mbps full Duplex 

TransmissionRateAndDuplex.TP1000Mbps
FullDuplex 

TP 1000 Mbps full duplex 

TransmissionRateAndDuplex.FO10000Mbp
sFullDuplex 

FO 10000 Mbps full Duplex 

TransmissionRateAndDuplex.FO100MbpsF
ullDuplexLD 

FO 100 Mbps full duplex LD 

TransmissionRateAndDuplex.POFPCF100M
bpsFullDuplexLD 

POF/PCF 100 Mbps full duplex 

See also
Connecting to the TIA Portal (Page 74)

TIA Portal Openness API
7.11 Functions for Connections

Openness: Automating creation of projects
124 System Manual, 10/2018



7.12 Functions on libraries

7.12.1 Functions for objects and instances

Accessing types and instances
You can use the TIA Portal Openness API interface to access types, type versions and master 
copies in the project library or global libraries. You can determine connections between type 
versions and instances. You can also update instances in the project and synchronize changes 
between a global library and the project library. The TIA Portal Openness API interface also 
supports the comparison of types versions and instances. 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 125



Functions for objects and instances
You have access to the following functions for types, type versions, master copies and 
instances with the TIA Portal Openness API interface:

① Display attributes of types, type versions, master copies and instances
② The following functions are available in the project library:

● Update instances of types 
● Instantiating type versions in the project
● Navigate within the library group
● Delete groups, types, type versions and master copies

③ The following functions are available in the global library:
● Update instances of types
● Instantiate type version in the project
● Navigate within the library group

7.12.2 Accessing global libraries

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
126 System Manual, 10/2018



Application
 Three types of Global Libraries are existing. 

● System global library:  These global libraries are included as part of a TIA Portal installation 
and use the .as14 file extension. All system global libraries are read only. 

● Corporate global library:  These global libraries have been chosen by an administrator to 
be preloaded when TIA Portal is started. All corporate global libraries are read only.

● User global library: These global libraries have been created by users of TIA Portal. User 
global libraries can be opened either as read only mode or readwrite mode. 
If an user global library is already openned in a certain mode then the same user global 
library cannot be openned with another mode.
User global libraries from previous versions can be opened only in read only mode.

Global Libraries opened using TIA Portal Openness will also be added to the TIA Portal UI's 
global library collection, and seen in the TIA Portal UI if the UI is present. 

Program code: Available global libraries
Modify the following program code to get informations about all available global libraries:

 
TiaPortal tia = ...;
var availableLibraries = tia.GlobalLibraries.GetGlobalLibraryInfos();
foreach (GlobalLibraryInfo info in availableLibraries)
{
    //work with the global library info
    Console.WriteLine("Library Name: ", info.Name);
    Console.WriteLine("Library Path: ", info.Path);
    Console.WriteLine("Library Type: ", info.LibraryType);
    Console.WriteLine("Library IsOpen: ", info.IsOpen);
}

Attributes of GlobalLibrary

Value Data type Description
Author String Author of the global library.
Comment MultilingualText Comment of the global library.
IsReadOnly Boolean True if the global library is read only.
IsModified Boolean True if the contents of the global library has been 

modified.
Name String Name of the global library.
Path FileInfo Path of the global library.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 127



Attributes of GlobalLibraryInfo

Value Return Type Description
IsReadOnly Boolean True if the global library is read only.
IsOpen Boolean True if the global library is already open.
LibraryType GlobalLibraryType Type of the global library:

● System: System global library
● Corporate: Corporate global library
● User: User global library

Name String Name of the global library.
Path FileInfo Path of the global library.

See also
Accessing folders in a library (Page 137)

7.12.3 Accessing global library languages

Requirements 
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A library is open 
See Opening libraries (Page 130)

Application
You can use language setting navigator to access and manage the Global Library languages. 

TIA Portal Openness supports the following access to the global library languages:

● Iterating through supported languages. 

● Searching through the collection of supported languages by 
System.Globalization.CultureInfo. 

● Accessing individual languages. Each Language object will contain a single read-only 
attribute Culture of type System.Globalization.CultureInfo.

● Accessing a collection of active languages. 

● Searching through the collection of active languages by 
System.Globalization.CultureInfo. 

● Adding a language to a collection of active languages. 

● Removing a language from a collection of active languages. 

● Setting an editing language.

● Setting a reference language.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
128 System Manual, 10/2018



Attribute of global library languages
Global library languages provides the following attribute:

Attribute name Data type Writea‐
ble

Description

LanguageSet‐
tings

Siemens.Engineering.Lan‐
guageSettings

r/o Handles global library languages

Program code:  Accessing language settings
Modify the following program code to access the language settings on global library:

 
TiaPortal portal = new TiaPortal(TiaPortalMode.WithUserInterface);
var globalLibrary = portal.GlobalLibraries.Open(m_GlobalLibrarypath, OpenMode.ReadOnly); 
LanguageSettings languageSettings = globalLibrary.LanguageSettings

Program code: Enumerating global library language 
Modify the following program code to enumerate the global library languages:

 
TiaPortal portal = new TiaPortal(TiaPortalMode.WithUserInterface);
var globalLibrary = portal.GlobalLibraries.Open(m_GlobalLibrarypath, OpenMode.ReadOnly);
LanguageComposition languages = globalLibrary.LanguageSettings.Languages;
foreach (Language language in languages)
{
  ... // Work with this language
}

Program code: Setting global library languages
Modify the following program code to set global library languages. If you set a new supported 
language through TIA Portal Openness, the language will be added to the active languages 
collection.

 
var globalLibrary = portal.GlobalLibraries.Open(m_GlobalLibrarypath, OpenMode.ReadOnly);
LanguageSettings languageSettings = globalLibrary.LanguageSettings;
LanguageComposition supportedLanguages = languageSettings.Languages;
LanguageAssociation activeLanguages = languageSettings.ActiveLanguages;
Language supportedGermanLanguage = supportedLanguages.Find(CultureInfo.GetCultureInfo("de-
DE"));
activeLanguages.Add(supportedGermanLanguage);
languagesSettings.EditingLanguage = supportedGermanLanguage;
languageSettings.ReferenceLanguage = supportedGermanLanguage;

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 129



Note

Adding and modifying languages in global library language setting does not modify languages 
of released versions in the global library. This behaviour holds true for updating global library 
languages through UI (language editor) or LanguageSettings navigator.

7.12.4 Opening libraries

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. This requirement 
is only for accessing project libraries.
See Opening a project (Page 97)

Application
A global library can be opened using System.IO.FileInfo with a path to the library file on a local 
storage medium or a network storage. Only user global libraries ca be opened by path. A path 
obtained from a system global library or a corporate global library can not be used to open it.

As of V14 SP1 global libraries can be opened using the GlobalLibraryInfo. The OpenMode is 
specified in the GlobalLibraryInfo.

A user global library from a previous version of TIA Portal can be upgraded and opened with 
the current version of TIA Portal. A global library from V13 or a previous version cannot be 
opened with upgrade. These libraries have to be upgraded to V13 SP1 first. 

Libraries opened using TIA Portal Openness will also be added to the global library collection 
in the TIA Portal, and will be visible in the user interface of TIA Portal. 

Program code: Opening a library using System.IO.FileInfo 
Modify the following program code:

 
TiaPortal tia = ...
FileInfo fileInfo = ....
 
UserGlobalLibrary userLib = tia.GlobalLibraries.Open(fileInfo, OpenMode.ReadWrite);

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
130 System Manual, 10/2018



Program code: Opening a library using GlobalLibraryInfo 
Modify the following program code:

 
TiaPortal tia = ...
IList<GlobalLibraryInfo> libraryInfos = tia.GlobalLibraries.GetGlobalLibraryInfos();
GlobalLibraryInfo libInfo = ...; //check for the info you need from the list, e.g.
GlobalLibrary libraryOpenedWithInfo;
if (libInfo.Name == "myLibrary")  
libraryOpenedWithInfo = tia.GlobalLibraries.Open(libInfo);

Program code: Upgrading a library 
Modify the following program code:

 
TiaPortal tia = ...
FileInfo fileInfo = .... //library from previous TIA Portal version
 
UserGlobalLibrary userLib = tia.GlobalLibraries.OpenWithUpgrade(fileInfo);

OpenMode

Value Description
ReadOnly Read access to the library.
ReadWrite Read and write access to the library.

7.12.5 Enumerating open libraries

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

Application
All opened global libraries in the TIA Portal, regardless if they have been opened via API or 
via user interface can be enumerated.

Global Libraries from previous versions of TIA Portal will not be enumerated if they are opened 
with write access.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 131



Program code
Modify the following program code to enumerate open global libraries. 

 
TiaPortal tia = ...
foreach (GlobalLibrary globLib in tia.GlobalLibraries) 
{
    ////work with the global library 
}

See also
Opening a project (Page 97)

7.12.6 Saving and closing libraries

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A library is open.
See Opening libraries (Page 130)

Application
User global libraries can be closed or saved. Any changes made to the global library will not 
be saved automatically. All unsaved changes will be discarded without prompting by closing 
a global library. 

System global libraries and corporate global library cannot be closed or saved.

To save and close a global library:

● Use the Save ( ) method to save a user global library

● Use the SaveAs ( ) method to save a user global library in a different directory

● Use the Close ( ) method to close a user global library

Program code
Modify the following program code to save a user global library:

 
UserGlobalLibrary userLib = ...
// save changes and close library
userLib.Save();
userLib.Close();

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
132 System Manual, 10/2018



Modify the following program code to save a user global library in a different location:

 
TiaPortal portal = new TiaPortal(TiaPortalMode.WithUserInterface);
GlobalLibraryComposition globalLibraryComposition = portal.GlobalLibraries;
FileInfo existingLibraryfileInfo = new FileInfo(@"D:\GlobalLibraries\MyGlobalLibrary
\MyGlobalLibrary.al15");
DirectoryInfo targetDirectoryInfo = new DirectoryInfo(@"D:\GlobalLibraries
\GlobalLibrarySaveAs");
UserGlobalLibrary userGlobalLibary = 
globalLibraryComposition.Open(existingLibraryfileInfo, OpenMode.ReadWrite);
userGlobalLibary.SaveAs(targetDirectoryInfo);

Modify the following program code to close a user global library:

 
UserGlobalLibrary userLib = ...
// close and discard changes
userLib.Close();
 

7.12.7 Archiving and retrieving a library

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connectng to the TIA Portal (Page 74)

● A library is open.
See Opening libraries (Page 130)

● A library is save
See Saving and closing libraries (Page 132)

Application
A opened and saved global libraries can be archived prior to any further modification to prevent 
from unintended result so that you can later retrieve the archived library.  You can also share 
the archived file across the network easily.

Archiving a library
You can use the TIA Portal Openness API interface to archive a user global library. The API 
is available on the "Siemens.Engineering.UserGlobalLibrary" object.

 
public void Archive(System.IO.DirectoryInfo targetDirectory, string targetName, 
Siemens.Engineering.LibraryArchivationMode archivationMode)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 133



'targetName' is the name of the file created for archived or non archived. This file may or may 
not contain any file extensions. If you do not provide any extension or provide an extension 
apart from "zal15" or "zal14" etc., then the archived file could not be retrieved from TIA Portal 
oustide the Openness API.
For LibraryArchivationMode value as Compressed and 
DiscardRestorableDataAndCompressed, the archived file name is same as it is provided by 
you.  For LibraryArchivationMode value as None and DiscardRestorableData, the Library file 
extension is automatically decided by TIA Portal Project Manager component, based on the 
current version of TIA Portal.

Note

You must have saved the library before calling Archive API. In case the library contains any 
unsaved changes, archive would throw an EngineeringTargetInvocationException. 

Library Archivation Mode

The LibraryArchivationMode enumeration have four values:

LibraryArchivation‐
Mode

Description

None ● No special action are taken with the orginial files. Mode is similiar to a "save as" operation. 
● No compressed zip file is created in this mode.
● The difference with SaveAs in this case is that the Archive will not change the persistence location 

to the new Archived folder whereas SaveAs does that. 
DiscardRestorable‐
Data

● The file storage stores the library in an internal data file and this file grows whenever a library 
data modification happens. In the case of DiscardRestorableData mode this data file is 
reorganized (only latest version of the objects are stored and history is removed from the file) and 
Intermediate data, the files of the IM directory and tmp directory (see Library Directory structure) 
are not copied to the archive location.

● No compressed zip file is created in this mode. 
Compressed The tmp library folder structure, created by Archiving, is compressed into a zip compatible archive. 

The tmp folder structure is removed after creation of the zip file.
DiscardRestorable‐
DataAndCompress‐
ed

The tmp library folder structure, created by Archiving, discards the restorable data and then com‐
pressed into a zip compatible archive. The tmp folder structure is removed after creation of the zip 
file.

Program code: Archiving a library
Modify the following program code to archive a user global library:

 
var tiaPortal = new TiaPortal(TiaPortalMode.WithoutUserInterface); 
var libraryFilePath = @"E:\Sample1\Sample1.al15"; 
var userGlobalLibrary = tiaPortal.GlobalLibraries.Open(new FileInfo(LibraryFilePath), 
OpenMode.ReadWrite);   
var archivePath = @"E:\Archive"; 
var archiveFileName = "SampleArchive";  
userGlobalLibrary.Archive(new DirectoryInfo(archivePath), archiveFileName, 
LibraryArchivationMode.Compressed);

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
134 System Manual, 10/2018



Retrieving a library 
You can use the TIA Portal Openness API interface to retrieve an archived TIA Portal library. 
You can only retrieve a compressed archive.  The API is available on the 
"Siemens.Engineering.GlobalLibraryComposition" object.

 
public Siemens.Engineering.Library.UserGlobalLibrary Retrieve(System.IO.FileInfo 
sourcePath, System.IO.DirectoryInfo targetDirectory, Siemens.Engineering.OpenMode openMode)

Note

You cannot retrieve an archived library with 'LibraryArchivationMode.None' or 
'LibraryArchivationMode.DiscardRestorableData' enumeration value.

You can call RetrieveWithUpgrade API for the archived library of a previous TIA Portal version. 
The API definition looks like the following:

 
public Siemens.Engineering.Library.UserGlobalLibrary 
RetrieveWithUpgrade(System.IO.FileInfo sourcePath, System.IO.DirectoryInfo 
targetDirectory, Siemens.Engineering.OpenMode openMode)

Open Mode

The OpenMode enumeration have two values:

OpenMode Description
ReadMode ● Read access to the library. Data can be read from the library.
ReadWrite ● Write access to the library. Data can be written to the library.

Program code: Retrieving a library
Modify the following program code to access to retrieve a library:

 
var archivePath = @"E:\Archive\Sample1.zal15";
var retrievedLibraryDirectory = @"E:\RetrievedLibraries";
var tiaPortal = new TiaPortal(TiaPortalMode.WithoutUserInterface);
tiaPortal.GlobalLibraries.Retrieve(new FileInfo(archivePath), new 
DirectoryInfo(retrievedLibraryDirectory), OpenMode.ReadWrite));

See also
Opening libraries (Page 130)

Saving and closing libraries (Page 132)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 135



7.12.8 Creating global libraries

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

Application
Global libraries can be created via TIA Portal Openness API by calling the Create method on 
the GlobalLibraryComposition. A UserGlobalLibrary will be returned

GlobalLibraryComposition.Create
Modify the following program code:

 
TiaPortal tia= ...;
DirectoryInfo targetDirectory = new DirectoryInfo(@"D:\GlobalLibraries");
UserGlobalLibrary globalLibrary = 
tia.GlobalLibraries.Create<UserGlobalLibrary>(targetDirectory, "Library1")

According to this example

● a folder "D:\GlobalLibraries\Library1" will be created

● a global library file "D:\GlobalLibraries\Library1\Library1.alXX" will be created

Parameters for creating global libraries

Parameter Data Type Type Description
Author String Mandatory Author of a global library.
Comment String Optional Comment of a global library.
Name String Optional Name of a global library
TargetDirecto‐
ry

DirectoryInfo Mandatory Directory that will contain global library folder.

See also
Opening a project (Page 97)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
136 System Manual, 10/2018



7.12.9 Accessing folders in a library

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

Application
You can use the TIA Portal Openness API interface to access the system folders for types and 
master copies in a library. You can access types, type versions, master copies and user-
defined folders within the system folder.

You can access a user-defined folder at any time using the Find method, for example 
libTypeUserFolder.Folders.Find("SomeUserFolder");. 

Program code: Accessing system folders
Modify the following program code to access the system folder for types in a library:

 
public static void AccessTypeSystemFolder(ILibrary library)
{
    LibraryTypeSystemFolder libTypeSystemFolder = library.TypeFolder;
}

Modify the following program code to access the system folder for master copies in a library:

 
public static void AccessMasterCopySystemFolder(ILibrary library)
{
    MasterCopySystemFolder libMasterCopySystemFolder = library.MasterCopyFolder;
}

Program code: Accessing user-defined folders via Find() method
Modify the following program code:

 
... 
LibraryTypeUserFolderComposition userFolderComposition = ... 
LibraryTypeUserFolder userFolder = userFolderComposition.Find("Name of user folder");
...

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 137



Program code: Enumerating user defined folders
Modify the following program code to enumerate user-defined subfolders in a system folder 
for types:

 
public static void EnumerateUserFoldersInTypeSystemFolder(ILibrary library)
{
    // Enumerating user folders in type system folder:
    LibraryTypeSystemFolder libTypeSystemFolder = library.TypeFolder;
    foreach (LibraryTypeUserFolder libTypeUserFolder in libTypeSystemFolder.Folders)
    {
        //...
    }  
}

Modify the following program code to enumerate user-defined subfolders in a system folder 
for master copies:

 
public static void EnumerateUserFoldersInMasterCopySystemFolder(ILibrary library)
{
    // Enumerating user folders in master copy system folder:
    MasterCopySystemFolder libMasterCopySystemFolder = library.MasterCopyFolder;
    foreach (MasterCopyUserFolder libMasterCopyUserFolder in 
libMasterCopySystemFolder.Folders)
    {
        //..
    }
}

Modify the following program code to enumerate user-defined subfolders in a user-defined 
folder for types:

 
public static void EnumerateAllUserFolders(LibraryTypeUserFolder libUserFolder)
{
    foreach (LibraryTypeUserFolder libSubUserFolder in libUserFolder.Folders)
    {
       EnumerateAllUserFolders(libSubUserFolder); 
    }
}

Modify the following program code to enumerate user-defined subfolders in a user-defined 
folder for master copies:

 
public static void EnumerateAllUserFolders(MasterCopyUserFolder libUserFolder)
{
    foreach (MasterCopyUserFolder libSubUserFolder in libUserFolder.Folders)
    {
       EnumerateAllUserFolders(libSubUserFolder); 
    }
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
138 System Manual, 10/2018



Program code: Creating user-defined folders
Modify the following program code to create a user-defined folder for types:

 
var typeFolderComposition = ProjectLibrary.TypeFolder.Folders;
var newTypeUserFolder = typeFolderComposition.Create("NewTypeUserFolder");

Modify the following program code to create a user-defined folder for master copies:

 
var masterCopyFolderComposition = projectProjectLibrary.MasterCopyFolder.Folders;
MasterCopyUserFolder newMasterCopyUserFolder = 
masterCopyFolderComposition.Create("NewMasterCopyUserFolder);

Program code: Renaming user-defined folders
Modify the following program code to create a user-defined folder for types:

 
var typeUserFolder = 
project.ProjectLibrary.TypeFolder.Folders.Find("SampleTypeUserFolderName");
typeUserFolder.Name = "NewTypeUserFolderName";

 
var typeUserFolder = ProjectLibrary.TypeFolder.Folders.Find("SampleTypeUserFolderName");
typeUserFolder.SetAttributes(new[] {new KeyValuePair<string,object>("Name", 
"NewTypeUserFolderName")});

Modify the following program code to create a user-defined folder for master copies:

 
var masterCopyUserFolder = 
project.ProjectLibrary.MasterCopyFolder.Folders.Find("SampleMasterCopyUserFolderName");
masterCopyUserFolder.Name = "NewMasterCopyUserFolderName";

 
var masterCopyUserFolder = 
ProjectLibrary.MasterCopyFolder.Folders.Find("SampleMasterCopyUserFolderName");
masterCopyUserFolder.SetAttributes(new[] {new KeyValuePair<string,object>("Name", 
"NewMasterCopyUserFolderName")});

See also
Accessing master copies (Page 148)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 139



7.12.10 Accessing types

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a group for types.
See Accessing folders in a library (Page 137).

Application
You can access the types contained in a library via the TIA Portal Openness API interface.

● You can enumerate the types.

● You can rename types.

● You can access the following attributes for every type:

Attribute Data type Description
Author String Returns the name of the author. 
Comment MultilingualText Returns the comment. 
Guid Guid Returns the GUID of the type.1

Name String Returns the name of the type. 2

1 You can find an individual type in a library using this attribute. The search is recursive.
2 You can find an individual type in a folder using this attribute. Subfolders are not included in the 

search. A type name is not unique. There can be several types with the same name in different 
groups. However, the type Guid is unique.

Subclasses for library type objects
With TIA Portal Openness API you can access library type objects via sub-classes. The 
following subclasses are existing: 

● Siemens.Engineering.Hmi.Faceplate.FaceplateLibraryType 

● Siemens.Engineering.Hmi.RuntimeScripting.VBScriptLibraryType 

● Siemens.Engineering.Hmi.RuntimeScripting.CScriptLibraryType 

● Siemens.Engineering.Hmi.Screen.ScreenLibraryType 

● Siemens.Engineering.Hmi.Screen.StyleLibraryType 

● Siemens.Engineering.Hmi.Screen.StyleSheetLibraryType 

● Siemens.Engineering.Hmi.Tag.HmiUdtLibraryType 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
140 System Manual, 10/2018



● Siemens.Engineering.SW.Blocks.CodeBlockLibraryType 

● Siemens.Engineering.SW.Types.PlcTypeLibraryType

The following code is an example of how to use the library type sub-classes

 
ProjectLibrary library = project.ProjectLibrary;
VBScriptLibraryType vbScriptType = ...;
 
VBScriptLibraryType libraryTypeAsVbScript = libraryType as VBScriptLibraryType;

Program code
Modify the following program code to enumerate all types in the system folder of a library:

 
public static void EnumerateTypesInTypesSystemFolder(LibraryTypeSystemFolder 
libraryTypeSystemFolder)
{
    foreach (LibraryType libraryType in libraryTypeSystemFolder.Types)
    {
        //...
    }
}

Modify the following program code to enumerate all types in a user-defined folder of a library:

 
public static void EnumerateTypesInTypesUserFolder (LibraryTypeUserFolder 
libraryTypeUserGroup)
{
    foreach (LibraryType libraryType in libraryTypeUserGroup.Types)
    {
        //...
    }
}

Modify the following program code to access the attributes of a type: 

 
public static void InspectPropertiesOfType (LibraryType libTypeObject)
{
    string typeAuthor = libTypeObject.Author;
    MultilingualText typeComment = libTypeObject.Comment;
    string typeName = libTypeObject.Name;
    Guid typeGUID = libTypeObject.Guid;
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 141



Modify the following program code to find an individual type by its name or GUID:

 
public static void FindTypeObjectInLibrary(ILibrary library)
{
    // Find type object by its GUID in a given library:
    System.Guid targetGuid = ...;
    LibraryType libTypeByGUID = library.FindType(targetGuid);
    // Find type object by its name in a given group: 
    LibraryTypeFolder libTypeSystemFolder = library.TypeFolder;
    LibraryType libTypeByName = libTypeSystemFolder.Types.Find("myTypeObject");
}

Modify the following program code to rename a type:

 
// Setting the name attribute
var type = project.ProjectLibrary.TypeFolder.Types.Find("SampleTypeName");
type.Name = "NewTypeName";
 
//Setting the name attribute dynamically
var type = project.ProjectLibrary.TypeFolder.Types.Find("SampleTypeName");
type.SetAttributes(new[] {new KeyValuePair<string,object>("Name", "NewTypeName")});

7.12.11 Accessing type versions

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a group for types.
See Accessing folders in a library (Page 137).

Application
You can access type versions via the TIA Portal Openness API interface.

● You can enumerate the type versions of a type.

● You can determine the type to which a type version belongs.

● You can enumerate the instances of a type version.

● You can create a new instance of a type version.

● Vou can navigate from an instance to its connected version object.

● You can access the following attributes for every type version:

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
142 System Manual, 10/2018



Attribute Data type Description
Author String Returns the name of the author. 
Comment MultilingualText Returns the comment. 
Guid Guid Returns the GUID of the type version.1

ModifiedDate DateTime Returns the date and time at which the type version was 
set to the "Committed" status. 

State LibraryTypeVersion‐
State

Returns the status of the version:
● InWork: Corresponds to the status "In progress" or "In 

testing" depending on the associated type. 
● Committed: Corresponds to the status "Released". 

TypeObject LibraryType Returns the type to which this type version belongs. 
VersionNumber Version Returns the version number as a three digit version identi‐

fication, for example, "1.0.0".2 
1 You can find an individual type version in a library using this attribute.
2 You can find an individual type version in a "LibraryTypeVersion" composition using this attribute. 

Enumerate all type versions of a type
Modify the following program code:

 
//Enumerate the type versions of a type
public static void EnumerateVersionsInType(LibraryType libraryType)
{
    foreach (LibraryTypeVersion libraryTypeVersion in libraryType.Versions)
    {
        //...
    }
}

Accessing the attributes of a type version
Modify the following program code:

 
//Acessing the attributes of a type version
public static void InspectPropertiesOfVersion(LibraryTypeVersion libTypeVersion) 
{ 
    string versionAuthor = libTypeVersion.Author; 
    MultilingualText versionComment = libTypeVersion.Comment; 
    Guid versionGUID = libTypeVersion.Guid; DateTime versionModifiedDate = 
libTypeVersion.ModifiedDate; 
    LibraryTypeVersionState versionStateLibrary = libTypeVersion.State; 
    LibraryType versionParentObject = libTypeVersion.TypeObject; 
    Version versionNumber = libTypeVersion.VersionNumber; 
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 143



Creating an instance of a type version
You can create a new instance of a type version. The following objects are supported:

● Blocks (FB/FC)

● PLC user data types

● Screens

● VB scripts

An instance can be created of a type version from global library and project library. When you 
create the instance of a type version from a global library, the type version is first synchronized 
with the project library.

A recoverable Exception will be thrown if an instance cannot be created in the target, then . 
Possible reasons are: 

● The library type version is in-work 

● An instance of the library type version already exists in the target device

Modify the following program code:

 
VBScriptLibraryTypeVersion scriptVersion = ...;
VBScriptComposition vbscripts = ...;
 
//Using the CreateFrom method to create an instance of the version in the VBScripts 
composition
VBScript newScript = vbscripts.CreateFrom(scriptVersion);

Modify the following program code:

 
ScreenLibraryTypeVersion screenVersion = ...;
ScreenComposition screens = ...;
 
//Using the CreateFrom method to create an instance of the version in the screens 
composition
Screen newScreen = screens.CreateFrom(screenVersion);

Modify the following program code:

 
CodeBlockLibraryTypeVersion blockVersion = ...;
PlcBlockComposition blocks = ...;
 
//Using the CreateFrom method to create an instance of the version in the blocks composition
PlcBlock newBlock = blocks.CreateFrom(blockVersion);

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
144 System Manual, 10/2018



Modify the following program code:

 
PlcTypeLibraryTypeVersion plcTypVersione=...;
PlcTypeComposition types=...;
 
//Using the CreateFrom method to create an instance of the version in the types composition
PlcType newType = types.CreateFrom(plcTypeVersion);

Determining uses of a type version
The following uses are distinguished for type versions: 

● The type version uses other type versions from the library.
Example: A user data type is used in a program block. The program block must have access 
to the user data type. This means the program block depends on the user data type.
When you access the Dependencies attribute of CodeBlockLibraryVersion through 
GetDependencies() method, a list of LibraryTypeVersions are returned. 

● The type is being used by another type version in the library. 
Example: A user data type is used in a program block. The program block must have access 
to the user data type. The user data type has the associated program block. The program 
block depends on the user data type.
When you access the Dependents attribute of PlcTypeLibraryTypeVersion through 
GetDependents() method, a list of LibraryTypeVersions are returned.

Both attributes return a list that contains objects of the LibraryTypeVersion type. If there 
are no uses, an empty list is returned. 

Note

If you use these attributes on type versions with the "InWork" status, an exception can be 
thrown. 

Modify the following program code: 

 
//Determine the uses of a type version in a library
public static void GetDependenciesAndDependentsOfAVersion(LibraryTypeVersion 
libTypeVersion)
{
    IList<LibraryTypeVersion> versionDependents = libTypeVersion.Dependents();
    IList<LibraryTypeVersion> versionDependencies = libTypeVersion.Dependencies();
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 145



Program code
Modify the following program code to determine the type to which a type version belongs:  

 
public static void GetParentTypeOfVersion(LibraryTypeVersion libTypeVersion)
{
    LibraryType parentType = libTypeVersion.TypeObject;
}

Modify the following program code to determine the master copies that contain instances of a 
type version: 

 
public static void GetMasterCopiesContainingInstances(LibraryTypeVersion libTypeVersion)
{
    MasterCopyAssociation masterCopies = libTypeVersion.MasterCopiesContainingInstances;
}

Modify the following program code to find an individual type version by its version number:

 
public static void FindVersionInLibrary(ILibrary library, Guid versionGUID) 
{ 
    LibraryTypeVersion libTypeVersionByVersionNumber = library.FindVersion(versionGUID); 
}

7.12.12 Accessing instances

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a group for types.
See Accessing folders in a library (Page 137).

Application
You can access instances of type versions via the TIA Portal Openness API interface.

Use the  FindInstances(IInstanceSearchScope searchScope) method to find all 
instances of a type version.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
146 System Manual, 10/2018



You can use the searchScope parameter to specify the area of the project to be searched. 
The following classes implement the IInstanceSearchScope interface and can be used to 
search for instances:  

● PlcSoftware
● HmiTarget
The method returns a list that contains objects of the LibraryTypeInstanceInfo type. If 
there are no instances, an empty list is returned. 

Note

Instances of faceplates and HMI user data types are always linked to the associated type 
version. 

Instances of all other objects, such as program blocks or screens, can be linked to a type 
version. 

Enumerate the instances of a type version
Modify the folloing program code::

 
//Enumerate  the instances of a type version in the project
LibraryTypeVersion version = ...;
PlcSoftware plcSoftware = ...;
 
IInstanceSearchScope searchScope = plcSoftware as IInstanceSearchScope;
 
if(searchScope==null)
{
    //No search possible
}
 
IList<LibraryTypeInstanceInfo> instanceInfos = version.FindInstances(searchScope);
IEnumerable<IEngineeringObject> instances = instanceInfos.Select(instanceInfo => 
instanceInfo.LibraryTypeInstance);

Navigate from an instance to its connected version object
Use the LibraryTypeVersion attribute of  LibraryTypeInstanceInfo service to navigate from an 
instance to its connected version object.

The following objects provide the LibraryTypeInstanceInfo service:

● Blocks FB

● Blocks FC

● PLC user data types

● Screens

● VB scripts

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 147



If an instance object is not connected to a version object, then it will not provide the 
"LibraryTypeInstanceInfo" service.

 
FC fc = ...;
//Using LibraryTypeInstanceInfo service
 
LibraryTypeInstanceInfo instanceInfo = fc.GetService<LibraryTypeInstanceInfo>();
if(instanceInfo != null)
{
    LibraryTypeVersion connectedVersion = instanceInfo.LibraryTypeVersion;
    FC parentFc = instanceInfo.LibraryTypeInstance as FC; //parentFc == fc
}

Program code
Modify the following program code to .

7.12.13 Accessing master copies

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126)

● You have access to a group for master copies.
See Accessing folders in a library (Page 137)

Application
The TIA Portal Openness API interface supports access to master copies in a global library 
and the project library:

● Creating master copies

● Enumerating master copies in system folders and user-defined folders

● Renaming master copies

● Querying information from master copies

● Querying information from objects in a master copy

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
148 System Manual, 10/2018



Attribute Data type Description
Author String Returns the name of the author.
ContentDescriptions MasterCopyContentDescrip‐

tionComposition
Returns a description for the content of the MasterCopy.

CreationDate DateTime Returns the creation date.
Name String Returns the name of the master copy.

Program code
Modify the following program code to enumerate all master copies in the system folder of a 
library:

 
public static void EnumerateMasterCopiesInSystemFolder 
(MasterCopySystemFolder masterCopySystemFolder)
{
    foreach (MasterCopy masterCopy in masterCopySystemFolder.MasterCopies)
    {
        //...
    }
}

Modify the following program code to access an individual mastercopy by using the find method:

 
... 
    MasterCopySystemFolder systemFolder = projectLibrary.MasterCopyFolder; 
    MasterCopyComposition mastercopies = systemFolder.MasterCopies; 
    MasterCopy masterCopy = mastercopies.Find("Copy of ...");
...

Modify the following program code to enumerate master copy groups and subgroups:

 
private static void EnumerateFolder(MasterCopyFolder folder) 
{ 
    EnumerateMasterCopies(folder.MasterCopies); 
    foreach (MasterCopyUserFolder subFolder in folder.Folders)
    { 
        EnumerateFolder(subFolder); // recursion
    } 
} 
private static void EnumerateMasterCopies(MasterCopyComposition masterCopies) 
{ 
    foreach (MasterCopy masterCopy in masterCopies) 
    { 
        ... 
    } 
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 149



Modify the following program code to access a MasterCopyUserFolder by using the find 
method:

 
... 
    MasterCopyUserFolderComposition userFolderComposition = ... 
    MasterCopyUserFolder userFolder = userFolderComposition.Find("Name of user folder");
...

Modify the following program code to rename a master copy: 

 
//Setting the name attribute 
var masterCopy = projectLibrary.MasterCopyFolder.MasterCopies.Find("SampleMasterCopyName");
masterCopy.Name = "NewMasterCopyName";
 
//Setting the name attribute dynamically
var masterCopy = projectLibrary.MasterCopyFolder.MasterCopies.Find("SampleMasterCopyName");
masterCopy.SetAttributes(new[] {new KeyValuePair<string,object>("Name", 
"NewMasterCopyName")});

Querying information from master copies
Modify the following program code to get information of a master copy: 

 
public static void GetMasterCopyInformation(MasterCopy masterCopy)
{
    string author = masterCopy.Author;
    DateTime creationDate = masterCopy.CreationDate;
    string name = masterCopy.Name;
}

Querying information from objects in a master copy
The MasterCopy object contains a navigator called ContentDescriptions, which is a  
composition of MasterCopyContentDescriptions. 

A master copy may contain multiple objects. The MasterCopy object contains 
ContentDescriptions for each object directly contained in the MasterCopy. If the master copy 
contains a folder which also contains some items, the MasterCopy object only contains one 
ContentDescription of the folder.

 
MasterCopy multiObjectMasterCopy = ...;
 
//Using ContentDescriptions
MasterCopyContentDescriptionComposition masterCopyContentDescriptions = 
multiObjectMasterCopy.ContentDescriptions;
MasterCopyContentDescription contentDescription= masterCopyContentDescriptions.First();
 
string name = contentDescription.ContentName;
Type type = contentDescription.ContentType;

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
150 System Manual, 10/2018



7.12.14 Create master copy from a project in library

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
If the library is a read-write library, you can create a MasterCopy of an IMasterCopySource at 
target location. 

 
MasterCopy 
MasterCopyComposition.Create(Siemens.Engineering.Library.MasterCopies.IMasterCopySource 
sourceObject);

An EngineeringException will be thrown if:

● The target location is read-only  

● Creation of the MasterCopy from the source is rejected by the system

The following items are defined as IMasterCopySources: 

● Device - HW

● DeviceItem - HW

● DeviceUserGroup - HW

● CodeBlock - SW

● DataBlock - SW

● PlcBlockUserGroup - SW

● PlcTag - SW

● PlcTagTable - SW

● PlcTagTableUserGroup - SW

● PlcType - SW

● PlcTypeUserGroup - SW

● VBScript - HMI

● VBScriptUserFolder - HMI

● Screen - HMI

● ScreenTemplate - HMI

● ScreenTemplateUserFolder - HMI

● ScreenUserFolder - HMI

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 151



● Tag - HMI

● TagTable - HMI

● TagUserFolder - HMI

Program code
Use the following program code:

 
// create a master copy from a code block in the project library
public static void Create(Project project, PlcSoftware plcSoftware) 
{ 
    MasterCopySystemFolder masterCopyFolder = project.ProjectLibrary.MasterCopyFolder; 
    CodeBlock block = plcSoftware.BlockGroup.Groups[0].Blocks.Find("Block_1") as CodeBlock; 
    MasterCopy masterCopy = masterCopyFolder.MasterCopies.Create(block); 
}

7.12.15 Create an object from a master copy

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Application
The TIA Portal Openness API interface supports the use of master copies in the project. You 
can create an object in the object's composition from a master copy in a project library or a 
global library using the CreateFrom method.

The return type will correspond to the respective composition's return type. 

The CreateFrom method only supports master copies containing single objects. If the 
composition where the action is called and the source master copy are incompatible (e.g. 
source master copy contains a plc tag table and the composition is a plc block composition), 
a recoverable exception will be thrown.

The following compositions are supported: 

● Siemens.Engineering.HW.DeviceComposition

● Siemens.Engineering.HW.DeviceItemComposition 

● Siemens.Engineering.SW.Blocks.PlcBlockComposition 

● Siemens.Engineering.SW.Tags.PlcTagTableComposition 

● Siemens.Engineering.SW.Tags.PlcTagComposition 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
152 System Manual, 10/2018



● Siemens.Engineering.SW.Types.PlcTypeComposition 

● Siemens.Engineering.SW.TechnologicalObjects.TechnologicalInstanceDBComposition 

● Siemens.Engineering.SW.Tags.PlcUserConstantComposition 

● Siemens.Engineering.Hmi.Tag.TagTableComposition 

● Siemens.Engineering.Hmi.Tag.TagComposition 

● Siemens.Engineering.Hmi.Screen.ScreenComposition 

● Siemens.Engineering.Hmi.Screen.ScreenTemplateComposition 

● Siemens.Engineering.Hmi.RuntimeScripting.VBScriptComposition 

● Siemens.Engineering.HW.SubnetComposition 

● Siemens.Engineering.HW.DeviceUserGroupComposition 

● Siemens.Engineering.SW.Blocks.PlcBlockUserGroupComposition 

● Siemens.Engineering.SW.ExternalSources.PlcExternalSourceUserGroupComposition 

● Siemens.Engineering.SW.Tags.PlcTagTableUserGroupComposition 

● Siemens.Engineering.SW.Types.PlcTypeUserGroupComposition 

Program code: Create a PLC block from a mastercopy 
Modify the following program code to create an PLC block from a master copy in a library: 

 
var plcSoftware = ...;
MasterCopy copyOfPlcBlock = ...;
PlcBlock plcSoftware.BlockGroup.Blocks.CreateFrom(copyOfPlcBlock);

Program code: Create a device from a mastercopy 
Modify the following program code to create a device from a master copy in a library: 

 
Project project = ...; 
MasterCopy copyOfDevice = ...; 
Device newDevice = project.Devices.CreateFrom(copyOfDevice);

Program code: Create a device item from a mastercopy 
Modify the following program code to create a device item from a master copy in a library: 

 
Device device = ...; 
MasterCopy copyOfDeviceItem = ...; 
DeviceItem newDeviceItem = device.DeviceItems.CreateFrom(copyOfDeviceItem);

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 153



Program code: Create a subnet from a mastercopy 
Modify the following program code to create a subnet from a master copy in a library: 

 
Project project = ...; 
MasterCopy copyOfSubnet = ...; 
Subnet newSubnet = project.Subnets.CreateFrom(copyOfSubnet);

Program code: Create a device folder from a mastercopy 
Modify the following program code to create a device folder from a master copy in a library: 

 
Project project = ...; 
MasterCopy copyOfDeviceGroup = ...; 
DeviceGroup newDeviceGroup= project.DeviceGroups.CreateFrom(copyOfDeviceGroup);

See also
Accessing master copies (Page 148)

7.12.16 Copying master copies

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The TIA Portal Openness API interface supports copying of master copies within a library and 
between libraries using the CreateFrom action. The action will create a new object based on 
the source master copy and place it in the composition where the action was called. The action 
will try to create the new master copy with the same name as the source master copy. If such 
name is not available, the system will give the new master copy a new name. Then, it will return 
the new master copy. 

If the composition where the "CreateFrom" action is called is in a read-only global library, a 
recoverable exception will be thrown. 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
154 System Manual, 10/2018



Program code
Modify the following program code:

 
ProjectLibrary projectLibrary = ...;
 
MasterCopy copiedMasterCopy = 
projectLibrary.MasterCopyFolder.MasterCopies.CreateFrom(sampleMasterCopy)

See also
Accessing master copies (Page 148)

7.12.17 Determining out-of-date type instances

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● You have access to the required library. 
See Accessing global libraries (Page 126)

● You have access to a folder for types.
See Accessing folders in a library (Page 137).

Application
The TIA Portal Openness API interface allows you to determine type versions which belong 
to the instances in the open project. The TIA Portal Openness API returns one of the following 
two states per instance:

● The instance refers to an out-of-date type version.

● The instance refers to the latest type version.

The following rules apply when determining the version:

● You determine the version based on a library and the project that you want to open via the 
TIA Portal Openness API interface. 

● Instances are not updated when you determine the version. 

Signature
Use the UpdateCheck method to determine the instances of a type version:
UpdateCheck(Project project, UpdateCheckMode updateCheckMode) 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 155



Parameter Function
Project Specifies the project in which the type versions of instances are determined.
UpdateCheckMode Specifies the versions that are determined:

● ReportOutOfDateOnly: Returns only status of the "out of date" type.
● ReportOutOfDateAndUpToDate: 

Returns status of the type "out of date" and "up to date". 

Result
The devices of the project are scanned from top to bottom when determining the version. Each 
device is checked to determine whether its configuration data contain an instance of a type 
version from the specified library. The UpdateCheck method returns the result of the version 
check in hierarchical order.

The table below shows a result of a version check with the parameter 
UpdateCheck.ReportOutOfDateAndUpToDate: 

Update check for: HMI_1
 Update check for library element Screen_1 0.0.3

 Out-of-date
 \HMI_1\Screens      Screen_4 0.0.1

\HMI_1\Screens      Screen_2 0.0.2
Up-to-date
 \HMI_1\Screens      Screen_1 0.0.3

\HMI_1\Screens      Screen_10 0.0.3
Update check for: HMI_2
 Update check of library element Screen_4 0.0.3

 Out-of-date
 \Screens folder1     Screen_02 0.0.1

\Screens folder1     Screen_07 0.0.2
Up-to-date
 \Screens folder1     Screen_05 0.0.3

\Screens folder1     Screen_08 0.0.3

Program code
There is no difference between project and global libraries in handling the update check.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
156 System Manual, 10/2018



Modify the following program code to determine the type versions from a global or project 
library for instances in the project:

 
public static void UpdateCheckOfGlobalLibrary(Project project, ILibrary library)
{
    // check for out of date instances and report only out of date instances in the returned 
feedback
    UpdateCheckResult result = library.UpdateCheck(project, 
UpdateCheckMode.ReportOutOfDateOnly);
 
    //Alternatively, check for out of date instances and report both out of date and up to 
date instances in the returned feedback
    UpdateCheckResult alternateResult = library.UpdateCheck(project, 
UpdateCheckMode.ReportOutOfDateAndUpToDate);
 
    //Show result
    RecursivelyWriteMessages(result.Messages);
    
    // Alternatively, show result and access single message parts
    RecursivelyWriteMessageParts(result.Messages);
}

Modify the following program code to output the result of the version check and process the 
messages individually: 

 
private static void RecursivelyWriteMessages (UpdateCheckResultMessageComposition 
messages, string indent = "")
{
    indent += "\t";
    foreach (UpdateCheckResultMessage message in messages)
    {
        Console.WriteLine(indent + message.Description);
        RecursivelyWriteMessages(message.Messages, indent);
    }
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 157



Modify the following program code to access individual message parts in the result of the 
version check:

 
private static void RecursivelyWriteMessageParts (UpdateCheckResultMessageComposition 
messages, string indent= "")
{
    indent += "\t";
    foreach (UpdateCheckResultMessage message in messages)
    {
        Console.WriteLine(indent + "Full description: " + message.Description);
        foreach (KeyValuePair<string, string> messagePart in message.MessageParts)
        {
             // first level
             // part 1: device name
             // second level:
             // part 1: Name of the type in the global library
             // part 2: version of the type in the global library
             // third level:
             // part 1: title (either "Out-of-date" or "Up-to-date"); 
             // fourth level:
             // part 1: Path hierarchy to instance
             // part 2: Instance name in project
             // part 3: Version of the instance in the project
             Console.WriteLine(indent + "*Key: {0} Value:{1}", messagePart.Key, 
messagePart.Value);
        }
     RecursivelyWriteMessageParts(message.Messages,indent);
    }
}

7.12.18 Updating the project

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a folder for types.
See Accessing folders in a library (Page 137).

Application
The TIA Portal Openness API interface allows you to update instances of a selected type within 
a type folder in a project. 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
158 System Manual, 10/2018



When updating, the instances used in the project are updated based on the last released type 
version. If you start updating the instances from a global library, synchronization is performed 
beforehand. 

Signature
Use the UpdateProject method to update instances.

Use the following call for classes which implement the LibraryTypes interface:

void UpdateProject(IUpdateProjectScope updateProjectScope)
Use the following call for classes which implement the ILibrary interface:

void UpdateProject(IEnumerable<ILibraryTypeOrFolderSelection> 
selectedTypesOrFolders, IEnumerable <IUpdateProjectScope> 
updateProjectScope)
Each call is entered in the log file in the project directory.

Parameter Function
IEnumerable<ILibraryTypeOrFolderSele
ction> selectedTypesOrFolders

Specifies the folder or types to be synchronized or 
their instances in the project to be updated. 

IUpdateProjectScope 
updateProjectScope
IEnumerable <IUpdateProjectScope> 
updateProjectScope

Specifies the object(s) in the project in which the 
uses of instances are to be updated. The following 
objects are supported:
● PlcSoftware
● HmiTarget

Program code
Modify the following program code to update instances of selected types within a type folder:

 
private static void UpdateInstances(ILibrary myLibrary, LibraryTypeFolder 
singleFolderContainingTypes, LibraryType singleType, PlcSoftware plcSoftware, HmiTarget 
hmiTarget)
{ 
    //Update Instances of multiple types (subset of types and folders) 
    IUpdateProjectScope[] updateProjectScopes = 
    { 
        plcSoftware as IUpdateProjectScope, hmiTarget as IUpdateProjectScope 
    }; 
    myLibrary.UpdateProject(new ILibraryTypeOrFolderSelection[] {singleType, 
singleFolderContainingTypes}, updateProjectScopes); 
    //Update Instances of multiple types (all types in library) 
    myLibrary.UpdateProject(new[] {myLibrary.TypeFolder}, updateProjectScopes);
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 159



7.12.19 Updating a library

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a folder for types.
See Accessing folders in a library (Page 137).

Application
The TIA Portal Openness API interface supports the following updates in the project library: 

● Synchronize selected types between libraries.

The folder structure is not adapted when you perform synchronization. The types to be updated 
are identified by their GUID and updated:

● If a type in a library includes a type version that is missing in the library to be updated, the 
type version is copied.

● If a type in a library includes a type version with the different GUID, the process is aborted 
and an Exception is thrown.

Signature
Use the UpdateLibrary method to synchronize type versions.

Use the following call for classes which implement the LibraryTypes interface: 

void UpdateLibrary(ILibrary targetLibrary)
Use the following call for classes which implement the ILibrary interface:

void UpdateLibrary(IEnumerable<LibraryTypeOrFolderSelection> 
selectedTypesOrFolders, ILibrary targetLibrary)

Parameter Function
IEnumerable<ILibraryTypeOrFolderSele
ction> selectedTypesOrFolders

Specifies the folder or types to be synchronized or 
their instances in the project to be updated. 

ILibrary targetLibrary Specifies the library whose contents will be 
synchronized with a library.
If source library and destination library are identi‐
cal, an exception is thrown.

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
160 System Manual, 10/2018



Program code
Modify the following program code to synchronize a type from the project library with a global 
library:

 
sourceType.UpdateLibrary(projectLibrary);

Modify the following program code to synchronize selected types within a type folder between 
a global library and the project library:

 
globalLibrary.UpdateLibrary(new[]{globalLibrary.TypeFolder}, projectLibrary);

7.12.20 Deleting library content

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

● You have access to the required library.
See Accessing global libraries (Page 126).

● You have access to a folder for types.
See Accessing folders in a library (Page 137).

Application
You can delete the following project library content using the TIA Portal Openness API 
interface: 

● Types

● Type version

● User-defined folders for types

● Master copies

● User-defined folders for master copies

Note
Deleting of types and user-defined type folders

If you want to delete a type or user-defined folder type, the "Rules for deleting versions" must 
be met. You can always delete an empty type folder. 

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 161



Note
Rules for deleting versions

You can only delete versions with "Committed" status. The following rules also apply when 
deleting versions:
● If a new version with the "InWork" status has just been created from a version with 

"Committed" status , you can only delete the version with "Committed" status when the 
new version is discarded or it obtains the "Committed" status. 

● If a type only has one version, the type is deleted as well. 
● If Version A is dependent on Version B of another type, first delete Version A and then 

Version B.
● If there are instances of Version A, you can only delete Version A if the instances are deleted 

as well. If an instance is also contained in a master copy, the master copy is deleted as 
well. 

Program code
Modify the following program code to delete types or user-defined type folders: 

 
public static void DeleteMultipleTypesOrTypeUserFolders(ILibrary library) 
{ 
    LibraryType t1 = library.TypeFolder.Types.Find("type1");
    LibraryType t2 = library.TypeFolder.Types.Find("type2");
    LibraryTypeUserFolder f1 = library.TypeFolder.Folders.Find("folder1"); 
    t1.Delete(); 
    t2.Delete(); 
    f1.Delete(); 
}

Modify the following program code to delete an individual type or user-defined type folder: 

 
public static void DeleteSingleTypeOrTypeUserFolder(ILibrary library) 
{ 
    //Delete a single type 
    LibraryType t1 = library.TypeFolder.Types.Find("type1"); 
    t1.Delete(); 
    
    //Delete a single folder 
    LibraryTypeFolder parentFolder = library.TypeFolder; 
    LibraryTypeUserFolder f1 = parentFolder.Folders.Find("folder1"); 
    f1.Delete(); 
}

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
162 System Manual, 10/2018



Modify the following program code to delete a version: 

 
public static void DeleteVersion(ILibrary library) 
{ 
    LibraryType singleType = library.TypeFolder.Types.Find("type1"); 
    LibraryTypeVersion version1 = singleType.Versions.Find(new System.Version(1, 0, 0)); 
    version1.Delete(); 
}

Modify the following program code to delete a master copy or a user-defined master copy 
folder: 

 
public static void DeleteMasterCopies(ILibrary library) 
{ 
    // Delete master copy 
    MasterCopy masterCopy = library.MasterCopyFolder.MasterCopies.Find("myMasterCopy"); 
    masterCopy.Delete(); 
   
    // Delete master copy user folder 
    MasterCopyUserFolder masterUserFolder = 
library.MasterCopyFolder.Folders.Find("myFolder"); 
    masterUserFolder.Delete(); 
}

See also
Accessing master copies (Page 148)

TIA Portal Openness API
7.12 Functions on libraries

Openness: Automating creation of projects
System Manual, 10/2018 163



7.13 Functions for accessing devices, networks and connections

7.13.1 Open the "Devices & networks" editor

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can open the "Devices & networks" editor via the API interface by using one of two 
methods: 

● ShowHwEditor(View.Topology or View.Network or View.Device): Open the 
"Devices & networks" editor from the project. 

● ShowInEditor(View.Topology or View.Network or View.Device) : Displays 
the specified device in the "Devices & networks" editor.

Use the View parameter to define the view that is displayed when you open the editor: 

● View.Topology
● View.Network
● View.Device

Program code
Modify the following program code to open the "Devices & networks" editor:

 
// Open topology view from project
private static void OpenEditorDevicesAndNetworksFromProject(Project project)
{
    project.ShowHwEditor(Siemens.Engineering.HW.View.Topology);
}

Modify the following program code to open the "Devices & networks" editor for a device: 

 
// Open topology view for given device
private static void OpenEditorDevicesAndNetworksFromDevice(Device device)
{
    device.ShowInEditor(Siemens.Engineering.HW.View.Topology);
}

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
164 System Manual, 10/2018



See also
Importing configuration data (Page 417)

7.13.2 Querying PLC and HMI targets

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can determine whether a software base can be used as PLC target (PlcSoftware) or HMI 
target in the TIA Portal Openness API. 

Program code: PLC target
Modify the following program code to determine if a device item can be used as PLC target:

 
// Returns PlcSoftware
private PlcSoftware GetPlcSoftware(Device device)
{
    DeviceItemComposition deviceItemComposition = device.DeviceItems;
    foreach (DeviceItem deviceItem in deviceItemComposition)
    {
        SoftwareContainer softwareContainer = deviceItem.GetService<SoftwareContainer>();
        if (softwareContainer != null)
        {
            Software softwareBase = softwareContainer.Software;
            PlcSoftware plcSoftware = softwareBase as PlcSoftware;
            return plcSoftware;
        }
    }
    return null;
 }

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
System Manual, 10/2018 165



Program code: HMI target
Modify the following program code to determine if a device item can be used as HMI target:

 
//Checks whether a device is of type hmitarget
private HmiTarget GetHmiTarget(Device device)
{
    DeviceItemComposition deviceItemComposition = device.DeviceItems;
    foreach (DeviceItem deviceItem in deviceItemComposition)
    {
        SoftwareContainer softwareContainer = deviceItem.GetService<SoftwareContainer>();
        if (softwareContainer != null)
        {
            Software softwareBase = softwareContainer.Software;
            HmiTarget hmiTarget = softwareBase as HmiTarget;
            return hmiTarget;
        }
    }
    return null;
}

See also
Enumerating devices (Page 214)

7.13.3 Accessing attributes of an address object

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● For writing access, the PLC is offline.

Application
You can use the TIA Portal Openness API interface to get or set attributes of the address 
object.  

Further you can assign the current process image to an OB.

The following attributes can be accessed:

Attribute name Data type  Writeable  Access Description 
IsochronousMode BOOL r/w Dynamic attribute Activate/Deactivate isochro‐

nousMode 
ProcessImage Int32 r/w Dynamic attribute Set/Get process image parti‐

tion number. 

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
166 System Manual, 10/2018



Attribute name Data type  Writeable  Access Description 
InterruptObNumber Int64 r/w Dynamic attribute Set/Get interrupt organization 

block number. (classic control‐
ler only) 

StartAddress Int32 r/w Modelled attribute Set/Get new StartAddress val‐
ue.

Restrictions
● Attribute StartAddress

– Setting StartAddress may implicit change the StartAddress of the opposite I0 
Type at the name module. Changing of input address changes the output address.

– Writing access is not supported for all devices.

– Packed addresses are not supported in TIA Portal Openness

– Changing an address via TIA Portal Openness will not rewire the assigned tags. 

● Attribute InterruptObNumber 

– Only accessible in settings with S7-300 or S7-400 controllers. Writing access is 
supported for S7-400 controllers.

Program code: Get or set attributes of an address object
Modify the following program code to access isochronous mode of an address object:

 
Address address= ...;
 
  // read attribute 
bool attributeValue = (bool)address.GetAttribute("IsochronousMode"); 
 
 // write attribute 
address.SetAttribute("IsochronousMode", true);

Modify the following program code to access the ProcessImage attribute of an address object:

 
Address address= ...;
 
  // read attribute 
int attributeValue = (int)address.GetAttribute("ProcessImage"); 
 
 // write attribute 
address.SetAttribute("ProcessImage", 7);
 

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
System Manual, 10/2018 167



Modify the following program code to access the InterruptObNumber attribute of an address 
object:

 
Address address= ...;
 
  // read attribute 
long attributeValue = (long)address.GetAttribute("InterrruptObNumber"); 
 
 // write attribute 
address.SetAttribute("InterrruptObNumber", 42L);
 
//default value = 40

Modify the following program code to access the StartAddress attribute of an address object:

 
Address address= ...;
 
  // read attribute 
int attributeValue = (int)address.GetAttribute("StartAddress"); 
 
 // write attribute 
address.StartAddress = IntValueStartAddress;

Program code: Assign the current process image to an OB
Modify the following program code to assign the current process image to an OB:

 
OB obX =… 
Address address= ...; 
 
// assign PIP 5 to obX 
 
address.SetAttribute("ProcessImage", 5); 
 
try 
{ 
        address.AssignProcessImageToOrganizationBlock(obX); 
}    catch(RecoverableException e) { 
       Console.WriteLine(e.Message);
} 
 
// remove this PIP-OB assignment 
 
try 
{ 
        address.AssignProcessImageToOrganizationBlock(null);
}    catch(RecoverableException e) { 
       Console.WriteLine(e.Message); 
}

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
168 System Manual, 10/2018



7.13.4 Accessing the channels of a module

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Signal Modules like analog input modules usually have multiple channels within a single 
module. Usually, channels provide similar functionality multiple times, e.g. an analog input 
module with four channels can measure four voltage values at the same time.

To access all channels of a module, the Channels attribute of an device item is used.

Program code: Attributes of channels
Modify the following program code to access attributes of a channel:

 
DeviceItem aiModule = ...
ChannelComposition channels = aiModule.Channels;
foreach (Channel channel in channels) 
{ 
    ... // Work with the channel
}

Program code: Identifying attributes
Modify the following program code to get the identifying attribute for each channel:

 
Channel channel = ...
int channelNumber = channel.Number;
ChannelType type = channel.Type;
ChannelIoType ioType = channel.IoType;

Program code: Accessing a single channel
Modify the following program code to use the identifying attributes to access a channel directly: 

 
DeviceItem aiModule = ...
Channel channel = aiModule.Channels.Find(ChannelType.Analog, ChannelIoType.Input, 0);
... // Work with the channel

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
System Manual, 10/2018 169



Channel types

Value Description
ChannelType.None The channel type invalid.
ChannelType.Analog The channel type is analog.
ChannelType.Digital The channel type is digital.
ChannelType.Technology The channel type is technology.

Channel IO types

Value Description
ChannelIOType.None The channel IO type invalid.
ChannelIOType.Input An input channel.
ChannelIOType.Output An output channel.
ChannelIOType.Complex Complex IO types, e.g. for technological channels.

7.13.5 Working with associations

Accessing associations
An association describes the relationship between two or more objects at type level. 

TIA Portal Openness supports access to associations via index and via "foreach" loops. Direct 
access, for example via string name, is not supported. 

Attributes
The following attributes are available:

● int Count
● bool IsReadonly
● IEngineeringObject Parent
● retType this [ int index ] { get; }

Methods
TIA Portal Openness supports the following methods:

● int IndexOf ( type ): Returns the index in the association for a transferred instance.

● bool Contains ( type ): Determines whether the transferred instance is contained 
in the association.

● IEnumerator GetEnumerator <retType>(): Employed within "foreach" loops to 
access an object.

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
170 System Manual, 10/2018



● void Add ( type )1: Adds the transferred instance to the association.

● void Remove ( type )1: Removes the transferred instance from the association.
1: Not supported by all associations. 

7.13.6 Working with compositions

Accessing compositions
A composition is the special case of an association. A composition expresses a semantic 
relationship of two objects, of which one is part of the other.

Attributes
The following attributes are available:

● int Count
● bool IsReadonly
● IEngineeringObject Parent
● retType this [int index] {get;}: Indexed access to an object of the composition. 

This type of access should only be used in a targeted manner, as each indexed access 
operation exceeds process boundaries.

Methods
TIA Portal Openness supports the following methods:

● retType Create (id, …): Creates a new instance and adds this instance to the 
composition. 
The signature of the method depends on the way in which the instance is created. This 
method is not supported by all compositions.

● type Find (id, …): Scans a composition for the instance with the transferred ID. 
The search is not recursive. The signature of the method depends on the way in which the 
instance is searched for. This method is not supported by all compositions.

● IEnumerator GetEnumerator<retType> (): Employed within "foreach" loops to 
access an object.

● Delete (type)1: Deletes the instance specified by the current object reference.

● int IndexOf (type): Returns the index in the composition for a transferred instance.

● bool Contains (type): Determines whether the transferred instance is contained in 
the composition.

● void Import(string path, ImportOptions importOptions)1: Used for each 
composition that contains importable types. 
Each import signature includes a configuration parameter of the type "ImportOptions 
(Page 417)" ("None", "Overwrite") by which the user controls the import behavior.

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
System Manual, 10/2018 171



1: Not supported by all compositions.

7.13.7 Verifying object equality

Application
As user of a TIA Portal Openness API, you can check that objects are the same with program 
code:

● You check whether two object references are the same with the operator "==". 

● Use the System.Object.Equals() method to check if both objects are really identical 
with regard to the TIA Portal. 

Program code
Modify the following program code to check for object reference types:

 
...
//Composition
DeviceComposition sameCompA = project.Devices;
DeviceComposition sameCompB = project.Devices;
if (sameCompA.Equals(sameCompB))
{ 
    Console.WriteLine("sameCompA is equal to sameCompB");
}
if (!(sameCompA == sameCompB))
{ 
    Console.WriteLine("sameCompA is not reference equal to sameCompB");
}
DeviceComposition sameCompAsA = sameCompA;
if (sameCompAsA.Equals(sameCompA))
{ 
    Console.WriteLine("sameCompAsA is equal to sameCompA");
}
if (sameCompAsA == sameCompA)
{ 
    Console.WriteLine("sameCompAsA is reference equal to sameCompA");
}
MultiLingualGraphicComposition notSameComp = project.Graphics;
if (!sameCompA.Equals(notSameComp))
{ 
    Console.WriteLine("sameCompA is not equal to notSameComp");
}

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
172 System Manual, 10/2018



7.13.8 Read operations for attributes

Group operations and standard read operations for attributes
TIA Portal Openness supports access to attributes via the following methods which are 
available at the object level:  

● Group operation for read access

● Standard read operations

Program code for group operations

 
//Exercise GetAttributes and GetAttributeNames
//get all available attributes for a device,
//then get the names for those attributes, then display the results.
private static void DynamicTest(Project project)
{
    Device device = project.Devices[0];
    IList<string> attributeNames = new List<string>();
    IList<EngineeringAttributeInfo> attributes = 
((IEngineeringObject)device).GetAttributeInfos();
    foreach (EngineeringAttributeInfo engineeringAttributeInfo in attributes)
    {
        string name = engineeringAttributeInfo.Name;
        attributeNames.Add(name);
    }
    IList<object> values = ((IEngineeringObject)device).GetAttributes(attributeNames);
    for (int i = 0; i < attributes.Count; i++)
    {
        Console.WriteLine("attribute name: " + attributeNames[i] + " value: " + values[i]);
    }
}

Group operation for read access
This method is available for any object:

public abstract IList<object> GetAttributes(IEnumerable<string> 
names);

Standard read operations
The following operations are available:

● Retrieve the names of available attributes: 
Use the method GetAttributeInfos() (Page 94) on an IEngineeringObject.

● Generic method for reading an attribute
public abstract object GetAttribute(string name);

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
System Manual, 10/2018 173



Note

Dynamic attributes are not shown in IntelliSense because their availability depends on the 
status of the object instance.

TIA Portal Openness API
7.13 Functions for accessing devices, networks and connections

Openness: Automating creation of projects
174 System Manual, 10/2018



7.14 Functions on networks

7.14.1 Creating a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74) 

● A project is open.
See Opening a project (Page 97)

Application
Subnets can be created in two different ways:

● Create a subnet that is connected to an interface: The type of the interface, where the 
subnet is created, determines the type of the subnet

● Create a subnet not connected to an interface.

Program code: Create a subnet connected to an interface
Modify the following program code to create a subnet:

 
Node node = ...;
Subnet subnet = node.CreateAndConnectToSubnet("NameOfSubnet");

The following type identifiers are used:

● System:Subnet.Ethernet

● System:Subnet.Profibus

● System:Subnet.Mpi

● System:Subnet.Asi

Program code: Create a subnet not connected to an interface
Modify the following program code to create a subnet:

 
Project project = ...;
SubnetComposition subnets = project.Subnets;
 
Subnet newSubnet = subnets.Create("System:Subnet.Ethernet", "NewSubnet");

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 175



The following type identifiers can be used:

● System:Subnet.Ethernet

● System:Subnet.Profibus

● System:Subnet.Mpi

● System:Subnet.Asi

7.14.2 Accessing subnets

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
For several network related features, e.g. assigning interfaces to a subnet, you have to access 
subnets in the project. Typically, subnets are aggregated directly on project level.

Program code: Access all subnets of a project
Modify the following program code to access all subnets excluding internal subnets of a project:

 
Project project = ...
foreach (Subnet net in project.Subnets) 
{ 
    ... // Work with the subnet
}

Program code: Access a specific subnet
Modify the following program code to access a specific subnet by it's name:

 
Project project = ...
Subnet net = project.Subnets.Find("PROFIBUS_1");
{
    ... // Work with the subnet
}

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
176 System Manual, 10/2018



Attributes of a subnet
A subnet has the following attributes:

 
Subnet net = ...;
string name = net.Name;
NetType type = net.NetType;

Network types

Value Description
NetType.Unknown The type of the network is unknown.
NetType.Ethernet The type of the network is Ethernet.
NetType.Profibus The type of the network is Profibus.
NetType.Mpi The type of the network is MPI.
NetType.ProfibusIntegrated The type of the network is integrated Profibus.
NetType.Asi The type of the network is ASi.
NetType.PcInternal The type of the network is PC internal.
NetType.Ptp The type of the network is PtP.
NetType.Link The type of the network is Link.
NetType.Wan The type of the network is Wide Area Network

7.14.3 Accessing internal subnets

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
If a device item is able to compose a subnet, it provides the additional functionality "subnet 
owner". To access this additional functionality, a specific service of the device item must be 
used.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 177



Program code: Get the subnet owner role
Modify the following program code to get the subnet owner role:

 
SubnetOwner subnetOwner = 
((IEngineeringServiceProvider)deviceItem).GetService<SubnetOwner>(); 
if (subnetOwner != null) 
{ 
    // work with the role 
}

Program code: Attributes of a subnet owner
Modify the following program code to access the subnets of a subnet owner:

 
foreach(Subnet subnet in subnetOwner.Subnets) 
{
    Subnet interalSubnet = subnet; 
}

7.14.4 Get type identifier of subnets

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The attribute TypeIdentifier is used to identify a subnet. The TypeIdentifier is a string 
consisting of several parts: <TypeIdentifierType>:<SystemIdentifier>
Possible values for TypeIdentifierType are:

● System

SystemIdentifier

Subnet type  SystemIdentifier
PROFIBUS Subnet.Profibus
MPI Subnet.Mpi
Industrial Ethernet Subnet.Ethernet
ASI Subnet.Asi
Ptp Subnet.Ptp

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
178 System Manual, 10/2018



Subnet type  SystemIdentifier
PROFIBUS-Integrated Subnet.ProfibusIntegrated
PC-Internal null

Program code
Modify the following program code to get the type identifier for user manageable and separately 
creatable objects for GSD:

 
Subnet subnet = ...; 
string typeIdentifier = subnet.TypeIdentifier;

7.14.5 Accessing attributes of a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
A subnet provides certain mandatory attributes that can be read and/or written. The attributes 
are only available, if they are available at the UI. Writing is generally only allowed if an attribute 
can also be changed by the user at the UI. This might vary depending on the type of the subnet. 
For example, the user can only set the DpCycleTime, if the IsochronousMode is true and the 
DpCycleMinTimeAutoCalculation is false

Attributes of subnets of type ASI

Attribute Data type Writa‐
ble

Access Description

Name string r/w  Name of the subnet.
NetType NetType r  Type of the subnet
SubnetId string r dynam‐

ic
Unique identification of the subnet. The S7 subnet ID is 
made up of two numbers separated by a hyphen. One 
number for the project and one for the subnet. e.g. 
4493-1.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 179



Attributes of subnets of type Ethernet

Attribute Data type Writa‐
ble

Access Description

Name string r/w  Name of the subnet.
NetType NetType r  Type of the subnet
SubnetId string r/w dynam‐

ic
Unique identification of the subnet. The S7 subnet ID is 
made up of two numbers separated by a hyphen. One 
number for the project and one for the subnet. e.g. 
4493-1.

DefaultSubnet bool r/w dynam‐
ic

true if the subnet is a default subnet. There is at most 
one default subnet in a project. 

Attributes of subnets of type MPI

Attribute Data type Writa‐
ble

Access Description

Name string r/w  Name of the subnet.
NetType NetType r  Type of the subnet
SubnetId string r/w dynam‐

ic
Unique identification of the subnet. The S7 subnet ID is 
made up of two numbers separated by a hyphen. One 
number for the project and one for the subnet. e.g. 
4493-1.

HighestAddress int r/w dynam‐
ic

Highest MPI address at subnet.

TransmissionSpeed BaudRate r/w dynam‐
ic

True if the subnet is a default subnet. There is at most 
one default subnet in a project. 

Attributes of subnets of type PC internal

Attribute Data type Writa‐
ble

Access Description

Name string r  Name of the subnet.
NetType NetType r  Type of the subnet
SubnetId string r dynam‐

ic
Unique identification of the subnet. The S7 subnet ID is 
made up of two numbers separated by a hyphen. One 
number for the project and one for the subnet. e.g. 
4493-1.

Attributes of subnets of type PROFIBUS

Attribute Data type Writa‐
ble

Access Description

Name string r/w  Name of the subnet.
NetType NetType r  Type of the subnet

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
180 System Manual, 10/2018



Attribute Data type Writa‐
ble

Access Description

SubnetId string r/w dynam‐
ic

Unique identification of the subnet. The S7 sub‐
net ID is made up of two numbers separated by 
a hyphen. One number for the project and one 
for the subnet. e.g. 4493-1.

HighestAddress int r/w dynam‐
ic

Highest PROFIBUS address at subnet.

TransmissionSpeed BaudRate r/w dynam‐
ic

True if the subnet is a default subnet. There is 
at most one default subnet in a project. 

BusProfile BusProfile r/w dynam‐
ic

The PROFIBUS profile.

PbCableConfiguration bool r/w dynam‐
ic

True to enable additional PROFIBUS network 
settings

PbRepeaterCount int r/w dynam‐
ic

Number of repeaters for copper cable

PbCopperCableLength double r/w dynam‐
ic

The length of the copper cable

PbOpticalComponentCount int r/w dynam‐
ic

Number of OLMs and OBTs of fiber-optical ca‐
ble.

PbOpticalCableLength double r/w dynam‐
ic

The length of the fiber-optical cable for the PRO‐
FIBUS network in km.

PbOpticalRing bool r/w dynam‐
ic

True if bus parameter are adapted for an optical 
ring

PbOlmP12 bool r/w dynam‐
ic

True if OLM/P12 is enabled for bus parameter 
calculation

PbOlmG12 bool r/w dynam‐
ic

True if OLM/G12 is enabled for bus parameter 
calculation

PbOlmG12Eec bool r/w dynam‐
ic

True if OLM/G12-EEC is enabled for bus param‐
eter calculation

PbOlmG121300 bool r/w dynam‐
ic

True if OLM/G12-1300 is enabled for bus param‐
eter calculation

PbAdditionalNetworkDevices bool r/w dynam‐
ic

True if additional bus devices that don't exist in 
project will be taken in to account when calculat‐
ing bus times.

PbAdditionalDpMaster int r/w dynam‐
ic

Number of unconfigured DP masters.

PbTotalDpMaster int r dynam‐
ic

Number of total DP masters

PbAdditionalPassiveDevice int r/w dynam‐
ic

Number of unconfigured DP slaves or passive 
devices.

PbTotalPassiveDevice int r dynam‐
ic

Number of total DP slaves or passive devices.

PbAdditionalActiveDevice int r/w dynam‐
ic

Number of unconfigured active devices with 
FDL/FMS/S/ communication load.

PbTotalActiveDevice int r dynam‐
ic

Number of total active devices with FDL/FMS/S/ 
communication load.

PbAdditionalCommunicationLoad Communica‐
tionLoad

r/w dynam‐
ic

Rough quantification of the communication load

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 181



Attribute Data type Writa‐
ble

Access Description

PbDirectDateExchange bool r/w dynam‐
ic

Optimization for direct data exchange.

PbMinimizeTslotForSlaveFailure bool r/w dynam‐
ic

Minimization for time allocation for slave failure.

PbOptimizeCableConfiguration bool r/w dynam‐
ic

Optimiazation of the cable configuration.

PbCyclicDistribution bool r/w dynam‐
ic

True if enable cyclic distribution of bus parame‐
ter.

PbTslotInit int r/w dynam‐
ic

Default value of Tslot.

PbTslot int r dynam‐
ic

Waiting to receive time (slot time)

PbMinTsdr int r/w dynam‐
ic

Minimum protocol processing time

PbMaxTsdr int r/w dynam‐
ic

Maximum protocol processing time

PbTid1 int r dynam‐
ic

Idle time 1

PbTid2 int r dynam‐
ic

Idle time 2

PbTrdy int r dynam‐
ic

Ready time

PbTset int r/w dynam‐
ic

Setup time

PbTqui int r/w dynam‐
ic

Quiet time for modulator

PbTtr int64 r/w dynam‐
ic

The Ttr value in t_Bit 

PbTtrTypical int64 r dynam‐
ic

Average response time on bus

PbWatchdog int64 r/w dynam‐
ic

Watchdog

PbGapFactor int r/w dynam‐
ic

Gab update factor

PbRetryLimit int r/w dynam‐
ic

Maximum number of retries

IsochronousMode bool r/w dynam‐
ic

True if constant bus cycle time is enabled.

PbAdditionalPassivDeviceForIso‐
chronousMode

int r/w dynam‐
ic

Number of additional OPs/PGs/TDs etc. that are 
not configured in this network view.

PbTotalPassivDeviceForIsochro‐
nousMode

int r dynam‐
ic

Sum of configured and unconfigured devices, 
such as OPs/PGs/TDs etc.

DpCycleMinTimeAutoCalculation bool r/w dynam‐
ic

True if automatic calculation and setting of short‐
est DP cycle time is enabled.

DpCycleTime double r/w dynam‐
ic

The DP cycle time.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
182 System Manual, 10/2018



Attribute Data type Writa‐
ble

Access Description

IsochronousTiToAutoCalculation bool r/w dynam‐
ic

True if automatic calculation and setting of val‐
ues of IsochronousTi and IsochronousTo.

IsochronousTi double r/w dynam‐
ic

Time Ti (read in process values)

IsochronousTo double r/w dynam‐
ic

Time To (output process values)

Attributes of subnets of type PROFIBUS Integrated

Attribute Data type Writa‐
ble

Access Description

Name string r/w  Name of the subnet.
NetType NetType r  Type of the subnet
SubnetId string r/w dynam‐

ic
Unique identification of the subnet. The S7 subnet ID is 
made up of two numbers separated by a hyphen. One 
number for the project and one for the subnet. e.g. 
4493-1.

IsochronousMode bool r dynam‐
ic

Enabled constant bus cycle time.

DpCycleMinTimeAutoCal‐
culation

bool r/w dynam‐
ic

True if automatic calculation and setting of shortest DP 
cycle time is enabled.

DpCycleTime double r/w dynam‐
ic

The DP cycle time.

IsochronousTiToAutoCalcu‐
lation

bool r/w dynam‐
ic

True if automatic calculation and setting of values of 
IsochronousTi and IsochronousTo.

IsochronousTi double r/w dynam‐
ic

Time Ti (read in process values)

IsochronousTo double r/w dynam‐
ic

Time To (output process values)

Program code
Modify the following program code to get or set the attributes of a subnet:

 
Subnet subnet = ...;
 
string nameValue = subnet.Name;
NetType nodeType = (NetType)subnet.NetType; 
string subnetId = ((IEngineeringObject)subnet).GetAttribute("SubnetId");
 
subnet.Name = "NewName";
subnet.SetAttribute("Name", "NewName"); 
 
bool isDefaultSubnet = ((IEngineeringObject)subnet).GetAttribute("DefaultSubnet");

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 183



Baud rates

Value Description
BaudRate.None The baud rate is unknown.
BaudRate.Baud9600 9.6 kBaud
BaudRate.Baud19200 19.2 kBaud
BaudRate.Baud45450 45.45 kBaud
BaudRate.Baud93700 93.75 kBaud
BaudRate.Baud187500 187.5 kBaud
BaudRate.Baud500000 500 kBaud
BaudRate.Baud1500000 1.5 MBaud
BaudRate.Baud3000000 3 MBaud
BaudRate.Baud6000000 6 MBaud
BaudRate.Baud12000000 12 MBaud

Bus profiles

Value Description
BusProfile.None The bus profile is unknown.
BusProfile.DP The type of the network is DP.
BusProfile.Standard The type of the network is Standard.
BusProfile.Universal The type of the network is Universal.
BusProfile.UserDefined The type of the network is user defined.

Communication load

Value Description
CommunicationLoad.None No valid communication load.
CommunicationLoad.Low Typically used for DP, no great data communication apart from 

DP.
CommunicationLoad.Medium Typically used for mixed operations featuring DP and other 

communication services, such as for S7 communication, when 
DP has strict time requirements and for average acyclic vol‐
umes of communication.

CommunicationLoad.High For mixed operations featuring DP and other communication 
services, such as for S7 communication, when DP has loose 
time requirements and for high acyclic volumes of communi‐
cation. 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
184 System Manual, 10/2018



7.14.6 Deleting a global subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to delete a a global subnet within a project.:

 
Project project = ...;
SubnetComposition subnets = projects.Subnets;
 
// delete subnet
Subnet subnetToDelete = ...;
subnetToDelete.Delete();

7.14.7 Enumerate all participants of a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Enumeration of all participants on a subnet.

Program code
Modify the following program code to enumerate dp master systems from subnet:

 
Subnet subnet = ...; 
foreach (Node node in subnet.Nodes) 
    {
        // work with the node 
    }

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 185



7.14.8 Enumerate io systems of a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Enumeration of IoSystem provides all io systems that are present on a subnet. The class 
IoSystem represents the master systems and the io systems.

Program code
Modify the following program code to enumerate dp master systems from subnet:

 
Subnet subnet = ...; 
foreach (IoSystem ioSystem in subnet.IoSystems) 
    {
        // work with the io system 
    }

7.14.9 Accessing nodes

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The role interface aggregates nodes to access attributes that are related to the address and 
subnet assignment of an interface.

The name of a node can be seen in the attributes of an interface in TIA Portal . The NodeId is 
a unique identifier for every node aggregated at an interface, its value can only be seen via 
TIA Portal Openness. 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
186 System Manual, 10/2018



Program code
Modify the following program code to access all nodes of an interface:

 
NetworkInterface itf = ...
foreach (Node node in itf.Nodes) 
{ 
    ... // Work with the node
}

Most interfaces provide only a single node, therefore, usually the first node is used:

 
NetworkInterface itf = ...
Node node = itf.Nodes.First();
{
    ... // Work with the node
}

Nodes provide their names and types and NodeIds as attributes:

 
Node node = ...
string name = node.Name;
NetType type = node.NodeType; 
string id = node.NodeId;

Network types

Value Description
NetType.Unknown The type of the network is unknown.
NetType.Ethernet The type of the network is Ethernet.
NetType.Profibus The type of the network is Profibus.
NetType.Mpi The type of the network is MPI.
NetType.ProfibusIntegrated The type of the network is integrated Profibus.
NetType.Asi The type of the network is ASi.
NetType.PcInternal The type of the network is PC internal.
NetType.Ptp The type of the network is PtP.

7.14.10 Accessing attributes of a node

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 187



Application
A device item provides certain mandatory attributes that can be read and/or written. The 
attributes are only available if they are available at the UI. Writing is generally only allowed if 
an attribute can also be changed by the user at the UI. This might vary depending on the type 
of the device item. For example, the user can only set the RouterAddress if the RouterUsed 
is true. If the user changes the SubnetMask at IO controller, Subentmask on all IO devices will 
be also changed to the same value.

Attributes of a node of type ASI

Attributes Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r  A node gets his type from the subnet.
Address string r/w dynam‐

ic
Additional attribute for AS-i slaves.

Attributes of a node of type Ethernet

Attributes Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r/w or r  A node gets his type from the subnet.
UseIsoProtocol bool r/w dynam‐

ic
 

MacAddress string r/w dynam‐
ic

e.g. 01-80-C2-00-00-00

UseIpProtocol bool r/w dynam‐
ic

This value can be read even if it noct visible at the cor‐
responding TIA UI control.

IpProtocolSelection enum r/w dynam‐
ic

 

Address string r/w dynam‐
ic

only IPv4 and no IPv6 is supported

SubnetMask string r/w dynam‐
ic

 

UseRouter bool r/w dynam‐
ic

 

RouterAddress string r/w dynam‐
ic

 

DhcpClientId string r/w dynam‐
ic

 

PnDeviceNameSetDirectly bool r/w dynam‐
ic

PROFINET device name is set directly at the device. 
Not available for every device.

PnDeviceNameAutoGener‐
ation

bool r/w dynam‐
ic

PROFINET device name is created automatically.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
188 System Manual, 10/2018



Attributes Data type Writa‐
ble

Access Description

PnDeviceName string r/w dynam‐
ic

Unique device name in subnet.

PnDeviceNameConverted string r dynam‐
ic

Device name converted for system internal using.

Attributs of a node of type MPI

Attribut Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r  A node gets his type from the subnet.
Address string r/w dynam‐

ic
 

Attributs of a node of type PC internal

Attribut Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r  A node gets his type from the subnet.

Attributs of a node of type PROFIBUS

Attribut Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r  A node gets his type from the subnet.
Address string r/w dynam‐

ic
 

Attributs of a node of type PROFIBUS integrated

Attribut Data type Writa‐
ble

Access Description

Name string r  Name of the node.
NodeId string r  ID of the node.
NodeType NetType r  A node gets his type from the subnet.
Address string r dynam‐

ic
 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 189



Program code: Attributes of a node
Modify the following program code to get or set the attributes of a node:

 
Node node = ...;
string nameValue = node.Name;
NetType nodeType = node.NodeType;
node.NodeType = NetType.Mpi;

Program code: Dynamic attributes
Modify the following program code to get or set dynamic node attributes:

 
Node node = ...;
var attributeNames = new[] 
{
    "Address", "SubnetMask", "RouterAddress", "UseRouter", "DhcpClientId", 
"IpProtocolSelection"
}; 
foreach (var attributeName in attributeNames) 
{ 
    object attributeValue = ((IEngineeringObject)node).GetAttribute(attributeName); 
}

Protocol selection

Value Description
IpProtocolSelection.None Error value
IpProtocolSelection.Project IP suite configured within project.
IpProtocolSelection.Dhcp IP suite managed via DHCP protocol. DHCP Client ID neces‐

sary.
IpProtocolSelection.UserProgram IP suite set via FB (function block).
IpProtocolSelection.OtherPath IP suite set via other methods, for example PST tool.
IpProtocolSelection.ViaIoController IP suite set via IO Controller in runtime.

Net type

Value Description
NetType.Asi Net type is ASI.
NetType.Ethernet Net type is Ethernet.
NetType.Link Net type is Link.
NetType.Mpi Net type is MPI.
NetType.PcInternal Net type is PC internal.
NetType.Profibus Net type is PROFIBUS.
NetType.ProfibusIntegrated Net type is PROFIBUS integrated.
NetType.Ptp Net type is PTP.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
190 System Manual, 10/2018



Value Description
NetType.Wan Net type is Wide Area Network (WAN).
NetType.Unknown Net type is Unknow.

7.14.11 Connecting a node to a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to assign a node (device, interface) to a network:

 
Node node = ...;
Subnet subnet = ...;
node.ConnectToSubnet(subnet);

7.14.12 Disconnect a node from a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to disconnect a node (device, interface) from a network:

 
Node node = ...;
node.DisconnectFromSubnet();

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 191



7.14.13 Creating an io system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
An io system is created by calling the action IoController.CreateIoSystem("name") on an object 
of the type IoController. In case name is null or String.Empty the default name will be used. 
The io controller is aquired by accessing the attribute IoControllers object on the 
NetworkInterface. The IoControllers navigator returns one IoController object. 

Prerequisites for creating an io system:

● The interface of the io controller is connected to a subnet.

● The io controller has no io system.

Program code
Modify the following program code to create an io system:

 
using System.Linq; 
...
 
NetworkInterface interface = ...;
IoSystem ioSystem = null;
 
// Interface is configured as io controller 
if((interface.InterfaceOperatingMode & InterfaceOperatingModes.IoController) != 0)
{ 
    IoControllerComposition ioControllers = interface.IoControllers;
    IoController ioController = ioControllers.First(); 
    if(ioController != null) 
    { 
        ioSystem = ioController.CreateIoSystem("io system"); 
    } 
}

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
192 System Manual, 10/2018



7.14.14 Accessing the attributes of an io system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The master system and the io system will both be represented by the class IoSystem.

Program code: Attributes of an io system
Modify the following program code to get the attributes of the IoSystem:

 
NetworkInterface itf = ... 
foreach (IIoController ioController in itf.IoControllers) 
{
    IoSystem ioSystem = ioController.IoSystem;
    int ioSystemNumber = ioSystem.Number; 
    string ioSystemName = ioSystem.Name; 
}

Program code: Subnet of an io system
Modify the following program code to navigat to the subnet the io system is assigned to:

 
Subnet subnet = ioSystem.Subnet;

7.14.15 Connecting an io connector to an io system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Use the action ConnectToIoSystem(IoSystem ioSystem) of  IoConnector to connect a profinet 
or a dp  IoConnector to an existing io system.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 193



Use the action GetIoController to navigate to the remote IoController. For further information 
how to navigate to the local IoConnector  and the io system see Get master system or io system 
of an interface (Page 194).

Prerequisites:

● The IoConnector is not yet connected to an io system.

● The IoConnector interface is connected to the same subnet as the interface of the desired 
IoController.

Program code
Modify the following program code:

 
IoSystem ioSystem = ...;
IoConnector ioConnector = ...;
ioConnector.ConnectToIoSystem();
IoController ioController = ioConnector.GetIoController();

7.14.16 Get master system or io system of an interface

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The service NetworkInterface provides the navigator IoControllers, each IoController in turn 
provides the navigator IoSystem. The class IoSystem represents the master systems and the 
io systems. The io device and the slave are both named io device.

● The IoControllers navigator returns IoController objects, if the network interface can have 
an io system. At the moment only one io controller will be returned.

● The IoConnectors navigator returns IoConnector objects, if the network interface can be 
connected to an io system as an io device. At the moment only one io connector will be 
returned.  

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
194 System Manual, 10/2018



Program code: Get the io system of the IoController
Modify the following program code to get the io system of the IoController:

 
NetworkInterface itf = ...
foreach (IoController ioController in itf.IoControllers) 
{ 
    IoSystem ioSystem = ioController.IoSystem; 
    // work with the io system 
}

Program code: Get the io system of the IoConnector
Modify the following program code to get the io system of the IoConnector:

 
NetInterface itf = ...
foreach (IoConnector ioConnector in itf.IoConnectors) 
{ 
    IoSystem ioSystem = ioConnector.ConnectedIoSystem; 
    // work with the io system 
}

7.14.17 Get an IO Controller

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Currently only configurations with one IoController are possible. An IoController does not 
provide any modelled attributes or actions.

Program code
Modify the following program code to get the io controller:

 
NetworkInterface itf = ... 
foreach (IoController ioController in itf.IoControllers) 
{
    // work with the io controller 
}

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 195



7.14.18 Get an IO Connector

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
An IoConnector does not provide any modelled attributes or actions.

Program code
Modify the following program code to get the io connector:

 
NetworkInterface itf = ... 
foreach (IoConnector ioConnector in itf.IoConnectors) 
{
    // work with the IoConnector 
}

7.14.19 Disconnecting an io connector from an io system or a dp mastersystem

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Use the action DisconnectFromIoSystem() of  IoConnector to disconnect an IoConnector from 
an existing io system or an existing dp mastersystem.

For further information how to navigate to the local IoConnector  and the io system see Get 
master system or io system of an interface (Page 194).

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
196 System Manual, 10/2018



Program code
Modify the following program code:

 
IoSystem ioSystem = ...;
IoConnector ioConnector = ...;
 
ioConnector.DisconnectFromIoSystem();

7.14.20 Accessing attributes of a dp mastersystem

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application 
A DP Mastersystem provides certain attributes that can be read and/or written. The attributes 
are only available if they are available at the UI. Writing is generally only allowed if an attribute 
can also be changed by the user at the UI. This might vary depending on the DP Master and 
the DP Slaves which are assigned to this DP Mastersystem. 

Attributes of a dp mastersystem

Attribute Data type Writa‐
ble

Access Description

Name string r/w   
Number int r/w  The property Number accepts values that cannot be set 

via UI. In this case the compile will fail.

Program code: Get attributes
Modify the following program code to get attributes:

 
IoSystem dpMastersystem = ...;
 
string name = dpMastersystem.Name;
int number = dpMastersystem.Number;

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 197



Program code: Set attributes
Modify the following program code to set attributes:

 
IoSystem dpMastersystem = ...;
 
dpMastersystem.Name ="myDpMastersystem"
dpMastersystem.Number=42;

7.14.21 Accessing attributes of a profinet io system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
An IO System provides certain attributes that can be read and/or written. The attributes are 
only available if they are available at the UI. Writing is generally only allowed if an attribute can 
also be changed by the user at the UI. This might vary depending on the  IO Controller and 
the IO Devices which are assigned to this IO System.  

Attributes of a PROFINET io System

Attribute Data type Writa‐
ble

Access Description

MultipleUseIoSystem bool r/w dynam‐
ic

 

Name string r/w   
Number int r/w  The attribute Number accepts values that cannot be set 

via UI. In this case the compile will fail.
UseIoSystemNameAsDeviceNa‐
meExtension

bool r/w dynam‐
ic

If MultipleUseIoSystem is set to TRUE,  UseIoSystem‐
NameAsDeviceNameExtension will be set to FALSE 
and write access is not possible.

MaxNumberIWlanLinksPerSeg‐
ment

int r/w dynam‐
ic

 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
198 System Manual, 10/2018



Program code: Get attributes
Modify the following program code to get attributes

 
IoSystem ioSystem = ...;
string name = ioSystem.Name;

Program code: Set attributes
Modify the following program code to set attributes: 

 
IoSystem ioSystem = ...;
ioSystem.Name = "IOSystem_1";

Program code: Get attributes with dynamic access
Modify the following program code to get the values of dynamic attributes: 

 
IoSystem ioSystem = ...;
var attributeNames = new[] 
{
    "MultipleUseIoSystem", "UseIoSystemNameAsDeviceNameExtension", 
"MaxNumberIWlanLinksPerSegment"
}; 
foreach (var attributeName in attributeNames)
{ 
    object attributeValue = ((IEngineeringObject)ioSystem).GetAttribute(attributeName); 
}

Program code: Set attributes with dynamic access  
Modify the following program code to set the values of dynamic attributes: 

 
IoSystem ioSystem = ...;
((IEngineeringObject)ioSystem).SetAttribute("MultipleUseIoSystem", true);

7.14.22 Deleting a dp mastersystem

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 199



Program code: Deleting a PROFINET io system
Modify the following program code to delete a PROFINET io system:

 
IoController ioController = ...;
IoSystem ioSystem = ioController.IoSystem;
 
ioSystem.Delete();

7.14.23 Deleting a profinet io system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to delete a profinet io system:

 
IoController ioController = ...;
IoSystem ioSystem = ioController.IoSystem;
ioSystem.Delete();

7.14.24 Creating a dp master system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
A DP master system is created by calling the action CreateIoSystem(string nameOfIoSystem) 
on an object of the type IoController. The io controller is aquired by accessing the attribute 
IoControllers object on the NetworkInterface.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
200 System Manual, 10/2018



Prerequisites for creating a DP master system:

● The interface of the io controller is connected to a subnet.

● The io controller has no io system.

Program code
Modify the following program code to create a dp master system:

 
using System.Linq;
... 
NetworkInterface interface = ...;
IoSystem dpMasterSystem = null;
 
// Interface is configured as master or as master and slave 
if((interface.InterfaceOperatingMode & InterfaceOperatingModes.IoController) != 0) 
{ 
    IoControllerComposition ioControllers = interface.IoControllers;
    IoController ioController = ioControllers.First(); 
    if(ioController != null) 
    { 
        dpMasterSystem = ioController.CreateIoSystem("dp master system"); 
    } 
}

7.14.25 Accessing port interconnection information of port device item

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
NetworkPort provides the link ConnectedPorts which is an enumeration of ports to access all 
interconnected partner ports of a port.

It is only possible to interconnect ports which can also be interconnected in the TIA UI, e.g. it 
is not possible to interconnect two ports of the same Ethernet interface. Recoverable exception 
are thrown 

● if there is already an interconnection to the same partner port

● when trying to interconnect two ports which cannot be interconnected

● when trying to create a second interconnection to a port which does not support alternative 
partners 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 201



Program code: Get the port interconnection
Modify the following program code to get the port interconnection information of a port device 
item:

 
NetworkPort port = ...;
foreach (NetworkPort partnerPort in port.ConnectedPorts) 
{ 
    // work with the partner port
}

Program code: Create port interconnections
Modify the following program code:

 
NetworkPort port1 = ...;
NetworkPort port2 = ...;
port1.ConnectToPort(port2);
 
// port supports alternative partners
NetworkPort port1 = ...;
NetworkPort port2 = ...;
NetworkPort port3 = ...;
port1.ConnectToPort(port2);
port1.ConnectToPort(port3);

Program code: Delete port interconnection
Modify the following program code:

 
NetworkPort port1 = ...;
NetworkPort port2 = ...;
port1.DisconnectFromPort(port2);

7.14.26 Attributes of port inter-connection

Attributes for port inter-connections
TIA Portal Openness supports the following attributes for port inter-connections. If the 
attributes are available in UI, the corresponding attributes can also be accessed through TIA 
Portal Openness. If the user has access to modifiy the attributes in UI, then they can also be 
modified via TIA Portal Openness.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
202 System Manual, 10/2018



Attribute name Data type Writable Access Description
MediumAttachment‐
Type

MediumAttachment‐
Type

Read-only Dynamic attribute  

CableName CabelName Read-Write Dynamic attribute  
AlternativePartner‐
Ports

Boolean Read-Write Dynamic attribute Only available if tool‐
changer functionality is 
supported.

SignalDelaySelection SignalDelaySelection Read-Write Dynamic attribute  
CableLength CableLength Read-Write Dynamic attribute  
SignalDelayTime Double Read-Write Dynamic attribute  

Enum values of port inter-connection attributes
The Enum MediumAttachmentType has following values.

Value Description
MediumAttachmentType.None Attachment type cannot be determined.
MediumAttachmentType.Copper Attachment type is copper.
MediumAttachmentType.FiberOptic Attachment type is fiber optic.

The Enum CableName has following value

Value Description
CableName.None No cable name is specified
CableName.FO_Standard_Cable_9 FO standard cable GP (9 µm)
CableName.Flexible_FO_Cable_9 Flexible FO cable (9 µm)
CableName.FO_Standard_Cable_GP_50 FO standard cable GP (50 µm)
CableName.FO_Trailing_Cable_GP FO trailing cable / GP
CableName.FO_Ground_Cable FO ground cable
CableName.FO_Standard_Cable_62_5 FO standard cable (62.5 µm)
CableName.Flexible_FO_Cable_62_5 Flexible FO cable (62.5 µm)
CableName.POF_Standard_Cable_GP POF standard cable GP
CableName.POF_Trailing_Cable POF trailing cable
CableName.PCF_Standard_Cable_GP PCF trailing cable / GP
CableName.GI_POF_Standard_Cable GI-POF standard cable
CableName.GI_POF_Trailing_Cable GI-POF trailing cable
CableName.GI_PCF_Standard_Cable GI-PCF standard cable
CableName.GI_PCF_Trailing_Cable GI-PCF trailing cable
CableName.GI_POF_Standard_Cable GI-POF standard cable
CableName.GI_POF_Trailing_Cable GI-POF trailing cable

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 203



Value Description
CableName.GI_PCF_Standard_Cable GI-PCF standard cable
CableName.GI_PCF_Trailing_Cable GI-PCF trailing cable

The Enum SignalDelaySelection has following values.

Value Description
SignalDelaySelection.None  
SignalDelaySelection.CableLength CableLength is used to define the signal delay.
SignalDelaySelection.SignalDelayTime SignalDelayTime is used to define the signal delay

The Enum CableLength has following values

Value Description
CableLength.None CableLength is not specified.
CableLength.Length20m Cable length is 20m.
CableLength.Length50m Cable length is 50m.
CableLength.Length100m Cable length is 100m.
CableLength.Length1000m Cable length is 1000m.
CableLength.Length3000m Cable length is 3000m.

Attributes of port options
The attributes of port options are given below.

Attribute name Data type Writable Access
PortActivation bool Read-Write Dynamic attribute
TransmissionRateAnd‐
Duplex

TransmissionRateAnd‐
Duplex

Read-Write Dynamic attribute

PortMonitoring bool Read-Write Dynamic attribute
TransmissionRateAuto‐
Negotiation

bool Read-Write Dynamic attribute

EndOfDetectionOfAc‐
cessibleDevices

bool Read-Write Dynamic attribute

EndOfTopologyDiscov‐
ery

bool Read-Write Dynamic attribute

EndOfSyncDomain bool Read-Write Dynamic attribute

The Enum TransmissionRateAndDuplex has following values.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
204 System Manual, 10/2018



Value Description
TransmissionRateAndDuplex.None  
TransmissionRateAndDuplex.Automatic Automatic
TransmissionRateAndDuplex.AUI10Mbps 10 Mbps AUI
TransmissionRateAndDuplex.TP10MbpsHalfDu‐
plex

TP 10 Mbps half duplex

TransmissionRateAndDuplex.TP10MbpsFullDu‐
plex

TP 10 Mbps full duplex

TransmissionRateAndDuplex.AsyncFib‐
er10MbpsHalfDuplex

async fiber 10Mbit/s half duplex mode

TransmissionRateAndDuplex.AsyncFib‐
er10MbpsFullDuplex

async fiber 10Mbit/s full duplex mode

TransmissionRateAndDuplex.TP100MbpsHalfDu‐
plex

TP 100 Mbps half duplex

TransmissionRateAndDuplex.TP100MbpsFullDu‐
plex

TP 100 Mbps full duplex

TransmissionRateAndDuplex.FO100MbpsFullDu‐
plex

FO 100 Mbps full duplex

TransmissionRateAndDuplex.X1000MbpsFullDu‐
plex

X1000 Mbps full Duplex

TransmissionRateAndDuplex.FO1000MbpsFull‐
DuplexLD

FO 1000 Mbps full duplex LD

TransmissionRateAndDuplex.FO1000MbpsFull‐
Duplex

FO 1000 Mbps full Duplex

TransmissionRateAndDuplex.TP1000MbpsFull‐
Duplex

TP 1000 Mbps full duplex

TransmissionRateAndDuplex.FO10000MbpsFull‐
Duplex

FO 10000 Mbps full Duplex

TransmissionRateAndDuplex.FO100MbpsFullDu‐
plexLD

FO 100 Mbps full duplex LD

TransmissionRateAndDu‐
plex.POFPCF100MbpsFullDuplexLD

POF/PCF 100 Mbps full duplex

7.14.27 Accessing the attributes of a port

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

SeeConnecting to the TIA Portal (Page 74)

● A profect is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 205



Application
If a device item is a port, it provides additional functionality over a simple device item. 

● It is possible to access the linked partner ports of the port

● It is possible to access the interface of the port 

To access this additional functionality, the NetworkPort feature, a specific service of the device 
item, must be used.

Program code: Accessing a port
Modify the following program code to access attributes of a channel:

 
NetworkPort port = ((IEngineeringServiceProvider)deviceItem).GetService<NetworkPort>();
if (port != null)
{ 
    ... // Work with the port
}

Attributes of a port
A port has the following attributes:

 
NetworkPort port = ...;
var connectedPorts = port.ConnectedPorts;
var myInterface = port.Interface;

7.14.28 Enumerate dp master systems of a subnet

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Enumeration of IoSystem provides all dp mastersystems that are present on a subnet. The 
class IoSystem represents the master systems and the io systems.

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
206 System Manual, 10/2018



Program code
Modify the following program code to enumerate dp master systems from subnet:

 
Subnet subnet = ...; 
foreach (IoSystem ioSystem in subnet.IoSystems) 
    {
        // work with the io system 
    }

7.14.29 Enumerate assigned io connectors

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The class IoSystem represents the master systems and the io systems.

It is used for:

● Enumeration of io connectors of a dp mastersystem

● Enumeration of io connectors of a profinet io system

Program code
Modify the following program code to enumerate assigned io connectors of the dp 
mastersystem:

 
IoSystem ioSystem = ...; 
foreach (IoConnector ioConnector in ioSystem.ConnectedIoDevices)     
    {
        // work with the io connector 
    } 

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
System Manual, 10/2018 207



7.14.30 Connecting a dp io connector to a dp mastersystem

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Use the action ConnectToIoSystem(IoSystem ioSystem) of  IoConnector to connect an 
IoConnector to an existing DP mastersystem.

Use the action GetIoController to navigate to the remote IoController. For further information 
how to navigate to the local IoConnector  and the io system see Get master system or io system 
of an interface (Page 194).

Prerequisites:

● The IoConnector is not yet connected to an io system.

● The IoConnector interface is connected to the same subnet as the interface of the desired 
IoController.

Program code
Modify the following program code:

 
IoSystem ioSystem = ...;
IoConnector ioConnector = ...;
ioConnector.ConnectToIoSystem(ioSystem);
IoController ioController = ioConnector.GetIoController();

TIA Portal Openness API
7.14 Functions on networks

Openness: Automating creation of projects
208 System Manual, 10/2018



7.15 Functions on devices

7.15.1 Mandatory attributes of devices

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Every device or device item provides certain mandatory attributes which can be read and/or 
written. These attributes are always the same as in the TIA Portal user interface. 

The following attributes are supported in Openness:

Attribute name Data type Writeable Access Comment
Author string read/write dynamic  
Comment string read/write dynamic sometimes only read access
CommentML MultilingualTex‐

tItem 
read/write dynamic sometimes only read access

IsGsd bool read  TRUE, if the device description is instal‐
led via GSD/GSDML

Name string read/write  sometimes only read access
TypeIdentifier string read   
TypeName string read dynamic  

Program code: Mandatory attributes of a device
Modify the following program code to get the mandatory attributes of a device:

 
Device device = ...;
string nameValue = device.Name;
bool isGsdValue = device.IsGsd; 

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 209



Program code: Mandatory attributes with dynamic access
Modify the following program code to get the attributes item with dynamic access:

 
Device device = ...;
var attributeNames = new[] {
    "TypeName", "Author", "Comment"
    };
foreach (var attributeName in attributeNames) {
    object attributeValue = ((IEngineeringObject)device).GetAttribute(attributeName);
    }

7.15.2 Get type identifier of devices and device items

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The attribute TypeIdentifier is used to identify a hardware object that is creatable via TIA 
Portal Openness API. The TypeIdentifier is a string consisting of several parts: 
<TypeIdentifierType>:<Identifier>
Possible values for TypeIdentifierType are:

● OrderNumber 

● GSD
● System

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
210 System Manual, 10/2018



OrderNumber
OrderNumber is the common TypeIdentifier for all modules present in the hardware 
catalog.

Format of type identifier Example  Specifics
<OrderNumber> OrderNumber:3RK1 200-0CE00-0AA2  
<OrderNumber>/<FirmwareVersion> OrderNumber:6ES7 510-1DJ01-0AB0/

V2.0
Firmware version is optional in case 
it does not exist or there is only one 
versionexisting in the system. Be 
care

<OrderNumber>//
<AdditionalTypeIdentifier>

OrderNumber:6AV2 
124-2DC01-0AX0//Landscape

The additional type identifier might 
be necessary in case that 
OrderNumber and 
FirmwareVersion do not lead to 
a unique match in the system.

Note

There are a few modules in the hardware catalog which use "wildcard" characters in the order 
number to represent a certain cluster of real hardware, e.g. the different lengths of S7-300 
racks. In this case the specific OrderNumber and the "wildcard"-OrderNumber can both be 
used to create an instance of the hardware object. However you cannot generically use 
wildcards at any position.

GSD
This is the identifier used for modules that are added to the TIA Portal via GSD or GSDML.

Format of type identifier Example  Specifics
<GsdName>/<GsdType> GSD:SIEM8139.GSD/DAP GsdName is the name of the GSD or GSDML in up‐

percase letters. 
GsdType is one of the following:
● D: Device
● R: Rack 
● DAP: HeadModule 
● M: Module 
● SM: Submodule 
GsdId is a identifier for the type.

<GsdName>/<GsdType>/<GsdId> GSD:SIEM8139.GSD/M/4

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 211



System
This is the identifier for objects, which cannot be determined using OrderNumber or GSD.

Format of type identifier Example  Specifics
<SystemTypeIdentifier> System:Device.S7300 SystemTypeIdentifier is the primary 

identifier of an object.
AdditionalTypeIdentifier might be 
necessary in case the 
SystemTypeIdentifier is not unique. 
The prefix for certain object types are: 
● Connection. 
● Subnet. 
● Device. 
● Rack. 

<SystemTypeIdentifier>/
<AdditionalTypeIdentifier>

GSD:SIEM8139.GSD/
M/4

Program code
Modify the following program code to get the type identifier for user manageable and separately 
creatable objects for GSD:

 
HardwareObject hardwareObject = ...; 
string typeIdentifier = hardwareObject.TypeIdentifier;

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
212 System Manual, 10/2018



Displaying type identifiers in TIA Portal
If you need to know a type identifier you inquire it in TIA Portal as follows:

1. Enable the setting "Enable display of the type identifier for devices and modules" in "Options 
> Settings > Hardware configuration > Display of the type identifier".

2. Open the editor "Devices & networks".

3. Select a device in the Catalog.
The type identifier is displayed in the viewlet "Information"

7.15.3 Creating a device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
A device can be created via two methods, within a project or a device group:

● Create a device via a device item type identifier like in TIA hardware catalog
Device CreateWithItem(DeviceItemTypeId, DeviceItemName, 
DeviceName)

● Create only the device 
Device Create(DeviceTypeId, DeviceName)

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 213



Name Type Description
DeviceItemTypeId string Type identifier of the device item
DeviceTypeId string Type identifier of the device
DeviceItemName string Name of the created device item
DeviceName string Name of the created device

See: Type identifier (Page 210)

Program code: Create device with type identifier
Modify the following code to create a device object via a type identifier:

 
DeviceComposition devices = ...;
Device device = devices.CreateWithItem("OrderNumber:6ES7 510-1DJ01-0AB0/V2.0", "PLC_1", 
"NewDevice");
Device gsdDevice = devices.CreateWithItem("GSD:SIEM8139.GSD/M/4 ", "GSD Module", 
"NewGsdDevice");

Program code: Create only the device
Modify the following code to create only the device object:

 
DeviceComposition devices = ...;
Device deviceOnly = devices.Create("System:Device.S7300", "S7300Device");
Device gsdDeviceOnly = devices.Create("GSD:SIEM8139.GSD/D", "GSD Device");

7.15.4 Enumerating devices

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

Application: Enumerating devices
The TIA Portal Openness API positions devices similar to the project navigation in TIA Portal. 
PNV.

● Devices located as direct children of project are aggregated using the "Devices" 
composition of the project

● Devices located in device folders are aggregated using the "Devices" composition of the 
folder. 

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
214 System Manual, 10/2018



Note

Observe the Hierarchy of hardware objects of the object model (Page 64). 

Use one of the following options to enumerate the devices of a project: 

● Enumerate all devices at root level

● Enumerate all devices in groups or sub-groups

● Enumerate all devices of a project that contains no device groups

● Enumerate all devices of the ungrouped device system groups

Examples of devices that can be enumerated: 

● Central station

● PB-Slave / PN-IO device

● HMI Device

Program code: Enumerating devices at root level
Modify the following program code to enumerate devices at root level:

 
private static void EnumerateDevicesInProject(Project project)
{
    DeviceComposition deviceComposition = project.Devices;
    foreach (Device device in deviceComposition) 
    {
    // add code here
    }
}

Modify the following program code to access an individual device. 

 
private static void AccessSingleDeviceByName(Project project)
{
    DeviceComposition deviceComposition = project.Devices;
    // The parameter specifies the name of the device
    Device device = deviceComposition.Find("MyDevice");
}

Program code: Enumerating devices in groups or sub-groups
To access devices in a group, you have to navigate to the group at first, after that to the device.

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 215



Modify the following program code:

 
//Enamerate devices in groups or sub-groups
private static void EnumerateDevicesInGroups(Project project)
{ 
    foreach (DeviceUserGroup deviceUserGroup in project.DeviceGroups) 
    { 
        EnumerateDeviceUserGroup(deviceUserGroup); 
    }
}
private static void EnumerateDeviceUserGroup(DeviceUserGroup deviceUserGroup)
{ 
    EnumerateDeviceObjects(deviceUserGroup.Devices); 
    foreach (deviceUserGroup subDeviceUserGroup in deviceUserGroup.Groups) 
    { 
        // recursion 
        EnumerateDeviceUserGroup(subDeviceUserGroup); 
    }
}
private static void EnumerateDeviceObjects(DeviceComposition deviceComposition)
{ 
    foreach (Device device in deviceComposition) 
    {
    // add code here 
    }
}

Programm Code: Finding specific devices
Modify the following program code to find a specific device by name:

 
//Find a specific device by name
Project project = ...  
Device plc1 = project.Devices.First(d => d.Name == "Mydevice");  
... // Work with the device

Modify the following program code to find a specific device via "Find" method:

 
//Find a specific device via "Find" method
Project project = ...  
Device plc1 = project.Devices.Find("MyDevice");  
... // Work with the device

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
216 System Manual, 10/2018



Program code: Enumerating devices of a project that contains no device groups
Modify the following program code:

 
//Enumerate all devices which are located directly under a project that contains no device 
groups
Project project = ...  
foreach (Device device in project.Devices)  
{   
    ... // Work with the devices  
}

Program code: Enumerating all devices located in a folder
Modify the following program code: 

 
//Enumerate all devices located in a folder
Project project = ...
DeviceUserGroup sortingGroup = project.DeviceGroups.Find ("Sorting");
Device plc1 = sortingGroup.Devices.First(d => d.Name == "MyStationName");
... // Work with the device

Program code: Enumerating devices of the ungrouped device system groups
To structure the projects, decentral devices have been put to the UngroupedDevices group. 
To access this group, navigate to the group at first, after that to the device.

Modify the following program code:

 
//Enumerate devices of the ungrouped device system group
Project project = ... 
DeviceSystemGroup group = project.UngroupedDevicesGroup; 
Device plc1 = group.Devices.First(d => d.Name == "MyStationName"); 
... // Work with the device

7.15.5 Accessing devices

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 217



Application
Every GSD or GSDML based IO device has attributes. Some of them are used to identify the 
specific type of the device.

Name Data type Writeable Access Description
Author string read/write dynamic  
Comment string read/write dynamic  
GsdName string read dynamic Name of the GSD or GSDML file.
GsdType string read dynamic Type of the hardware object. For devices 

the value is always "D".
GsdId string read dynamic Specific identifier for the hardware object. 

For devices always empty.
IsGsd bool read  TRUE in case of a GSD device or a 

GSDML device
Name string read/write   
TypeIdentifier string read   

Program code: Get identification attributes
Modify the following program code to get the attributes:

 
Device device = ...;
var attributeNames = new[] {
    "GsdName", "GsdType", "GsdId"
    ;
foreach (var attributeName in attributeNames) {
    object attributeValue = device.GetAttribute(attributeName);
    }

Program code: Attributes
Modify the following program code to get the attributes:

 
Device device = ...;
string nameValue = device.Name;
bool isGsdValue = device.IsGsd;

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
218 System Manual, 10/2018



Program code: Attributes with dynamic access
Modify the following program code to get the attributes:

 
Device device = ...;
var attributeNames = new[] {
    "GsdName", "GsdType", "GsdId"
    ;
foreach (var attributeName in attributeNames) {
    object attributeValue = device.GetAttribute(attributeName);
    }

Specifics of GSD devices
If a device is a GSD device, it provides additional functionality. To get the GsdDevice feature, 
the GetService method is used.

 
GsdDevice gsdDevice = ((IEngineeringServiceProvider)deviceItem).GetService<GsdDevice>();
if (gsdDevice != null) {
    ... // work with the GSD device
    };

Program code: Attributes of a GSD device
Modify the following program code to get the attributes:

 
Device device = ...;
GsdDevice gsdDevice = ...;
string gsdId = gsdDevice.GsdId;
string gsdName = gsdDevice.GsdName;
string gsdType = gsdDevice.GsdType;
bool isProfibus = gsdDevice.IsProfibus;
bool isProfinet = gsdDevice.IsProfinet;

7.15.6 Deleting a device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
System Manual, 10/2018 219



Program code
Modify the following program code to delete a device:

 
Project project = ...;
Device deviceToDelete = project.UngroupedDevices.Devices.Find("......");
 
// delete device
deviceToDelete.Delete();

TIA Portal Openness API
7.15 Functions on devices

Openness: Automating creation of projects
220 System Manual, 10/2018



7.16 Functions on device items

7.16.1 Mandatory attributes of device items

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Every device or device item provides certain mandatory attributes which can be read and/or 
written. These attributes are always the same as in the TIA Portal user interface. 

The following attributes are supported in TIA Portal Openness:

Attribute name Data type Writable Access Comment
Author string read/write dynamic  
Classification DeviceItemClassi‐

fication
read   

Comment string read/write dynamic sometimes only read access
CommentML MultilingualTextI‐

tem
read/write dynamic sometimes only read access

FirmwareVersion string read dynamic  
InterfaceOpera‐
tingMode

InterfaceOpera‐
tingModes

read/write dynamic For device items that provides the feature 
NetworkInterface

InterfaceType NetType readwrite dynamic For device items that provides the feature 
NetworkInterface

IsBuiltIn bool read  FALSE for objects creatable by the user
IsGsd bool read  TRUE, if the device description is installed via GSD/GSDML
IsPlugged bool read  TRUE for devices that are plugged
Label string read dynamic For device items that provides the feature NetworkPort 

or NetworkInterface.
If the interface or port has no label Label will be 
String.Empty.

LocationIdentifier string read/write dynamic  
Name string read/write  sometimes only read access
OrderNumber string read/write dynamic sometimes only read access
PlantDesignation string read/write dynamic  
PositionNumber int read   
TypeIdentifier string read   
TypeName string read dynamic The language independent type name. Optional for device 

items that are not manageable by the user as auto-created 
items or fixed sub-modules). 

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 221



Device item classification

Value Description
DeviceItemClassifications.None No classification.
DeviceItemClassifications.CPU The device item is a CPU
DeviceItemClassifications.HM The device item is a head module.

Program code: Mandatory attributes of a device item
Modify the following program code to get the mandatory attributes of a device item:

 
DeviceItem deviceItem = ...;
string nameValue = deviceItem.Name;
string typeIdentfierValue = deviceItem.TypeIdentifier;
int positionNumberValue = deviceItem.PositionNumber;
bool isBuiltInValue = deviceItem.IsBuiltIn;
bool isPluggedValue = deviceItem.IsPlugged;

Program code: Mandatory attributes with dynamic access
Modify the following program code to get the attributes item with dynamic access:

 
Device device = ...;
var attributeNames = new[] {
    "TypeName", "Author", "Comment", "OrderNumber", "FirmwareVersion", "PlantDesignation", 
"LocationIdentifier"
    };
foreach (var attributeName in attributeNames) {
    object attributeValue = ((IEngineeringObject)deviceItem).GetAttribute(attributeName);
    }
 
DeviceItem deviceItem = ...;
((IEngineeringObject)deviceItem).SetAttribute("Comment", "This is a comment.");
 

7.16.2 Creating and plugging a device item

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
222 System Manual, 10/2018



Application
The action PlugNew(string typeIdentifier, string name, int 
positionNumber) of HardwareObject is used to

● create a new device item and plug it into an existing hardware object 

● create a new sub device item, e.g. a submodule, and plug it into a device item

 If the action was succseful it returns the created device item object, otherwise a recoverable 
exception will be thrown.

By using the action CanPlugNew(string typeIdentifier, string name, int 
positionNumber) you can determine if creating and plugging is possible. If executing is not 
possible the action returns false.

If the method returns true, the action might still fail for the following unforeseen reasons. 

● a position number is already taken by another device item 

● the current device item cannot be plugged at the position although it is free 

● the container does not provide the position number 

● the name of the device item is already taken by an existing device item in the same container 

● the device item cannot be plugged into the container 

● the device is online

The following table shows the needed method parameters:

Name Type Description
typeIdentifier string type identifier of the created device item
name string name of created device item
positionNumber int position number of the created device 

item

Program code
Modify the following program code to plug a device item into an exisitng hardware object:  

 
HardwareObject hwObject = ...;
string typeIdentifier = ...;
string name = ...;
int positionNumber = ...;
if(hwObject.CanPlugNew(typeIdentifier, name, positionNumber))
{ 
    DeviceItem newPluggedDeviceItem = hwObject.PlugNew(typeIdentifier, name, 
positionNumber);
}

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 223



Accessing module information
The TIA Portal Openness user can access information about the pluggable modules using 
ModuleInformationProvider object. The user can access

● the container types in which a specified module has to be plugged (ex. Device and Rack) 
using FindContainerTypes method.

● the available versions for a certain partly specified module using FindModuleTypes method.

Program code: Accessing ModuleInformationProvider object

 
Project project = ...;
HardwareUtilityComposition extensions = project.HwUtilities;
var result = extensions.Find("ModuleInformationProvider") as ModuleInformationProvider;

Program code: Accessing container types using FindContinerTypes method
FindContinerTypes method returns the continer types of a given module. The module is 
speicified uisng typeIdentifier parameter. The resulting list contains the TypeIdentifiers of all 
container types of the requested type. Usually this includes a Device and a Rack and the 
containers are given in their order of the hierarchy in the project, beginning with the Device. 

Name of the parameter Type Description
typeIdentifier string type identifier of a device item.

NOTICE

This method works only for the modules visible in the network view. 

This method works only for modules, and not for sub-modules.

 
string typeIdentifier = ...;
string[] containerTypes = moduleInformationProvider.FindContainerTypes(typeIdentifier);

Program code: Accessing versions using FindModuleTypes method
FindModuleTypes method returns all possible versions of a hardware object using partial type 
identifier of the device item. This method returns a list of strings. Each string will be the 
complete TypeIdentifier of a possible match for the partial TypeIdentifier. 

A valid partial type identifier must contain only complete parts, where each complete part is 
separated by "/" in the type identifier. Wildcards or incomplete parts are not supported. Also 

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
224 System Manual, 10/2018



the following constraints with respect to the minimal number of specified parts must be 
observed: 

● OrderNumber: at least one part. Ex. OrderNumber:6ES7 317-2EK14-0AB0
● GSD: at least two parts. Ex. GSD:SI05816A.GSD/M
● System: at lease one part. Ex. System:Rack.ET200SP

Name of the parameter Type Description
partialTypeIdentifier string partial type identifer of a device 

item

 
string partialTypeIdentifier = ...;
string[] moduleTypes = moduleInformationProvider.FindModuleTypes(partialTypeIdentifier);

Program code: Accessing plug locations using GetPlugLocations method
GetPlugLocations method returns the information about slots such as plug location, position 
number (designation of a slot), and available slots for the hardware object.

The class PlugLocation has the following peroperites.

Name of the property Type Description
PositionNumber int The position number of the free 

slot
Label string The label of the free slot

● In case no "label" exists for a certain position number, the string representation of the 
position number is used. 

● PlugLocation objects are provided only for free slots. 

 
IHardwareObject hardwareObject = ...;
IList<PlugLocation> result = hardwareObject.GetPlugLocations();
foreach (PlugLocation item in result)
 {
    Console.WriteLine("{0} - {1}", item.PositionNumber, item.Label);
 }

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 225



7.16.3 Moving device items into another slot

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The action PlugMove(DeviceItem deviceItem, int positionNumber) of HardwareObject is used 
to move an existing device item and plug it to an existing hardware object. The method 
PlugMove inserts the device items where the module was unable to plug in the UI. In these 
cases, there PlugMove action completes with complie errors.

The action CanPlugMove(DeviceItem deviceItem, int positionNumber) is used to determine 
possiblity of movement. If the movement is not possible, CanPlugMove returns false. If the 
method returns true, the action might still fail for the following unforeseen reasons. 

● a position number is already taken by another device item 

● the current device item cannot be plugged at the position although it is free 

● the container does not provide the position number 

● the name of the device item is already taken by an existing device item in the same container 

● the device item cannot be plugged into the container 

● the device item cannot be plugged by the user 

● the device item cannot be removed by the user 

● the device is online

Program code
Modify the following program code:

 
HardwareObject hwObject = ...;
DeviceItem deviceItemToMove = ...;
int positionNumber = ...;
if(hwObject.CanPlugMove(deviceItemToMove, positionNumber)
{
    DeviceItem movedDeviceItem = hwObject.PlugMove(deviceItemToMove, positionNumber);
}

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
226 System Manual, 10/2018



7.16.4 Copying a device item

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74) 

● A project is open.
See Opening a project (Page 97)  

Application
Use the action PlugCopy(DeviceItem deviceItem, int positionNumber) of HardwareObject to 
copy a device within a project and to plug it into an existing hardware. In rare cases the method 
PlugCopy might work where it is not possible to plug a module in the UI. In this case compile 
errors will occur after the copy. When PlugCopy was successful it returns the copy of the device 
item object, otherwise a recoverable exception is thrown.

Possible reasons for a failed action:

● a position number is already used by another device item

● the current device item cannot be plugged at the position although it is free

● the container does not provide the position number

● the name of the device item is already used by an existing device item in the same container

● the device item cannot be plugged into the container

● the device item cannot be plugged in the UI

● ...

Use the action CanPlugCopy(DeviceItem deviceItem, int positionNumber) is it possible to 
determine if copying should be possible. When it is not possible to execute the copy action 
CanPlugCopy returns false. However if the method returns true the action might still fail for 
unforeseen reasons.

Name of the parameter Type Description
deviceItem DeviceItem Device item to copy
positionNumber int position number for the copy of 

the device item

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 227



Program code
Modify the following program code:

 
HardwareObject hwObject = ...;
DeviceItem deviceItemToCopy = ...;
int positionNumber = ...;
if(hwObject.CanPlugCopy(deviceItemToCopy, positionNumber))
{
   DeviceItem copiedDeviceItem = hwObject.PlugCopy(deviceItemToCopy, positionNumber);
}

7.16.5 Deleting a device item

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to delete a device item:

 
Project project = ...;
var device = project.UngroupedDevicesGroup.Devices.Find("......");
var deviceItem = deviceItem.DeviceItems.First();
 
// delete device item
deviceItem.Delete();

7.16.6 Enumerate device items 

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
228 System Manual, 10/2018



Application
To get to a device item use the HardwareObject. The items of a hardware objects are, what 
the user of the TIA Portal sees as being plugged into the hardware object:

● a rack which resides in a device

● a module which resides in a rack

● a sub module which resides in a module

● a sub module which resides in a sub module

Note

You can find more detailed information on this topic in the section Hierarchy of hardware 
objects of the object model (Page 64).

Program code: Enumerating device items of a device
Modify the following program code to enumerate device items of a hardware object:

 
private static void EnumerateDeviceItems(HardwareObject hardwareObject)
{
    foreach (DeviceItem deviceItem in hardwareObject.Items)
    {
        // add code here
    }
}

Program code: Enumerating with composition hierarchy
Modify the following program code if you want to enumerate the device items of a device by 
means of the composition hierarchy:

 
//Enumerates devices using an composition
private static void EnumerateDeviceItems(Device device)
{
    DeviceItemComposition deviceItemComposition = device.DeviceItems;
    foreach (DeviceItem deviceItem in deviceItemComposition)
    {
        // add code here
    }
}

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 229



Program code: Enumerating devices items using an association
Modify the following program code to enumerate the device items using an association:

 
//Enumerates devices using an association
private static void EnumerateDeviceItemsWithAssociation(Device device)
{
    DeviceItemAssociation deviceItemAssociation = device.Items;
    foreach (DeviceItem deviceItem in deviceItemAssociation)
    {
        // add code here
    }
}

7.16.7 Accessing device items

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application: Accessing device items
To access objects of the type "DeviceItem" use the following attributes:

● Name (string): the name of the device item  

● Container (HardwareObject): the container into which the device item is plugged

Name Data type Writeable Access Description
Author string read/write dynamic  
Comment string read/write dynamic  
FirmwareVersion string read dynamic Only for head modules
GsdName string read dynamic Name of the GSD file.
GsdType string read dynamic Type of the hardware object. For devices 

the value is always "D".
GsdId string read dynamic Specific identifier for the hardware object. 

For devices always empty.
IsBuiltIn bool read   
IsGsd bool read  TRUE in case of a GSD device or a 

GSDML device
IsPlugged bool read   
IsProfibus bool read   
IsProfinet bool read   
Name string read/write   

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
230 System Manual, 10/2018



Name Data type Writeable Access Description
OrderNumber string read dynamic Only for head modules
PositionNumber bool read   
TypeIdentifier string read   

Program code: Accessing a device item
Modify the following program code to access a device item: 

 
public static DeviceItem AccessDeviceItemFromDevice(Device device)  
{  
    DeviceItem deviceItem = device.DeviceItems[0];   
    return deviceItem;  
}

Program code: Accessing a device item of a device item
Modify the following program code to access a device item of a device item: 

 
public static DeviceItem AccessDeviceItemFromDeviceItem(DeviceItem deviceItem)  
{   
    DeviceItem subDeviceItem = deviceItem.DeviceItems[0];  
    return subDeviceItem;  
}

Program code: Navigating to the container of a device item
Modify the following program code to navigate back to the container of a device item via the 
"Container" attribute of DeviceItem:

 
DeviceItem deviceItem = ...; 
HardwareObject container = deviceItem.Container;

Program code: Get identification attributes
Modify the following program code to get the attributes:

 
Device device = ...;
var attributeNames = new[] {
    "GsdName", "GsdType", "GsdId" };
foreach (var attributeName in attributeNames) {
    object attributeValue = ((IEngineeringObject)deviceItem).GetAttribute(attributeName);
    }

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 231



Program code: Get attributes
Modify the following program code to get the attributes:

 
DeviceItem deviceItem = ...;
GsdDeviceItem gsdDeviceItem = 
((IEngineeringServiceProvider)deviceItem).GetService<GsdDeviceItem>();
 
string gsdName = gsdDeviceItem.GsdName;
string gsdType = gsdDeviceItem.GsdType;
string gsdId = gsdDeviceItem.GsdId;
bool isProfinet = gsdDeviceItem.IsProfinet;
bool isProfibus = gsdDeviceItem.IsProfibus;;

Program code: Get attributes with dynamic access
Modify the following program code to get the attributes:

 
DeviceItem deviceItem = ...;
GsdDeviceItem gsdDeviceItem = 
((IEngineeringServiceProvider)deviceItem).GetService<GsdDeviceItem>();
 
var attributeNames = new[] {
    "TypeName", "Author", "Comment", ...
    ;
foreach (var attributeName in attributeNames) {
    object attributeValue = 
((IEngineeringObject)gsdDeviceItem).GetAttribute(attributeName);
    }

Program code: Set attributes
Modify the following program code to set the attributes:

 
DeviceItem deviceItem = ...;
((IEngineeringObject)deviceItem).SetAttribute("Comment", "This is a comment.");

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
232 System Manual, 10/2018



Program code: Get prm data of a head module
Modify the following program code to get the prm data:

 
DeviceItem deviceItem = ...;
GsdDeviceItem gsdDeviceItem = 
((IEngineeringServiceProvider)deviceItem).GetService<GsdDeviceItem>();
 
int dsNumber = 0;       // For Profibus GSDs, dataset number zero must be used!
int byteOffset = 0;
int lengthInBytes = 5;
 
// read complete data set:
byte[] prmDataComplete = gsdDeviceItem.GetPrmData(dsNumber, byteOffset, lengthInBytes); 
 
// read partial data set (only second byte):
byteOffset = 1;
lengthInBytes = 1;
byte[] prmDataPartial = gsdDeviceItem.GetPrmData(dsNumber, byteOffset, lengthInBytes); 

Program code: Set prm data of a head module
Modify the following program code to get the prm data:

 
DeviceItem deviceItem = ...;
GsdDeviceItem gsdDeviceItem = 
((IEngineeringServiceProvider)deviceItem).GetService<GsdDeviceItem>();
 
// The parameters byteOffset and the length of the byte array prmData define the range 
within the 
// dataset which is written to.
// For Profibus GSDs, dataset number zero must be used!
 
// Change the highlighted bytes 2-4 from 0x0 to 0x1
// to write only the first two bytes: byte[] prmData = {0x05, 0x21};
 
int dsNumber = 0;
int byteOffset = 0;
byte[] prmData = {0x05, 0x21, 0x01, 0x01, 0x01};  
 
gsdDeviceItem.SetPrmData(dsNumber, byteOffset, prmData);

See also
Hierarchy of hardware objects of the object model (Page 64)

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 233



7.16.8 Accessing device item as interface

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
If a device item is an interface, it provides additional functionalities over a simple device item. 
Using this interface, the user can access the nodes and operation mode of the interface. Due 
to this functionality, the device item can used as IoDevice (Slave) or IoController (Master) by 
accessing the NetworkInterface feature (a specific Service of the device item).

The properities of the interface is accessed using enum InterfaceOperatingModes.

Value Description
InterfaceOperatingModes.None Default
InterfaceOperatingModes.IoDevice Interface operation mode "IoDevice" (Slave).
InterfaceOperatingModes.IoController Interface operation mode "IoController" (Master).
InterfaceOperatingModes.IoDevice
or
InterfaceOperatingModes.IoController

Interface operation made both of the above.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
234 System Manual, 10/2018



Program code: Accessing the network interface feature
Modify the following program code to get the network interface feature

 
NetworkInterface itf = 
((IEngineeringServiceProvider)deviceItem).GetService<NetworkInterface>(); 
if (itf != null)  
{
 ... // work with the interface 
}
 
//Accessing nodes and operating mode
NodeComposition nodes = itf.Nodes;
InterfaceOperationModes mode = itf.InterfaceOperatingMode;
 
//Accessing the type of interface
NetType itfType = itf.InterfaceType;
 
//Modififying the operating mode and interface type
itf.InterfaceOperatingMode = InterfaceOperatingModes.IoDevice;
itf.InterfaceType = NetType.Profibus
 
//Accessing the ports linked to an interface.
NetworkPortAssociation nodes = itf.Ports;

7.16.9 Accessing attributes of an I/O device interface

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● For writing access, the PLC is offline.

Application
You can use the TIA Portal Openness API interface to get or set attributes for IRT ans 
isochronous mode on the I/O device interface.

Access to the interface of an I/O controller 
The following attributes can be accessed to the interface of an I/O controller. The controller 
has to be the sync master:

Attribute name Data type  Writeable  Access Description 
PnSendClock Int64 r/w Dynamic attribute Send clock in nanoseconds

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 235



Access to the interface of an I/O system
The following attributes can be accessed to the interface of an I/O system. The Ti/To values 
can be used by all modules and sub modules which belong to the I/O system.

Attribute name Data type  Writeable  Access 
IsochronousTiToAutoCalculation BOOL r/w Dynamic attribute 
IsochronousTi DOUBLE r/w Dynamic attribute
IsochronousTo DOUBLE r/w Dynamic attribute

Access to the interface of an I/O device
The following attributes can be accessed to the interface of an I/O device. The Ti/To values 
can be used by all modules and submodules which belong to the I/O sytem.

Attribute name Data type  Writeable  Access 
IsochronousMode BOOL r/w Dynamic attribute 
IsochronousTiToCalculationMode IsochronousTiToCal‐

culationMode
r/w Dynamic attribute

IsochronousTi DOUBLE r/w Dynamic attribute
ochronousTo DOUBLE r/w Dynamic attribute

The following ENUM values are provided for the attribute 
IsochronousTiToCalculationMode:

Value Description 
IsochronousTiToCalculationMode.None  
IsochronousTiToCalculationMode.FromOB Ti/To values of the OB (configured at the IoSystem) are used. 
IsochronousTiToCalculationMode.FromSubnet This value is not used by PROFINET interfaces. 
IsochronousTiToCalculationMode.AutomaticMini
mum 

Ti/To values are calculated automatically for the IO Device. 

IsochronousTiToCalculationMode.Manual The user can enter Ti/To values for this IO Device manually. 

Program code: Get or set attributes of an I/O device interface
Modify the following program code to access the send clock value:

 
DeviceItem pnInterface = ...;
// read attribute
long attributeValue = (long)pnInterface.GetAttribute("PnSendClock");
// write attribute
long sendClock = 2000000;
pnInterface.SetAttribute("PnSendClock", sendClock);

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
236 System Manual, 10/2018



Modify the following program code to access the Ti/To values of OB:

 
IoSystem ioSystem = ...;
bool titoAutoCalculation = (bool)ioSystem.GetAttribute("IsochronousTiToAutoCalculation");
ioSystem.SetAttribute("IsochronousTiToAutoCalculation", true);

Modify the following program code to access the isochronous setting of an I/O device interface:

 
DeviceItem pnInterface = ...;
bool isochronousMode = (bool)pnInterface.GetAttribute("IsochronousMode");
pnInterface.SetAttribute("IsochronousMode", true);

7.16.10 Accessing attributes of IoController

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● For writing access, the PLC is offline.

Application
You can use the TIA Portal Openness API interface to get or set attributes for IoController. 
The following attributes are only available at PROFINET IoController (located below a Profinet 
interface). If the user can modify an attribute in UI, then the user can set the corresponding 
attribute through TIA Portal Openness.

Attribute name Data type Type Access Description
SyncRole SyncRole Read-write Dynamic attribute  
PnDeviceNumber int Read-only Dynamic attribute In TIA Portal UI, 

this property is lo‐
cated at the ether‐
net node (PROFI‐
NET section)

The Synchronication role property is available in PROFINET interface of the TIA Portal UI. The 
Enum SyncRole has the following values.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 237



Enum value Numerical value
SyncRole.NotSynchronized 0
SyncRole.SyncMaster 1
SyncRole.SyncSlave 2
SyncRole.RedundantSyncMaster 4

Program code: Setting attributes of IoController

 
IoController ioController= ...;
SyncRole syncRole = (SyncRole)((IEngineeringObject)ioController).GetAttribute("SyncRole");
((IEngineeringObject)ioController).SetAttribute("SyncRole", SyncRole.SyncMaster);

7.16.11 Accessing attributes of IoConnector

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● For writing access, the PLC is offline.

Application
You can use the TIA Portal Openness API interface to get or set attributes for IoConnector. 
The following attributes are only available at PROFINET IoController (located below a Profinet 
interface). If the user can modify an attribute in UI, then the user can set the corresponding 
attribute through TIA Portal Oopenness.

There are four types of attributes such as update time attributes, watchdog time attributues, 
synchronization attributes and , device number attributes.

Update time attributes
The update time attributes are given below.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
238 System Manual, 10/2018



Attribute name Data type Type Access Description
PnUpdateTimeAuto‐
Calculation

Boolean Read-write Dynamic attribute If this attribute is true, 
then the update time is 
calculated automatical‐
ly.

PnUpdateTime Int64 Read-write Dynamic attribute Update time is meas‐
ured in nano seconds.

PnUpdateTimeAdap‐
tion

Boolean Read-write Dynamic attribute  

Watchdog time attributes
The watchdog time attributes are given below.

Attribute name Data type Type Access Description
PnWatchdogFactor Int32 Read-write Dynamic attribute  
PnWatchdogTime Int64 Read-only Dynamic attribute Watchdog time is 

measured in nano sec‐
onds.

Synchronization attributes
The synchronization attributes are given below.

Attribute name Data type Type Access Description
RtClass RtClass Read-write Dynamic attribute  
SyncRole SyncRole Read-only Dynamic attribute  

The Enum RtClass has following values.

Enum value Numerical value
RtClass.None 0
RtClass.RT 1
RtClass.IRT 2

The Enum SyncRole has following values.

Enum value Numerical value
SyncRole.NotSynchronized 0
SyncRole.SyncMaster 1
SyncRole.SyncSlave 2
SyncRole.RedundantSyncMaster 4

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 239



Device number attributes
The device number attributes are given below.

Attribute name Data type Type Access Description
PnDeviceNumber int Read-Write Dynamic attribute Indicates the device 

number.

Program code: Getting and setting attributes of IoConnector

 
IoConnector connector = ...
 
var attributeNames = new[] {    
"PnUpdateTimeAutoCalculation", "PnUpdateTime", "PnUpdateTimeAdaption", "PnWatchdogFactor", 
"PnWatchdogTime", "RtClass", "SyncRole"
};
 
foreach (var attributeName in attributeNames)
 {    
      object attributeValue = ((IEngineeringObject)connector ).GetAttribute(attributeName);
 }
 
connector.SetAttribute("PnUpdateTimeAutoCalculation", true);

See also
Opening a project (Page 97)

7.16.12 Accessing address controller

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
If a device item is an address controller, it provides additional functionality. To access the 
registered addresses of the address controller the role AddressController is used.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
240 System Manual, 10/2018



Program code: Get the address controller
Modify the following program code to get the address controller role:

 
AddressController addressController = 
((IEngineeringServiceProvider)deviceItem).GetService<AddressController>(); 
    if (addressController != null) 
        { 
            ... // work with the address controller
        }

Attributes of an address controller
The attributes of an address controller are:

● RegisteredAddresses

Modify the following program code to get the attributes of an address controller:

 
AddressController addressController = ...; 
foreach (Address registeredAddress in addressController.RegisteredAddresses)
        {
            ...
        }

7.16.13 Accessing addresses

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

 Application
Address objects are aquired via the composition link Addresses of a device item. The attribute 
Addresses returns a collection of type AddressComposition which can be enumerated.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 241



Program code: Get an address of a device item
To get the address of a device item modify the following program code:

 
AddressComposition addresses = deviceItem.Addresses; 
    foreach(Address address in addresses)
        { 
            // work with the address
        }

Program code: Get an address of an io controller
To get the address of an io controller modify the following program code:

 
AddressComposition addresses = ioController.Addresses; 
    foreach(Address address in addresses)
        { 
            // work with the address
        }

Attributes
An address supports the following attributes:

Attribute name Data type Writeable Access Comment
AddressControl‐
lers

AddressControllerAsso‐
ciation

read   

Context enum: AddressContext read dynamic only for diagnosis addresses an for special de‐
vice items

IoType enum: AddressIoType read   
StartAdress Int32 read/write   
Length Int32 read   

Value Description
AddressIoType.Diagnosis The type of the address io is Diagnosis.
AddressIoType.Input The type of the address io is Input.
AddressIoType.Output The type of the address io is Output.
AddressIoType.Substitute The type of the address io is Substitute.
AddressIoType.None The type of the address io is mot specified.

Value Description
AddressContext.None The address context is not applicable.
AddressContext.Device A device address context.
AddressContext.Head A head address context.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
242 System Manual, 10/2018



Program code: Read attributes
Modify the following program code to get the attributes:

 
AddressControllerAssociation addressControllers = address.AddressControllers;
Int32 startAddress = address.StartAddress;
AddressIoType addressType = address.IoType;
Int32 adressLength = address.Length;

Program code: Write attributes
Modify the following program code to write the attributes:

 
Address addressControllers = ...;
 
address.StartAddress = intValueStartAddress;

Program code: Attributes with dynamic access
Modify the following program code to get the attributes:

 
Address address= ...;
 
object attributeValue = ((IEngineeringObject)address).GetAttribute("Context");

7.16.14 Accessing hardware identifiers

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
Hardware identifier objects are acquired from the following objects: 

● Device

● DeviceItem

● IoSystem

The hardware identifier is represented by the class HwIdentifier and is accessed via the 
attribute HwIdentifiers.

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 243



Program code: Get the hardware identifier
To make HwIdentifier available modify the following program code:

var hwObject = ... 
    foreach(HwIdentifier hardwareIdentifier in hwObject.HwIdentifiers)
       { 
          // Work with the HwIdentifer
       }

Attributes of a hardware identifier

 
HwIdentifierControllerAssociation controllers = hwIdentifier.HwIdentifierControllers;
Int64 Identifier = hwIdentifier.Identifier;

7.16.15 Accessing hardware identifier controller

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
If a device item is an hardware identifier controller, it is possible to access the registered 
hardware identifiers. To access these HwIdentifierController, a specific service of the device 
item, is used.

Program code: Get the hardware identifier controller
To get the HwIdentifierController modify the following program code:

 
HwIdentifierController hwIdentifierController = 
((IEngineeringServiceProvider)deviceItem).GetService<HwIdentifierController>(); 
    if (hwIdentifierController != null) 
        { 
            ... // work with the hardware identifier controller
        }

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
244 System Manual, 10/2018



Program code: Attributes of a hardware identifier controller
The attributes of an address controller are:

● RegisteredHwIdentifiers: The hardware identifier controllers where the hardware 
identifier is registered.

Modify the following program code to get the attributes of an address controller:

 
HwIdentifierController hwIdentifierController = ...; 
HwIdentifierAssociation controllers = hwIdentifierController.RegisteredHwIdentifiers;

7.16.16 Accessing channels of device items

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
A channel is represented by the Channel class. Channels are aquired from a device item via 
the attribute Channels of the DeviceItem class. The attribute Channels returns an 
implementation of ChannelComposition which can be enumerated. If the device items has no 
channels, the attribute Channels returns an empty collection.

Mandatory attributes
A channel supports the following mandatory attributes:

Attribute name Data type Writeable Access Comment
IoType ChannelIoType read   
Type ChannelType read   
Number Int32 read   
ChannelAddress Int32 read dynamic Address of the channel in bits
ChannelWidth UInt32 read dynamic Width of the channel in bits

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
System Manual, 10/2018 245



Program code: Get channels of device item
Modify the following program code to get the channels of a device item:

 
ChannelComposition channels = deviceItem.Channels
foreach(Channel channel in channels)
    {
        // work with the channel
    }

Program code: Mandatory attributes of a channel
Modify the following program code to get the channels of a device item:

 
Channel channel = ...;
int channelNumber = channel.Number;
ChannelType type = channel.Type;
ChannelIoType ioType = channel.IoType;

Program code: Get values of attributes with dynamic access
Modify the following program code to get the values of dynamic attributes:

 
Channel channel = ...;
Int32 channelAddress = (Int32)((IEngineeringObject)channel).GetAttribute("ChannelAddress");
UInt32 channelWidth = (UInt32)((IEngineeringObject)channel).GetAttribute("ChannelWidth");

Program code: Set value of a dynamic attribute
Modify the following program code to set the value of a writeable dynamic attribute:

 
Channel channel = ...;
((IEngineeringObject)channel).SetAttribute("AnAttribute", 1234);

TIA Portal Openness API
7.16 Functions on device items

Openness: Automating creation of projects
246 System Manual, 10/2018



7.17 Functions for accessing the data of an HMI device

7.17.1 Screens

7.17.1.1 Creating user-defined screen folders

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to create a user-defined screen folder:

 
//Creates a screen folder
private static void CreateScreenFolder(HmiTarget hmitarget)
{
    ScreenUserFolder myCreatedFolder = 
hmitarget.ScreenFolder.Folders.Create("myScreenFolder");
}

7.17.1.2 Deleting a screen from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application

Note

You cannot delete a permanent area. A permanent area is a system screen that is always 
present. 

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 247



Program code
Modify the following program code to delete a screen from a specific folder:

 
public static void DeleteScreenFromFolder(HmiTarget hmiTarget) 
{ 
    ScreenUserFolder screenUserFolder = 
hmiTarget.ScreenFolder.Folders.Find("myScreenFolder"); 
    ScreenComposition screens = screenUserFolder.Screens; 
    Screen screen = screens.Find("myScreenName"); 
    if (screen != null)     
    { 
        screen.Delete(); 
    } 
}

7.17.1.3 Deleting a screen template from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● The project contains an HMI device.

Program code
Modify the following program code to delete a screen template from a specific folder:

 
private static void DeleteScreenTemplateFromFolder(HmiTarget hmiTarget) 
{ 
    string templateName = "MyScreenTemplate"; 
    ScreenTemplateUserFolder folder = 
hmiTarget.ScreenTemplateFolder.Folders.Find("myScreenTemplateFolder"); 
    ScreenTemplateComposition templates = folder.ScreenTemplates; 
    ScreenTemplate template = templates.Find(templateName); 
    if (template != null) 
    { 
        template.Delete(); 
    } 
}

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
248 System Manual, 10/2018



7.17.1.4 Deleting all screens from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application

Note

You cannot delete a permanent area. A permanent area is a system screen that is always 
present. 

Program code
Modify the following program code to delete all screens from a specific folder:

 
private static void DeleteAllScreensFromFolder(HmiTarget hmitarget)
//Deletes all screens from a user folder or a system folder
{
    ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("myScreenFolder");
    //or ScreenSystemFolder folder = hmitarget.ScreenFolder;
    ScreenComposition screens = folder.Screens;
    List<Screen> list = new List<Screen>();
    foreach(Screen screen in screens)
    {
        list.Add(screen);
    }
    foreach (Screen screen in list)
    {
        screen.Delete();
    }
}

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 249



7.17.2 Cycles

7.17.2.1 Deleting a cycle

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● The project contains an HMI device.

Application
You cannot delete standard cycles.

You can identify whether cycles have actually been deleted based on the composition in the 
object model (composition count) of the respective cycle. It is no longer possible to access 
these cycles. 

Program code
Modify the following program code to delete a cycle from an HMI device:

 
public static void DeleteCycle(HmiTarget hmiTarget) 
{ 
    CycleComposition cycles = hmiTarget.Cycles; 
    Cycle cycle = cycles.Find("myCycle"); 
    cycle.Delete(); 
}

7.17.3 Text lists

7.17.3.1 Deleting a text list

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● The project contains an HMI device.

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
250 System Manual, 10/2018



Program code
Modify the following program code to delete a selected text list and all associated list entries 
from an HMI device:

 
public static void DeleteTextList(HmiTarget hmiTarget) 
{ 
    TextListComposition textLists = hmiTarget.TextLists; 
    TextList textList = textLists.Find("myTextList"); 
    textList.Delete(); 
}

7.17.4 Graphic lists

7.17.4.1 Deleting a graphic list

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

● The project contains an HMI device.

Program code
Modify the following program code to delete a selected graphic list and all associated list entries 
from an HMI device:

 
private static void DeleteGraphicList(HmiTarget hmiTarget) 
{ 
    GraphicListComposition graphicLists = hmiTarget.GraphicLists; 
    GraphicList graphicList = graphicLists.Find("myGraphicList"); 
    graphicList.Delete(); 
}

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 251



7.17.5 Connections

7.17.5.1 Deleting a connection

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● The project contains an HMI device.

Program code
Modify the following program code to delete a selected communication connection from an 
HMI device:

 
private static void DeleteConnection(HmiTarget hmiTarget) 
{ 
    ConnectionComposition connections = hmiTarget.Connections; 
    Connection connection = connections.Find("HMI_connection_1"); 
    connection.Delete(); 
}

7.17.6 Tag table

7.17.6.1 Creating user-defined folders for HMI tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
252 System Manual, 10/2018



Program code
Modify the following program code to create a user-defined folder for HMI tags:

 
private static void CreateUserfolderForHMITags(HmiTarget hmitarget)
// Creates an HMI tag user folder
{
    TagSystemFolder folder = hmitarget.TagFolder; 
    TagUserFolder myCreatedFolder = folder.Folders.Create("MySubFolder");
}

7.17.6.2 Enumerating tags of an HMI tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to enumerate all tags of an HMI tag table:

 
private static void EnumerateTagsInTagtable(HmiTarget hmitarget)
// //Enumerates all tags of a tag table
{
    TagTable table = hmitarget.TagFolder.TagTables.Find("MyTagtable");
    // Alternatively, you can access the default tag table: 
    // TagTable defaulttable = hmitarget.TagFolder.DefaultTagTable;
    
    TagComposition tagComposition = table.Tags;
    foreach (Tag tag in tagComposition)
    {
        // Add your code here
    }
}

7.17.6.3 Deleting an individual tag from an HMI tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 253



Program code
Modify the following program code to delete a specific tag from an HMI tag table:

 
private static void DeleteATag(HmiTarget hmiTarget) 
{ 
    string tagName = "MyTag"; 
    TagTable defaultTagTable = hmiTarget.TagFolder.DefaultTagTable; 
    TagComposition tags = defaultTagTable.Tags; 
    Tag tag = tags.Find(tagName); 
    tag.Delete(); 
}

7.17.6.4 Deleting a tag table from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● The project contains an HMI device.

Application
You cannot delete the default tag table

Program code
Modify the following program code:

 
// Delete a tag table from a specific folder
private static void DeleteTagTable(HmiTarget hmiTarget) 
{ 
    string tableName = "myTagTable"; 
    TagSystemFolder tagSystemFolder = hmiTarget.TagFolder; 
    TagTableComposition tagTables = tagSystemFolder.TagTables; 
    TagTable tagTable = tagTables.Find(tableName); 
    tagTable.Delete(); 
}

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
254 System Manual, 10/2018



7.17.7 VB scripts

7.17.7.1 Creating user-defined script folders

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to create a user-defined script subfolder below a system 
folder or another user-defined folder:

 
private static void CreateFolderInScriptfolder(HmiTarget hmitarget)
//Creates a script user subfolderVBScriptSystemFolder 
{
    VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder; 
    VBScriptUserFolderComposition vbScriptFolders = vbScriptFolder.Folders; 
    VBScriptUserFolder vbScriptSubFolder = vbScriptFolder.Folders.Create("mySubfolder");
}

7.17.7.2 Deleting a VB script from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● The project contains an HMI device.

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 255



Program code
Modify the following program code to delete a VB script from a specific folder:

 
//Deletes a vbscript from a script folderVBScriptSystemFolder 
private static void DeleteVBScriptFromScriptFolder(HmiTarget hmitarget)
{
    VBScriptUserFolder vbscriptfolder = 
hmitarget.VBScriptFolder.Folders.Find("MyScriptFolder");
    var vbScripts = vbscriptfolder.VBScripts;
    if (null != vbScripts)
    {
        var vbScript = vbScripts.Find("MyScript");
        vbScript.Delete();
    }
}

7.17.8 Deleting a user-defined folder of an HMI device 

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to delete an user-defined folder of an HMI device:

 
HmiTarget hmiTarget = ...; 
ScreenUserFolder screenUserGroup = hmiTarget.ScreenFolder.Folders.Find("MyUserFolder"); 
screenUserGroup.Delete();

TIA Portal Openness API
7.17 Functions for accessing the data of an HMI device

Openness: Automating creation of projects
256 System Manual, 10/2018



7.18 Functions for accessing the data of a PLC device

7.18.1 Determining the status of a PLC

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
You can determine the state of a PLC or all PLCs in a project. 

TIA Portal Openness distinguishes between the following states:

● Offline

● PLC is connected ("Connecting")

● Online

● PLC is disconnected ("Disconnecting")

● Incompatible

● Not accessible

● Protected

Program code
Modify the following program code to determine the state of a PLC:

 
public static OnlineState GetOnlineState(DeviceItem deviceItem) 
{ 
    OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
    return onlineProvider.State; 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 257



Modify the following program code to determine the state of all PLCs in a project:

 
public static void DetermineOnlineStateOfAllProjectDevices(Project project) 
{ 
    foreach (Device device in project.Devices) 
    { 
        foreach (DeviceItem deviceItem in device.DeviceItems) 
        { 
            OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>(); 
            if (onlineProvider != null) 
            { 
                OnlineState state = onlineProvider.State; 
            } 
        } 
    } 
}

7.18.2 Accessing parameters of an online connection

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can use the TIA Portal Openness API interface to determine or set parameters for an 
online connection:

● Enumerate the available connection modes to a PLC

● Enumerate the available interfaces to a PLC

● Enumerate the allocated slots

● Enumerate the available addresses of the subnets and gateways

● Set the connection parameters.  

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
258 System Manual, 10/2018



Program code: Determining connection parameters
Modify the following program code to enumerate the available connection modes, PC 
interfaces and slots:

 
public static void EnumerateConnectionModesOfPLC(DeviceItem deviceItem) 
{ 
    OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>(); 
    if (onlineProvider == null) 
    { 
       return; // Only cpu device items can provide OnlineProvider service 
    } 
    // Accessing connection configuration object 
    ConnectionConfiguration configuration = onlineProvider.Configuration; 
    // Now access connection configuration members 
    foreach (ConfigurationMode mode in configuration.Modes) 
    { 
        Console.WriteLine("Mode name:{0}", mode.Name); 
        foreach (ConfigurationPcInterface pcInterface in mode.PcInterfaces) 
        { 
            Console.WriteLine("PcInterface name:{0}", pcInterface.Name); 
            Console.WriteLine("PcInterface number:{0}", pcInterface.Number); 
            foreach (ConfigurationTargetInterface targetInterface in 
pcInterface.TargetInterfaces) 
            { 
                Console.WriteLine("TargetInterface:{0}", targetInterface.Name); 
            } 
        } 
    } 
}

You can also access a connection mode and a PC interface by name:

 
public static ConfigurationTargetInterface 
GetTargetInterfaceForOnlineConnection(OnlineProvider onlineProvider) 
{ 
    ConnectionConfiguration configuration = onlineProvider.Configuration; 
    ConfigurationMode mode = configuration.Modes.Find("PN/IE"); 
    ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1); 
    ConfigurationTargetInterface slot = pcInterface.TargetInterfaces.Find("2 X3"); 
    return slot; 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 259



Modify the following program code to enumerate the addresses of the subnets and gateways 
available on a PC interface:

 
public static void EnumeratingPCInterfaceSubnetsAndGateways(ConfigurationPcInterface 
pcInterface) 
{ 
    foreach (ConfigurationSubnet subnet in pcInterface.Subnets) 
    { 
        Console.WriteLine("Subnet name:{0}", subnet.Name); 
        foreach (ConfigurationGateway gateway in subnet.Gateways) 
        { 
            //Get the name of the gateway: 
            Console.WriteLine("Gateway name:{0}", gateway.Name); 
            //Get the IP address of each gateway: 
            foreach (ConfigurationAddress gatewayAddress in gateway.Addresses) 
            { 
                Console.WriteLine("Gateway Address:{0}", gatewayAddress.Name); 
            } 
        } 
    } 
}

You can also access subnets and gateways by their name or IP address:

 
public static void AccessSubnetAndGatewayOfPCInterface(ConfigurationPcInterface 
pcInterface) 
{ 
    ConfigurationSubnet subnet = pcInterface.Subnets.Find("PN/IE_1"); 
    ConfigurationAddress subnetAddress = subnet.Addresses.Find("192.168.0.1"); 
    ConfigurationGateway gateway = subnet.Gateways.Find("Gateway 1"); 
    ConfigurationAddress gatewayAddress = gateway.Addresses.Find("192.168.0.2"); 
}

Program code: Setting connection parameters

Note

All the connection parameters previously set are overwritten when you set the connection 
parameters. If you have already set the connection parameters directly in the TIA Portal, it is 
not necessary to call ApplyConfiguration. If there is already an online connection to a 
PLC while ApplyConfiguration is called, an exception is thrown. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
260 System Manual, 10/2018



Modify the following program code to set slot parameters:

 
public static void SetConnectionWithSlot(OnlineProvider onlineProvider) 
{ 
    ConnectionConfiguration configuration = onlineProvider.Configuration; 
    ConfigurationMode mode = configuration.Modes.Find(@"PN/IE"); 
    ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1); 
    // or network pc interface that is connected to plc 
    ConfigurationTargetInterface slot = pcInterface.TargetInterfaces.Find("2 X3"); 
    configuration.ApplyConfiguration(slot); 
    // After applying configuration, you can go online 
    onlineProvider.GoOnline(); 
}

Modify the following program code to set gateway address parameters:

 
public static void SetConnectionWithGatewayAddress(OnlineProvider onlineProvider, string 
subnetName, string gatewayAddressName) 
{ 
    ConnectionConfiguration configuration = onlineProvider.Configuration; 
    ConfigurationMode mode = configuration.Modes.Find(@"PN/IE"); 
    ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1); 
    // or network pc interface that is connected to plc 
    ConfigurationSubnet subnet = pcInterface.Subnets.Find(subnetName); 
    ConfigurationAddress gatewayAddress = subnet.Addresses.Find(gatewayAddressName); 
    configuration.ApplyConfiguration(gatewayAddress); 
    // After applying configuration, you can go online 
    onlineProvider.GoOnline(); 
}

Modify the following program code to set  subnet address parameters:

 
public static void SetConnectionWithSubnetAddress(OnlineProvider onlineProvider, string 
subnetName) 
{ 
    ConnectionConfiguration configuration = onlineProvider.Configuration; 
    ConfigurationMode mode = configuration.Modes.Find(@"PN/IE"); 
    ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1); 
    // or network pc interface that is connected to plc 
    ConfigurationSubnet subnet = pcInterface.Subnets.Find(subnetName);
    ConfigurationAddressComposition addresses = subnet.Addresses; 
    configuration.ApplyConfiguration(addresses[0]); 
    // After applying configuration, you can go online 
    onlineProvider.GoOnline(); 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 261



7.18.3 Setting PLC online of R/H system

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal  (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can use the RHonlineProvider service to set online either to primary PLC or backup PLCs 
of R/H system.

Program code: Accessing RHOnlineProvider service from a device
Modify the following code to access RHOnlineProvider:

 
Device device = project.Devices.Find("S7-1500R/H-System_1");
RHOnlineProvider rhOnlineProvider = device.GetService<RHOnlineProvider>();

Program code: Setting connection parameters
You can use ConnectionConfiguration object to set a connection to the device. It can be 
accessed from Configuration property of the RHOnlineProvider.  For more information about 
how to set connection, Refer Accessing parameters of an online connection (Page 258)

Modify the following program code to set a connection mode and access a PC interface by 
name:

 
ConnectionConfiguration connectionConfiguration = rhOnlineProvider.Configuration;
ConfigurationMode mode = connectionConfiguration.Modes.Find("PN/IE");
ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("Broadcom NetXtreme Gigabit 
Ethernet", 1);
ConfigurationTargetInterface targetConfiguration = pcInterface.TargetInterfaces.Find("1 
X1");
bool success = connectionConfiguration.ApplyConfiguration(targetConfiguration);

Note

R/H system consists of two PLCs, a single connection configuration is provided to you.

Program code: Setting online R/H system
You can set online either to primary or backup PLC.  The user attempts to set online to both 
targets simultaneously will encounter  EngineeringTargetInvocationException from system. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
262 System Manual, 10/2018



Modify the following program code to set online to the primary PLC:

 
OnlineState onlineState = rhOnlineProvider.GoOnlineToPrimary();

Modify the following program code to set online to the backup PLC:

 
OnlineState onlineState = rhOnlineProvider.GoOnlineToBackup();

Note

You are allowed to reuse previously stored password when setting a PLC Online of R/H system.

Program code: Determining online status of R\H system
You can use PrimaryState and BackupState properties of RHOnlineProvider to determine the 
online connection status of primary PLC and backup PLC individually . Both properties return 
enum OnlineState. For more information on identify the online state of PLC, Refer Determining 
the status of a PLC (Page 257) 

Modify the following program code to determine the state of primary PLC and backup PLC:

 
RHOnlineProvider rhOnlineProvider = ...;
OnlineState primaryState = rhOnlineProvider.PrimaryState;
OnlineState backupState = rhOnlineProvider.BackupState;

Program code: Setting offline R/H system
Modify the following program code to set a currently online R/H system to an offline state by 
invoking RHOnlineProvider.GoOffline method:

 
rhOnlineProvider.GoOffline();

See also
Accessing parameters of an online connection (Page 258)

Determining the status of a PLC (Page 257)

Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 263



7.18.4 Accessing software container from primary PLC of R/H system 

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal  (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can use primary PLC device of an R/H system to access software container, for example 
the R/H system will provide software container for a primary PLC device item representing 
PLC_1. Otherwise, it will provide null if you try to access a software container for backup PLC 
device representing PLC_2. 

The specific of SoftwarContainer and its software property are described in Access software 
target. (Page 111)

Program code: Accessing software container
Modify the following program code to access software container from primary device of an R/
H system:

 
foreach (DeviceItem deviceItem in rhDevice.DeviceItems)
{ 
  if (deviceItem.Name == "PLC_1") 
  {
    SoftwareContainer softwareContainer = deviceItem.GetService<SoftwareContainer>();
    ... //Work with softwareContainer  
  }
}

See also
Access software target  (Page 111)

Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
264 System Manual, 10/2018



7.18.5 Downloading PLCs of R/H System

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can use the TIA Portal Openness application to download the primary and backup PLCs 
of R/H system. You should be able to download both hardware and software components of 
the system. (Refer Downloading hardware and software components to PLC device 
(Page 271)) 

Program code: Retrieving RHDownloadProvider
You can download to R/H system through RHDownloadProvider service from a device.

Modify the following program code to retrieve RHDownloadProvider:

 
... 
Device device = project.Devices.Find("S7-1500R/H-System_1");
RHDownloadProvider rhDownloadProvider = device.GetService<RHDownloadProvider>();
...

Note

The DownloadProvider service will not be accessed for CPUs that are part of R/H system.

Program code: Retrieving IConfiguration
RHDownloadProvider provides ConnectionConfiguration object through Configuration 
property which will be used to configuring the connection to the device. 

Modify the following program code to retrieve IConfiguration object from 
ConnectionConfiguration on RHDownloadProvider:

 
...
RHDownloadProvider rhDownloadProvider = device.GetService<RHDownloadProvider>();
ConnectionConfiguration connectionConfiguration = rhDownloadProvider.Configuration;
ConfigurationMode mode = connectionConfiguration.Modes.Find("PN/IE");
ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("Broadcom NetXtreme Gigabit 
Ethernet", 1);
IConfiguration targetConfiguration = pcInterface.TargetInterfaces.Find("1 X1");
...

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 265



Note

R/H systems consist of two PLCs, only one connection configuration object is provided that 
can be used for both primary and backup downloads. 

Program code: Downloading primary CPU and backup CPU
Modify the following program code to download to the primary CPU by invoking 
RHDownloadProvider.DownloadToPrimary:

 
DownloadResult DownloadToPrimary(IConfiguration 
configuration,DownloadConfigurationDelegate 
preDownloadConfigurationDelegate,DownloadConfigurationDelegate 
postDownloadConfigurationDelegate,DownloadOptions downloadOptions);

Modify the following program code to download to the backup CPU by invoking 
RHDownloadProvider.DownloadToBackup:

 
DownloadResult DownloadToBackup(IConfiguration configuration, 
DownloadConfigurationDelegate preDownloadConfigurationDelegate, 
DownloadConfigurationDelegate postDownloadConfigurationDelegate, DownloadOptions 
downloadOptions);

Parameters of RHDownloadProvider method
Both RHDownloadProvider.DownloadToPrimary and 
RHDownloadProvider.DownloadToBackup accept the same parameters and also return a 
DownloadResult. For more information about the details of IConfiguration, 
DownloadConfigurationDelegate, DownloadOptions and DownloadResult, Refer Downloading 
hardware and software components to PLC device (Page 271)

Parameter name Type Description
configuration Siemens.Engineering.Connec‐

tion.IConfiguration
Connection configuration to a device.

preDownloadConfigurationDelegate Siemens.Engineering.Download.Down‐
loadConfigurationDelegate

Delegate that will be called to check 
configuration before download

postDownloadConfigurationDelegate Siemens.Engineering.Download.Down‐
loadConfigurationDelegate

Delegate that will be called to check 
configuration after download

downloadOptions Siemens.Engineering.Download.Down‐
loadOptions

Download options

Depending upon the state of R/H system, you might request to stop the system for the 
download via DownloadConfigurations. Therefore, in addition to the configuration described 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
266 System Manual, 10/2018



in Downloading hardware and software components to PLC device (Page 271), the following 
data type are added to support RHDownload.

Configuration Data Type Action Description
DownloadSelection‐
Configuration

StopHSystem Set CurrentSelection:StopH‐
SystemSelections.
Available enum values:
● NoAction (No Action)
● StopHSystem (Stop R/H-

System)

The modules are stopped for 
downloading to device

StopHSystemOrModule Set CurrentSelection:StopH‐
SystemOrModuleSelections.  
Available enum values:
● NoAction (No action)
● StopHSystem (Stop R/H-

System)
● StopModule (Stop module) 

The modules are stopped for 
downloading to device

StartBackupModules Set CurrentSelection:Start‐
BackupModulesSelections. 
Available enum values:
●  NoAction (No action)
●  SwitchToPrimaryCpu 

(Change to Primary) )
● StartModule (Start module)

Start modules after download‐
ing to device

SwitchBackupToPrimary Set CurrentSelection:Switch‐
BackupToPrimarySelections.  
Available enum values: 
● NoAction (No action) 
● SwitchToPrimaryCpu 

(Change to Primary)

Start modules after download‐
ing to device.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 267



Program code: Handling download configuration callbacks 
Modify the following program code to DownloadToPrimary and DownloadToBackup 
invocations while handling configurations in the callbacks:

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
268 System Manual, 10/2018



Download invocation example
static void Main(string[] args)
{
 ...
 Project project = tiaPortal.Projects[0]; 
 Device device = project.Devices.Find("S7-1500R/H-System_1");
 RHDownloadProvider rhDownloadProvider = device.GetService<RHDownloadProvider>(); 
 ConnectionConfiguration connectionConfiguration = rhDownloadProvider.Configuration;
 ConfigurationMode mode = connectionConfiguration.Modes.Find("PN/IE");
 ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("Broadcom NetXtreme Gigabit 
Ethernet", 1);
 IConfiguration targetConfiguration = pcInterface.TargetInterfaces.Find("1 X1");
 
 // Download to primary
 DownloadResult primaryDownloadResult = 
rhDownloadProvider.DownloadToPrimary(targetConfiguration, 
 PreConfigureDownloadCallback, 
 PostConfigureDownloadCallback, 
 DownloadOptions.Hardware | DownloadOptions.Software);
 WriteDownloadResults(primaryDownloadResult); 
 // Download to backup
 DownloadResult backupDownloadResult = 
rhDownloadProvider.DownloadToBackup(targetConfiguration, 
 PreConfigureDownloadCallback, 
 PostConfigureDownloadCallback, 
 DownloadOptions.Hardware | DownloadOptions.Software);
 WriteDownloadResults(backupDownloadResult);
...
}
private static void PreConfigureDownloadCallback(DownloadConfiguration 
downloadConfiguration)
{ 
  StopHSystem stopHSystem = downloadConfiguration as StopHSystem; 
  if (stopHSystem != null) 
     {   
       stopHSystem.CurrentSelection = StopHSystemSelections.StopHSystem; 
     } 
  OverwriteTargetLanguages overwriteTargetLanguages = downloadConfiguration as 
OverwriteTargetLanguages; 
  if (overwriteTargetLanguages != null) 
     {   
       overwriteTargetLanguages.Checked = true; 
     }  
  AlarmTextLibrariesDownload alarmTextLibraries = downloadConfiguration as 
AlarmTextLibrariesDownload; 
  if (alarmTextLibraries != null) 
     {   
       alarmTextLibraries.CurrentSelection = 
AlarmTextLibrariesDownloadSelections.ConsistentDownload;   
       return; 
     } 
  CheckBeforeDownload checkBeforeDownload = downloadConfiguration as CheckBeforeDownload; 
  if (checkBeforeDownload != null) 
     {   
       checkBeforeDownload.Checked = true;   
       return; 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 269



Download invocation example
     }  
  ConsistentBlocksDownload consistentBlocksDownload = downloadConfiguration as 
ConsistentBlocksDownload; 
  if (consistentBlocksDownload != null) 
     {   
        consistentBlocksDownload.CurrentSelection = 
ConsistentBlocksDownloadSelections.ConsistentDownload;   
        return; 
     }  
  OverwriteSystemData overwriteSystenData = downloadConfiguration as OverwriteSystemData; 
  if (overwriteSystenData != null) 
     {   
        overwriteSystenData.CurrentSelection = OverwriteSystemDataSelections.Overwrite;   
        return; 
     }
}
private static void PostConfigureDownloadCallback(DownloadConfiguration 
downloadConfiguration)
{ 
   StartModules startModules = downloadConfiguration as StartModules; 
   if (startModules != null) 
   {   
     startModules.CurrentSelection = StartModulesSelections.StartModule;    
     return; 
   }
}
private static void WriteDownloadResults(DownloadResult result)
{ 
   Console.WriteLine("State:" + result.State); 
   Console.WriteLine("Warning Count:" + result.WarningCount); 
   Console.WriteLine("Error Count:" + result.ErrorCount); 
   RecursivelyWriteMessages(result.Messages);
} 
private static void RecursivelyWriteMessages(DownloadResultMessageComposition messages, 
string indent = "")
{ 
   indent += "\t"; 
   foreach (DownloadResultMessage message in messages) 
   {  
      Console.WriteLine(indent + "DateTime: " + message.DateTime);  
      Console.WriteLine(indent + "State: " + message.State);  
      Console.WriteLine(indent + "Message: " + message.Message);  
      RecursivelyWriteMessages(message.Messages, indent); 
   }
}

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

Downloading hardware and software components to PLC device (Page 271)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
270 System Manual, 10/2018



7.18.6 Functions for downloading data to PLC device

7.18.6.1 Downloading hardware and software components to PLC device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
Openness user is able to download software and hardware components to PLC device through 
DownloadProvider (accessed from the DeviceItem). If a DeviceItem represents a 
downloadable target, an instance of DownloadProvider will be returned on GetService call, 
else the service will return null.

Program code: Retrieving DownloadProvider service from a device item

 
DeviceItem deviceItem = ...;
DownloadProvider downloadProvider = deviceItem.GetService<DownloadProvider>();
if (downloadProvider != null)
{   ...
}

Parameters of download method
In order to download to a PLC device, the user calls Download method of DownloadProvider. 
The Download method has four parameters which are IConfiguration object, two delegates 
and DownloadOptions (Hardware, Software or Hardware and Software).

Parameter name Type Description
configuration Siemens.Engineering.Connec‐

tion.IConfiguration
Connection configuration to a device.

preDownloadConfigurationDelegate Siemens.Engineering.Download.Down‐
loadConfigurationDelegate

Delegate to be called for checking con‐
figuration before download operation.

postDownloadConfigurationDelegate Siemens.Engineering.Download.Down‐
loadConfigurationDelegate

Delegate to be called for checking con‐
figuration after download operation.

downloadOptions Siemens.Engineering.Download.Down‐
loadOptions

Download options.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 271



● Openness download is supported only if the configurations are handled properly by the 
user. If the configuration is invalid, then EngineeringTargetInvocationException is thrown 
and download process is aborted. The F-activated PLCs are not supported for download 
operation.

● Since compliation is a part of download, it is recommended to compile before the download 
operation to analyze the complile results.

● Openness supports only full download option.

Parameter 1: IConfiguration
The user should provide IConfiguration object as first parameter for the Download method. It 
is used to establish a connection to the given PLC device. IConfiguration interface is 
implemented by ConfigurationAddress and ConfigurationTargetInterface. Both the objects can 
be accessed through ConnectionConfiguration instance. ConnectionConfiguration instance 
can be acquired from DownloadProvider.Connection: ConnectionConfiguration or optionally 
from OnlineProvider.Connection: ConnectionConfiguration properties. 

Configuration of ConnectionConfiguration object is described in Accessing parameters of an 
online connection (Page 258) section.

 
...
   DownloadProvider downloadProvider = null;
   ConnectionConfiguration configuration = downloadProvider.Configuration;
   ConfigurationMode configurationMode = configuration.Modes.Find("PN/IE");
   ConfigurationPcInterface pcInterface = configurationMode.PcInterfaces.Find("Intel(R) 
Ethernet Connection I217-LM", 1);
   IConfiguration targetConfiguration = pcInterface.TargetInterfaces[0];
... 

Parameter 2 and 3: DownloadConfigurationDelegate
Openness user need to provide two implementations of void 
DownloadConfigurationDelegate(DownloadConfiguration downloadConfiguration). First 
delegate will be called for pre-download configurations, and the second will be called after 
download is completed. The delegates will be called for each configuration that requires an 
action from the user. For more information about callback handling, Refer Supporting 
callbacks (Page 282). Certain configurations will only contain an information, therefore the 
user action will not be required.

The possible download configuration types are listed below.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
272 System Manual, 10/2018



Configuration name Description and properties
DownloadConfiguration ● Base class for all the configurations.

● Contains single property DownloadConfiguration.Message : string (read only property 
contains the configuration message)

DownloadSelectionConfi‐
guration

● Base class for all configuration that can be selected.
● Does not contain additional properties. A selection must be provided in all child classes 

derived from it. 
DownloadCheckConfigu‐
ration

● Base class for all configuration that can be checked and unchecked.
● Contains single property DownloadCheckConfiguration.Checked: bool<string> (read/write 

property identifies whether the configuration is checked or unchecked)
DownloadPasswordConfi‐
guration

● Base class for all configuration that required a password for download.
● Conains a single method to set password. DownloadPasswordConfiguration.SetPassword 

(password: SecureString) : void

The datatype of the configurations are given below.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 273



TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
274 System Manual, 10/2018



Configruation DataType Description and Action
DownloadSelection‐
Configuration

StartModules Set CurrentSelection:StopModulesSelections. Available 
enum values are 
NoAction (No action) 
StopAll (Stop all)
These modules are stopped for downloading to a device. 

StopModules Set CurrentSelection:StartModulesSelections. Available 
enum values:
NoAction (No action)
StartModule (Start module)
These modules are started after the download operation.

AllBlocksDownload Set CurrentSelection:AllBlocksDownloadSelections. 
Available enum value is
DownloadAllBlocks (Download all blocks to the 
device)
Downloads software to device 

OverwriteSystemData Set CurrentSelection:OverwriteSystemDataSelections. 
Available enum values are
NoAction (No action)
Overwrite (Download to device)
Deletes and replaces the existing system data in target location.

ConsistentBlocksDown‐
load

Set 
CurrentSelection:ConsistentBlocksDownloadSelections
. Available enum value is
ConsistentDownload (Consistent download)
Downloads the software to device.

AlarmTextLibrariesDown‐
load

Set 
CurrentSelection:AlarmTextLibrariesDownloadSelectio
ns. Available enum values are
ConsistentDownload (Consistent download)
NoAction (No action)
Downloads all alarm texts and text list texts.

ProtectionLevelChanged Set CurrentSelection:ProtectionLevelChangedSelections. Available 
enum values are
NoChange (No change)
ContinueDownloading (Continue downloading to the 
device)
CPU protection is changed to the next lower level. 

ActiveTestCanBeAborted Set 
CurrentSelection:ActiveTestCanBeAbortedSelections. 
Available enum values are
NoAction (No action)
AcceptAll (Accept all)
Active test and commissioning functions are canceled during the load‐
ing operation of the device.

ResetModule Set CurrentSelection:ResetModuleSelections  Available 
enum values are

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 275



Configruation DataType Description and Action
NoAction (No action)
DeleteAll (Delete all)
It resets the module.

LoadIdentificationData Set 
CurrentSelection:LoadIdentificationDataSelections. 
Available enum values are
LoadNothing (Load nothing)
LoadData (Load data)
LoadSelected (Load selected) 
Load identification data to the PROFINET IO devices and their mod‐
ules. 

 DifferentTargetConfigura‐
tion

Set 
CurrentSelection:DifferentTargetConfigurationSelect
ions. Available enum values are
NoAction (No action)
AcceptAll (Accept all)
Gives the difference between configured and target modules (online) 

InitializeMemory Set CurrentSelection:InitializeMemorySelections. 
Available enum values: 
NoAction (No action) 
AcceptAll (Accept all)
This datatype is used to initialize memory.  

DownloadCheckConfi‐
guration

CheckBeforeDownload Set IsChecked:bool property.
Checks before downloading to the device. 

UpgradeTargetDevice Set IsChecked:bool property.
Checks the different project versions in the configured device and tar‐
get device (online).

OverWriteHMIData Set IsChecked:bool property.
Overwrites the objects online.

FitHMIComponents Set IsChecked:bool property.
Components with a different version are installed on the target device.

TurnOffSequence Set IsChecked:bool property
Turns off the sequence before loading. 

OverwriteTargetLanguag‐
es

Set IsChecked:bool property.
To distinguish the settings between the project and PLC programming

DowngradeTargetDevice Set IsChecked:bool property.
 To mention the different data formats in online and offline projects.

DownloadPassword‐
Configuration

ModuleReadAccessPass‐
word

Set password via SetPassword(password:SecureString) 
method.
Enter a password to gain read access to the module. 

ModuleWriteAccessPass‐
word

Set password via 
SetPassword(password:SecureString) method.
Enter a password to gain write access to the module.

BlockBindingPassword Set password via SetPassword(password:SecureString) 
method.
Block binding password configuration method.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
276 System Manual, 10/2018



NOTICE

Please note that download configurations are similar to configurations encountered in Load 
preview and Load results dialogs while working with GUI of TIA Portal.

WARNING

The API user is responsible for ensuring the security measures of handling passwords 
through code.

Unhandled configuration that can prevent the download causes an 
EngineeringTargetInvocationException and aborts download. An 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 277



EngineeringDelegateInvocationException will be thrown in case of an unhandled exception 
within the Delegate.

PreDownloadDelegate implementation example:
 private static void PreConfigureDownload(DownloadConfiguration downloadConfiguration)
   {
       StopModules stopModules = downloadConfiguration as StopModules;
       if (stopModules != null)
       {
           stopModules.CurrentSelection = StopModulesSelections.StopAll;  // This selection 
will set PLC into "Stop" mode
           return;
       }
       AlarmTextLibrariesDownload alarmTextLibraries = downloadConfiguration as 
AlarmTextLibrariesDownload;
       if (alarmTextLibraries != null)
       {
           alarmTextLibraries.CurrentSelection = 
AlarmTextLibrariesDownloadSelections.ConsistentDownload;
           return;
       }
       BlockBindingPassword blockBindingPassword = downloadConfiguration as 
BlockBindingPassword;
       if(blockBindingPassword != null)
       {
           SecureString password = ...;  // Get Binding password from a secure location
           blockBindingPassword.SetPassword(password);
           return;
       }
       CheckBeforeDownload checkBeforeDownload = downloadConfiguration as 
CheckBeforeDownload;
       if (checkBeforeDownload != null)
       {
           checkBeforeDownload.Checked = true;
           return;
       }
       ConsistentBlocksDownload consistentBlocksDownload = downloadConfiguration as 
ConsistentBlocksDownload;
       if (consistentBlocksDownload != null)
       {
           consistentBlocksDownload.CurrentSelection = 
ConsistentBlocksDownloadSelections.ConsistentDownload;
           return;
       }
       ModuleWriteAccessPassword moduleWriteAccessPassword = downloadConfiguration as 
ModuleWriteAccessPassword;
       if (moduleWriteAccessPassword != null)
       {
           SecureString  password = ...;  // Get PLC protection level password from a secure 
location
           moduleWriteAccessPassword.SetPassword(password);
           return;
       }
       throw new NotSupportedException();  // Exception thrown in the delagate will cancel 
download
   }

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
278 System Manual, 10/2018



PostDownloadDelegate implementation example:
 private static void PostConfigureDownload(DownloadConfiguration downloadConfiguration)
   {       
              StartModules startModules = downloadConfiguration as StartModules;
              if (startModules != null)
                   {           
                   startModules.CurrentSelection = StartModulesSelections.StartModule; // 
Sets PLC in "Run" mode 
                   }
   }

Parameter 4: DownloadOptions
The user must specify the download options through DownloadOptions flagged enum. This 
parameter will determine the type of download to be performed such as Hardware, Software 
or Hardware and Software.

 
[Flags]
   public enum DownloadOptions   {
      None = 0,   // Download nothing
      Hardware,   // Download hardware only 
     Software    // Download software only
   }

If the user wants to download both Software and Hardware to the device, then pass 
DownloadOptions.Hardware | DownloadOptions.Software as the 4th parameter of  the 
Download method.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 279



DownloadResult
The DownloadResult returned by the Download action provides feedback on the state of the 
objects that were downloaded.

Download invocation example
  [STAThread]
   static void Main()
   {
      ...
      DownloadProvider downloadProvider = ...;
      IConfiguration targetConfiguration = ...;
      DownloadConfigurationDelegate preDownloadDelegate = PreConfigureDownload;
      DownloadConfigurationDelegate postDownloadDelegate = PostConfigureDownload;
      DownloadResult result = downloadProvider.Download(targetConfiguration, 
preDownloadDelegate, postDownloadDelegate, DownloadOptions.Hardware | 
DownloadOptions.Software);
      if (result.State == DownloadResultState.Error)
         {
           // Handle error state
         }
      WriteDownloadResults(result);
      ...
   }
   private static void PreConfigureDownload(DownloadConfiguration downloadConfiguration)
   {
      ...
   }
   private static void PostConfigureDownload(DownloadConfiguration downloadConfiguration)
   {
      ...
   }
   private void WriteDownloadResults(DownloadResult result)
   {
      Console.WriteLine("State:" + result.State);
      Console.WriteLine("Warning Count:" + result.WarningCount);
      Console.WriteLine("Error Count:" + result.ErrorCount);
      RecursivelyWriteMessages(result.Messages);
   }
   private void RecursivelyWriteMessages(DownloadResultMessageComposition messages, string 
indent = "")
   {
      indent += "\t";
      foreach (DownloadResultMessage message in messages)
      {
         Console.WriteLine(indent + "DateTime: " + message.DateTime);
         Console.WriteLine(indent + "State: " + message.State);
         Console.WriteLine(indent + "Message: " + message.Message);
         RecursivelyWriteMessages(message.Messages, indent);
      }
   }

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
280 System Manual, 10/2018



Modify the following code to download PLC by calling applying configuration:

 
private static void DownloadNCU(Device ncu, ConfigurationTargetInterface 
configurationTargetInterface)
 {
       DownloadConfigurationDelegate preDownloadDelegate = PreConfigureDownload;
       DownloadConfigurationDelegate postDownloadDelegate = PostConfigureDownload;
       DownloadProvider downloadProvider = null;
        foreach (var item in ncu.DeviceItems[0].DeviceItems)
            {
                downloadProvider = item.GetService<DownloadProvider>();
                if (downloadProvider != null)
                {
                    break;
                }
            }
            downloadProvider.Configuration.ApplyConfiguration(configurationTargetInterface);
            IConfiguration targetConfiguration = configurationTargetInterface;
            downloadProvider.Download(targetConfiguration, preDownloadDelegate, 
postDownloadDelegate, DownloadOptions.Hardware | DownloadOptions.Software);
}

7.18.6.2 Running and stopping PLC

Requirements
● The Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is offline.

Application
When interacting with TIA Portal through Openness API, it may be necessary to change the 
operating mode of the PLC. TIA Openness provides a way to modify the operating state of the 
PLC either to start or stop.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 281



Program code
Modify the following program code for setting PLC operating state to STOP.

 
  public void ConfigurePreDownload(DownloadConfiguration downloadConfiguration)
   {      
      StopModules stopModules = downloadConfiguration as StopModules;
      if (stopModules != null)
           { 
           // Puts PLC in "Stop" mode
           stopModules.CurrentSelection = StopModulesSelections.StopAll;
      }  
  }

Modify the following program code for setting PLC operating state to START.

 
 public void ConfigurePostDownload(DownloadConfiguration downloadConfiguration)
   {      
    StartModules startModules = downloadConfiguration as StartModules;
       if (startModules != null)
           {        
            // Puts PLC in "Start" mode  
            startModules.CurrentSelection = StartModulesSelections.StartModule;
      } 
  }

7.18.6.3 Supporting callbacks

Requirements
● The Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
Certain API methods require an interaction with the user-defined application code during their 
execution. Delegates are used to handle these callback actions in the user-defined application 
code. You need to implement a method with a compatible signature, and pass it as a delegate 
parameter to the action. To proceed with the execution, TIA portal calls the implemented 
methods. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
282 System Manual, 10/2018



Program code

 
// This delegate is declared in Siemens.Engineering.dll
public delegate void 
Siemens.Engineering.Download.DownloadConfigurationDelegate(Siemens.Engineering.Download.Co
nfigurations.DownloadConfiguration configuration);
...

Example of an user application code using and implementing the delegate:

 
[STAThread]
static void Main()
{     
  ...     
    DownloadProvider downloadProvider = ...;
    IConfiguration targetConfiguration = ...; 
    DownloadConfigurationDelegate preDownloadDelegate = PreConfigureDownload;
    DownloadConfigurationDelegate postDownloadDelegate = PostConfigureDownload;
    DownloadResult result = downloadProvider.Download(targetConfiguration, 
preDownloadDelegate, postDownloadDelegate, DownloadOptions.Hardware |
DownloadOptions.Software);
  ...
 
}
 
//This method will be called back by TIA Portal
private static void ConfigurePreDownload(DownloadConfiguration downloadConfiguration)
   {     
     // Work with the parameter
   }
 
//This method will be called back by TIA Portal
private static void ConfigurePostDownload(DownloadConfiguration downloadConfiguration)
    {     
      // Work with the parameter
    }

Note

 STAThread attribute will assure that the delegates are called in the Main thread of execution.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 283



7.18.6.4 Protecting PLC through password

Requirements
● The Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is offline.

Application
When interacting with TIA Portal through Openness API, it may be necessary to change the 
protection level of the PLC. TIA Openness provides a way to secure the PLC through a 
password. The password can be set to both read-protected and write-protected PLCs.

Program code
Modify the following program code for read-protected PLCs

 
public void ConfigurePreDownload(DownloadConfiguration downloadConfiguration)
  {
       ModuleReadAccessPassword moduleReadAccessPassword = downloadConfiguration 
asModuleReadAccessPassword;
       if (moduleReadAccessPassword != null)
          {
            SecureString password = ...; // Get password from a secure location
            moduleReadAccessPassword.SetPassword(password); // enter the password to gain 
full access
          }
  }
 

Modify the following program code for write-protected PLCs

 
public void ConfigurePreDownload(DownloadConfiguration downloadConfiguration)
  {
    ModuleWriteAccessPassword moduleWriteAccessPassword = downloadConfigurationas 
ModuleWriteAccessPassword;
    if (moduleWriteAccessPassword != null)
     {
       SecureString password = ...; // Get password from a secure location
       moduleWriteAccessPassword.SetPassword(password); // enter the password to gain full 
access
     }
  }

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
284 System Manual, 10/2018



WARNING

The API user is responsible for ensuring the security measures of handling passwords 
through code. 

7.18.6.5 Handling PLC block binding passwords

Requirements
● The Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is offline.

Application
TIA Openness supports the data binding of passwords for customer applications. TIA 
Openness provides a way for the customer to specify a block binding password.  For example, 
a block binding password can be configured on the DownloadPasswordConfiguration class by 
calling the SetPassword method.

Note
If you want to secure the download action with a password, a password will have to be provided 
during every call of download function. This is regardless of whether the device has already 
been configured. After the successful acceptance of password for a given configuration, all 
subsequent calls to SetPassword are ignored.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 285



Program code
Modify the following program code:

 
public void ConfigurePreDownload(DownloadConfiguration downloadConfiguration)
{    
    DownloadPasswordConfiguration downloadPasswordConfiguration = downloadConfiguration as 
DownloadPasswordConfiguration;
    if(downloadPasswordConfiguration != null && 
downloadPasswordConfiguration.Message.Contains("block_1"))
       {                 
              SecureString password = ...; // Get password from a secured location
              downloadPasswordConfiguration.SetPassword(password);
    }
}

7.18.7 Uploading hardware, software and files to PLC device

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
Openness user is able to upload station into a project through StationUploadProvider 
(accessed from a given project). An upload into a DeviceGroup is not supported. If a project 
is used to execute an upload, an instance of StationUploadProvider will be returned on 
GetService call, else the service will return null.

Program code: Retrieving StationUploadProvider service from a project

 
Project myProject = ...;  
StationUploadProvider uploadProviderForProject = 
myProject.GetService<StationUploadProvider>(); 
if (uploadProviderForProject != null) 
{ 
    ... 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
286 System Manual, 10/2018



Parameters of upload method 
In order to execute an upload of a PLC device, user calls StationUpload method of 
StationUploadProvider. The Upload method has ConfigurationAddress and 
UploadConfigurationDelegte parameters. UploadOptions are optional, because the 
StationUpload uploads Software, Hardware, and Files.

Parameter name Type Description
configurationAddress Siemens.Engineering.Connection.Con‐

figurationAddress
Address of device that should be uploa‐
ded

uploadConfigurationDelegate Siemens.Engineering.Upload.Upload‐
ConfigurationDelegate

Delegate that will be called to check 
configuration before upload

uploadOptions Siemens.Engineering.Upload.Uploa‐
dOptions

Upload options

Parameter 1: ConfigurationAddress
The user should provide ConfigurationAddress object to the Upload. The address object is 
used to establish a connection to the given PLC device that should be uploaded. The 
ConfigurationAddress object must be created in the ConnectionConfiguration of the 
StationUploadProvider. The Configuration contains a list of supported Modes. You need to 
select one of the Modes that should be used for upload. The selected ConfigurationMode 
contains a list of all local PcInterfaces that support the selected Mode, you have to select one 
of the interfaces. The desired address can be created in the Address collection of the selected 
ConfigurationPcInterface.

Modify the following code to create an address object:

 
...
StationUploadProvider uploadProvider = null;
...
ConnectionConfiguration configuration = uploadProvider.Configuration;
ConfigurationMode configurationMode = configuration.Modes.Find("PN/IE"); 
ConfigurationPcInterface pcInterface = configurationMode.PcInterfaces.Find("Intel(R) 
Ethernet Connection I217-LM", 1);
//"Create an address. This "ConfigurationAddress" is used as parameter for upload." 
ConfigurationAddress uploadAddress = pcInterface.Addresses.Create("192.68.0.1");
...

Project upload
The user can start the station upload by calling the action StationUpload.  

The following Parameters are mandatory:

● ConfigurationAddress: The address of the device to be uploaded

● UploadConfigurationDelegate: The callback to handle upload inhibits

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 287



 
...
StationUploadProvider uploadProvider = null;
Device uploadedObject = null;
...
UploadConfigurationDelegate preUploadDelegate = PreConfigureUpload;
UploadResult result = uploadProvider.StationUpload(uploadAddress, preUploadDelegate);
 // The uploaded device
uploadedObject = result.UploadedStation;
if (uploadedObject == null)
{
 ... 
}
internal void PreConfigureUpload(UploadConfiguration uploadConfiguration)
{
 ...
}

Parameter2: UploadConfigurationDelegate
Openness user needs to provide an implementation of  void UploadConfigurationDelegate 
(UploadConfiguration uploadConfiguration). The delegate will be called for pre-upload 
configurations. The delegate will be called for each configuration that requires an action from 
the user. For more information about callback handling, Refer Supporting callbacks 
(Page 282). Certain configurations will only contain an information, therefore the user action 
will not be required.

The possible upload configuration types are listed below: 

Configuration name Description and properties
UploadConfiguration ● Base class for all the configurations. It contains information in the Message attribute 

● Contains single property UploadConfiguration.Message : string (read only property contains 
the configuration message)

UploadPasswordConfigu‐
ration

● Derived from UploadConfiguration
● Base class for all configuration that required a password for upload.
● Contains a single method to set password. UploadPasswordConfiguration.SetPassword 

(password: SecureString) : void - Set password
UploadSelectionConfigu‐
ration

● Derived class of UploadConfiguration
● Does not contain additional properties

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
288 System Manual, 10/2018



The datatype of the configurations are given below:

Configuration DataType Description and Action
UploadPasswordConfi‐
guration

ModuleReadAccessPass‐
word

Set password via SetPassword(password:SecureString) 
method.
Enter a password to gain read access to the module. 

PasswordReadAccess Set password via SetPassword(password:SecureString) 
method.
Enter a password for SW Upload in classic PLC's to gain read access 
to the module.

UploadSelectionConfi‐
guration

UploadMissingProducts Set 
CurrentSelection:UploadMissingProductsSelections 
Available enum values: 
TryUpload (Consistent upload)
NoAction (No action) 
Set a selection for upload.

The support of a Failsafe password is not necessary. For the read-access by uploading a F-
PLC no password is needed.

Unhandled configuration that can prevent the upload causes an 
EngineeringTargetInvocationException and aborts upload.  

An EngineeringDelegateInvocationException will be thrown in case of an unhandled exception 
within the Delegate.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 289



PreUploadDelegate implementation example:
private static void PreConfigureUpload(UploadConfiguration UploadConfiguration)
 {
 ModuleReadAccessPassword moduleReadAccessPassword = UploadConfiguration as 
ModuleReadAccessPassword;
 if (moduleReadAccessPassword != null)
 {
 string passWD = "passWD";
 var password = new SecureString();
 foreach (var c in passWD)
 password.AppendChar(c);
 
 moduleReadAccessPassword.SetPassword(password);
 return;
 }
 
 
 ModuleWriteAccessPassword moduleWriteAccessPassword = UploadConfiguration as 
ModuleWriteAccessPassword;
 if (moduleWriteAccessPassword != null)
 {
 string passWD = "passWD";
 var password = new SecureString();
 foreach (var c in passWD)
 password.AppendChar(c);
 
 moduleWriteAccessPassword.SetPassword(password);
 return;
 }
 ...
 
 throw new NotSupportedException(); // Exception thrown in the delagate will cancel upload
 }

Parameter3: UploadOptions
The user cannot specify the Upload options. This Upload options are known as: "Hardware", 
"Software", "Hardware and Software" and "Hardware, Software and Files".

UploadResult
The UploadResult returned by the Upload action provides feedback on the state of the objects 
that were uploaded.

● UploadResult.Message: UploadResultMessageComposition -  Composition of 
UploadResultMessage

The following attributes are supported:

Attributes Description
ErrorCount int value of errors while upload
State UploadResultState with possibly values: Success, Information, Warning and Error

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
290 System Manual, 10/2018



Attributes Description
UploadedStation A Device-Instance of the uploaded station
WarningCount Number of warning while upload as int

The UploadResultMessage contains:

● UploadResultMessage.Messages : UploadResultMessageComposition - Composition of 
UploadResultMessage

The following attributes are supported:

Attributes Description
DateTime System.DateTime of the created message.
ErrorCount An int counter for errors.
State UploadResultState with possibly values: Success, Information, Warning and Error.
WarningCount Number of warning while upload as int

Upload invocation example
internal bool UploadPLC()
 {
 ...
 UploadResult result = uploadProvider.StationUpload(uploadAddress, preUploadDelegate);
 ...
 PrintAllMessages(result.Messages, 0);
 ...
 }
 
 
 internal void PrintAllMessages(UploadResultMessageComposition messages, int level)
 {
 if (messages == null)
 return;
 
 if (level == 0)
 Console.WriteLine("\n");
 foreach (UploadResultMessage message in messages)
 {
 string messageOut = message.Message.PadLeft(message.Message.Length + level, '\t') + "\n";
 Console.WriteLine(messageOut);
 
 if ((message.Messages != null) && (message.Messages.Count > 0))
 PrintAllMessages(message.Messages, level+1);
 }
 }

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 291



7.18.8 Accessing fingerprints

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
You can use the TIA Portal Openness API to detect changes inside of blocks or UDT. You can 
achieve this by comparing the fingerprints of the object. A fingerprint instance contains an 
FingerprintId which defines the kind of fingerprint and the fingerprint value as a string. All 
provided fingerprints conisder only user input, no compilation result, or any other change made 
by the system. 

The enumeration FingerprintId lists all kind of fingerprints supported in Openness:

Value Description
Code Considers all changes in the code inside the body 

of the block. It does not consider the compilation 
result.

Interface Considers all changes in the interface of a block. 
Including start values of a DB

Properties Considers changes in the properties of a block. 
e.g. name, number

Comments Considers changes in the comments of a block. In 
case of OBs the fingerprint also changes when the 
list of available languages in project language set‐
ting changes

LibraryType Exists when a block is connected to a library type
Texts With V15 SP1 this fingerprint only exists for Graph 

blocks
Alarms Exists when a block uses alarming.
Supervision Exists when a block contains supervision
TechnologyObject Exists only for technology object DBs
Events Exists only for OB
TextualInterface Exists when the block has a textual interface

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
292 System Manual, 10/2018



Program code
You need to use the FingerprintProvider service to retrieve the fingerprints of an object. It is 
available for blocks (FB, FC, OB, DB),and UDTs, but not for tag tables. The FingerprintProvider 
calculates and returns all available fingerprints of an object with each GetFingerprints call. In 
order to ensure correct fingerprints, the block or UDT needs to be consistent before calling 
fingerprints. Otherwise, an RecoverableException is thrown. When a fingerprint is still invalid 
after its calculation, an RecoverableException is thrown.

 
PlcBlock block = ...;
FingerprintProvider provider = block.GetService<FingerprintProvider>();
IList<Fingerprint> fingerprints = provider.GetFingerprints();
foreach(var fingerprint in fingerprints)
{
 string fpValue = fingerprint.Value;
 FingerprintId fpId = fingerprint.Id;
}

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

7.18.9 Comparing PLC software

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application. 
See Opening a project (Page 97)

Application
You have the following options to determine the deviation between the software of two devices:

● Comparing the software of two configured PLCs

● Comparison of the software of a PLC and the project library

● Comparison of the software of a PLC and the global library

● Comparison of the software of a PLC and the master copy of a PLC

● Comparisonof the software of a configured PLC with the software of a connected PLC in 
"Online" status

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 293



Signature
Use the CompareTo or CompareToOnline methods for the comparison. 

public CompareResult CompareTo (ISoftwareCompareTarget compareTarget)
public CompareResult CompareToOnline ()

Return value / parameter Function
CompareResult compareResult Returns the comparison result:

● FolderContentsDifferent: Content of the 
compared folders differs. 

● FolderContentsIdentical: Content of the 
compared folders is identical.

● ObjectsDifferent: Content of the compared objects 
differs. 

● ObjectsIdentical: Content of the compared objects 
is identical. 

● LeftMissing: The object is not contained in the object 
from which the comparison was started. 

● RightMissing: The object is not contained in the object 
which is being compared. 

ISoftwareCompareTarget 
compareTarget

List of comparable objects. 

Program code
Modify the following program code to output the comparison result: 

 
private static void WriteResult(CompareResultElement compareResultElement, string indent)
{
    Console.WriteLine("{0} <{1}> <{2}> <{3}> <{4}> ",
    indent,
    compareResultElement.LeftName,
    compareResultElement.ComparisonResult,
    compareResultElement.RightName,
    compareResultElement.DetailedInformation);
    WriteResult(compareResultElement.Elements, indent);
}
private static void WriteResult (IEnumerable<CompareResultElement> compareResultElements, 
string indent)
{
    indent += " ";
    foreach (CompareResultElement compareResultElement in compareResultElements)
    {
        WriteResult(compareResultElement, indent);
    }
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
294 System Manual, 10/2018



Modify the following program code to compare the software of devices:

 
private static void CompareTwoOfflinePlcs(PlcSoftware plcSoftware0, PlcSoftware 
plcSoftware1) 
{ 
    if (plcSoftware0 != null && plcSoftware1 != null) 
    { 
        CompareResult compareResult = plcSoftware0.CompareTo(plcSoftware1); 
        WriteResult(compareResult.RootElement, string.Empty); 
    } 
}

Modify the following program code to compare the software of a PLC with the project library:

 
private static void ComparePlcToProjectLibrary(Project project, PlcSoftware plcSoftware) 
{ 
    if (project != null && plcSoftware != null) 
    { 
        CompareResult compareResult = plcSoftware.CompareTo(project.ProjectLibrary); 
        WriteResult(compareResult.RootElement, string.Empty); 
    } 
}

Modify the following program code to compare the software of a PLC with the global library:

 
private static void ComparePlcToGlobalLibrary(PlcSoftware plcSoftware, GlobalLibrary 
globalLibrary) 
{ 
    if (plcSoftware != null && globalLibrary != null) 
    { 
        CompareResult compareResult = plcSoftware.CompareTo(globalLibrary); 
        WriteResult(compareResult.RootElement, String.Empty); 
    } 
}

Modify the following program code to compare the software of a PLC with a master copy:

 
private static void ComparePlcToMasterCopy(Project project, PlcSoftware plcSoftware) 
{ 
    if (project != null && plcSoftware != null) 
    { 
        CompareResult compareResult = 
plcSoftware.CompareTo(project.ProjectLibrary.MasterCopyFolder.MasterCopies[0]); 
        WriteResult(compareResult.RootElement, string.Empty); 
    } 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 295



Modify the following program code to compare the software of a PLC with the software of a 
connected PLC:

 
private static void ComparePlcToOnlinePlc(PlcSoftware plcSoftware) 
{ 
    if (plcSoftware != null) 
    { 
        CompareResult compareResult = plcSoftware.CompareToOnline(); 
        WriteResult(compareResult.RootElement, string.Empty); 
    } 
}

7.18.10 Comparing PLC hardware

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● You have opened a project with your TIA Portal Openness application.
See Opening a project (Page 97)

Application
You can use the TIA Openness API to compare the hardware of two PLC devices.

Signature
Use the CompareTo method for the comparison of two hardware objects.

CompareResult CompareTo (IHardwareCompareTarget compareTarget);

Return value/parameter Function
CompareResult compare result Return the comparision result:

● FolderContainsDifferencesOwnStateDifferent: Folder 
contents have one or more differences, folder's own state 
is different

● FolderContentEqualOwnStateDifferent: Folder content is 
the same, folder's own state is different.

IHardwareCompareTarget compareTarget The compare target for which the hardware compare should 
be performed. Must not be null.

If the Parameter compareTarget is null and an attempt is made to compare the hardware will 
throw Siemens.Enginnering.EngineeringTargetInvocationExceptions.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
296 System Manual, 10/2018



Program
Modify the following program code to output the comparision result:

 
...
CompareResult compareResult = plc_1.CompareTo(plc_2); 
CompareResultState resultState = compareResult.RootElement.ComparisonResult; 
if (resultState == CompareResultState.FolderContainsDifferencesOwnStateDifferent) 
{ 
 // Folder contents have one or more differences, folder's own state is different: 
 // May occur if the plc has a different subordinate element, e.g., a local module, and 
 // the plc itself is different, e.g., in a parameter 
} 
else if (resultState == CompareResultState.FolderContentEqualOwnStateDifferent) 
{ 
 // Folder content is the same, folder's own state is different: 
 // May occur if a folder-style module, e.g., FM 351, has equal subordinate elements but 
 // the module itself is different, e.g., in a parameter 
} 
else if (resultState == CompareResultState.FolderContentsIdentical) 
{ 
 ... 
} 
...

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

7.18.11 Establishing or disconnecting the online connection to the PLC

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● All devices are enumerated.
See Accessing device items (Page 230).

Application
You can establish the online connection to a PLC, or disconnect an existing online connection. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 297



Program code
Modify the following program code to establish or disconnect the online connection to a PLC:

 
public static void SetOnlineConnection(DeviceItem deviceItem) 
{ 
    OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>(); 
    if (onlineProvider == null) { return; } 
    // Go online 
    if (onlineProvider.Configuration.IsConfigured) 
    { 
        onlineProvider.GoOnline(); 
    } 
   // Go offline 
   onlineProvider.GoOffline(); 
}

You can also establish or disconnect the online connections to all available PLCs in a project. 

 
public static void SetOnlineConnectionForAllPLCs(Project project) 
{ 
    foreach (Device device in project.Devices) 
    { 
        foreach (DeviceItem deviceItem in device.DeviceItems) 
        { 
            OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>(); 
            if (onlineProvider != null) 
            { 
                // Establish online connection to PLC: 
                onlineProvider.GoOnline();
 
                // ...
 
                // Disconnect online connection to PLC: 
                onlineProvider.GoOffline(); 
            } 
        } 
    } 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
298 System Manual, 10/2018



7.18.12 Blocks

7.18.12.1 Querying the "Program blocks" group

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● A PLC is determined in the project.

Program code
Modify the following program code to query the group "Program blocks":

 
private static void GetBlockGroupOfPLC(PlcSoftware plcsoftware)
//Retrieves the system group of a block
{
    PlcBlockSystemGroup blockGroup = plcsoftware.BlockGroup;
}

7.18.12.2 Querying the system group for system blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 299



Program code: 
Modify the following program code to determine the group created for system blocks by the 
system:

 
PlcSoftware plcSoftware = ...
foreach (PlcSystemBlockGroup systemGroup in plcSoftware.BlockGroup.SystemBlockGroups)
{
    foreach (PlcSystemBlockGroup group in systemGroup.Groups)
    {
        PlcBlockComposition pbComposition = group.Blocks;
        foreach (PlcBlock block in pbComposition)
        {
            //add your code here
        }
    }
}

7.18.12.3 Enumerating system subgroups

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
300 System Manual, 10/2018



Program code: Enumerating all system subgroups
Modify the following program code to enumerate the system subgroups of all system blocks:

 
//Retrieves the system generated group for system blocks
private static void GetSystemgroupForSystemblocks(PlcSoftware plcSoftware)
{ 
    PlcSystemBlockGroupComposition systemBlockGroups = 
plcSoftware.BlockGroup.SystemBlockGroups; 
    if (systemBlockGroups.Count != 0) 
    { 
        PlcSystemBlockGroup sbSystemGroup = systemBlockGroups[0]; 
        foreach (PlcSystemBlockGroup group in sbSystemGroup.Groups) 
        { 
            EnumerateSystemBlockGroups(group); 
        } 
    }
}
private static void EnumerateSystemBlockGroups(PlcSystemBlockGroup systemBlockGroup)
{ 
    foreach (PlcSystemBlockGroup group in systemBlockGroup.Groups) 
    { 
        // recursion EnumerateSystemBlockGroups(group); 
    }
}

Program code: Accessing a specific subgroup
Modify the following program code to access a specific subgroup:

 
private static void AccessSbGroup(PlcSystemBlockGroup systemBlockGroup)
{ 
    PlcSystemBlockGroup group1 = systemBlockGroup.Groups.Find("User group XYZ"); 
    PlcSystemBlockGroup group2 = group1.Groups.Find("User group ZYX");
}

See also
Adding an external file (Page 313)

7.18.12.4 Enumerating user-defined block groups

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● A PLC is determined in the project.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 301



Application
Subgroups are taken into account recursively for enumeration. 

Program code: Enumerating all groups
Modify the following program code to enumerate the user-defined block groups:

 
//Enumerates all block user groups including sub groups
private static void EnumerateAllBlockGroupsAndSubgroups(PlcSoftware plcsoftware)
{
    foreach (PlcBlockUserGroup blockUserGroup in plcsoftware.BlockGroup.Groups)
    {
        EnumerateBlockUserGroups(blockUserGroup);
    }
}
 
private static void EnumerateBlockUserGroups(PlcBlockUserGroup blockUserGroup)
{
    foreach (PlcBlockUserGroup subBlockUserGroup in blockUserGroup.Groups)
    {
        EnumerateBlockUserGroups(subBlockUserGroup);
        // recursion
    }
}

Program code: Accessing a group
Modify the following program code to access a selected user-defined block group:

 
//Gives individual access to a specific block user group
private static void AccessBlockusergroup(PlcSoftware plcsoftware)
{
    PlcBlockUserGroupComposition userGroupComposition = plcsoftware.BlockGroup.Groups;
    PlcBlockUserGroup plcBlockUserGroup = userGroupComposition.Find("MyUserfolder");
}

7.18.12.5 Enumerating all blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● A PLC is determined in the project.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
302 System Manual, 10/2018



Application
Targeted access to a program block is possible if its name is known. 

Program code: Enumerating all blocks
Modify the following program code to enumerate the blocks of all block groups:

 
private static void EnumerateAllBlocks(PlcSoftware plcsoftware)
//Enumerates all blocks
{
    foreach (PlcBlock block in plcsoftware.BlockGroup.Blocks)
    {
        // Do something...
    }
} 

Program code: Accessing a specific block
Modify the following program code to access a specific block:

 
private static void AccessASingleBlock(PlcSoftware plcsoftware)
//Gives individual access to a block
{
    // The parameter specifies the name of the block
    PlcBlock block = plcsoftware.BlockGroup.Blocks.Find("MyBlock");
}

7.18.12.6 Querying information of a block/user data type

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 303



Application
The TIA Portal Openness API supports the querying of the following information for program 
and data blocks and for user data types:

● Time stamp in UTC time format.
You check the following with the time stamp:

– When the block was last compiled.

– When the block was last changed.

● "Consistency" attribute 
The "Consistency" attribute is set to "True" in the following cases:

– The block has been successfully compiled.

– The block has not been changed since compilation.

– No changes that would require re-compilation have been made to external objects.

● Programming language used (program and data blocks only)

● Block number

● Block name

● Block author

● Block family

● Block title

● Block version

See also Blocks and types of the TIA Portal Openness object model (Page 56) for further 
information.

Program code
Modify the following program code to query the information listed above: 

 
private static void GetPlcBlockInformation(PlcSoftware plcSoftware)
{ 
    PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock");
    // Read information 
    DateTime compileDate = plcBlock.CompileDate; 
    DateTime modifiedDate = plcBlock.ModifiedDate; 
    bool isConsistent = plcBlock.IsConsistent; 
    int blockNumber = plcBlock.Number; 
    string blockName = plcBlock.Name; 
    ProgrammingLanguage programmingLanguage = plcBlock.ProgrammingLanguage; 
    string blockAuthor = plcBlock.HeaderAuthor; 
    string blockFamily = plcBlock.HeaderFamily; 
    string blockTitle = plcBlock.HeaderName; 
    System.Version blockVersion = plcBlock.HeaderVersion;
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
304 System Manual, 10/2018



See also
Importing configuration data (Page 417)

7.18.12.7 Setting and removing protections from a block

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Application
You can set or remove the password protection of a block via the ProtectionProvider class and 
the ProtectionProvider service. The service ProtectionProvider is accessible on blocks which 
fulfill the following conditions:

● block is know-how protectable

● block is a code block or a global DB

● block is supported or editable in the current PLC

● block is not in readonly context

● block is not know-how protected

● block is not online

● block is not a CPU-DB

● block is not of classic encryption language, ProDiag or ProDiag-OB

● block is not an encrypted imported classic block

In case the block doesn't fulfill all conditions a null reference is returned by GetService() method.

Program code: Performing know-how protection related operations
Modify the following program code:

 
PlcBlock block = ...;
 
ProtectionProvider protectionProvider = block.GetService<ProtectionProvider>();
if (protectionProvider != null)
{
    ... // perform know-how protection related operations here
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 305



Protect a block
Use the Protect() method to set the password to protect the porgramming block with.

 
void Protect(SecureString password)

Errors will occur in case

● of an attempt to protect an already protected block: An 
EngineeringTargetInvocationException will be thrown with the message "You can't protect 
an already protected object".

● of an attempt to protect with an empty string as password: An 
EngineeringTargetInvocationException will be thrown with the message "Password was 
not specified".

● of an attempt to protect a failsafe block when the failsafe-program is password protected: 
An EngineeringTargetInvocationException will be thrown.

● of an attempt to protect a failsafe block when the block is not called: An 
EngineeringTargetInvocationException will be thrown.

Unprotect a block
Use the Unprotect() method to remove the password the porgramming block is protected with.

 
void Unprotect(SecureString password)

Errors will occur in case

● of an attempt to unprotect an already unprotected block: An 
EngineeringTargetInvocationException will be thrown with the message "You can't 
unprotect an object without protection".

● of an attempt to unprotect with wrong password: An EngineeringTargetInvocationException 
will be thrown with the message "The used password was refused".

● of an attempt to protect with an empty string as password: An 
EngineeringTargetInvocationException will be thrown with the message "Password was 
not specified".

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
306 System Manual, 10/2018



Check for invalid characters
Because you can use any characters including backspace, tab etc. to protect a block with the 
Protect() method, it could be impossible to remove the protection within the TIA Portal. Since 
the passwords are submitted as SecureString, you have to check for yourself if the provided 
password has illegal characters. With the GetInvalidPasswordCharacters() method you can 
retrieve a list of invalid characters.

 
SecureString CreatePasswordString(ProtectionProvider protectionProvider, IEnumerable<char> 
contentCharacters)
{
    IList<char> invalidCharacters = protectionProvider.GetInvalidPasswordCharacters();
    SecureString password = new SecureString();
    foreach(char ch in contentCharacters)
    {
        if (!invalidCharacters.Contains(ch))
        {
            password.AppendChar(ch);
        }
        else
        {
            // at least one of the content characters is not valid
            // signal an error - e.g. throw an exception
            ...
        }
    }
    return password;
}

Errors will occur in case

● of an attempt to unprotect an already unprotected block: An 
EngineeringTargetInvocationException will be thrown with the message "You can't 
unprotect an object without protection".

● of an attempt to unprotect with wrong password: An EngineeringTargetInvocationException 
will be thrown with the message "The used password was refused".

● of an attempt to protect with an empty string as password: An 
EngineeringTargetInvocationException will be thrown with the message "Password was 
not specified".

7.18.12.8 Deleting block

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 307



Program code
Modify the following program code to delete a block:

 
//Runs through block group and deletes blocks
private static void DeleteBlocks(PlcSoftware plcsoftware)
{
    PlcBlockSystemGroup group = plcsoftware.BlockGroup;
    //  or BlockUserGroup group = ...;
    for (int i = group.Blocks.Count - 1; i >= 0; i--)
    {
        PlcBlock block = group.Blocks[i];
        if (block != null)
        {
            block.Delete();
        }
    }
}

See also
Importing configuration data (Page 417)

7.18.12.9 Creating group for blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Program code
Modify the following program code to create a group for blocks: 

 
private static void CreateBlockGroup(PlcSoftware plcsoftware)
//Creates a block group
{
    PlcBlockSystemGroup systemGroup = plcsoftware.BlockGroup; 
    PlcBlockUserGroupComposition groupComposition = systemGroup.Groups; 
    PlcBlockUserGroup myCreatedGroup = groupComposition.Create("MySubGroupName");
}

See also
Importing configuration data (Page 417)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
308 System Manual, 10/2018



7.18.12.10 Deleting group for blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Program code
Modify the following program code to delete a group for blocks: 

 
// Deletes user groups from PlcBlockSystemGroup or PlcBlockUserGroup
private static void DeleteBlockFolder(PlcSoftware plcSoftware)
{
    PlcBlockUserGroup group = plcSoftware.BlockGroup.Groups.Find("myGroup");
    //PlcBlockSystemGroup group = plcSoftware.BlockGroup;
    PlcBlockUserGroupComposition subgroups = group.Groups;
    PlcBlockUserGroup subgroup = subgroups.Find("myUserGroup");
    if (subgroup != null)
    {
        subgroup.Delete();
    }
}

See also
Importing configuration data (Page 417)

7.18.12.11 Accessing attributes of all blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
User can set the attributes applicable for all blocks using SetAttribute() method. The following 
code examples were given based on the two attributes AutoNumber and Number (Refer 
Exporting blocks  (Page 486) for all applicable attributes of blocks).

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 309



Program code:

 
...
PlcBlockGroup blockFolder = YourUtilities.GetFolder();
var block = blockFolder.Blocks.Find("Block_1");
 if ((bool)block.GetAttribute(“AutoNumber”)==true)
   {
      block.SetAttribute("AutoNumber",false);
   }
 block.SetAttribute("Number",2);
...

7.18.12.12 Creating a ProDiag-FB

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
Openness user can use the PLCBlock composition’s create action with the following 
parameters to create ProDiag FB.

1. Name

2. Auto number flag 

3. Number (ignore in case of “auto number flag” is true) 

4. Programming language 

● If the user invoke create action with ProDiag programming language, then a new FB will 
be created without IDB.

● If user invoke create action with IDB of ProDiag, than IDB of ProDiag will be created. 

● In any other not supported case, a recoverable exception is thrown.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
310 System Manual, 10/2018



Program code: Creating a ProDiag-FB

 
...
PlcBlockGroup blockFolder = plc.BlockGroup;
PlcBlockComposition blockComposition = blockFolder.Blocks;
if (blockComposition != null)
  {
  string fbName = "ProDiag_Block";
  bool isAutoNumber = true;
  int number = 1;
  var progLang = ProgrammingLanguage.ProDiag;
  FB block = blockComposition.CreateFB(fbName, isAutoNumber, number, progLang);
  string iDBName="ProDiag_IDB";
  string instanceOfName = fbName;
  InstanceDB iDbBlock = blockComposition.CreateInstanceDB(iDBName, isAutoNumber, number, 
instanceOfName);
  }
...

See also
Accessing supervisions and properties of ProDiag-FB (Page 311)

7.18.12.13 Accessing supervisions and properties of ProDiag-FB

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Accessing supervisions of User-FB
Openness user can access the supervisions at FB by using the following code snippet. Every 
FB has the list of supervisions inclduing Classic and Plus PLCs. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 311



Program code: Accessing supervisions of ProDiag-FB

 
…
PlcBlock iDB = plc.BlockGroup.Blocks.Find("FB_Block_DB");
string fbName = iDB.GetAttribute("InstanceOfName").ToString();
FB fb = (FB)plc.BlockGroup.Blocks.Find(fbName);
if (fb.Supervisions.Count > 0)Console.WriteLine("Contains supervisions");
else
Console.WriteLine("Does not contains supervisions");
…
 

Accessing the attributes of FB block
Openness user can set AssignedProDiagFB at InstanceDB via the attribute 
AssignedProDiagFB (Refer Exporting blocks  (Page 486)). The user can use  GetAttribute(), 
GetAttributes() and SetAttribute() method for accessing the attributes. The user cannot use 
SetAttributes() method for setting the attributes for more than one attribute. TIA Portal 
Openness throws an exception for using SetAttributes() method.

If the attribute is not supported (in the given block), recoverable user exception is thrown. If 
there is no assigned ProDiag-Block set, GetAttribute() returns an empty string.

Program code: Getting and setting the assigned ProDiag-FB at and IDB

 
...
 PlcBlockGroup blockFolder = plc.BlockGroup; 
 PlcBlock instanceDB = blockFolder.Blocks.Find("IDB");
 PlcBlock plcProdiag = blockFolder.Blocks.Find("block_Prodiag");
 instanceDB.SetAttribute("AssignedProDiagFB", plcProdiag.Name);
 var assignedProDiagFB = instanceDB.GetAttribute("AssignedProDiagFB");
...

See also
Creating a ProDiag-FB (Page 310)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
312 System Manual, 10/2018



7.18.12.14 Reading ProDiag-FB blocks and attributes

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● You have opened a project via a TIA Portal Openness application
See Opening a project (Page 97)

Application
You can use the TIA Portal Openness to read the ProDiag function block version, and other 
ProDiag related attribute values. You can use GetAttribute ( ) and GetAttributes ( ) methods 
to read the ProDiag FBs language specific attributes present.

Attributes
The following attributes are supported by ProDiag-FB in Openness:

Attributes Type
ProDiagVersion Version
InitialValueAcquisition bool
UseCentralTimeStamp bool

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

7.18.12.15 Adding an external file

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● You have opened a project via a TIA Portal Openness application: 
See Opening a project (Page 97)

Application
You can add an external file to a PLC. This external file is stored in the file system under the 
defined path.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 313



The following formats are supported:

● STL

● SCL

● DB

● UDT

Note

Accessing groups in the "External source files" folder is not supported. 

An exception is thrown if you specify a file extension other than *.AWL, *.SCL, *.DB or *.UDT.

Program code
Modify the following program code to create an external file in the "External source files" folder 
from a block. 

 
private static void CreateBlockFromFile(PlcSoftware plcSoftware)
// Creates a block from a AWL, SCL, DB or UDT file
{
    PlcExternalSource externalSource = 
plcSoftware.ExternalSourceGroup.ExternalSources.CreateFromFile("SomeBlockNameHere","SomePa
thHere");
}

7.18.12.16 Generate source from block

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Application
The TIA Portal Openness API interface supports the generation of sources in UTF-8 from STL 
or SCL blocks, data blocks and PLCTypes (user data types). To generate a source file of a 
block, invoke the method GenerateSource on the PlcExternalSourceSystemGroup 
instance.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
314 System Manual, 10/2018



The scale of the generated source file depends on the generation option of this function:

● GenerateOptions.None 
Generate source from provided blocks only.

● GenerateOptions.WithDependencies 
Generate source including all dependent objects.

The interface Siemens.Engineering.SW.ExternalSources.IGenerateSource 
indicates that a source can be generated. 

Only the STL and SCL programming languages are supported for blocks. Exceptions are 
thrown in the following cases: 

● Programming language is not STL or SCL

● A file of the same name already exists at the target location

Only the "*.udt" file extension is supported for user data types. Exceptions are thrown in the 
following cases:

● The file extension is not "*.db" for DBs

● The file extension is not "*.awl" for STL blocks

● The file extension is not "*.scl" for SCL blocks

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 315



Program code
Modify the following program code to generate source files from blocks and types:

 
//method declaration
...
PlcExternalSourceSystemGroup.GenerateSource
 
(IEnumerable<Siemens.Engineering.SW.ExternalSources.IGenerateSource> 
plcBlocks, FileInfo sourceFile, GenerateOptions generateOptions);
...
//examples
...
var blocks = new List<PlcBlock>(){block1};
var fileInfo = new FileInfo(@"C:\temp\SomePathHere.scl");
 
PlcExternalSourceSystemGroup systemGroup = ...;
 
systemGroup.GenerateSource(blocks, fileInfo, GenerateOptions.WithDependencies);
 
// exports all blocks and with all their dependencies(e.g. called blocks, used DBs or UDTs)
// as ASCII text into the provided source file.
...
or
..
var types = new List<PlcType>(){udt1};
var fileInfo = new FileInfo(@"C:\temp\SomePathHere.udt");
 
PlcExternalSourceSystemGroup systemGroup = ...;
 
systemGroup.GenerateSource(types, fileInfo, GenerateOptions.WithDependencies );
 
// exports all data types and their used data types into the provided source file.
...
 

See also
Importing configuration data (Page 417)

7.18.12.17 Generating blocks from source

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● PLC is not online.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
316 System Manual, 10/2018



Application
You can generate blocks from all external files in the "External source files" group. Only 
external files with the format ASCII are supported.

Note

Access to groups in the "External source files" folder is not supported.

Existing blocks are overwritten. 

An Exception is thrown if an error occurs during the calling. The first 256 characters of each 
error message are contained in the notification of the Exception. The project is reset to the 
processing state prior to the execution of the GenerateBlocksFromSource method. 

Program code
Modify the following program code to generate blocks from all external files in the "External 
source files" group.

 
// Creates a block from an external source file
PlcSoftware plcSoftware = ...;
foreach (PlcExternalSource plcExternalSource in 
plcSoftware.ExternalSourceGroup.ExternalSources)
{ 
    plcExternalSource.GenerateBlocksFromSource();
}

7.18.12.18 Deleting user data type

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 317



Program code
Modify the following program code to delete a user type:

 
private static void DeleteUserDataType(PlcSoftware plcSoftware) 
{ 
    PlcTypeSystemGroup typeGroup = plcSoftware.TypeGroup; 
    PlcTypeComposition dataTypes = typeGroup.Types; 
    PlcType dataType = dataTypes.Find("DataTypeName"); 
    if (dataType != null) 
    { 
        dataType.Delete(); 
    } 
}

See also
Importing configuration data (Page 417)

7.18.12.19 Deleting an external file

Requirement
● The TIA Portal Openness application is connected to the TIA Portal

see Connecting to the TIA Portal (Page 74)

● You have opened a project via a TIA Portal Openness application: 
see Opening a project (Page 97)

● PLC is not online

Program code
Modify the following program code to delete an external file in the "External source files" group. 

Note

Access to groups in the "External source files" group is not supported. 

 
// Deletes an external source file
private static void DeleteExternalSource(PlcSoftware plcSoftware)
{ 
    PlcExternalSource externalSource = 
plcSoftware.ExternalSourceGroup.ExternalSources.Find("myExternalsource"); 
    externalSource.Delete();
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
318 System Manual, 10/2018



7.18.12.20 Starting the block editor

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● Instance of the TIA Portal is opened with user interface.

Program code
Modify the following program code to start the associated editor for an object reference of the 
type PlcBlock in the TIA Portal instance: 

 
//Opens a block in a block editor
private static void StartBlockEditor(PlcSoftware plcSoftware)
{ 
    PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock"); 
    plcBlock.ShowInEditor();
}

Modify the following program code to open the associated editor for an object reference of the 
type PlcType in the TIA Portal instance: 

 
//Opens a udt in udt editor
private static void StartPlcTypEditor(PlcSoftware plcSoftware)
{ 
    PlcTypeComposition types = plcSoftware.TypeGroup.Types; 
    PlcType udt = types.Find("my_udt"); 
    udt.ShowInEditor();
}

See also
Importing configuration data (Page 417)

7.18.13 Technology objects

7.18.13.1 Overview of functions for technology objects
TIA Portal Openness supports a selection of technology object functions for defined tasks that 
you can call outside the TIA Portal by means of the Public API.

You get the code components that have to be adapted for each task.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 319



Functions
The following functions are available for technology objects:

● Querying the composition of technology objects (Page 323)

● Creating technology object (Page 323)

● Deleting technology object (Page 324)

● Compiling technology object (Page 325)

● Enumerating technology object (Page 326)

● Finding technology object (Page 327)

● Enumerating parameters of technology object (Page 328)

● Finding parameters of technology object (Page 328)

● Reading parameters of technology object (Page 329)

● Writing parameters of technology object (Page 330)

See also
Standard libraries (Page 40)

Applications (Page 34)

TIA Portal Openness object model (Page 51)

7.18.13.2 Overview of technology objects and versions

Technology objects 
The following table shows the available technology objects in the Public API.

CPU FW Technology object Version of technology ob‐
ject

S7-1200 ≥ V4.2 TO_PositioningAxis V6.0
TO_CommandTable
PID_Compact V2.3
PID_3Step
PID_Temp V1.1

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
320 System Manual, 10/2018



CPU FW Technology object Version of technology ob‐
ject

S7-1500 < V2.0 High_Speed_Counter V3.0
SSI_Absolute_Encoder V2.0

≥ V2.0 TO_SpeedAxis ≥ V3.0
TO_PositioningAxis
TO_ExternalEncoder
TO_SynchronousAxis
TO_OutputCam
TO_CamTrack
TO_MeasuringInput
TO_Cam (S7-1500T)1)

TO_Kinematics (S7-1500T) V4.0
High_Speed_Counter ≥ V3.0
SSI_Absolute_Encoder ≥ V2.0
PID_Compact ≥ V2.3
PID_3Step V2.3
PID_Temp V1.1
CONT_C
CONT_S
TCONT_CP
TCONT_S

S7-300/400 Any CONT_C V1.1
CONT_S
TCONT_CP
TCONT_S
TUN_EC2)

TUN_ES2)

PID_CP2) V2.0
PID_ES2)

AXIS_REF V2.0

1) The technology object does not support the following Openness functions: Writing parameters.
2) The technology object does not support the following Openness functions: Enumerating parameters, 
Finding parameters, Reading parameters, Writing parameters.

Note
S7-1500 Motion Control

The technology objects TO_OutputCam, TO_CamTrack and TO_MeasuringInput on S7-1500 
are handled separately.

You can find further information in section "S7-1500 Motion Control (Page 339)".

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 321



7.18.13.3 Overview of data types
The data types of technology object parameters in TIA Portal are mapped to C# data types in 
the Public API.

Data types
The following table shows the data type mapping:

Format Data type in TIA Portal Data type in C#
Binary numbers Bool bool
 BBool bool
 Byte byte
 Word ushort
 DWord uint
 LWord ulong
Integers SInt sbyte
 Int short
 Dint int
 LInt long
 USInt byte
 UInt ushort
 UDint uint
 ULInt ulong
Floating-point numbers Real float
 LReal double
 Time double
Character strings Char char
 WChar char
 String string
 WString string
Hardware data types HW_* ushort
 Block_* ushort

* Placeholder for device type extension in TIA Portal project

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
322 System Manual, 10/2018



7.18.13.4 Querying the composition of technology objects

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

Program code
Modify the following program code to get all technology objects of a PLC:

 
// Retrieves all technology objects of a PLC
private static void GetTechnologicalObjectsOfPLC(PlcSoftware plcSoftware)
{
    TechnologicalInstanceDBGroup technologicalObjectGroup = 
plcSoftware.TechnologicalObjectGroup;
    TechnologicalInstanceDBComposition technologicalObjects = 
technologicalObjectGroup.TechnologicalObjects;
}

See also
Standard libraries (Page 40)

7.18.13.5 Creating technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

Application
Only technology objects that are listed in the section Overview of technology objects and 
versions (Page 320) can be created. An exception is thrown for unsupported technology 
objects or invalid parameters.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 323



Note
S7-1500 Motion Control

The technology objects TO_OutputCam, TO_CamTrack and TO_MeasuringInput on S7-1500 
are handled separately.

You can find further information in section "S7-1500 Motion Control (Page 339)".

Program code
Modify the following program code to create a technology object and add it to an existing PLC:

 
// Create a technology object and add to technology object composition
private static void CreateTechnologicalObject(PlcSoftware plcSoftware)
{
    TechnologicalInstanceDBComposition technologicalObjects = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects;
 
    string nameOfTO = "PID_Compact_1"; // How the technology object should be named
    string typeOfTO = "PID_Compact"; // How the technology object type is called, e.g. in
    // "Add new technology object"-dialog
    Version versionOfTO = new Version("2.3"); // Version of technology object
    TechnologicalInstanceDB technologicalObject = technologicalObjects.Create(nameOfTO, 
typeOfTO, versionOfTO);
}

Possible values and combinations of name, type and version of the technology object can be 
found in the section Overview of technology objects and versions (Page 320).

See also
Standard libraries (Page 40)

7.18.13.6 Deleting technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● The technology object exists.
See Finding technology object (Page 327)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
324 System Manual, 10/2018



Program code
Modify the following program code to delete a technology object:

 
// Delete a technology object from DB composition and from PLC
private static void DeleteTechnologicalObject(TechnologicalInstanceDB technologicalObject)
{
    technologicalObject.Delete();
}

See also
Standard libraries (Page 40)

7.18.13.7 Compiling technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● The technology object exists.
See Creating technology object (Page 323)

Program code: Compiling a technology object 
Modify the following program code to compile a technology object:

 
// Compile a single technology object
private static void CompileSingleTechnologicalObject(TechnologicalInstanceDB 
technologicalObject)
{
    ICompilable singleCompile = technologicalObject.GetService<ICompilable>();
    CompilerResult compileResult = singleCompile.Compile();
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 325



Program code: Compiling the technology object group 
Modify the following program code to compile the technology object group:

 
// Compile technology object group
private static void CompileTechnologicalObjectGroup(PlcSoftware plcSoftware)
{
    TechnologicalInstanceDBGroup technologicalObjectGroup = 
plcSoftware.TechnologicalObjectGroup;
    ICompilable groupCompile = technologicalObjectGroup.GetService<ICompilable>();
    CompilerResult compileResult = groupCompile.Compile();
}

Compile results
Technology objects compilation results are stored recursively.

You can find an example of recursive evaluation of compilation results in the section "Compiling 
a project (Page 116)".

See also
Standard libraries (Page 40)

7.18.13.8 Enumerating technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
326 System Manual, 10/2018



Program code
Modify the following program code to enumerate technology objects:

 
// Enumerate all technology objects
private static void EnumerateTechnologicalObjects(PlcSoftware plcSoftware)
{
    TechnologicalInstanceDBComposition technologicalObjects = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects;
    foreach (TechnologicalInstanceDB technologicalObject in technologicalObjects)
    {
        // Do something ...
    }
}

See also
Standard libraries (Page 40)

7.18.13.9 Finding technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

Program code
Modify the following program code to find a specific technology object:

 
// Find a specific technology object by its name
private static void FindTechnologicalObject(PlcSoftware plcSoftware)
{
    TechnologicalInstanceDBComposition technologicalObjects = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects;
    string nameOfTO = "PID_Compact_1";
    TechnologicalInstanceDB technologicalObject = technologicalObjects.Find(nameOfTO);
}

See also
Standard libraries (Page 40)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 327



7.18.13.10 Enumerating parameters of technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● A technology object exists.
See Creating technology object (Page 323) or Finding parameters of technology object 
(Page 328)

● The technology object (Page 320) supports this function.

Program code
Modify the following program code to enumerate parameters of a specific technology object:

 
// Enumerate parameters of a technology object
private static void EnumerateParameters(PlcSoftware plcSoftware)
{
    string nameOfTO = "PID_Compact_1";
    TechnologicalInstanceDB technologicalObject = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects.Find(nameOfTO);
 
    foreach (TechnologicalParameter parameter in technologicalObject.Parameters)
    {
        // Do something ...
    }
}

See also
Standard libraries (Page 40)

Finding technology object (Page 327)

7.18.13.11 Finding parameters of technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
328 System Manual, 10/2018



● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● A technology object exists.
See Creating technology object (Page 323)

● The technology object (Page 320) supports this function.

Program code
Modify the following program code to find parameters of a specific technology object:

 
// Find parameters of a technology object
private static void FindParameterOfTechnologicalObject(PlcSoftware plcSoftware)
{
    string nameOfTO = "PID_Compact_1";
    TechnologicalInstanceDB technologicalObject = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects.Find(nameOfTO);
 
    string nameOfParameter = "Config.InputUpperLimit";
    TechnologicalParameter parameter = 
technologicalObject.Parameters.Find(nameOfParameter);
}

Parameters of different technology objects
Parameters of S7-1200 Motion Control (Page 331)

Parameters of S7-1500 Motion Control (Page 339)

Parameters of PID Control (Page 357)

Parameters of Counting (Page 358)

Parameters of Easy Motion Control (Page 358)

See also
Standard libraries (Page 40)

Finding technology object (Page 327)

7.18.13.12 Reading parameters of technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 329



● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● A technology object exists.
See Creating technology object (Page 323)

● The technology object (Page 320) supports this function.

Program code
Modify the following program code to read parameters of a specific technology object:

 
// Read parameters of a technology object
private static void ReadParameterOfTechnologicalObject(PlcSoftware plcSoftware)
{
    string nameOfTO = "PID_Compact_1";
    TechnologicalInstanceDB technologicalObject = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects.Find(nameOfTO);
 
    string nameOfParameter = "Config.InputUpperLimit";
    TechnologicalParameter parameter = 
technologicalObject.Parameters.Find(nameOfParameter);
 
    // Read from parameter
    string name = parameter.Name;
    object value = parameter.Value;
}

See also
Standard libraries (Page 40)

Finding technology object (Page 327)

7.18.13.13 Writing parameters of technology object

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● A PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● A technology object exists.
See Creating technology object (Page 323)

● The technology object (Page 320) supports this function.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
330 System Manual, 10/2018



Exception
An EngineeringException is thrown if:

● You set a new value for a parameter that does not provide write access.

● A new value for a parameter is of an unsupported type.

Program code
Modify the following program code to write parameters of a specific technology object:

 
// Write parameters of a technology object
private static void WriteParameterOfTechnologicalObject(PlcSoftware plcSoftware)
{
    string nameOfTO = "PID_Compact_1";
    TechnologicalInstanceDB technologicalObject = 
plcSoftware.TechnologicalObjectGroup.TechnologicalObjects.Find(nameOfTO);
 
    string nameOfParameter = "Config.InputUpperLimit";
    TechnologicalParameter parameter = 
technologicalObject.Parameters.Find(nameOfParameter);
 
    // Write to parameter if the value is writable
    object value = 3.0;
    parameter.Value = value;
}

Parameters of different technology objects
Parameters of S7-1200 Motion Control (Page 331)

Parameters of S7-1500 Motion Control (Page 339)

Parameters of PID Control (Page 357)

Parameters of Counting (Page 358)

Parameters of Easy Motion Control (Page 358)

See also
Standard libraries (Page 40)

Finding technology object (Page 327)

7.18.13.14 S7-1200 Motion Control

Changing version of openness engineering library
If you use "Openness\PublicAPI\V14 SP1\Siemens.Engineering.dll" with TIA Portal V15, your 
existing openness application will still work. 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 331



If you change to "Openness\PublicAPI\V15\Siemens.Engineering.dll" with TIA Portal V15, you 
have to adapt all accesses to array tags for S7-1200 Motion Control.

The affected arrays for TO_PositioningAxis are listed in the following table:

Access in Openness < V15 Access in Openness ≥ V15
_Sensor.Sensor[1].<all tags> _Sensor[1].<all tags>
ControlPanel.Input.Command.Command[1].<all 
tags>

ControlPanel.Input.Command[1].<all tags>

ControlPanel.Output.Command.Command[1].<all 
tags>

ControlPanel.Output.Command[1].<all tags>

Internal.Internal[n].<all tags> Internal[n].<all tags>
Sensor.Sensor[1].<all tags> Sensor[1].<all tags>
StatusSensor.StatusSensor[1].<all tags> StatusSensor[1].<all tags>

The affected arrays for TO_CommandTable are listed in the following table:

Access in Openness < V15 Access in Openness ≥ V15
Command.Command[n].<all tags> Command[n].<all tags>

Connecting PROFIdrives by hardware address

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

● A PROFIdrive is available in the project and connected with the S7-1200 PLC.

● The technology object exists.
See Creating technology object (Page 323).

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
332 System Manual, 10/2018



Program code
Modify the following program code to connect a PROFIdrive by hardware address  to the 
"TO_PositioningAxis".

 
//An instance of the technology object axis is already available in the program before 　 
private static void ConnectingDrive(TechnologicalInstanceDB technologicalObject) 
{
    //Set axis to PROFIdrive mode  
    technologicalObject.Parameters.Find("Actor.Type").Value = 1; 
 
    //Set axis to drive mode  
    technologicalObject.Parameters.Find("_Actor.Interface.DataConnection").Value = 0;
 
    //Set connection to adress of drive. The output will be set automatically.  
    technologicalObject.Parameters.Find("_Actor.Interface.ProfiDriveIn").Value = "%I68.0";
    technologicalObject.Parameters.Find("Sensor[1].Interface.Number").Value = 1;
    // 1 = Encoder1, 2 = Encoder2;
}
 

Connecting encoders for PROFIdrives by hardware address

Requirement

● The Openness application is connected to the TIA Portal.
See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

● A PROFIdrive is available in the project and connected with the S7-1200 PLC. 

● The technology object exists.
See Creating technology object (Page 323).

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 333



Program code
Modify the following program code to connect an encoder by hardware address  to the 
"TO_PositioningAxis":

 
//An instance of the technology object axis is already available in the program before
private static void ConnectingEncoder(TechnologicalInstanceDB technologicalObject)
{
    //Set axis to PROFIdrive mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 1;
 
    //Set the encoder mode 
    technologicalObject.Parameters.Find("_Sensor[1].Interface.EncoderConnection").Value = 
7;
 
    //Set axis to use PROFINET encoder
    technologicalObject.Parameters.Find("_Sensor[1].Interface.DataConnection").Value = 0;
 
    //Set connection to adress of drive. The output will be set automatically.
    technologicalObject.Parameters.Find("_Sensor[1].Interface.ProfiDriveIn").Value = 
"%I68.0";
    technologicalObject.Parameters.Find("Sensor[1].Interface.Number").Value = 1;
    // 1 = Encoder1, 2 = Encoder2;
}
 

Connecting analog drives by hardware address

Requirement

● The Openness application is connected to the TIA Portal.
See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

● An analog drive is available in the project and connected with the S7-1200 PLC. 

● The technology object exists.
See Creating technology object (Page 323).

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
334 System Manual, 10/2018



Program code
Modify the following program code to connect an analog drive by hardware address to the 
"TO_PositioningAxis":

 
//An instance of the technology object axis is already available in the program before 　 
private static void ConnectingEncoder(TechnologicalInstanceDB technologicalObject)  
{
    //Set axis to analog drive mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 0;
 
    //Set axis to drive mode 
    technologicalObject.Parameters.Find("_Actor.Interface.DataConnection").Value = 0;
 
    //Set connection to analog adress of drive
    technologicalObject.Parameters.Find("_Actor.Interface.Analog").Value = "%QW64";
}
 

Connecting encoders for analog drives by hardware address

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

● An analog drive is available in the project and connected with the S7-1200 PLC.

● The technology object exists.
See Creating technology object (Page 323).

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 335



Program code
Modify the following program code to connect an encoder by hardware address to the 
"TO_PositioningAxis":

 
//An instance of the technology object axis is already available in the program before 
//Connecting by High Speed Counter mode
private static void ConnectingEncoder(TechnologicalInstanceDB technologicalObject)
{
    //Set axis to analog drive mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 0;
 
    //Set encoder for high-speed counter mode
    technologicalObject.Parameters.Find("_Sensor[1].Interface.EncoderConnection").Value = 
4;
    technologicalObject.Parameters.Find("_Sensor[1].Interface.HSC.Name").Value = "HSC_1";
}
 
    //An instance of the technology object axis is already available in the program before 
    //Connecting by PROFINET/PROFIBUS telegram
    private static void ConnectingEncoder(TechnologicalInstanceDB
    technologicalObject)
{
    //Set axis to analog drive mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 0;
    //Set encoder for PROFINET/PROFIBUS mode
    technologicalObject.Parameters.Find("_Sensor[1].Interface.EncoderConnection").Value = 
7;
    technologicalObject.Parameters.Find("_Sensor[1].Interface.DataConnection").Value = 
"Encoder";
    technologicalObject.Parameters.Find("_Sensor[1].Interface.ProfiDriveIn").Value = 
"%I68.0";
    technologicalObject.Parameters.Find("Sensor[1].Interface.Number").Value = 1;
    // 1 = Encoder1, 2 = Encoder2;
}
 

Connecting drives by data block

Requirement

● The Openness application is connected to the TIA Portal.
See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
336 System Manual, 10/2018



● A data block is available in the project and set to "Not optimized".
For the PROFIdrive axis type, the data block contains a tag of the type e. g. PD_TEL3.
For an analog drive, the data block contains a tag with the word data type.

● The technology object exists.
See Creating technology object (Page 323).

Program code
Modify the following program code to connect a PROFIdrive by data block to the 
"TO_PositioningAxis".

 
//An instance of the technology object axis is already available in the program before 
private static void ConfigureDrivewithDataBlock(TechnologicalInstanceDB 
technologicalObject)  
{
    //Set axis to PROFIdrive mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 1;
 
    //Set axis to data block mode
    technologicalObject.Parameters.Find("_Actor.Interface.DataConnection").Value = 1;
 
    //Set the tag in the data block
    technologicalObject.Parameters.Find("_Actor.Interface.DataBlock").Value = 
"Data_block_1.Member_of_type_PD_TEL3";
}
 

Program code
Modify the following program code to connect an analog drive by data block to the 
"TO_PositioningAxis".

 
//An instance of the technology object axis is already available in the program before
//Connecting an analog drive with data block.
private static void ConfigureDrivewithDataBlock(TechnologicalInstanceDB 
technologicalObject)
{
    //Set axis to analog mode
    technologicalObject.Parameters.Find("Actor.Type").Value = 0;
 
    //Set the tag in the data block
    technologicalObject.Parameters.Find("_Actor.Interface.Analog").Value = 
"Data_block_1.Static_1";
}
 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 337



Connecting encoders by data block

Requirement

● The Openness application is connected to the TIA Portal.
See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1200 PLC is determined in the project.

● A data block is available in the project and set to "Not optimized".
In case of PROFIdrive the data block contains a tag of the type e. g. PD_TEL3 

● The technology object exists.
See Creating technology object (Page 323).

Program code
Modify the following program code to connect an encoder by data block:

 
//An instance of the technology object axis is already available in the program before 
private static void ConfigureEncoderwithDataBlock(TechnologicalInstanceDB 
technologicalObject)
{
    //Set axis to PROFIdrive mode depending by axis type. 1 = PROFIdrive, 0 = Analog Drive.
    technologicalObject.Parameters.Find("Actor.Type").Value = 1;
 
    //Set the encoder mode
    technologicalObject.Parameters.Find("_Sensor[1].Interface.EncoderConnection").Value = 
7;
 
    //Set axis to data block mode
    technologicalObject.Parameters.Find("_Sensor[1].Interface.DataConnection").Value = 1;
 
    //Set the tag in the data block. For PD_TEL3 and PD_TEL4 "Encoder1" or "Encoder2".
    technologicalObject.Parameters.Find("_Sensor[1].Interface.DataBlock").Value = 
"Data_block_1.Member_of_Type_PD_TEL3";
}
 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
338 System Manual, 10/2018



Parameters for TO_PositioningAxis and TO_CommandTable
You can find a list of all available variables in SIMATIC STEP 7 S7-1200 Motion Control function 
manual on the internet (https://support.industry.siemens.com/cs/ww/en/view/109754206).

Note

In TIA Portal in the Parameter view of the technology object configuration you can find the 
column "Name in Openness".

7.18.13.15 S7-1500 Motion Control

Creating and finding TO_OutputCam, TO_CamTrack and TO_MeasuringInput

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_PositioningAxis, TO_SynchronousAxis or 
TO_ExternalEncoder is determined in the project.

Application
The output cam, cam track and measuring input technology objects are associated with 
positioning axis, synchronous axis or external encoder technology objects. In order to access 
an output cam, cam track or measuring input technology object you use the service 
OutputCamMeasuringInputContainer.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 339

https://support.industry.siemens.com/cs/ww/en/view/109754206


Program code: Creating and finding output cam, cam track and measuring input technology objects
Modify the following program code to create or find an output cam, cam track or measuring 
input technology object:

 
/*An instance of the technology object under which the TO_OutputCam, TO_CamTrack or 
TO_MeasuringInput should be created is already available in the program before*/
private static void CreateFind_OutputcamCamtrackMeasuringinput(TechnologicalInstanceDB 
technologyObject)
{
    //Retrieve service OutputCamMeasuringInputContainer
    OutputCamMeasuringInputContainer container =
    technologyObject.GetService<OutputCamMeasuringInputContainer>();
    //Get access to TO_OutputCam / TO_CamTrack container
    TechnologicalInstanceDBComposition outputcamCamtrackContainer = container.OutputCams;
 
    //Find technology object TO_OutputCam or TO_CamTrack
    TechnologicalInstanceDB outputCam = outputcamCamtrackContainer.Find("OutputCamName");
    TechnologicalInstanceDB camTrack = outputcamCamtrackContainer.Find("CamTrackName");
 
    //Create new technology object TO_OutputCam or TO_CamTrack
    TechnologicalInstanceDB newOutputCam =
    outputcamCamtrackContainer.Create("NewOutputCamName", "TO_OutputCam",
    new Version(3, 0));
    TechnologicalInstanceDB newCamTrack =
    outputcamCamtrackContainer.Create("NewCamTrackName", "TO_CamTrack", new Version(3, 0));
 
    //Get access to TO_MeasuringInput container
    TechnologicalInstanceDBComposition measuringInputContainer = container.MeasuringInputs;
 
    //Find technology object TO_MeasuringInput
    TechnologicalInstanceDB measuringInput =
    measuringInputContainer.Find("MeasuringInputName");
 
    //Create new technology object TO_MeasuringInput
    TechnologicalInstanceDB newMeasuringInput =
    measuringInputContainer.Create("NewMeasuringInput", "TO_MeasuringInput",
    new Version(3, 0));
}

Parameters of S7-1500 Motion Control
Most parameters of S7-1500 Motion Control technology objects are directly mapped to data 
block tags, but there are also some additional parameters that do not map directly to data 
blocks. In Openness the directly mapped parameters have the same order as in the "data 
navigation" in the parameter view of the technology object. After the directly mapped 
parameters the additional parameters follow in order of the table.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
340 System Manual, 10/2018



Parameters mapped directly to technology object data block tags
You have access to all technology object data block tags as described in general except of:

● Read-only tags

● Tags of data type VREF

● Tags of "InternalToTrace" structure

● Tags of "ControlPanel" structure

You can find additional information about the directly mapped parameters in the appendix of:

● SIMATIC S7-1500 Motion Control function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749262 (https://
support.industry.siemens.com/cs/ww/en/view/109749262)

● SIMATIC S7-1500T Motion Control function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749263 (https://
support.industry.siemens.com/cs/ww/en/view/109749263)

● SIMATIC S7-1500T Kinematics Functions function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749264 (https://
support.industry.siemens.com/cs/ww/en/view/109749264)

Some technology parameters that map to read-only data block tags need to be made writeable 
in the PublicAPI. The allowed values are the same ones as for the underlying data block tags. 
The affected parameters are listed in the following tables:

Name in Openness Data type TO_SpeedAxis TO_Positionin‐
gAxis

TO_Synchro‐
nousAxis

TO_ExternalEn‐
coder

Actor.Type int X X X -
Actor.Interface.EnableDri‐
veOutput

bool X X X -

Actor.Interface.DriveRea‐
dyInput

bool X X X -

Actor.DataAdaptionOffline bool X X X -
VirtualAxis.Mode uint X X X -
Sensor[n].DataAdaptionOff‐
line1)

bool - X X -

Sensor[n].Existent1) bool - X X -
Sensor[n].Interface.Number1) uint - X X -
Sensor[n].Type1) int - X X -
Sensor.DataAdaptionOffline bool - - - X
Sensor.Interface.Number uint - - - X
Sensor.Type int - - - X

Name in Openness Data type TO_OutputCam TO_MeasuringInput TO_Kinematics2)

Interface.LogicOperation int X - -
Parameter.MeasuringInput‐
Type

int - X -

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 341

https://support.industry.siemens.com/cs/ww/en/view/109749262
https://support.industry.siemens.com/cs/ww/en/view/109749262
https://support.industry.siemens.com/cs/ww/en/view/109749263
https://support.industry.siemens.com/cs/ww/en/view/109749263
https://support.industry.siemens.com/cs/ww/en/view/109749264
https://support.industry.siemens.com/cs/ww/en/view/109749264


Name in Openness Data type TO_OutputCam TO_MeasuringInput TO_Kinematics2)

Kinematics.TypeOfKinemat‐
ics

int - - X

MotionQueue.MaxNumber‐
OfCommands

int - - X

1) S7-1500 PLC: n=1; S7-1500T PLC: 1≤n≤4

2) S7-1500T PLC

Parameters not mapped directly to technology object data block tags
For S7-1500 Motion Control technology objects the following additional parameters which do 
not directly map to data block tags are available:

Name in Openness Name in func‐
tion view

Possible value Data type in 
Openness

TO_SpeedAx‐
is

TO_Positionin‐
gAxis
TO_Synchro‐
nousAxis

TO_External‐
Encoder

_Properties.Motion‐
Type

Axis type re‐
spectively 
"Technologi‐
cal unit of the 
position"

0: Linear
1: Rotary

int - X X

_Units.LengthUnit Position units See tag 
Units.Length‐
Unit3)

uint - X X

_Units.VelocityUnit Velocity units See tag 
Units.Veloci‐
tyUnit3)

uint X X X

_Units.TorqueUnit Torque units See tag 
Units.Tor‐
queUnit3)

uint X X -

_Units.ForceUnit Force units See tag 
Units.ForceU‐
nit3)

uint - X -

_Actor.Interface.Tele‐
gram

Drive telegram Telegram 
number4)

uint X X -

_Actor.Interface.Ena‐
bleDriveOutputAd‐
dress

Drive output 
address

PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

X X -

_Actor.Interface.Driv‐
eReadyInputAddress

Drive ready in‐
put address

PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

X X -

_Sensor[n].Inter‐
face.Telegram5)

Encoder tele‐
gramm

Telegram 
number4)

uint - X -

_Sensor[n].Active‐
Homing.DigitalInpu‐
tAddress5)

Digital input PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

- X -

_Sensor[n].Passive‐
Homing.DigitalInpu‐
tAddress5)

Digital input PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

- X -

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
342 System Manual, 10/2018



Name in Openness Name in func‐
tion view

Possible value Data type in 
Openness

TO_SpeedAx‐
is

TO_Positionin‐
gAxis
TO_Synchro‐
nousAxis

TO_External‐
Encoder

_PositionLi‐
mits_HW.MinSwitch‐
Address

Hardware low 
limit switch in‐
put

PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

- X -

_PositionLi‐
mits_HW.MaxSwitch‐
Address

Hardware high 
limit switch in‐
put

PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

- X -

_Sensor.Inter‐
face.Telegram

Encoder tele‐
gram

Telegram 
number4)

uint - - X

_Sensor.Passive‐
Homing.DigitalInpu‐
tAddress

Digital input PublicAPI-ob‐
ject

SW.Tags.PlcT
ag

- - X

For output cam, cam track and measuring input technology objects the following additional 
parameter is available:

Name in Openness Name in function view Possible value Data type
_AssociatedObject Associated object PublicAPI-object SW.TechnologicalOb‐

jects.TechnologicalInstan‐
ceDB

For kinematics technology object the following additional parameters are available (S7-1500T):

Name in Openness Name in function view Possible value Data type
_KinematicsAxis[1...4] Axis 1 - 3, Orientation axis Axis that can be connected to 

TO_Kinematics objects
SW.TechnologicalOb‐
jects.TechnologicalInstan‐
ceDB

_Units.LengthUnit Units of measurement > Po‐
sition

See tag Units.LengthUnit3) uint

_Units.LengthVelocityUnit Units of measurement > Ve‐
locity

See tag Units.LengthVeloci‐
tyUnit3)

uint

_Units.AngleUnit Units of measurement > An‐
gle

See tag UnitsAngleUnit3) uint

_Units.AngleVelocityUnit Units of measurement > An‐
gle velocity

See tag Units.AngleVeloci‐
tyUnit3)

uint

3) possible values are described in the function manual S7-1500 Motion Control on chapter 
units tags (TO)

4) possible values are described in the function manual S7-1500 Motion Control on chapter 
PROFIdrive telegrams

5) S7-1500 PLC: n=1; S7-1500T PLC: 1≤n≤4

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 343



Program code: Directly mapped data block tags
Modify the following program code to access the directly mapped parameters:

 
//An instance of the technology object is already available in the program before
private static void ReadWriteDataBlockTag(TechnologicalInstanceDB technologyObject)
{
    //Read value from data block tag "ReferenceSpeed"
    double value =
    (double)technologyObject.Parameters.Find("Actor.DriveParameter.ReferenceSpeed").Value;
 
    //Write data block tag "ReferenceSpeed"
    technologyObject.Parameters.Find("Actor.DriveParameter.ReferenceSpeed").Value = 3000.0;
}

Program code: Additional parameters
Modify the following program code to access the additional parameters:

 
//An instance of the technology object is already available in the program before
private static void ReadWriteAdditionalParameter(TechnologicalInstanceDB technologyObject)
{
    //Read additional parameter "_Properties.MotionType"
    uint value = (uint)technologyObject.Parameters.Find("_Properties.MotionType").Value;
 
    //Write additional parameter "_Properties.MotionType"
    technologyObject.Parameters.Find("_Properties.MotionType").Value = 1;
}

Additional information
You can find additional information in:

● SIMATIC S7-1500 Motion Control function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749262 (https://
support.industry.siemens.com/cs/ww/en/view/109749262)

● SIMATIC S7-1500T Motion Control function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749263 (https://
support.industry.siemens.com/cs/ww/en/view/109749263)

● SIMATIC S7-1500T Kinematics Functions function manual:
https://support.industry.siemens.com/cs/ww/en/view/109749264 (https://
support.industry.siemens.com/cs/ww/en/view/109749264)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
344 System Manual, 10/2018

https://support.industry.siemens.com/cs/ww/en/view/109749262
https://support.industry.siemens.com/cs/ww/en/view/109749262
https://support.industry.siemens.com/cs/ww/en/view/109749263
https://support.industry.siemens.com/cs/ww/en/view/109749263
https://support.industry.siemens.com/cs/ww/en/view/109749264
https://support.industry.siemens.com/cs/ww/en/view/109749264


Connecting drives

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_SpeedAxis, TO_PositioningAxis or 
TO_SynchronousAxis is determined in the project.

● A drive is determined in the project.

Application
To connect an axis with a drive, it is necessary to specify several values together in a single 
call. The public API type AxisEncoderHardwareConnectionInterface provides the following 
methods which can be used to connect and disconnect the actor or sensor interfaces:

Method Description
void Connect(HW.DeviceItem moduleInOut) Connects to input and output addresses at one module.
void Connect(HW.DeviceItem moduleIn, HW.DeviceItem 
moduleOut)

Connects to input and output addresses at separate modules.

void Connect(HW.DeviceItem moduleIn, HW.DeviceItem 
moduleOut, ConnectOption connectOption)

Connects to input and output addresses at separate modules, 
specifying an additional ConnectOption

void Connect(HW.Channel channel) Connects to a channel
void Connect(int addressIn, int addressOut, ConnectOption 
connectOption)

Connects specifying bit addresses directly

void Connect(string pathToDBMember) Connects to a data block tag
void Connect(SW.Tags.PlcTag outputTag) Connects to a PLC tag
void Disconnect() Disconnects an existing connection

Note
Automatic connections

Note that the same behavior as in the user interface also applies here. Whenever the actor 
interface is connected via one of the connection methods and the telegram contains a sensor 
part or telegram 750. These parts are connected automatically.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 345



You can use the following read-only attributes to determine how the technology object is 
connected. The respective connection values are set only if the connection of the specific kind 
exists.

Attribute Data type Description
IsConnected bool TRUE: Interface is connected

FALSE: Interface is not connected
InputOutputModule HW.DeviceItem Connected module that contains input and output addresses
InputModule HW.DeviceItem Connected module that contains input addresses

The value is also set in case of an existing connection to a module con‐
taining input and output addresses.

OutputModule HW.DeviceItem Connected module that contains output addresses
The value is also set in case of an existing connection to a module con‐
taining input and output addresses.

InputAddress int Logical input address of connected object; for example, 256.
OutputAddress int Logical output address of connected object; for example, 256.
ConnectOption ConnectOption Value of the ConnectOption that has been set when the connection was 

made:
● Default

Only modules that are recognized as valid connection partners can be 
selected.

● AllowAllModules
Corresponds to selecting "Show all modules" in the user interface.

Channel HW.Channel Connected channel
PathToDBMember string Connected technology object data block tag
OutputTag SW.Tags.PlcTag Connected PLC tag (analog connection)
SensorIndexInActor‐
Telegram

int Connected sensor part in actor telegram
The attribute is only relevant for sensor interfaces. 
0: Encoder is not connected
1: Encoder is connected to first sensor interface in telegram
2: Encoder is connected to second sensor interface in telegram
For the actor interface the value is always 0.

Note
Access the sensor interface

To access the sensor interface you can use SensorInterface[m] with 0≤m≤3.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
346 System Manual, 10/2018



Program Code: void Connect(HW.DeviceItem moduleInOut)
Modify the following program code to connect a mixed module that contains input and output 
addresses:

 
//An instance of technology object and device item is already available in the program 
before
private static void UseServiceAxisHardwareConnectionProvider(TechnologicalInstanceDB 
technologyObject, DeviceItem devItem)
{
    //Retrieve service AxisHardwareConnectionProvider
    AxisHardwareConnectionProvider connectionProvider =
    technologyObject.GetService<AxisHardwareConnectionProvider>();
 
    //Connect ActorInterface with DeviceItem
    connectionProvider.ActorInterface.Connect(devItem);
 
    //Connect first SensorInterface with DeviceItem
    connectionProvider.SensorInterface[0].Connect(devItem);
 
    //Check ConnectionState of ActorInterface
    bool actorInterfaceConnectionState = connectionProvider.ActorInterface.IsConnected;
 
    //Check ConnectionState of first SensorInterface
    bool sensorInterfaceConnectionState =
    connectionProvider.SensorInterface[0].IsConnected;
}

Connecting telegram 750

Requirement
● The Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_SpeedAxis, TO_PositioningAxis or 
TO_SynchronousAxis V4.0 is determined in the project.

● A drive that supports telegram 750 is determined in the project.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 347



Application
If telegram 750 was added after connecting the drive and the axis, it is necessary to connect 
telegram 750 separately. EnableTorqueData is set to TRUE automatically. The public API type 
TorqueHardwareConnectionInterface provides the following methods which can be used to 
connect and disconnect telegram 750:

Method Description
void Connect(HW.DeviceItem moduleInOut) Connects to input and output addresses at one 

module
void Connect(HW.DeviceItem moduleIn, HW.De‐
viceItem moduleOut)

Connects to input and output addresses at sepa‐
rate modules
 

void Connect(HW.DeviceItem moduleIn, HW.De‐
viceItem moduleOut, ConnectOption connectOp‐
tion)

Connects to input and output addresses at sepa‐
rate modules, specifying an additional ConnectOp‐
tion

void Connect(int addressIn, int addressOut, Con‐
nectOption connectOption)

Connects specifying bit addresses directly

void Connect(string pathToDBMember) Connects to a data block tag
void Disconnect() Disconnects an existing connection

 

The TorqueHardwareConnectionInterface can be retrieved via the property TorqueInterface 
at the type AxisHardwareConnectionProvider. If the connection to telegram 750 is not 
supported, the property value is “null”.

If the drive is connected by data block tags, you cannot connect telegram 750 by module. You 
can use the following read-only attributes to determine how the technology object is connected. 
The respective connection values are set only if the connection of the specific kind exists:

Attribute Data type Description
IsConnected bool TRUE: Interface is connected

FALSE: Interface is not connected
InputOutput‐
Module

HW.DeviceItem Connected module that contains input and output 
addresses

InputModule HW.DeviceItem Connected module that contains input addresses
The value is also set in case of an existing con‐
nection to a module containing input  and output 
addresses.

OutputMod‐
ule

HW.DeviceItem Connected module that contains output addresses
The value is also set in case of an existing con‐
nection to a module containing input and output 
addresses.

InputAddress int Logical input address of connected object; for ex‐
ample 256

OutputAd‐
dress

int Logical output address of connected object; for ex‐
ample 256

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
348 System Manual, 10/2018



Attribute Data type Description
ConnectOp‐
tion

ConnectOption Value of the ConnectOption that has been set 
when the connection was made:
● Default

Only modules that are recognized as valid 
connection partners can be selected.

● AllowAllModules
Corresponds to selecting "Show all modules" 
in the user interface.

PathToDB‐
Member

string Connected technology object data block tag

Program Code: Connect telegramm 750
Modify the following program code to connect a mixed module that contains input and output 
addresses:

 
//An instance of technology object and device item is already available in the program 
before
private static void ConnectTorqueInterface(TechnologicalInstanceDB technologyObject, 
DeviceItem devItem)
{
    //Retrieve service AxisHardwareConnectionProvider
    AxisHardwareConnectionProvider connectionProvider =
    technologyObject.GetService<AxisHardwareConnectionProvider>();
    //Connect TorqueInterface with DeviceItem
    connectionProvider.TorqueInterface.Connect(devItem);
}

Connecting encoders

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_ExternalEncoder is determined in the project.

● An object is determined in the project that provides PROFIdrive telegram 81 or 83.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 349



Application
To connect an external encoder technology object with the encoder hardware, it is necessary 
to specify several values together in a single call. The public API type 
AxisEncoderHardwareConnectionInterface provides the following methods which can be used 
to connect and disconnect the sensor interface:

Method Description
void Connect(HW.DeviceItem moduleInOut) Connects to input and output addresses at one module.
void Connect(HW.DeviceItem moduleIn, HW.DeviceItem 
moduleOut)

Connects to input and output addresses at separate modules.

void Connect(HW.DeviceItem moduleIn, HW.DeviceItem 
moduleOut, ConnectOption connectOption)

Connects to input and output addresses at separate modules, 
specifying an additional ConnectOption

void Connect(HW.Channel channel) Connects to a channel
void Connect(int addressIn, int addressOut, ConnectOption 
connectOption)

Connects specifying bit addresses directly

void Connect(string pathToDBMember) Connects to a data block tag
void Connect(SW.Tags.PlcTag outputTag) Not relevant for connecting encoders
void Disconnect() Disconnects an existing connection

You can use the following read-only attributes to determine how the technology object is 
connected. The respective connection values are set only if the connection of the specific kind 
exists.

Attribute Data type Description
IsConnected bool TRUE: Interface is connected

FALSE: Interface is not connected
InputOutputModule HW.DeviceItem Connected module that contains input and output addresses
InputModule HW.DeviceItem Connected module that contains input addresses

The value is also set in case of an existing connection to a module con‐
taining input and output addresses.

OutputModule HW.DeviceItem Connected module that contains output addresses
The value is also set in case of an existing connection to a module con‐
taining input and output addresses.

InputAddress int Logical input address of connected object, for example 256.
OutputAddress int Logical output address of connected object, for example 256.
ConnectOption ConnectOption Value of the ConnectOption that has been set when the connection was 

made:
● Default

Only modules that are recognized as valid connection partners can be 
selected.

● AllowAllModules
Corresponds to selecting "Show all modules" in the user interface.

Channel HW.Channel Connected channel
PathToDBMember string Connected data block tag

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
350 System Manual, 10/2018



Attribute Data type Description
OutputTag SW.Tags.PlcTag Not relevant for connecting encoders
SensorIndexInActor‐
Telegram

int Connected sensor telegram
The attribute is only relevant for sensor interfaces. 
0: Encoder is not connected
1: Encoder is connected to first sensor interface in telegram
2: Encoder is connected to second sensor interface in telegram
For the actor interface the value is always 0.

Program code: Connect an encoder
Modify the following program code to connect an external encoder technology object:

 
//An instance of technology object and device item is already available in the program 
before
private static void UseServiceEncoderHardwareConnectionProvider(TechnologicalInstanceDB 
technologyObject, DeviceItem devItem)
{
    //Retrieve service EncoderHardwareConnectionProvider
    EncoderHardwareConnectionProvider connectionProvider =
    technologyObject.GetService<EncoderHardwareConnectionProvider>();
 
    //Connect SensorInterface with DeviceItem
    connectionProvider.SensorInterface.Connect(devItem);
 
    //Check ConnectionState of SensorInterface
    bool sensorInterfaceConnectionState = connectionProvider.SensorInterface.IsConnected;
}

Connecting output cams and cam tracks to hardware

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_OutputCam or TO_CamTrack is determined in the 
project.

● A digital output module is determined in the project, for example TM Timer DIDQ.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 351



Application
To connect an output cam or cam track technology object with a digital output, it is necessary 
to specify several values together in a single call. The public API type 
OutputCamHardwareConnectionProvider provides the following methods which can be used 
to connect and disconnect the actor or sensor interfaces:

Method Description
void Connect(HW.Channel channel) Connects to a channel
void Connect(SW.Tags.PlcTag outputTag) Connects to a PLC tag
void Connect(int address) Connects specifying bit addresses directly
void Disconnect() Disconnects an existing connection

You can use the following read-only attributes to determine how the technology object is 
connected:

Attribute Data type Description
IsConnected bool TRUE: Technology object is connected

FALSE: Technology object is not connected
Channel HW.Channel Connected channel
OutputTag SW.Tags.PlcTag Connected PLC tag
OutputAddress int Logical output address of connected object, for example 256.

Program code: Connect output cam or cam track technology object
Modify the following program code to connect an output cam or cam track technology object:

 
//An instance of technology object and channel item is already available in the program 
before
private static void UseServiceOutputCamHardwareConnectionProvider(TechnologicalInstanceDB 
technologyObject, Channel channel)
 
{
    //Retrieve service OutputCamHardwareConnectionProvider
    OutputCamHardwareConnectionProvider connectionProvider =
    technologyObject.GetService<OutputCamHardwareConnectionProvider>();
 
    //Connect technology object with Channel
    connectionProvider.Connect(channel);
 
    //Check ConnectionState of technology object
    bool connectionState = connectionProvider.IsConnected;
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
352 System Manual, 10/2018



Connecting measuring inputs to hardware

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_MeasuringInput is determined in the project.

● A digital input module is determined at drive or in the project, for example TM Timer DIDQ.

Application
To connect a measuring input technology object with a digital input, it is necessary to specify 
several values together in a single call. The public API type 
MeasuringInputHardwareConnectionProvider provides the following methods which can be 
used to connect and disconnect the actor or sensor interface:

Method Description
void Connect(HW.Channel channel) Connects to a channel
void Connect(HW.DeviceItem moduleIn, int channelIndex) Connects to a module, specifying an additional channel index
void Connect(int address) Connects specifying bit addresses directly
void Disconnect() Disconnects an existing connection

You can use the following read-only attributes to determine how the technology object is 
connected:

Attribute Data type Description
IsConnected bool TRUE: Technology object is connected

FALSE: Technology object is not connected
InputModule HW.DeviceItem Connected module that contains input addresses
ChannelIndex int Index of connected channel with respect to InputModule
Channel HW.Channel Connected channel
InputAddress int Logical input address of connected object, for example 256.

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 353



Program code: Connect a measuring input technology object
Modify the following program code to connect a measuring input technology object:

 
//An instance of technology object and channel item is already available in the program 
before
private static void 
UseServiceMeasuringInputHardwareConnectionProvider(TechnologicalInstanceDB 
technologyObject, Channel channel)
{
    //Retrieve service MeasuringInputHardwareConnectionProvider
    MeasuringInputHardwareConnectionProvider connectionProvider =
    technologyObject.GetService<MeasuringInputHardwareConnectionProvider>();
 
    //Connect technology object with Channel
    connectionProvider.Connect(channel);
 
    //Check ConnectionState of technology object
    bool connectionState = connectionProvider.IsConnected;
}

Connecting synchronous axis with leading values

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.

● A technology object of the type TO_PositioningAxis, TO_SynchronousAxis or 
TO_ExternalEncoder as leading axis is determined in the project.

● A technology object of the type TO_SynchronousAxis as following axis is determined in the 
project.

Application
To connect a synchronous axis technology object with leading values, it is necessary to specify 
several values together in a single call. The public API type SynchronousAxisMasterValues 
provides the following methods which can be used to connect and disconnect leading values. 
Leading values can be connected as setpoint coupling (S7-1500 PLC, S7-1500T PLC) or 
actual value coupling (S7-1500T PLC). All methods and attributes are relevant for both types 
of coupling.

Method Description
int IndexOf (TechnologicalInstanceDB element) Returns the corresponding index of a leading value
bool Contains (TechnologicalInstanceDB element) TRUE: The container contains the leading value 

FALSE: The container does not contain the leading value

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
354 System Manual, 10/2018



Method Description
IEnumerator GetEnumerator <TechnologicalInstanceDB>() Used to support each iteration
void Add (TechnologicalInstanceDB element) Connects following axis to leading value
bool Remove (TechnologicalInstanceDB element) Disconnects following axis from leading value

TRUE: Disconnection was succesful
FALSE: Disconnection was not succesful

You can use the following read-only attributes:

Attribute Data type Description
Count int Count of leading values
IsReadonly bool TRUE: The container is read-only

FALSE: The container is not read-only
Parent IEngineeringObject Returns the parent of the container.

In this case parent means the service SynchronousAxisMasterValues.
this [ id ] { get; } TechnologicalInstan‐

ceDB
Index-based access to leading values

Program code: Connect a synchronous axis with a leading value
Modify the following program code to connect a synchronous axis with a leading value:

 
//An instance of leading axis and following axis is already available in the program before
private static void UseServiceSynchronousAxisMasterValues(TechnologicalInstanceDB 
masterTechnologyObject, TechnologicalInstanceDB synchronousTechnologyObject)
{
    //Retrieve service SynchronousAxisMasterValues
    SynchronousAxisMasterValues masterValues =
    synchronousTechnologyObject.GetService<SynchronousAxisMasterValues>();
 
    //Connect following axis and leading axis with setpoint coupling
    masterValues.SetPointCoupling.Add(masterTechnologyObject);
 
    //Get container of connected leading axis with setpoint coupling
    TechnologicalInstanceDBAssociation setPointMasterValues =
    masterValues.SetPointCoupling;
 
    //Remove connected leading axis with setpoint coupling
    masterValues.SetPointCoupling.Remove(masterTechnologyObject);
 
    //Connect following axis and leading axis with actual value coupling
    masterValues.ActualValueCoupling.Add(masterTechnologyObject);
 
    //Get container of connected leading axis with actual value coupling
    TechnologicalInstanceDBAssociation actualValueMasterValues =
    masterValues.ActualValueCoupling;
 
    //Remove connected leading axis with actual value coupling
    masterValues.ActualValueCoupling.Remove(masterTechnologyObject);
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 355



Exporting and importing technology object cam (S7-1500T)

Requirement
● The Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74).

● A project is open.
See Opening a project (Page 97).

● A S7-1500 PLC is determined in the project.
See Querying PLC and HMI targets (Page 165)

● The technology object exists.

Application
To export or import the data of a technology object cam you have to specify the format and 
which separator should be used. The public API type CamDataSupport provides the following 
methods which can be used to export the data of technology object cam.

Method Description
void SaveCamDataBinary(System.IO.FileInfo destination‐
File)

Exports the data in binary format in the destination file.

void SaveCamDataPointList(System.IO.FileInfo destination‐
File, CamDataFormatSeparator separator, int samplePoints)

Exports the data in format “PointList” in the destination file.

void SaveCamData(System.IO.FileInfo destinationFile, Cam‐
DataFormat format, CamDataFormatSeparator separator)

Exports the data in the destination file. You can specify data 
format as “MCD”, “SCOUT” or “Pointlist” and separator as 
“tab” or “comma”.
If you choose “PointList” 360 interpolation points will be ex‐
ported.

void LoadCamData(System.IO.FileInfo sourceFile, CamDa‐
taFormatSeparator separator)

Imports the cam data in the format “MCD”, “SCOUT” or “Point‐
list” to the project.

void LoadCamDataBinary(System.IO.FileInfo sourceFile) Imports the cam data from a binary file to the project.

You can use the following attributes:

Attribute Data type Description
separator CamDataFormatSepa‐

rator
Allowed values
● tab
● comma

samplePoints int Number of interpolation points that should be exported.
format CamDataFormat Allowed values

● MCD
● SCOUT
● Pointlist

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
356 System Manual, 10/2018



Attribute Data type Description
destinationFile System.IO.FileInfo Name of destination file. Must not be null. Access rights and enough space 

on storage medium must be given. An existing file will be overwritten.
sourceFile System.IO.FileInfo Name of source file. Must not be null. Access rights must be given. Content 

must be in specified format.

Program code: Export cam data
Modify the following program code to export cam data:

 
//An instance of technology object is already available in the program before
private static void ExportCamData(TechnologicalInstanceDB technologyObject, 
System.IO.FileInfo destinationFile)
{
    //Retrieve service CamDataSupport
    CamDataSupport camData = technologyObject.GetService<CamDataSupport>();
 
    //Save cam data in MCD format, using the separator Tab
    camData.SaveCamData(destinationFile, CamDataFormat.MCD, CamDataFormatSeparator.Tab);
}

Program code: Import cam data
Modify the following program code to import cam data:

 
//An instance of technology object is already available in the program before
private static void ImportCamData(TechnologicalInstanceDB technologyObject, 
System.IO.FileInfo sourceFile)
{
    //Retrieve service CamDataSupport
    CamDataSupport camData = technologyObject.GetService<CamDataSupport>();
 
    //Load cam data from source file, using the separator Tab
    camData.LoadCamData(sourceFile, CamDataFormatSeparator.Tab);
}

7.18.13.16 PID control

Parameters for PID_Compact, PID_3Step, PID_Temp, CONT_C, CONT_S, TCONT_CP and TCONT_S
You can find a list of all available parameters in the product information “Parameters of 
technology objects in TIA Portal Openness“ on the internet (https://
support.industry.siemens.com/cs/ww/en/view/109744932). 

For each parameter the following properties are provided:

● Name in configuration (TIA Portal)

● Name in Openness

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 357

https://support.industry.siemens.com/cs/ww/en/view/109744932
https://support.industry.siemens.com/cs/ww/en/view/109744932


● Data type in Openness

● Default access

● Range of values

Note

In TIA Portal in the Parameter view of the technology object configuration you can find the 
column "Name in Openness".

Additional information
You can find additional information in SIMATIC S7-1200/S7-1500 PID control function manual 
on the internet (https://support.industry.siemens.com/cs/ww/en/view/108210036).

7.18.13.17 Counting

Parameters for High_Speed_Counter and SSI_Absolute_Encoder
You can find a list of all available parameters in the product information “Parameters of 
technology objects in TIA Portal Openness“ on the internet (https://
support.industry.siemens.com/cs/ww/en/view/109744932). 

For each parameter the following properties are provided:

● Name in configuration (TIA Portal)

● Name in Openness

● Data type in Openness

● Default access

● Range of values

Additional information
You can find additional information in SIMATIC S7-1500, ET 200MP, ET 200SP Counting, 
measurement and position input function manual on the internet (http://
support.automation.siemens.com/WW/view/en/59709820).

7.18.13.18 Easy Motion Control

Parameters for AXIS_REF
You can find a list of all available parameters in the product information “Parameters of 
technology objects in TIA Portal Openness“ on the internet (https://
support.industry.siemens.com/cs/ww/en/view/109744932). 

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
358 System Manual, 10/2018

https://support.industry.siemens.com/cs/ww/en/view/108210036
https://support.industry.siemens.com/cs/ww/en/view/109744932
https://support.industry.siemens.com/cs/ww/en/view/109744932
http://support.automation.siemens.com/WW/view/en/59709820
http://support.automation.siemens.com/WW/view/en/59709820
https://support.industry.siemens.com/cs/ww/en/view/109744932
https://support.industry.siemens.com/cs/ww/en/view/109744932


For each parameter the following properties are provided:

● Name in configuration (TIA Portal)

● Name in Openness

● Data type in Openness

● Default access

● Range of values

Note

In TIA Portal in the Parameter view of the technology object configuration you can find the 
column "Name in Openness".

Additional information
You can find additional information for Easy Motion Control in the Information system of STEP 7 
(TIA Portal).

7.18.14 Tags and Tag tables

7.18.14.1 Starting the "PLC Tags" editor

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● Instance of the TIA Portal is opened with user interface.

Program code
Modify the following program code to start the corresponding editor for an object reference of 
the type PlcTagTable in the TIA Portal instance: 

 
//Opens tagtable in editor "Tags"
private static void OpenTagtableInEditor(PlcSoftware plcSoftware)
{ 
    PlcTagTable plcTagTable = plcSoftware.TagTableGroup.TagTables.Find("MyTagTable");     
plcTagTable.ShowInEditor();
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 359



See also
Importing configuration data (Page 417)

7.18.14.2 Querying system groups for PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

● A PlcSoftware instance was retrieved from a PLC device item.
See Querying PLC and HMI targets (Page 165) 

Program code
Modify the following program code to query the system group for PLC tags:

 
//Retrieves the plc tag table group from a plc
private PlcTagTableSystemGroup GetControllerTagfolder(PlcSoftware plcSoftware)
{
    PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
    return plcTagTableSystemGroup;
}

7.18.14.3 Creating PLC tag table

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

● A PlcSoftware instance was retrieved from a PLC device item.
See Querying PLC and HMI targets (Page 165) 

Program code
Modify the following program code to create the PLC tag table. It creates a new tag table with 
the given name in the composition.

 
PlcTagTable myTable = plc.TagTableGroup.TagTables.Create("myTable");

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
360 System Manual, 10/2018



See also
Querying PLC and HMI targets (Page 165)

7.18.14.4 Enumerating user-defined groups for PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97) 

● A PlcSoftware instance was retrieved from a PLC device item.
See Querying PLC and HMI targets (Page 165) 

Application
Subfolders are taken into account recursively for enumeration. 

Program code: Enumerating user-defined groups for PLC tags
Modify the following program code to enumerate user-defined groups for PLC tags:

 
//Enumerates all plc tag table user groups including subgroups
private static void EnumeratePlcTagTableUserGroups(PlcSoftware plcSoftware)
{
    foreach (PlcTagTableUserGroup plcTagTableUsergroup in plcSoftware.TagTableGroup.Groups)
    {
        EnumerateTagTableUserGroups(plcTagTableUsergroup);
    }
}
private static void EnumerateTagTableUserGroups(PlcTagTableUserGroup tagTableUsergroup)
{
    foreach (PlcTagTableUserGroup plcTagTableUsergroup in tagTableUsergroup.Groups)
    {
        EnumerateTagTableUserGroups(plcTagTableUsergroup);
        // recursion
    }
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 361



Program code: Accessing a user-defined group
Modify the following program code to access a user-defined group for PLC tags:

 
//Gives individual access to a specific plc tag table user folder
private static void AccessPlcTagTableUserGroupWithFind(PlcSoftware plcSoftware, string 
folderToFind)
{
    PlcTagTableUserGroupComposition plcTagTableUserGroupComposition = 
plcSoftware.TagTableGroup.Groups;
    PlcTagTableUserGroup controllerTagUserFolder = 
plcTagTableUserGroupComposition.Find(folderToFind); 
    // The parameter specifies the name of the user folder
}

7.18.14.5 Creating user-defined groups for PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The TIA Portal Openness API interface supports the creation of a user-defined group for PLC 
tags.

Program code
Modify the following program code to create a user-defined group for PLC tags:

 
//Creates a plc tag table user group
private static void CreatePlcTagTableUserGroup(PlcSoftware plcSoftware)
{ 
    PlcTagTableSystemGroup systemGroup = plcSoftware.TagTableGroup; 
    PlcTagTableUserGroupComposition groupComposition = systemGroup.Groups; 
    PlcTagTableUserGroup myCreatedGroup = groupComposition.Create("MySubGroupName"); 
    // Optional; 
    // create a subgroup 
    PlcTagTableUserGroup mySubCreatedGroup = 
myCreatedGroup.Groups.Create("MySubSubGroupName");
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
362 System Manual, 10/2018



7.18.14.6 Deleting user-defined groups for PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The TIA Portal Openness API interface supports the deletion of a specific user-defined group 
for PLC tag tables.

Program code
Modify the following program code to delete a specific user-defined group for PLC tag tables:

 
private static void DeletePlcTagTableUserGroup(PlcSoftware plcSoftware)
{ 
    PlcTagTableUserGroup group = plcSoftware.TagTableGroup.Groups.Find("MySubGroupName"); 
    if (group != null) 
    { 
        group.Delete(); 
    }
}

7.18.14.7 Enumerating PLC tag tables in a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74) 

● A project is open. 
See  Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 363



Program code: Enumerating PLC tag tables
Modify the following program code to enumerate all PLC tag tables in system groups or in user-
defined groups:

 
//Enumerates all plc tag tables in a specific system group or and user group
private static void EnumerateAllPlcTagTablesInFolder(PlcSoftware plcSoftware)
{
    PlcTagTableComposition tagTables = plcSoftware.TagTableGroup.TagTables;
    // alternatively, PlcTagTableComposition tagTables = 
plcSoftware.TagTableGroup.Groups.Find("UserGroup XYZ").TagTables;
    foreach (PlcTagTable tagTable in tagTables)
    {
        // add code here
    }
}

Program code: Accessing PLC tag table
Modify the following program code to access the PLC tag table: 

 
//Gives individual access to a specific Plc tag table
private static void AccessToPlcTagTableWithFind(PlcSoftware plcSoftware)
{
    PlcTagTableComposition tagTables = plcSoftware.TagTableGroup.TagTables;
    // alternatively, PlcTagTableComposition tagTables = 
plcSoftware.TagTableGroup.Groups.Find("UserGroup XYZ").TagTables;
    PlcTagTable controllerTagTable = tagTables.Find("Tag table XYZ"); 
    // The parameter specifies the name of the tag table
}

7.18.14.8 Querying information from a PLC tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

Application
Via PLC tag tables you can access user constants, system constants and tags. The count of 
the tag composition of a tag table is equal to the number of tags in that tag table.  The 
PLCTagTable contains the following navigators, attributes, and actions.

The following attributes are accessed in PLC tag table.　

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
364 System Manual, 10/2018



Name Type Type
IsDefault bool Read-only
ModifiedTimeStamp DateTime Read-only
Name string Read-only

The PLCTag table contains the following actions as given below.

Name Return type Description
Delete void Deletes the instance. Throws an 

exception if IsDefault is true.
Export void Exports the Simatic ML of a Plc 

tag table.
ShowInEditor void Shows the tag table in the Plc tag 

table editor.

Program code
Modify the following program code to query the information for a PLC tag table:

 
private static void AccessPlcConstantsUsingFind(PlcTagTable tagTable)
{ 
    PlcUserConstantComposition plcUserConstants = tagTable.UserConstants; 
    PlcUserConstant plcUserConstant = plcUserConstants.Find("Constant XYZ");
    //PlcSystemConstantComposition plcSystemConstants = tagTable.SystemConstants;
    //PlcSystemConstant plcSystemConstant = plcSystemConstants.Find("Constant XYZ");
}
private static void EnumeratePlcTags(PlcTagTable tagTable)
{ 
    PlcTagComposition plcTags = tagTable.Tags; 
    foreach (PlcTag plcTag in plcTags) 
    { 
        string name = plcTag.Name; string typeName = plcTag.DataTypeName; 
        string logicalAddress = plcTag.LogicalAddress; 
    }
}
private static void EnumeratePlcTagsUsingFind(PlcTagTable tagTable) 
{ 
    PlcTagComposition plcTags = tagTable.Tags; 
    PlcTag plcTag = plcTags.Find("Constant XYZ");
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 365



7.18.14.9 Reading the time of the last changes of a PLC tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The format of the time stamp is UTC.

Program code
Modify the following program code to read the time stamp of a specific PLC tag table:

 
//Reads Time-Stamp of a plc Tag Table
private static void GetLastModificationDateOfTagtable(PlcSoftware plcSoftware)
{ 
    PlcTagTable plcTagTable = plcSoftware.TagTableGroup.TagTables.Find("MyTagTable"); 
    DateTime modifiedTagTableTimeStamp = plcTagTable.ModifiedTimeStamp;
}

7.18.14.10 Deleting a PLC tag table from a group

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
366 System Manual, 10/2018



Program code
Modify the following program code to delete a specific tag table from a group:

 
//Deletes a PlcTagTable of a group
private static void DeletePlcTagTableInAGroup(PlcSoftware plcSoftware)
{ 
    PlcTagTableSystemGroup group = plcSoftware.TagTableGroup; 
    PlcTagTable tagtable = group.TagTables.Find("MyTagTable"); 
    if (tagtable!= null) 
    { 
        tagtable.Delete(); 
    }
}

7.18.14.11 Enumerating PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74) 

● A project is open. 
See Opening a project (Page 97) 

Program code: Enumerating PLC tags in tag tables
Modify the following program code to enumerate all PLC tags in a tag table:

 
//Enumerates all plc tags in a specific tag table
private static void EnumerateAllPlcTagsInTagTable(PlcSoftware plcSoftware)
{
    PlcTagTable tagTable = plcSoftware.TagTableGroup.TagTables.Find("Tagtable XYZ");
    foreach (PlcTag tag in tagTable.Tags)
    {
        // add code here
    }
}

7.18.14.12 Accessing PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 367



Application
The type PlcTagComposition represents a collection of plc tags.

Program code: Accessing  a specific PLC tag
Modify the following program code to access the required PLC tag. You have access to the 
following attributes: 

● Name (read only)

● Data type name

● Logical address

● Comment

● ExternalAccessible

● ExternalVisible

● ExternalWritable

 
//Gives individual access to a specific plc tag
private static void AccessPlcTag(PlcTagTable tagTable)
{
    PlcTag tag = tagTable.Tags.Find("Tag XYZ");
    // The parameter specifies the name of the tag
}

Program code: Creating tags
Modify the following program code:

 
private static void CreateTagInPLCTagtable(PlcSoftware plcsoftware) 
// Create a tag in a tag table with default attributes 
{ 
    string tagName = "MyTag";
    PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable"); 
    PlcTagComposition tagComposition = table.Tags; 
    PlcTag tag = tagComposition.Create(tagName); 
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
368 System Manual, 10/2018



Modify the following program code:

 
private static void CreateTagInPLCTagtable(PlcSoftware plcsoftware) 
// Create a tag of data type bool and logical address not set 
{ 
    string tagName = "MyTag";
    string dataType = "Bool";
    string logicalAddress ="";
    PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable"); 
    PlcTagComposition tagComposition = table.Tags; 
    PlcTag tag = tagComposition.Create(tagName, dataType, logicalAddress); 
}

Program code: Deleting tags
Modify the following program code:

 
private static void DeleteTagFromPLCTagtable(PlcSoftware plcsoftware) 
// Deletes a single tag of a tag table 
{ 
    string tagName = "MyTag";
    PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable"); 
    PlcTagComposition tagComposition = table.Tags; 
    PlcTag tag = tagComposition.Find(tagName); 
    if (tag != null) 
    { 
        tag.Delete(); 
    } 
}

7.18.14.13 Accessing PLC constants

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The type PlcUserConstantComposition represents a collection of plc user constants. You 
have access to the following attributes:

● Name (read only)

● Data type name

● Value

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 369



The type PlcSystemConstantComposition represents a collection of plc system 
constants. You have access to the following attributes:

● Name (read only)

● Data type name (read only)

● Value (read only)

Program code: Creating user constants
Modify the following program code:

 
private static void CreateUserConstantInPLCTagtable(PlcSoftware plcsoftware) 
// Create a user consrant in a tag table 
{ 
    string constantName = "MyConstant";
    PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable"); 
    PlcUserConstantComposition userConstantComposition = table.UserConstants; 
    PlcUserComnstant userConstant = userConstantComposition.Create(constantName); 
}

Program code: Deleting user constants
Modify the following program code:

 
private static void DeleteUserConstantFromPLCTagtable(PlcSoftware plcsoftware) 
// Deletes a single user constant of a tag table 
{ 
    PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable"); 
    PlcUserConstantComposition userConstantComposition = table.UserConstants; 
    PlcUserConstant userConstant = userConstantComposition.Find("MyConstant"); 
    if (userConstant != null) 
    { 
        userConstant.Delete(); 
    } 
}

Program code: Accessing system contants
Modify the following program code:

 
//Gives individual access to a specific system constant
private static void AccessSystemConstant(PlcTagTable tagTable)
{
    PlcTag systemConstant = tagTable.SystemConstants.Find("Constant XYZ");
    // The parameter specifies the name of the tag
}

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
370 System Manual, 10/2018



See also
Creating user-defined groups for PLC tags (Page 362)

Deleting user-defined groups for PLC tags (Page 363)

Deleting a PLC tag table from a group (Page 366)

Accessing PLC tags (Page 367)

Starting the "PLC Tags" editor (Page 359)

Reading the time of the last changes of a PLC tag table (Page 366)

TIA Portal Openness API
7.18 Functions for accessing the data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 371



7.19 Functions on OPC

7.19.1 Configuring OPC UA server secure communication protocol

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open
See Opening a project (Page 97)

Introduction
You can use the TIA Portal Openness application to configure OPC UA server with security 
policy "Basic256Sha256" . The security policy Basic256Sha256 needs to be added to the 
Runtime Settings. RDP needs to compile the properties in the xml configuration file. 

The defaults are Enabled, Sign, and Sign and Encrypt.

In the XML file <Project>\OPC\uaserver\OPCUaServerWinCCPro.xml, you need to set the 
security policy and security policies according to ES device configuration. 

TIA Portal Openness API
7.19 Functions on OPC

Openness: Automating creation of projects
372 System Manual, 10/2018



See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

TIA Portal Openness API
7.19 Functions on OPC

Openness: Automating creation of projects
System Manual, 10/2018 373



7.19.2 Setting OPC UA security policy

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
Opening a project (Page 97)

● OPC UA server is activated

Application
You can use the TIA Portal Openness application to set the security policy in OPC UA. You 
can implement the security policy as a dynamic attribute of type flagged enum: 
OpcUaSecurityPolicies. The security policy is only available in TIA Portal Openness if the OPC 
UA server is activated. If the OPC UA server is deactivated, you will encounter 
EngineeringNotSupportedException while trying to access the security policy for any other 
unavailable attribute.

The below table shows the possible values can be found for security policies:

TIA UI name Enum entry Value Remarks
- NoneSelected 0 Is equivalent to TIA UI 

when no checkbox is se‐
lected.

No security OpcUaSecurityPolicies‐
None

1  

Basic128Rsa15 - Sign OpcUaSecurityPoli‐
cies128RSAS

2  

Basic128Rsa15 - Sign 
& Encrypt

OpcUaSecurityPoli‐
cies128RSASE

4  

Basic256 - Sign OpcUaSecurityPoli‐
cies256S

8  

Basic256 - Sign & En‐
crypt

OpcUaSecurityPoli‐
cies256SE

16  

Basic256Sha256 - Sign OpcUaSecurityPoli‐
cies256SHAS

32  

Basic256Sha256 - Sign 
& Encrypt

OpcUaSecurityPoli‐
cies256SHASE

64  

TIA Portal Openness API
7.19 Functions on OPC

Openness: Automating creation of projects
374 System Manual, 10/2018



Program code
Modify the following program code to set the security policy in OPC UA using TIA Portal 
Openness:

 
DeviceItem UpcUaSubmodule= ...;  "
object SecurityPolicies = UpcUaSubmodule.GetAttribute("OpcUaSecurityPolicies");  
if(SecurityPolicies | OpcUaSecurityPolicies.OpcUaSecurityPolicies256S == 
OpcUaSecurityPolicies.OpcUaSecurityPolicies256S)
{ 
//Do something 
}  
UpcUaSubmodule.SetAttribute("OpcUaSecurityPolicies",  
OpcUaSecurityPolicies.OpcUaSecurityPolicies256S |  
OpcUaSecurityPolicies.OpcUaSecurityPolicies256SHASE);

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

TIA Portal Openness API
7.19 Functions on OPC

Openness: Automating creation of projects
System Manual, 10/2018 375



7.20 SiVArc Openness

7.20.1 Introduction

TIA Portal Openness API
7.20 SiVArc Openness

Openness: Automating creation of projects
376 System Manual, 10/2018



7.21 Openness for CP 1604/CP 1616/CP 1626

General
You can use the TIA Portal Openness application to configure transfer areas and transfer area 
mapping rules for the communication processors CP 1604/CP 1616 as of V2.8 (also as of V2.7 
depending on the article number) and CP 1626 as of V1.1.

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See "Establishing a connection to the TIA Portal".

● A project is open.
See "Open project".

● To compile the project, all devices must be "offline".

Configuration of transfer areas

Creating transfer areas
For example, to create a "CD" type transfer area for a CP 1604, use the following program 
code:

NetworkInterface cpItf = CP 
1604Interface.GetService<NetworkInterface>();
// Create TransferAreas
TransferAreaComposition transferAreas = cpItf.TransferAreas;
 
// Simple TranferArea of type Input
TransferArea transferAreaInput = 
  transferAreas.Create("Input CD", TransferAreaType.CD);

Attribute Description
name Specifies the name of the transfer area to be created.
type Specifies the type of the transfer area to be created. The following types are possible:

TransferAreaType.CD Data exchange controller device 
TransferAreaType.F_PS Data exchange PROFIsafe
TransferAreaType.TM Transfer module mapping
Note: It is not possible to change the type at a later date.

Setting attributes of the transfer areas
To set attributes of a transfer area, use the following program code, for example:

transferAreaTm.LocalToPartnerLength = 8;
transferAreaTm.Direction = TransferAreaDirection.LocalToPartner;

TIA Portal Openness API
7.21 Openness for CP 1604/CP 1616/CP 1626

Openness: Automating creation of projects
System Manual, 10/2018 377



string name = transferAreaTm.Name

Some attributes must be set or queried, but all of them can be set or queried using the general 
calls "GetAttribute()" or "SetAttribute()". Use the following program code, for example:

const string myIndividualComment = "MyIndividualComment";
transferAreaTm.SetAttribute("Comment", myIndividualComment);
Int32 updateTime = transferAreaTm.GetAttribute("TransferUpdateTime")

Attribute Description
Name (string) Specifies the name of the transfer area.
Direction Specifies the direction in which the data of the transfer area is transferred. The following 

directions are possible:
TransferAreaDirection.LocalTo‐
Partner

Data of the transfer area is transferred from the IO 
device to the higher-level IO controller. 

TransferAreaDirection.partnerTo‐
Local

Data of the transfer area is transferred from the higher-
level IO controller to the IO device. 

TransferAreaDirection.bidirectional Data of the transfer area can be transferred in both 
directions between the higher-level IO controller and 
the IO device.
The "LocalToPartnerLength" attribute determines the 
length of the transferred data from IO device to the 
higher-level IO controller. The "PartnerToLocal‐
Length" attribute determines the amount of data from 
the higher-level IO controller to the IO device 

Comment (string) Text box for a comment on the transfer area.
LocalToPartnerLength Specifies the data length of the transfer area that is transferred from the IO device to the 

higher-level IO controller.
PartnerToLocalLength Specifies the data length of the transfer area that is transferred from the higher-level IO 

controller to the IO device.
LocalAdresses Specifies the input and output addresses of the transfer area from the local device.
PartnerAdresses Specifies the input and output addresses of the transfer area in the higher-level IO controller.
TransferUpdateTime(Int32) Specifies the update time of the transfer area. Only set or queried for a transfer area of the 

type "TransferAreaType.TM".
PositionNumber Specifies the number of the virtual submodule of this transfer area. 
Type Specifies the type of transfer area, read-only.
TransferAreaMappingRules Specifies the routing table of the routing area, read-only.

Deleting transfer areas
To delete transfer areas, use the following program code:

transferAreaInput.Delete();

Iteration via transfer areas
To iterate transfer areas, use the following program code:

TIA Portal Openness API
7.21 Openness for CP 1604/CP 1616/CP 1626

Openness: Automating creation of projects
378 System Manual, 10/2018



TransferAreaComposition transferAreas = cpItf.TransferAreas;
  foreach (TransferArea transferArea in transferAreas)
  {
         transferArea.Delete();
 }

Configuration of IO routing

Creating IO routes
To create IO routes, use the following program code:

// Create TransferAreaMappingRule
TransferAreaMappingRuleComposition routingTable 
                          = transferArea.TransferAreaMappingRules;
 
// Create a new IO route
TransferAreaMappingRule route1 = 
    routingTable.Create();

Setting attributes of IO routes
The following attributes can be set for IO routing:

Attribute Description
Offset Bit-based offset within the routing area to which the data is to be assigned. The length of the offset is 

determined by the "Begin" and "End" attributes.
Target Specifies the module or submodule of the IO device that contains the data to be assigned to the configu‐

ration of the IO device, a transfer area of the type "TM".
IoType The “IoType” attribute can only be changed in a transfer area of the “Input” type. In addition, a mixed module 

must be configured as “Target” for this transfer area. Only then can you select whether the data of the 
inputs (IoType.Input) are to be read or whether the data of the outputs (IoType.Output) are to be read (back).

Begin Specifies the beginning of the data to be read by the "Target" attribute.
End Specifies the end of the data to be read by the "Target" attribute.

Deleting IO routes
To delete IO routes, use the following program code:

transferAreaMappingRule.Delete();

Iteration via IO routing
To iterate via IO routing, use the following program code:

TIA Portal Openness API
7.21 Openness for CP 1604/CP 1616/CP 1626

Openness: Automating creation of projects
System Manual, 10/2018 379



TransferAreaMappingRuleComposition routingTable = 
                transferArea.TransferAreaMappingRules;
  foreach (TransferAreaMappingRule route in routingTable)
  {
         route.Delete();
  }

TIA Portal Openness API
7.21 Openness for CP 1604/CP 1616/CP 1626

Openness: Automating creation of projects
380 System Manual, 10/2018



7.22 Openness for SIMATIC Ident

7.22.1 Openness for SIMATIC Ident
SIMATIC Ident devices (communication modules, RF600 reader and MV400/MV500 readers) 
can be configured with TIA Portal Openness. The following sections provide an overview of 
the module-specific parameters.

Basic knowledge required 
The following passages assume you have general knowledge of automation engineering and 
identification systems, as well as TIA Portal Openness.

Additional information
You can find detailed information on TIA Portal Openness in the help "Automating projects 
with scripts". This help contains concrete program examples (see sections "Functions of 
projects and project data" and "Functions for accessing devices, networks and connections").

Requirement
● The Openness application is connected to the TIA Portal.

● A project is open.

● All devices must be offline to compile the project.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 381



7.22.2 ASM 456
The Openness parameters for the "ASM 456" module are described below.

Table 7-1 Parameters of the "ASM 456" module; "Word: 2 IN/OUT DP-V1" module

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong Ident profile/
RFID stand‐
ard profile

3 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● Ident profile/RFID 

standard profile: 
The program block for the 
Ident profile/RFID 
standard profile is used 
on the controller. 

● FB 45 / FC 45: 
Single tag mode FB 45 
(PROFIBUS/PROFINET) 
or FC 45 (PROFIBUS) is 
used on the controller.

● FB 55 / FC 55: 
Multitag mode. FB 55 
(PROFIBUS/PROFINET) 
or FC 55 (PROFIBUS) is 
used on the controller.

● FC 56
File handler for S7-300 
and S7-400

FB 45 / FC 45 1 R/W
FB 55 / FC 55 4 R/W
FC 56 5 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
382 System Manual, 10/2018



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

MOBY mode MobyMode ulong RF200/
RF300/
RF600; 
MV4x0; MO‐
BY U/D

5 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● RF200/RF300/RF600; 

MV4x0; MOBY U/D
● MOBY I/E normal 

addressing
● RF300 filehandler 
● MOBY U file handler
● MOBY I file handler
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

MOBY I/E nor‐
mal address‐
ing

1 R/W

RF300 file‐
handler

149 R/W

MOBY U file 
handler

133 R/W

MOBY I file 
handler

129 R/W

Transmission
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 383



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

● Hard/soft errors low 
priority
Critical hardware errors 
and errors that occur 
during command 
processing are reported 
by the S7 diagnostics. 
The "Ext_Diag" bit is not 
set.

● Hard/soft errors high 
priority
Critical hardware errors 
and errors that occur 
during command 
processing are reported 
by the S7 diagnostics. 
The "Ext_Diag" bit is set.

Hard errors 2 R/W
Hard/soft er‐
rors low priori‐
ty

3 R/W

Hard/soft er‐
rors high prior‐
ity

5 R/W

Suppression 
of 
Error LED

Suppressio‐
nOfErrorLed

int None 0 R/W Disabling the Error LED 
(ERR) of a channel. 
The communications module 
has two channels to which 
the readers / optical readers 
can be connected. The Error 
LED of the other channel 
flashes permanently when 
only one of the channels is 
being used. With the help of 
the suppression, you can dis‐
able the Error LED of the un‐
used channel.

Channel 1 1 R/W
Channel 2 2 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
384 System Manual, 10/2018



Table 7-2 Parameters of the "ASM 456" module; "RF680R/RF685R" module

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong Ident profile/
RFID stand‐
ard profile

3 R Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● Ident profile/RFID 

standard profile: 
The program block for the 
Ident profile/RFID 
standard profile is used 
on the controller. 

MOBY mode MobyMode ulong RF680R/
RF685R

32 R Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● RF680R/RF685R
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

Transmission
speed

BaudRate ulong 115.2 kBd 14 R Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 385



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

● Hard/soft errors low 
priority
Critical hardware errors 
and errors that occur 
during command 
processing are reported 
by the S7 diagnostics. 
The "Ext_Diag" bit is not 
set.

● Hard/soft errors high 
priority
Critical hardware errors 
and errors that occur 
during command 
processing are reported 
by the S7 diagnostics. 
The "Ext_Diag" bit is set.

Hard errors 2 R/W
Hard/soft er‐
rors low priori‐
ty

3 R/W

Hard/soft er‐
rors high prior‐
ity

5 R/W

Suppression 
of 
Error LED

Suppressio‐
nOfErrorLed

int None 0 R/W Disabling the Error LED 
(ERR) of a channel. 
The communications module 
has two channels to which 
the readers / optical readers 
can be connected. The Error 
LED of the other channel 
flashes permanently when 
only one of the channels is 
being used. With the help of 
the suppression, you can dis‐
able the Error LED of the un‐
used channel.

Channel 1 1 R/W
Channel 2 2 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
386 System Manual, 10/2018



7.22.3 ASM 475
The Openness parameters for the "ASM 475" module are described below.

Table 7-3 Parameters of the module "ASM 475"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

MOBY mode MobyMode ulong MOBY I/E/F 
normal ad‐
dressing

1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● MOBY I/E/F normal 

addressing
● MOBY I file handler
● RF200/RF300/RF600; 

MOBY U/D normal 
addressing

● MOBY U file handler
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

MOBY I file 
handler

129 R/W

RF200/
RF300/
RF600; MO‐
BY U/D nor‐
mal address‐
ing

5 R/W

MOBY U file 
handler

133 R/W

Transmission
speed

BaudRate ulong 19200 Bd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

57600 Bd 13 R/W
115200 Bd 14 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 387



7.22.4 RF120C
The Openness parameters for the "RF120C" module are described below.

Table 7-4 Parameters of the module "RF120C"; parameters of the parameter group "Readers"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

Hard errors 2 R/W

User mode UserMode ulong Ident profile 3 R Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● Ident profile 

The program block for the 
Ident profile is used on 
the controller. 

Ident device / 
system

IdentDevi‐
ceOrSystem

int RF200 gener‐
al

53 R/W Selection of the connected 
Ident device / system. De‐
pending on the selection you 
make, the "Ident system" pa‐
rameter group is adapted.

RF290R 69 R/W
RF300 gener‐
al

85 R/W

RF380R 101 R/W
MOBY U 5 R/W
General 
Reader

197 R/W

Parameters 
via FB / opti‐
cal readers

214 R/W

RF600 1) 117 R/W
SLG D10S 1) 21 R/W
SLG D11S/
D12S 1)

37 R/W

1) The sub-parameters of these parameter are not supported by Openness.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
388 System Manual, 10/2018



The Openness parameters of the parameter group "Ident device/system" are described below.

Table 7-5 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: RF200 general"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Presence 
check

Presence‐
Check

ulong On 1 R/W On = As soon as there is a 
transponder in the antenna 
field of the reader, its pres‐
ence is reported.
Off = The presence check on 
the FB is suppressed. The an‐
tenna on the reader is never‐
theless turned on as long as it 
has not been turned off by a 
command.

Off 0 R/W

Reset ERR 
LED

ResetEr‐
rorLED

int On 2 R/W On = the flashing of the error 
LED on the communications 
module is reset by each FB 
reset.  
Off = the error LED always in‐
dicates the last error. The dis‐
play can only be reset by turn‐
ing off the communications 
module.

Off 0 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 389



UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Max. num‐
ber of trans‐
ponders

MaxNoOf‐
Transpond‐
ers

int 1 <number> R Number of transponders ex‐
pected in the antenna field.
The selection depends on the 
connected device. 

Transpond‐
er type

Transpon‐
derType

int ISO 15693 1 R Selection of the transponder 
types used. The selection de‐
pends on the connected de‐
vice. 

Table 7-6 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: RF290R"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Presence 
check

Presence‐
Check

ulong On 1 R/W On = As soon as there is a 
transponder in the antenna 
field of the reader, its pres‐
ence is reported.
Off = The presence check on 
the FB is suppressed. The an‐
tenna on the reader is never‐
theless turned on as long as it 
has not been turned off by a 
command.

Off 0 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
390 System Manual, 10/2018



UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Reset ERR 
LED

ResetEr‐
rorLED

int On 2 R/W On = the flashing of the error 
LED on the communications 
module is reset by each FB 
reset.  
Off = the error LED always in‐
dicates the last error. The dis‐
play can only be reset by turn‐
ing off the communications 
module.

Off 0 R/W

HF power RfPower double 0.50 ... 5.00 <text> R/W Setting for the output power of 
the reader.
The selectable values depend 
on the connected device.

Max. num‐
ber of trans‐
ponders

MaxNoOf‐
Transpond‐
ers

int 1 <number> R Number of transponders ex‐
pected in the antenna field.
The selection depends on the 
connected device. 

Transpond‐
er type

Transpon‐
derType

int ISO 15693 1 R Selection of the transponder 
types used. The selection de‐
pends on the connected de‐
vice. 

Table 7-7 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: RF300 general"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 391



UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Presence 
check

Presence‐
Check

ulong On 1 R/W On = As soon as there is a 
transponder in the antenna 
field of the reader, its pres‐
ence is reported.
Off (RF field on) = the pres‐
ence check in the FB is sup‐
pressed. The antenna on the 
reader is nevertheless turned 
on as long as it has not been 
turned off by a command.
Off (RF field off) = the antenna 
is turned on only when a com‐
mand is sent and it then turns 
itself off again.

Off (RF field 
on)

3 R/W

Off (RF field 
off)

2 R/W

Reset ERR 
LED

ResetEr‐
rorLED

int On 2 R/W On = the flashing of the error 
LED on the communications 
module is reset by each FB 
reset.  
Off = the error LED always in‐
dicates the last error. The dis‐
play can only be reset by turn‐
ing off the communications 
module.

Off 0 R/W

Max. num‐
ber of trans‐
ponders

MaxNoOf‐
Transpond‐
ers

int 1 <number> R Number of transponders ex‐
pected in the antenna field.
The selection depends on the 
connected device. 

Transpond‐
er type

Transpon‐
derType

int RF300 5 R/W Selection of the transponder 
types used. The selection de‐
pends on the connected de‐
vice. 

ISO 15693 1 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
392 System Manual, 10/2018



Table 7-8 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: RF380R"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Presence 
check

Presence‐
Check

ulong On 1 R/W On = As soon as there is a 
transponder in the antenna 
field of the reader, its pres‐
ence is reported.
Off (RF field on) = the pres‐
ence check in the FB is sup‐
pressed. The antenna on the 
reader is nevertheless turned 
on as long as it has not been 
turned off by a command.
Off (RF field off) = the antenna 
is turned on only when a com‐
mand is sent and it then turns 
itself off again.

Off (RF field 
on)

3 R/W

Off (RF field 
off)

2 R/W

Reset ERR 
LED

ResetEr‐
rorLED

int On 2 R/W On = the flashing of the error 
LED on the communications 
module is reset by each FB 
reset.  
Off = the error LED always in‐
dicates the last error. The dis‐
play can only be reset by turn‐
ing off the communications 
module.

Off 0 R/W

HF power RfPower double 0.50 ... 5.00 <text> R/W Setting for the output power of 
the reader.
The selectable values depend 
on the connected device.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 393



UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Max. num‐
ber of trans‐
ponders

MaxNoOf‐
Transpond‐
ers

int 1 <number> R Number of transponders ex‐
pected in the antenna field.
The selection depends on the 
connected device. 

Transpond‐
er type

Transpon‐
derType

int RF300 5 R/W Selection of the transponder 
types used. The selection de‐
pends on the connected de‐
vice. 

ISO 15693 1 R/W

Table 7-9 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: General Reader"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Byte se‐
quence of 
the reset pa‐
rameter

ByteSequen‐
ceHex

string 1) <text> R/W Byte sequence of the reset pa‐
rameter of the reader.

1) For a detailed description of this parameter, see the following paragraph.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
394 System Manual, 10/2018



Table 7-10 Parameters of the module "RF120C"; parameters of the parameter group "Ident device/system: Parameters via 
FB / optical readers"

UI parameter Openness 
parameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter value

Default ac‐
cess

Description

Transmis‐
sion
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
Note that the value specified 
here is adopted automatically 
from the device configuration 
of the connected devices.
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is con‐
nected: The transmission 
speed selected here must 
match the transmission speed 
selected in the firmware of the 
reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

MOBY mode MobyMode ulong RF200/
RF300/ 
RF600; 
MV4x0; MO‐
BY U/D

5 R With this parameter, you set 
the mode of the communica‐
tions module.

The parameter "Byte sequence of the reset parameter"
With this function, you can specify the Reset parameter using a byte array (16). This setting 
is intended only for trained users.

The following Reset parameters are available:

Table 7-11 Reset parameters

Byte 1 2...5 6 7...8 9 10 11 12 13...14 15 16
Value 4 0 10 0 scan‐

ning_
time

param op‐
tion_1

distance_
limiting

multitag field_on_
control

field_on_
time

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 395



7.22.5 RF170C
The Openness parameters for the "RF170C" module are described below.

Table 7-12 Parameters of the module "RF170C"; parameters of the parameter group "Module parameters"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong Ident profile/
RFID stand‐
ard profile

3 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● Ident profile/RFID 

standard profile: 
The program block for the 
Ident profile/RFID 
standard profile is used 
on the controller. 

● FB 45 / FC 45: 
Single tag mode FB 45 
(PROFIBUS/PROFINET) 
or FC 45 (PROFIBUS) is 
used on the controller.

● FB 55 / FC 55: 
Multitag mode. FB 55 
(PROFIBUS/PROFINET) 
or FC 55 (PROFIBUS) is 
used on the controller.

FB 45 / FC 45 1 R/W
FB 55 / FC 55 4 R/W

MOBY mode MobyMode ulong RF200/
RF300/
RF600; 
MV4x0; MO‐
BY U/D

5 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● RF200/RF300/RF600; 

MV4x0; MOBY U/D
● MOBY I/E
● MV3xx
● Freeport protocol
● RF300 filehandler 
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

MOBY I/E 1 R/W
MV3xx 16 R/W
Freeport pro‐
tocol

17 R/W

RF300 file‐
handler

149 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
396 System Manual, 10/2018



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Transmission
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

Hard errors 2 R/W

Suppression 
of 
Error LED

Suppressio‐
nOfErrorLed

int None 0 R/W Disabling the Error LED 
(ERR) of a channel. 
The communications module 
has two channels to which 
the readers / optical readers 
can be connected. The Error 
LED of the other channel 
flashes permanently when 
only one of the channels is 
being used. With the help of 
the suppression, you can dis‐
able the Error LED of the un‐
used channel.

Channel 1 1 R/W
Channel 2 2 R/W

Interface ModuleInter‐
face

int RS232 1 R Selection of the interface type 
that the connected hardware 
(reader / optical reader) uses.

RS422 0 R

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 397



Table 7-13 Parameters of the module "RF170C"; parameters of the parameter group "Freeport protocol"

UI parameter Openness pa‐
rameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter val‐
ue

Default ac‐
cess

Description

Data bits DataBits ulong 7 7 R/W Selection of the number of 
bits on which a character is 
represented.

8 8 R/W

Parity Parity ulong None 0 R/W Parity selection
A sequence of data bits can 
be expanded by a parity bit. 
With its value "0" or "1", the 
parity bit is added to the sum 
of all bits (data bits and parity 
bits) to form a defined status. 
This increases data reliabili‐
ty. 
● None: 

Data is sent without a 
parity bit.

● Odd: 
The parity bit is set so that 
the sum of the data bits 
(including the parity bit) is 
odd when the signal state 
is "1". 

● Even: 
The parity bit is set so that 
the sum of the data bits 
(including the parity bit) is 
even when the signal 
state is "1". 

● Fixed value 1: 
The parity bit is set 
permanently to the value 
"1". 

● Fixed value 0: 
The parity bit is set 
permanently to the value 
"0".

Odd 1 R/W
Even 2 R/W
Fixed value 1 3 R/W
Fixed value 0 7 R/W

Stop bits StopBits ulong 1 1 R/W Selection of the number of 
stop bits that indicate the end 
of a character. 
The stop bits are appended 
to every transferred charac‐
ter during transmission.

2 2 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
398 System Manual, 10/2018



UI parameter Openness pa‐
rameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter val‐
ue

Default ac‐
cess

Description

Specifying 
end detection

EndDetectio‐
nOfARecei‐
vedFrame

ulong After charac‐
ter delay time 
elapses

16 R/W Specifies the end detection of 
a received frame. 
● After character delay time 

elapses: 
The frame has neither a 
fixed length nor defined 
end delimiters. The end of 
a frame is indicated by a 
gap in the character 
sequence. The size of 
this gap is specified by 
the character delay time. 

● On receipt of fixed 
number of characters: 
The length of the received 
frame is always the same. 
When data is received, 
the end of the frame is 
recognized when the set 
number of characters has 
been received. 

● On receipt of the end 
delimiter(s): 
At the end of the frame 
there are one or two 
defined end delimiters. 
When data is received, 
the end of the frame is 
recognized when the 
configured end 
delimiter(s) is/are 
received.

On receipt of 
fixed number 
of characters

32 R/W

On receipt of 
the end delim‐
iter(s):

49 R/W

No. of end de‐
limiters

NumberO‐
fEndDelimit‐
ers

ulong 1 1 R/W Selection of the number of 
end delimiters. 
A maximum of 2 end delimit‐
ers can be configured. When 
data is received, the end of 
the frame is recognized when 
the selected end delimiter 
combination is received.

2 2 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 399



UI parameter Openness pa‐
rameter

Data type in 
Openness

UI parameter 
value

Openess pa‐
rameter val‐
ue

Default ac‐
cess

Description

1st end delim‐
iter

FirstEndDeli‐
miterReceiver

ulong 0...7F / 0...FF <text> R/W Entry of the 1st end delimiter 
of maximum two end delimit‐
ers for end criteria "On re‐
ceipt of the end delimiter(s)". 
The selected end delimiter or 
the selected end delimiter 
combination limits the length 
of the frame.
Parameter value depending 
on the "Data bits" parameter.

2nd end de‐
limiter

SecondEnd‐
DelimiterRe‐
ceiver

ulong 0...7F / 0...FF <text> R Entry of the 2nd end delimiter 
of maximum two end delimit‐
ers for end criteria "On re‐
ceipt of the end delimiter(s)". 
The selected end delimiter or 
the selected end delimiter 
combination limits the length 
of the frame.
Parameter value depending 
on the "Data bits" parameter.

Frame length FrameLength ulong 1...233 / 
1...229

<text> R Entry of the frame length in 
bytes for the end criterion "On 
receipt of fixed number of 
characters".

Character de‐
lay time

CharacterDe‐
layTime

ulong 0...65535 <text> R Entry of the time that may 
elapse until a frame end is 
recognized. Select the char‐
acter delay time dependent 
on the send behavior of your 
communications partner. De‐
pending on the data transmis‐
sion speed the character de‐
lay time is limited to a mini‐
mum value.
Note that the ASCII driver al‐
so pauses between two tele‐
grams during transmission.

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
400 System Manual, 10/2018



7.22.6 RF180C
The Openness parameters for the "RF180C" module are described below.

Table 7-14 Parameters of the module "RF180C"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong FB 45 1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● FB 45: 

Single tag mode FB 45 
(PROFIBUS/PROFINET) 
is used in the controller.

● FB 55: 
Multitag mode. FB 55 
(PROFIBUS/PROFINET) 
is used on the controller.

● FB 56:
Multitag mode. FB 56 
(PROFIBUS/PROFINET) 
is used on the controller.

● RFID standard profile 
The program block for the 
RFID standard profile is 
used on the controller. 

FB 55 4 R/W
FB 56 5 R/W
RFID stand‐
ard profile

3 R/W

MOBY mode MobyMode ulong MOBY I/E nor‐
mal address‐
ing

1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● MOBY I/E normal 

addressing
● MOBY I file handler
● RF200/RF300/RF600; 

MOBY U/D normal addr.
● MOBY U file handler
● RF300 filehandler 
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

MOBY I file 
handler

129 R/W

RF200/
RF300/
RF600; 
MV4x0; MO‐
BY U/D nor‐
mal add.

5 R/W

MOBY U file 
handler

133 R/W

RF300 file‐
handler

149 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 401



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Transmission
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

● Hard/Soft Errors:
Critical hardware faults 
and errors occurring 
when processing 
commands are reported 
by the S7 diagnostics.

Hard errors 2 R/W
Hard/soft er‐
rors

4 R/W

Suppression 
of 
Error LED

Suppressio‐
nOfErrorLed

int None 0 R/W Disabling the Error LED 
(ERR) of a channel. 
The communications module 
has two channels to which 
the readers / optical readers 
can be connected. The Error 
LED of the other channel 
flashes permanently when 
only one of the channels is 
being used. With the help of 
the suppression, you can dis‐
able the Error LED of the un‐
used channel.

Channel 1 1 R/W
Channel 2 2 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
402 System Manual, 10/2018



7.22.7 RF18xC
The Openness parameters for the "RF18xC" module are described below.

Table 7-15 Parameters of the modules "RF18xC"; parameters of the parameter group "Basic parameter"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong Ident profile/
RFID stand‐
ard profile

3 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● Ident profile/RFID 

standard profile: 
The program block for the 
Ident profile/RFID 
standard profile is used 
on the controller. 

Table 7-16 Parameters of the "RF18xC" modules; parameters of the parameter group "Module parameters"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

User mode UserMode ulong FB 45 1 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you se‐
lect the block: 
● FB 45: 

Single tag mode FB 45 
(PROFIBUS/PROFINET) 
is used in the controller.

● Ident profile/RFID 
standard profile: 
The program block for the 
Ident profile/RFID 
standard profile is used 
on the controller.

Ident profile/
RFID stand‐
ard profile

3 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 403



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

MOBY mode MobyMode ulong RF200/
RF300/
RF600; 
MV4x0; MO‐
BY U/D nor‐
mal add.

5 R Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the mode of the communica‐
tions module.
● RF200/RF300/RF600; 

MOBY U/D normal addr.
Normal addressing: The 
transponder is addressed 
with physical addresses. 
Filehandler: Prior to use, the 
transponder needs to be for‐
matted.

Transmission
speed

BaudRate ulong 19.2 kBd 9 R/W Selection depends on the 
communications module and 
Ident system being used. 
With this parameter, you set 
the transmission speed be‐
tween the communications 
module and reader.  
When the RFID reader is con‐
nected: After changing the 
transmission speed, the read‐
er must be turned off and on 
again (cycle power). 
When an optical reader is 
connected: The transmission 
speed selected here must 
match the transmission 
speed selected in the firm‐
ware of the reader.

57.6 kBd 13 R/W
115.2 kBd 14 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
404 System Manual, 10/2018



Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Diagnostics
messages

Diagnostic‐
Messages

int None 1 R/W With this parameter, you set 
whether hardware diagnos‐
tics messages will be repor‐
ted.
● None:

Apart from standard 
diagnostics, no other 
alarms are generated.

● Hard errors:
Critical hardware errors 
are reported by the S7 
diagnostics.

● Hard/Soft Errors:
Critical hardware faults 
and errors occurring 
when processing 
commands are reported 
by the S7 diagnostics.

Hard errors 2 R/W
Hard/soft er‐
rors

4 R/W

7.22.8 RF615R/RF680R/RF685R
The Openness parameters for the "RF615R/RF680R/RF685R" modules are described below.

Table 7-17 Parameters of the modules "RF615R/RF680R/RF685R"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

RFID read 
points alarm 1

RfidRead‐
PointAlarm1

int Off 0 R/W Enabling/disabling read 
point-related diagnostics 
messages.

On 1 R/W
RFID read 
points alarm 2

RfidRead‐
PointAlarm2

int Off 0 R/W
On 1 R/W

RFID read 
points alarm 3 
1)

RfidRead‐
PointAlarm3

int Off 0 R/W
On 1 R/W

RFID read 
points alarm 4 
1)

RfidRead‐
PointAlarm4

int Off 0 R/W
On 1 R/W

1) Only with RF680R

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
System Manual, 10/2018 405



7.22.9 MV400/MV500
The Openness parameters for the "MV400/MV500" modules are described below.

Table 7-18 Parameters of the modules "MV400/MV500"

Parameters in 
the configura‐
tion (TIA Por‐
tal)

Parameters in 
Openness

Data type in 
Openness

Parameter 
value in the 
configuration 
(TIA Portal)

Parameter 
value in 
Openness

Default ac‐
cess

Description

Function block FunctionBlock int FB79 0 R/W With this parameter, you se‐
lect the block: 
● FB79

Compatible with the 
"VS130-2" reader;
Compatible controllers: 
S7-300 and S7-400

● Ident profile 
Complex Ident block with 
MV-specific blocks;
Compatible controllers: 
S7-300, S7-400, S7-1200 
and S7-1500

Ident profile 1 R/W

TIA Portal Openness API
7.22 Openness for SIMATIC Ident

Openness: Automating creation of projects
406 System Manual, 10/2018



7.23 Exceptions

7.23.1 Handling exceptions

Exceptions when accessing the TIA Portal via TIA Portal Openness APIs
During the execution of an TIA Portal Openness application via the TIA Portal Openness API, 
all errors which occur are reported as exceptions. These exceptions contain information that 
will help you to correct the errors which have occurred. 

TIA Portal Openness API
7.23 Exceptions

Openness: Automating creation of projects
System Manual, 10/2018 407



A distinction is made between two types of exceptions:

● Recoverable (Siemens.Engineering.EngineeringException)
You can continue to access the TIA Portal without interruption with this exception. 
Alternatively, you can cancel the connection to the TIA Portal.
The EngineeringExceptions include the following types:

– Security-related exceptions (EngineeringSecurityException), for example, in case of 
missing access rights.

– Exceptions when accessing objects (EngineeringObjectDisposedException), for 
example, when accessing objects which no longer exist.

– Exceptions when accessing attributes (EngineeringNotSupportedException), for 
example, when accessing attributes which do not exist.

– General exceptions when calling (EngineeringTargetInvocationException), for example, 
error despite valid call of TIA Portal Openness API.

– Exceptions when calling (EngineeringRuntimeException), for example, invalid cast 
exception.

– Exceptions when there are not enough resources in associated TIA Portal instance 
(EngineeringOutOfMemoryException)

– Exceptions when calling is terminated (EngineeringUserAbortException), for example, 
during an import action canceled by user. 

– Exceptions thrown during the API call invocated from a client provided delegate 
(EngineeringDelegateInvocationException). This exception is derived from 
EngineeringTargetInvocationException exception.

The EngineeringExceptions have the following attributes:

– ExceptionMessageData messageData: Contains the reason for which the 
exception was thrown. 

– ExceptionMessageData detailMessageData:  Contains additional information 
about the reason. The result is returned as a <IList> . 

– String message: Returns the result from MessageData and 
DetailMessageData. 

ExceptionMessageData returns the following information:

– String Text: Contains the reason for which the exception was thrown.

● NonRecoverable (Siemens.Engineering.NonRecoverableException)
This exception closes the TIA Portal and the connection to the TIA Portal is disconnected. 
You need to restart the TIA Portal using the TIA Portal Openness application.

TIA Portal Openness API
7.23 Exceptions

Openness: Automating creation of projects
408 System Manual, 10/2018



Program code
The following example shows the options you have for responding to exceptions:

 
try
{
    ...
}
 
catch(EngineeringSecurityException engineeringSecurityException)
{
    Console.WriteLine(engineeringSecurityException);
}
 
catch(EngineeringObjectDisposedException engineeringObjectDisposedException)
{
    Console.WriteLine(engineeringObjectDisposedException.Message);
}
 
catch(EngineeringNotSupportedException engineeringNotSupportedException)
{
    Console.WriteLine(engineeringNotSupportedException.MessageData.Text);
    Console.WriteLine();
    foreach(ExceptionMessageData detailMessageData in 
engineeringNotSupportedException.DetailMessageData)
    {
        Console.WriteLine(detailMessageData.Text);
    }
}
 
catch (EngineeringTargetInvocationException)
{
    throw;
}
 
catch (EngineeringException)
{
    //Do not catch general exceptions
    throw;
}
 
catch(NonRecoverableException nonRecoverableException)
{
    Console.WriteLine(nonRecoverableException.Message);
}

TIA Portal Openness API
7.23 Exceptions

Openness: Automating creation of projects
System Manual, 10/2018 409



TIA Portal Openness API
7.23 Exceptions

Openness: Automating creation of projects
410 System Manual, 10/2018



Export/import 8
8.1 Overview

8.1.1 Basic principles of importing/exporting

Introduction
You can export certain configuration data and then re-import the data to the same or a different 
project after editing.

Note

There are no obligations or guarantees of any kind associated with using this description to 
manually modify and evaluate the source file. Siemens therefore accepts no liability arising 
from the use of all or part of this description.

Exportable and importable objects
The following configuration data can also be imported or exported by means of TIA Portal 
Openness APIs:

Table 8-1 Projects

Objects Export Import
Project graphics X X

Table 8-2 PLC

Objects Export Import
Blocks X X
Know-how protected blocks X –
Failsafe blocks X –
System blocks X –
PLC tag tables X X
PLC tags and constants X X
User data types X X

Openness: Automating creation of projects
System Manual, 10/2018 411



Table 8-3 HMI

Objects Export Import
Screens X X
Screen templates X X
Global screens X X
Pop-up sreens X X
Slide-in screens X X
Scripts X X
Text lists X X
Graphic lists X X
Cycles X X
Connections X X
Tag table X X
Tags X X

Complete export or export of open references
The object types listed above are exported or imported along with all objects if these belong 
to the same sub-tree. This rule is also valid for referenced objects of the same sub-tree. 

For referenced objects in other sub-trees, however, a complete export or import is not possible. 
Instead, "open references" to these objects are exported or imported. 

Referenced objects of the same sub-tree are only exported if they belong to the group of 
exportable objects. Any dynamizations on objects are treated as objects during the import/
export, and are exported and imported as well. 

The export includes all object attributes that were changed during configuration. This applies 
regardless of whether the altered attribute will be used or not. 

Example: You have configured a graphic IO field with the mode "Input/Output" and selected 
the setting "Visible after clicking" for the attribute "Scroll bar type". In the course of 
configuration, you have changed the mode to "Two states". The attribute "Scroll bar type" is 
not available in this mode. Because the "Scroll bar type" attribute was changed, it is included 
in the export, even though the attribute is not used. 

Importing open references
You can also import objects with open references (see Importing configuration data 
(Page 417)). 

If the referenced objects are contained in the target project, the open references are 
automatically linked to the object types again. These objects must be available at the same 
location and be assigned to the same name as for the export. If the referenced objects are not 
contained in the target project the open references can't be resolved. No additional object will 
be created to resolve these open references. 

Export/import
8.1 Overview

Openness: Automating creation of projects
412 System Manual, 10/2018



Export and import file format
The export and import file format is XML. Only CAx data require AML format. The different 
schema definitions for all formats are described in the respective section of this manual:

● XML format for the data of a HMI devices (Page 425)

● XML format for the data of a PLC devices (Page 475) 

● AML format for CAx data (Page 546)

Importing and exporting fonts
Fonts defined on objects are also exported and imported.

When you import fonts that are not included in the project, the standard font is displayed at 
the object after the import. However, the imported font is stored in the data management.

If the attributes for a font are not assigned in an import file, the attributes are assigned default 
values after the import.

Restrictions
The export format is internal and valid exclusively for the current version of TIA Portal 
Openness. The export format may change in future versions.

All errors which occur during the import and export are reported as exceptions. 
For more information on exceptions, see section Handling exceptions (Page 407).

See also
Field of application for Import/Export (Page 413)

Exporting configuration data (Page 415)

8.1.2 Field of application for Import/Export

Introduction
The Import/Export functionality allows you to export specific objects in a targeted manner. 

You can edit the exported data in an external program, or reuse it unchanged in other TIA 
Portal projects.

If you structure the import file correctly, you can also import configuration data created 
externally without having to carry out an export first.

Note

If you import externally created configuration data which contain code errors or a wrong 
structure this could cause unexpected errors. 

Export/import
8.1 Overview

Openness: Automating creation of projects
System Manual, 10/2018 413



Field of application
Exporting and importing data is useful for the following tasks: 

● For externally editing configuration data.

● For importing externally-created configuration data, e.g. text lists and tags.

● For distributing specified configuration data to different projects, e.g. a modified process 
screen which is to be used in several projects.

● For replicating and adjusting the hardware configuration between the TIA Portal project and 
an ECAD program.

See also
Basic principles of importing/exporting (Page 411)

8.1.3 Version Specific Simatic ML Import

Application
As of TIA Portal Openness V14 SP1 the SimaticML import is useable cross-version. You will 
be able to import your older export files at least into the next two major versions.

Each version of the Openness API is able to import Simatic ML files from corresponding version 
and any supported version from previous release, for example import of  Simatic ML file V14 
SP1 will be supported in Openness API V15.1.

The following table shows an example of which Simatic ML version can be imported by a given 
Openness API version.

 Simatic ML file V14 SP1 Simatic ML file V15 Simatic ML V15.1
Openness API V14 SP1 Import supported Import unsupported Import unsuppor‐

ted
Openness API V15 SP1 Import supported Import supported Import unsuppor‐

ted
Openness API V15.1 Import supported Import supported Import supported

Each version of the Openness API supports export of Simatic ML files. However, the version 
of the exported Simatic ML file should match with the version of the TIA Portal rather than that 
of the Openness API used.

Export/import
8.1 Overview

Openness: Automating creation of projects
414 System Manual, 10/2018



To support this feature, SimaticML files contains the model version information as shown 
below: 

 
<?xml version="1.0" encoding="utf-8"?>
<Document>
    <Engineering version="V14 SP1"/> 
    <DocumentInfo> 
     ... 
    </DocumentInfo> 
    <SW.DataBlock ID="0"> 
     ... 
    </SW.DataBlock>
</Document>

Note

If the version information is not provided in the SimaticML file, the system will use the current 
model version.

8.1.4 Editing the XML file

Introduction
Use an XML editor or text editor for editing an XML file for importing configuration data.

If you are making comprehensive changes or are creating custom object structures, we 
recommend that you use an XML editor with auto-complete function. 

Note

Changing the XML content requires comprehensive knowledge of the structure and validation 
rules in XML. Work manually in the XML structure only in exceptional cases in order to avoid 
validation errors.

8.1.5 Exporting configuration data

Introduction
The configuration data of each start object (root) is exported separately to an XML file. 

Editing the export file requires an adequate knowledge of XML. Use an XML editor for more 
convenient editing. 

Export/import
8.1 Overview

Openness: Automating creation of projects
System Manual, 10/2018 415



Example
You have a process screen that contains an IO field. An external tag is configured in the IO 
field. An export of the process screen includes the screen and the IO field. The tag and the 
connection used by the tag are not exported. Instead, only an open reference is included in 
the export. 

Contents of the export file
Beginning with the start object, all objects of a sub-tree and their attributes are saved to the 
export file. All references to objects of different sub-trees are only exported as open references. 
The corresponding attributes of the referenced objects in different sub-trees are not written to 
the export file. 

Note
Export of object types from the library is not supported

You can create objects as a type in the library. Instances of the object type used in the project 
can be edited like other objects using the TIA Portal Openness application. When you export 
objects, the instances are exported without the type information. 

When you re-import these objects into the project, the instances of the object types are 
overwritten and the instance is detached from the object type.

The export file does not necessarily contain all the attributes of an object. You define what 
data is to be exported:

● ExportOptions.None
This setting exports only the modified data or the data that differs from the default. 
The export file also contains all values that are obligatory for the subsequent data import.

● ExportOptions.WithDefaults1

The default values are also exported. 

● ExportOptions.WithReadOnly1

The write-protected values are also exported.
1: You can combine these two options with the following syntax: 
Export(path,ExportOptions.WithDefaults | 
ExportOptions.WithReadOnly);
The entire contents of the export file are in English. Regardless of this, any project texts 
contained are exported and imported in all the languages present. 

All configuration data is modeled as XML objects in the export file.

See also
Basic principles of importing/exporting (Page 411)

Exporting blocks  (Page 486)

Export/import
8.1 Overview

Openness: Automating creation of projects
416 System Manual, 10/2018



8.1.6 Importing configuration data

Introduction
Configuration data is imported from a previously exported and edited XML file or from an XML 
file you have created yourself. The data contained in this file is checked during the import. This 
approach prevents the configuration data in the TIA Portal from becoming inconsistent as a 
result of the import.

Restrictions
● All root objects in the import file have to be of the same kind, e.g. tag tables, blocks, ...

● If an import file includes several root objects and one of them is not valid, the entire contents 
of the import file are not imported.

● When importing texts, the corresponding project languages must have been set up in the 
target project in order to exclude import failure. If necessary you can modiy the language 
settings via TIA Portal Openness.

● If you specify invalid attributes of an object in the import file that cannot be edited in the 
graphical user interface of TIA Portal, the import is canceled.

● Only the area pointers listed in the "separately for each connection" field can be imported 
or exported.

● The import of object types from the library is not supported. You can create objects as a 
type in the library. Instances of the object type used in the project can be edited like other 
objects using the TIA Portal Openness application. When you export objects, the instances 
are exported without the type information. When you re-import these objects into the project, 
the instances of the object types are overwritten and the instance is detached from the 
object type.

● The import of failsafe blocks is not supported.

Note
Device-dependent value ranges for graphical attributes

If values of graphical attributes exceed the valid value range, these values are reset to the 
possible maximum values for the HMI device during import.

Different import behavior
If objects to be imported already exist in the project, control the import behavior using different 
program codes. Otherwise, the objects will be created again in the project during the import. 

Export/import
8.1 Overview

Openness: Automating creation of projects
System Manual, 10/2018 417



The following settings for the import behavior are possible:

● ImportOptions.None
By using this setting configuration data will be imported without overwritting.
If an object being imported from an XML file which already exists in the project, the import 
is interrupted and an exception will be thrown.

● ImportOptions.Override
By using this setting configuration data will be imported with automatic overwritting.
You can specify that existing objects in the project are overwritten with the import. Relevant 
objects are deleted prior to the import and recreated with default values. These defaults 
are overwritten with the imported values during the import. If the existing object and the 
new object are not in the the same group overwriting can't take place. To avoid naming 
conflicts import is canceled and an exception is thrown.

Procedure for importing 
If you wish to import an XML file, the data it contains must adhere to certain rules. The contents 
of the import file must be well-formed. There must be no syntax errors and no data structure 
errors. In the case of comprehensive changes, use an XML editor that checks these criteria 
prior to the import.

During the import of the XML file to the TIA Portal, the data it contains is first checked for formal 
errors in the XML code. If errors are detected during the check, the import is canceled and the 
errors are shown in an exception (see Handling exceptions (Page 407)). 

See also
Basic principles of importing/exporting (Page 411)

Importing user data type (Page 543)

Export/import
8.1 Overview

Openness: Automating creation of projects
418 System Manual, 10/2018



8.2 Import/export of project data

8.2.1 Project graphics

8.2.1.1 Exporting/importing graphics

Introduction
The export of configuration data from the TIA Portal to the XML file does not include selected 
graphics, or graphics referenced by an object. The graphics are saved separately during the 
export. In the XML file, the graphics are referenced by a relative path and their file name. A 
graphic reference is modeled in the XML file as an object and contains an attribute list and, if 
necessary, a link list, just like the other objects.

Exporting graphics
The export of configuration data includes only graphics that were selected directly for export. 
The exportable graphics are stored in the TIA Portal for the specific language. If a project is 
configured in multiple languages, all the language versions used are exported. 

When you export graphics, a new folder is created in the export file folder. The file folder name 
is built by concatenating the xml-filename with " files". This folder contains the exported 

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
System Manual, 10/2018 419



graphics. If this folder exists already, a new folder is created and supplemented by a 
consecutive number. 

The graphics are saved in the same file format as in the project. The data format is not changed 
or converted, and the resolution and color depth remain unchanged. 

The ID "default" is used as the file extension for the language selected as the default language.

If the folder already contains a file of the same name, the file name of the exported graphic is 
supplemented by a consecutive number.

Importing graphics
The following requirements apply when importing graphics: 

● The graphics must have a file format that is supported by TIA Portal.

● The graphics must be referenced in the XML file by a relative path specification.

Once you have exported a graphic, you can edit it outside TIA Portal using a graphics program 
and then re-import it. 

See also
Basic principles of importing/exporting (Page 411)

8.2.1.2 Exporting all graphics of a project

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
You can export either a single graphic or all graphics of the graphics collection of a project in 
all languages. An XML file with all project graphic entries concerned is created during the 
export and referenced along with the exported graphics. The relevant graphics are saved along 
with the XML file to the same directory of the file system. 

To allow the exported graphics ("*.jpg", "*.bmp", "*.png", "*.ico", etc.) to be changed, these 
graphics are not write-protected. 

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
420 System Manual, 10/2018



Program code: Exporting a graphic
Modify the following program code to export the required graphic:

 
//Exports all language variants of a single grafic
Project project = …;
MultiLingualGraphicComposition graphicsComposition = project.Graphics;
MultiLingualGraphic graphic = graphicsComposition.Find("graphicName");
graphic.Export(new FileInfo(@"D:\ExportFolder\graphicName.xml"), 
ExportOptions.WithDefaults);

Program code: Exporting all graphics
Modify the following program code to export all graphics of a graphics collection:

 
//Exports all graphics of a graphic library
Project project = …;
MultiLingualGraphicComposition graphicsComposition = project.Graphics;
foreach(MultiLingualGraphic graphic in graphicsComposition)
{
    graphic.Export(new FileInfo(string.Format(@"D:\Graphics\{0}.xml", graphic.Name)), 
ExportOptions.WithDefaults);
}

8.2.1.3 Importing graphics to a project

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
An XML file is saved along with the language versions of a graphic to a directory of your file 
system.

You can reference all graphics in a relative path in the XML file. 

You can now import all language versions of a graphic contained in the XML file to the graphics 
collection. 

You should also observe the Importing configuration data (Page 417).

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
System Manual, 10/2018 421



Program code
Modify the following program code to import one or several graphics:

 
//Import all language variants of a single graphic
Project project = …;
MultiLingualGraphicComposition graphicComposition = project.Graphics;
graphicComposition.Import(new FileInfo(@"D:\Graphics\Graphic1.xml"), 
ImportOptions.Override);

8.2.2 Project texts

8.2.2.1 Export of project texts

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

Application
In TIA Portal you can find project texts below the "Languages & resources" node of a project. 
These texts are exported to a "*.xlsx" file which is used for example for translations. The 
limitations of exporting and importing project texts are the same as in the UI. These limitations 
include:

● Exported texts can only be imported into the project from where they were exported.  

● You can only translate texts to languages that are available in in the project. If necessary 
you can add project languages via TIA Portal Openness.

● Only existing texts can be re-imported, if text from the original project has been deleted or 
re-created the import for that text will fail.  

You have to define the following parameters:

Name Example Description
pah new FileInfo ("D:\Test\Project‐

Text.xlsx")
Path to export file 

sourceLanguage new CultureInfo("en-US") Reference language text is to be translated from 
targetLanguage new CultureInfo("de-DE") Target language text is to be translated to 

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
422 System Manual, 10/2018



Note

Multilingual texts will be exported together with the parent object to which they belong. 
Multilingual texts can not be exported explicitly. 

Program code: Export from "Languages & resources" node
The use of the example parameters leads to the following program code to export project texts:

 
project.ExportProjectTexts(new FileInfo(@"D:\Test\ProjectText.xlsx"), new CultureInfo("en-
US"), new CultureInfo("de-DE"));

XML structure of a exported multilingual text item

8.2.2.2 Import of project texts

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
System Manual, 10/2018 423



Application
In TIA Portal you can find project texts below the "Languages & resources" node of a project. 
You can import project texts from a ".xlsx" file which is used for example for translations. The 
limitations of exporting and importing project texts are the same as in the UI. These limitations 
include:

● Exported texts can only be imported into the project from where they were exported. 

● You can only import translated texts in languages that are available in project from where 
they were exported.  

● Only existing texts can be re-imported, if text from the original project has been deleted or 
re-created the import for that text will fail.

You have to define the following parameters:

Name Example Description
path new FileInfo(@"D:\Test\Project‐

Text.xlsx")
Path to import file 

updateSourceLan‐
guage 

 true If true, the text of the reference language is updated from the 
export file. 
If false, the text of the reference language is not updated 

Note

Multilingual texts will be imported together with the parent object to which they belong. 
Multilingual texts can not be imported explicitly. 

Program code
The use of the example parameters leads to the following program code to import project texts:

 
ProjectTextResult result = project.ImportProjectTexts(new FileInfo(@"D:\Test
\ProjectText.xlsx"), true);

The import of the Project Texts returns an object indicating the status of the Import and path 
to which the import log is saved. These attributes can be accessed with the following code:

 
ProjectTextResultState resultState = result.State; 
FileInfo logFilePath = result.Path;

Export/import
8.2 Import/export of project data

Openness: Automating creation of projects
424 System Manual, 10/2018



8.3 Importing/exporting data of an HMI device

8.3.1 Structure of an XML file

Introduction
The data in the export file from the import/export is structured with reference to a basic 
structure. 

Basic structure of an export file
The export file is generated in a XML format.

The XML file starts with a document information. It includes the data of the computer-specific 
installation with which the project was exported. 

The export file is divided into the following two sections:

● Information about the document
In this section, you can enter your own information about the export in valid XML syntax. 
The content is ignored by the import. 
For example you can insert a <IntegrityInformation>...</
IntegrityInformation> block, in which you place additional information about the 
validation. After the XML file is forwarded, the recipient can use this block before the import 
to check whether the XML file has been changed.

● Object
This section contains the elements to be exported.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 425



Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
426 System Manual, 10/2018



Screen objects of an export file
The exported elements are available in additional elements of the XML file.

See also
Basic principles of importing/exporting (Page 411)

8.3.2 Structure of the data for importing/exporting

Objects
The basic structure is the same for all objects.

Every object in the XML file starts with its type, for example, "Hmi.Screen.Button", and an ID. 
The ID is created automatically during export. 

Each object apart from the start object also contains an "CompositionName" XML attribute. 
The value for this attribute is preset. It is occasionally necessary to specify this attribute, for 
example, to change the label when a button is pressed or released.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 427



Attributes
Every object contains attributes that are contained in an "AttributeList" section. Every attribute 
is modeled as an XML element, e.g. "BackColor". The value of an attribute is modeled as XML 
content, e.g. "204, 204, 204".

For referencing objects, each object contains a "LinkList" section, if necessary. This section 
contains links to other objects inside or outside the XML file. Every link is modeled as an XML 
element. The designation of a link is defined by the target object in the schema file. Every link 
also contains the "TargetID" attribute. When the target object is included in the XML file, the 
value of the "TargetID" attribute is the ID of the referenced object preceded by a "#". When 
the target object is not included in the XML file, the value of the "TargetID" attribute is 
"@OpenLink". The actual reference to the object is modeled as subordinate XML element. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
428 System Manual, 10/2018



Relation between objects and XML structure
The figures below show the relation between the exported XML structure and the associated 
objects in WinCC. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 429



Figure 8-1 Relation between the WinCC user interface and the XML structure.

Figure 8-2 Relation between the settings in WinCC and the XML structure.

8.3.3 Cycles

8.3.3.1 Exporting cycles

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The TIA Portal Openness API interface supports the export of all cycles of a known HMI device 
to an XML file. The generation of the corresponding export file indicates that the export is 
complete. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
430 System Manual, 10/2018



Program code
Modify the following program code to export cycles from an HMI device to an XML file:

 
//Exports cycles from an HMI device
private static void ExportCyclesFromHMITarget(HmiTarget hmitarget)
{
    CycleComposition cycles = hmitarget.Cycles;
    foreach(Cycle cycle in cycles)
       {
           cycle.Export(new FileInfo(string.Format(@"C:\Samples\{0}.xml", cycle.Name)), 
ExportOptions.WithDefaults);
       }
}

8.3.3.2 Importing cycles

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
When you use ImportOptions.None, you can identify the cycles that have actually been 
imported based on the composition number (Composition count). You have access to these 
imported cycles. 

Note

Standard cycles have attributes that cannot be edited in the user interface. If you specify in 
the import file that these attributes should be changed, the import causes a 
NonRecoverableException and closes the TIA Portal.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 431



Program code
Modify the following program code to import one or several cycles from an XML file into an 
HMI device:

 
//Imports cycles to an HMI device
private static void ImportCyclesToHMITarget(HmiTarget hmitarget)
{
    CycleComposition cycles = hmitarget.Cycles;
    string dirPathImport = @"C:\OpennessSamples\Import\";
    string cycleImportFileName = "CycleImport.xml";
    string fullFilePath = Path.Combine(dirPathImport, cycleImportFileName);
 
    cycles.Import(new FileInfo(fullFilePath), ImportOptions.None);
}

See also
Importing configuration data (Page 417)

8.3.4 Tag tables

8.3.4.1 Exporting HMI tag tables

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
One XML file is exported per HMI tag table. The API supports this export process. The export 
of tag tables is also available in subfolders.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
432 System Manual, 10/2018



Program code: Exporting all HMI tag tables from a specified folder
Modify the following program code to export all HMI tag tables from a specific folder:

 
//Exports all tag tables from a tag folder
private static void ExportAllTagTablesFromTagFolder(HmiTarget hmitarget)
{
    TagSystemFolder folder = hmitarget.TagFolder;
    TagTableComposition tables = folder.TagTables;
 
    foreach (TagTable table in tables)
    {       
        FileInfo info = new FileInfo(string.Format(@"C:\OpennessSamples\TagTables\{0}.xml", 
table.Name));
        table.Export(info, ExportOptions.WithDefaults);
    }
}

Program code: Exporting an HMI tag table
Modify the following program code to export an individual HMI tag table:

 
//Exports a tag table from an HMI device
private static void ExportTagTableFromHMITarget(HmiTarget hmitarget)
{
    string tableName = "Tag table XYZ";
    TagSystemFolder folder = hmitarget.TagFolder;
    TagTableComposition tables = folder.TagTables;
    TagTable table = tables.Find(tableName);
    
    if (table != null)
    {    
        FileInfo info = new FileInfo(string.Format(@"C:\OpennessSamples\TagTables\{0}.xml", 
table.Name));
        table.Export(info, ExportOptions.WithDefaults);
    }
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 433



Program code: Exporting all HMI tag tables
Modify the following program code to export all HMI tag tables:

 
//Exports all tag tables from an HMI device
private static void ExportAllTagTablesFromHMITarget(HmiTarget hmitarget)
{
    TagSystemFolder sysFolder = hmitarget.TagFolder;
    
    //First export the tables in underlying user folder
    foreach (TagUserFolder userFolder in sysFolder.Folders)
    {    
        ExportUserFolderDeep(userFolder);
    }
    
    //then, export all tables in the system folder
    ExportTablesInSystemFolder(sysFolder);
}
    
private static void ExportUserFolderDeep(TagUserFolder rootUserFolder)
{    
        foreach (TagUserFolder userFolder in rootUserFolder.Folders)    
        {        
            ExportUserFolderDeep(userFolder);    
        }    
        ExportTablesInUserFolder(rootUserFolder);
}
 
private static void ExportTablesInUserFolder(TagUserFolder folderToExport)
{    
     TagTableComposition tables = folderToExport.TagTables;    
     foreach (TagTable table in tables)    
     {        
         string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml", 
table.Name);
         table.Export(new FileInfo(fullFilePath), ExportOptions.WithDefaults);
     }
 }
 
private static void ExportTablesInSystemFolder(TagSystemFolder folderToExport)
{    
     TagTableComposition tables = folderToExport.TagTables;    
     foreach (TagTable table in tables)    
     {        
         string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml", 
table.Name);
         table.Export(new FileInfo(fullFilePath), ExportOptions.WithDefaults);
     }
 }

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
434 System Manual, 10/2018



8.3.4.2 Importing HMI tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Program code
Modify the following program code to import the HMI tag table of an XML file to a user-defined 
folder or to a system folder:

 
//Imports a single HMI tag table from a XML file
private static void ImportSingleHMITagTable(HmiTarget hmitarget)
{
    TagSystemFolder folder = hmitarget.TagFolder;
    TagTableComposition tables = folder.TagTables;
 
    FileInfo info = new FileInfo(@"D:\Samples\Import\myExportedTagTable.xml");
    tables.Import(info, ImportOptions.Override);
}

Incorrect import of tags
If you use the following symbols in the names of tags or referenced tags, the import of the tags 
will be faulty:

● . (period)

● \ (backslash)

Remedy 1: 

Before an export, check that the name of the tag or referenced tag to be exported does not 
contain a period or backslash.

Remedy 2: 

In the import file, exclude the names of tags or referenced tags using quotation marks.

Example

● Tag name with symbol:
 <name>Siemens.Simatic.Hmi.Utah.Tag.HmiTag:41000_Options_Time_Date
\DB_SFX0908_HMI1.Actual_Date_Time.Hour</name>

● Tag name with symbol excluded in quotation marks:
<name>"Siemens.Simatic.Hmi.Utah.Tag.HmiTag:41000_Options_Time_Date
\DB_SFX0908_HMI1.Actual_Date_Time.Hour"</name>

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 435



8.3.4.3 Exporting an individual tag from an HMI tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The following object model object types may possibly exist as sublevel items of an HMI tag 
and are taken into account during export:

MultilingualText For Comment, TagValue, DisplayName
TagArrayMemberTag For HMI array elements
TagStructureMember For HMI structure elements
Event For configured events
MultiplexEntry For configured tag multiplexing entries 

Program code
Modify the following program code to export an individual tag from an HMI tag table to an XML 
file:

 
//Exports a selected tag from a tag table
private static void ExportSelectedTagFromTagTable(HmiTarget hmitarget)
{
    TagSystemFolder tagFolder = hmitarget.TagFolder;
    TagTable mytable = tagFolder.TagTables.Find("MyTagTable");
 
    TagComposition containingTags = mytable.Tags;
    Tag myTag = containingTags.Find("MyTag");
 
    if (myTag != null)
    {
        FileInfo info = new FileInfo(string.Format(@"C:\OpennessSamples\Tags\{0}.xml", 
myTag.Name));
        myTag.Export(info, ExportOptions.WithDefaults);
    }
}  

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
436 System Manual, 10/2018



8.3.4.4 Importing an individual tag into an HMI tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The following object model object types may possibly exist as sublevel items of an HMI tag 
and are taken into account during import:

MultilingualText For Comment, TagValue, DisplayName
TagArrayMemberTag For HMI array elements
TagStructureMember For HMI structure elements
Event For configured events
MultiplexEntry For configured tag multiplexing entries 

Program code
Modify the following program code to import an HMI tag from an XML file into an HMI tag table:

 
//Imports a tag into a tag table
private static void ImportTagIntoTagTable(HmiTarget hmitarget)
{
    TagSystemFolder tagFolder = hmitarget.TagFolder;
    TagTable myTable = tagFolder.DefaultTagTable;
    TagComposition tagComposition = myTable.Tags;
 
    FileInfo info = new FileInfo(@"D:\Samples\Import\myExportedTag.xml"); 
    tagComposition.Import(info, ImportOptions.Override);
}

8.3.4.5 Special considerations for the export/import of HMI tags

Introduction
Special considerations apply to the export and import of the following HMI tags:

● External HMI tags with integrated connection

● HMI tags with the "UDT" data type

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 437



Similar program codes 
The program code for the above-mentioned HMI tags is almost identical to the following 
program codes: 

● Program code: Exporting HMI tags (Page 436)

● Program code: Importing HMI tags (Page 437)

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Special considerations for the export/import of an external HMI tag with integrated connection
When exporting an external HMI tag with integrated HMI connection, only the link of the HMI 
tag to the PLC tag is saved in the export file instead of the PLC tag data. 

Before the import, you must ensure that the PLC, the corresponding PLC tags and the 
integrated connection to the corresponding PLC exist in the project. If this is not the case, 
these items must be created before the import. During the subsequent import of the external 
HMI tag, the link to the PLC tag will be activated again. 

Names of external HMI tags must be unique across all tag tables of a project. If you do not 
specify the suitable tag table for the HMI tag during import, the import is canceled.

Use the following XML structure to import an external HMI tag with integrated connection:

 
<Hmi.Tag.Tag ID="1" CompositionName="Tags">
    <AttributeList>
        <Name>MyIntegratedHmiTag_1</Name>
    </AttributeList>
    <LinkList>
        <AcquisitionCycle TargetID="@OpenLink">
            <Name>1 s</Name>
        </AcquisitionCycle>
        <Connection TargetID="@OpenLink">
            <Name>HMI_Connection_MP277_300400</Name>    <- Must exist in the project
        </Connection>
        <ControllerTag TargetID="@OpenLink">
            <Name>Datablock_1.DBElement1</Name>        <- Must exist in the project
        </ControllerTag>
    </LinkList>           
</Hmi.Tag.Tag>

Special considerations for the export/import of an HMI tag of the "UDT" data type
The link is exported to the data type when an HMI tag of the "UDT" data type is exported. Only 
versioned data types are supported for import. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
438 System Manual, 10/2018



The data types must be saved in the project library. Data types in the global library are not 
supported.

The following rules apply to the import:

● The referenced data type must be contained in the project library. 
The import is terminated if the data type is not contained in the project library. 

● The referenced data type must be versioned. Versioning is supported as of TIA Portal V13 
SP1. 
An exception is thrown if the data type is not versioned. 

Note
The first data type found is used during the import to resolve the reference.

The following applies here: First, the root directory of the project library is searched, then 
the subfolders. 

Use the following XML structure to import an HMI tag of the "UDT" data type: 

 
<Hmi.Tag.Tag ID="1" CompositionName="Tags">
    ...
    <LinkList>
        <DataType TargetID="@OpenLink">
            <Name>HmiUdt_1 V 1.0.0</Name>    <- Must exist in the project library
        </DataType>
        ...
    </LinkList>
    ...
</Hmi.Tag.Tag>

8.3.5 VB scripts

8.3.5.1 Exporting VB scripts

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
All sublevel user-defined folders are taken into account for the export. A separate XML file is 
created for each exported VB script. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 439



Program code: Exporting a VB script
Modify the following program code to export a selected VB script of an HMI device to an XML 
file:

 
//Exports a single vbscript of an HMI device
private static void ExportSingleVBScriptOfHMITarget(HmiTarget hmitarget)
{
    VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
    VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
    VBScript vbScript = vbScripts.Find("MyVBScript");
 
    FileInfo info = new FileInfo(string.Format(@"C:\OpennessSamples\Export\Scripts
\{0}.xml", vbScript.Name));
    vbScript.Export(info, ExportOptions.None);
}

8.3.5.2 Exporting VB scripts from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
A separate XML file is created for each exported VB script. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
440 System Manual, 10/2018



Program code: Exporting a VB script from a user-defined folder
Modify the following program code to export a VB script from a user-defined folder to an XML 
file:

 
//Exports vbscripts of a selected vbscript system folder
private static void ExportVBScriptOfSelectedVBScriptSystemFolder(HmiTarget hmitarget)
{ 
    VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder; 
    VBScriptUserFolderComposition vbUserFolders = vbScriptFolder.Folders; 
    VBScriptUserFolder vbUserFolder = vbUserFolders.Find("MyVBUserFolder"); 
    VBScriptComposition vbScripts = vbUserFolder.VBScripts; 
 
    foreach (VBScript script in vbScripts) 
    { 
        FileInfo info = new FileInfo(String.Format(@"C:\OpennessSamples\Export\Scripts
\{0}.xml", script.Name)); 
        script.Export(info, ExportOptions.None); 
    }
}

Program code: Exporting all VB scripts from a system folder
Modify the following program code to export all VB scripts from the system folder:

 
//Exports all vbscripts by using a foreach loop
private static void ExportAllVBScripts(HmiTarget hmitarget)
{
    VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
    VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
    if (vbScripts == null) return;
 
    foreach (VBScript script in vbScripts)    
    {        
        FileInfo info = new FileInfo(string.Format(@"C:\OpennessSamples\Export\Scripts
\{0}.xml", script.Name));
        script.Export(info, ExportOptions.None);
    }
}

8.3.5.3 Importing VB scripts

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 441



Application
Bulk imports are supported. As an alternative, you can use a program code with a Foreach 
loop (Exporting VB scripts (Page 439)). 

Program code
Modify the following program code to import a VB script from an XML file into an HMI device:

 
private static void ImportSingleVBScriptToHMITarget(HmiTarget hmitarget)
{
    VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
    VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
    if (vbScripts 00 null) return;
    {    
        FileInfo info = new FileInfo(@"D:\Samples\Import\VBScript.xml");    
        vbScripts.Import(info, ImportOptions.None);
    }
}

8.3.6 Text lists

8.3.6.1 Exporting text lists from an HMI device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The export of text and graphic lists includes all their entries. Text and graphic lists can be 
exported separately. 

The text lists of an HMI device are exported. A separate XML file is created for each exported 
text list.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
442 System Manual, 10/2018



Program code
Modify the following program code to export text lists from an HMI device:

 
//Export TextLists
private static void ExportTextLists(HmiTarget hmitarget)
{
    TextListComposition text = hmitarget.TextLists;
    foreach (TextList textList in text)
    {
        FileInfo info = new FileInfo(string.Format(@"D:\Samples\Export\{0}.xml", 
textList.Name);
        textList.Export(info, ExportOptions.WithDefaults);
    }
}

8.3.6.2 Importing a text list into an HMI device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The API interface supports the import of a text list from an XML file into an HMI device.

Program code
Modify the following program code to import a text list from an XML file into an HMI device:

 
//Imports a single TextList
private static void ImportSingleTextList(HmiTarget hmitarget)
{
    TextListComposition textListComposition = hmitarget.TextLists;
    IList<TextList> importedTextLists = textListComposition.Import(new FileInfo(@"D:
\SamplesImport\myTextList.xml"), ImportOptions.Override);
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 443



8.3.6.3 Advanced XML formats for export/import of text lists

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● Standard export of text lists
See Exporting text lists from an HMI device (Page 442)

● Standard import of text lists
See Importing text lists into an HMI device (Page 443)

Application
A text list may also contain formatted texts. This primarily concerns the following formatting: 

● Text formatting

● References to other objects within the text

Pure text formatting within a text list to be exported results in an advanced XML export format. 
Object references are characterized as Open Links. The same applies to text lists to be 
imported with formatted texts. 

Advanced XML export formats may also become considerably more complex. For example, 
more than just the object name may be linked in the text list, perhaps by means of an Open 
Link to a PLC tag of a different device. In this case, all information must be coded in a string 
in order to remove the Open Link. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
444 System Manual, 10/2018



Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 445



8.3.7 Graphic lists

8.3.7.1 Exporting graphic lists

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The export of text and graphic lists includes all their entries. Text and graphic lists can be 
exported separately. 

One XML file is created per graphic list. Global graphic objects contained in the graphic lists 
are exported as Open Links.

Program code
Modify the following program code to export graphic lists of an HMI device:

 
//Exports GraphicLists
private static void ExportGraphicLists(HmiTarget hmitarget)
{
    GraphicListComposition graphic = hmitarget.GraphicLists;
    foreach (GraphicList graphicList in graphic)
    {
        FileInfo info = new FileInfo(string.Format(@"D:\Samples\Export\{0}.xml", 
graphicList.Name));
        graphicList.Export(info, ExportOptions.WithDefaults);
    }
}

8.3.7.2 Importing a graphic list

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
446 System Manual, 10/2018



Application
The API interface supports the import of a graphic list from an XML file into an HMI device.

All referenced graphic objects of the graphic list are included in the import. References to global 
graphics are not included. If the referenced global graphics exist in the target project, the 
references to the global graphics are restored during the import. 

Program code
Modify the following program code to import a graphic list from an XML file into an HMI device:

 
//Imports a single GraphicList
private static void ImportSingleGraphicList(HmiTarget hmitarget)
{
    GraphicListComposition graphicListComposition = hmitarget.GraphicLists;
    IList<GraphicList> importedGraphicLists = graphicListComposition.Import(new 
FileInfo(@"D:\Samples\Import\myGraphicList.xml"), ImportOptions.Override);
}

8.3.8 Connections

8.3.8.1 Exporting connections

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The API interface supports the export of all connections of an HMI device to an XML file. 

Note
Export of integrated connections

Export of integrated connections is not supported.

A separate XML file is created for each exported connection. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 447



Program code
Modify the following program code to export all connections of an HMI device to an XML file:

 
//Exports communication connections from an HMI device
private static void ExportConnectionsFromHMITarget(HmiTarget hmitarget)
{
    ConnectionComposition connections = hmitarget.Connections;
    foreach(Connection connection in connections)
    {
        FileInfo info = new FileInfo(string.Format(@"D:\Samples\Export\{0}.xml", 
connection.Name));
        connextion.Export(info, ExportOptions.WithDefaults);
    }
}

8.3.8.2 Importing connections

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The API interface supports the import of all connections of an HMI device from an XML file 
into an HMI device. If you want to import several communication connections, import the 
corresponding XML file for each one. 

Note

If you import a connection into a project in which an integrated connection has already been 
configured, this connection is not overwritten. The import is canceled and an Exception is 
thrown.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
448 System Manual, 10/2018



Program code
Modify the following program code to import an individual connection of an HMI device from 
an XML file into an HMI device:

 
//Imports Communication connections to an HMI device
private static void ImportConnectionsToHMITarget(HmiTarget hmitarget)
{
    ConnectionComposition connections = hmitarget.Connections;
    IList<Connection> importedConnectionLists = connections.Import(new FileInfo(@"D:
\Samples\Import\myConnectionImport.xml"), ImportOptions.Override);
}

8.3.9 Screens

8.3.9.1 Overview of exportable screen objects

Application
You can export or import the screens below using TIA Portal Openness APIs: 

Table 8-4 Supported screens

Object Export/import possible
Screen Yes
Global screen Yes
Screen template Yes
Permanent area Yes
Pop-up screen Yes
Slide-in screen Yes

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 449



You can export or import the screen objects below using TIA Portal Openness APIs: 

Table 8-5 Supported screen objects

Range Object type Export/import possible
Basic objects Line Yes

Polyline Yes
Polygon Yes
Ellipse Yes
Ellipse segment –
Circle segment –
Elliptical arc –
Circular arc –
Circle Yes
Rectangle Yes
Connector –
Text field Yes
Graphic view Yes
Pipe –
Double T-piece –
T-piece –
Pipe elbow –

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
450 System Manual, 10/2018



Range Object type Export/import possible
Elements I/O field Yes

Graphic I/O field Yes
Editable text field –
List box –
Combo box –
Button Yes
Round button –
Illuminated button Yes
Switch Yes
Symbolic I/O field Yes
Date/time field Yes
Bar Yes
Symbol library Yes
Slider Yes
Scroll bar –
Check box –
Option buttons –
Gauge Yes
Clock Yes
Memory space view –
Function keys (softkeys) Yes
Groups Yes
Faceplate instances Yes

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 451



Range Object type Export/import possible
Controls Screen window –

User view Yes
Print job/script diagnostics –
Camera view –
PDF view –
Recipe view –
Alarm view –
Alarm indicator –
Alarm window –
f(x) trend view –
f(t) trend view –
Table view –
Value table –
HTML Browser –
Media Player –
Channel diagnostics –
WLAN reception –
Zone name –
Zone signal –
Effective range name –
Effective range name (RFID) –
Effective range signal –
Charge condition –
Handwheel –
Help indicator –
Sm@rtClient view –
Status/Force –
Memory space view –
NC subprogram display –
System diagnostic view –
System diagnostic window –

See also
Basic principles of importing/exporting (Page 411)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
452 System Manual, 10/2018



8.3.9.2 Exporting all screens of an HMI device

Requirements
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
A different program code is required for exporting all aggregated screens of all user-defined 
screen folders of an HMI device.

Program code: Exporting all screens of a device
Modify the following program code to export the screens of a user-defined screen folder of an 
HMI device and the screen system folder:

 
private static void ExportScreensOfDevice(string rootPath, HmiTarget hmitarget)
{
    DirectoryInfo info = new DirectoryInfo(rootPath);
    info.Create();
    //export the ScreenFolder recursive
 
    string screenPath = Path.Combine(rootPath, "Screens");
    info = new DirectoryInfo(screenPath);
    info.Create();
    ExportScreens(screenPath, hmitarget);
}

Program code: Exporting all screens of a user-definded folder
Modify the following program code to export the screens of a user-defined screen folder of an 
HMI device and the screen system folder:

 
private static void ExportScreensOfDevice(HmiTarget hmitarget)
{
    ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
    //or ScreenSystemFolder folder = hmitarget.ScreenFolder;
    ScreenComposition screens = folder.Screens;
    foreach(Screen screen in screens)
    {
        FileInfo info = new FileInfo(string.Format(@"D:\Samples\Screens\{0}\{1}.xml", 
folder.Name, screen.Name));
        screen.Export(info, ExportOptions.WithDefaults);
    }
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 453



Program code: Exporting all screens of a device independent of the user
Modify the following program code to export all screens:

 
public static void ExportScreens(string screenPath, HmiTarget target)
{
    foreach(Screen screen in target.ScreenFolder.Screens)
    {
        screen.Export(new FileInfo(Path.Combine(screenPath, screen.Name + ".xml")), 
ExportOptions.WithDefaults);
    }
    foreach(ScreenUserFolder subfolder in target.ScreenFolder.Folders)
    {
        ExportScreenUserFolder(Path.Combine(screenPath, folder.Name), subfolder);
    }
}
 
private static void ExportScreenUserFolder(string screenPath,ScreenUserFolder folder )
{        
    foreach(Screen screen in folder.Screens)
    {
        screen.Export(new FileInfo(Path.Combine(screenPath, screen.Name + ".xml")), 
ExportOptions.WithDefaults);
    }
    foreach(ScreenUserFolder subfolder in folder.Folders)
    {
        ExportScreenUserFolder(Path.Combine(screenPath, subfolder.Name), subfolder);
    }
}

8.3.9.3 Exporting a screen from a screen folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
454 System Manual, 10/2018



Application
The following data of a screen is exported: 

Screen Data
Attributes ActiveLayer, BackColor, Height, Width, Name, Number, HelpText
Open links Template
Compositions ● Layers

● Animations
All configured animations that are based on Runtime Advanced are exported.

● Events
All configured events that are based on Runtime Advanced are exported.

● Softkeys
All configured softkeys are exported.

The following data is exported for each layer: 

Note

By default, the layer name in the TIA Portal is an empty text. 

If you do not change the layer name in the TIA Portal, the exported layer name will be an empty 
text. In this case, the displayed layer name in the TIA Portal depends on the user interface 
language. 

If you do change the layer name in the TIA Portal, the modified layer name is displayed in all 
relevant languages.

Layer Data
Attributes Name, Index, VisibleES
Compositions ScreenItems (with screen items)

Not included in the export: 

● SCADA-specific attributes.

● Layers that do not contain any screen items and whose attributes do not differ from the 
default values.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 455



Program code
Modify the following program code to export an individual screen from the user folder or from 
the system folder of an HMI device:

 
//Exports a single screen from a screen folder
private static void ExportSingleScreenFromScreenFolder(HmiTarget hmitarget)
{
    ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
    //or ScreenSystemFolder folder = hmitarget.ScreenFolder;
    ScreenComposition screens = folder.Screens;
    Screen screen = screens.Find("Screen_1.xml");
    if (screen == null) return;
    {
        FileInfo info = new FileInfo(string.Format(@"D:\Samples\Screens\{0}\{1}.xml", 
folder.Name, screen.Name));
        screen.Export(info, ExportOptions.WithDefaults);
    }
}

8.3.9.4 Importing screens to an HMI device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The screens can only be imported to a specific type of HMI device. The HMI device and the 
device from which the screens were exported must be of the same device type. 

The following data of a screen is imported: 

Screen Data
Attributes ActiveLayer, BackColor, Height, Width, Name, Number, HelpText
Open links Templates
Compositions ● Layers

● Animations
All animations configurable for screens are imported.

● Events
All events configurable for screens are imported.

● Softkeys
All softkeys configurable for screens are imported.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
456 System Manual, 10/2018



The following data is imported for each layer: 

Note

If you have specified an empty text for the layer name before the import, the displayed layer 
name in the TIA Portal after the import depends on the user interface language. 

If you have assigned a layer name, the specified layer name is displayed in all relevant 
languages after the import. 

Layer Data
Attributes Name, Index
Compositions ScreenItems 

Restrictions
● The import is canceled and an Exception is thrown if the width and height of a screen do 

not correspond to the dimensions of the device. Adaptation of the screen items contained 
is not supported. For this reason, certain screen items may be located beyond the screen 
boundaries. A compiler warning is output in this case.

● The screen number must be unique for all screens of the device. A screen import is canceled 
if a screen with a screen number that was already created in the device is found. If you 
have not yet assigned a screen number, a unique number is assigned to the screen during 
the import.

● The layout of the screen items within the Z-order must be unique and contiguous for each 
layer in the screen. For this reason, after the import of the screen, a consistency check is 
performed that repairs the layout, if necessary. This action may lead to modified "tab 
indexes" for certain screen items.
You can change the Z-order of the screen items in the XML file manually. The screen item 
in first place is at the very end in the Z-order. 

Note

You can change the values for width and height of the screen items in the XML file if the attribute 
"Fit size to content" is enabled for the screen item. 

Note
Import of screen types from the library is not supported

As of WinCC V12 SP1, you can create a screen as type in the library. Instances of the screen 
type used in the project can be edited like other screens using the TIA Portal Openness 
application. When you export screens, the instances of screen types are exported without the 
type information. 

When you re-import these screens into the project, the instances of the screen types are 
overwritten and the instance is detached from the screen type. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 457



Program code: Importing screens to an HMI device
Modify the following program code to import screens to an HMI device using a For each loop:

 
//Imports all screens to an HMI device
private static void ImportScreensToHMITarget(HmiTarget hmitarget)
{
    FileInfo[] exportedScreens = new FileInfo[] {new FileInfo(@"D:\Samples\Import
\Screen_1.xml"), new FileInfo(@"D:\Samples\Import\Screen_2.xml")};
    ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
    foreach (FileInfo screenFileInfo in exportedScreens)
    {
        folder.Screens.Import(screenFileInfo, ImportOptions.Override);
    }
}

Program code: Import to a newly created user folder
Modify the following program code to import a screen to a newly created user folder of an HMI 
device:

 
//Imports a single screen to a new created user folder of an HMI device
private static void ImportSingleScreenToNewFolderOfHMITarget(HmiTarget hmitarget)
{
    ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Create("MyFolder");
    folder.Screens.Import(new FileInfo(@"D:\Samples\Import\myScreens.xml"), 
ImportOptions.Override);
}

8.3.9.5 Exporting permanent areas

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The following data of the permanent area is exported: 

Permanent area Data
Attributes ActiveLayer, BackColor, Height, Width, Name
Compositions Layers

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
458 System Manual, 10/2018



The following data is exported for each layer: 

Layer Data
Attributes Name, Index
Compositions ScreenItems (with screen items)

Program code
Modify the following program code to export a permanent area of an HMI device to an XML 
file:

 
//Exports a permanent area
private static void ExportScreenoverview(HmiTarget hmitarget)
{
    ScreenOverview overview = hmitarget.ScreenOverview;
    if (overview == null) return;
 
    FileInfo info = new FileInfo(@"D:\Samples\Screens\ExportedOverview.xml");
    overview.Export(info, ExportOptions.WithDefaults);
}

8.3.9.6 Importing permanent areas

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The following data of the permanent area is imported: 

Permanent area Data
Attributes ActiveLayer, BackColor, Height, Width, Name, Visible, Number
Compositions Layers

The following data is imported for each layer: 

Layer Data
Attributes Name, Index
Compositions ScreenItems (with screen items)

The import is canceled and an Exception is thrown if the width and height of a screen do not 
correspond to the dimensions of the device. Adaptation of the included device items (Screen 
items) is not supported. For this reason, some device items may be located beyond the screen 
boundaries. A compiler warning is output in this case. 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 459



The layout of the device items must be unique and contiguous in the permanent area. For this 
reason, after the import of the permanent area, a consistency check is performed that repairs 
the layout, if necessary. This action may lead to modified "tab indexes" for certain device items. 

Program code
Modify the following program code to import a permanent area from an XML file into an HMI 
device:

 
//Imports a permanent area
private static void ImportScreenOverview(HmiTarget hmiTarget)
{
    FileInfo info = new FileInfo(@"D:\Samples\Screens\ExportedOverview.xml");
    hmiTarget.ImportScreenOverview(info, ImportOptions.Override);
}

8.3.9.7 Exporting all screen templates of an HMI device

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
One XML file is created per screen template. 

Because bulk exports are not supported, you need to enumerate and export all screen 
templates separately. In the course of this action, make sure that the screen template names 
used conform to the file naming conventions of your file system.

Program code: Exporting all screen templates of a device
Modify the following program code to export all screen templates from a specific folder:

 
public static void ExportScreenTemplatesOfDevice(string rootPath , 
ScreenTemplateUserFolder folder)
{
    string screenPath = Path.Combine(rootPath, "Screens");
    DirectoryInfo info = new DirectoryInfo(screenPath);
    info.Create();
 
    //export the ScreenTemplateFolder recursive
    ExportScreenTemplates (screenPath, hmitarget);
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
460 System Manual, 10/2018



Program code: Exporting all screen templates of a specific folder
Modify the following program code to export all screen templates:

 
//Exports all screen templates of a selected folder
private static void ExportScreenTemplates(string templatePath, HmiTarget hmitarget)
{
    foreach (ScreenTemplate screen in hmitarget.ScreenTemplateFolder.ScreenTemplates)
    {            
        screen.Export(new FileInfo(Path.Combine(templatePath, screen.Name + ".xml")), 
ExportOptions.WithDefaults);
    }
    foreach (ScreenTemplateUserFolder folder in hmitarget.ScreenTemplateFolder.Folders)
    {
        ExportScreenTemplates(Path.Combine(templatePath, folder.Name), hmitarget);
    }
}

8.3.9.8 Exporting screen templates from a folder

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The following data of the screen template is exported: 

Screen templates Data
Attributes ActiveLayer, BackColor, Height, Width, Name
Compositions ● Layers

● Animations
All configured animations are exported. SCADA animations are not exported.

● Softkeys
All configured softkeys are exported.

The following data is exported for each layer: 

Layer Data
Attributes Name, Index
Compositions ScreenItems (with screen items)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 461



Program code: Exporting a screen template of a user-defined folder
Modify the following program code to export an individual screen template from the system 
folder or from a user-defined folder:

 
private static void ExportSingleScreenTemplate(string templatePath, HmiTarget hmiTarget)
{
    ScreenTemplateUserFolder folder = 
hmiTarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
    //or ScreenTemplateSystemFolder folder = hmiTarget.ScreenTemplateFolder;
    ScreenTemplateComposition templates = folder.ScreenTemplates;
    ScreenTemplate template = templates.Find("templateName");
    if(template == null) return;
 
    FileInfo info = new FileInfo(string.Format(@"D:\Samples\Templates\{0}\{1}.xml", 
folder.Name, template.Name));
    template.Export(info, ExportOptions.WithDefaults);
}

Program code: Exporting all screen templates of a user-defined folder
Modify the following program code to export all screen templates from a specific folder:

 
public static void ExportScreenTemplateUserFolder(string rootPath, 
ScreenTemplateUserFolder folder)
{
    DirectoryInfo info = new DirectoryInfo(rootPath);
    info.Create();
 
    foreach (ScreenTemplate screen in folder.ScreenTemplates)
    {            
        screen.Export(new FileInfo(Path.Combine(info.FullName, screen.Name + ".xml")), 
ExportOptions.WithDefaults);
    }
    foreach (ScreenTemplateUserFolder subfolder in folder.Folders)
    {
        ExportScreenTemplateUserFolder(Path.Combine(info.FullName, subfolder.Name), 
subfolder);
    }
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
462 System Manual, 10/2018



Program code: Exporting all screen templates of a specific folder
Modify the following program code to export all screen templates:

 
//Exports all screen templates of a selected folder
private static void ExportScreenTemplates(string templatePath, ScreenTemplateUserFolder 
folder)
{
    foreach (ScreenTemplate screen in folder.ScreenTemplates)
    {            
        screen.Export(new FileInfo(Path.Combine(templatePath, screen.Name + ".xml")), 
ExportOptions.WithDefaults);
    }
    foreach (ScreenTemplateUserFolder subfolder in folders.Folders)
    {
        ExportScreenTemplates(Path.Combine(templatePath, subfolder.Name), subfolder);
    }
}

8.3.9.9 Importing screen templates

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The following data of a screen template is imported: 

Screen template Data
Attributes ActiveLayer, BackColor, Height, Width, Name, SetTabOrderInFront
Compositions ● Layers

● Animations
All animations configurable for screens are imported.

● Softkeys
All softkeys configurable for screens are imported.

The following data is imported for each layer: 

Layer Data
Attributes Name, Index
Compositions ScreenItems (with screen items)

The import is canceled and an Exception is thrown if the width and height of a screen template 
do not correspond to the dimensions of the device. Adaptation of the included screen items is 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 463



not supported. For this reason, certain screen items may be located beyond the screen 
boundaries. A compiler warning is output in this case. 

The layout of the screen items must be unique and contiguous in the screen template. For this 
reason, after the import of the screen template, a consistency check is performed which repairs 
the layout, if necessary. This action may lead to modified "tab indexes" for certain screen items. 

Program code: General import
Modify the following program code to import all screen templates to an HMI device using a For 
each loop:

 
//Imports screen templates to an HMI device
private static void ImportScreenTemplatesToHMITarget(HmiTarget hmitarget)
{
    ScreenTemplateUserFolder folder = 
hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
    // or ScreenTemplateSystemFolder folder = hmitarget.ScreenTemplateFolder;
    FileInfo[] exportedTemplates = {new FileInfo[] { new FileInfo(@"D:\Samples\Import
\Template_1.xml"), new FileInfo(@"D:\Samples\Import\Template_n.xml") };};
    foreach (FileInfo templateFileName in exportedTemplates)
    {
        folder.ScreenTemplates.Import(templateFileName, ImportOptions.Override);
    }
}

Program code: Import into a newly created user folder
Modify the following program code to import a screen template into a newly created user folder 
of an HMI device:

 
//Imports screen templates to a user folder of an HMI device
private static void ImportScreenTemplatesToFolderOfHMITarget(HmiTarget hmitarget)
{
    ScreenTemplateUserFolder screenTemplateFolder =
    hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
    ScreenTemplateUserFolder folder = screenTemplateFolder.Folders.Create("MyNewFolder");
    folder.ScreenTemplates.Import(new FileInfo(@"D:\Samples\Import\ScreenTemplate.xml"), 
ImportOptions.Override);
}

8.3.9.10 Exporting a pop-up screen

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
464 System Manual, 10/2018



Application
The following data of the pop-up screen is exported: 

Screen templates Data
Attributes ActiveLayer, BackColor, GridColor, Height, Name, ScrollbarBackgroundColor, 

ScrollbarForegroundColor, Width  
Compositions ● Layers 

● Events
All configured events are exported. 

The following data is exported for each layer: 

Layer Data
Attributes Name, Index, VisibleES
Compositions ScreenItems 

All exportabe screen objects are exported.

Program code: Exporting a pop-up screen from a folder
Modify the following program code to export an individual pop-up screen from the system folder 
or from a user-defined folder:

 
//Exports a single pop-up screen
private static void ExportSinglePopUpScreen(HmiTarget hmitarget)
{
    ScreenPopupUserFolder folder = 
hmitarget.ScreenPopupFolder.Folders.Find("MyPopupFolder");
    //or ScreenPopupSystemFolder folder = hmitarget.ScreenPopupFolder;
    ScreenPopupComposition popups = folder.ScreenPopups;
    ScreenPopup popup = popups.Find("popupName"); 
    if(popup == null) return;
 
    FileInfo info = new FileInfo(string.Format(@"D:\Samples\Screens\{0}\{1}.xml", 
folder.Name, popup.Name);
    popup.Export(info, ExportOptions.WithDefaults); 
}

8.3.9.11 Importing a pop-up screen

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 465



Application
The following data of a pop-up screen is imported: 

Screen templates Data
Attributes ActiveLayer, BackColor, GridColor, Height, Name, ScrollbarBackgroundColor, 

ScrollbarForegroundColor, Width  
Compositions ● Layers

● Events
All configured events are exported. 

The existence of the following attributes is  mandatory for the import:

● Name

● Height

● Width

The following data is imported for each layer: 

Layer Data
Attributes Name, Index, VisibleES
Compositions ScreenItems

All importable screen objects are imported.

Restrictions
If a device doesn't support pop-up screens, the import is cancelled and an Exception is thrown.

If the width and height of a pop-up screen do not comply to the following dimensions restrictions 
for a device, the import is cancelled and an Exception is thrown:

● Minimum height = 1 pixel

● Minimum width = 1 pixel

● Maximum height = sixfold height of the device's screen

● Maximum width = twofold width of the device's screen

● For devices with runtime version V13 SP1 the maximum height and the maximum width is 
equal with th height and width of the device's screen.

Program code: Importing a pop-up screen into a folder
Modify the following program code to import a pop-up screen into the pop-up screen system 
folder or to a user-defined folder:

 
//Imports a pop-up screen to an HMI device
private static void ImportPopupScreenToHMITarget(HmiTarget hmitarget)
{
    FileInfo info = new FileInfo(string.Format(@"D:\Samples\Screens\PopupScreen.xml"));
    hmitarget.ScreenPopupFolder.ScreenPopups.Import(info, ImportOptions.None);
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
466 System Manual, 10/2018



8.3.9.12 Exporting a slide-in screen

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See  Connecting to the TIA Portal (Page 74)

● A project is open. 
See  Opening a project (Page 97)

Application
The following data and values of the slide-in screen is exported: 

Screen tem‐
plates

Data  

Attributes Activate false
ActiveLayer 0
BackColor (182; 182; 182)
GridColor (0; 0; 0)
Dimension 427

The attribute "Dimension" specifies either the width or 
height of the slide-in screen, depending on the used slide-
in screen type.

LineColor1 (223; 223; 223)
LineColor2 (32; 32; 32)
OperatableAreaColor (128; 128; 128)
SlideinType Top, Bottom, Left, Right

Slide-in screens do not have a name but a SlideinType.
Visibility FadeOut

Compositions Layers  

Note

Slide-in screens do not have a name but a SlideinType. 

The following data is exported for each layer: 

Layer Data  
Áttributes Name,  

Index  
VisibleES  

Compositions ScreenItems 
 

All exportabe screen objects are exported.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 467



Program code: Exporting a slide-in screen
Modify the following program code to export an individual slide-in screen from the system folder:

 
//Exports a single slide-in screen
private static void ExportSingleSlideinScreen(HmiTarget hmitarget)
{
    ScreenSlideinSystemFolder systemFolder = hmitarget.ScreenSlideinFolder;
    var screens = systemFolder.ScreenSlideins;
    ScreenSlidein slidein = screens.Find(SlideinType.Bottom);
    if (slidein == null) return;
 
    FileInfo info = new FileInfo(string.Format(@"D:\Samples\Screens\{0}\{1}.xml")); 
    slidein.Export(info, ExportOptions.WithDefaults);
}

8.3.9.13 Importing a slide-in screen

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The following data  and values of a slide-in screen is imported: 

Screen templates Data
Attributes Activate = false

ActiveLayer = 0
Authorization
BackColor = (182; 182; 182)
Dimension = 427
The attribute "Dimension" specifies either the width or height of the slide-in 
screen, depending on which of the two attributes is modifiable for the specified 
slide-in type. 
GridColor = (0; 0; 0)
LineColor1 = (223; 223; 223)
LineColor2 = (32; 32; 32)
OperateableAreaColor = (128; 128; 128)
SlideinType = Top, Bottom, Left, Right
Visibility = FadeOut

Compositions Layers

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
468 System Manual, 10/2018



The existence of the following attribute is mandatory for the import:

● SlideinType

The following data is imported for each layer: 

Layer Data
Attributes Name, Index, VisibleES
Compositions ScreenItems

All importable screen objects are imported.

Restrictions
● If a device does not support slide-in screens, the import is cancelled and an Exception is 

thrown.

● If a slide-in screen is referenced from another element, the slide-in screen must be 
referenced via openlink and not via SlideinType, e. g. in system function 
"ShowSlideinScreen"). 
The following table shows the mapping of the attribute "SlideinType" with the corresponding 
openlink: 

SlideinType Openlink Name
Top         GraphX_Slidein_Top   
Right GraphX_Slidein_Right
Bottom GraphX_Slidein_Bottom
Left  GraphX_Slidein_Left

Program code: Importing a slide-in screen into a folder
Modify the following program code to import a slide-in screen to the slide-in screen system 
folder:

 
//Imports a slide-in screen to an HMI device  
private static void ImportSlideinScreenToHMITarget(HmiTarget hmitarget)
{
    FileInfo info = new FileInfo(@"D:\Samples\Screens\SlideInScreen.xml");
    hmitarget.ScreenSlideinFolder.ScreenSlideins.Import(info, ImportOptions.None);
}

8.3.9.14 Exporting a screen with a faceplate instance

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 469



Application
The following data of a faceplate instance in a screen is exported: 

Screen Data
Attributes Left, Top, Width, Height, ObjectName, Resizing, TabIndex, FaceplateTypeName
Interface Attributes All configured interface attributes of a faceplate instance are exported for ex‐

portable screen items.
Compositions ● Animations

All movement animations are exported.
Tag animations rely on interface attributes.

● Events 
All configured events are exported.

Regard the following specifications for exported attributes of faceplate instance:

● Resizing
The attribute "Resizing" is exported in any case, independent of the export options.

● FaceplateTypeName
The attribute "FaceplateTypeName" identifies the corresponding faceplate type and  
version, e. g. "Faceplate_1 V 0.0.2". 

Note
Faceplate type in a library folder

If a faceplate type is located within a library folder, the complete path and name is required 
to identify the faceplate type. The keyword "@$@" is used to separate folders and/or 
faceplate type name, e. g.  "Folder_1@$@SubFolder_1@$@Faceplate_1 V 0.0.2".

The following data of inner screen items of a faceplate instance is excluded from the export: 

Screen item Attribute
IO-Field   Flashing on limit violation 
Graphic IO-Field Fit embedded graphic object to screen size

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
470 System Manual, 10/2018



Program code
Modify the following program code to export an individual screen including a faceplate instance:

 
//Exports a single screen including a faceplate instance 
private static void ExportSingleScreenWithFaceplateInstance(HmiTarget hmitarget)
{
    ScreenFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
    ScreenComposition screens = folder.Screens;
    Screen screen = screens.Find("ScreenWithFaceplateName");
    if (screen == null) return;
    {
       FileInfo info = new FileInfo(string.Format(@"D:\Samples\Faceplates\{0}\{1}.xml", 
folder.Name, screen.Name));
       screen.Export(info, ExportOptions.WithDefaults);          
    }
}
 

8.3.9.15 Importing a screen with a faceplate instance

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
The following data of a faceplate instance in a screen is imported: 

Screen Data
Attributes Left, Top, Width, Height, ObjectName, Resizing, TabIndex, FaceplateTypeName
Interface Attributes All configured interface attributes of a faceplate instance are imported for im‐

portable screen items.
Compositions ● Animations

All movement animations are imported.
Tag animations rely on interface attributes.

● Events 
All configured events are imported.

The existence of the following attributes is mandatory for the import:

● ObjectName

● FaceplateTypeName 

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 471



The following data of inner screen items of a faceplate instance is excluded from the export 
and import: 

Screen item Attribute
IO-Field   Flashing on limit violation 
Graphic IO-Field Fit embedded graphic object to screen size

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
472 System Manual, 10/2018



Restrictions
● Unknown Faceplate, event or interface attribute

If a faceplate type name, an event name or an interface attribute name is specified in the 
import file which does not exist in the project, the import is aborted with an Exception. 

● Resizing behavior of a faceplate instance
The attribute "Resizing" is imported in any case, independent of the export options.
Examples: 
If "Resizing" is set to "KeepRatio", the "Height" attribute is used to calculate the "Width" 
attribute value.

– The size of a faceplate type is 100 x 100 pixel. If a faceplate instance is imported with 
size 300 x 100 pixel and value "FixedSize" is set for the "Resizing"  attribute, the import 
succeeds and the faceplate size is  set to 100 x 100 pixel. 

– The size of a faceplate type is 100 x 50 pixel. A faceplate instance is imported with size 
100 x 100 pixel and value "KeepRatio" is set for the "Resizing"  attribute.The import 
succeeds and the faceplate size is  set to 200 x 100 pixel. 

Note
Sizing behavior of imported faceplate instances

The values of "Resizing" and values of interface attributes can affect the size of the imported 
faceplate instance and even the size of the inclosed screen items.

To avoid unrequested changes of the appearance of a faceplate instance, import a 
faceplate with the initial size or even without "Width" and "Height" attribute values.

● Deviant interface attribute values

– If you modify attributes for the import, the last applied interface attribute value is 
imported. 

– If attributes depend on each other, other attribute values can be changed during the 
import.
Example: A faceplate includes an I/O field. The attribute "Mode" is connected to an 
interface attribute. If you first set the mode to "Output" and then set the attribute "Hidden 
input" to true, the value of "Hidden input" is not applied after import. The first modification 
set the attribute "Hidden input" to read-only and therefore the value cannot be applied.

– If a attribute value does not fulfill the restrictions of WinCC, the faceplates type value is 
displayed.
Example: The display range of a gauge is set from 10 - 80. The attributes 
"MaximumValue" und "MinimumValue" are configured al interface attributes. If you set 
a minimum value that exceeds the maximum value, e. g. 100, the faceplate type's value 
for "MinimumValue" is displayed after import.

– If an interface attribute is connected with several screen item attributes within the 
faceplate type, the interface attribute value at the faceplate instance will display the 
applied attribute value of the first connected screen item. 
Example: A faceplate includes two gauge objects with deviant maximum values. The 
minimum values of both gauges are connected to one single interface attribute. 
If you first set a minimum value that is applicable for both gauges, both values are set. 
If you set than a value that is only applicable for the second gauge, the value is only set 
for the second gauge, but the value of the first gauge is displayed as interface attribute.

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
System Manual, 10/2018 473



Program code: Importing screens including a faceplate instance 
Modify the following program code to import a screen including a faceplate instance:

 
//Imports single screen including a faceplate instance 
private static void ImportSingleScreenWithFaceplateInstance(HmiTarget hmitarget)
{
    FileInfo info = new FileInfo(@"D:\Samples\Screens\ScreenFaceplate.xml"); 
    hmitarget.ScreenFolder.Screens.Import(info, ImportOptions.None);
}

Export/import
8.3 Importing/exporting data of an HMI device

Openness: Automating creation of projects
474 System Manual, 10/2018



8.4 Importing/exporting data of a PLC device

8.4.1 Blocks

8.4.1.1 XML structure of the block interface section 

Basic principle
The data in the export file from the import/export is structured with reference to a basic 
structure. Every import file has to fulfill the basic structural conditions.

The export file includes all edited tags and constants of the interface section of an exported 
block. All attributes with "ReadOnly="TRUE""and "Informative="TRUE"" are excluded. 

If the information is redundant, it must exactly be identical in the import XML file and the project 
data. Otherwise the import will throw a recoverable exception. 

The project data can contain more data than the import XML file, e. g. an external type may 
have additional members 

Only writeable values can be imported via TIA Portal Openness XML. 

Depending on the TIA Portal Openness export settings, the export file includes a defined set 
of attributes and elements. The XML exported from higher versions of the product is not 
compatible during the import operation in lower version of the TIA portal.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 475



Basic structure
The interface section of an exported block is covered in the <Interface> element in the 
SimaticML of a block. The root object is the <Sections> element, which represents the 
interface section of an exported block. The sequence of the following description of elements 
represents the required sequence in the input file.

● Section
Section represents a single parameter or local data of a program block

● Member
Member represents the tags or constants used in the program block. Depending of the 
datatype of a tag, members can be nested or have further structural sub elements.
In case of the data type "ARRAY" the structural element "Subelement Path" represents 
e. g. the index of the components of an array element.
Only those members are exported, which were edited by the user. 

● AttributeList
The <AttributeList> includes all defined attributes of a member. Attributes, that are 
system defined or assigned by a standard value are not listed in the XML structure.
The member attributes <ReadOnly> and <Informative> are only written to the XML 
export file  if their value is TRUE. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
476 System Manual, 10/2018



● StartValue
The element <StartValue> is only written, if the default value of the tag or constant is 
set by the user.

● Comment
The element <Comment> is written, if it is set by the user. Comments of a tag or constant 
are exported as multilingual text:

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 477



Attributes
● Main attributes

 The main attributes are written in the <Member> element in the XML structure. 

The following table shows the main attributes of a tag or constant at the block interface 
section.

Name Datatype Default Import condition Comment
Name STRING  - Required  
Datatype ENUM  - Required  
Version STRING - Optional  
Remanence ENUM NonRetain  - only written if not 

default
Accessibility ENUM Public  - pre-defined by 

the system 
cannot be 
changed by the 
user

Informative BOOL FALSE  -  
Members with the flag "Informative" are ignored during import. If the attribute is deleted 
or set to FALSE, an exception is thrown. 

Note
Remanence settings "Set in IDB"

If the remanence value of a tag or constant is "Set in IDB", the remanence set in the IDB 
has to be the same for all other tags and constants with the remanence value "SetInIDB". 

The first imported member with "Set in IDB" attribute defines the expected remanence in 
the IDB for the following tags and constants with the remanence value "SetInIDB". 

● System defined member attributes
Systemdefined member attributes are listed in the element <AttributeList>. 
Systemdefined member attributes flagged with the <Informative> and are ignored 
during import. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
478 System Manual, 10/2018



Name   Type Default SimaticML Re‐
adOnly (informa‐
tive) 

Comment

 At string "" FALSE Member shares 
offset with anoth‐
er member in this 
structure 

SetPoint bool FALSE FALSE Member can be 
synchronized 
with workmemory 

UserReadOnly bool FALSE TRUE User cannot 
change any mem‐
ber attribute (incl. 
name) 

UserDeletable bool TRUE TRUE Editor does not al‐
low to delete the 
member 

HmiAccessible bool TRUE FALSE No HMI access, 
no structure item 

HmiVisible bool TRUE FALSE Filter to reduce 
the number of 
members shown 
in the first place 

Offset int - TRUE DB, FB, FC 
(Temp). For clas‐
sic PLCs and for 
Plus PLCs where 
the remanence is 
set to classic. 

PaddedSize int - TRUE DB, FB, FC 
(Temp). For clas‐
sic PLCs and for 
Plus PLCs where 
the remanence is 
set to classic. On‐
ly for arrays. 

HiddenAssign‐
ment 

bool FALSE FALSE Hide assigne‐
ment at call if 
matches with Pre‐
definedAssign‐
ment 

PredefinedAs‐
singment 

string "" FALSE Input for the para‐
mter used when 
call is placed 

ReadOnlyAssign‐
ment 

bool FALSE FALSE The user cannot 
change the prede‐
fined assigne‐
ment at the call 

UserVisible bool TRUE TRUE This member is 
not shown on the 
UI 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 479



Name   Type Default SimaticML Re‐
adOnly (informa‐
tive) 

Comment

HmiReadOnly bool TRUE TRUE This member is 
read only for HMI 

CodeReadOnly bool FALSE TRUE  - 

● User defined attributes
User defined attributes are flagged with <ReadOnly>. Members with this flag are ignored 
during import. If the flag is deleted or set to FALSE, an exception is thrown. 
Unedited user defined attributes are excluded from the export.

Name   Type Default SimaticML Re‐
adOnly (informa‐
tive) 

Comment

CFC IBlockAttribute  --- FALSE this is a Payload 

Datatype "STRUCT"
The components of the datatype "STRUCT" are represented in the XML structure of an import/
export file as nested members: 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
480 System Manual, 10/2018



Datatype  "ARRAY" basic type
The components of the basic datatype "ARRAY" are represented in the XML structure of an 
import/export file as subelements with the attribute "Path" : 

Datatype  "ARRAY" of UDT
The components of the datatype "ARRAY" of an UDT are represented in the XML structure of 
an import/export file as new <sections> element in a <member> element. The members in 
the new section for UDT are within an ARRAY are assigned as subelements with "Path" 
attribute: 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 481



Datatype  "ARRAY" in "ARRAY"
The components of the datatype "ARRAY" in another ARRAY  are represented in the XML 
structure of an import/export file  as subelements with the attribute "Path".

The members within another ARRAY are assigned as subelements with"Path" attribute, if 
the component is edited by the user:

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
482 System Manual, 10/2018



PLC data types (UDT)
The XML structure of a PLC data type depends on the TIA Portal Openness export settings.

● ExportOptions.None
Members of PLC data type are only written if the default value of at least one of the 
components is set by the user. For these members, only the two additional attributes 
"Name" and "Datatype" are written, to identify the member to which the 
<StartValue> belongs. Other members and attributes are not written. 

● ExportOptions.WithDefaults
The following attributes are always written: 

– Name  
– Datatype  
– ExternalAccessible  
– ExternalVisible  
– ExternalWritable  
– SetPoint
– StartValue

Only written to the XML if it the default value in this type is set by the user. If it only has 
been set in the PLC data type, it is not written.

● ExportOptions.ReadOnly
For PLC data types this setting will not lead to meaningful result. In combination with other 
settings it will have no influence on the result. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 483



Overlaid tags 
If a tag is overlaid with a new datatype, the members are represented in the XML structure of 
the new data type. The following XML structure shows a datatype WORD overlaid by an 
ARRAY of BYTE.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
484 System Manual, 10/2018



Block Interface
All attributes with ReadOnly="TRUE" and Informative="FALSE" are excluded. The XML 
structure of a block interface depends on the TIA Portal Openness export settings. 

● ExportOptions.None 
This setting exports only the modified data or the data that differs from the default. 
In case their attribute definition does not specify a default value, the attribute is always 
written. 
The export file also contains all values that are obligatory for the subsequent data import.

● ExportOptions.WithDefaults
The following attributes are always written  

– Name  

– Datatype  

– HmiAccessible  exported as ExternalAccessible 

– HmiVisible  exported as ExternalVisible
– ExternalWritable
– SetPoint (if applicable)  

– Offset (if applicable)  

– PaddedSize (if applicable)  

All other attributes are only written if their values differ from the default.
The <StartValue> element is only written to the XML if it has been explicitly set. 

● ExportOptions.ReadOnly
For block interfaces this setting will not lead to meaningful result. In combination with other 
settings it will have no influence on the result.

8.4.1.2 Changes of the object model and XML file format

Introduction
To import a custom created or an edited XML file successfully to the TIA Portal via TIA Portal 
Openness, the file must correspond to defined schemas.

The XML files always consist of two major parts:

● Interface

● Compile unit

The schemas they have to correspond to are explained in the following.

Interface
An interface can contain multiple sections (e. g. Input, InOut, Static): You can find all of these 
sections in the schema in the following directory: 

C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\V14 SP1\Schemas
\SW.InterfaceSections_v2.xsd

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 485



Compile unit
There are seperate schemas for the compile units of GRAPH, LAD/FBD and STL blocks. You 
can find these schemas in the following directories:

● GRAPH: C:\Program Files\Siemens\Automation\Portal V ...\PublicAPI\Schemas
\SW.PlcBlocks.Graph.xsd

● LAD/FBD: C:\Program Files\Siemens\Automation\Portal V ...\PublicAPI\Schemas
\SW.PlcBlocks.LADFBD.xsd

● STL: C:\Program Files\Siemens\Automation\Portal V ...\PublicAPI\Schemas
\SW.PlcBlocks.STL.xsd

Subschemas
There are the following additional schema definitions used by all compile units:

● Access

● Common

Access
The Access node describes for example:

● local/global members and constant usages   

● FB, FC, Instruction calls  

● DBs for calls 

You can find the access schema in the following directory:

C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\V ...\Schemas
\SW.PlcBlocks.Access.xsd

Common
Common contains the commonly used attributes and elements, for example different types of 
comments, texts and tokens. 

You can find the common schema in the following directory:

C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\V ...\Schemas\SW.Common.xsd

8.4.1.3 Exporting blocks 

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
486 System Manual, 10/2018



Application
The API interface supports exporting consistent blocks and user data types to an XML file. 

The XML file receives the name of the block. The following block types are supported: 

● Function blocks (FB)

● Functions (FC)

● Organization blocks (OB)

● Global data blocks (DB)

The following programming languages are supported:

● STL

● FBD

● LAD

● GRAPH

● SCL

Attributes applicable for all blocks
The following attributes are exported in all blocks with the selected ExportOptions (see 
Exporting configuration data (Page 415)). Attributes in bold typeface are always exported.

Additional information is available in the TIA Portal information system under "Overview of 
block attributes". 

Attribute Type Default value ReadOnly
AutoNumber Bool true false
CodeModifiedDate DateTime - true
CompileDate DateTime - true
CreationDate DateTime - true
HeaderAuthor String "" false
HeaderFamily String "" false
HeaderName String "" false
HeaderVersion String "0.1" false
Interface String empty interface false
InterfaceModifiedDate DateTime - true
IsConsistent Bool - true
IsKnowHowProtected1 Bool false true
IsWriteProtected Bool false true
MemoryLayout enum MemoryLayout - false
ModifiedDate DateTime - true
Name String - false
Number Int32 next available number false
ParameterModified DateTime - true

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 487



Attribute Type Default value ReadOnly
PLCSimAdvancedSupport Bool false true
ProgrammingLanguage enum ProgrammingLan‐

guage
- false

StructureModified DateTime - true
1 The IsKnowHowProtected attribute is applicable for UDT too.

Attributes applicable for ArrayDB block
The following attributes are exported for ArrayDB block with the selected ExportOptions.

Attribute Type Default value ReadOnly
ArrayDataType String - true
ArrayLimitUpperBound Int32 - true

Attributes applicable for DB block
The following attributes are exported in DB block with the selected ExportOptions.

Attribute Type Default value ReadOnly
IsOnlyStoredInLoadMemory Bool false false
IsPLCDB Bool false false
IsWriteProtectedInAS Bool false false

Attributes applicable for FB block
The following attributes are exported for FB blocks with the selected ExportOptions.

Attribute Type Default value ReadOnly
AssignedProDiagFB String - -
ISMultiInstanceCapable Bool - true
Supervisions String no supervisions true for IDB of FB and false 

for FB

Attributes applicable for DB and FB blocks
The following attributes are exported in DB and FB block with the selected ExportOptions.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
488 System Manual, 10/2018



Attribute Type Default value ReadOnly
IsIECCheckEnabled Bool false false
IsRetainMemResEnabled1 Bool false false
MemoryReserve Unsigned 0 false
RetainMemoryReserve2 Unsigned 0 false

2 If the "IsRetainMemResEnabled" attribute's value is "false", and the "RetainMemoryReserve" attribute is not equal to "0", 
an exception is thrown.

Attributes applicable for FB, DB and IDB blocks
The following attributes are exported in FB, DB, and IDB blocks with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
DownloadWithoutReinit Bool false true

Attributes applicable for FB and FC blocks
The following attributes are exported for FB and FC block with the selected ExportOptions.

Attribute Type Default value ReadOnly
LibraryType String - true
LibraryTypeVersionGuid String - true

Attributes applicable for FB and FC (STL) blocks
The following attributes are exported for FB and FC (STL) block with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
ParameterPassing Bool false false

Attributes applicable for FB, FC and instance DB of an FB block
The following attributes are exported for FB, FC and instance DB of an FB block with the 
selected ExportOptions.

Attribute Type Default value ReadOnly
UDABlockProperties String "" false
UDAEnableTagReadback Bool false false

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 489



Attributes applicable for instance DB of FB and UDT
The following attributes are exported for instance DB of  FB and UDT block with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
InstanceOfName String "" false
InstanceOfNumber Unsigned Short - true
InstanceOfType enum BlockType - true
OfSystemLibElement String "" false
OfSystemLibVersion String "" false

Attributes applicable for OB block
The following attributes are exported in OB block for specific Plus PLCs with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
ApplicationCycle Single - true
AutomaticMinimum Bool - true
ConstantName String - true
CycleTimeDistributedIO Single - true
CyclicApplicationCycleTime Single - true
CyclicTime Int32 100000 true
DataExchangeMode OBDataExchangeMode Cyclic true
DelayTime Double - true
DistributedIOName String - true
EnableTimeError Bool - true
EventClass String - true
EventsToBeQueued Int32 - true
EventThresholdForTimeError Int32 - true
Execution OBExecution Never true
Factor Single - true
PhaseOffset Int32 0 true
PriorityNumber Int32 - true
ProcessImagePartNumber UInt32 - true
ReportEvents Bool - true
SecondaryType3 String - false
StartDate DateTime 1/1/2012 true
SynchronousApplicationCy‐
cleTime

Single - true

TimeMode OBTimeMode System true

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
490 System Manual, 10/2018



Attribute Type Default value ReadOnly
TimeOfDay DateTime 12:00 AM true
TransformationDBNumber UInt16 0xffff true

3 When exporting an OB, the "SecondaryType" is additionally set based on the OB number. The assignment is checked 
during import. If the assignment is incorrect, an exception of type "Recoverable" is thrown. 

Attributes applicable for FB, FC and OB blocks
The following attributes are exported for FB, FC and OB block with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
HandleErrorsWithinBlock Bool false true

Attributes applicable for FB, FC and UDT blocks
The following attributes are exported for FB, FC and UDT block with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
LibraryConformanceStatus String - false

Attributes applicable for GRAPH block
The following attributes are exported for GRAPH block with the selected ExportOptions.

Attribute Type Default value ReadOnly
AcknowledgeErrorsRequired Bool true false
CreateMinimizedDB Bool false false
ExtensionBlockName String - -
GraphVersion String - false
InitialValuesAcquisition String - -
LanguageInNetworks String - false
LockOperatingMode Bool false false
PermanentILProcessingIn‐
MANMode

Bool false false

SkipSteps Bool false false

Attributes applicable for GRAPH FB block
The following attributes are exported for GRAPH FB block with the selected ExportOptions.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 491



Attribute Type Default value ReadOnly
WithAlarmHandling Bool true false

Attributes applicable for SCL block
The following attributes are exported for SCL blocks with the selected ExportOptions. 
These attribues are exported based on the type of PLCs.

Attribute Type Default value ReadOnly
CheckArrayLimits Bool false false
ExtendedStatus Bool false false
DBAccessibleFromOPCUA Bool true false

Attributes applicable for GRAPH, SCL, and LAD/FBD blocks
The following attributes are exported for GRAPH, SCL, and LAD/FBD blocks with the selected 
ExportOptions.

Attribute Type Default value ReadOnly
SetENOAutomatically Bool - false

Program code
Modify the following program code to export a block without know-how protection to an XML 
file:

 
//Exports a regular block
private static void ExportRegularBlock(PlcSoftware plcSoftware)
{ 
    PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock"); 
    plcBlock.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, plcBlock.Name)), 
ExportOptions.WithDefaults);
}

8.4.1.4 Exporting DBs with snapshots

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
492 System Manual, 10/2018



Application
You can use the TIA Portal Openness to export the DB's with snapshot values as XML and 
able to compare the values with different snapshot times. With the compare result, you can 
manually adapt single start values within the UI and store for a potential recovery. 

Program code
Modify the following program code to export Snapshot Values by using the Snapshot Service:

 
InterfaceSnapshot interfaceSnapshot = dataBlock.GetService<InterfaceSnapshot>();
interfaceSnapshot.Export(new FileInfo("C:\temp\MyInterfaceSnapshot.xml"), 
ExportOptions.None); 

The Snapshot Service "InterfaceSnapshot" will be provided in the namespace 
"Siemens.Engineering.SW.Blocks".  The file handling (e.g. if the export directory does not exist; 
creating of the export directory; if the export directory is readonly; if the export file already 
exists) will be the same as the standard interface openness export. The Snapshot Service will 
be supported for Global DBs, Instance DBs and Array DBs. 

Note

Export of snapshot values using the Snapshot Service is independent of the standard interface 
openness export and therefore will not influence the already existing export of the interface 
members. It will not be possible to import the exported XML

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 493



The snapshot values will be exported as following: 

 
<?xml version="1.0" encoding="utf-8"?>
<Document>
  <Engineering version="V15 SP1" />
  <DocumentInfo>
  ... 
  </DocumentInfo> 
  <SW.Blocks.InterfaceSnapshot ID="0"> 
   <AttributeList> 
      <Name>GlobalDB</Name> 
      <Snapshot ReadOnly="true"><SnapshotValues>
      <SnapshotValues> 
      <Value Path="Static_1" Type="Bool">TRUE</Value> 
      <Value Path="Static_2[0]" Type="Int">1</Value> 
      <Value Path="Static_2[1]" Type="Int">2</Value> 
      <Value Path="Static_2[2]" Type="Int">3</Value> 
      <Value Path="Static_3" Type="DTL">DTL#1973-01-01-00:00:00</Value> 
      <Value Path="Static_4.Element_1" Type="Int">7</Value>
      <Value Path="Static_4.Element_2[0]" Type="Bool">FALSE</Value> 
      <Value Path="Static_4.Element_2[1]" Type="Bool">TRUE</Value> 
      <Value Path="Static_4.Element_2[2]" Type="Bool">TRUE</Value>
      <Value Path="Static_4.Element_3.Element_1" Type="Int">5</Value> 
      <Value Path="Static_4.Element_3.Element_2.Element_1" Type="Bool">TRUE</Value>
      <Value Path="Static_4.Element_3.Element_2.Element_2[0]" Type="Int">100</Value> 
      <Value Path="Static_4.Element_3.Element_2.Element_2[1]" Type="Int">200</Value> 
    </SnapshotValues></Snapshot> 
    <SnapshotDate ReadOnly="true">2017-12-06T08:04:11.4590585Z</SnapshotDate> 
    <StructureModified ReadOnly="true">2017-12-06T08:22:13.3292585Z</StructureModified>
   </AttributeList>
 </SW.Blocks.InterfaceSnapshot>
</Document>

If a DB does not contain any snapshot values, the content of the exported file would look like 
as following: 

 
<SnapshotValues xlmns="http://www.siemens.com/automation/Openness/SW/Interface/Snapshot/
v1"></SnapshotValues>

See also
Opening a project (Page 97)

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
494 System Manual, 10/2018



8.4.1.5 Exporting blocks with know-how protection

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is not online.

Application
The resulting XML file is similar to the export file of a block without know-how protection. 
However, the export covers only the data of the user interface that is visible when the block is 
opened without a password. 

The attribute list of the block indicates that the relevant block is know-how protected.

Program code
Modify the following program code to export the visible data of a block with know-how protection 
to an XML file:

 
private static void ExportBlock(PlcSoftware plcSoftware) 
{ 
    PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock"); 
    plcBlock.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, plcBlock.Name)), 
ExportOptions.WithDefaults); 
}

8.4.1.6 Export/Import of SCL blocks

SCL statements with export XML tags
The export operation of SCL blocks exports its equivalent XML tags based on the type of SCL 
statements. This operation supports the SCL networks of SCL statements in LAD/FBD blocks 
of SCL statements. The SCL statements are classified as text elements, operands, 
expressions, control, etc. The SCL block statements with their corresponding exported XML 
tags and attributes are given below.

New line
New lines in SCL blocks are represented as NewLine XML tag.

● Contains unsigned Num attribute with default value 1.

● Num attribute does not have value 0.

● Supported only for SCL.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 495



SCL block XML tag
 <NewLine Num="2" />

Blank
Blank spaces in SCL blocks are respresented as Blank XML tag.

● Contains unsigned Num attribute with default value 1.

● Num attribute does not have value 0.

● Supported only for SCL.

● Does not support Integer attribute available in other languages of STEP 7.

SCL block XML tag
 <Blank Num="2"/>

Identation of SCL block statements
In TIA portal settings, you can modify the identation of SCL code by accessing Options/Settings/
General/Script/text editiors. The following table defines the type of identation based on the 
ident mode.

Ident mode Result
None Import operation adds the spaces as available in 

the source files.
Paragraph or Smart Import operation adds the specified ident spaces 

in the imported file.

Based on the chosen identation, the imported SCL block XML file are idented.

Comment
Single-line and multi-line comments in SCL blocks are represented as LineComment XML tag.

● Only LineComment tag (for single language comment) is used in SCL.

● Comment tag (for mulitple language comment) is not used in SCL.

● Contains Inserted attribute with default value false

● Inserted="false" indicates "//" single comment in SCL block.

● Inserted="true" indicates "(**)"  multi-line comment in SCL block.

● NoClosingBracket="true" indicates comment without closing braces in SCL block. This 
attribute is optional and has default value as false.

● XML does not indicate comment hierarchy in SCL block.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
496 System Manual, 10/2018



SCL block XML tag
// one line comment <LineComment>

    <Text>one line comment</Text>
</LineComment>

(* one line comment
second line *)

<LineComment Inserted="true">
    <Text>one linecomment 
secondline</Text>
</LineComment>

(* first comment (* second comment 
*) end first comment *)

<LineComment Inserted=”true”>
        <Text> first comment (* 
second comment *) end first comment</
Text>
</LineComment >
The nested comment is part of outer comment text.

(* comment without closing bracket <LineComment Inserted="true" 
NoClosingBracket="true"> 
        <Text> comment without 
closing bracket</Text>
</LineComment >

Region
Regions in SCL blocks are represented as Token XML tag.

● Text XML tag represents the region_name.

● The Text attribute of the Token XML tag is case in-sensitive.

● The import operation is case in-sensitive, and the editor displays the keywords as 
configured in the TIA portal settings.

● If the end_region keyword ends with ";" (semi-colon) in SCL block, the symbol ";" is placed 
in Text XML tag.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 497



SCL block XML tag
region myregion
...
end_region here is the end of 
myregion

<Token Text="REGION" />
<Blank />
<Text>myregion</Text>
<NewLine />
...
<Token Text="END_REGION" />
<Blank />
<Text>here is the end of myregion</
Text>
<NewLine />

region
 // here are no blanks
...
end_region

<Token Text="REGION" />
<NewLine />
<LineComment .../>
<Token Text="END_REGION" />
<NewLine />

region
...
end_region;

<Token Text="REGION" />
<NewLine />
...
<Token Text="END_REGION" />
<Text>;</Text>
<NewLine />

Pragma
Pragma in SCL blocks are represented as Token XML tag. The parameters are represented 
in Access XML tag with Scope attribute as LiteralConstant.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
498 System Manual, 10/2018



SCL block XML tag
{PRAGMA_BEGIN 'Param1', 'Param2' 
(*parm 2*)} 
// something else 
{PRAGMA_END}

<Token Text="{" />
<Token Text="PRAGMA_BEGIN" />
<Blank />
<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>'Param1'</
ConstantValue>
    </Constant>
</Access>
<Token Text="," />
<Blank />
<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>'Param2'</
ConstantValue>
    </Constant>
</Access>
<Blank />
<LineComment Inserted="True">
    <Text>param 2</Text>
</LineComment>
<Token Text="," />
<Blank />
<Token Text="}" />
<NewLine />
<LineComment>
    <Text> something else</Text>
</LineComment>
<NewLine />
<Token Text="{" />
<Token Text="PRAGMA_END" />
<Token Text="}" />

Constants: Literal constants
The constants in SCL blocks are represented by Access XML tag.

● The Scope attribute can have values like LiteralConstant, TypedConstant, LocalConstant, 
and GlobalConstant.

● The name of constants preceeded by "#" are ignored in XML.

● The "#" is added during the import operation of XML.

● The value of global constants represented by quotes are ignored in XML.

● The quotes are added during the import operation of XML.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 499



Type of constant SCL block XML tag
Literal constant: Integer #Out := 10; <Access Scope="LiteralConstant">

    <Constant>
        <ConstantValue>10</ConstantValue>
        <ConstantTypeInformative="true">LINT</
ConstantType>
    </Constant>
</Access>

Literal constant: String #myString := 'Hello 
world';

<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>Hello world</
ConstantValue>
        
<ConstantTypeInformative="true">STRING</
ConstantType>
    </Constant>
</Access>

Literal constant: Typed #Out := int#10; <Access Scope="TypedConstant">
    <Constant>
        <ConstantValue>int#10</ConstantValue>
    </Constant>
</Access>
Format of XML exported in ExportOptions.ReadOnly setting.
 
<Access Scope="TypedConstant">
    <Constant>
        <ConstantValue>int#10</ConstantValue>
        <StringAttribute Name="Format" 
Informative="true">Dec_signed</
StringAttribute>
        <StringAttribute Name="FormatFlags" 
Informative="true">TypeQualifier</
StringAttribute>
    </Constant>
</Access>

Local constant #Out := #mylocal; <Access Scope="LocalConstant">
    <Constant Name="mylocal" />
</Access>
Format of XML exported in ExportOptions.ReadOnly setting.
 
<Access Scope="LocalConstant">
    <Constant Name="mylocal">
        <ConstantType Informative="true">Int</
ConstantType> 
        <ConstantValue Informative="true">10</
ConstantValue>
        <StringAttribute Name="Format" 
Informative="true">Dec_signed</
StringAttribute> 
    </Constant>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
500 System Manual, 10/2018



Type of constant SCL block XML tag
Global constant #Out := "myglobal"; <Access Scope="GlobalConstant">

    <Constant Name="myglobal" />
</Access>
Format of XML exported in ExportOptions.ReadOnly setting.
 
<Access Scope="GlobalConstant">
    <Constant Name="myglobal">
        <ConstantType Informative="true">Int</
ConstantType>
        <ConstantValue Informative="true">10</
ConstantValue>
        <StringAttribute Name="Format" 
Informative="true">Dec_signed</
StringAttribute>
    </Constant>
</Access>

The address constants are not supported in SCL blocks, and it is ignored in this table.

Variables
The local and global variables in SCL blocks are represented by Access XML tag.

● The Scope attribute has values of LocalVariable and GlobalVariable

● The XML tags for assigning the value 10 is ignored here.

Type of variable SCL block XML tag
Local variable #Out := 10; <Access Scope="LocalVariable">

    <Symbol>
        <Component Name="Out" />
    </Symbol>
</Access>

Global variable "Tag_3":= 10; <Access Scope="GlobalVariable">
    <Symbol>
        <Component Name="Tag_3" />
    </Symbol>
</Access>
Format of XML exported in ExportOptions.ReadOnly setting.
 
<Access Scope="GlobalVariable">
    <Symbol>
        <Component Name="Tag_3" />
        <Address Area="Memory" Type="Int" 
BitOffset="96" Informative="true" />
    </Symbol>
</Access>

Expressions
The simple expressions in SCL blocks are represented by Access XML tag. The Scope 
attribute has value of LocalVariable for the expressions

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 501



SCL block XML tag
#a := #b + #c; <Access Scope="LocalVariable">

    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Blank />
<Token text=":=" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="b" />
    </Symbol>
</Access>
<Blank />
<Token text="+" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="c" />
    </Symbol>
</Access>
<Token text=";" />

Control structures in SCL blocks
The control statements like IF, CASE, FOR, WHILE, REPEAT, GOTO, EXIT, CONTINE, and 
RETURN are represented by Token XML tag.

● The conditional symbols used in SCL block such as >, <, & are represented as escape 
sequences (&lt; &gt; &amp) in XML.

● These combination of XML tags are applicable only for SCL blocks. An exception is thrown 
for other languages.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
502 System Manual, 10/2018



Name of the block SCL block XML tag
IF IF #a<#c THEN 

   ;
END_IF;

<Token Text="IF" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Token Text="&lt;" />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="c" />
    </Symbol>
</Access>
<Blank />
<Token Text="THEN" />
<NewLine />
<Blank Num="4" />
<Token Text=";" />
<NewLine />
<Token Text="END_IF" />
<Token Text=";" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 503



Name of the block SCL block XML tag
CASE CASE #a OF

  1 (*test*): // Statement 
section case 1
    ; 
  2..4: // Statement section 
case 2 to 4
    ;
  ELSE // Statement section 
ELSE
    ;
END_CASE;

<Tok en Text="CASE" /><Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Blank />
<Token Text="OF" />
<NewLine />
 
<Blank Num="2"/>
<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>1</ConstantValue>
        <ConstantType 
Informative="true">LINT</ConstantType>
    </Constant>
</Access>
<Blank />
<LineComment Inserted=”true”>
    <Text>test</Text>
</LineComment >
<Token Text=":" />
<Blank />
<LineComment>
    <Text> Statement section case 1</Text>
</LineComment >
<NewLine />
 
<Blank Num="4"/>
<Token Text=";" />
<NewLine />
 
<Blank Num="2"/>
<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>2</ConstantValue>
        <ConstantType 
Informative="true">LINT</ConstantType>
    </Constant>
</Access>
<Token Text=".." />
<Blank Num="2"/>
<Access Scope="LiteralConstant">
    <Constant>
        <ConstantValue>4</ConstantValue>
        <ConstantType 
Informative="true">LINT</ConstantType>
    </Constant>
</Access>
<Blank />
<LineComment>
    <Text> Statement section case 2 to 4</Text>
</LineComment >
<NewLine />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
504 System Manual, 10/2018



Name of the block SCL block XML tag
 
<Blank Num="4"/>
<Token Text=";" />
<NewLine />
 
<Blank Num="2"/>
<Token Text="ELSE" />
<NewLine />
 
<Blank Num="4"/>
<Token Text=";" />
<NewLine />
 
<Token Text="END_CASE" />
<Token Text=";" />

FOR FOR #i := #a TO #b DO
  // Statement section FOR
    ;
END_FOR;

<Token Text="FOR" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="i" />
    </Symbol>
</Access>
<Blank />
<Token Text=":=" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Blank />
<Token Text="TO" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="b" />
    </Symbol>
</Access>
<Blank />
<Token Text="DO" />
<NewLine />
 
<Blank Num="2" />
<LineComment>
    <Text> Statement section FOR</Text>
</LineComment >
<NewLine />
 
<Blank Num="2" />
<Token Text=";" />
<NewLine />
 
<Token Text="END_FOR" />
<Token Text=";" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 505



Name of the block SCL block XML tag
WHILE WHILE #a<#b DO

  // Statement section WHILE
  ;
END_WHILE;

<Token Text="WHILE" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Token Text="&lt;" />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="b" />
    </Symbol>
</Access>
<Blank />
<Token Text="DO" />
<NewLine />
 
<Blank Num="2" />
<LineComment>
    <Text> Statement section WHILE</Text>
</LineComment >
<NewLine />
 
<Blank Num="2" />
<Token Text=";" />
<NewLine />
 
<Token Text="END_WHILE" />
<Token Text=";" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
506 System Manual, 10/2018



Name of the block SCL block XML tag
REPEAT REPEAT

  // Statement section REPEAT
  ;
UNTIL #a<#b END_REPEAT;

<Token Text="REPEAT" />
<NewLine />
 
<Blank Num="2" />
<LineComment>
    <Text> Statement section REPEAT</Text>
</LineComment >
<NewLine />
 
<Blank Num="2" />
<Token Text=";" />
<NewLine />
 
<Token Text="UNTIL" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="a" />
    </Symbol>
</Access>
<Token Text="&lt;" />
<Access Scope="LocalVariable">
    <Symbol>
        <Component Name="b" />
    </Symbol>
</Access>
<Blank />
<Token Text="END_REPEAT" />
<Token Text=";" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 507



Name of the block SCL block XML tag
GOTO    here

   // well
: // this is goto statement

XML example for GOTO label definition
 
<Blank Num="3"/>
<Access Scope="Label">
    <Label Name="here">
      <NewLine />
      <Blank Num="3"/>
      <LineComment>
          <Text> well</Text>
      </LineComment>
      <NewLine />
      <Token Text=":" />
      <Blank /> 
    </Label>
</Access>
<LineComment>
   <Text> this is goto statement</Text>
</LineComment>

GOTO (*comment*) here; XML example for GOTO label usage
 
<Token Text="GOTO" />
<Blank />
<LineComment inserted=”true”>
    <Text>comment</Text>
</LineComment>
<Blank />
<Access Scope="Label">
    <Label Name="here" />
</Access>
<Token Text=";" />

Referencing attributes
The SCL block referencing attributes are represented by AccessModifier attribute of 
Component tag. 

● For simple referencing, AccessModifer has value as Reference.

● For array referencing, AccessModifier has value as ReferenceToArray.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
508 System Manual, 10/2018



SCL block XML tag
RefToUDT^(*RefToUDT*).element <Symbol>

   <Component Name="RefToUDT" 
AccessModifier="Reference" />
   <Token Text="^" />
   <LineComment Inserted="True">
     <Text>RefToUDT</Text>
   </LineComment>
  <Token Text="." />
  <Component Name="element" />
</Symbol>

RefToArrayOfUDT^(*RefToArrayOfUDT*)[#i].ele‐
ment

<Symbol>
   <Component Name="RefToArrayOfUDT" 
AccessModifier="ReferenceToArray" />
     <Token Text="^" />
     <LineComment Inserted="True">
       <Text>RefToArrayOfUDT</Text>
     </LineComment>
    <Token Text="[" />
      <Access Scope=LocalVariable>
        <Symbol>
          <Component Name="i" />
        </Symbol>
      </Access>
    <Token Text="]" />
</Component>
     <Token Text="." />
     <Component Name="element" />
</Symbol>

8.4.1.7 Export/Import of structured types of SCL blocks

SCL structured types with export XML tags
In the SCL structured types, you can add blanks, new lines, and comments in the SCL 
statements. The SCL strctured statements with its corresponding exported XML tags and 
attributes are given below. 

Global access
In SCL statements, the global access variables and constants are represented in quotes. The 
comments written between the variables and address parts are represented by LineComment 
XML tag.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 509



SCL block XML tag
"Data_block_1".(*comment 
1*)Static_1(*comment 2*).Static_2

<Access Scope="GlobalVariable">
    <Symbol>
        <Component 
Name="Data_block_1" />
        <Token Text="." />
        <LineComment Inserted="True">
            <Text>comment 1</Text>
         </LineComment>
         <Component Name="Static_1" /
>
          <LineComment 
Inserted="True">
              <Text>comment 2</Text>
          </LineComment>
          <Token Text="." />
          <Component Name="Static_2" /
>
    </Symbol>
</Access>

"Data_block_1".Static_1 := 10 Format of XML exported in ExportOptions.None 
setting.
 
<Access Scope="GlobalVariable">
    <Symbol>
        <Component 
Name="Data_block_1" />
         <Token Text="." />
         <Component Name="Static_1" /
>
    </Symbol>
</Access>
Format of XML exported in ExportOptions.Re‐
adOnly setting.
 
<Access Scope="GlobalVariable">
    <Symbol>
        <Component 
Name="Data_block_1" />
         <Token Text="." />
         <Component Name="Static_1" /
>
         <Address Area="DB" 
Type="Word" BlockNumber="1" 
BitOffset="0" Informative="true" />
    </Symbol>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
510 System Manual, 10/2018



Usage of Quotes and #
The quotes used in the first level describes the type of variable, and used to escape special 
characters in SCL statements. When quotes are used in first level, it defines the variable as 
global variable. If the quotes are used after #, they represent the escape sequence of special 
characters like #, and spaces.

● To represent the differential usage, XML file uses BooleanAttributes tag with Name 
attribute. The Name contain values such as HasQuotes and HasHash.

● To define structure in scope attribute, # is defined.

● These values are applicable only for SCL.

● The default values for these tags were FALSE, but  the values never gets exported in 
ExportOptions.WithDefaults settings too.

SCL block XML tag
"a".#b."c".#"d" <Access Scope="GlobalVariable">

    <Symbol>
       <Component Name="a" />
       <Token Text="." />
       <Component Name="b">
       <BooleanAttribute 
Name=”HasHash”>TRUE</
BooleanAttribute>
       </Component>
       <Token Text="." />
       <Component Name="c">
       <BooleanAttribute 
Name=”HasQuotes”>TRUE</
BooleanAttribute>
       </Component>
       <Token Text="." />
       <Component Name="d">
       <BooleanAttribute 
Name=”HasQuotes”>TRUE</
BooleanAttribute>
       <BooleanAttribute 
Name=”HasHash”>TRUE</
BooleanAttribute>
       </Component>
    </Symbol>
<Access />

Array
SCL allows to add comment within the array indexes around "[" and "]". To mark the existence 
of array, XML file uses AccessModifier attribute in Component tag.

● If Accessmodifier contains the value Array, then a child tag Access is mandatoy to indicate 
the index variable of the array.

● The default value for AccessModifier is None.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 511



SCL block XML tag
#a.b[#i+#j,#k+#l].c <Access Scope="LocalVariable">

    <Symbol>
      <Component Name="a" />
      <Token Text="." />
      <Component Name="b" 
AccessModifier="Array" />
        <Token Text="[" />
        <Access Scope=LocalVariable>
          <Symbol>
            <Component Name="i" />
          </Symbol>
        </Access>
       <Token Text="+" />
       <Access Scope=LocalVariable>
         <Symbol>
           <Component Name="j" />
         </Symbol>
       </Access>
       <Token Text="," />
       <Access Scope=LocalVariable>
       <Symbol>
            <Component Name="k" />
          </Symbol>
        </Access>
      <Token Text="+" />
      <Access Scope=LocalVariable>
       <Symbol>
            <Component Name="l" />
          </Symbol>
        </Access>
      <Token Text="]" />
      </Component>
      <Token Text="." />
      <Component Name="c" />
    </Symbol>
</Access>
 

Absolute Access
SCL allows different types of access such as absolute, absolute offset, mixed (database and 
member variable), slice, peripheral, and direct type. The absolute access specifiers are 
represented by Address tag in XML.

● The % character of the DB is not written in XML. It is created automatically during the import.

● Blanks are allowed between the address parts

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
512 System Manual, 10/2018



SCL Block XML Tag
%DB20 . DBW10 <Access Scope="Address">

    <Symbol>
      <Address Area="DB" 
BlockNumber="20" />
      <Blank />
      <Token Text="." />
      <Blank />
     <Address Area="DB" 
BitOffset="80" Type="Word"/>
    </Symbol>
</Access>

%DB20.DBX10.3 := true; The following XML is valid for all langages except 
SCL.
 
<Access Scope="Address">
<Address Area="DB" BlockNumber="20" 
BitOffset="83" Type="Bool" />
</Access>
 
The following XML is valid for SCL.
 
<Access Scope="Address">
    <Symbol>
     <Address Area="DB" 
BlockNumber="20" />
     <Token Text="." />
     <Address Area="DB" 
BitOffset="83" Type="Bool"/>
    </Symbol>
</Access>

Absolute offset
In STL, AbsoluteOffset tag represents the absolute offset access. In SCL, Address tag is used 
for absolute access.

SCL Block XML Tag
#Input_DB_ANY.%DBX2.3 := TRUE; <Access Scope="LocalVariable">

    <Symbol>
     <Component Name="Input_DB_ANY" /
>
     <Token Name="." />
     <Address BitOffset="19" 
Type="Bool" />
    </Symbol>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 513



Slicing
In SCL, the SliceAccessModifier attribute is not supported and the slicing is represented by 
Token tag.

SCL Block XML Tag
"tag_1"(*1*).(*2*)member(*3*).(*4*)
%x1

<Access Scope="GlobalVariable">
    <Symbol>
      <Component Name="tag_1" />
      <LineComment Inserted="True">
          <Text>1</Text>
      </LineComment>
      <Token Text="." />
      <LineComment Inserted="True">
          <Text>2</Text>
      </LineComment>
      <Component Name="member"/>
      <LineComment Inserted="True">
          <Text>3</Text>
      </LineComment>
      <Token Text="." />
      <LineComment Inserted="True">
          <Text>4</Text>
      </LineComment>
      <Token Text="%x1" />
    </Symbol>
</Access>

Peripheral access
The peripheral access is represented by Token tag.

SCL Block XML Tag
"tag_1"(*1*).(*2*)member:P <Access Scope="GlobalVariable">

    <Symbol>
       <Component Name="tag_1" />
       <LineComment Inserted="True">
           <Text>1</Text>
       </LineComment>
       <Token Text="." />
       <LineComment Inserted="True">
           <Text>2</Text>
       </LineComment>
       <Component Name="member"/>
       <Token Text=":P" />
    </Symbol>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
514 System Manual, 10/2018



Direct type access
The TypeOf and TypeOfDB instructions are handled either with system type or user defined 
type. The types are represented in Access tag with Scope attribute containing values of 
SystemType and UserType.

SCL Block XML Tag
Example for system type
if TypeOf( #inVariant ) = 
TO_SpeedAxis then … end_if

<Token text="=" />
</Blank>
<Access Scope="SystemType">
    <DataType>TO_SpeedAxis</DataType>
</Access>

Example for user defined type
if TypeOf( #inVariant ) = 
"aUserDefinedType" then … end_if

<Token text="=" />
</Blank>
<Access Scope="UserType">
    <DataType>aUserDefinedType</
DataType>
</Access>

8.4.1.8 Export/Import of SCL call blocks

SCL call blocks with export XML tags
SCL call paramaters are respresented by Parameter tag in XML. The informative attribute is 
used to represent the non-assigned FB parameters and return values such as timestamp, flag 
information, etc. The XML format follows the same arbitrary order followed in the SCL block.

An example for block call is given below.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 515



Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
516 System Manual, 10/2018



SCL block XML tag
#Callee_Instance(Input_1 := 5); Format of XML exported in ExportOptions.None 

setting
 
<Access Scope="Call">
    <CallInfo BlockType="FB">
      <Instance 
Scope="LocalVariable">
        <Component 
Name="Callee_Instance" />
      </Instance>
 <Token text="(" />
    <Parameter Name="Input_1">
    <Blank />
    <Token text=":=" />
    <Blank />
    <Access Scope="LiteralConstant">
      <Constant>
        <ConstantType>Int</
ConstantType>
        <ConstantValue>5</
ConstantValue>
      </Constant>
    </Access>
  </Parameter>
 <Token text=")" />
     </CallInfo>
</Access>
 <Token text=";" />
Format of XML exported in ExportOptions.Re‐
adOnly setting
 
<Access Scope="Call">
    <CallInfo BlockType="FB">
    <IntegerAttribute 
Name="BlockNumber"     
Informative="true">1</
IntegerAttribute>
    <DateAttribute 
Name="ParameterModifiedTS"      
Informative="true">2016-10-24T08:27:
34</DateAttribute>
      <Instance 
Scope="LocalVariable">
        <Component 
Name="Callee_Instance" />
      </Instance>
 <Token text="(" />
    <Parameter Name="Input_1">
<StringAttribute 
Name="InterfaceFlags" 
Informative="true">S7_Visible</
StringAttribute>
    <Blank />
    <Token text=":=" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 517



SCL block XML tag
    <Blank />
    <Access Scope="LiteralConstant">
      <Constant>
        <ConstantType>Int</
ConstantType>
        <ConstantValue>5</
ConstantValue>
      </Constant>
    </Access>
  </Parameter>
 <Token text=")" />
     </CallInfo>
</Access>
 <Token text=";" />

Unconnected parameters example
The FB has 4 paramters where a, b, c, and d. b and d are not connected.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
518 System Manual, 10/2018



SCL block XML tag
"Block_4_DB"(a:=TRUE,c:=TRUE); <Access Scope="Call">

    <CallInfo Name="Block_4" 
BlockType="FB">
      <Instance 
Scope="GlobalVariable">
        <Component Name="Block_4_DB" /
>
      </Instance>
      <Token text="(" />
      <Parameter Name="a">
        <Token text=":=" />
        <Access 
Scope="LiteralConstant">
           <Constant>
             <ConstantType>Bool</
ConstantType>
             <ConstantValue>TRUE</
ConstantValue>
           </Constant>
        </Access>
      </Parameter>
      <Token text="," />
      <Parameter Name="b" 
Informative="true"/>
      <Parameter Name="c" >
         <Token text=":=" />
         <Access 
Scope="LiteralConstant">
         <Constant>
           <ConstantType>Bool</
ConstantType>
           <ConstantValue>True</
ConstantValue>
         </Constant>
         </Access>
      </Parameter>
     <Parameter Name="d" 
Informative="true"/>
     <Token text=")" />
     </CallInfo>
</Access>

One parameter example
SCL block allows you to omit the parameter name. This parameter is represented as 
NamelessParameter tag. The NamelessParameter tag has no attributes and it is applicable 
only for SCL.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 519



SCL block XML tag
"Block_4_DB"(TRUE); <Access Scope="Call">

    <CallInfo Name="Block_4" 
BlockType="FB">
       <Instance 
Scope="GlobalVariable">
       <Component Name="Block_4_DB" /
>
       </Instance>
       <Token text="(" />
       <NamelessParameter>
          <Access 
Scope="LiteralConstant">
          <Constant>
            <ConstantType>Bool</
ConstantType>
            <ConstantValue>TRUE</
ConstantValue>
          </Constant>
          </Access>
       </NamelessParameter>
       <Token text=")" />
    </CallInfo>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
520 System Manual, 10/2018



Expression as actual parameter

SCL block XML tag
#Callee_Instance(Input_1 := #a+3); <Access Scope="Call">

    <CallInfo BlockType="FB">
      <Instance 
Scope="LocalVariable">
        <Component 
Name="Callee_Instance" />
      </Instance>
      <Token text="(" />
      <Parameter Name="Input_1">
        <Blank />
        <Token text=":=" />
        <Blank />
        <Access Scope="LocalVariable">
          <Symbol>
             <Component Name="a" />
          </Symbol >
        </Access>
        <Token text="+" />
        <Access 
Scope="LiteralConstant">
           <Constant>
           <ConstantType>Int</
ConstantType>
           <ConstantValue>3</
ConstantValue>
          </Constant>
       </Access>
      </Parameter>
      <Token text=")" />
   </CallInfo>
</Access>
<Token text=";" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 521



Expression as actual parameter without formal paramter

SCL block XML tag
#Callee_Instance(#a+3); <Access Scope="Call">

  <CallInfo BlockType="FB">
    <Instance Scope="LocalVariable">
      <Component 
Name="Callee_Instance" />
    </Instance>
    <Token text="(" />
    <NamelessParameter>
       <Access Scope="LocalVariable">
         <Symbol>
           <Component Name="a" />
        </Symbol >
       </Access>
       <Token text="+" />
       <Access 
Scope="LiteralConstant">
          <Constant>
             <ConstantType>Int</
ConstantType>
             <ConstantValue>3</
ConstantValue>
          </Constant>
       </Access>
     </NamelessParameter>
     <Token text=")" />
   </CallInfo>
</Access>
<Token text=";" />

Function call

SCL block XML tag
#myInt := "MyFunction"(Param_1 := 1, 
Param_2 := 15, Param_3 := TRUE);

<Access Scope="LocalVariable">
    <Symbol>
       <Component Name="myInt" />
    </Symbol>
</Access>
<Blank />
<Token text=":=" />
<Blank />
<Access Scope="Call">
   <CallInfo Name="MyFunction" 
BlockType="FC">
      <Token text="(" />
      <Parameter Name="Param_1">
       ...

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
522 System Manual, 10/2018



Absolute call
In SCL, the call can be initiated using absolute address of the DB. Due to absolute address, 
the Name attriubute of CallInfo node is empty.

A recoverable exception is thrown by the import of 

● An "Address" node is available, with valid value of Name attribute.

● Non-existence of Address node with no valid value of Name attribute.

SCL block XML tag
%DB20(...); <Access Scope="Call">

    <CallInfo Name="" BlockType="FB">
       <Instance 
Scope="GlobalVariable">
         <Address Area="DB" 
BlockNumber="20" />
       </Instance>
       <Token text="(" />
       <Parameter>  
        …   
       </Parameter>
      <Token text=")" /> 
 </CallInfo>
</Access>

Instruction
The instruction in SCL block is checked in system library during the import operation, and the 
instruction versions are not exported in export operation.

The general instruction type is given below.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 523



Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
524 System Manual, 10/2018



SCL block XML tag
#myInt := ATTACH(OB_NR := 1, 
EVENT := 15, ADD := TRUE);

Format of XML exported in ExportOptions.Re‐
adOnly setting
 
<Access Scope="LocalVariable">
   <Symbol>
     <Component Name="myInt" />
   </Symbol>
</Access>
<Blank />
<Token text=":=" />
<Blank />
<Access Scope="Call">
  <Instruction Name="ATTACH">
  <Token text="(" />
  <Parameter Name="OB_NR">
    <Blank />
    <Token text=":=" />
    <Blank />
    <Access Scope="LiteralConstant">
      <Constant>
        <ConstantType>OB_ATT</
ConstantType>
        <ConstantValue>1</
ConstantValue>
     </Constant>
    </Access>
  </Parameter>
   <Token text="," />
   <Blank />
   <Parameter Name="EVENT">
   <Blank />
   <Token text=":=" />
   <Blank />
   <Access Scope="LiteralConstant">
      <Constant>
        <ConstantType>EVENT_ATT</
ConstantType>
        <ConstantValue>15</
ConstantValue>
      </Constant>
   </Access>
  </Parameter>
  <Token text="," />
  <Blank />
<Parameter Name="ADD">
   <Blank />
   <Token text=":=" />
   <Blank />
   <Access Scope="LiteralConstant">
      <Constant>
        <ConstantType>Bool</
ConstantType>
        <ConstantValue>TRUE</
ConstantValue>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 525



SCL block XML tag
      </Constant>
   </Access>
   </Parameter>
   <Parameter Name="RET_VAL" 
Informative="true" />
     <Token text=")" />
   </Instruction>
   </Access>
<Token text=";" />

Instruction with template
When the template parameter is complements the instruction name, the export of the template 
parameter is necessary. If a "TemplateValue" tag with attribute Type="Type" follows the 
Instruction tag, the import operation concatenates the template value to the instruction name.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
526 System Manual, 10/2018



SCL block XML tag
"tag_4" := MIN_DINT( IN1:="Tag_1", 
IN2:="Tag_2", IN3:="Tag_3" );

<Access Scope="GlobalVariable">
  <Symbol>
    <Component Name="Tag_4" />
  </Symbol>
</Access>
...
<Access Scope="Call">
   <Instruction Name="MIN">
     <TemplateValue 
Name="value_type" Type="Type">DInt</
TemplateValue>
     ...
   <Parameter Name="IN1">
    ...
    <Access Scope="GlobalVariable">
      <Symbol>
        <Component Name="Tag_1" />
      </Symbol>
    </Access>
   </Parameter>
...
   <Parameter Name="IN2">...
     <Access Scope="GlobalVariable">
       <Symbol>
         <Component Name="Tag_2" />
       </Symbol>
     </Access>
   </Parameter>
...
   <Parameter Name="IN3">
...
   <Access Scope="GlobalVariable">
   <Symbol>
      <Component Name="Tag_3" />
   </Symbol>
   </Access>
    </Parameter>
...
   </Instruction>
</Access>
...

Conversion
For conversion functions, the real instruction name and its template values are not exported. 
Instead, the name used in the SCL block  is exported.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 527



SCL block XML tag
#output_1 := 
TIME_TO_S5TIME(#input_1);

<Access Scope="LocalVariable">
   <Symbol>
     <Component Name="output_1" />
   </Symbol>
</Access>
...
<Access Scope="Call">
   <Instruction 
Name="TIME_TO_S5TIME">
    <Token text="(" />
    <NamelessParameter>
      <Access Scope="LocalVariable">
        <Symbol>
          <Component Name="input_1" /
>
        </Symbol>
     </Access>
   </NamelessParameter>
  <Token text=")" />
   </Instruction>
 </Access>
...

Instruction with instance
The instance and instruction are separated by blanks. Blanks are optional, and they can 
represented by new lines and comments. The instruction TON is represented by Name 
attribute of Instruction tag.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
528 System Manual, 10/2018



SCL block XML tag
IEC_Timer_0_DB . TON (IN:="Tag_1", 
PT:="Tag_2");

<Access Scope="GlobalAccess">
   <Symbol>
     <Component 
Name="IEC_Timer_0_DB" />
   </Symbol >
</Access>
<Blank />
<Token text="." />
<Blank />
<Access Scope="Call">
   <Instruction Name="TON">
     <Blank />
     <Token text="(" />
     <Parameter Name="IN">
     <Access Scope="GlobalVariable">
        <Symbol>
           <Component Name="Tag_1" />
        </Symbol>
      </Access>
      </Parameter>
...
      <Token text=")" />
   </Instruction>
</Access>
<Token text=";" />

Alarm constant
The alarm constants are only used in S7 400 PLCs, and the exported XML is similar to other 
languages.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 529



SCL block XML tag
"Block_1_DB"(16#0000_0001); Format of XML exported in 

ExportOptions.None setting
 
<Access Scope="Call">
  <CallInfo Name="Block_1" 
BlockType="FB">
    <Instance Scope="GlobalVariable">
      <Component Name="Block_1_DB" />
    </Instance>
    <NamelessParameter>
      <Access Scope="AlarmConstant">
        <Constant>
          <ConstantType>C_Alarm_8</
ConstantType>
          
<ConstantValue>16#0000_0001</
ConstantValue>
        </Constant>
      </Access>
    </NamelessParameter >
  </CallInfo>
</Access>
Format of XML exported in ExportOptions.Re‐
adOnly setting
 
<Access Scope="Call">
  <CallInfo Name="Block_1" 
BlockType="FB">
    <Instance Scope="GlobalVariable">
      <Component Name="Block_1_DB" />
    </Instance>
    <NamelessParameter>
      <Access Scope="AlarmConstant" >
        <Constant>
         <ConstantValue>16#00000001</
ConstantValue>
         <ConstantType>C_Alarm</
ConstantType>
        <StringAttribute 
Name="Format" 
Informative="true">Hex</
StringAttribute>
        </Constant>
      </Access>
    </NamelessParameter>
  </CallInfo>
</Access>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
530 System Manual, 10/2018



ENO (Enable Output)
To support the ENO construct in SCL block, an attribute named "Scope" with value 
"PredefinedVariable" is used in the "Access" tag. It also contains the "PredefinedVariable" tag 
as child of the Access tag. 

● The "PredefinedVariable" tag has one mandatory "Name" attribute. 

● The scope "PredefinedVariable" and the tag "PredefinedVariable" are only allowed for SCL.

SCL block XML tag
Call(…, ENO => ENO); <Access Scope="Call">

<CallInfo BlockType="FC">
   <Token text="(" />
…
   <Token text="," />
   <Blank />
   <Parameter Name="ENO">
      <Blank />
      <Token text="=>" />
      <Blank />
      <Access 
Scope="PredefinedVariable">
        <PredefinedVariable 
Name="ENO" />
      </Access>
   </Parameter>
  <Token text=")" />
</CallInfo>
</Access>
<Token text=";" />

IF ENO = #c THEN … <Token text="IF" />
<Blank />
<Access Scope="PredefinedVariable">
   <PredefinedVariable Name="ENO" />
</Access>
<Blank />
<Token Text="=" />
<Blank />
<Access Scope="LocalVariable">
    <Symbol>
       <Component Name="c" />
    </Symbol>
</Access>
<Blank />
<Token Text="THEN" />

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 531



8.4.1.9 Exporting failsafe blocks

Exporting failsafe blocks
Failsafe blocks are exported like standard blocks. For failsafe blocks the value of the attribute 
"ProgrammingLanguage" will start with a prefix "F_". 

Note

The import of a file is not possible if the value for attribute  "ProgrammingLanguage" starts 
with a prefix "F_". 

Importing failsafe blocks as standard blocks
Failsafe blocks can be imported as standard blocks if the a prefix "F_" is removed from the 
value of all attributes  "ProgrammingLanguage". 

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

Exporting blocks  (Page 486)

Exporting blocks with know-how protection (Page 495)

8.4.1.10 Exporting system blocks

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● The project contains a system block.

● PLC is not online.

Application
Only visible system blocks will be available in the blocks composition, e.g. no SFBs or SFCs. 
The resulting XML file is similar to the export file of a block. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
532 System Manual, 10/2018



Program code
Modify the following program code to export the visible data of a block to an XML file:

 
//Exports system blocks 
private static void ExportSystemBlocks(PlcSoftware plcsoftware) 
{ 
    PlcSystemBlockGroup sbSystemGroup = plcsoftware.BlockGroup.SystemBlockGroups[0]; 
    foreach (PlcSystemBlockGroup group in sbSystemGroup.Groups) 
    { 
        foreach (PlcBlock block in group.Blocks) 
        { 
            block.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, block.Name)), 
ExportOptions.WithDefaults); 
        } 
    } 
}

8.4.1.11 Exporting GRAPH blocks with multi-language text

XML structure of GRAPH blocks with multi-language text
The export XML for GRAPH blocks contains the translated step names and transition names 
of the GRAPH. These translated multi-language text are represented as StepName and 
TransitionName elements under the parent element Step and Transition respectivelty. These 
elements contain one MultiLanguageText element for each supported language. The texts for 
the languages which are not set explicitly are not exported. If no translation is made, the 
StepName and TransitionName elements are not exported. The StepName and 
TransitionName elements are optional. The TIA Portal Openness XML import operation throws 
a recoverable exception for the graph versions < V5.0.  

Example for StepName element

 
<Steps>
 <Step Number="1" Init="true" Name="Step1" MaximumStepTime="T#10S" WarningTime="T#7S">
   <StepName>
      <MultiLanguageText Lang="de-DE">stepDE</MultiLanguageText>
      <MultiLanguageText Lang="en-US">stepEN</MultiLanguageText>
      <MultiLanguageText Lang="it-CH">stepIT</MultiLanguageText>
   </StepName>
      ..
 </Step>
..
</Steps>

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 533



Example for TransitionName element

 
<Transitions>
  <Transition IsMissing="false" Name="Trans1" Number="1" ProgrammingLanguage="LAD">
   <TransitionName>
      <MultiLanguageText Lang="de-DE">transDE</MultiLanguageText>
      <MultiLanguageText Lang="en-US">transEN</MultiLanguageText>
      <MultiLanguageText Lang="it-CH">transIT</MultiLanguageText>
   </TransitionName>
      ..
 </Transition>
..
</Transitions>

8.4.1.12 Importing block

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● PLC is not online.

Application
The TIA Portal Openness API supports the import of blocks with "LAD", "FBD", "GRAPH", 
"SCL" or "STL" programming languages from an XML file. The following block types are 
supported:

● Function blocks (FB)

● Functions (FC)

● Organization blocks (OB)

● Global data blocks (DB)

Note
Importing optimized data blocks

Optimized data blocks are only supported by CPUs as of S7-1200. If you import optimized 
data blocks into S7-300 or S7-400, an exception is thrown and the import fails. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
534 System Manual, 10/2018



Response to importing
The following rules apply when importing a block: 

● The XML file can contain less data than the block in the project, e.g., fewer parameters.

● Redundant information, such as call information, must be identical in the project and in the 
XML file. Otherwise, an exception is thrown.

● The data in the XML file may be "inconsistent" regarding their ability to be compiled in the 
TIA Portal.

● Attributes with the attributes "ReadOnly=True" and "Informative=True" are not imported. 

● Missing instance DBs are not created automatically. 

● If no block number is specified in the xml file, the block number is assigned automatically. 

● If the block is not existing in the project and no version information is specified in the xml 
file, the version "0.1" is assigned. 

Program code
Modify the following program code:

 
//Import blocks
private static void ImportBlocks(PlcSoftware plcSoftware)
{
    PlcBlockGroup blockGroup = plcSoftware.BlockGroup;
    IList<PlcBlock> blocks = blockGroup.Blocks.Import(new FileInfo(@"D:\Blocks
\myBlock.xml"), ImportOptions.Override);
}

Modify the following program code:

 
//Import system blocks
private static void ImportSystemBlocks(PlcSoftware plcSoftware)
{
    PlcBlockSystemGroup systemblockGroup = plcSoftware.BlockGroup;
    IList<PlcBlock> blocks = systemblockGroup.Blocks.Import(new FileInfo(@"D:\Blocks
\myBlock.xml"), ImportOptions.Override);
}

8.4.1.13 Importing blocks/UDT with open reference

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open
See Opening a project (Page 97)

● PLC is not online

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 535



Application
Using Openness API, you can use a new import mode for STEP7 objects to import blocks and 
UDTs even if a related object is missing.

The Openness interface supports the new import mode for the following conditions:

Import of Object reference
UDT UDT
DB (global) UDT
IDBofUDT UDT
IDBofFB FB
ArrayDB Array of UDT
FB UDT (interface), Multi-instance
FC UDT (Interface)

Program code
You can use the new mode by a new overload of the respective Import method. The new 
overload has an additional parameter which accepts a value of the new flagged enum 
SWImportOptions. To allow the import, you can use 
SWImportOptions.IgnoreMissingReferencedObject, even if the referenced object is missing. 

 
Flagged Enum SWImportOptions
 {
 None = 0,
 IgnoreStructuralChanges = 1,
 IgnoreMissingReferencedObjects = 2
 }
... // All kinds of blocks 
PlcBlockComposition.Import(file, ImportOptions.None, 
SWImportOptions.IgnoreMissingReferencedObject); 
...  
... // UDTs
PlcTypeComposition.Import(file, ImportOptions.None, 
SWImportOptions.IgnoreMissingReferencedObject); 
...

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
536 System Manual, 10/2018



8.4.1.14 Importing blocks/UDT for structural change object

Requirement

● The TIA Portal Openness application is connected to the TIA Portal.
See Connecting to the TIA Portal (Page 74)

● A project is open
See Opening a project (Page 97)

● PLC is not online

Application
Using Openness API, you can import blocks and UDTs even if instance data is lost because 
of a structural change of related objects.

The Openness interface supports the new import mode for the following conditions:

Import of Object references
Tag UDT
UDT UDT
DB (global) UDT
IDBofUDT UDT
IDBofFB FB
ArrayDB Array of UDT
FB UDT (interface), Multi-instance
FC UDT (Interface)

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 537



Program code
You can use new mode by a new overload of the respective Import method. The new overload 
has an additional parameter which accepts a value of the new flagged enum SWImportOptions. 
To allow the import, you can use SWImportOptions.IgnoreStructuralChanges,  even if there 
are structural change and data loss. 

 
Flagged Enum SWImportOptions 
{ 
None = 0, 
IgnoreStructuralChanges = 1, 
IgnoreMissingReferencedObjects = 2 
}
... 
// All kinds of blocks 
PlcBlockComposition.Import(file, ImportOptions.None, 
SWImportOptions.IgnoreStructuralChanges); 
... 
... 
// UDTs
PlcTypeComposition.Import(file, ImportOptions.None, 
SWImportOptions.IgnoreStructuralChanges);
...

See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

8.4.2 Tag tables

8.4.2.1 Exporting PLC tag tables

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
One XML file is exported per PLC tag table. 

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
538 System Manual, 10/2018



The TIA Portal Openness API supports the export of all PLC tag tables from the system group 
and its subgroups. 

Program code
Modify the following program code to export all PLC tag tables from the system group and its 
subgroups:

 
private static void ExportAllTagTables(PlcSoftware plcSoftware)
{ 
    PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;  
    // Export all tables in the system group 
    ExportTagTables(plcTagTableSystemGroup.TagTables);  
    // Export the tables in underlying user groups 
    foreach(PlcTagTableUserGroup userGroup in plcTagTableSystemGroup.Groups) 
    { 
        ExportUserGroupDeep(userGroup); 
    }
}
 
private static void ExportTagTables(PlcTagTableComposition tagTables)
{ 
    foreach(PlcTagTable table in tagTables) 
    { 
        table.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, table.Name)), 
ExportOptions.WithDefaults); 
    }
}
 
private static void ExportUserGroupDeep(PlcTagTableUserGroup group)
{
    ExportTagTables(group.TagTables); 
    foreach(PlcTagTableUserGroup userGroup in group.Groups)
    {
        ExportUserGroupDeep(userGroup);
    }
}

See also
Exporting configuration data (Page 415)

8.4.2.2 Importing PLC tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 539



Program code
Modify the following program code to import PLC tag tables or a folder structure with PLC tag 
tables from an XML file into the system group or a user-defined group:

 
//Imports tag tables to the tag system group
private static void ImportTagTable(PlcSoftware plcSoftware)
{ 
    PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup; 
    PlcTagTableComposition tagTables = plcTagTableSystemGroup.TagTables; 
    tagTables.Import(new FileInfo(@"D:\Samples\myTagTable.xml"), ImportOptions.Override); 
    // Or, to import into a subfolder: 
    // plcTagTableSystemGroup.Groups.Find("SubGroup").TagTables.Import(new FileInfo(@"D:
\Samples\myTagTable.xml"), ImportOptions.Override);
}

See also
Notes on performance of TIA Portal Openness (Page 41)

8.4.2.3 Exporting an individual tag or constant from a PLC tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

Application
The API interface supports the export of a tag or constant from a PLC tag table to an XML file. 
Make sure that the tag table names used conform to the file naming conventions of your file 
system.

The comment of a tag or constant is only exported if at least one language is set for the 
comment. If the comment is not set for all project languages, this comment is only exported 
for the set project languages.

Note
PLC system constants

PLC system constants are excluded from export and import.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
540 System Manual, 10/2018



Program code
Modify the following program code to export a specific tag or constant from a PLC tag table to 
an XML file:

 
//Exports a single tag or constant of a controller tag table
private static void ExportTag(PlcSoftware plcSoftware, string tagName)
{ 
    PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup; 
    PlcTag tag = plcTagTableSystemGroup.TagTables[0].Tags.Find(tagName); 
    if(tag 0= null) return;
 
    tag.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, tag.Name)), 
ExportOptions.WithDefaults); 
}
 
private static void ExportUserConstant(PlcSoftware plcSoftware, string userConstantName)
{ 
    PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup; 
    PlcUserConstant plcConstant = 
plcTagTableSystemGroup.TagTables[0].UserConstants.Find(userConstantName); 
    if(plcConstant== null) return;
 
    plcConstant.Export(new FileInfo(string.Format(@”D:\Samples\{0}.xml”, 
plcConstant.Name)), ExportOptions.WithDefaults); 
}

See also
Exporting configuration data (Page 415)

Notes on performance of TIA Portal Openness (Page 41)

8.4.2.4 Importing an individual tag or constant into a PLC tag table

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

Application
You can import either tags or constants in an import call.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 541



Note

Constants can oly beimported as user constants.

Program code
Modify the following program code to import tag groups or individual tags and constants from 
an XML file:

 
//Imports tags into a plc tag table
private static void ImportTag(PlcSoftware plcSoftware, string tagtableName)
{
    PlcTagTableSystemGroup plcTagTableSystemgroup = plcSoftware.TagTableGroup;
    PlcTagTable tagTable = plcTagTableSystemgroup.TagTables.Find(tagtableName);
    if(tagTable == null) return;
 
    tagTable.Tags.Import(new FileInfo(@"D:\Samples\myTags.xml"), ImportOptions.Override);
} 
 
//Imports constants into a plc tag table
private static void ImportConstant(PlcSoftware plcSoftware, string tagtableName)
{
    PlcTagTableSystemGroup plcTagTableSystemgroup = plcSoftware.TagTableGroup;
    PlcTagTable tagTable = plcTagTableSystemgroup.TagTables.Find(tagtableName);
    if(tagTable == null) return;
 
    tagTable.UserConstants.Import(new FileInfo(@"D:\Samples\myConstants.xml"), 
ImportOptions.Override);
}

See also
Exporting configuration data (Page 415)

Notes on performance of TIA Portal Openness (Page 41)

8.4.3 Exporting user data type

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● PLC is not online

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
542 System Manual, 10/2018



Program code
Modify the following program code to export an user data type to an XML file:

 
//Exports a user defined type
private static void ExportUserDefinedType(PlcSoftware plcSoftware)
{ 
    string udtname = "udt name XYZ"; 
    PlcTypeComposition types = plcSoftware.TypeGroup.Types; 
    PlcType udt = types.Find(udtname); 
    udt.Export(new FileInfo(string.Format(@"C:\OpennessSamples\udts\{0}.xml", udt.Name)), 
ExportOptions.WithDefaults);
}

8.4.4 Importing user data type

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

Connecting to the TIA Portal (Page 74)

● A project is open.
Opening a project (Page 97)

● PLC is not online.

Application
The API interface supports the importing of user data types from an XML file. 

Import file syntax
The following code example shows an excerpt from an import file of a user-defined data type:

 
<Section Name="Input">
 <Member Name="Input1" Datatype=quot;myudt1&quot;>
  <Sections>
   <Section Name="None">
    <Member Name="MyUDT1Member1" Datatype="bool"/>
    <Member Name="MyUDT1Member2" Datatype=&quot;myudt1&quot;> 
     <Sections...

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 543



Note
Syntax for user-defined data types of elements

An exception is thrown if the user-defined data type of an element in the import file for user 
data types has incorrect syntax.

Make sure that user-defined data types are noted with &quot;. 

Program code
Modify the following program code to import a user data type: 

 
//Imports user data type
private static void ImportUserDataType(PlcSoftware plcSoftware)
{ 
    FileInfo fullFilePath = new FileInfo(@"C:\OpennessSamples\Import\ExportedPlcType.xml");
    PlcTypeComposition types = plcSoftware.TypeGroup.Types; 
    IList<PlcType> importedTypes = types.Import(fullFilePath, ImportOptions.Override);
}

See also
Importing configuration data (Page 417)

8.4.5 Export of data in OPC UA XML format

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open.
See Opening a project (Page 97)

● PLC is not online

Application
You can export PLC data as OPC UA XML file by invoking an action on the TIA Portal 
Openness API. As input parameter for the action you need an absolute directory path, where 
the xml file will be saved.

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
544 System Manual, 10/2018



Program code
Modify the following program code.

 
//Export PLC data as OPC UA XML file 
private static void OpcUaExport(Project project, DeviceItem plc)
{
    OpcUaExportProvider opcUaExportProvider = 
project.HwUtilities.Find("OPCUAExportProvider") as OpcUaExportProvider; 
    if (opcUaExportProvider == null) return;
 
    opcUaExportProvider.Export(plc, new FileInfo(string.Format(@"D:\OPC UA export files
\{0}.xml", plc.Name)));
}

Export/import
8.4 Importing/exporting data of a PLC device

Openness: Automating creation of projects
System Manual, 10/2018 545



8.5 Importing/exporting hardware data

8.5.1 AML file format

Introduction 
AutomationML is a neutral data format based on XML for the storage and exchange of plant 
engineering information, which is provided as open standard. Goal of AutomationML is to 
interconnect the heterogeneous tool landscape of modern engineering tools in their different 
disciplines, e.g. mechanical plant engineering, electrical design, HMI, PLC, robot control.

The class model used for the export and import of CAx data is based on the following AML 
standards:

● Whitepaper AutomationML Part 1 – AutomationML Architecture, October 2014

● Whitepaper AutomationML Part 2 –AutomationML Role Libraries, October 2014  

● Whitepaper AutomationML Part 4 –AutomationML Logic, May 2010  

● Whitepaper AutomationML– AutomationML Communication, September 2014  

● Whitepaper AutomationML– AutomationML and eCl@ss Integration, November 2015

● Application Recommendations: Automation Project Configuration  - AR_001E Version 
1.0.0, Mai.2017

Schema
The AutomationML data exchange model is described by the CAEX schema Version 2.15. 
You can download this file from the homepage of AutomationML e.V. (https://
www.automationml.org/o.red.c/dateien.html)

8.5.2 Pruned AML

Introduction
Pruning is the act of optimizing the content by removing certain things which are not necessarily 
to be provided. In case of external tools like EPLAN , the auto created sub module information 
within a hardware configuration has no significance with respect to EPLAN. Hence, these tools 
generate an AML file by removing the auto created sub module information from the hardware 
configuration. This file is called as pruned AML. 

Generation of pruned AML
Generation of a Pruned AML is based on the following rules in order.

1. If a device item is pluggable, it shall not be pruned. 

2. If a device item is of type "interface" or "port", it shall not be pruned. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
546 System Manual, 10/2018

https://www.automationml.org/o.red.c/dateien.html
https://www.automationml.org/o.red.c/dateien.html


3. AddressObjects of type "diagnosis" are not relevant for the prune algorithm.  

4. Address objects linked with the auto created sub modules shall be provided under the 
immediate parent (which shall be a non-auto created sub module). 

5. Address objects shall be included in the same sequence as returned by TIA Portal 
Openness.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 547



8.5.3 Overview of the objects and parameters of the CAx import/export

Export/Import objects and attributes
The following figure shows the exportable objects with their attributes and dependencies of 
the CAx Import/Export.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
548 System Manual, 10/2018



Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 549



8.5.4 Structure of the CAx data for importing/exporting

Basic structure of an export file
The data in the export file from the import/export is structured with reference to a basic 
structure. The export file is generated in an AML format.

The AML file starts with a document information. The file includes the data of the computer-
specific installation of the exported project. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
550 System Manual, 10/2018



The export file comprises the following two sections:

● Additional information
The <WriterHeader> includes information about the export or import process. The import 
ignores the content of the <AdditionalInformation> section. 
For example you can insert a <AdditionalInformation>...</
AdditionalInformation> block, in which you place additional information about the 
validation. After the AML file is forwarded, the recipient can use this block before the import 
to check whether the AML file has been changed.

● Instance hierarchy
This section contains the hierarchical sequence of the exported internal elements. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 551



Internal elements

All objects inside the instance hierarchy of the AML file are InternalElements. The internal 
element AutomationProject contains all internal elements of all role classes. Every 
internal element supports a set of attributes.  

The attribute <TypeIdentifier> identifies every object type of a hardware object that is 
creatable via TIA Portal Openness. 

Note
Auto-created objects

Auto-created objects can only be created by other objects. They do not have properties or a 
type-identifier. They are included in the exported file, but you cannot trigger the export of a 
specific autocreated object.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
552 System Manual, 10/2018



At the end of the AML-element of an internal element, the following  are defined:

● Role class 
The SupportedRoleClass element defines the object type of the internal element. The 
object type is defined in the role class library that maps the standard AML to the object 
model of TIA Portal Openness and TIA Portal.

● Internal link 
The element InternalLink defines the communication partners of a connection.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 553



Attributes
Attributes are assigned to internal elements as follows:

Handling modes for attributes
The handling of attributes is defined for every attribute indiviually as follows:

● Ignored
The attribute will be ignored during import and is not present in the export file.

● Mandatory
The attribute has to be present in an import file and may not be deleted in the export file.

● Optional
If this attribute is missing in the import file, the default value for the attribute is specified. 
This attribute is missing in an export file if it is not applicable for an object, e. g. not all 
modules have a FirmwareVersion.  

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
554 System Manual, 10/2018



● Export-only
The attribute value is determined by the TIA Portal internally, e. g. the type name of a device 
item. If it is present in an import file, it will be ignored by the TIA Portal during import. 

● Import-only
The attribute can influence the import behavior. If the attribute is missing in an import file, 
the behavior will correlate to the standard value for the attribute.

See also
AML type identifiers (Page 555)

8.5.5 AML type identifiers

Internal elements
The TypeIdentifier string consists of several parts: 

● <TypeIdentifierType>:<Identifier> 

The following values for TypeIdentifierType are possible:

● OrderNumber used to specify pyhsical modules

● GSD used to specify GSD/GSDML based devices

● System used to specify systems and generic devices

Type identifier type: OrderNumber
OrderNumber is the common type identifier for all modules present in the hardware catalog, 
excluding GSD. AML type identifier are not always equal to TIA Portal Openness type identifier. 
AML type identifier do not have a FirmwareVersion info. The information about firmware 
versions is handled in a separate AML attribute "FirmwareVersion". 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 555



The format for this TypeIdentifierType is as following:

● <OrderNumber>
 Example: OrderNumber:3RK1 200-0CE00-0AA2 
Note
Wildcards in order numbers

There are a few modules in the hardware catalog which use "wildcard" characters in their 
order number to represent a certain cluster of real hardware, e. g. the different lengths of 
S7-300 racks. 

In this case the specific OrderNumber and the "wildcard"-OrderNumber can both be used 
to create an instance of the hardware object. However, you cannot generically use wildcards 
at any position. Example: An S7-300 rack can be created in the following ways: 

OrderNumber:6ES7 390-1***0-0AA0 
or 

OrderNumber:6ES7 390-1AE80-0AA0  

Regard that you cannot use the following structure for instance:

OrderNumber:6ES7 390-1AE80-0A*0
The return value of reading the type identifier is always the order number from the hardware 
catalog.

Example: Reading OrderNumber:6ES7 390-1AE80-0AA0 returns OrderNumber:
6ES7 390-1***0-0AA0

Type identifier type: GSD
The type identifier for GSD and GSDML based devices is TypeIdentifier = 
GSD:<Identifier>
The identifier is composed by the following elements

● GsdName: name of the GSD or GSDML in uppercase letters

● GsdType: One of the following:

– D: Device 

– R: Rack 

– DAP: HeadModule 

– M: Module 

– SM: Submodule

● GsdId: ID of the GSD or GSDML

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
556 System Manual, 10/2018



The following formats for the type identifier are supported of the CAx import/export:

● GSD.<GsdName>/<GsdType>
Examples:
GSD:SIEM8139.GSD/DAP
GSD:GSDML-V2.31-SIEMENS-SINAMICS_DCP-20140313.XML/D

● <GsdName>/<GsdType>/<GsdId>
Examples:
GSD:SIEM8139.GSD/M/4
GSD:GSDML-V2.31-SIEMENS-SINAMICS_G110M-20140704.XML/M/IDM_DRIVE_47

Type identifier type: System
System. is the identifier for objects that cannot be determined by any other identifier. The 
formats for this TypeIdentifierType are as following:

●  <SystemTypeIdentifier> 
Examples: 
System:Device.S7300 
System:Subnet.Ethernet 

● <SystemTypeIdentifier>/<AdditionalTypeIdentifier>
The AdditionalTypeIdentifier is necessary in case the SystemTypeIdentifier 
is not unique. 
The SystemTypeIdentifier has a prefix for certain object types: 
Subnet. 
Device. 
Rack.
Example: System:Rack.S71600/Large
A rack with an ordner number is identified via the OrderNumber identifier.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 557



Displaying type identifiers in TIA Portal
If you need to know a type identifier you inquire it in TIA Portal as follows:

1. Enable the setting "Enable display of the type identifier for devices and modules" in "Options 
> Settings > Hardware configuration > Display of the type identifier".

2. Open the editor "Devices & networks".

3. Select a device in the Catalog.
The type identifier is displayed in the viewlet "Information"

8.5.6 Export of CAx data

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

Application
In TIA Portal you can export your configuration in the device&networks editor to an AML file. 
This function is based on TIA Portal Openness and enables you to export hardware data from 
project or device level. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
558 System Manual, 10/2018



TIA Portal Openness provides the following ways to export CAx data:

● Export function
The export function is accessed via CaxProvider service. To get the CaxProvider 
service invoke the GetService method at Project object.

● Command line interface
You execute the "Siemens.Automation.Cax.AmiHost.exe" located in "C:\Program Files
\Siemens\Automation\Portal V..\Bin\" by passing specific command line arguments.

Export and Import restrictions for CAx
CAx does not support the export and import of

● Port-Port connections

● Connections to and between extension racks

● Multi-CPUs

● H-devices

● HMI devices except push button panels and key panels

● Drives

● Output mode and range of analog chanels

● Packed addresses

CAx does not support the export and import of the following device and drives:

● 6AV2 104-0XXXX-XXXX

● 6AV2 155-0XXXX-XXXX

● 6ES7 XXX-XXXXX-XXXX

● 6ES7 370-0AA01-0AA0

● 6ES7 451-3AL00-0AE0 

● 6GK5 414-3FC00-2AA2 

● 6GK5 414-3FC10-2AA2 

● 6GK5 495-8BA00-8AA2 

● 6GK5 496-4MA00-8AA2

● 6GK5 602-0BA00-2AA3 

● 6GK5 602-0BA10-2AA3 

● 6GK5 612-0BA00-2AA3

● 6GK5 612-0BA10-2AA3

● 6GK5 613-0BA00-2AA3 

● 6GK5 623-0BA10-2AA3 

● 6GK5 627-2BA10-2AA3

● System:Device.Scalance/S627 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 559



● System:IPIProxy.Device 

● System:IPIProxy.Rack

Program code: Access the CaxProvider service
Modify the following program code to access the CaxProvider service:

 
Project project = tiaPortal.Projects.Open(...);
CaxProvider caxProvider = project.GetService<CaxProvider>();
 
if(caxProvider != null)
 
{  
 
      // Perform CAx export and import operation
 
}

CAx export at project level 
To export CAx data at project level, use the Export method with the following parameters:

Name Example Description
 ProjectToEx‐
port

tiaPortal.Projects[0]  Project object to Export 

 ExportFilePath new FileInfo(@"D:\Temp\ProjectEx‐
port.aml")

 Full Export file path of AML file 

 LogFilePath new FileInfo(@"D:\Temp\ProjectEx‐
port_Log.log")

 Full file path of Log file 

Modify the following program code to export CAx data at project level:

 
caxProvider.Export(project, new FileInfo(@"D:\Temp\ProjectExport.aml"), 
new FileInfo(@"D:\Temp\ProjectExport_Log.log"));

CAx export at device level
To export CAx data at device level, use the  Export method with the following parameters:

Name Example Description
 DeviceToExport project.Devices[0]  Device object to Export 
 ExportFilePath new FileInfo(@"D:\Temp\ProjectEx‐

port.aml")
 Full Export file path of AML file 

 LogFilePath new FileInfo(@"D:\Temp\ProjectEx‐
port_Log.log") 

 Full file path of Log file 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
560 System Manual, 10/2018



Modify the following program code to export CAx data at project level:

 
caxProvider.Export(device, new FileInfo(@"D:\Temp\DeviceExport.aml"), new 
FileInfo(@"D:\Temp\DeviceExport_Log.log"));

CAx export via command line
To export CAx data via command line, use "Siemens.Automation.Cax.AmiHost.exe" with the 
following parameters:

Parameter Example Description
 -p -p "D:\Temp\MyProject.ap14" Specifies a full path name to an existing 

TIA Portal project.
-d -d "S7300/ET200M station_1" Optional paramter. If no device is speic‐

fied export will take place at project lev‐
el.
Specifies the name of the device or sta‐
tion inside the specified TIA project, that 
needs to be exported.

-m -m "AML" Specifies the export/import mode (for‐
mat for export/import):
"AML" exports in AML format

-e -e "D:\Import"
-e "D:\Import\CAx_Export.aml"

Specifies full path of AML file to be ex‐
ported. The project name will be used 
as exported file name if only a path is 
specified.

Modify the following program code to o export CAx data at project level via the command line:

 
Siemens.Automation.Cax.AmiHost.exe -p "D:\Temp\MyProject.ap14" -m "AML" -e 
"D:\Import\CAx_Export.aml"

Modify the following program code to o export CAx data at device level via the command line:

 
Siemens.Automation.Cax.AmiHost.exe -p "D:\Temp\MyProject.ap14" -d "S7300/
ET200M station_1" -m "AML" -e "D:\Import\CAx_Export.aml"

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 561



8.5.7 Export/Import of sub modules

Requirements
● The TIA Portal Openness application is connected to the TIA Portal.

See Connecting to the TIA Portal (Page 74)

● A project is open
See Opening a project (Page 97)

● PLC is offline 

Application
You can have round trip exchange of sub modules data between the TIA portal and other 
engineering tools, e.g. CAD tool like EPLAN by keeping a common hierarchy  for sub modules 
inside AML file during export and import. For example, the sub modules like Bus Adapters 
shall have different internal hierarchy in TIA portal than in other applications (e.g., CAD tools 
like EPLAN).

AML structure of the export file
You can export sub modules data from TIA portal hierarchy to AML file hierarchy.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
562 System Manual, 10/2018



The following example depicts the AML file structure that shall be generated during the export 
of sub modules.

 
<?xml version="1.0" encoding="utf-8"?>
 <CAEXFile FileName="Project4.aml" SchemaVersion="2.15" 
xsi:noNamespaceSchemaLocation="CAEX_ClassModel_V2.15.xsd">
 <AdditionalInformation>
   <WriterHeader>
     <WriterName>Totally Integrated Automation Portal</WriterName>
     <WriterID>1d4fcebb-1ad6-4881-b01d-bca335d94a46:V1.0</WriterID>
     <WriterVendor>Siemens AG</WriterVendor>
     <WriterVendorURL>www.siemens.com</WriterVendorURL>
     <WriterVersion>15</WriterVersion>
     <WriterRelease>1500.0100.0.0</WriterRelease>
     <LastWritingDateTime>2018-05-03T11:23:10.3011329Z</LastWritingDateTime>
   </WriterHeader>
 </AdditionalInformation>
 <AdditionalInformation AutomationMLVersion="2.0" />
 <AdditionalInformation DocumentVersions="Recommendations">
 <Document DocumentIdentifier="AR APC" Version="1.0.0" />
 </AdditionalInformation>
 <InstanceHierarchy Name="APC Sample Instance Hierarchy">
   <InternalElement ID="6cd7f80f-e049-4958-ba67-630481805bf0" Name="Project4">
    <Attribute Name="ProjectManufacturer" AttributeDataType="xs:string" />
    <Attribute Name="ProjectSign" AttributeDataType="xs:string" />
    <Attribute Name="ProjectRevision" AttributeDataType="xs:string" />
    <Attribute Name="ProjectInformation" AttributeDataType="xs:string" />
   <InternalElement ID="b27045c4-9cb3-4b8d-916b-85f8100d1602" Name="Ungrouped devices">
   <InternalElement ID="3f770698-940d-49c2-9f77-06fc458e1340" Name="ET 200SP station_1">
 <Attribute Name="TypeIdentifier" AttributeDataType="xs:string">
   <Value>System:Device.ET200SP</Value>
 </Attribute>
   <InternalElement ID="6f52fbab-a221-4d54-9368-84c392ca7fec" Name="Rack_0">
   <Attribute Name="TypeName" AttributeDataType="xs:string">
   <Value>Rack</Value>
...

Import sub modules
You can import sub modules from an AML files, which is generated from above export.

Note
● The hierarchy in AML file shall not influence/affect the TIA Portal internal hierarchy after 

Import.
● The AML files created using older TIAP versions shall also be imported without any failure. 
● This hierarchy change/transformation behavior is applicable for both built-in and non built-

in sub modules. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 563



Multiple sub modules under same Interface
There are some scenarios where multiple sub modules shall exist under a same interface. For 
ex: IO Device : IM 155-6 PN/3 HF 6ES7 155-6AU30-0CN0/V4.2. This head module has two 
non built-in Bus Adapters under a same interface. In such case, it shall be possible to export 
mentioned Bus Adapters from TIAP hierarchy to required AML file hierarchy. In this example 
from TIAP hierarchy, 'PROFINET interface' has two Bus Adapters, three ports and one node. 
Here, Port_1 and Port_2 logically belongs to BA 2xRJ45 and Port_3 logically belongs to BA 
2xRJ45_1 though all the three ports are aggregated under one interface.

During Export:

● Only first sub module shall get 'original' interface along with its connection relevant 
information. Here, BA 2xRJ45 gets original interface along with node 'IE1', 'Port_1' and 
'Port_2'. 

● Rest of the sub modules shall get a 'duplicate' interface with ports which logically belongs 
to the sub module. Here, BA 2xRJ45_1 shall get a 'duplicate' interface and Port_3.

● If the head module is connected to a subnet/Iosystem, the relevant link information(like 
ExternalInterface links) shall be exported only as part of first sub module (ExternalInterface 
link related to Subnet under 'Node' and ExternalInterface link related to IoSystem under 
'Interface') . 

● The link information pertaining to topology connection, shall be part of respective 'Port'. 

During import:

● It shall be possible to import multiple sub modules from an AML file which is generated out 
of above mentioned export.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
564 System Manual, 10/2018



The AML file that shall be generated during export for the above configuration is depicted below:

 
<?xml version="1.0" encoding="utf-8"?>
<CAEXFile FileName="MultipleBA_01.aml" SchemaVersion="2.15" 
xsi:noNamespaceSchemaLocation="CAEX_ClassModel_V2.15.xsd">
  <AdditionalInformation>
    <WriterHeader>
      <WriterName>Totally Integrated Automation Portal</WriterName>
      <WriterID>1d4fcebb-1ad6-4881-b01d-bca335d94a46:V1.0</WriterID>
      <WriterVendor>Siemens AG</WriterVendor>
      <WriterVendorURL>www.siemens.com</WriterVendorURL>
      <WriterVersion>15</WriterVersion>
      <WriterRelease>1501.0000.0.0</WriterRelease>
      <LastWritingDateTime>2018-05-17T09:36:46.9230179Z</LastWritingDateTime>
    </WriterHeader>
  </AdditionalInformation>
  <AdditionalInformation AutomationMLVersion="2.0" />
  <AdditionalInformation DocumentVersions="Recommendations">
    <Document DocumentIdentifier="AR APC" Version="1.0.0" />
  </AdditionalInformation>
  <InstanceHierarchy Name="APC Sample Instance Hierarchy">
    <InternalElement ID="e005c094-1b0a-42c4-92a0-67c981508c1a" Name="Project45">
      <Attribute Name="ProjectManufacturer" AttributeDataType="xs:string" />
      <Attribute Name="ProjectSign" AttributeDataType="xs:string" />
      <Attribute Name="ProjectRevision" AttributeDataType="xs:string" />
      <Attribute Name="ProjectInformation" AttributeDataType="xs:string" />
      <InternalElement ID="2782e61d-8c27-46cb-93ea-6b804157ae60" Name="PN/IE_1">
        <Attribute Name="Type" AttributeDataType="xs:string">
          <Value>Ethernet</Value>
        </Attribute>
        <ExternalInterface ID="2d901881-a2bf-4fe7-915f-b2542b346988" 
Name="LogicalEndPoint_Subnet" RefBaseClassPath="CommunicationInterfaceClassLib/
LogicalEndPoint" />
        <SupportedRoleClass RefRoleClassPath="AutomationProjectConfigurationRoleClassLib/
Subnet" />
   ...

Pruned AML
Pruning is an act of optimizing the content by removing certain things which are not necessary 
to be provided. For information on Pruned AML, (Refer Pruned AML (Page 546)).

There might be some scenarios where sub module configuration hierarchy is not same in TIA 
Portal and CAD tools (like EPALN) due to pruned sub modules. In such scenarios, TIA Portal 
shall support import of both pruned and unpruned AML files. 

Note
● TIA Portal shall always export unpruned AML file. 
● TIA Portal shall always import both pruned and unpruned AML file

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 565



See also
Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

8.5.8 Import of CAx data

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

Application
In TIA Portal you can import your configuration in the device&networks editor from an AML 
file. This function enables you to import hardware data from project or device level. 

TIA Portal Openness provides the following ways to export CAx data:

● Import function
The import function is accessed via CaxProvider service. To get the CaxProvider 
service invoke the GetService method at Project object.

● Command line
You execute the "Siemens.Automation.Cax.AmiHost.exe" located in "C:\Program Files
\Siemens\Automation\Portal V..\Bin\" by passing specific command line arguments:

Program code: Access the CaxProvider service
Modify the following program code:

 
//Access the CaxProvider service
Project project = tiaPortal.Projects.Open(...);
CaxProvider caxProvider = project.GetService<CaxProvider>();
 
if(caxProvider != null)
 
{  
      // Perform Cax export and import operation
}

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
566 System Manual, 10/2018



CAx import 
To import CAx data into a TIA portal project, you use the Import method with the following 
parameters:

Name Example Description
ImportFilePath new FileInfo(@"D:\Temp\ProjectEx‐

port.aml")
Full import file path of AML file 

LogFilePath new FileInfo(@"D:\Temp\ProjectEx‐
port_Log.log")

Full file path of log file 

ImportOptions CaxImportOptions.MoveToParkingLot
CaxImportOptions.RetainTiaDevice
CaxImportOptions.OverwriteTiaDevice

Conflict resolution strategies in case of im‐
porting into an already existing non empty 
project.

Modify the following program code to import CAx data:

 
caxProvider.Import(new FileInfo(@"D:\Temp\ProjectImport.aml"), new 
FileInfo(@"D:\Temp\ProjectImport_Log.log"), 
CaxImportOptions.MoveToParkingLot);

The following CaxImportOptions are provided:

Import option Description
MoveToParkin‐
gLot

Retain name conflicting device/s in the project and import those out of CAx into a 
parkinglot folder 

RetainTiaDevice Retain name conflicting device/s in the project and do not import those out of CAx 
OverwriteTiaDe‐
vice

Overwrite name conflicting device/s in the project by the ones out of CAx 

CAx import via command line
To import CAx data via command line, use "Siemens.Automation.Cax.AmiHost.exe" with the 
following parameters:

Parameter Example Description
 -p -p "D:\Temp\MyProject.ap14" Specifies a full path name to an existing 

TIA Portal project.
-m -m "AML" Specifies the export/import mode (for‐

mat for export/import):
"AML" exports in AML format

-i -i "D:\Import\CAx_Export.aml" Specifies full path of the AML file to be 
imported.

-c -c "ParkingLot" Specifies differnt strategies if there is a 
conflict in the device name according to 
import options.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 567



Modify the following program code to o import CAx data via the command line:

 
Siemens.Automation.Cax.AmiHost.exe -p "D:\Temp\MyProject.ap14" -m "AML" -i 
"D:\Import\CAx_Export.aml"

The following import options are provided:

Import option Description
ParkingLot Retain name conflicting device/s in the project and import those out of CAx into a 

parkinglot folder 
RetainTia Retain name conflicting device/s in the project and do not import those out of CAx 
OverwriteTia Overwrite name conflicting device/s in the project by the ones out of CAx 

8.5.9 Exceptions during import and export of CAx data

Exception due to non-availability of TIA Openness
CAx implementation is based on TIA Openness Public API's. Openness Public API's are 
available only when user has installed Openness optional pack during TIA Portal installation. 
Hence, there is a need to check whether Openness is available before performing any CAx 
related functionalities.  (Refere Installing TIA Openness (Page 27))

 Whenever user triggers a CAx Export or CAx Import actions from TIA Portal UI, a check is 
performed to see availability of TIA Openness in the system. If TIA Openness is not found to 
be installed, user will be displayed a TIA Portal message dialog with following error message 
dialog.

While performing the CAx operation through command-line, the following error diaglog displays 
during the non-availablity of TIA Openness.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
568 System Manual, 10/2018



Figure 8-3 OpennessNotInstalled-Commandline

8.5.10 Round trip exchange of devices and modules

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal (Page 74)

● A project is open. 
See Opening a project (Page 97)

● PLC is offline.

Application
You can exchange configuration data between the TIA Portal and other engineering tools, e. 
g. an electrical planning tool like EPLAN or the TIA selection tool. For the identification of the 
imported and exported devices, a global unique identifier, the AML GUID, is used. 

During the round trips, the AML GUID is kept stable for physical assets like devices and device 
items which are not built-in e.g. CPUs or modules, but not for virtual assets like tags, 
channels, ...

During the first export from the TIA Portal, the AML GUID for a device or a no built-in device 
item is randomly generated, but kept stable afterwards.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 569



If you export a device from an engineering tool into an empty TIA portal project, the AML GUID 
is added to the comment of the hardware object. If  in the TIA Portal at "Tools > Settings > 
CAx > Import settings" the correspondig setting is enabledd the AML GUID is added in the 
current editing language. The round trip process supports only one editing language to store 
the AML GUIDs. When importing or exporting data, always use the editing language with which 
you started the round trip.

For all following imports or exports, the AML GUID stays the same for this hardware object. 
Changes to the hardware object are resumed.

Within a TIA portal project object names have to be unique. The import of a device or a device 
item into a TIA portal project where a certain object with the same name already exists would 
lead to a naming conflict. During the import you have the possibility to move the objects with 
naming conflicts to the user defined parking lot. The name of the imported Object will be 
extended with "_CAX".

Note
Copying an imported device

If you copy a device or a device item  possessing an AML GUID you have to delete the AML 
GUID in the comment of the copied object. Otherwise, devices or device items with identical 
AML GUID exists in your project and lead to an invalid AML file.

Import settings
1. Define the parking lot folder name under "Options > Settings > CAx > Settings for conflict 

resolution".
The parking lot folder is used to store objects with naming conflicts.

2. Activate "Options > Settings > CAx > Import settings > Save GUIDs during import". 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
570 System Manual, 10/2018



Note
Valid AML GUID

If you edit an AML GUID before the import, the AML GUID becomes invalid and the import will 
be aborted.

After the import into the TIA Portal, the AML GUID is added to the existing user comments as 
follows: 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 571



Note
Exceeding length of a comment

If the appending of the AML GUID the comment exceeds its maximum limit of 500 characters, 
the user comment value will be trimmed to 500 characters. A corresponding information will 
be logged.

AML structure
The generated ID is exported to AML file as depicted in the following code snippet:

<InternalElement ID="23aeefd0-ce05-4116-a644-e33d43901eaf" 
Name="PLC_1" 

8.5.11 Export/Import topology

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● PLC is offline.

Application
In TIA portal, you can export the devices with its topology information to an AML file. While 
importing to an empty TIA portal project, the imported device items retains the topology 
information.

<InteralLink> element gives link details of port to port interconnection between the device 
items. It appears under the common parent of the connected devices, and contains unique tag 
names. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
572 System Manual, 10/2018



Attributes of a "InternalLink" element
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory The tag names are formatted as "Link to Port_n" (where n varies from 1 to the number of 

port to port links). 
RefPartnerSideA Mandatory Denotes the port which are linked. Formatted as UniqueIDOfPort:CommunicationPortIn‐

terface
RefPartnerSideB Mandatory Denotes the port which are linked. Formatted as UniqueIDOfPort:CommunicationPortIn‐

terface

Example: Topology view

AML structure
The following figures shows a partial element structure of the exported AML file. It contains 
two unique ID for the ports in PLCs.

The <InteralLink> element contains three mandatory attributes.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 573



8.5.12 Export of a device object

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● The PLC is offline.

Application
The Device object is a container object for a central or distributed configuration. It is the parent 
object for DeviceItem objects and the top level internal element of the instance hierarchy of 
the TIA Portal project in between an AML file's structure.

The CAx data export supports the following types of devices specified via the AML type 
identifier:

● Physical modules

● GSD/GSDML based devices

● Systems

Devices can be grouped in a DeviceUserFolder object. 

Note

Export of a single device also exports all subnets in the project.

Attributes
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory  
TypeIdentifier Mandatory  
Comment Optional Default: ""

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
574 System Manual, 10/2018



Example: Exported Configuration

AML structure of the export file
The following structure example depicts the export of the single device "S7-400 station_1" 
without racks and modules:

See also
Structure of the CAx data for importing/exporting (Page 550)

AML type identifiers (Page 555)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 575



8.5.13 Import of a device object

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● The PLC is offline.

Application
The Device object is a container object for a central or distributed configuration. It is the parent 
object for DeviceItem objects and the top level internal element of the instance hierarchy of 
the TIA Portal project in between an AML file's structure.

The CAx data import supports the following types of devices specified via the AML type 
identifier:

● Physical modules

● GSD/GSDML based devices

● Systems

● Generic devices

If a DeviceUserFolder object exists in the TIA Portal project, the devices will be grouped 
in the respective folder. 

If you only know the identification (TypeIdentifier) of a head module or a PLC and not of 
the respective rack and device, you can import a generic rack.

Example: TypeIdentifier = System:<Prefix>.Generic
For generic device replacement, the following elements have to be present in the rack 
described in the AML file:

● Central devices: PLC

● Decentral devices: Head module 

If devices are generic, the attribute BuiltIn defines the kind of rack or module:

● physical: BuiltIn = True
● generic: BuiltIn = False

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
576 System Manual, 10/2018



Example: Importing a generic device
The following structure example depicts the import of the generic "S7-400 station" device 
without racks and modules. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 577



Example: Importing a device user folder hierarchy
The following structure example depicts the import of a folder hierarchy. 

Imported user folder hierarchy
The name of the folders for ungrouped and unassignd devics is language specific. It is 
recommended to perform an import with the same user interface language as the export. 
Otherwise ungrouped and unassigned devices will be imported into folders named according 
to the export language.

For example, if you have exported a project which contains Device System Group "Ungrouped 
devices" in English language and then import the AML file in Germany language. You will see 
that project should have a "Nicht gruppierte Gerate" (German language) exists in device 
system group and have  "Ungrouped device" created as user group while CAx import. 

The following hierarchy is imported into the project navigation:

See also
Structure of the CAx data for importing/exporting (Page 550)

AML type identifiers (Page 555)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
578 System Manual, 10/2018



8.5.14 Export/Import of device with set address

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● PLC is offline.

Application
In TIA portal, you can export the address objects of IO device items to an AML file. While 
importing to an empty TIA portal project, the imported device items retains the address objects 
in its respective IO device items.

The Address attribute in the AML file contains RefSemantic mandatorily set to the specified 
value named OrderedListType. 

Attributes of a "Address" element
The following table shows the related attributes of the object for CAx import and export files:

Attrib‐
ute

Han‐
dling  

Comment

Io‐
Type

Man‐
datory

Input or Output

Lengt
h

Op‐
tional

Channel width 

Star‐
tAd‐
dress

Man‐
datory

Start address of the IO device.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 579



Example: IO device items with address objects

AML Structure
The following figures shows a partial element structure of the exported AML file. It contains 
the Address elments and its attributes.

Pruned XML
Pruning is the act of optimizing the content by removing certain things which are not necessarily 
to be provided in the XML. In this reduced xml, the auto created sub module information are 
not be provided, and its corresponding address object are provided under the immediate 
parent.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
580 System Manual, 10/2018



The following figure shows a partial element structure of the exported AML file before pruning.

In the pruned AML file, the sub module information like <InternalElement> element is removed 
and its corresponding address objects are retained.

See also
Pruned AML (Page 546)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 581



8.5.15 Export/Import of device with channels

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● PLC is offline.

Application
In TIA portal, you can export the channel objects of IO device items to an AML file. While 
importing to an empty TIA portal project, the imported device items retains the channel objects 
in its respective IO device items.

<ExternalInterface> element represents in node and subnet internal elements, and indicates 
that nodes and subnets are connected. 

Attributes of a "ExternalInterface" element
The following table shows the related attributes of the object for CAx import and export files:

Attrib‐
ute

Han‐
dling  

Comment

Io‐
Type

Man‐
datory

Input or Output

Lengt
h

Op‐
tional

Channel width (1 for Digitial and 16 for Analog signals)

Num‐
ber

Man‐
datory

Channel number starts from 0

Type Man‐
datory

Analog or Digital

Channel numbering
Digital Input,Digitial Output, Analog Input, Analog Ouput, and Technology channels are 
numbered as DI_0, DO_0, AI_0, AO_0,TO_0 respectively. Channels on the device items itself 
are numbered first, and channels on sub-device items are numbered subsequently(depth first). 
Every additional device item has its own channel numbers starting from 0.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
582 System Manual, 10/2018



Example: Devices with channels

AML structure
The following figures shows a partial element structure of the exported AML file. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 583



8.5.16 Export of device item objects

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● The PLC is offline.

Application
The export of device item objets is only appliccable for PLC devices.

DeviceItem objects are nested children of a Device object. An object of the type 
DeviceItem can be a rack or an inserted module.

● The first child item of a device is of type "rack". The PositionNumber of a rack starts with 
0.  If there are multiple racks, they are consecutively numbered (1, 2, 3, …).
There are no restrictions about the ordering in the AML file within one hierarchy level.

● All further children of the type "rack" are modules.

The CAx data export supports the following types of device items specified via the AML type 
identifier:

● Physical modules

● GSD/GSDML modules

Attributes
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory

Export-only for "BuiltIn" = TRUE
 

TypeName Export-only for "BuiltIn" = 
FALSE

 

DeviceItemType Export-only Only for PLC (central devices) and device items (physical racks, mod‐
ules, HeadModule).

PositionNumber Mandatory  
BuiltIn Optional Default: FALSE
TypeIdentifier Mandatory for "BuiltIn" = FALSE

Ignored for "BuiltIn" = TRUE
 

FirmwareVersion Optional, mandatory
if the object supports firmware 
versions

 

PlantDesignation 
IEC

Optional Default: ""

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
584 System Manual, 10/2018



Attribute Handling  Comment
LocationIdentifier 
IEC

Optional Default: ""

Comment Optional for "BuiltIn" = FALSE Default: ""
Address Optional "Address" has nested attributes

The following table shows the nested attributes of the "Address" attribute of the object 
"DeviceItem":

Attributes for "Ad‐
dress"

Handling  Comment

StartAddress Mandatory  
Length Export-only Export/Import of address with Length = 0 is not supported.
IoType Mandatory Input or Output

Example: Exported Configuration

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 585



AML structure of the export file
The following structure example depicts the export of "UR1_0" and the module "PLC_1". 

See also
Export/Import of GSD/GSDML based devices and device items (Page 590)

Structure of the CAx data for importing/exporting (Page 550)

AML type identifiers (Page 555)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
586 System Manual, 10/2018



8.5.17 Import of device item objects

Requirement
● The TIA Portal Openness application is connected to the TIA Portal.  

See Connecting to the TIA Portal (Page 74)

● A project is open.  
See Opening a project (Page 97)

● The PLC is offline.

Application
The import of device item objets is only appliccable for PLC devices.

DeviceItem objects are nested children of a Device object. An object of the type 
DeviceItem can be a rack or an inserted module.

● The first child item of a device has to be of type rack. The PositionNumber of a rack 
starts with 0.  If there are multiple racks, they are consecutively numbered (1, 2, 3, …).
There are no restrictions about the ordering in the AML file within one hierarchy level.

● All further children of the type rack are modules.

The CAx data imporet supports the following types of device items specified via the AML type 
identifier:

● Physical modules

● GSD/GSDML modules

● Generic modules

If you only know the identification (TypeIdentifier) of a head module or a PLC and not of 
the respective rack and device, you can import a generic rack. 

Example: TypeIdentifier = System:Rack.Generic
For generic rack replacement, the following elements have to be present in the rack described 
in the AML file:

● Central devices: PLC 

● Decentral devices: Head module 

A generic rack type derives from the Device type. Therefore, an AML file that is imported to 
TIA Portal can use this rack's type identifier:

In this case the TIA Portal determines the type identifier for the rack. 

If racks and modules are generic, the attribute BuiltIn defines the kind of rack or module:

● physical: BuiltIn = True
● generic: BuiltIn = False

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 587



Restrictions
While importing, the attribute DeviceItemType has no relevance and hence it is optional. 

Note
Attribute "FirmwareVersion"

If no FirmwareVersion  is specified in the import file CAx import uses the latest firmware 
version which is  available in the TIA Portal

If the FirmwareVersion attribute exists in the import file with an empty value, the device 
item import fails and an error message will be logged.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
588 System Manual, 10/2018



Example: Importing a generic device
The following structure example depicts the import of the generic rack "Rack_1". 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 589



Imported Configuration
The following figure shows the imported configuration in the TIA Portal user interface: 

See also
Structure of the CAx data for importing/exporting (Page 550)

AML type identifiers (Page 555)

8.5.18 Export/Import of GSD/GSDML based devices and device items

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal

● A project is open. 
See Opening a project

● PLC is offline.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
590 System Manual, 10/2018



Application
The CAx Import/Export of GSD/GSDML based devices and device items is similar to the import/
export of standard devices.

For GSD/GSDML based devices and device items the exportable attributes differ, e. g. for 
GSD/GSDML the attribute Label exists.

Generic import of devices and racks are possible. For the import, you use the same identifier 
as for standard devices:

● Import of a generic device: TypeIdentifier = System:Device.Generic
● Import of a generic rack: TypeIdentifier = System:Rack.Generic
If devices are generic, the attribute BuiltIn defines the kind:

● physical: BuiltIn = True
● generic: BuiltIn = False

Attributes for a device
The following table shows the related attributes of device for CAx import and export files:

Attribute Handling for attribute Comment
 

Name Mandatory for export and import  
TypeIdentifier Mandatory for export and import  
Comment Optional for import  

Attributes for a device item
The following table shows the related attributes of a device item for CAx import and export 
files:

Attribute Handling for attribute
BuiltIn = FALSE
Generic device items

Handling for attribute
BuiltIn = TRUE
Physical device items

Comment
 

Name Mandatory Export-only  
TypeName Export-only Not applicable  
DeviceItem‐
Type

Export-only Export-only Only for PLC (central devices) und Head‐
Module (decentral devices) device items

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 591



Attribute Handling for attribute
BuiltIn = FALSE
Generic device items

Handling for attribute
BuiltIn = TRUE
Physical device items

Comment
 

PositionNum‐
ber

Mandatory Mandatory for export
Exceptional cases:
Device item type interface: Optional 
for import
Device item type port: Mandatory for 
import of buldIn devices if "Label" at‐
tribute is not specified. If both 'Posi‐
tionNumber' and 'Label' are config‐
ured, then 'PositionNumber' gets 
higher precedence for export and im‐
port.

 
 

BuiltIn Optional  Default: FALSE
TypeIdentifier Mandatory for "BuiltIn" = 

FALSE
Ignored for "BuiltIn" = TRUE  

Comment Optional Not applicable  
Label  -  - 

Device item type interface: Mandato‐
ry
Device item type port: Mandatory if 
'PositionNumber' attribute is not 
specified. If both 'PositionNumber' 
and 'Label' are configured, then 'Po‐
sitionNumber' gets higher prece‐
dence and same shall be considered 
for import. 
 

 

Example: Exported GSD/GSDML device

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
592 System Manual, 10/2018



AML structure of the export file
The following figure shows the structure of the exported AML file.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 593



See also
AML type identifiers (Page 555)

8.5.19 Export/Import of subnets

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal

● A project is open. 
See Opening a project

● PLC is offline.

AML structure
Subnets describe a physical network especially which devices are connected to the same 
network of type PROFIBUS, PROFINET, MPI or ASI. 

The link between a network and the device items are modeled as a reference to the network 
object. There is no reference from the network object to the attached device items. The network 
parameters are stored in the network object. The parameters concerning a network interface 
of a given device item, attached to a network, are stored in a net node object in that device 
item. The communication is often regulated using “channels”, “ports” and “interfaces”.

Subnets are exported as internal elements of the role class "Subnet" in the instance hierarchy 
in the AML file. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
594 System Manual, 10/2018



A subnet has the following related elements in the AML structure:

● Internal element of the role class "Node"
Defines the interface on a device item.

● <InternalLink>
Defines the connected partners of the subnet. <InternalLink> tags name is unique and 
is always added under the project's internal element in the AML file. 

● <ExternalInterface>
 Represents in node and subnet internal elements that nodes and subnets are connected. 
If the nodes or subnets are not connected then the <ExternalInterface> element for 
node and subnet do not exist. 

Application
The CAx Import/Export supports the following types of subnets:

● Ethernet

● PROFIBUS

● MPI

● ASi

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 595



Attributes of a "Subnet" element
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory  
Type Mandatory Ethernet or PROFIBUS or MPI or ASi

Attributes of "CommunicationInterface" elements
The following table shows the related attributes of the objects for CAx import and export files:

Attribute Handling  Comment
Name Mandatory No relevance for "fixed" device items.
Label Mandatory Label may be missing if "BuiltIn" = TRUE and "PositionNumber" are specified for the 

related  "DeviceItem" object.
TypeIdentifier Mandatory  
FirmwareVersion Mandatory  
TypeName Export-only No relevance for "BuiltIn" device items.
DeviceItemType Export-only Only for for CPU and HeadModule
PositionNumber Mandatory No relevance for the import of "BuiltIn" device items.
BuiltIn Mandatory 

for export
Optional for 
import

No relevance for the import of  "Non-BuiltIn" device items.
False by default for import.

Comment Optional Not applicable for "BuiltIn" device items.

Attributes of "CommunicationPort" elements
The following table shows the related attributes of the objects for CAx import and export files:

Attribute Handling  Comment
Name Mandatory No relevance for "BuiltIn" device items.
Label Mandatory Label may be missing if "BuiltIn" = TRUE and "PositionNumber" are specified for the 

related  "DeviceItem" object.
TypeIdentifier Mandatory  
FirmwareVersion Mandatory  
TypeName Export-only No relevance for "BuiltIn" device items.
DeviceItemType Export-only Only for for CPU and HeadModule.
PositionNumber Mandatory Only relevant for the import of "BuiltIn" device items, if "Label" attribute is not specifed.

If both "PositionNumber" and "Label" are configured, then "PositionNumber" gets higher 
precedence.

BuiltIn Mandatory 
for export
Optional for 
import

No relevance for the import of  "Non-BuiltIn" device items.
False by default for import.

Comment Optional Not applicable for "BuiltIn" device items.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
596 System Manual, 10/2018



Attributes of a "Node" element
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Export-only MPI, PROFIBUS, PROFINET
Type Export-only Ethernet or PROFIBUS or MPI or ASi
NetworkAddress Mandatory  
SubnetMask Optional PROFINET

For import, default value is retained if no value is set.
RouterAddress Optional PROFINET

For import, default value is retained if no value is set.
DhcpClientId Optional PROFINET

For import, default value is retained if no value is set.
IpProtocolSelection Optional PROFINET

For import, default value is retained if no value is set.
Values: Project, Dhcp, UserProgram, OtherPath

Attributes of a "Channel" element"
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Type Mandatory Digital or Analog
IoType Mandatory Input or Output
Number Mandatory  
Length Export-only  

Example: Exported subnet

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 597



AML structure
The following figures show the structure of the exported AML file:

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
598 System Manual, 10/2018



See also
Structure of the CAx data for importing/exporting (Page 550)

Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 599



8.5.20 Export/Import of PLC tags

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal

● A project is open. 
See Opening a project

● PLC is offline.

Application
Exported and imported symbols and tags are assigned to a device item. CAx import/export 
concerns hardware oriented symbols and tags. The symbols and tags are exported only with 
the controller target device item, e. g. the CPU and not with other device items they might refer 
to, e. g. an I/O module. Like devices, the tags are often grouped in tag tables and in a 
hierarchical folder structure.

AML structure elements
PLC tags, tag tables and tag user folders can be exported and imported via CAx import/export 
function. The tag object are mapped in the following AML structure elements:

● <InternalElement>
Tab tables and tag user folders are mapped as internal elements of the related PLC with 
the respective role class.

● <ExternalInterface>
 Represents a PLC tag, dedicated to the internal element of the related tag table or tag user 
folder. 

A mapping channel with a PLC tag is exported as communication partner via the <internal 
link> element. The following XML structure shows an example:

PLC tag user folder
The objects "TagUserFolder" only need the "Name" attribute in CAx import and export files.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
600 System Manual, 10/2018



Attributes of a PLC tag table
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory, ignor‐

ed if "AssignToDe‐
fault" = TRUE

 

AssignToDefault Import-only Used to identify the default tag table during import. If "AssignToDefault" = TRUE, 
all tags are created under the default tag table of the TIA Portal.

Attributes of a PLC tag
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory  
DataType Mandatory  
LogicalAddress Mandatory Imported and exported in international mnemonics format
Comment Optional  

Example: AML structure
The following figure shows the structure of the following exported tag objects:

● empty default tag table

● tag user folder "Group_1" 

● included tag table "Tag table_1

● four tags

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 601



See also
Structure of the CAx data for importing/exporting (Page 550)

Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

8.5.21 Export/Import of IO-systems

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal

● A project is open. 
See Opening a project

● PLC is offline.

AML structure
IO-system are represented in the AML structure as <InternalElement>.  

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
602 System Manual, 10/2018



IO-system of as master or IO controller are added under the element 
<CommunicationInterface> of an interface device item.

Connected IO-system as slave or IO-device are added as <ExternalInterface> elements 
under the element <CommunicationInterface> of an interface device item.

The connected partners of the IO-systems are represented as <InternalLink> elements. 
<InternalLink> tags are added under common parent of an IO-system and connected 
slave device item, e. g. Project, DeviceFolder, DeviceItem. 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 603



<InternalLink> tags name is unique across the common parent.

Attributes of an "IO-system" element
The following table shows the related attributes of the object for CAx import and export files:

Attribute Handling  Comment
Name Mandatory The IO-system name. If empty string is imported, the IO-system is created with the default 

name.
Number Optional If not specified for import, the default value is applied.

8.5.22 Export/Import of multilingual comments

Requirement
● The TIA Portal Openness application is connected to the TIA Portal. 

See Connecting to the TIA Portal

● A project is open. 
See Opening a project

● PLC is offline.

Application
the CAx data exchange exports and imports comments and multilingual comments of the 
following hardware objects:

● Devices (Device)

● Modules (DeviceItems)

● Tags (Tag)

The import/export of multilingual comments comprises all TIA Portal languages.

Restrictions
● Export

– Only if a comment exists, a "Comment" attribute is exported to the AML file.  

● Import

– The "Comment" attribute is optional.

– For virtual device items, no comments can be imported.

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
604 System Manual, 10/2018



Example: Exported configuration with multilingual comments
The following figure shows the configuration of a SIMATIC S7 1500 (Device) with PLC_1 
(DeviceItems). For both objects, comments are set in English, French, German and Chinese.

AML structure
After the export of this configurations, the multilingual comments are generated as nested 
attributes of the device, device item or tag.

● The parent attribute "Comment" shall have the value used in default language. 

● A child attribute exists for every foreign-language comment. 

See also
Structure of the CAx data for importing/exporting (Page 550)

Connecting to the TIA Portal (Page 74)

Opening a project (Page 97)

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 605



8.5.23 AML attributes versus TIA Portal Openness attributes

Access attributes and export/import attributes
Via TIA Portal Openness you can access attributes of hardware objects. Single names you 
use to access these attributes e. g. of a device item differs from the attributes names in the 
export/import AML file. 

Attributes list
The following table provides an overview to both kinds of attributes:

Table 8-6 Attribute names of devices and GSD/GSDML devices

AML file TIA Portal Openness
 Name  Name 
 TypeIdentifier  TypeIdentifier 
 Comment  Comment 

Table 8-7 Attribute names of device items

AML file TIA Portal Openness
Name Name 
TypeIdentifier Mapped to substring of <TypeIdentifier> (i.e., 

value before first "/" operator) ignoring firmware 
version part in it. 
Mapping substring is applicable only when TypeI‐
dentifier starts with <OrderNumber:> prefix and 
it has firmware version part otherwise mapped to 
complete <TypeIdentifier>.

FirmwareVersion <FirmwareVersion> mapped to substring of 
<TypeIdentifier> (i.e., value after first "/" op‐
erator). Mapping substring is applicable only when 
<TypeIdentifier> starts with 
<OrderNumber:> prefix and it has firmware ver‐
sion part.

TypeName TypeName 
DeviceItemType (for CPU and HeadModule) Classification 
PositionNumber PositionNumber 
BuiltIn IsBuiltIn 
PlantDesignation IEC PlantDesignation 
LocationIndentifier IEC LocationIdentifier 
Comment Comment 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
606 System Manual, 10/2018



Table 8-8 Attribute names of GSD/GSDML device items

AML file TIA Portal Openness
 Name  Name 
 TypeIdentifier  TypeIdentifier 
 TypeName  TypeName 
 DeviceItemType (for HeadModule)  Classification 
 PositionNumber  PositionNumber 
 BuiltIn  IsBuiltIn 
 Comment  Comment 
 Label  Label 

Table 8-9 Attribute names of tags

AML file TIA Portal Openness
 Name  Name 
 DataType  DataTypeName 
 LogicalAddress  LogicalAddress 
 Comment  Comment 

Table 8-10 Attribute names of tag tables

AML file TIA Portal Openness
 Name  Name 
 AssignToDefault  IsDefault

Table 8-11 Attribute names of addresses

AML file TIA Portal Openness
 StartAddress  StartAddress 
 Length  Length 
 IoType  IoType 

Table 8-12 Attribute names of ports

AML file TIA Portal Openness
 Name  Name 
 TypeIdentifier  TypeIdentifier 
 FirmwareVersion  FirmwareVersion 
 TypeName  TypeName 
 PositionNumber  PositionNumber 
 BuiltIn  IsBuiltIn 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
System Manual, 10/2018 607



AML file TIA Portal Openness
 Comment  Comment 
 Label  Label 

Table 8-13 Attribute names of devices with IO-interface

AML file TIA Portal Openness
 Name  Name 
 TypeIdentifier  TypeIdentifier 
 FirmwareVersion  FirmwareVersion 
 TypeName  TypeName 
 DeviceItemType (for CPU and HeadModule)  Classification 
 PositionNumber  PositionNumber 
 BuiltIn  IsBuiltIn 
 Label  Label 
 Comment  Comment 

Table 8-14 Attribute names of channels

AML file TIA Portal Openness
 Type  Type 
 IoType  IoType 
 Number  Not mapped to any attribute in TIA Portal Open‐

ness. 
 Length  ChannelWidth 

Export/import
8.5 Importing/exporting hardware data

Openness: Automating creation of projects
608 System Manual, 10/2018



Major Changes 9
9.1 Major changes in TIA Portal Openness V15

Changes
If you have considered the hints concerning programming across versions and you do not 
upgrade your project to V15 your applications will run without any restrictions on any computer 
even if only a TIA Portal V15 is installed.

If you upgrade your project to V15 it is necessary to recompile your application using the 
SiemensEngineering.dll of V15.

In some cases it is necessary to adapt the code of your application

● Behaviour changes for compositions in DeviceItemComposition

● BitOffset of ASi addresses 

● Exception class

● System folders of system UDTs

● Submodules do not have attributes Author and TypeName

● Timestamp for last modification

● Export XML for GRAPH blocks

● Importing tag tables

● Modifying not failsafe relevant attributes of a PLC

● Modifying F-parameters while safety password is set

● Accessing TO objects in a S7 1200 CPU

Behaviour changes for compositions in DeviceItemComposition
The following compositions in DeviceItemCompositon have been changed for a dynamic 
behaviour. The compistion is updated now if an element is added or deleted via the user 
interface of TIA Portal.

● IoSystem - ConnectedIoDevices

● Subnet - IoSystems

● Subnet - Nodes

● NetworkInterface - Nodes

● NetworkInterface - Ports

● NetworkPort - ConnectedPorts

● SubnetOwner - Subnets

Openness: Automating creation of projects
System Manual, 10/2018 609



BitOffset of ASi addresses 
If a module has an input and an output address for both address objects the correct attribute 
BitOffset will be provided.

If a module has channels the attribute BitOffset will not be provided for the channel.

Exception class
ServiceID and MessageID have benn removed from exception class

Submodules do not have attributes Author and TypeName
The attributes Author and TypeName have been removed from submodules which cannot be 
plugged.

System folders of system UDTs
For system folders of system UDTs the appropriate folder and composition is provided. This 
leads also to a change in the hierarchy of compare results.

Timestamp for last modification
If during an upgrade an object is changed the timestamp for the last modification is changed 
as well.

Export XML for GRAPH blocks
The export XML for GRAPH blocks contains an additional empty action: <Actions />

Importing tag tables
Setting tag attributes is not longer dependent from data types.

Modifying not failsafe relevant attributes of a PLC
All not failsafe relevant attributes of a PLC can be modified via TIA Portal Openness, even if 
a safety password is set.

Modifying F-parameters while safety password is set
F-parameters of a F-IO can only be modified if the safety password is not set.

Accessing TO objects in a S7 1200 CPU
The access to array tags for the TO objects TO_PositioningAxis and TO_CommandTable has 
been changed. You can find details in the chapter about S7-1200 Motion Control.

Major Changes
9.1 Major changes in TIA Portal Openness V15

Openness: Automating creation of projects
610 System Manual, 10/2018



9.2 Major changes in V14 SP1

9.2.1 Major changes in V14 SP1

Introduction
The following changes were made in TIA Portal Openness API object modell V14 SP1, which 
may impact your existing applications:

Change Required program code adjustment
Impoved handling for master copies The CreateFrom action will create a new object based on a master copy in 

a library and place it in the composition where the action was called. The 
CreateFrom action only supports master copies containing only single ob‐
jects. The return type corresponds to the respective composed type.
The following composition support CreateFrom:
● Siemens.Engineering.HW.DeviceComposition 
● Siemens.Engineering.HW.DeviceItemComposition 
● Siemens.Engineering.SW.Blocks.PlcBlockComposition 
● Siemens.Engineering.SW.Tags.PlcTagTableComposition 
● Siemens.Engineering.SW.Tags.PlcTagComposition 
● Siemens.Engineering.SW.Types.PlcTypeComposition 
● Siemens.Engineering.SW.TechnologicalObjects.TechnologicalInstance

DBComposition 
● Siemens.Engineering.SW.Tags.PlcUserConstantComposition 
● Siemens.Engineering.Hmi.Tag.TagTableComposition 
● Siemens.Engineering.Hmi.Tag.TagComposition 
● Siemens.Engineering.Hmi.Screen.ScreenComposition 
● Siemens.Engineering.Hmi.Screen.ScreenTemplateComposition 
● Siemens.Engineering.Hmi.RuntimeScripting.VBScriptComposition 
● Siemens.Engineering.HW.SubnetComposition 
● Siemens.Engineering.HW.DeviceUserGroupComposition 
● Siemens.Engineering.SW.Blocks.PlcBlockUserGroupComposition 
● Siemens.Engineering.SW.ExternalSources.PlcExternalSourceUserGro

upComposition 
● Siemens.Engineering.SW.Tags.PlcTagTableUserGroupComposition 
● Siemens.Engineering.SW.Types.PlcTypeUserGroupComposition

Improved handling for global libraries Existing actions on global libraries can now be modifying actions, e.g. delete 
a master copy from a global library.
UpdateProject and UpdateLibrary do not longer use the UpdatePathsMode 
and DeleteUnusedVersionsMode parameters. Unused versions are not de‐
leted after an update 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 611



Change Required program code adjustment
Change System.String to System.IO.FileInfo
Change System.String to System.IO.Director‐
yInfo

All occurrences where a string path had to be specified are using FileInfo 
path or a DirectoryInfo path. For example:
● Open project
● Open library
● Create project
● Create global llibrary
● ...

New items in the object model

Name Type Namespace Comment
PlcUserConstant Class Siemens.Engineer‐

ing.SW.Tags
Split from PlcConstant.

PlcUserConstantComposition Class Siemens.Engineer‐
ing.SW.Tags

Split from PlcConstantComposition.

PlcSystemConstant Class Siemens.Engineer‐
ing.SW.Tags

Split from PlcConstant.

PlcSystemConstantComposition Class Siemens.Engineer‐
ing.SW.Tags

Split from PlcConstantComposition.

MultilingualTextItem Class Siemens.Engineering Access to multilingual text.
MultilingualTextItemComposition Class Siemens.Engineering Access to multilingual text.
TiaPortalTrustAuthority.Featur‐
eTokens

Enum value Siemens.Engineering Access to TIA Portal settings.

TiaPortalSetting Class Siemens.Engineering.Set‐
tings

Access to TIA Portal settings.

TiaPortalSettingComposition Class Siemens.Engineering.Set‐
tings

Access to TIA Portal settings.

TiaPortalSettingsFolder Class Siemens.Engineering.Set‐
tings

Access to TIA Portal settings.

TiaPortalSettingsFolderComposi‐
tion

Class Siemens.Engineering.Set‐
tings

Access to TIA Portal settings.

LanguageAssociation Class Siemens.Engineering Access to active languages.
LanguageComposition.Find Method Siemens.Engineering Access to active languages.

Modified items in the object model

Name Type Namespace Comment
PlcConstant Class Siemens.Engineer‐

ing.SW.Tags
Published base class of PlcUserConstant 
and PlcSystemConstant.

PlcTag Class Siemens.Engineer‐
ing.SW.Tags

Split from PlcConstantComposition.

ITargetComparable Interface Siemens.Engineering.Com‐
pare

String attribute DataTypeName instead of 
an open link DataType.

MultilingualText Class Siemens.Engineering Access to multilingual text.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
612 System Manual, 10/2018



Name Type Namespace Comment
ProjectComposition.Create Method Siemens.Engineering Parameters changed to using a Director‐

yInfo and string.
Project.Subnets Attribute Siemens.Engineering Access to subnets
Project.Languages Attribute Siemens.Engineering Moved to be an attribute of Siemens.Engi‐

neering.LanguageSettings to provide sup‐
ported languages

Removed items in the object model

Name Type Namespace Comment
PlcConstantComposition Class Siemens.Engineer‐

ing.SW.Tags
Split in PlcSystemConstantCompo‐
sition and PlcUserConstantCompo‐
sition.

CompareResultElement.PathInformation Attribute Siemens.Engineer‐
ing.SW.Tags

Not used anymore.

MultilingualText.GetText(CultureInfo cul‐
tureInfo)

Method Siemens.Engineer‐
ing.Compare

Modified concept for accessing text 
items of MultilingualText.

TiaPortalTrustAuthority.CustomerIdenti‐
fication

Enum value Siemens.Engineering Not used anymore.

TiaPortalTrustAuthority.ElevatedAcces‐
sExtensions

Enum value Siemens.Engineering Not used anymore.

Behaviour changes

Name Type Namespace Comment
PlcTag.Export(FileInfo path, ExportOp‐
tions options)

Method Siemens.Engineer‐
ing.SW.Tags

The value of the attribute LogicalAd‐
dress is always exported in interna‐
tional mnemonics now. German 
mnemonics are still accepted on im‐
port.

PlcTag.LogicalAddress Attribute Siemens.Engineer‐
ing.SW.Tags

The value of the attribute LogicalAd‐
dress is always returned in interna‐
tional mnemonics now. German 
mnemonics are accepted on write.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 613



9.2.2 Major changes in the object model

Object model of TIA Portal Openness V14
In order to allow you a comparison between the old and the new object model of TIA Portal 
Openness, the diagram below describes the object model of TIA Portal V14.

Note

The object model described on the diagram is obsolete, for information about the object model 
of TIA Portal Openness V14 SP1 refer to TIA Portal Openness object model (Page 51) 

The following diagramm describes the objects which are located under ProjectLibrary.

The following diagramm describes the objects which are located under HmiTarget.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
614 System Manual, 10/2018



The following diagramm describes the objects which are located under PlcSoftware.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 615



Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
616 System Manual, 10/2018



Relationship between TIA Portal and TIA Portal Openness object model
The figure below shows the relationship between the object model and a project in the TIA 
Portal: 

Project

HmiTarget

PlcSoftware

DeviceItem

① The object "Project" corresponds to an open project in the TIA Portal. 
② The "PlcSoftware" object is of type "SoftwareBase"④, and corresponds to a PLC. The object's contents correspond 

to a PLC in the project navigation with access to objects such as blocks or PLC tags. 
③ The "HmiTarget" object is of type "SoftwareBase"④, and corresponds to an HMI device. The object's contents 

correspond to an HMI device in the project navigation with access to objects such as screens or HMI tags. 
④ The object "DeviceItem" corresponds to an object in the "Devices & Networks" editor. An object of the type "Devi‐

ceItem" can be a rack or an inserted module.  

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 617



9.2.3 Changes on pilot functionality

Introduction
The following changes were made in API object modell V14 SP1 are only relevant for users, 
which have used the pilot functionality of HW Config in V14.

Modifications for TIA Portal Openness API types

TIA Portal Openness API type new TIA Portal Openness API type
Siemens.Engineering.HW.IAddress Siemens.Engineering.HW.Address
Siemens.Engineering.HW.IAddressController Siemens.Engineering.HW.Features.AddressController
Siemens.Engineering.HW.IChannel Siemens.Engineering.HW.Channel
Siemens.Engineering.HW.IDevice Siemens.Engineering.HW.Device
Siemens.Engineering.HW.IDeviceItem Siemens.Engineering.HW.DeviceItem
Siemens.Engineering.HW.IExtension Siemens.Engineering.HW.Extensions
Siemens.Engineering.HW.IGsd Siemens.Engineering.HW.Features.GsdObject
Siemens.Engineering.HW.IGsdDevice Siemens.Engineering.HW.Features.GsdDevice
Siemens.Engineering.HW.IGsdDeviceItem Siemens.Engineering.HW.Features.GsdDeviceItem
Siemens.Engineering.HW.IHardwareObject Siemens.Engineering.HW.HardwareObject
Siemens.Engineering.HW.IHwIdentifier Siemens.Engineering.HW.HwIdentifier
Siemens.Engineering.HW.IHwIdentifierController Siemens.Engineering.HW.Features.HwIdentifierController
Siemens.Engineering.HW.IIoConnector Siemens.Engineering.HW.IoConnector
Siemens.Engineering.HW.IIoController Siemens.Engineering.HW.IoController
Siemens.Engineering.HW.IIoSystem Siemens.Engineering.HW.IoSystem
Siemens.Engineering.HW.IInterface Siemens.Engineering.HW.Features.NetworkInterface
Siemens.Engineering.HW.Extensions.ModuleInformation‐
Provider

Siemens.Engineering.HW.Utilities.ModuleInformationProvid‐
er

Siemens.Engineering.HW.INode Siemens.Engineering.HW.Node
Siemens.Engineering.HW.OPCUAExportProvider Siemens.Engineering.HW.Utilities.OpcUaExportProvider
Siemens.Engineering.HW.IPort Siemens.Engineering.HW.Features.NetworkPort
Siemens.Engineering.HW.IRole Siemens.Engineering.HW.Features.HardwareFeature

Siemens.Engineering.HW.Features.DeviceFeature
Siemens.Engineering.HW.Utilities.ModuleInformationProvid‐
er

Siemens.Engineering.HW.SoftwareBase Siemens.Engineering.HW.Software
Siemens.Engineering.HW.ISubnet Siemens.Engineering.HW.Subnet
Siemens.Engineering.HW.ISoftwareContainer Siemens.Engineering.HW.Features.SoftwareContainer
Siemens.Engineering.HW.ISubnetOwner Siemens.Engineering.HW.Features.SubnetOwner

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
618 System Manual, 10/2018



Modifications for Enums

TIA Portal Openness API type Data 
type

new TIA Portal Openness API type Data 
type

Siemens.Engineering.HW.Enums.AddressContext  Siemens.Engineering.HW.AddressContext  
Siemens.Engineering.HW.Enums.AddressIoType  Siemens.Engineering.HW.AddressIoType  
Siemens.Engineering.HW.Enums.Attachment‐
Type

 Siemens.Engineering.HW.MediumAttachment‐
Type

 

Siemens.Engineering.HW.Enums.BaudRate  Siemens.Engineering.HW.BaudRate  
Siemens.Engineering.HW.Enums.BusLoad  Siemens.Engineering.HW.CommunicationLoad  
Siemens.Engineering.HW.Enums.BusProfile  Siemens.Engineering.HW.BusProfile  
Siemens.Engineering.HW.Enums.CableLength  Siemens.Engineering.HW.CableLength  
Siemens.Engineering.HW.Enums.CableName ulong Siemens.Engineering.HW.CableName long
Siemens.Engineering.HW.Enums.ChannelIoType byte Siemens.Engineering.HW.ChannelIoType int
Siemens.Engineering.HW.Enums.ChannelType byte Siemens.Engineering.HW.ChannelType int
Siemens.Engineering.HW.Enums.DeviceItem‐
Classifications

 Siemens.Engineering.HW.DeviceItemClassifica‐
tions

 

Siemens.Engineering.HW.Enums.InterfaceOpera‐
tingModes

 Siemens.Engineering.HW.InterfaceOperatingMo‐
des

 

Siemens.Engineering.HW.Enums.IpProtocolSe‐
lection

 Siemens.Engineering.HW.IpProtocolSelection  

Siemens.Engineering.HW.Enums.MediaRedun‐
dancyRole

 Siemens.Engineering.HW.MediaRedundancyRole  

Siemens.Engineering.HW.Enums.NetType  Siemens.Engineering.HW.NetType  
Siemens.Engineering.HW.Enums.ProfinetUpdate‐
TimeMode

 removed

Siemens.Engineering.HW.Enums.RtClass byte Siemens.Engineering.HW.RtClass int
Siemens.Engineering.HW.Enums.SignalDelaySe‐
lection

byte Siemens.Engineering.HW.SignalDelaySelection int

Siemens.Engineering.HW.Enums.SyncRole byte Siemens.Engineering.HW.SyncRole int
Siemens.Engineering.HW.Enums.Transmission‐
RateAndDuplex

uint Siemens.Engineering.HW.TransmissionRateAnd‐
Duplex

int

Modifications for attributes values of Siemens.Engineering.HW.IoConnector

Attribut Data type new name Data type
ProfinetUpdateTimeMode ProfinetUpdateTime‐

Mode
PnUpdateTimeAutoCalculation bool

ProfinetUpdateTime  PnUpdateTime  
AdaptUpdateTime  PnUpdateTimeAdaption  
WatchdogFactor  PNWatchdogFactor  
  DeviceNumber string

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 619



Modifications for attributes values of Siemens.Engineering.HW.IoController

Attribut Data type new name Data type
  DeviceNumber string

Modifications for attributes values of Siemens.Engineering.HW.Node

Attribut Data type new name Data type
HighestAddress  removed, available only on subnet
TransmissionSpeed  removed, available only on subnet
IsoProtocolUsed  UseIsoProtocol  
IpProtocolUsed  UseIpProtocol  
RouterAddressUsed  UseRouter  
PnDeviceNameAutoGener‐
ated

 PnDeviceNameAutoGeneration  

DeviceNumber  removed, moved to IoConnector / IoController

Modifications for attributes values of Siemens.Engineering.HW.Subnet

Attribut Data type new name Data type
HighestAddress byte HighestAddress int
CableConfiguration  PbCableConfiguration  
RepeaterCount  PbRepeaterCount  
CopperCableLength  PbCopperCableLength  
OpticalComponentCount  PbOpticalComponentCount  
OpticalCableLength  PbOpticalCableLength  
OpticalRingEnabled  PbOpticalRing  
OlmP12  PbOlmP12  
OlmG12  PbOlmP12  
OlmG12Eec  PbOlmG12Eec  
OlmG121300  PbOlmG121300  
AdditionalNetworkDevices  PbAdditionalNetworkDevices  
AdditionalDpMaster byte PbAdditionalDpMaster int
TotalDpMaster byte PbTotalDpMaster int
AdditionalPassiveDevice byte PbAdditionalPassiveDevice int
TotalPassiveDevice byte PbTotalPassiveDevice int
AdditionalActiveDevice byte PbAdditionalActiveDevice int
TotalActiveDevice byte PbTotalActiveDevice int
PbCommunicationLoad BusLoad PbAdditionalCommunicationLoad CommunicationLoad
OptimizeDde  PbDirectDateExchange  
MinimizeTslot  PbMinimizeTslotForSlaveFailure  
OptimizeCableConfig  PbOptimizeCableConfiguration  
CyclicDistribution  PbCyclicDistribution  
TslotInit  PbTslotInit  

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
620 System Manual, 10/2018



Attribut Data type new name Data type
Tslot  PbTslot  
MinTsdr  PbMinTsdr  
MaxTsdr  PbMaxTsdr  
Tid1  PbTid1  
Tid2  PbTid2  
Trdy  PbTrdy  
Tset  PbTset  
Tqui  PbTqui  
Ttr  PbTtr  
TtrMs  removed
TtrTypical  PbTtrTypical  
TtrTypicalMs  removed
Watchdog  PbWatchdog  
WatchdogMs  removed
Gap byte PbGapFactor int
RetryLimit byte PbRetryLimit int
IsochronMode  IsochronousMode  
AdditionalDevice  PbAdditionalPassivDeviceForIsochro‐

nousMode
 

TotalDevice  PbTotalPassivDeviceForIsochronous‐
Mode

 

DpCycleTimeAutoCalc  DpCycleMinTimeAutoCalculation  
TiToAutoCalc  IsochronousTiToAutoCalculation  
Ti  IsochronousTi  
To  IsochronousTo  

Modifications for attributes values of Siemens.Engineering.Project

Attribut Data type new name Data type
.HwExtensions  .HwUtilities  

Modifications for attributes values of Siemens.Engineering.HW.Baudrate

Attribut Data type new name Data type
BaudRate.BAUD_9600  BaudRate.BAUD9600  
BaudRate.BAUD_19200  BaudRate.BAUD19200  
BaudRate.BAUD_45450  BaudRate.BAUD45450  
BaudRate.BAUD_93750  BaudRate.BAUD93750  
BaudRate.BAUD_187500  BaudRate.BAUD187500  
BaudRate.BAUD_500000  BaudRate.BAUD500000  
BaudRate.BAUD_1500000  BaudRate.BAUD1500000  
BaudRate.BAUD_3000000  BaudRate.BAUD3000000  

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 621



Attribut Data type new name Data type
BaudRate.BAUD_6000000  BaudRate.BAUD6000000  
BaudRate.BAUD_12000000  BaudRate.BAUD12000000  

Modifications for attributes values of Siemens.Engineering.HW.CableLength

Attribut Data type new name Data type
CableLength.Unknown  CableLength.None  
CableLength.Length_20m  CableLength.Length20m  
CableLength.Length_50m  CableLength.Length50m  
CableLength.Length_100m  CableLength.Length100m  
CableLength.Length_1000m  CableLength.Length1000m  
CableLength.Length_3000m  CableLength.Length3000m  

Modifications for attributes values of Siemens.Engineering.HW.ChannelIoType

Attribut Data type new name Data type
ChannelIoType.Unknown  ChannelIoType.Complex  

Modifications for attributes values of Siemens.Engineering.HW.IpProtocolSelection

Attribut Data type new name Data type
IpProtocolSelection.Addres‐
sTailoring

 IpProtocolSelection.ViaIoController  

Modifications for attributes values of Siemens.Engineering.HW.TransmissionRateAndDuplex

Attribut Data 
type

new name Data 
type

TransmissionRateAndDuplex.Unknown  TransmissionRateAndDuplex.None  
TransmissionRateAndDuplex.TP10Mbps_HalfDu‐
plex

 TransmissionRateAndDuplex.TP10MbpsHalfDu‐
plex

 

TransmissionRateAndDuplex.TP10Mbps_FullDu‐
plex

 TransmissionRateAndDuplex.TP10MbpsFullDu‐
plex

 

TransmissionRateAndDuplex.AsyncFib‐
er10Mbps_HalfDuplex

 TransmissionRateAndDuplex.AsyncFib‐
er10MbpsHalfDuplex

 

TransmissionRateAndDuplex.AsyncFib‐
er10Mbps_FullDuplex

 TransmissionRateAndDuplex.AsyncFib‐
er10MbpsFullDuplex

 

TransmissionRateAndDuplex.TP100Mbps_Half‐
Duplex

 TransmissionRateAndDuplex.TP100MbpsHalf‐
Duplex

 

TransmissionRateAndDuplex.TP100Mbps_FullDu‐
plex

 TransmissionRateAndDuplex.TP100MbpsFullDu‐
plex

 

TransmissionRateAndDuplex.FO100Mbps_Full‐
Duplex

 TransmissionRateAndDuplex.FO100MbpsFull‐
Duplex

 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
622 System Manual, 10/2018



Attribut Data 
type

new name Data 
type

TransmissionRateAndDuplex.X1000Mbps_FullDu‐
plex

 TransmissionRateAndDuplex.X1000MbpsFullDu‐
plex

 

TransmissionRateAndDuplex.FO1000Mbps_Full‐
Duplex_LD

 TransmissionRateAndDuplex.FO1000MbpsFull‐
DuplexLD

 

TransmissionRateAndDuplex.FO1000Mbps_Full‐
Duplex

 TransmissionRateAndDuplex.FO1000MbpsFull‐
Duplex

 

TransmissionRateAndDuplex.TP1000Mbps_Full‐
Duplex

 TransmissionRateAndDuplex.TP1000MbpsFull‐
Duplex

 

TransmissionRateAndDuplex.FO10000Mbps_Full‐
Duplex

 TransmissionRateAndDuplex.FO10000MbpsFull‐
Duplex

 

TransmissionRateAndDuplex.FO100Mbps_Full‐
Duplex_LD

 TransmissionRateAndDuplex.FO100MbpsFull‐
DuplexLD

 

TransmissionRateAndDu‐
plex.POFPCF100Mbps_FullDuplex_LD

 TransmissionRateAndDu‐
plex.POFPCF100MbpsFullDuplexLD

 

9.2.4 Changes for export and import

9.2.4.1 Changes for export and import

Introduction
The export and import via TIA Portal Openness API was extended in V14 SP1 in order to 
handle comments at array elements. This required a new schema. Block interface import and 
export will handle from now on two schema versions:

● For import: The decision about used schema version is made based on namespace: 
<Sections xmlns=http://www.siemens.com/automation/Openness/SW/Interface/v2>

● For export: The decision about used schema version is made based on the project version. 
Projects V14 SP1 lead to version 2, projects V14 lead to version v1

9.2.4.2 Changes in API

Generate source
The following methods have been removed from ProgramBlocks:

● GenerateSourceFromBlocks

● GenerateSourceFromTypes

The following methodes have been added:

● GenerateSource to PlcExternalSourceSystemGroup

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 623



Example

 
// generate source for V14
var blocks = new List<PlcBlock>(){block1};
var types = new List<PlcBlock>(){udt1};
var fileInfoBlock = new FileInfo("D:\Export\Block.scl");
var fileInfoType = new FileInfo("D:\Export\Type.udt");
 
PlcBlocksSystemGroup blocksGroup = ...;
blocksGroup.GenerateSourceFromBlocks(blocks, fileInfo);
PlcTypesSystemGroup plcDataTypesGroup = ...;
plcDataTypesGroup.GenerateSourceFromTypes(types, fileInfo);
 
//generate source as of V14 SP1
var blocks = new List<PlcBlock>(){block1};
var types = new List<PlcBlock>(){udt1};
var fileInfoBlock = new FileInfo("D:\Export\Blocks.scl");
var fileInfoType = new FileInfo("D:\Export\Type.udt");
 
PlcExternalSourceSystemGroup externalSourceGroup = plc.ExternalSourceGroup;
externalSourceGroup.GenerateSource(blocks, fileInfoBlock);
externalSourceGroup.GenerateSource(types, fileInfoType);

9.2.4.3 Schema extension

Schema extension for comments and start values
Comments and start values are stored in new element called "Subelement" which refers to the 
array element with "Path" attribute. 

Subelement contains start value and comment for the referenced array element. Attribute 
"Path" at StartValue is removed in the new schema.

Schema definition of "Subelement":

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
624 System Manual, 10/2018



Extension of member type:

Examples:
Storage of comments and start values in simple arrays:

Storage of comments and start values in arrays of UDT:

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 625



Storage of comments and start values in arrays of struct:

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
626 System Manual, 10/2018



9.2.4.4 Schema changes

Access node in SW.PlcBlocks.Access.xsd
Type attribute of the Access node has been moved to the children nodes of Access at

● AbsoluteOffset as required

● Address as optional

Type attribute of Constant has been replaced with new ConstantType subnode. 

The value of the Scope attribute in Access has been renamed to TypedConstant if the 
ConstantValue contains type qualified value(e.g.: int#10). 

Constant does not have Type attribute if ConstantValue contains type qualified value (e.g.: 
int#10). 

Local variables do not have Address node if Scope is LocalVariable. 

If an Access is nested within another Access at any level, only the outer Access must have an 
UId. 

Address node in SW.PlcBlocks.Access.xsd
BitOffset attribute of Address node became optional.

Declarations for exporting absolute access have changed as shown in the following table:

Area as of V14 SP1 Type Block number Bit offset Example
DB Block_DB mandatory forbidden OPN  %DB12
DB unordered existing mandatory %DB100.DBX10.3
DB unordered not existing mandatory %DB100.DBX10.3
L unordered forbidden mandatory %LW10.0
I
Q
M

unordered forbidden mandatory %I0.0
%Q0.0
%M0.0

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 627



Area as of V14 SP1 Type Block number Bit offset Example
T
C

unordered forbidden mandatory %T0
%C1

Block_FC
Block_FB

Block_FC
Block_FB

mandatory forbidden Call %FB4, %DB5 Input_1 := 
%FC10
Call %FB4, %DB5 Input_2 := 
%FB11

PeripheryInput unordered forbidden mandatory  
Periphery Output unordered forbidden mandatory  

Area node in SW.PlcBlocks.Access.xsd
Area node has got a simplified enum list:

● LocalC and LocalN became Local

● DBc, DBv, DBr are eliminated. 

CallInfo node in SW.PlcBlocks.Access.xsd
Name attribute of CallInfo node became optional 

BlockType attribute of CallInfo node became required

+2.2.5 User Block Calls

Constant node in SW.PlcBlocks.Access.xsd
Constant node references CostantType node with minOccurs=0 

Constant node doesn't reference IntegerAttribute node any more 

ConstantValue node in SW.PlcBlocks.Access.xsd
ConstantValue node gets an Informative attribute

Instruction node in SW.PlcBlocks.Access.xsd
Instruction node references Acces node with minOccurs=0

Parameter attributes Section, Type and TemplateReference have been deleted at Instruction.

Parameter node in SW.PlcBlocks.Access.xsd
SectionName attribute of the Parameter node became optional.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
628 System Manual, 10/2018



Values for Scope in SW.PlcBlocks.Access.xsd
Enum list of Scope has been extended with: 

● TypedConstant

● AddressConstant

● LiteralConstant

● AlarmConstant

● Address

● Statusword

● Expression

● Call 

● CallWithType 

Statusword node in SW.PlcBlocks.Access.xsd
Enum list of Statusword has been extended with:

● STW

ConstantType node in SW.PlcBlocks.Access.xsd
New node ConstantType is introduced with optionally used attribute Informative.

CallRef node in SW.PlcBlocks.LADFBD.xsd
CallRef node is renamed to Call and omits the BooleanAttribute subnode.

InstructionRef node in SW.PlcBlocks.LADFBD.xsd
InstructionRef node is replaced by Part node 

Part node in SW.PlcBlocks.LADFBD.xsd
New node ConstantType is introduced and replaces the InstructionRef node

● Attributes: Name and Version

● Subnodes: Instruction subnode as new choice to existing Equation

● doesn't have neither BooleanAttribute subnode nor Gate attribute

Wire node in SW.PlcBlocks.LADFBD.xsd
Name attribe of Wire node removed.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 629



TemplateReference node in SW.PlcBlocks.LADFBD.xsd
TemplateReference node is deleted. 

StatementList node in SW.PlcBlocks.STL.xsd
Enum list of of StatementList (STL_TE):

● L_STW has been removed

● T_STW has been removed

9.2.4.5 Behaviour changes

Absolute Access
In V14 the import of absolute access has been aborted for most combinations. As of V14 SP1 
the import of absolute access works for the following areas:

● Input

● Outpt

● Memory

● Timer, if supported on the PLC

● Counter, if supported on the PLC

● DB

● DI

If a symbol access and an absolute access is used at the same time and is not rejected by 
schema or node kind validation the import will only succeed when box access informations 
are successfully resolved. When the symbol access leads to different information in 
comparison to the absolute access the import is rejected. 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
630 System Manual, 10/2018



Indirect DB Access
As of V14 SP1 indirect DB Access can only be imported, when the 'offset', 'type' and 'symbol' 
are provided.

Symbolic and absolute information for local access
When importing "symbolic access" all possible provided "absolute access informations" are 
validated, if they are not flaged as "informative". As of V14 SP1 the import will be aborted when 
the absolute information does not match. 

Block interface constraints
In V14SP1 several constrains are checked. These constrains are well known to users of the 
block interface editor. Whenever the block interface editor renames a parameter by adding or 
increasing '_1' the OPNS import will be aborted. 

The following constrains are validated for instance:  

● Duplicated parameter names

● Wrong section names. Including 'Return-Section' for FB blocks

● Restricted words

Sorting sections on import
When the called block does not exist at the time of import the interface definition at the call 
side will be used to display the called user block. In V14 SP1 the sections will be sorted in the 
order they would be displayed in the block interface of the called block, if it would have been 
existing with the same parameters.

The section order of the parameters imported is:  

● Input  

● Output

The following STL xml example

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 631



will result in 

CALL  "Block_2"
    Input_1  :="Tag_1"
    Input_2  :="Tag_2"
    Output_1 :="Tag_3"
    Output_2 :="Tag_4"

 

Unique user block callee names
In TIA Portal names have to be unique. This means for instance a tag can not have the same 
name like a block. For TIA Portal Openness API XML import this means when the XML contains 
a user block call, where the called block does not exist at the time of import, the name of the 
called block has to be unique to all existing names in the project. When the called block name 
is not unique the import will be aborted.

In the following example the import will be aborted, because the Name of the called Block 
"Tag_1" is already used for a tag table.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
632 System Manual, 10/2018



In the following example the import will be aborted, because two parameters have the same 
name ""Input1".

Library block calls
The imported XML may contain calls of user blocks. These user blocks are identified by name. 

User blocks can also call library elements. These library elements can be generated as 'library 
block calls'. Because library blocks are using the same namespace as user blocks, the import 
of a user block call done by name can call the implementation of a library block. 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 633



Before V14 SP1 the import tried to map the parameters between the user block call and the 
instruction block call. Sometimes the import aborted, sometimes the import deleted all not 
matching parameters. 

As of V14 SP1 the user block call will still find the library block, but the call will not become 
valid. 

Block type mismatch
When the XML contains a user block call of 'Block_1' with more parameters as the 
corresponding FC in the project as of V14 SP1 the import defines a new called block interface 
matching the user block call from the XML. The next program block compile will attempt the 
call update.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
634 System Manual, 10/2018



New scopes for contants
With V14SP1  several new scopes for constants have been invented. The import only succeeds 
when the values in the xml match the constant scope. The import may abort when not all the 
provided information for a constant match the existing constant.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 635



Instruction version annotation
As of V14 SP1 only instruction versions usable on the PLC to import to can be imported.When 
no instruction version is annotated in the xml the version selected in the PLC will be used. In 
LAD and FBD some elements represented as instruction do not use versioning. These 
elements can only be imported without version.

Disabled ENO
The "disabled ENO" feature is used on 1200 and 1500 PLC to deactivate runtime consuming 
ENO connection state calculation. 

As of V14 SP1 the DisabledENO flag can only be imported on PLC's supporting the feature.

Type validation for absolute L-Stack access
As of V14 SP1 the import is aborted when the type can not be used or mapped. 

Validation of index idents
Index access's are usable where 'symbolic access to memory' is defined. For instance, local 
access, global access, indirect access. 

When a literal constant is used as index, the singed and unsigned integer types are changed 
to Dint. As of V14 SP1 the import is aborted when a type outside the mentioned range is 
provided. 

All index access's are checked, whether the kind of access can be used as 'index access' at 
all. As of V14 SP1 the import is aborted when the defined index access can not be used.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
636 System Manual, 10/2018



Element order sorting
As of V14 SP1 the elements in LAD and FBD will be sorted 'code generation order' where 
automatically possible during export. In some very rare cases the exported XML is not 
importable again. In these cases either the XML has to be adapted or the corresponding 
networks have to be deleted and reprogrammed. But the order of wires and references is still 
not reliable. 

Alarm Constants
With V14 SP1 the compile checks for valid alarm constants have been extended. It might occur 
that projects are not compilable in V14 SP1 due to an xml imported in V14 with broken alarm 
constants. In this case open the relevant network in LAD/FDB editor and delete the alarm 
actual operand. The editor will automatically recreate a valid alarm constant. 

Constraints for instances of user blocks and instructions
In V14 it was possible to import user FC block calls with an instance and sometimes even 
compile these calls. 

As of V14 SP1 the import of instances is only possible where instances are supported. Existing 
projects with instances at FC user block calls and instructions may not compile any more. In 
this case the call has to be deleted and reprogrammed. Any attempt to do a call update or 
'other means of automated repair' will fail. 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 637



EnEno visible
In V14 the EN and ENO connections of 'InstructionRef' have been usable or not depending 
on the ENENO flag. 

As of V14SP1 the OPNS during the import based on the element and the wiring either the EN 
and ENO connections are used. Because of this automatic detection a different EN and ENO 
connection usage can be noticed. Most probably only the IEC timer and IEC counter boxes 
may show some issues. 

UId assignment
The assignment of UIds to parts, access and wires changes with V14 SP1. The UIds for 
statements, CallInfo and operands have to be unique within a compile unit. From TIA portal 
point of view the UIds in the XML are keys, without any additional meaning besides identifying 
an element.

Checking of character strings
More strict checks concerning quotation marks, surrogate characters and control characters 
are performed for the Name attribute during the import of

● IntegerAttribute

● StringAttribute

● DateAttribute

● AutomaticTyped

● Component

● Invisible

● Label

● NameCon

● Negated

● TemplateValue

● CallInfo

● Instruction

● Parameter

● Part

● Step

More strict checks concerning surrogate characters and control characters are performed 
during the import of

● Titles of blocks and networks

● LineComment text

● Constant strings (String, WString, Char, Wchar typed)

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
638 System Manual, 10/2018



More strict checks concerning surrogate characters and control characters ( tab and new line 
allowed) are performed during the import of

● Comments of blocks and networks

● String attributes

● Nodes defining multilanguage texts, e.g. Alarmtext, Comments

● Token texts

Case insensitivity of template operations and parameters
As of V14 SP1 case insenitivity of template operations for instructions and call or instruction 
parameters will be imported and automatically corrected. 

The following code will be imported and the incorrect value "Eq" will be corrected to "EQ" and 
the incorrect parameter "iN1" will be corrected to "IN1":

Multiinstances used in calls
As of V14 SP1 the import is aborted if the multiinstance used in a call does not exists.

The following code shows an xml example where the multiinstance is defined correctly in the 
interface section:

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 639



Template cardinalities in STL
In STL the template cardinalities for every instruction has a fixed default value which is the 
only valid value. As of V14 SP1 the import is aborted if another value is used for the cardinality.

Importing indirect access
As of V14 SP1 indirect access can only be imported where they can be compiled.

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
640 System Manual, 10/2018



Importing statuswords
As of V14 SP1 the statusword can only be imported at statements where they are supported.

● L - Supported statusword: STW

● T - Supported statusword: STW

● A - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

● AN - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

● O - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

● ON - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

● X - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

● XN - Supported statusword: BR, OV, OS, EQ, NE, GT, Lt, GE, LE, U0, NU

Note

Most statuswords are only useful on 300 and 400 plcs.

Empty statements
The import is aborted if a statement does not have a node <StlStatement/>. In case of an 
empty statement, add the <StlToken Text="Empty_Line" /> node. 

The import is aborted if an empty statement has comments. For a statement with only 
comments use the <StlToken Text="COMMENT" />.

9.2.4.6 Block attribute changes

Changes in general attributes
AutoNumber has got a new default value (false) at classic OBs 

HeaderVersion has got a new type System.Version (instead of String) 

IsKnowHowProtected is applied for user defined data types as well 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
System Manual, 10/2018 641



ILibraryTypeInstance.ConnectedVersion, ILibraryTypeInstance.Dependencies, 
ILibraryTypeInstance.Dependents are eliminated from the table of general attributes because 
they are neither exported in XML nor accessible via API. 

MemoryLayout gets new default: Standard in classic PLCs and Optimized on plus PLCs 

Number is applied for user defined data types and it is represented in XML and accessible via 
API as well

 Changes in specific attributes
IsOnlyStoredInLoadMemory and IsWriteProtectedInAS became read-only for IDBofUDT if it 
belongs to a system library element. 

OfSystemLibElement and OfSystemLibVersion are relocated from general to specific 
attributes 

OfSystemLibVersion has got a new type System.Version (instead of String) 

ParameterPassing remains read-write at FCs and FBs only if 

● ProgrammingLanguage is STL and

● MemoryLayout is standard and 

● interface is empty

GraphVersion has got a new type System.Version (instead of String) 

 a new attribute called ExtensionBlockName is introduced  for FBs written in Graph as of Graph 
version V4 

 a new attribute called InvalidValuesAcquisition is introduced  for FBs written in Graph as of 
Graph version V4 

 a new attribute called IsWriteProtected is introduced  for code blocks 

DownloadWithoutReinit became read-only and also applied for IDBofFBs 

Supervisions became read-only on IDBofFBs . 

Changes in enums
The enum values for ProgrammingLanguage are changed as follows:  

● a new enum value F_CALL is introduced 

● a new enum value Motion_DB is introduced for Motion technological object 

● GRAPH_SEQUENCE, GRAPH_ACTIONS, GRAPH_ADDINFOS are deleted from the 
enum. They are replaced with GRAPH.

The enum values for BlockType are changed as follows: 

● the values OB, FC, DB, SFC are deleted because this enum is only used at InstanceOfType 
attribute 

Major Changes
9.2 Major changes in V14 SP1

Openness: Automating creation of projects
642 System Manual, 10/2018



9.3 Major changes in V14

9.3.1 Major changes of the object model

Object model of TIA Portal Openness V13 SP1 and older
In order to allow you a comparison between the old and the new object model of TIA Portal 
Openness, the diagram below describes the object model of TIA Portal V13 SP1.

Note

The object model described on the diagram is obsolete, for information about the object model 
of TIA Portal Openness V14 SP1 refer to TIA Portal Openness object model (Page 51) 

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
System Manual, 10/2018 643



Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
644 System Manual, 10/2018



9.3.2 Before updating an application to TIA Portal Openness V14

Application
Before updating an application to TIA Portal Openness V14 change the following settings:

1.  Adapt thr references to the V14 API by adding the following TIA Portal Openness APIs:

– Siemens.Engineering
– Siemens.Engfineering.Hmi

2. Change the .Net framework of your Visual Studio to version 4.6.1

3. Update the assembly resolve method by adapting the new installation path of the TIA Portal. 

– If you have evaluated from the registry, adapt the new key, according to the following 
example:
"HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\_InstalledSW
\TIAP14\TIA_Opns\..." 

– If you are using the application configuration file, adapt the paths to the new installation 
path.

9.3.3 Major string changes

Introduction
The following changes were made in TIA Portal Openness V14, which may impact your existing 
applications:

Change Required program code adjustment
Compile methods have been changed. Change the compile methods according to the following ex‐

ample:
● TIA Portal Openness V13 SP1(obsolete):

controllerTarget.Compile(CompilerOptions.
Software, BuildOptions.Rebuild);

● TIA Portal Openness V14:
plcSoftware.GetService<ICompilable>().Com
pile();

New namespaces have been added. 1. Add the following namespace statements: 
Siemens.Engineering.SW.Blocks; 
Siemens.Engineering.SW.ExternalSources; 
Siemens.Engineering.SW.Tags; 
Siemens.Engineering.SW.Types;

2. Remove the using ControllerTarget = 
Siemens.Engineering.HW.ControllerTarget 
namespace statement.

3. Compile the application. 

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
System Manual, 10/2018 645



Change Required program code adjustment
ControllerTarget has been replaced by PlcSoftware 
and functionality has been changed in some cases.

1. Review the code examples in the documentation which 
belong to your application functionality. 

2. Update the program code of your TIA Portal Openness 
application according to the following example:
– TIA Portal Openness V13 SP1(obsolete): 

ControllerTarget controllerTarget = 
deviceItem as ControllerTarget

– TIA Portal Openness V14:
PlcSoftware plcSoftware = 
deviceItem.GetService<SoftwareContainer
>().Software as PlcSoftware

3. Compile the application. 
Objects have been replaced.
 

1. Search and replace the following objects:
DeviceUserFolderAggregation = 
DeviceUserGroupComposition
DeviceFolders = DeviceGroups
DeviceUserFolder = DeviceUserGroup
ProgramblockSystemFolder = 
PlcBlockSystemGroup
ProgramblockUserFolder = PlcBlockUserGroup
IBlock = PlcBlock
ControllerDatatypeSystemFolder = 
PlcTypeSystemGroup
ControllerDatatypeUserFolder = 
PlcTypeUserGroup
ControllerDatatype = PlcType
ControllerTagSystemFolder = 
PlcTagTableSystemGroup
ControllerTagUserFolder = 
PlcTagTableUserGroup
ControllerTagTable = PlcTagTable
ControllerTag = PlcTag
ControllerConstant = PlcConstant
ExternalSourceSystemFolder = 
PlcExternalSourceSystemGroup
ExternalSource = PlcExternalSource
IOnline = OnlineProvider
ILibraryType = LibraryType

2. Compile the application.

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
646 System Manual, 10/2018



Change Required program code adjustment
Aggregations have been replaced by compositions. 1. Replace every Aggregation of your code by 

Composition according to the following examples:
ProjectAggregation = ProjectComposition
IDeviceAggregation = IDeviceComposition
TagTableAggregation = TagTableComposition
CycleAggregation = CycleComposition
GraphicListAggregation = 
GraphicListComposition
TextListAggregation = TextListComposition
ConnectionAggregation = 
ConnectionComposition
MultiLingualGraphicAggregation = 
MultiLingualGraphicComposition
UpdateCheckResultMessageAggregation = 
UpdateCheckResultMessageComposition

2. Compile the application. 
Folders have been replaced by groups in every relationship 
except HMI devices.

1. Replace every Folder in your program code by Group 
except code parts which concern to HMI devices.

2. Compile the application. 
The GetAttributeNames method has been replaced by the 
GetAttributeInfos method.

1. Use IList<EngineeringAttributeInfo> 
IEngineeringObject.GetAttributeInfos(Attr
ibuteAccessMode attributeAccessMode); to 
determinate attributes.

2. Compile the application.
For more detailed information, refer to Determining the 
object structure and attributes (Page 109).

The Close method for closing an object has changed. 1. Replace 
project.Close(CloseMode.PromptIfModified)
; by project.Close();.

2. Compile the application.
For more detailed information, refer to Closing a project 
(Page 120).

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
System Manual, 10/2018 647



Change Required program code adjustment
Simultaneous access has been replaced by exclusive access 
and transactions.

1. Replace simultaneous access by exclusive access and 
transactions according to the following examples:
– TIA Portal Openness V13 SP1(obsolete): 

tiaProject.StartTransaction("Reseting 
project to default");
...
tiaProject.CommitTransaction();

– TIA Portal Openness V14:
//Use exclusive access to avoid user 
changes
ExclusiveAccess exclusiveAccess = 
tiaPortal.ExclusiveAccess();
...
exclusiveAccess.Dispose();
//Use transaction to be able to 
rollbank changes:
Transaction transaction = 
exclusiveAccess.Transaction(tiaProject,
 "Compiling device");
transaction.CommitOnDispose();

2. Compile the application.
See Exclusive access (Page 89) and Transaction 
handling (Page 91) for further information.

Online access to the CPU has been changed 1. Change the online access to the CPU according to the 
following examples:
– TIA Portal Openness V13 SP1(obsolete):

((IOnline)controllerTarget).GoOffline()
;

– TIA Portal Openness V14:
((DeviceItem)
plcSoftware.Parent.Parent).GetService<O
nlin
eProvider>().GoOffline();

2. Compile the application.
The hardware configuration has been changed 1. Change the hardware configuration:

Device.Elements = Device.Items
2. Remove the following hardware attributes:

– Device.InternalDeviceItem
– Device.SubType

3. Compile the application.

See also
Handling exceptions (Page 407)

What's new in TIA Portal Openness? (Page 23)

Connecting to the TIA Portal (Page 74)

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
648 System Manual, 10/2018



9.3.4 Import of files generated with TIA Portal Openness V13 SP1 and previous

Application
When you try to import files which were generated with TIA Portal Openness V13 SP1 or 
previous an exeption will be thrown because of incompatibility. This is caused by changes on 
HMI tags and HMI screen items. The following tables are showing the main attribute changes, 
for more detailed information refer to the chapter "Creating screens Working with objects and 
object groups > Working with objects > Configuring ranges" of the TIA Portal online help:

Changes of HMI tags
The following table shows the main changes of HMI tag attributes:

Removed attributes Added attributes
RangeMaximumType
RangeMaximum
RangeMinimumType
RangeMinimum

LimitUpper2Type.
LimitUpper2.
LimitLower2Type.
LimitLower2.
LimitUpper1Type 
LimitUpper1 
LimitLower1Type 
LimitLower1 
 

Changes of HMI screen items
The following table shows the main changes of slider attributes:

Removed attributes Added attributes
 RangeLower1Color

RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper2Color
RangeUpper2Enabled
ScalePosition
ShowLimitLines
ShowLimitMarkers
ShowLimitRanges

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
System Manual, 10/2018 649



The following table shows the main changes of gauge attributes:

Removed attributes Added attributes
DangerRangeColor
DangerRangeStart
DangerRangeVisible
WarningRangeColor
WarningRangeStart
WarningRangeVisible

RangeLower1Color
RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper1Start
RangeUpper2Color
RangeUpper2Enabled
RangeUpper2Start

The following table shows the main changes of bar attributes:

Removed attributes Added attributes
AlarmLowerLimitColor
AlarmUpperLimitColor

RangeLower1Color
RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper2Color
RangeUpper2Enabled

Major Changes
9.3 Major changes in V14

Openness: Automating creation of projects
650 System Manual, 10/2018



Index

"
"Devices & networks" editor

Open, 164
"Tags" editor

Starting, 359

A
Accessing

Master copy in project library, 149
Acknowledging system events program-
controlled, 82

B
Basic structure of an AML export file, 548
Basic structure of an export file, 427, 552
Block

Creating group, 308
Deleting, 308
Deleting group, 309
Exporting, 487
Generate source, 314
Importing, 535
Querying information, 304

Block editor
Starting, 319

C
Compiling

Hardware, 117
Software, 117
Technology object, 325
Technology object group, 326

Configuration
Your Openness application and the TIA Portal run 
on different computers, 45

Connecting
Analog drives by data block, 337
Analog drives by hardware address, 335
Cam track, 352
Drives, 345
Encoders, 350
Encoders by data block, 338

Encoders for analog drives by hardware 
address, 336
Encoders for PROFIdrives by hardware 
address, 334
Measuring input, 353
Output cam, 352
PROFIdrives by data block, 337
PROFIdrives by hardware address, 333
Synchronous axis with leading values, 354
telegram 750, 348

Connection to the TIA Portal
Close, 83
Setting up, 74

Copy
Content of a master copy in project folder, 152
Master copy, 155

Create
User-defined folders for HMI tags, 252
User-defined screen folders, 247
User-defined script folders, 255

Creating
Cam track, 339
Group for block, 308
Measuring input, 339
Output cam, 339
Technology object, 324
User-defined folder for PLC tag tables, 362

D
Data types

Technology object, 322
Deleting

All screens, 249
Block, 308
Connection, 252
Cycle, 250
Deleting a PLC tag table from a folder, 366
Graphic list, 251
Group for block, 309
Individual tag in a PLC tag table, 368
Individual tags of a tag table, 253
PLC constants, 369
Program block, 308
Project graphics, 116
Screen, 247
Screen template, 248
Tag table, 254
Technology object, 325

Openness: Automating creation of projects
System Manual, 10/2018 651



Text list, 250
User data type, 318
User-defined folder for PLC tag tables, 363
VB script from a folder, 255

E
Editing situation

Your Openness application and the TIA Portal run 
on the same computer, 46

Enumerating
All tags of a tag table, 253
Blocks, 302
Device items, 230
Devices, 214, 217
Multilingual texts, 107, 112
Parameter of technology object, 328
PLC tag tables, 363
PLC tags, 367
System subfolders, 300
Technology object, 327
User-defined block folders, 301
User-defined folder for PLC tags, 361

Enumerating device items, 230
Enumerating devices, 214, 217
Enumerating multilingual texts, 107, 112
Establishing a connection to the TIA Portal, 74
Example program, 49
Exceptions

When accessing the TIA Portal via public 
APIs, 407

Export file
Basic structure, 427, 548, 552
Contents, 416
Structure of the XML file, 427, 552

Export/import
Application, 35

Exportable screen objects, 449
Exporting

Block, 487
Individual tag or constant from a PLC tag 
table, 540
User data type, 487

F
Finding

Cam track, 339
Measuring input, 339
Output cam, 339

Parameter of technology object, 329
Technology object, 327

Folders
Deleting, 161

Functions, 49
Closing a project, 120
Creating a user-defined folder for PLC tag 
tables, 362
Creating user-defined folders for HMI tags, 252
Creating user-defined screen folders, 247
Creating user-defined script subfolders, 255
Deleting a connection, 252
Deleting a cycle, 250
Deleting a graphic list, 251
Deleting a PLC tag table, 366
Deleting a screen, 247
Deleting a screen template, 248
Deleting a tag from a PLC tag table, 368
Deleting a tag from a tag table, 253
Deleting a tag table, 254
Deleting a text list, 250
Deleting a user-defined folder for PLC tag 
tables, 363
Deleting a VB script from a folder, 255
Deleting all screens, 249
Deleting project graphics, 116
Determining the system folder, 299
Enumerating blocks, 302
Enumerating device items, 230
Enumerating devices, 214, 217
Enumerating multilingual texts, 107, 112
Enumerating PLC tag tables in folders, 363
Enumerating PLC tags, 367
Enumerating system subfolders, 300
Enumerating tags of an HMI tag table, 253
Enumerating user-defined block folders, 301
Enumerating user-defined folders for PLC 
tags, 361
Exporting a tag or constant from a PLC tag 
table, 540
General, 74, 82, 83
General TIA portal settings, 102
HMI, 247, 248, 249, 250, 251, 252, 253, 254, 255
Importing a tag into a PLC tag table, 541
Importing PLC tag tables, 539
Limitation to projects of TIA Portal V13, 97
Open project, 97
PLC, 299, 300, 301, 302, 304, 362, 363, 366, 368, 
369, 539, 540, 541
PLC constants, 369
Projects, 97, 102, 107, 112, 116, 119, 120, 165, 
214, 217, 230, 360, 361, 363, 364, 367

Index

Openness: Automating creation of projects
652 System Manual, 10/2018



Public API application example, 67
Querying information from a PLC tag table, 364
Querying PLC and HMI targets, 165
Querying system folders for PLC tags, 360
Querying the "Program blocks" folder, 299
Querying the block author, 304
Querying the block family, 304
Querying the block name, 304
Querying the block number, 304
Querying the block title, 304
Querying the block type, 304
Querying the block version, 304
Querying the consistency attribute of a block, 304
Querying the time stamp of a block, 304
Reading the time of the last changes to a PLC tag 
table, 366
Saving a project, 119

G
General TIA portal settings, 102
Generate

source from block, 314
source from user data type, 314

Global library
Accessing, 126, 130
Accessing language settings, 128

H
Hardware

Compiling, 117
Hierarchy of hardware objects of the object 
model, 64
HMI tags of the "UDT" data type, 438

I
Import/Export

Advanced XML formats for export/import of text 
lists, 444
Also export default values, 416
Basics, 411
Data structure, 427, 552
Editing an XML file, 415
Export format, 413
Export scope, 415
Export settings, 415
Exportable objects, 411
Exportable screen objects, 449
Exporting a screen from a screen folder, 454

Exporting a screen with a faceplate instance, 469
Exporting a selected tag, 436
Exporting a tag from a tag table, 436
Exporting all graphics of a project, 420
Exporting all screen templates, 460
Exporting blocks with know-how protection, 495
Exporting blocks without know-how 
protection, 486
Exporting configuration data, 415
Exporting connections, 447
Exporting cycles, 430
Exporting graphic lists, 446
Exporting HMI tag tables, 432
Exporting multilingual comments, 590, 594, 602, 
604
Exporting only modified values, 416
Exporting permanent areas, 458
Exporting PLC tag table, 538
Exporting pop-up screens, 464
Exporting screen templates, 461
Exporting screens of an HMI device, 453
Exporting slide-in screen, 467
Exporting system blocks, 532
Exporting tags, 600
Exporting text lists, 442
Exporting VB scripts, 439, 440
Field of application, 413
Graphics, 419
HMI, 430, 431, 432, 435, 436, 437, 438, 439, 440, 
441, 442, 443, 444, 446, 448, 449, 453, 454, 456, 
458, 459, 460, 461, 463, 464, 465, 467, 468, 469, 
471, 538
Importable objects, 411
Importing a graphic list, 446
Importing a screen including a faceplate 
instance, 471
Importing an HMI tag into a tag table, 437
Importing configuration data, 417
Importing connections, 448
Importing cycles, 431
Importing graphics to a project, 421
Importing multilingual comments, 590, 594, 602, 
604
Importing permanent areas, 459
Importing pop-up screen, 465
Importing screen templates, 463
Importing screens to an HMI device, 456
Importing slide-in screen, 468
Importing tag table to a tag folder, 435
Importing tags, 600
Importing text list, 443
Importing VB scripts, 441

Index

Openness: Automating creation of projects
System Manual, 10/2018 653



Objects of AML, 548
PLC, 486, 495, 532
Procedure for importing, 418
Project data, 420, 421
Restricting exports to modified values, 416
Restrictions, 413
Round trip devices and modules, 569
Setting the import behavior by means of program 
codes, 417
Special considerations for integrated HMI 
tags, 438
Stable AML GUIDs, 569

Importing
An individual tag into a PLC tag table, 541
Block, 535
PLC tag tables, 539
User data type, 543

Installation
Access authentication check, 28
Adding users to the user group, 28
Standard steps for accessing the TIA Portal, 33
TIA Openness V13 add-on package, 27

Installing the add-on package, 27
Instances

Determining type versions, 155
Integrated HMI tags, 438

L
Library

Accessing folders, 137
Determining type versions of instances, 155
Functions, 125

M
Master copies

Deleting, 161
Master copy

Copy content to project folder, 152
Copying, 155

O
Object model, 51
Objects

Exportable objects, 411
Importable objects, 411

Open
"Devices & networks" editor, 164

Opening a project, 97

P
Parameter of technology object

Enumerating, 328
Finding, 329
Reading, 330
Writing, 331

Parameters
Counting, 358
Easy Motion Control, 358
PID control, 357
S7-1500 Motion Control, 341

PLC
Comparing, 293
Comparison with actual status, 293
Determining status, 257
Disconnecting an online connection, 297
Establishing an online connection, 297

Program block
Deleting, 308

Programming overview, 49
Project

Close, 120
Open, 97
Querying HMI targets, 165
Querying PLC targets, 165
Querying the device type, 165
Save, 119

Project library
Accessing, 126, 130
Accessing master copies, 149

Public API application example, 67

Q
Querying

Block author, 304
Block family, 304
Block name, 304
Block number, 304
Block title, 304
Block type, 304
Block version, 304
Consistency attribute of a block, 304
Finding the, 299
Information from a PLC tag table, 364
Information of block, 304
Information of user data type, 304
Program blocks folder, 299
System folders for PLC tags, 360

Index

Openness: Automating creation of projects
654 System Manual, 10/2018



Technology object, 323
Time stamp of a block, 304

R
Read

Time of the last changes to a tag table, 366
Reading

Parameter of technology object, 330

S
Saving a project, 119
Siemens.Engineering, 40
Siemens.Engineering.Hmi, 40
Siemens.Engineering.Hmi.Communication, 40
Siemens.Engineering.Hmi.Cycle, 40
Siemens.Engineering.Hmi.Globalization, 40
Siemens.Engineering.Hmi.RuntimeScripting, 40
Siemens.Engineering.Hmi.Screen, 40
Siemens.Engineering.Hmi.Tag, 40
Siemens.Engineering.Hmi.TextGraphicList, 40
Siemens.Engineering.HW, 40
Siemens.Engineering.SW, 40
Software

Compiling, 117
Special considerations for HMI tags of the "UDT" data 
type, 438
Starting

"Tags" editor, 359
Block editor, 319

Status (PLC)
Determining, 257

Structure of the export data, 427, 548, 552

T
Technology object, 320

Compiling, 325
Creating, 324
Data types, 322
Deleting, 325
Enumerating, 327
Finding, 327
Querying, 323

Technology object group
Compiling, 326

Terminating the connection to the TIA Portal, 83
TIA Portal Openness, 43

Access, 34
Access rights, 28

Adding users to the user group, 28
Basic concepts of aggregations, 171
Basic concepts of associations, 170
Basic concepts of object equality verification, 172
Basic concepts when handling exceptions, 407
Configuration, 45
Export/import, 35
Functional scope, 43
Functions, 49
Introduction, 43
Necessary user knowledge, 25
Programming overview, 49
Public API, 49
Requirements, 25
Standard steps for accessing the TIA Portal, 33
Typical tasks, 34

Types
Deleting, 161

U
User data type

Deleting, 318
Exporting, 487
Generate source, 314
Importing, 543
Querying information, 304

W
Writing

Parameter of technology object, 331

X
XML file

Edit, 415
Export, 416

Index

Openness: Automating creation of projects
System Manual, 10/2018 655



Index

Openness: Automating creation of projects
656 System Manual, 10/2018


	Openness: Automating creation of projects
	Legal information - Warning notice system
	Table of contents
	1 Security note
	2 Readme TIA Portal Openness
	2.1 Readme
	2.2 Major changes in TIA Portal Openness V15.1
	2.3 Announcement of major changes in future releases
	2.4 Hints for writing long-term stable code

	3 What's new in TIA Portal Openness?
	4 Basics
	4.1 Requirements for TIA Portal Openness
	4.2 Installation
	4.2.1 Installing TIA Openness
	4.2.2 Adding users to the "Siemens TIA Openness" user group
	4.2.3 Accessing the TIA Portal

	4.3 Openness tasks
	4.3.1 Applications
	4.3.2 Export/import

	4.4 Object list
	4.5 Standard libraries
	4.6 Notes on performance of TIA Portal Openness

	5 Introduction
	6 Configurations
	7 TIA Portal Openness API
	7.1 Introduction
	7.2 Programming steps
	7.3 TIA Portal Openness object model
	7.4 Blocks and types of the TIA Portal Openness object model
	7.5 Hierarchy of hardware objects of the object model
	7.6 Information about installed TIA Portal Openness versions
	7.7 Example program
	7.8 Use of the code examples
	7.9 General functions
	7.9.1 TIA Portal Openness IntelliSense support
	7.9.2 Connecting to the TIA Portal
	7.9.3 TIA Portal Openness firewall
	7.9.4 Event handlers
	7.9.5 Program-controlled acknowledgement of dialogs with system events
	7.9.6 Terminating the connection to the TIA Portal
	7.9.7 Diagnostic interfaces on TIA Portal
	7.9.8 Exclusive access
	7.9.9 Transaction handling
	7.9.10 Creating a DirectoryInfo/FileInfo object
	7.9.11 Self-description support for attributes, navigators, actions, and services

	7.10 Functions for projects and project data
	7.10.1 Opening a project
	7.10.2 Creating a project
	7.10.3 Accessing general settings of the TIA Portal
	7.10.4 Accessing read-only TIA Portal project
	7.10.5 Accessing languages
	7.10.6 Determining the object structure and attributes
	7.10.7 Access software target 
	7.10.8 Accessing and enumerating multilingual texts
	7.10.9 Read project related attributes
	7.10.10 Deleting project graphics
	7.10.11 Compiling a project
	7.10.12 Saving a project
	7.10.13 Closing a project

	7.11 Functions for Connections
	7.11.1 Configurable attributes of a port-to-port connection

	7.12 Functions on libraries
	7.12.1 Functions for objects and instances
	7.12.2 Accessing global libraries
	7.12.3 Accessing global library languages
	7.12.4 Opening libraries
	7.12.5 Enumerating open libraries
	7.12.6 Saving and closing libraries
	7.12.7 Archiving and retrieving a library
	7.12.8 Creating global libraries
	7.12.9 Accessing folders in a library
	7.12.10 Accessing types
	7.12.11 Accessing type versions
	7.12.12 Accessing instances
	7.12.13 Accessing master copies
	7.12.14 Create master copy from a project in library
	7.12.15 Create an object from a master copy
	7.12.16 Copying master copies
	7.12.17 Determining out-of-date type instances
	7.12.18 Updating the project
	7.12.19 Updating a library
	7.12.20 Deleting library content

	7.13 Functions for accessing devices, networks and connections
	7.13.1 Open the "Devices & networks" editor
	7.13.2 Querying PLC and HMI targets
	7.13.3 Accessing attributes of an address object
	7.13.4 Accessing the channels of a module
	7.13.5 Working with associations
	7.13.6 Working with compositions
	7.13.7 Verifying object equality
	7.13.8 Read operations for attributes

	7.14 Functions on networks
	7.14.1 Creating a subnet
	7.14.2 Accessing subnets
	7.14.3 Accessing internal subnets
	7.14.4 Get type identifier of subnets
	7.14.5 Accessing attributes of a subnet
	7.14.6 Deleting a global subnet
	7.14.7 Enumerate all participants of a subnet
	7.14.8 Enumerate io systems of a subnet
	7.14.9 Accessing nodes
	7.14.10 Accessing attributes of a node
	7.14.11 Connecting a node to a subnet
	7.14.12 Disconnect a node from a subnet
	7.14.13 Creating an io system
	7.14.14 Accessing the attributes of an io system
	7.14.15 Connecting an io connector to an io system
	7.14.16 Get master system or io system of an interface
	7.14.17 Get an IO Controller
	7.14.18 Get an IO Connector
	7.14.19 Disconnecting an io connector from an io system or a dp mastersystem
	7.14.20 Accessing attributes of a dp mastersystem
	7.14.21 Accessing attributes of a profinet io system
	7.14.22 Deleting a dp mastersystem
	7.14.23 Deleting a profinet io system
	7.14.24 Creating a dp master system
	7.14.25 Accessing port interconnection information of port device item
	7.14.26 Attributes of port inter-connection
	7.14.27 Accessing the attributes of a port
	7.14.28 Enumerate dp master systems of a subnet
	7.14.29 Enumerate assigned io connectors
	7.14.30 Connecting a dp io connector to a dp mastersystem

	7.15 Functions on devices
	7.15.1 Mandatory attributes of devices
	7.15.2 Get type identifier of devices and device items
	7.15.3 Creating a device
	7.15.4 Enumerating devices
	7.15.5 Accessing devices
	7.15.6 Deleting a device

	7.16 Functions on device items
	7.16.1 Mandatory attributes of device items
	7.16.2 Creating and plugging a device item
	7.16.3 Moving device items into another slot
	7.16.4 Copying a device item
	7.16.5 Deleting a device item
	7.16.6 Enumerate device items 
	7.16.7 Accessing device items
	7.16.8 Accessing device item as interface
	7.16.9 Accessing attributes of an I/O device interface
	7.16.10 Accessing attributes of IoController
	7.16.11 Accessing attributes of IoConnector
	7.16.12 Accessing address controller
	7.16.13 Accessing addresses
	7.16.14 Accessing hardware identifiers
	7.16.15 Accessing hardware identifier controller
	7.16.16 Accessing channels of device items

	7.17 Functions for accessing the data of an HMI device
	7.17.1 Screens
	7.17.1.1 Creating user-defined screen folders
	7.17.1.2 Deleting a screen from a folder
	7.17.1.3 Deleting a screen template from a folder
	7.17.1.4 Deleting all screens from a folder

	7.17.2 Cycles
	7.17.2.1 Deleting a cycle

	7.17.3 Text lists
	7.17.3.1 Deleting a text list

	7.17.4 Graphic lists
	7.17.4.1 Deleting a graphic list

	7.17.5 Connections
	7.17.5.1 Deleting a connection

	7.17.6 Tag table
	7.17.6.1 Creating user-defined folders for HMI tags
	7.17.6.2 Enumerating tags of an HMI tag table
	7.17.6.3 Deleting an individual tag from an HMI tag table
	7.17.6.4 Deleting a tag table from a folder

	7.17.7 VB scripts
	7.17.7.1 Creating user-defined script folders
	7.17.7.2 Deleting a VB script from a folder

	7.17.8 Deleting a user-defined folder of an HMI device 

	7.18 Functions for accessing the data of a PLC device
	7.18.1 Determining the status of a PLC
	7.18.2 Accessing parameters of an online connection
	7.18.3 Setting PLC online of R/H system
	7.18.4 Accessing software container from primary PLC of R/H system 
	7.18.5 Downloading PLCs of R/H System
	7.18.6 Functions for downloading data to PLC device
	7.18.6.1 Downloading hardware and software components to PLC device
	7.18.6.2 Running and stopping PLC
	7.18.6.3 Supporting callbacks
	7.18.6.4 Protecting PLC through password
	7.18.6.5 Handling PLC block binding passwords

	7.18.7 Uploading hardware, software and files to PLC device
	7.18.8 Accessing fingerprints
	7.18.9 Comparing PLC software
	7.18.10 Comparing PLC hardware
	7.18.11 Establishing or disconnecting the online connection to the PLC
	7.18.12 Blocks
	7.18.12.1 Querying the "Program blocks" group
	7.18.12.2 Querying the system group for system blocks
	7.18.12.3 Enumerating system subgroups
	7.18.12.4 Enumerating user-defined block groups
	7.18.12.5 Enumerating all blocks
	7.18.12.6 Querying information of a block/user data type
	7.18.12.7 Setting and removing protections from a block
	7.18.12.8 Deleting block
	7.18.12.9 Creating group for blocks
	7.18.12.10 Deleting group for blocks
	7.18.12.11 Accessing attributes of all blocks
	7.18.12.12 Creating a ProDiag-FB
	7.18.12.13 Accessing supervisions and properties of ProDiag-FB
	7.18.12.14 Reading ProDiag-FB blocks and attributes
	7.18.12.15 Adding an external file
	7.18.12.16 Generate source from block
	7.18.12.17 Generating blocks from source
	7.18.12.18 Deleting user data type
	7.18.12.19 Deleting an external file
	7.18.12.20 Starting the block editor

	7.18.13 Technology objects
	7.18.13.1 Overview of functions for technology objects
	7.18.13.2 Overview of technology objects and versions
	7.18.13.3 Overview of data types
	7.18.13.4 Querying the composition of technology objects
	7.18.13.5 Creating technology object
	7.18.13.6 Deleting technology object
	7.18.13.7 Compiling technology object
	7.18.13.8 Enumerating technology object
	7.18.13.9 Finding technology object
	7.18.13.10 Enumerating parameters of technology object
	7.18.13.11 Finding parameters of technology object
	7.18.13.12 Reading parameters of technology object
	7.18.13.13 Writing parameters of technology object
	7.18.13.14 S7-1200 Motion Control
	7.18.13.15 S7-1500 Motion Control
	7.18.13.16 PID control
	7.18.13.17 Counting
	7.18.13.18 Easy Motion Control

	7.18.14 Tags and Tag tables
	7.18.14.1 Starting the "PLC Tags" editor
	7.18.14.2 Querying system groups for PLC tags
	7.18.14.3 Creating PLC tag table
	7.18.14.4 Enumerating user-defined groups for PLC tags
	7.18.14.5 Creating user-defined groups for PLC tags
	7.18.14.6 Deleting user-defined groups for PLC tags
	7.18.14.7 Enumerating PLC tag tables in a folder
	7.18.14.8 Querying information from a PLC tag table
	7.18.14.9 Reading the time of the last changes of a PLC tag table
	7.18.14.10 Deleting a PLC tag table from a group
	7.18.14.11 Enumerating PLC tags
	7.18.14.12 Accessing PLC tags
	7.18.14.13 Accessing PLC constants


	7.19 Functions on OPC
	7.19.1 Configuring OPC UA server secure communication protocol
	7.19.2 Setting OPC UA security policy

	7.20 SiVArc Openness
	7.20.1 Introduction

	7.21 Openness for CP 1604/CP 1616/CP 1626
	7.22 Openness for SIMATIC Ident
	7.22.1 Openness for SIMATIC Ident
	7.22.2 ASM 456
	7.22.3 ASM 475
	7.22.4 RF120C
	7.22.5 RF170C
	7.22.6 RF180C
	7.22.7 RF18xC
	7.22.8 RF615R/RF680R/RF685R
	7.22.9 MV400/MV500

	7.23 Exceptions
	7.23.1 Handling exceptions


	8 Export/import
	8.1 Overview
	8.1.1 Basic principles of importing/exporting
	8.1.2 Field of application for Import/Export
	8.1.3 Version Specific Simatic ML Import
	8.1.4 Editing the XML file
	8.1.5 Exporting configuration data
	8.1.6 Importing configuration data

	8.2 Import/export of project data
	8.2.1 Project graphics
	8.2.1.1 Exporting/importing graphics
	8.2.1.2 Exporting all graphics of a project
	8.2.1.3 Importing graphics to a project

	8.2.2 Project texts
	8.2.2.1 Export of project texts
	8.2.2.2 Import of project texts


	8.3 Importing/exporting data of an HMI device
	8.3.1 Structure of an XML file
	8.3.2 Structure of the data for importing/exporting
	8.3.3 Cycles
	8.3.3.1 Exporting cycles
	8.3.3.2 Importing cycles

	8.3.4 Tag tables
	8.3.4.1 Exporting HMI tag tables
	8.3.4.2 Importing HMI tag table
	8.3.4.3 Exporting an individual tag from an HMI tag table
	8.3.4.4 Importing an individual tag into an HMI tag table
	8.3.4.5 Special considerations for the export/import of HMI tags

	8.3.5 VB scripts
	8.3.5.1 Exporting VB scripts
	8.3.5.2 Exporting VB scripts from a folder
	8.3.5.3 Importing VB scripts

	8.3.6 Text lists
	8.3.6.1 Exporting text lists from an HMI device
	8.3.6.2 Importing a text list into an HMI device
	8.3.6.3 Advanced XML formats for export/import of text lists

	8.3.7 Graphic lists
	8.3.7.1 Exporting graphic lists
	8.3.7.2 Importing a graphic list

	8.3.8 Connections
	8.3.8.1 Exporting connections
	8.3.8.2 Importing connections

	8.3.9 Screens
	8.3.9.1 Overview of exportable screen objects
	8.3.9.2 Exporting all screens of an HMI device
	8.3.9.3 Exporting a screen from a screen folder
	8.3.9.4 Importing screens to an HMI device
	8.3.9.5 Exporting permanent areas
	8.3.9.6 Importing permanent areas
	8.3.9.7 Exporting all screen templates of an HMI device
	8.3.9.8 Exporting screen templates from a folder
	8.3.9.9 Importing screen templates
	8.3.9.10 Exporting a pop-up screen
	8.3.9.11 Importing a pop-up screen
	8.3.9.12 Exporting a slide-in screen
	8.3.9.13 Importing a slide-in screen
	8.3.9.14 Exporting a screen with a faceplate instance
	8.3.9.15 Importing a screen with a faceplate instance


	8.4 Importing/exporting data of a PLC device
	8.4.1 Blocks
	8.4.1.1 XML structure of the block interface section 
	8.4.1.2 Changes of the object model and XML file format
	8.4.1.3 Exporting blocks 
	8.4.1.4 Exporting DBs with snapshots
	8.4.1.5 Exporting blocks with know-how protection
	8.4.1.6 Export/Import of SCL blocks
	8.4.1.7 Export/Import of structured types of SCL blocks
	8.4.1.8 Export/Import of SCL call blocks
	8.4.1.9 Exporting failsafe blocks
	8.4.1.10 Exporting system blocks
	8.4.1.11 Exporting GRAPH blocks with multi-language text
	8.4.1.12 Importing block
	8.4.1.13 Importing blocks/UDT with open reference
	8.4.1.14 Importing blocks/UDT for structural change object

	8.4.2 Tag tables
	8.4.2.1 Exporting PLC tag tables
	8.4.2.2 Importing PLC tag table
	8.4.2.3 Exporting an individual tag or constant from a PLC tag table
	8.4.2.4 Importing an individual tag or constant into a PLC tag table

	8.4.3 Exporting user data type
	8.4.4 Importing user data type
	8.4.5 Export of data in OPC UA XML format

	8.5 Importing/exporting hardware data
	8.5.1 AML file format
	8.5.2 Pruned AML
	8.5.3 Overview of the objects and parameters of the CAx import/export
	8.5.4 Structure of the CAx data for importing/exporting
	8.5.5 AML type identifiers
	8.5.6 Export of CAx data
	8.5.7 Export/Import of sub modules
	8.5.8 Import of CAx data
	8.5.9 Exceptions during import and export of CAx data
	8.5.10 Round trip exchange of devices and modules
	8.5.11 Export/Import topology
	8.5.12 Export of a device object
	8.5.13 Import of a device object
	8.5.14 Export/Import of device with set address
	8.5.15 Export/Import of device with channels
	8.5.16 Export of device item objects
	8.5.17 Import of device item objects
	8.5.18 Export/Import of GSD/GSDML based devices and device items
	8.5.19 Export/Import of subnets
	8.5.20 Export/Import of PLC tags
	8.5.21 Export/Import of IO-systems
	8.5.22 Export/Import of multilingual comments
	8.5.23 AML attributes versus TIA Portal Openness attributes


	9 Major Changes
	9.1 Major changes in TIA Portal Openness V15
	9.2 Major changes in V14 SP1
	9.2.1 Major changes in V14 SP1
	9.2.2 Major changes in the object model
	9.2.3 Changes on pilot functionality
	9.2.4 Changes for export and import
	9.2.4.1 Changes for export and import
	9.2.4.2 Changes in API
	9.2.4.3 Schema extension
	9.2.4.4 Schema changes
	9.2.4.5 Behaviour changes
	9.2.4.6 Block attribute changes


	9.3 Major changes in V14
	9.3.1 Major changes of the object model
	9.3.2 Before updating an application to TIA Portal Openness V14
	9.3.3 Major string changes
	9.3.4 Import of files generated with TIA Portal Openness V13 SP1 and previous


	Index

