

常问问题・03/2017

S7-300 如何通过 PROFINET 读取 CU250S-2 增量编码器脉 冲数

G120,CU250S-2,编码器,脉冲

https://support.industry.siemens.com/cs/cn/zh/view/109746302

Copyright © Siemens AG Copyright year All rights reserved

目录

1	概述		3			
2	相关参数介绍					
	2.1	编码器增量计数值 r482	4			
	2.2	带清零功能编码器增量计数值 r4653	4			
3	配置示例					
	3.1	示例1不带清零功能的脉冲数读取(读取 r482)	6			
	3.2	示例2带清零功能的脉冲数读取(读取 r4653)	8			
4	参考资料		9			

Copyright © Siemens AG Copyright year All rights reserved

概述

在工业现场中,有些应用需要通过 PLC 读取 CU250S-2 的增量编码器的脉冲数 用于监视电机或负载的位置。本文通过示例介绍 S7-300 如何通过 PROFINET 通讯读取 CU250S-2 增量编码器的脉冲数。

S7-1500、S7-1200 以及 PROFIBUS 通讯与该文的组态界面和步骤稍有区别, 但实现方法相同也可作为参考。

实现方法

1

编码器的增量脉冲计数值存储在 r482(r4653)中,可通过 PROFIBUS 或 PROFINET 的过程值通道(PZD 通道)将该数值发送给 PLC。

注意: 注意: r0482 (r4653) 这个数值不能掉电保存。每次重新上电后数值为零, 其反映的是位置偏差值,不是实际位置。

2 相关参数介绍

2.1 编码器增量计数值 r482

参数 r482 显示编码器的增量脉冲计数值, 该参数为 32 为整数, 该数值构成见图 2-1, 由两部分组成:

- 编码器脉冲数(对于 sin/cos 1 Vpp 编码器表示正弦信号周期的数量);
- 编码器信号细分,细分位数由 P418 参数设置, P418 默认值为 11。

图 2-1 r482 数据格式

r482 计算

r482 = 编码器脉冲数 * 细分分辨率, 细分分辨率 = 2^{p418} 例如:

- ▶ 方波编码器每圈 1024 脉冲、设置细分分辨率 P418=2,那么当编码器旋转
 1 圈 r482 变化 4096 的数值, 4096 = 1024 × 2²。
- ▶ 正余弦编码器每圈 512 的正余弦信号、设置细分分辨率 P418=11,那么当编码器旋转 1 圈 r482 变化 1048576 的数值, 1048576 = 512×2¹¹。

注意

- ▶ r482 为 32 位整数,表示的数据范围有限,随着编码器旋转圈数的增加数据 可能会出现溢出,必须通过上一级控制系统进行数据溢出的检测;
- ▶ 设置过高的细分会导致 r482 记录编码器脉冲数的减少,建议方波编码器将 P418 设置为 2。

2.2 带清零功能编码器增量计数值 r4653

参数 r4653 也可象 r482 参数一样显示编码器的增量脉冲计数值,区别在于 r4653 参数可通过编码器零脉冲或外部信号进行清零(将数值复位为0),r482 只能通过断电重新上电清零。r4653 与 r482 的数据计算方法相同。

通过 P4652 参数定义清零的模式:

- P4652=0,不激活 r4653, r4653 不对编码器脉冲计数;
- P4652=1,激活r4653对编码器脉冲的计数,同时当有编码器零脉冲时 对r4653清零;

- P4652=2, 激活 r4653 对编码器脉冲的计数, 当 P4655 中设置的二进制 信号出现 0/1 上升沿时 r4653 清零;
- P4652=3, 激活 r4653 对编码器脉冲的计数,当 P4655 中设置的二进制 信号出现 0/1 上升沿后的第一个编码器零脉冲时 r4653 清零。

注意

P4652 参数无法通过 STARTER 在线修改也不能使用 BOP-2 面板直接修改,只能通过 STARTER 离线设置后下载的方式修改该参数。

3 配置示例

3.1 示例 1 不带清零功能的脉冲数读取(读取 r482)

本示例采用 CPU315-2 PN/DP 通过 PROFINET 通讯读取 CU250S-2 PN 编码器 脉冲数,以组态了标准报文 1 和 2 个字的附加数据为例,标准报文用于正常的变频器控制,附加 2 个字的数据用于传送编码器脉冲数。

有关 S7-300 与 CU250S-2 的 PROFINET 的基本组态请参考《S7-300 与 G120_CU250S-2_PN 的 PROFINET 通讯_第 1 部分控制变频器启停及调速》 https://support.industry.siemens.com/cs/cn/zh/view/109476698 本文只针对读取编码器脉冲相关步骤进行说明。

PLC 组态

 STEP7 中组态 CPU315-2 PN/DP 和 CU250S-2 PN,并将变频器报文设置 为"标准报文 1",更改输入输出起始地址为 100;

 为 CU250S-2 增加附加 2 个字的过程数据,修改其输入输出起始地址为 104;

3. 编译并下载硬件配置。

CU250S-2 参数配置

将 r482 映射到发送 PZD 的第3个和第4个字中。

- 1. 配置编码器,设置细分 P418=2,本示例使用每转 1024 脉冲的方波编码器;
- 2. 先设置报文类型为标准报文 P922=1,变频器自动设置了控制字、速度设定 值、状态字、和速度反馈的参数互联;
- 3. 然后再将报文类型改为自由报文 P922=999, 允许自由定义报文结构;
- 4. 设置 P2061.2=r482.0,将编码器数据经 PZD3+4 发送给 PLC;

使用变量表监视编码器数据

变频器上电后 PLC 读取的编码器值为 2 (由于轴有轻微抖动,如轴完全静止不动该值为 0)。

	1	Address	Symbol	Display format	Status value	Modify value			
1		//变频器->PLC,IW100状态字,IW102实际速度,ID104编码器脉冲数							
2		IW 100		HEX W#16#EB4					
3		IW 102		DEC	0				
4		ID 104		DEC	L#2				
5	//PLC-> 变频器,QW100控制字,QW102速度设定值								
6		QW 100		HEX	W#16#0000	₩#16#047E			
7		QW 102		DEC	0				

用手正转编码器一圈后 PLC 读取的编码器值 4095(一圈理论值为 4096,手动 旋转编码器有一定误差)。

	1	Address	Symbol	Display format	Status value	Modify value			
1		//变频器->PLC,I₩100状态字,I₩102实际速度,ID104编码器脉冲数							
2		IW 100		HEX	W#16#EB40				
3		IW 102		DEC	0				
4		ID 104		DEC	L#4095				
5		//PLC-> 变频器,QW100控制字,QW102速度设定值							
6		QW 100		HEX	W#16#0000	W#16#047E			
7		QW 102		DEC	0				

再用手反转编码器二圈后 PLC 读取的编码器值为-4095。

	1	Address		Symbol	Display	format	Status	value	Modify	value
1		//变频器−> PLC,I\100状态字,I\102实际速度,ID104编码器脉冲数								
2		IΨ	100		HEX		W#16	#EB40		
3		IW 102			DEC	0				
4		ID	104		DEC		L#-4	095		
5		//PLC-> 变频器,QW100控制字,QW102速度设定值								
6		Q₩	100		HEX		W#16	#0000	₩#16	6#047E
7		Q₩	102		DEC		0			

3.2 示例 2 带清零功能的脉冲数读取(读取 r4653)

PLC 组态

PLC 组态与示例 1 组态方法相同。

CU250S-2 参数配置

将 r4653 映射到发送 PZD 的第3个和第4个字中。

- 1. 配置编码器,设置细分 P418=2,本示例使用每转 1024 脉冲的方波编码器;
- 2. 先设置报文类型为标准报文 P922=1,变频器自动设置了控制字、速度设定 值、状态字、和速度反馈的参数互联;
- 3. 然后再将报文类型改为自由报文 P922=999, 允许自由定义报文结构;
- 4. 设置 P2061.2=r4653.0,将编码器数据经 PZD3+4 发送给 PLC;

设置脉冲清零方式和信号源,本例使用数字量输入信号 DI4 作为清零信号源,当 DI4 上出现 0/1 上升沿时 r4653 清零。

- 1. STARTER 离线设置 P4652=2,并将参数下载到变频器中;
- 2. 设置 P4655=722.4, DI4 作为清零信号源;

通过以上步骤设置完成后,同示例 1 一样 ID104 能够读取到编码器的脉冲数,当 DI4 上出现 0/1 上升沿时 ID104 清零。

Copyright © Siemens AG Copyright year All rights reserved

4

参考资料

《CU250S-2 操作手册_V4.7.3》 https://support.industry.siemens.com/cs/cn/zh/view/109478829 《CU250S-2 参数手册_V4.7.3》 https://support.industry.siemens.com/cs/cn/zh/view/109477253