

.NET application for
the SIMATIC RF350M
with WiFi connection

SIMATIC RF350M / .Net / TCP/IP via WiFi

https://support.industry.siemens.com/cs/ww/en/view/109747584

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109747584

Warranty and Liability

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 2

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete regarding the
circuits shown, equipping and any eventuality. The Application Examples do not represent
customer-specific solutions. They are only intended to provide support for typical
applications. You are responsible for ensuring that the described products are used
correctly. These Application Examples do not relieve you of the responsibility to use safe
practices in application, installation, operation and maintenance. When using these
Application Examples, you recognize that we cannot be made liable for any
damage/claims beyond the liability clause described. We reserve the right to make
changes to these Application Examples at any time without prior notice.
If there are any deviations between the recommendations provided in these Application
Examples and other Siemens publications – e.g. Catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.
Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of the Siemens AG.

Security
informa-
tion

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a
concept.
Customer is responsible to prevent unauthorized access to its plants, systems, machines
and networks. Systems, machines and components should only be connected to the
enterprise network or the internet if and to the extent necessary and with appropriate
security measures (e.g. use of firewalls and network segmentation) in place.
Additionally, Siemens’ guidance on appropriate security measures should be taken into
account. For more information about industrial security, please visit
http://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends to apply product updates as soon as available and
to always use the latest product versions. Use of product versions that are no longer
supported, and failure to apply latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security
RSS Feed under http://www.siemens.com/industrialsecurity.

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

Table of Contents

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 3

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Introduction .. 4

1.1 Overview... 4
1.2 Mode of operation .. 5
1.3 Components used .. 6

2 Engineering .. 8

2.1 Explanation on the API "RfidHfDotNet" .. 8
2.2 Programming the API functions ... 11
2.2.1 API integration and connection to the RFID read head 11
2.2.2 Implementing RFID functions ... 12
2.3 Explanations on the sample application ... 15
2.3.1 Structural configuration of the application .. 15
2.3.2 Implementing the API functions in the sample application 16
2.3.3 Implementing the TCP data exchange ... 19
2.4 Explanations on the TCP server for Windows 20
2.4.1 Structural configuration of the application .. 20
2.4.2 Mode of operation .. 20
2.5 Explanations on the S7 server block for a PLC 22
2.5.1 Structure of the S7 user program ... 22
2.5.2 Mode of operation .. 22
2.6 Commissioning ... 24
2.6.1 Establishing a WiFi connection .. 24
2.6.2 Upload and start of the RFID application on the hand-held

terminal ... 26
2.6.3 Commissioning the server application for Windows 27
2.6.4 Commissioning the S7 server block ... 27
2.7 Operating the Application Example .. 29
2.7.1 Selecting the RFID protocol and connecting to the TCP server 29
2.7.2 Performing inventories ... 29
2.7.3 Reading the transponder .. 30
2.7.4 Writing on the transponder ... 31
2.7.5 Initializing the transponder ... 32
2.7.6 Sending transponder data to the TCP server..................................... 33

3 Valuable Information ... 36

4 Annex .. 37

4.1 Service and support ... 37
4.2 Links and literature ... 38
4.3 Change documentation .. 38

1 Introduction

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 4

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

1.1 Overview

The hand-held terminal SIMATIC RF350M is designed for the flexible use of radio
frequency identification (RFID). The hand-held terminal is wireless and provides all
standard functions for reading out or writing on the RFID transponder. The device
is based on Windows CE and therefore offers the opportunity to create and use
individual, user-specific applications for RFID cheaply and in a standardized way.

An SDK is offered to create own applications for the RF350M, which maps all
available RFID functions. It also contains an API for the native implementation via
C++ and another API for the Microsoft .NET Compact Framework.

This application example shows a customized application of RFID based on the
.NET API created with C#, that demonstrates the basic functions of RFID. This
includes reading, writing, stocktaking and initialization of transponders as well as
the opportunity to switch the read head regarding the available air interfaces
RF300 and ISO15693.

In addition, the example shows how to use the integrated WiFi interface of the
RF350M to send read out transponder data to a PC or a S7-PLC.

Figure 1-1

RFID Use for the

SIMATIC RF350MS7-PLC/PC/PG RFID transponder

Advantages of the application example

This application example offers you the following advantages:

• Expandable Visual Studio project for the SIMATIC RF350M with implemented
RFID functions

• Simple and expandable Windows application to receive transponder data from
RF350M on a PC/PG

• Simple and expandable TIA Portal project to receive transponder data from
RF350M on an S7-PLC.

Assumed knowledge

The following basic user knowledge is required:

• Basics of programming in C#/.NET

• Basics of programming and configuration in the TIA Portal

• Basics of RFID

• Basics of TCP/IP communication

1 Introduction

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 5

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.2 Mode of operation

Below, you will find an explanation of what components, functions and mode of
operations are used in the application example.

General function description

The following figure shows the function principle of this application example and
the key components:

Figure 1-2

SIMATIC S7-1500

TCP/IP via Ethernet/WiFi

Windows PC

"RF350M_DotNet_Server_Example"

SIMATIC RF350M

"RF350M_DotNet_Example"

Application example

for Windows CE

with TCP client for

sending transponder

data

RFID Transponder

(RF300/ISO15693)

.NET Compact

Framework 2.0

RfidHfDotNet API

.NET TCP server

for Windows

S7 function block

with TCP server

WiFi access point

The sample application for the hand-held terminal SIMATIC RF350M was created
with Visual Studio and is based on the .NET Compact Framework 2.0. The
"RfidHfDotNet" API provided with this application example was used to implement
the RFID functions (read, write, initialize, select RFID protocol) of the read head.
The user interface, the program flow and the communication to PC and PLC are
implemented with .NET standard components.

The .NET TCP server for Windows was created with Visual Studio and is
exclusively based on .NET standard components.

The TCP server for the S7-PLC is implemented via the SFB "TRCV_C". The
S7 project was created with TIA Portal V15.1.

1 Introduction

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 6

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Functional sequence

The following functional sequence applies for this application example:

Figure 1-3

Start
application

Select

RFID protocol

Perform

inventories
Write

transponder

Establish
connection

to
TCP server

Read

transponder

Send
transponder

data

Monitor

data

S7-PLC: In a watch table

PC/PG: In the server application

1.3 Components used

This application example was created with the following hardware and software
components:

Table 1-1

Component Number Article number Note

SIMATIC RF350M 1 6GT2803-1BA00 -

SIMATIC RF300
Loading/docking station

1 6GT2803-0BM00 -

Windows PC/PG 1 - You need Windows
7/8/10 for x86/x64

SIMATIC S7-1500
CPU 1513-1 PN/DP

1 6ES7 513-1AL01-0AB0 Alternatively, you can
use a CPU from the
SIMATIC S7-1200
family
(FW > 4.0)

SIMATIC RF300T n - You can use all RF300
transponders

MDS D n - You can use all Moby
D transponders

1 Introduction

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 7

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Component Number Article number Note

SCALANCE W7881-PRO 1 6GK5788-1AA60-2AA0 Alternatively, you can
use any WiFi Access
Point supporting the
standard IEEE 802.11
b/g

Microsoft Visual Studio
2005/2008

1 - -

TIA Portal V15.1 1 6ES7822-1..05-.. -

This application example consists of the following components:

Table 1-2

Component File name Note

Documentation 109747584_RF350M_DotNet_DOC_V11_en.docx This
document

RF350M .Net
SDK

109747584_RF350M_SDK_V10.zip -

VS project 109747584_RF350M_DotNet_CODE_V10.zip -

VS project 109747584_RF350M_DotNet_Server_CODE_V10.zip -

TIA project 109747584_RF350M_S7_Server_CODE_V11.zip -

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 8

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Engineering

2.1 Explanation on the API "RfidHfDotNet"

The API RfidHfDotNet (file "RfidHfDotNet.dll") is created with the namespace
"RfidHfDotNet". The namespace contains all objects required to implement the
RFID functions of the RF300 read head. In addition, the API offers helper methods
and structures to simplify programming.

The .NET API is based on the native API "RfidHf" and therefore requires the DLL
"RfidHf.dll".

Class diagram

The following class diagram shows the API class "RfidHf" with the most important
sub-classes and all available methods:

Figure 2-1

D

+BinToHexString()

+ConnectIntegratedReader()

+Disconnect()

+ELog()

+Finalize()

+GetDotNetFileVersion()

+GetErrorMessage()

+GetFileVersion()

+GetInventory()

+GetLogFilePath()

+GetLogLevel()

+GetLogToFile()

+GetRfidProtocol()

+HexStringToBin()

+InitTag()

+Log()

+MemCompare()

+ReadData()

+ReaderStatus()

+ReadTagStatus()

+ResizeArray()

+SetLogFilePath()

+SetLogLevel()

+SetLogToFile()

+SetNotificationReceiver()

+SetRfidProtocol()

+ULog()

+VLog()

+WriteData()

RfidHf

D

+Clone()

+Compare()

+Equals()

+GetHashCode()

+GetIDString()

+GetProtocolString()

+IsNull()

+ToString()

RfidHf.Tag

D

+AddTag()

+Clear()

+Copy()

+GetEnumerator()

+GetTag()

+HasTag()

+TryGetTag()

RfidHf.TagStorage

Namespace RfidHfDotNet

The sample application uses the API classes and methods marked bold.

Note A detailed list of all members and method interfaces of the API class can be
found in the CHM help file. You can find the file in the "Docs" directory of the
unzipped SDK.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 9

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Explanation of the classes within the "RfidHf" API

The following table explains the most important classes within the API:

Table 2-1

Class Description

RfidHf This class includes all methods and fields for controlling the RFID
read head. It also contains methods for logging the reader and
API activities and simple helper methods.

RfidHf.TagStorage This class implements a memory object for the storage and
management of tag objects.

RfidHf.Tag This class implements a memory object for the storage and
management of transponder data. The tag objects can be stored
in the TagStorage.

Explanation of the methods within the API classes

The table below explains the methods used in the sample application:

Table 2-2

Method Description

BinToHexString() This method converts a byte array into a hex string.

Transponder data (e.g. the UID) are usually stored as byte
array. Displaying a string on a user interface is easier to
realize than a byte array.

ConnectIntegratedReader() This method connects the API with the RFID read head.

Without an established connection, you cannot perform
reader operations (e.g. read write).

Disconnect() This method ends an existing connection to the RFID read
head.

GetInventory() This method sends an inventory command to the RFID read
head.

An inventory returns the transponders found in the antenna
field. Only the UID of the transponder is transmitted. If there
is no transponder in the field, you will receive an exception.
Note: The RF350M does not support multi tag mode. This
means that several transponders must be read in one after
the other.

GetRfidProtocol() This method reads the currently active RFID protocol
(RF300 or ISO15693) of the read head.

HexStringToBin() This method converts a hex string into a byte array.

User inputs on the interfaces are often read in as a string.
This method converts a string directly to the byte array
required for the RFID read head.

InitTag() This method initializes a transponder in the field with a
predefined byte value.

The entire user memory of the transponder will be
overwritten with the predefined byte value.

ReadData() This method sends a read command to the RFID read head.

You can define a start address and the read length in byte. If
there is no transponder in the field, you will receive an
exception.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 10

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Method Description

ReadTagStatus() This method sends a TagStatus command to the RFID read
head.

to read out the transponder meta data. The data include, for
example, memory size, UID, transponder type and error
counter. If there is no transponder in the field, you will
receive an exception.

SetRfidProtocol() This method sets the currently active RFID protocol (RF300
or ISO15693) of the read head.

WriteData() This method sends a write command to the RFID read head.

Start address and writing length in byte can be predefined. If
there is no transponder in the field, you will receive an
exception.

TagStorage.AddTag() This method adds a transponder (object RfidHf.Tag) to the
TagStorage.

TagStorage.Clear() This method deletes the contents of the TagStorage.

Note An extensive description of the method interfaces can be found in the CHM help
file. You can find the file in the "Docs" directory of the unzipped SDK.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 11

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Programming the API functions

This chapter describes the programming interfaces of the .NET-API "RfidHfDotNet"
for the integration of the RFID functionalities in individual applications for the
SIMATIC RF350M.

Please read chapter 3 Valuable Information before you start programming.

2.2.1 API integration and connection to the RFID read head

In order to the functions and methods of the "RfidHfDotNet" API in your Visual
Studio project, you have to integrate the API and connect it to the RFID read head
as follows:

1. Load the RF350M SDK from the entry page (\2\) of this application example
and unzip the file to a directory of your choice.

2. Create a Windows CE project (CE 5.0 or 6.0) for C# with Visual Studio
2005/2008.

3. Integrate the file "RfidHfDotNet.dll" into your project as a reference. You can
find the DLL in the directory "RfidHfApi > dotnet" of the unzipped file.

4. Integrate the file "RfidHf.dll" as an element into your project and change the
setting "Copy to output directory" to "Copy when more recent". This step is
required as the .NET-API is based on the native API (C# wrapper) and this has
also be available in the user directory. You can find the DLL in the directory
"RfidHfApi > native" of the unzipped file.

5. Use the Using directive "RfidHfDotNet" in your C# files to connect the
namespace of the API with the namespace of your application:

using RfidHfDotNet;

6. Declare an object instance (C# class) of the API. This makes the API available
to the entire class.

RfidHf myRfidHfApi;

7. Initialize an object of the "RfidHf" class. You can do this in the constructor of a
Windows Forms class, for example.

myRfidHfApi = new RfidHf();

8. Connect the class object with the RFID read head with the method
"ConnectIntegratedReader". You can do this in the constructor of a Windows
Forms class, for example, to have the API connected to the reader directly
after starting the form instance.

myRfidHfApi.ConnectIntegratedReader();

We recommend to execute the method in a "try catch" command, to diagnose
possible connection problems.

Note One API instance can connect to the RFID read head at a time.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 12

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2.2 Implementing RFID functions

This chapter describes how to implement the key RFID functions. Before you start,
connect the API instance with the RFID read head.

Reading out the active RFID protocol

To read out the RFID protocol (RF300 or ISO15693) active on the RFID read head,
proceed as follows:

1. Declare the enumeration "RF300_RFID_PROTOCOL".

RfidHf.RF300_RFID_PROTOCOL protocol;

2. Call up the method "GetRfidProtocol" of the API instance and assign the return
value to the protocol object.

protocol = myRfidHfApi.GetRfidProtocol();

3. The value of the enumeration outputs the currently active RFID protocol.

// Enumeration values

RfidHf.RF300_RFID_PROTOCOL.RFID_PROTOCOL_RF300

RfidHf.RF300_RFID_PROTOCOL.RFID_PROTOCOL_ISO15693

Enabling the active RFID protocol

To enable the RFID protocol of the RFID read head, call up the method
"SetRfidProtokoll" of the API instance and transfer your desired protocol value of
the enumeration "RF300_RFID_PROTOKOLL" and the Boolean value "true" to
enable the protocol.

// Set RFID protocol for RF300 TAGs

myRfidHfApi.SetRfidProtocol(

RfidHf.RF300_RFID_PROTOCOL.RFID_PROTOCOL_RF300, true);

// Set RFID protocol for ISO15693 TAGs

myRfidHfApi.SetRfidProtocol(

RfidHf.RF300_RFID_PROTOCOL.RFID_PROTOCOL_ISO15693, true);

Performing inventories

To perform an inventory, proceed as follows:

1. Declare an undefined array with API data type "RF300_TAG_ID".

RfidHf.RF300_TAG_ID[] tagIDs;

2. (Optional) Create a "TagStorage" type object to store the found transponder in
it.

RfidHf.TagStorage tagStorage = new RfidHf.TagStorage();

3. Call up the method "GetInventory" of your API instance and assign your return
value to the array created beforehand. The read out transponder object will be
stored in the array index 0.

tagIDs = myRfidHfApi.GetInventory();

We recommend to execute the method in a "try catch" command, to be able to
handle inventory cycles with transponders detected.

4. (Optional) Store the found transponder with the method "AddTag" in the
TagStorage and transfer a new "Tag" type object to the method. TagStorage
simplifies the management of several detected transponders.

tagStorage.AddTag(new RfidHf.Tag(tagIDs[0]));

Repeat steps 3 and 4 in a while loop to inventorize several transponders
subsequently.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 13

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Reading the transponder status

To read out the transponder status of a transponder, proceed as follows:

1. Create an object of the "RF300_TAG_STATUS" type. The read out
transponder status is stored in this object.

RfidHf.RF300_TAG_STATUS tagStatus =

 new RfidHf.RF300_TAG_STATUS();

2. Call up the method "ReadTagStatus" of the API instance and assign the return
value to the created Status object.

tagStatus = myRfidHfApi.ReadTagStatus();

We recommend to execute the method in a "try catch" command, to handle
commands with no transponder.

Reading the user memory

To read out the user memory of a transponder, proceed as follows:

1. Declare and define an Int variable for the start address (in this example
address 0) from where you want to read the user memory. Declare and define
a second Int variable for the data length to be read (in this example address
100 bytes).

int length = 0;

int startAddress = 100;

2. Declare a byte array to store the read out data.

byte[] data;

3. Call up the method "ReadData" of your API instance and transfer an empty
object of the "RF300_TAG_ID" type, the start address and the data length.
Assign the return value of the method to the declared byte array.

data = myRfidHfApi.ReadData(

new RfidHf.RF300_TAG_ID(), startAddress, length);

We recommend to execute the method in a "try catch" command, to handle
commands with no transponder or incorrect transfer parameters.

Writing on the user memory

To write on the user memory of a transponder, proceed as follows:

1. Declare and define an Int variable for the start address (in this example
address 0) from where you want to write on the user memory. Declare and
define a second Int variable for the data length to be written (in this example
address 100 bytes).

Int length = 0;

int startAddress = 100;

2. Declare and define a byte array to store the data to be written. If your data are
available as a string, you can use the helper method "HexStringToBin" to
convert the string to a byte array.

byte[] writeData = RfidHf.HexStringToBin(stringDataToWrite);

3. Call up the method "WriteData" of your API instance and transfer an empty
object of the "RF300_TAG_ID" type, the start address, the data length and the
byte array containing the data to be written.

myRfidHfApi.WriteData(

new RfidHf.RF300_TAG_ID(), startAddress, length, writeData);

We recommend to execute the method in a "try catch" command, to handle
commands with no transponder or incorrect transfer parameters.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 14

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Initializing the transponder

To initialize a transponder with a specific byte value, proceed as follows:

1. Read out the transponder status and save it in a Status object
(RF300_TAG_STATUS).

2. Declare and define a byte (in this example 255 or FF) the value of which you
want to use to initialize a transponder.

byte initByte = 255;

3. Call up the method "InitTag" of the API instance and transfer an empty object
of the "RF300_TAG_ID" type, the transponder type (field "bTagType2" in the
status object) and the Byte value to be initialized.

myRfidHfApi.InitTag(

new RfidHf.RF300_TAG_ID(), tagStatus.bTagType2, initByte);

We recommend to execute the method in a "try catch" command, to handle
commands with no transponder.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 15

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Explanations on the sample application

This chapter explains how the API functions of the example project have been
implemented.

2.3.1 Structural configuration of the application

The following diagram shows the setup of the sample application:

Figure 2-2

.NET Compact Framework 2.0

RfidHfDotNet-API

RfidHfDotNet.dll

Sample application:

"RF350M_DotNet_Example"

for the SIMATIC RF350M

MyTagData

RF350MDotNetExampleForm.cs

RfidHf API native

RfidHf.dll

RF350MDotNetExampleForm

RF350MDotNetExampleForm.cs

TcpClient

RF350MDotNetExampleForm.cs

The sample application is based on a Windows Forms project from Visual Studio
and uses the .NET Compact Framework 2.0, because the hand-held terminal
RF350M is based on Windows CE.

The RFID functionality is implemented within the "RF350MDotNetExampleForm"
class. So, from this class, the methods of the RfidHfDotNet API are called up, the
return values are processed and displayed to the user with different Windows
Forms objects. The class "MyTagData" implements a data pair made up of
transponder address and data byte and serves as a memory for transponder data.
A simple display for the user interface can be created from this structure.

The .NET class "TcpClient" and its methods are used for transmission of the
transponder data to a PC/PG or a PLC.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 16

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.2 Implementing the API functions in the sample application

The following sequence diagrams show the implementation of key API functions
within the sample application. The design of the Forms objects of the user interface
will not be explained.

Reading out the active RFID protocol

Figure 2-3

RF350MDotNet-

ExampleForm
User RfidHfDotNet

rfidTabControl_

SelectedIndexChanged()

GetRfidProtocol()

When the user goes to the "Settings" register card of the mobile sample
application, the event handler "rfidTabControl_SelectedIndexChanged" is called
up. Within the event handler, the API method "GetRfidProtocol" is executed, which
returns the active RFID protocol of the RFID read head. This information will be
logged in the drop-down list showing the active RFID protocol.

Enabling the active RFID protocol

Figure 2-4

RF350MDotNet-

ExampleForm
User RfidHfDotNet

tagTypeComboBox_

SelectedIndexChanged

SetRfidProtocol()

By selecting entries in the drop-down list in the "Settings" register card of the
mobile application, the event handler "tagTypeComboBox_SelectedIndexChanged"
is called up. The API method "SetRfidProtocol" is executed within the event
handler. Depending on the selection of the entry in the drop-down list, the RFID
protocol to be activated is transferred to the method "SetRfidProtocol".

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 17

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Performing inventories

Figure 2-5

RF350MDotNet-

ExampleForm
User RfidHfDotNet

inventoryButton_Click() GetInventory()

DoInventory()

TagStorage.AddTag()

When the user clicks on the "Start Inventory" button in the "Inventory" register, the
event handler "inventoryButton_Click" is called up. The method "DoInventory" is
executed within the event handler. This method is started in a separate thread so it
will not block the user interface. Within DoInventory, the API method
"GetInventory" is executed in a loop to constantly look for transponders. All found
transponders are stored in a TagStorage object via "TagStorage.AddTag". The
application will carry out inventories until the user clicks on this button again.

Reading the user memory and transponder status

Figure 2-6

RF350MDotNet-

ExampleForm
User RfidHfDotNet

readButton_Click() ReadTagStatus()

ReadData()

When the user clicks on the "Read TAG" button in the "Read/Write" register, the
event handler "readButton_Click" is called up. The API method "ReadTagStatus" is
executed within the event handler to determine the size of the user memory of the
transponder. The size is used to initialize a byte array that can hold the entire user
memory of the transponder.
Then the transponder is read out via the API method "ReadData". The return value
is stored in the initialized byte array.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 18

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Writing on the user memory

Figure 2-7

RF350MDotNet-

ExampleForm
User RfidHfDotNet

writeButton_Click() ReadTagStatus()

WriteData()

When the user clicks on the "Write TAG" button in the "Read/Write" register, the
event handler "writeButton_Click" is called up. The API method "ReadTagStatus" is
executed within the event handler to determine the size of the user memory of the
transponder. The user must know the size of the user memory of the transponder,
if he wants to write on its complete user memory.
Then the transponder is written on via the API method "WriteData".

Initializing the transponder

Figure 2-8

RF350MDotNet-

ExampleForm
User RfidHfDotNet

initButton_Click() ReadTagStatus()

InitTag()

When the user clicks on the "Initialize TAG" button in the "Init" register, the event
handler "initButton_Click" is called up. The API method "ReadTagStatus" is
executed within the event handler to determine the type of the transponder. The
transponder type is required for the initialization method.
Then the transponder is initialized via the API method "InitTag".

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 19

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.3 Implementing the TCP data exchange

Data transfer between the two applications is always unidirectional and
asynchronous from the hand-held terminal to the PC/PG or the PLC. The
"TcpClient" .NET class based on Systems.Net.Sockets is used as a software basis
for TCP communication.

The transfer is done with data packages with predefined size. A data packages is
made up of the biggest possible user memory (65 bytes) of an RF300 transponder.
If you have read a smaller amount of data from a transponder, the remaining bytes
are filled up with the value "0".

A WiFi connection to the PC/PG or the PLC must be available to perform the data
transfer. Please note chapter 2.6.1 Establishing a WiFi connection.

Transmitting the data package

Figure 2-9

NetworkStream

Transponder data: Byte 0 … byte 65277Transponder data: Byte 0 … byte 65277

PC/PG or PLC Mobile application

A data package is written in the NetworkStream of an existing TCP connection with
the .NET method "TcpClient.Send" after the read transponder data have been
aggregated in a byte array by the sample application. The PC application or PLC
program reads the data package from this NetworkStream.

Sequence diagram for the data transfer steps in the mobile application

Figure 2-10

RF350MDotNet-

ExampleForm
User

connectButton_Click() Connect()

Send()

TcpClient

sendButton_Click()

When the user clicks on the "Connect to Server" button in the "Settings" register,
the event handler "connectButton_Click" is called up. The TcpClient method
"Connect" is executed within the event handler to establish a connection to the
TCP server (PC/PG or PLC). After the connection has been established
successfully, the "Transfer" button in the "Read/Write" register is activated.
When the user clicks on the "Transfer" button after the connection has been
established, the event handler "sendButton_Click" is called up. The data to be sent
are aggregated within the event handler and the method "Send" is carried out to
send the data.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 20

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 Explanations on the TCP server for Windows

The simple TCP server for Windows was created with Visual Studio 2005 and
.Net 2.0.

The application only opens a TCP socket and waits for a TCP connection
transmitting user data. The user data are displayed in a DataGrid and can be
exported to CSV format.

2.4.1 Structural configuration of the application

The following figure shows the structure of the server application:

Figure 2-11

.NET Framework 2.0

Networkstream

RF350MServerMainForm.cs

Application example:

„RF350M_DotNet_Server_

Example"

for Windows x64/x86

MyTagData

RF350MServerMainForm.cs

RF350MServerMainForm

RF350MServerMainForm.cs

TcpListener

RF350MServerMainForm.cs

2.4.2 Mode of operation

This chapter describes how to implement the TCP server. It does not describe all
functions of the application.

Enabling the TCP listener

The application enables a TCP listener directly after the form has been loaded
(load event):

myTcpListener = new TcpListener(IPAddress.Any, 49151);

myTcpListener.Start();

myTcpListener.BeginAcceptTcpClient(

new AsyncCallback(AcceptTcpClient), myTcpListener);

The TcpListener listens to port 49151 on all network interfaces.

The asynchronous method BeginAcceptTcpClient() of the listeners is used to
process connection requests by TCP clients. The advantage of
BeginAcceptTcpClient() is that this method is started in an own thread managed by
.NET and thus does not block the UI thread for user inputs. Transfer the
TcpListener object to the method BeginAcceptTcpClient().

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 21

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Accepting connection requests and extracting the NetworkStream

The callback AcceptTcpClient() of the callup BeginAcceptTcpClient() processes the
actual connection requests:

TcpListener tcpListener = (TcpListener)ar.AsyncState;

TcpClient tcpClient = myTcpListener.EndAcceptTcpClient(ar);

myNetworkStream = tcpClient.GetStream();

The TcpListener object is passed on to you via the AsyncState interface.
EndAcceptTcpClient() accepts the connection request and creates a TcpClient
object delivering the actual network stream with the method GetStream().

Use the network stream to receive user data via TCP (Read).

Reading out the NetworkStream

After a TCP connection has been established and the according network stream is
available, read out the stream via the asynchronous method BeginRead() of the
network stream:

byte[] readBuffer = new byte[1024];

myNetworkStream.BeginRead(

readBuffer, 0, readBuffer.Length, new syncCallback(HandleReadData),

readBuffer);

The advantage of BeginRead() is that this method is started in an own thread
managed by .NET and thus does not block the UI thread for user inputs. Transfer
the readBuffer receive buffer to the method BeginRead(). The callback method
HandleReadData() is called up as soon as the receive buffer readBuffer is full. You
manage the received data within the callback.

Aggregating and processing received data

The callback HandleReadData makes the received data from the receive buffer
available (1024 bytes in this example).

byte[] received = (byte[])ar.AsyncState;

int readLength = myNetworkStream.EndRead(ar);

The receive buffer is passed on to you via the AsyncState interface. The method
EndRead() ends the read process from the network stream. The method returns
the received data length.

To receive further data, call up BeginRead() again within the callback:

byte[] readBuffer = new byte[1024];

myNetworkStream.BeginRead(

readBuffer, 0, readBuffer.Length, new syncCallback(HandleReadData),

readBuffer);

In this example, the receive buffer is copied to a larger buffer which can take the
maximum length of the transponder user data. This means that you have to read
the network stream until the number of read bytes was aggregated to 65277. Once
the value has been reached, you have received a complete frame from the sample
application of the RF350M. You can now output the data in a DataGrid, for
example, or process otherwise.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 22

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.5 Explanations on the S7 server block for a PLC

The S7 project was created with TIA Portal V15.1 and is suitable for all S7-1200
and S7-1500 controllers. The project includes an S7 user block which receives
transponder data from the SIMATIC RF350M and stores them in a data block.
From there, the transponder data can be used for further processing.

2.5.1 Structure of the S7 user program

The following figure shows the call hierarchy of the S7 user program.

Figure 2-12

Data blocksSystem blockUser blockOB1 cycle

Main
Server-

Rf350M

TagData-

RF350M

TRCV_C
InstServer-

RF350M

Interface

2.5.2 Mode of operation

The S7 user block "ServerRF350M" opens a TCP socket for the S7-PLC via the
internally called system block "TRCV_C". The mobile application of the RF350M
uses TCP/IP to connect to this socket.

After the RF350M application has established a connection to the PLC, the S7 user
block is waiting for user data.

As soon as a complete user data package (65277 bytes) has been received by the
sample application og zhr RF350M, a bit is set signaling the user that new data
have been received. In the same cycle, the received data are copied in the data
block "TagDataRF350M", where they are available for further processing.

All relevant controllable tags of the sample project are stored in the data block
"Interface". This includes the connection parameters of the TCP block.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 23

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Block interface in the TIA Portal

The following figure shows the block interface of the S7 user block
"ServerRF350M":

Figure 2-13

Input/output parameters

Table 2-3

Name Data type Description

rcvActive Bool FALSE: TCP server inactive.

TRUE: TCP server is active and ready to receive.

connectParam TCON_IP_V4 Reference to the connection parameters for the
block TRCV_C.

tagData Array[0..65276]
of Byte

Reference to the receive area for transponder data.

Output parameters

Table 2-4

Name Data type Description

newData Bool TRUE: New transponder data have been received.

When this output is set to TRUE, the received
transponder data are copied into the "tagData"
memory area.

done Bool TRUE: Connection successfully
established/disconnected or new data received.

busy Bool TRUE: Connection is established or disconnected
or block is waiting for data.

error Bool TRUE: Error when establishing or disconnecting
connection or when receiving data. Refer to the
output "status" for more detailed information.

status Word Current block status.

Refer the online help on the TRCV_C block for
more detailed information on the status.

Note The output parameters "newData" and "done" are each only pending for one
cycle.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 24

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6 Commissioning

The following chapters describe how to commission the applications of this sample.

Note In this example, we assume that the hand-held terminal, the PLC, the PC and
the WiFi Access Point are in the same IP subnet.

The following subnet is used: 192.168.0.0/24

2.6.1 Establishing a WiFi connection

The steps required to connect the hand-held terminal to an access point via WiFi
are explained below. At this Access Point, either a PC/PG must be connected to
the TCP server or a PLC must be connected with the server block.

1. Set up your access point. The hand-held terminal has WiFi support according
to the IEEE 802.11 b/g standards.

Note In order to follow the startup description of this chapter, make sure to assign a
visible SSID to your WiFi. In addition, provide the network with a WPA2 key to
ensure basic security.

2. Start the preinstalled "Summit Client Utility" application on the mobile hand-
held reader. You can find this application in "Start" > "Programs" > "Summit" >
"SCU" on the hand-held terminal.

3. Go to the "Profile" tab and then click "Scan" to search for WiFi networks within
range.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 25

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. Select the SSID you have configured in your access point and click
"Configure".

5. Enter the WiFi key you have defined and select "OK" to confirm.

6. Select "Commit" to confirm.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 26

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7. Go to the "Main" tab and in the "Active Profile" drop-down menu, select the
connection profile you have just created.
If you have entered all the data correctly, the hand-held terminal will connect to
the WiFi network. Now "Status" displays "Associated".

2.6.2 Upload and start of the RFID application on the hand-held terminal

How to copy the mobile sample application to the hand-held terminal and how to
start it is explained below:

8. Follow the instructions of "Establishing a connection to the SIMATIC RF350M"
in chapter 3 Valuable Information.

9. Download the "109747584_RF350M_DotNet_CODE_V10.zip" file from the
entry page of this application example (\1\).

10. Unpack the archive to a directory of your choice.

11. Go to directory "RF350M_DotNet_Example > Application" of the unpacked
project.

12. Copy the contained files "RF350M_DotNet_Example.exe", "RfidHF.dll" and
"RfidHfDotNet.dll" to the clipboard.

13. Start the Windows Mobile Device Center.

14. Hold the mouse over the button "Connect without setting up your device" and
click on "File Management > Browse the contents of your device".

15. Open the directory "Flash" by double-clicking it.

16. Paste the data from the clipboard to the folder.

17. On the hand-held terminal, go to "My device > Flash" and start the application
"RF350M_DotNet_Example.exe".

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 27

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.3 Commissioning the server application for Windows

How to start the server application for Windows is explained below:

1. Download the "109747584_RF350M_DotNet_Server_CODE_V10.zip" file from
the entry page of this application example (\1\).

2. Unpack the archive to a directory of your choice.

3. Go to directory "RF350M_DotNet_Server_Example > Application" of the
unpacked project.

4. Start the TCP server with a double-click on the application
"RF350M_DotNet_Server_Example.exe".

2.6.4 Commissioning the S7 server block

The following table explains how to commission the STEP 7 V15.1 project:

1. Download the zip file "109747584_RF350M_S7_Server_CODE_V11.zip" from
the entry page of this application example (\1\).

2. Unpack the archive to a directory of your choice.

3. Open the project by double-clicking on
"RF350M_S7_Server_Example_V15.1.ap15_1".

4. Select the CPU in the project tree and click on "Download to device".

5. In the TIA Portal project, go to "PLC_1 > Watch and force tables" and open the
watch table "ControlTcpServer" with a double-click.

6. Click on the "Monitor all" button.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 28

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7. Set the tag "Interface.activateCom" to TRUE, to activate the TCP server.

8. The tags diagnosing the S7 block can be found under "Diagnose for server FB
and communication".

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 29

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.7 Operating the Application Example

The following chapters describe how to operate the applications of this sample.

2.7.1 Selecting the RFID protocol and connecting to the TCP server

1. Once the application is started, go to the "Settings" task card.

2. Select in the "Tag type" drop-down list, if you want to read a RF300 or ISO
transponder.
Enter the IP address of the TCP server (server application or S7 server block)
in the field "IP Address".
Click on "Connect to Server" to establish a connection.

3. Once the connection is successfully established, the text on the button
changes to "Disconnect".

4. Click "Disconnect" to disconnect the connection.

2.7.2 Performing inventories

1. Go to the "Inventory" task card.

2. Click the "Start Inventory" button.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 30

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3. The button changes its font color to read and now shows the text "Stop
inventory". Now hold several transponders before the read head of the hand-
held terminal. The list now shows all found transponder IDs. In addition, the
number of found transponders is shown in the "Tag counter" field.

4. Click on "Stop Inventory" to stop the process.

2.7.3 Reading the transponder

1. Go to the "Read/Write" task card.

2. In the field "Start address", enter the address of the user memory of the
transponder you want to read. Then enter the length (in bytes) you want to
read into the field "Read/Write length".
As an alternative, you can select the "Read/Write complete user mem" control
box to read the complete transponder.

3. Hold a transponder to the read head and then click on "Read TAG" to read the
transponder according to your predefinitions. While the data are read and
processed, the note "Processing… Please wait" is displayed.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 31

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. After the user memory of the transponder has been read, you can see the
transponder addresses and the related user data (bytes in HEX format) in the
list. You can also see the transponder ID in the field "UID".

2.7.4 Writing on the transponder

1. Go to the "Read/Write" task card.

2. Read the transponder before you write on it.

3. Click in any data field of the list to change the value of the byte. Enter the
desired value in the hand-held terminal with the key fields. Only HEX values
can be used: "00" to "FF".

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 32

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. In the field "Start address", enter the address of the user memory of the
transponder you want to write on. Then enter the length (in bytes) you want to
write from the specified address into the field "Read/Write length".
As an alternative, you can select the "Read/Write complete user mem" control
box to write on the complete transponder.

5. Hold a transponder to the read head and then click on "Write TAG" to write on
the transponder according to your predefinitions. While the data written, the
note "Processing… Please wait" is displayed.

2.7.5 Initializing the transponder

1. Go to the "Init" task card.

2. In the field "Init value", enter the byte value for initializing the entire
transponder.

3. The click "Initialize TAG" to start the process. While the data written, the note
"Processing… Please wait" is displayed.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 33

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.7.6 Sending transponder data to the TCP server

1. To start the TCP server of the server application for Windows, follow the
instructions given in chapter 2.6.3 Commissioning the server application for
Windows.
As an alternative, to start the TCP server of the S7-PLC, follow the instructions
given in chapter 2.6.4 Commissioning the S7 server block.

2. Connect to a TCP server as described in chapter 2.7.1 Selecting the RFID
protocol and connecting to the TCP server.

3. To read a transponder, follow the instructions given in chapter 2.7.3 Reading
the transponder.

4. Click the "Transfer" button to send the read transponder data to the TCP
server (S7-PLC or Windows PC/PG). The button is enabled after a connection
to a server has been established.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 34

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Monitoring the received transponder data with the server application for Windows

1. The server application automatically receives transponder data from the mobile
RFID application of the SIMATIC RF350M. The received data are shown in a
list.

2. Enter any transponder address in the input field beside the button "Jump to
Address" and then click on the button to jump to the desired address on the
memory.

3. Click on the "Export" button to export the received data in CSV format. Follow
the instructions in the pop-up dialog.

4. Click on the "Clear Data" button to delete the received data.

2 Engineering

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 35

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Monitoring the received transponder data in the S7-PLC

1. In the TIA Portal project, go to "PLC_1 > Watch and force tables" and open the
watch table "ControlTcpServer" with a double-click.

2. Click on the "Monitor all" button.

3. The S7 block automatically receives transponder data from the mobile RFID
application of the SIMATIC RF350M. Part of the received data is shown in the
watch table under "Received Data".

3 Valuable Information

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 36

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Valuable Information
This chapter describes how to set up the SDK and a connection from Visual Studio
to the hand-held terminal.

Installing SDK

The SDK contains the debugging environment for the SIMATIC RF350M. Install the
SDK as follows:

1. Load the RF350M SDK from the entry page (\2\) of this application example
and unzip the file to a directory of your choice.

2. Open the file "Windows CE 6.0 SDK" and double-click on
"Merlin_SDK_2011.msi".

3. Follow the instructions of the installer to install the SDK.

Establishing a connection to the SIMATIC RF350M

The steps required to connect Visual Studio or the PC/PG and the hand-held
terminal are explained below. This connection is required for remote debugging of
your application.

1. Connect the power supply unit (included in delivery) to the docking station.

2. Plug the hand-held terminal into the docking station. The terminal starts up
automatically.

3. Wait until Windows CE has loaded on the terminal.

4. Connect the USB cable (included in delivery) with a USB port of your PC/PG.

5. Start Windows Mobile Device Center (active sync).

Note Windows Mobile Device Center opens automatically when you connect the
SIMATIC RF350M to your PC/PG using USB. When connected for the first time,
Windows Mobile Device Center will be installed. Follow the instructions on your
screen.

6. The docking station with plugged in hand-held terminal will actively establish
an active-sync connection to the Windows Mobile device center. Once the
device has been connected, the device status "Connected" is shown in the
device center:

7. If the SDK is installed and the active-sync connection has been established,
Visual Studio will also be connected with the hand-held terminal.

4 Annex

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 37

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Annex

4.1 Service and support

Industry Online Support

Do you have any questions or need support?

Siemens Industry Online Support offers access to our entire service and support
know-how as well as to our services.

Siemens Industry Online Support is the central address for information on our
products, solutions and services.

Product information, manuals, downloads, FAQs and application examples – all
information is accessible with just a few mouse clicks at:
https://support.industry.siemens.com

Technical Support

Siemens Industry's Technical Support offers quick and competent support
regarding all technical queries with numerous tailor-made offers
 – from basic support right up to individual support contracts.

Please address your requests to the Technical Support via the web form:
www.siemens.com/industry/supportrequest

Service offer

Our service offer comprises, among other things, the following services:

• Product Training

• Plant Data Services

• Spare Parts Services

• Repair Services

• On Site and Maintenance Services

• Retrofit & Modernization Services

• Service Programs and Agreements

Detailed information on our service offer is available in the Service Catalog:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

Thanks to the "Siemens Industry Online Support" app, you will get optimum
support even when you are on the move. The app is available for Apple iOS,
Android and Windows Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/cs/start?lc=en-WW
http://www.siemens.com/industry/supportrequest
https://support.industry.siemens.com/cs/sc?lc=en-WW
https://support.industry.siemens.com/cs/ww/en/sc/2067

4 Annex

RF350M_DotNet
Entry ID: 109747584, V1.1, 08/2019 38

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Links and literature

Table 4-1

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the entry page of the application example

https://support.industry.siemens.com/cs/ww/en/view/109747584

4.3 Change documentation

Table 4-2

Version Date Modifications

V1.0 09/2017 First version

V1.1 08/2019 Update to TIA Portal V15.1

https://support.industry.siemens.com/cs/start?lc=en-WW
https://support.industry.siemens.com/cs/ww/en/view/109747584

	.NET application for the SIMATIC RF350M with WiFi connection
	Warranty and Liability
	1 Introduction
	1.1 Overview
	1.2 Mode of operation
	1.3 Components used

	2 Engineering
	2.1 Explanation on the API "RfidHfDotNet"
	2.2 Programming the API functions
	2.2.1 API integration and connection to the RFID read head
	2.2.2 Implementing RFID functions

	2.3 Explanations on the sample application
	2.3.1 Structural configuration of the application
	2.3.2 Implementing the API functions in the sample application
	2.3.3 Implementing the TCP data exchange

	2.4 Explanations on the TCP server for Windows
	2.4.1 Structural configuration of the application
	2.4.2 Mode of operation

	2.5 Explanations on the S7 server block for a PLC
	2.5.1 Structure of the S7 user program
	2.5.2 Mode of operation

	2.6 Commissioning
	2.6.1 Establishing a WiFi connection
	2.6.2 Upload and start of the RFID application on the hand-held terminal
	2.6.3 Commissioning the server application for Windows
	2.6.4 Commissioning the S7 server block

	2.7 Operating the Application Example
	2.7.1 Selecting the RFID protocol and connecting to the TCP server
	2.7.2 Performing inventories
	2.7.3 Reading the transponder
	2.7.4 Writing on the transponder
	2.7.5 Initializing the transponder
	2.7.6 Sending transponder data to the TCP server

	3 Valuable Information
	4 Annex
	4.1 Service and support
	4.2 Links and literature
	4.3 Change documentation

