

MQTT Client for
SIMATIC S7-1500 and
S7-1200

Blocks for S7-1500 and S7-1200

https://support.industry.siemens.com/cs/ww/en/view/109748872

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109748872

Legal information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 2

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are
non-binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with Industrial Security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed

at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of Contents

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 3

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Legal information ... 2

1 Introduction .. 4

1.1 Overview... 4
1.2 Principle of Operation ... 6
1.3 Components Used .. 7

2 Engineering .. 9

2.1 Block Description .. 9
2.2 Configuration .. 10
2.2.1 Create TIA Portal Project ... 10
2.3 Integration of the Function Block in the User Program 11
2.3.1 Opening the "LMQTT" Global Library .. 11
2.3.2 Copying Function Blocks and Data Types to the User Program 13
2.3.3 Creating Global Data Block .. 14
2.3.4 Calling Function Blocks in the User Program 19
2.4 Configuration of the Security Feature .. 21
2.4.1 Using the TIA Portal Global Certificate Manager 22
2.4.2 Using the Local CPU Certificate Manager ... 26
2.5 Parameterization and Operation .. 29
2.6 Error Handling .. 35

3 Useful Information ... 36

3.1 Fundamentals of MQTT ... 36
3.1.1 Terminology .. 36
3.1.2 Standard and Architecture.. 37
3.1.3 Features ... 38
3.1.4 Structure of the MQTT Control Packets ... 40
3.1.5 MQTT Connection .. 41
3.1.6 MQTT Push Mechanism ... 44
3.1.7 MQTT Sub-Mechanism .. 47
3.1.8 MQTT Ping Mechanism .. 50
3.1.9 MQTT Disconnection .. 51
3.2 How the FB "LMQTT_Client" Works .. 52
3.2.1 Requirements and Implementation .. 52
3.2.2 State Machine "STATE_MACHINE_FUNCION_BLOCK_TCP" 53
3.2.3 State Machine "MQTT_STATE_MACHINE" 55
3.2.4 State Machine "MQTT_COMMANDS" ... 56
3.2.5 Function Diagram ... 60

4 Appendix .. 61

4.1 Service and support ... 61
4.2 Industry Mall ... 62
4.3 Links and literature ... 63
4.4 Change documentation .. 63

1 Introduction

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 4

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

1.1 Overview

Motivation

Digitization has a major impact on the economy and society and is progressing
inexorably. The "Internet of Things" (short: IoT) is one of the main drivers of
digitization. The term "Internet of Things" is synonymous with one of the biggest
current dynamics of change: the increasing networking and automation of devices,
machines and products.

The protocol "Message Queue Telemetry Transport" (short: MQTT) is used in the
"Internet of Things" as a communication protocol. Its lightweight approach opens
up new possibilities for automation.

Slim and quick: MQTT

The MQTT is a simple built-in binary publish and subscribe protocol at the TCP/IP
level. It is suitable for messaging between low-functionality devices and
transmission over unreliable, low-bandwidth, high-latency networks. With these
characteristics, MQTT plays an important role for IoT and in M2M communication.

Criteria of MQTT

The MQTT protocol is distinguished by the following criteria:

• Lightweight protocol with low transport overhead

• Minimal need for network bandwidth through push mechanism

• Function for re-connection disconnection

• Re-sending messages after disconnection

• Mechanism for notifying interested parties after an unpredicted disconnection
of a client

• Simple use and implementation thanks to a small set of commands

• Quality of Serice (QoS level) with different reliability levels for the message
delivery

• Optional encryption of messages with SSL/TLS

• Authentication of publishers and subscribers with username and password

Applicative implementation

To implement the MQTT protocol in a SIMATIC S7 Controller, the "LMQTT" library
offers an adequate solution.

The "LMQTT" library provides a function block for the SIMATIC S7-1500 and
SIMATIC S7-1200. The function block "LMQTT_Client" integrates the MQTT Client
function and allows you to submit MQTT messages to a broker (Publisher role) and
to create subscriptions (Subscriber role). The communication can be secured via a
TLS connection.

1 Introduction

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 5

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 1-1

Note The MQTT Client supports MQTT protocol version 3.1.1.

1 Introduction

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 6

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.2 Principle of Operation

Schematic representation

The following figure shows the most important relationships between the
components involved and the steps required for secured MQTT communication
(MQTT over TLS).

Figure 1-2

MQTT Broker

MQTT-Server

Certificate Store
idx Cert_Name

STEP 7 (TIA Portal)

S7 CPU

(MQTT Client)

Cert_xy

Cert_xy1

MQTT over TLS

Engineering

1

2

3

4

Topic y
Message

LMQTT_

Client

Connection

parameters

Publish

Topic x
Message

Topic z
Message

Topic y
Message

(Un)Subscribe

Table 1-1

Step Description

1 Determine the CA certificate of the MQTT Broker.

2 Importing the third-party certificate into STEP 7 (TIA Portal). The certificate is
now in the global certificate manager of STEP 7.

3 You must assign the imported certificate to the S7 CPU. To recognize the
certificate as valid, the time of the S7-CPU must be current.

4 The function block "LMQTT_Client" assumes the following roles:

• Publisher to send MQTT messages to the MQTT Broker

• Subscriber to subscribe to MQTT messages or end subscriptions

The MQTT message is encrypted via a secure connection (MQTT over TLS).

Note A more detailed functional description of the function block "LMQTT_Client" and
information on the MQTT protocol can be found in section 3.

1 Introduction

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 7

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.3 Components Used

The following hardware and software components were used to create this
application example:

Table 1-2

Components Quantity Article number Note

CPU 1513-1 PN 1 6ES7513-1AL01-0AB0 • Alternatively you can use
another S7 1500 CPU or
ET 200 CPU (ET 200SP,
ET 200pro). At least firmware
version 2.0 is required for
secure MQTT communication
via TLS.

• Alternatively, you can use an
S7-1200 CPU with firmware
V4.4 or higher.

• Alternatively, you can also
use the following
components:

– CP 1543-1
(6GK7543-1AX00-0XE0)
with firmware V2.0 or
higher

– CP 1545-1
(6GK7545-1GX00-0XE0)

– CP 1543SP-1
(6GK7543-6WX00-0XE0)

– CP 1243-1
(6GK7243-1BX30-0XE0)
with firmware V3.2 or
higher

– CP 1243-8 IRC
(6GK7243-8RX30-0XE0)
with firmware V3.2 or
higher

– CP 1243-7 LTE
(6GK7243-7KX30-0XE0 /
6GK7243-7SX30-0XE0)
with firmware V3.2 or
higher

TIA Portal V16 - DVD:
6ES7822-1AA06-0YA5
Download:

6ES7822-1AE06-0YA5

-

MQTT Broker - - If you want to encrypt the
communication, the MQTT Broker
must support SSL/TLS.

This application example consists of the following components:

Table 1-3

Components File name

"LMQTT" library 109780503_Libraries_Comm_Controller_LIB_V1_0_0.zip

This document 109748872_MQTT_Client_DOKU_V3-0_de.pdf

1 Introduction

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 8

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note With S7-1500 CPUs (firmware V2.0 or higher) or S7-1200 CPUs (firmware V4.4
or higher), you can reach the MQTT Broker via a static IP address or a domain
name ("Qualified Domain Name", short: QDN) if you use the "LMQTT" library.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 9

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Engineering

Note The engineering in this section focuses on the MQTT Client function, which
realizes this application example.
It is assumed that you have already installed and configured the MQTT Broker.

2.1 Block Description

You can find the module description in the following entry:

https://support.industry.siemens.com/cs/ww/en/view/109780503

https://support.industry.siemens.com/cs/ww/en/view/109780503

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 10

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Configuration

The application example in entry 109748872 shows the configuration.

2.2.1 Create TIA Portal Project

1. Create a TIA Portal project with the CPU that you want to use for the
application example.

2. Parameterize the Ethernet interface of the CPU with an IP address that lies in
the same subnet as the MQTT Broker.

3. If you are using a cloud service like AWS, parameterize a router and a DNS
server.

4. Connect the CPU and the MQTT Broker via Ethernet.

Note For secured MQTT communication via TLS, you need an S7-1500 CPU with
firmware version 2.0 or higher, or an S7-1200 CPU with firmware V4.4 or higher.

https://support.industry.siemens.com/cs/ww/en/view/109748872

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 11

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Integration of the Function Block in the User Program

The block "LMQTT_Client" and the required data types are available in the
"LMQTT" library.

2.3.1 Opening the "LMQTT" Global Library

Note For this section, you must download the
"109780503_Libraries_Comm_Controller_LIB_V1_0_0.zip" library and unzip it
into a directory of your choice.

The 109780503_Libraries_Comm_Controller_LIB_V1_0_0.zip library can be
found in the following entry:
https://support.industry.siemens.com/cs/ww/en/view/109780503

1. In the TIA Portal project, click the "Libraries" task card and open the "Global
Libraries" palette.

2. Click on the "Open global library" button.
The “Open global library” dialog is opened.

https://support.industry.siemens.com/cs/ww/en/view/109780503

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 12

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3. Select the global library "Libraries_Comm_Controller" and confirm the selection
with the "Open" button.

4. The "Libraries_Comm_Controller" library opens and appears under the Global
libraries palette.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 13

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.2 Copying Function Blocks and Data Types to the User Program

1. In the "Libraries_Comm_Controller" library, you will find the
FB "LMQTT_Client" and the corresponding PLC data types under "Types >
LMQTT".

2. Insert the function block for your CPU via drag & drop into the folder "Program
blocks" of your device, e.g. S7-1500 CPU.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 14

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3. The data types used by the FB "LMQTT_Client" are automatically inserted into
the folder "PLC data types" on your device (e.g., an S7-1500 CPU).

2.3.3 Creating Global Data Block

This section shows you how to create a global data block (DB). This DB is used to
store the following data:

• TCP connection parameters

• MQTT connection parameters

• Topic and message to be sent to the MQTT Broker (publish)

• Received data, i.e. message and name of the subscribed topic (subscribe)

1. Navigate in the "Project tree" to the device folder of the CPU.

2. Open the "Program blocks" folder and double-click the "Add new block"
command.
The dialog "Add new block" opens.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 15

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3. Make the following settings and then confirm your entries with the "OK" button.

– Select the symbol "Data block".

– Select "Global DB" as the type.

– Enter the name of the DB.

– Enable the "Automatic" radio button for automatic number assignment. The
number of the global DB is assigned by the TIA Portal.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 16

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. Double-click the newly inserted global data block to open it.

5. Double-click "<Add new>" to add the corresponding tags.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 17

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Result

The following figure shows the tags in the DB "MqttDb" for switching the inputs and
outputs of the FB "MQTT_Client".

Figure 2-1

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 18

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure shows the parameters of the tag "connparams".

Figure 2-2

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 19

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.4 Calling Function Blocks in the User Program

1. In the "Project tree" open the folder "Program blocks" of your CPU

2. Double-click the block "Main [OB1]" to open the corresponding program editor.

3. Drag & drop the FB "LMQTT_Client" from the project navigation to any OB1
network.

4. The dialog "Call options" for generating the instance DB of the
FB "LMQTT_Client" opens automatically.

5. Make the following settings and then confirm your entries with the "OK" button.

– Enter the name of the instance DB.

– Enable the "Automatic" radio button for automatic number assignment. The
number of the instance DB is assigned by the TIA Portal.

– Click "OK" to confirm the settings.

6. Assign the tags that you have created in the global data block to the inputs and
outputs of the FB (see section 2.3.3).

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 20

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Result

The following figure shows the linking of the DB "MqttDb" tags on the FB
"MQTT_Client".

Figure 2-3

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 21

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 Configuration of the Security Feature

Note You only need to configure the security feature if you are using a secure MQTT
connection via TLS.

Note In this application example, the MQTT Broker does not authenticate the MQTT
Client. Only the CA certificate of the MQTT Broker is required to authenticate the
MQTT Broker.
If you have configured the MQTT Broker to require MQTT Client authentication,
you must also import the client certificate.
The client certificate must be signed by the same CA as the server certificate.

Encryption via SSL/TLS works via certificates. A certificate is a public key signed
by its owner that guarantees its authenticity and integrity. To authenticate the
broker, the MQTT Client requires the CA certificate of the broker.

This section shows you how to import the certificate of the MQTT Broker into the
CPU (MQTT Client). Encrypted MQTT communication is only possible with this
certificate.

Requirement for TLS/SSL encryption

To set up a secure MQTT communication between the SIMATIC S7 CPU (MQTT
Client) and an MQTT Broker in your network, the following points must be fulfilled:

• The MQTT Broker is installed and preconfigured for the TLS procedure.

• The necessary CA certificate of the MQTT Broker is available to you.

• The time of the CPU is set to the current time.
A certificate always contains a period of time in which it is valid. To be able to
encrypt with the certificate, the time of the S7 CPU must also be within this
period. With a brand new S7-CPU or after an overall reset of the S7-CPU, the
internal clock is set to a default value that lies outside the certificate runtime.
The certificate is then marked as invalid.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 22

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4.1 Using the TIA Portal Global Certificate Manager

You must import the CA certificate of the MQTT Broker into STEP 7 (TIA Portal).

In the TIA Portal, the certificates are managed in the global certificate manager.
The certificate manager contains an overview of all certificates used in the project.
In the certificate manager, for example, you can import new certificates and export,
renew, or replace existing certificates. Each certificate is assigned an ID that can
be used to reference the certificate in the program blocks.

Activating the global certificate manager

If you do not use the certificate manager in the security settings, you only have
access to the local certificate store of the CPU. You then have no access to
imported certificates from external devices.

To import and use the CA certificate of the MQTT Broker, you must activate the
global certificate manager.

1. In the Device or Network view select the CPU. The properties of the CPU are
displayed in the Inspector window.

2. In the area navigation of the "Properties" tab, select "Protection & Security >
Certificate Manager". Enable the option "Use global security settings for
certificate manager".

Result

The new entry "Security Settings" appears in the project navigation.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 23

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Logging on users

After you have enabled the global security settings for the certificate manager, you
must log in to the security settings. You cannot access the global certificate
manager without logging in.

Log on as a security user for the security settings as described below:

1. Double-click the entry "Settings" in the project navigation under "Security
settings".

2. The user administration editor opens and the project protection area is
displayed.
Click the "Protect this project" button.

3. This opens the dialog "Protect Project".
Enter a username and password.

The password must comply with the following guidelines:

– Password length: A minimum of eight characters, a maximum of 128
characters

– At least one upper-case letter

– At least one special character (special characters § and ß are not allowed)

– At least one number

Enter the password again to confirm.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 24

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. You may enter a comment if required.
Confirm your entries with "OK".

Result

You have activated the user administration. You are logged in as a project
administrator and can use the security settings.
If you have logged in, a line "Certificate manager" appears under the entry
"Security settings > Security features".

Figure 2-4

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 25

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Using the global certificate manager

With the global certificate manager, you now have the option of importing third-
party certificates into TIA Portal. By double-clicking on the line "Certificate
manager" you gain access to all certificates in the project, divided into the following
tabs:

• "Certificate Authority (CA)"

• "Device certificates"

• "Trusted certificates and core certification authorities"

1. Double-click the "Certificate manager" entry in the project navigation under
"Security settings > Security features".

2. Select the appropriate registry for the certificate you want to import, for
example, "Trusted certificates and core certification authorities".

3. To open the context menu, right-click in the tab. Click "Import".

4. Select the export format of the certificate:

– CER, DER, CRT or PEM for certificates without a private key

– P12 (PKCS12 archive) for certificates with a private key.

Click on "Open" to import the certificate.

Result

The CA certificate of the MQTT Broker is now located in the global certificate
manager.

Figure 2-5

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 26

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note If the MQTT Broker also requires authentication of the MQTT Client, you must
import the client certificate.
Observe the following information:

• The client certificate must be signed by the same CA as the server
certificate.

• The client certificate must be imported as a PK12 container (with certificate
and private key) into the global certificate manager.

• The client certificate must be imported into the "Device certificates" table.

2.4.2 Using the Local CPU Certificate Manager

The CA certificate is currently only located in the global certificate manager of the
TIA Portal. Certificates imported via the certificate manager into the global security
settings are not automatically assigned to the corresponding modules.

To authenticate the MQTT Broker, you have to load the CA certificate into the
CPU. Only those device certificates that you have assigned to the module as
device certificates via the local certificate manager are loaded onto the module.

This assignment is made in the local security settings of the module in the entry
"Certificate manager" via the table editor "Device certificates". The certificates of
the global certificate manager are available for the certificate assignment.

The following steps show you how to assign the CA certificate from the global
certificate manager to the CPU.

1. In the Device or Network view select your CPU. The properties of the CPU are
displayed in the Inspector window.

2. To add the CA certificates, select the entry "Certificate manager" in the area
navigation of the "Properties" tab under "Protection & Security".

3. Under "Certificates of the partner devices". Click "Add" in the table of
certificates. This inserts a new row into the table.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 27

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. Click in the new row. The selection for new certificates opens. Select the
previously imported CA certificate from the global certificate manager and click
the green check mark.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 28

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Result

The selected certificate was assigned to the CPU and provided with an ID. The ID
is the number of the certificate. Enter this value in the connection parameters for
the "brokerCert" parameter (see Figure 2-2).

Figure 2-6

Note If the MQTT Broker additionally requires authentication of the MQTT Client, you
must also assign the imported client certificate to the CPU (section "Device
certificates"). Enter the value of the ID in the connection parameters for the
"clientCert" parameter (see Figure 2-2).

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 29

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.5 Parameterization and Operation

Setting the parameters

Before you can test the application example, you must first set the parameters for
the secured or unsecured TCP connection and for MQTT corresponding to your
specifications.

All parameters that you can define yourself are located in the global data block
"MqttDb". Set the parameters in the "Start value" column.

Connect the tags of the data block "MqttDb" with the inputs and outputs of the
FB "LMQTT_Client".

Above all, you must enter your own value for the following parameters:

• Connection number

• IPv4 address or domain name of the MQTT Broker. The domain name must
end with a ".".

• Port on which the MQTT Broker receives the messages

– unsecured connection: remote port 1883

– secured connection: remote port 8883

• Parameters for secure communication

– Status of the security feature (On/Off) for this connection

– ID of the CA certificate (only relevant for a secure connection)

– ID of your own certificate, if the MQTT Broker also authenticates the client
(only relevant for a secure connection)

• MQTT parameters, e.g.

– Login information for the MQTT Broker

– Topic

– Message text

Then load the project into your CPU.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 30

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following table shows the tags in the DB "MqttDb" to interconnect the inputs
and outputs of the FB "MQTT_Client".

Table 2-1

Tag Data type Note

control Struct This data structure contains the
tags for controlling the jobs of the
FB "LMQTT_Client".

 connect Bool This tag controls the connection
establishment.

• Set the tag to the value "1" to
establish the TCP and MQTT
connection.

• If the value of the tag changes
from "1" to "0" (negative edge),
the TCP and MQTT connection
is disconneted.

 publish Bool Use this tag to start a job to send a
PUBLISH packet.

 subscribe Bool Use this tag to start a job to send a
SUBSCRIBE packet.

 unsubscribe Bool Use this tag to start a job to send a
UNSUBSCRIBE packet.

output Struct This data structure contains the
tags for evaluating the outputs of
the FB "LMQTT_Client".

 valid Bool Status display

True: The values for the outputs of
the FB "LMQTT_Client" are valid.

 done Bool Status display

• True: Job executed with no
errors.

• False: Job not yet started or
still processing.

 busy Bool Status display

• True: Job not finished yet. A
new job cannot be started.

• False: Job not yet started or
already finished.

 error Bool Status display

• True: Error occurred

• False: No error

 status Word Status of the FB "LMQTT_Client"

Detailed information can be found
in the library description in entry
109780503.

 diagnostics "typeDiagnostics" Diagnostic information of the
FB "LMQTT_Client"

Detailed information can be found
in the library description in entry
109780503.

https://support.industry.siemens.com/cs/ww/en/view/109780503
https://support.industry.siemens.com/cs/ww/en/view/109780503

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 31

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Tag Data type Note

connparams "LMQTT_type_connparams" Enter the parameters to establish a
connection to the MQTT Broker.

Detailed information can be found
in Table 2-2.

clientid WString[20] Enter the Client identifier that is
used when establishing the
connection (e.g., "SiemensClient").

username WString[20] Optionally, it is possible to enter a
username for the connection setup.

If no username is entered, the
parameter is not evaluated.

password WString[20] Optionally, it is possible to enter a
password for the connection setup.

If no password is entered, the
parameter is not evaluated.

willtopic WString[20] Optionally, it is possible to enter a
topic to which the "Last Will"
message will be sent.

willMessage Array[*] of Byte Optionally, it is possible to enter a
message that will be sent as the
"Last Will".

The length of the array can be
chosen as desired. The real
message length sent from this array
is specified by the tag
"willmesscnt".

willmesscnt UInt Current length of valid data in the
array "willMessage".

qos USInt Enter the Quality of Service with
which the messages are sent.

Possible values are 0, 1, or 2.

topic WString[100] Enter the MQTT topic that will be
used in the publish, subscribe, or
unsubscribe job.

message Array[*] of Byte Enter the MQTT message that is
transmitted as user data in the
publish job.

The length of the array can be
chosen as desired. The real
message length sent from this array
is specified with the tag
"pubMessageCnt".

pubMessageCnt UDInt Current length of valid data in the
array "message".

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 32

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Tag Data type Note

retain Bool Enter whether the data is sent with
or without the "retain" flag.

• True: The data is sent with the
"retain" flag.

• False: The data is sent without
the "retain" flag.

receivedTopic WString[200] The MQTT topic on which a
message is received regarding the
subscription is stored in this tag.

receivedmessage Array[*] of Byte This tag stores the user data
received in the message via a
subscription.

The length of the array can be
chosen as desired. The real
message length received in this
array is shown in the tag
"receivedMsgLen".

receivedMsgLen UDInt Number of valid data in the array
"receivedmessage".

receivedMsgStatus USInt This tag indicates, for one cycle at
a time, when a new message has
been received (subscription).

• 0: No new message received.

• 1: New valid message
received.

• 2: New message received, but
message invalid or received
data is larger than the memory
area of the receive topic or
receive message.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 33

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following table shows the parameters of the tag "connparams".

Table 2-2

Parameters Data type Note

hwId HW_ANY Enter the hardware identifier of
the PN/IE interface for
establishing the connection.

If the tag has the value "0", a
suitable hardware identifier is
automatically selected.

connId CONN_OUC Connection ID for establishing
the connection.

mqttBrockerAddress Struct This data structure contains the
address parameters of the
MQTT Broker.

 qdnAddress String Enter the domain name of the
MQTT Broker. The domain name
must end with a ".".

If this parameter is used, the IP
address entry can be omitted.

 ipAddress IP_V4 Enter the IP address of the
MQTT Broker.

 port UInt Enter the MQTT port.

• Port 1883: unsecured
connection

• Port 8883: secured
connection

tls Struct This data structure contains the
parameters for a secure
connection.

 enableTls Bool Enter the value "True" if the
connection will be secured with
TLS.

 validateServerIdentity Bool Enter the value "True" if the
certificate of the MQTT Broker
will be validated when
establishing the connection.

 brokerCert UDInt Certificate ID of the MQTT
Broker certificate.

 clientCert UDInt Certificate ID of the MQTT Client
certificate.

keepAlive UInt Enter a value in seconds for the
activation of the Keep-Alive
mechanism of MQTT.
If the tag has the value "0", no
Keep-Alive is active.

Note If the TCP connection will be established via the fully qualified domain name, you
must configure a DNS server in the CPU.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 34

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Operating the application example

Once you have set all parameters and added the CA certificate of the MQTT
Broker to the local certificate manager of the CPU, you can test the application
example.

Before you test the application example, check the following points:

1. The project is loaded into the CPU.

2. The CPU and the MQTT Broker are connected to each other and can be
reached via Ethernet.

3. The MQTT Broker is properly configured and started.

4. Logging into the MQTT Broker is started as needed to support the logon of the
MQTT Client and the publish mechanism.

If the above points are met, you can initiate MQTT communication between the
CPU and the MQTT Broker. For this, trigger the input "enable" of the function block
"LMQTT_Client". As long as the input "enable" is set to "True", the connection is
maintained. If the input "enable" is reset to "False", the connection is disconnected.

In the positive case, the internal state machines will loop through and establish a
TCP and MQTT connection to the MQTT Broker. The output tag "status" is set to
the value "16#7004" and signals an existing TCP and MQTT connection.

Now you can perform the following functions:

• Send MQTT message: Trigger the input tag "publish".

• MQTT message received for a subscribed topic: Trigger the input tag
"subscribe".
If the connection to the MQTT Broker is interrupted (status = 16#9000), the
connection is automatically re-established. After a disconnection, it is
necessary to perform a "subscribe" job for the subscribed topics.

• Unsubscribe yourself from subscribed topics: Trigger the tag "unsubscribe".

If the connection to the MQTT Broker is not established, check the output tag
"status" and "diagnostics" to diagnose the error.

2 Engineering

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 35

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6 Error Handling

For information on the meaning of the values of the tags "status" and "diagnostics",
see the library description in the following entry:

https://support.industry.siemens.com/cs/ww/en/view/109780503

https://support.industry.siemens.com/cs/ww/en/view/109780503

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 36

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Useful Information

3.1 Fundamentals of MQTT

Note A detailed description of MQTT can be found in the MQTT specification
description (see \3\ in section 4.3).

3.1.1 Terminology

The most important terms in the MQTT telemetry protocol are explained below.

MQTT message

A message with MQTT consists of several parts:

• A defined subject ("Topic")

• An assigned criterion for "Quality of Service"

• The message text

MQTT Client

An MQTT Client is a program or device that uses MQTT. A client always actively
establishes the connection to the broker. A client can perform the following
functions:

• Send messages with a defined subject ("Topic"), in which other clients might
be interested, to the MQTT Broker (Publish mechanism)

• Subscribe messages which follow a certain topic (Subscriber mechanism) at
the MQTT Broker

• Unsubscribe yourself from subscribed messages

• Disconnect from the broker

Note The function block "LMQTT_Client" in this application example supports the
following functions:

• Logging into the MQTT Broker

• Publish mechanism

• Subscribe and unsubscribe mechanisms

• Ping mechanism

• Unsubscribe from the MQTT Broker.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 37

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

MQTT Broker

An MQTT Broker is the central component of MQTT and can be a program or a
device. The MQTT Broker acts as an intermediary between the sending MQTT
Client and the subscribing MQTT Client. The MQTT Broker manages the topics
including the messages contained therein and regulates the access to the topics.
The MQTT Broker has the following functions:

• Accept network connections from the MQTT Clients

• Receive messages from an MQTT Client

• Edit subscription requests from MQTT Clients

• Forward messages to the MQTT Clients that match your subscription

Note The MQTT Broker is not part of this application example and is assumed to be
given.

Topics

MQTT messages are organized in topics. A topic "describes" a subject area. The
topics can be subscribed to by the MQTT Clients (subscriber mechanism). The
sender of a message (Publisher mechanism) is responsible for defining content
and topic when sending the message. The broker then takes care that the
Subscribers get the news from the subscribed topics. The topics follow a defined
scheme. They are similar to a directory path and represent a hierarchy.

3.1.2 Standard and Architecture

ISO standard

MQTT defines an OASIS or ISO standard (ISO/IEC PRF 20922).

Depending on the security protocols used, MQTT runs on different access ports.
Ports offered are:

• 1883: MQTT, unencrypted

• 8883: MQTT, encrypted

• 8884: MQTT, encrypted, Client Certificate required

• 8080: MQTT via WebSockets, unencrypted

• 8081: MQTT via WebSockets, encrypted

Architecture

The MQTT is a publish and subscribe protocol. This mechanism decouples a client
sending messages (Publishers) from one or more clients receiving the messages
(Subscribers). This also means that the "Publishers" know nothing about the
existence of the "Subscribers" (and vice versa).
There is a third component in the MQTT architecture, the MQTT Broker. The
MQTT Broker is located between "Publisher" and "Subscriber". The MQTT Broker
controls the communication.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 38

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.3 Features

MQTT offers quite useful features.

Quality of Service

The MQTT specification provides three service qualities for message transmission
quality assurance:

• QoS "0": The lowest level 0 is a "fire'n'forget" method. This means that there is
no guarantee that the message will arrive at all.

• QoS "1": The QoS level 1 ensures that the message ends up in the topic queue
at least once. The MQTT Broker acknowledges receipt of the message.

• QoS "2": In the highest level 2, the MQTT Broker guarantees by multiple
handshake with the MQTT Client that the message is exactly filed once.

Last will

MQTT supports the "Last Will and Testament" feature. This feature is used to notify
other MQTT Clients if the connection to a MQTT Client has been disconnected
accidentally.

Each MQTT Client can specify its last will while connecting to the MQTT Broker
and notify the MQTT Broker. This last will is built like a normal MQTT message,
including topic, QoS and payload. The MQTT Broker saves the last will. As soon as
the MQTT Broker notices that the connection with the MQTT Client in question has
been abruptly terminated, the MQTT Broker sends the last will as an MQTT
message to all subscribers who have registered for the topic. In this way, the
subscribers also learn that the MQTT Client has been disconnected.

Keep-Alive

MQTT supports the "Keep-Alive" feature. This ensures that the connection is still
open and the MQTT Client and MQTT Broker are connected.

For the Keep-Alive, the MQTT Clients define a time interval and communicate it to
the MQTT Broker during their connection setup. This interval is the largest possible
tolerated time period in which the MQTT Client and the MQTT Broker may remain
without contact. If the time is exceeded, the MQTT Broker must disconnect.

That means that, as long as the MQTT Client periodically sends messages to the
broker within the Keep-Alive interval, the MQTT Client does not need to take any
special action to maintain the connection. However, if the MQTT Client does not
send any messages within the Keep-Alive interval, they must ping the MQTT
Broker before the deadline expires. With this ping, the MQTT Client signals to the
MQTT Broker that it is still available.

When a message or a ping packet has been sent to the MQTT Broker, timing for
the Keep-Alive interval begins again.

Note • The client determines the Keep-Alive interval. It can therefore adjust the
interval of his environment, e.g. because of a slow bandwidth.

• The maximum value for the Keep-Alive interval is 18 h 12 m 15 s.

• When the client sets the Keep-Alive interval to "0", the Keep-Alive
mechanism is disabled.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 39

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Message persistence

If the connection to an MQTT Client is interrupted, the broker can cache new
messages for this client for later delivery.

Retained messages

The first time an MQTT Client subscribes to a topic, it usually gets a message only
when another MQTT Client sends a message with the subscribed topic the next
time. With "Retained messages", the subscriber receives the last value sent to the
topic prior to its subscription request, delivered immediately.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 40

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.4 Structure of the MQTT Control Packets

Most MQTT control packets work according to the handshake procedure. The
MQTT Client is always the active element and creates a job for the MQTT Broker.
The broker confirms the request depending on the job.

The structure of an MQTT control packet is fixed. The following diagram shows the
structure:

Figure 3-1

Fixed header
Mandatory for all control packages

Variable header
Mandatory for some control packages

Payload
Mandatory for all control packages

The "Fixed header" always consists of the following elements:

• An identifier number for the MQTT control packet type

• An area for possible flags; if no flags are provided for the control packet, the
bits are marked as "reserved"

• The number of following bytes after the "Fixed header"

The "Variable header" is required only for some control packets. The content of the
variable header depends on the control packet type.

The payload is mandatory for most control packets. Again, the content depends on
the control packet type. For each type of control packet, there are clear rules with
what and in what order the payload can be filled.

Note A detailed description of MQTT control packets can be found in the MQTT
specification description (see \3\ in section 4.3).

The MQTT control packets from this application example are briefly explained
below.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 41

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.5 MQTT Connection

An MQTT connection is always made between an MQTT Client and the MQTT
Broker. A direct client-client connection is not possible.

The connection is initiated by an MQTT Client as soon as the MQTT Client sends a
"CONNECT" packet to the MQTT Broker. If positive, the MQTT Broker replies with
a "CONNACK" packet and a status code.

The MQTT Broker immediately closes the connection in the following cases:

• If the "CONNECT" packet is faulty

• If the structure of the "CONNECT" packet does not meet the specification

• If the connection takes too long

MQTT control packet "CONNECT"

Table 3-1 shows the structure of the "fixed header" of the "CONNECT" packet.

Table 3-1

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 1 (dec)

Reserve

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" + "payload"

A "CONNECT" packet contains the following areas in the "variable header":

1. Report name: The report name "MQTT" is transmitted as UTF-8 string.

2. Report level: 4 (dec)

3. Connect flags: The "Connect Flags" byte contains a number of parameters that
specify the behavior of the MQTT connection. In addition, the "Connect Flags"
byte also shows which optional fields are present in the "payload" or not. The
connection type can be regulated with the "Clean Session" flag.

4. Keep alive: The Keep-Alive time determines the time interval in which the
MQTT Client is obligated to report to the MQTT Broker. This can be done
either by sending a message or a PING command. If the client does not report
in the time interval, the MQTT Broker disconnects from the client.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 42

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-2 shows the structure of the "variable header" of the "CONNECT" packet.

Table 3-2

Variable header

Bit 7 6 5 4 3 2 1 0

Report name

Byte 1 MSB length = 0 (dec)

Byte 2 LSB length = 4 (dec)

Byte 3 'M'

0 1 0 0 1 1 0 1

Byte 4 'Q'

0 1 0 1 0 0 0 1

Byte 5 'T'

0 1 0 1 0 1 0 0

Byte 6 'T'

0 1 0 1 0 1 0 0

Report level

Byte 7 Report level = 4 (dec)

Connect flags

Byte 8 User
name
flag

Password
flag

Will
retain
flag

Will QoS flag Will
flag

Clean
session
flag

Reserve

Keep alive

Byte 9 Keep alive MSB

Byte
10

Keep alive LSB

In "Payload" the existing fields appear in the following order:

• Client ID: The client ID is used to identify the client at the MQTT Broker. The
client ID must appear as the first field in the "Payload".

• Will topic: The field appears optionally if the "Will" flag is set to "TRUE".

• Will message: The field appears optionally if the "Will" flag is set to "TRUE".

• Username: The field appears optionally if the "Username" flag is set to "TRUE".

• Password: The field appears optionally if the "Password" flag is set to "TRUE".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 43

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

MQTT control packet "CONNACK"

Table 3-3 shows the structure of the "fixed header" of the "CONNACK" packet:

Table 3-3

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 2 (dec)

Reserve

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes

Table 3-4 shows the structure of the "variable header" of the "CONNACK" packet.

Table 3-4

Variable header

Bit 7 6 5 4 3 2 1 0

Connect acknowledge flags

Byte 1 Reserve Session
Present

Connect Return Code

Byte 2 • 0x00 = The MQTT Broker accepts the connection. The MQTT Broker
does not support the level of the MQTT protocol requested by the
client.

• 0x01 = The MQTT Broker does not support the level of the MQTT
protocol requested by the MQTT Client.

• 0x02: The MQTT Broker does not allow the client ID.

• 0x03: The MQTT service is not available.

• 0x04: The data in the username and password are incorrect.

• 0x05: The MQTT Client is not authorized to connect.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 44

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.6 MQTT Push Mechanism

Once an MQTT Client connects to the MQTT Broker, it can send messages to the
MQTT Broker. To do this, the client uses the "PUBLISH" packet. Because MQTT
messages are filtered and managed based on topics, each MQTT message must
contain a topic. The topic is part of the "Variable Header". The actual message text
is contained in the "payload".

"PUBLISH" packet

Table 3-5 shows the structure of the "fixed header" of the "PUBLISH" packet.

Table 3-5

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 3 (dec)

DUP
flag

QoS level Retain
flag

0 0 1 1 X X X X

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" + payload

Depending on the quality assurance setting ("QoS"), the push mechanism ends at
this point or other control packets are exchanged:

• QoS = 0 (dec): The message will be sent only once. The send job ends here.

• QoS = 1 (dec): The message will be sent at least once. The MQTT Broker
acknowledges the "PUBLISH" packet with a "PUBACK" packet.

• QoS = 2 (dec): The message will be sent exactly once. The MQTT Broker
acknowledges the "PUBLISH" packet with a "PUBREC" packet. This is
followed by another handshake between MQTT Client and MQTT Broker. The
client answers the "PUBREC" packet with a "PUBREL" packet. The MQTT
Broker completes the double handshake with a "PUBCOM" packet.

Note You can find further information on Quality Assurance QoS in section 3.1.3.

The "variable header" of the "Publish" packet contains the following fields:

• Name of the topic

• Packet ID

The "Payload" contains the message text.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 45

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

"PUBACK" packet (Publish Acknowledgement)

The MQTT Broker responds to the "PUBLISH" packet with QoS=1 with the
"PUBACK" packet.

Table 3-6 shows the structure of the "fixed header" of the "PUBACK" packet.

Table 3-6

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 4 (dec)

Reserve

0 1 0 0 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes

The "variable header" of the "PUBACK" packet contains the packet ID.

The "PUBACK" packet has no "payload".

"PUBREC" packet (Publish Received)

The MQTT Broker responds to the "PUBLISH" packet with QoS=2 with the
"PUBREC" packet.

Table 3-7 shows the structure of the "fixed header" of the "PUBREC" packet.

Table 3-7

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 5 (dec)

Reserve

0 1 0 1 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes

The "variable header" of the "PUBREC" packet contains the packet ID.

The "PUBREC" packet has no "payload".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 46

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

"PUBREL" packet (Publish Release)

The MQTT Client responds to the "PUBREC" packet with the "PUBREL" packet.

Table 3-8 shows the structure of the "fixed header" of the "PUBREL" packet.

Table 3-8

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 6 (dec)

Reserve

0 1 1 0 0 0 1 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes

Note The reserve bits in the "fixed header" must be set as follows:

• Bit 3 = 0

• Bit 2 = 0

• Bit 1 = 1

• Bit 0 = 0

The "variable header" of the "PUBREL" packet contains the packet ID.

The "PUBREL" packet has no "payload".

"PUBCOMP" packet (Publish Complete)

The MQTT Broker responds to the "PUBREL" packet with the "PUBCOMP" packet.

Table 3-9 shows the structure of the "fixed header" of the "PUBCOMP" packet.

Table 3-9

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 7 (dec)

Reserve

0 1 1 1 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes

The "variable header" of the "PUBCOMP" packet contains the packet ID.

The "PUBCOMP" packet has no "payload".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 47

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.7 MQTT Sub-Mechanism

Once an MQTT Client has connected to the MQTT Broker, it can create or
unsubscribe from subscriptions.

"SUBSCRIBE" packet

To create a subscription, the MQTT Client uses the "SUBSCRIBE" packet. A list of
the topics that the MQTT Client would like to subscribe to is stored in the
"Payload".

Table 3-10 shows the structure of the "fixed header" of the "SUBSCRIBE" packet.

Table 3-10

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 8 (dec)

Reserve

1 0 0 0 0 0 1 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" + "payload"

Note The reserve bits in the "fixed header" must be set as follows:

• Bit 3 = 0

• Bit 2 = 0

• Bit 1 = 1

• Bit 0 = 0

The "variable header" of the "SUBSCRIBE" packet contains the packet ID.

Table 3-11 shows the structure of the "payload" of the "SUBSCRIBE" packet.

Table 3-11

Payload

Bit 7 6 5 4 3 2 1 0

Topic name

Byte 1 MSB length

Byte 2 LSB length

Byte
3…n

Topic name

Requested service quality QoS

Byte
n+1

Reserve QoS level

Possible values:

• 0 (dec)

• 1 (dec)

• 2 (dec)

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 48

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

"SUBACK" packet (Subscribe Acknowledgement)

The MQTT Broker responds to the "SUBSCRIBE" packet with the "SUBACK"
packet.

Table 3-12 shows the structure of the "fixed header" of the "SUBACK" packet.

Table 3-12

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 9 (dec)

Reserve

1 0 0 1 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" + "payload"

The "variable header" of the "SUBACK" packet contains the packet ID.

Table 3-13 shows the structure of the "payload" of the "SUBACK" packet.

Table 3-13

Payload

Bit 7 6 5 4 3 2 1 0

Return code

Byte 1 • 0x00: Successful: Maximum service quality QoS 0

• 0x01: Successful: Maximum service quality QoS 1

• 0x02: Successful: Maximum service quality QoS 2

• 0x80: Error

"UNSUBSCRIBE" packet

To unsubscribe from a subscription, the MQTT Client uses the "UNSUBSCRIBE"
packet. A list of the topics that the MQTT Client would like to unsubscribe from is
stored in the "Payload".

Table 3-14 shows the structure of the "fixed header" of the "UNSUBSCRIBE"
packet.

Table 3-14

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 10 (dec)

Reserve

1 0 1 0 0 0 1 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" + "payload"

Note The reserve bits in the "fixed header" must be set as follows:

• Bit 3 = 0

• Bit 2 = 0

• Bit 1 = 1

• Bit 0 = 0

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 49

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The "variable header" of the "UNSUBSCRIBE" packet contains the packet ID.

Table 3-15 shows the structure of the "payload" of the "UNSUBSCRIBE" packet.

Table 3-15

Payload

Bit 7 6 5 4 3 2 1 0

Topic name

Byte 1 MSB length

Byte 2 LSB length

Byte
3…n

Topic name

"UNSUBACK" packet

The MQTT Broker responds to the "UNSUBSCRIBE" packet with the
"UNSUBACK" packet.

Table 3-16 shows the structure of the "fixed header" of the "UNSUBACK" packet.

Table 3-16

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 11 (dec)

Reserve

1 0 1 1 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" =
"variable header" = 2 bytes.

The "variable header" of the "UNSUBACK" packet contains the packet ID.

The "UNSUBACK" packet has no "payload".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 50

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.8 MQTT Ping Mechanism

If the Keep-Alive interval is greater than "0", the Keep-Alive function is active. If the
Keep-Alive function is active, the MQTT Client must send at least one message to
the MQTT Broker within the Keep-Alive interval. If this is not the case, the MQTT
Broker must terminate the connection to the MQTT Client. To prevent this type of
forced abort, the MQTT Client must ping the MQTT Broker before the Keep-Alive
time expires. The control packet "PINGREQ" is used for this.

"PINGREQ" packet

Table 3-17 shows the structure of the "fixed header" of the "PINGREQ" packet

Table 3-17

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 12 (dec)

Reserve

1 1 0 0 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" = 0
bytes.

The "PINGREQ" packet has no "variable header" and no "payload".

"PINGRESP" packet

The MQTT Broker responds to the "PINGREQ" packet with the "PINGRESP"
packet and thus signals its availability to the MQTT Client.

Note This application example assumes an active Keep-Alive function. The Keep-Alive
interval must be greater than two seconds.

Table 3-18 shows the structure of the "fixed header" of the "PINGRESP" packet.

Table 3-18

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 13 (dec)

Reserve

1 1 0 1 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" = 0
bytes.

The "PINGRESP" packet has no "variable header" and no "payload".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 51

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.9 MQTT Disconnection

An MQTT Client can close the connection to an MQTT Broker by sending a
"DISCONNECT" packet to the MQTT Broker. After the MQTT Client has sent the
"DISCONNECT" packet and closed the connection, it does not need to send any
more MQTT control packets. When the MQTT Broker receives a "DISCONNECT"
packet, it deletes all "last will and testament" information. As the MQTT Client is
actively and voluntarily connected, the MQTT Broker does not send its last wishes
to the registered subscribers.

"DISCONNECT" packet

Table 3-19 shows the structure of the "fixed header" of the "DISCONNECT"
packet.

Table 3-19

Fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 Identifier number for MQTT control
packet type = 14 (dec)

Reserve

1 1 1 0 0 0 0 0

Byte 2 Remaining length: The number of following bytes after the "fixed header" = 0
bytes.

The "DISCONNECT" packet has no "variable header" and no "payload".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 52

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 How the FB "LMQTT_Client" Works

3.2.1 Requirements and Implementation

The following requirements must be fulfilled for a communication relation between
an MQTT Client and an MQTT Broker:

1. The TCP connection to the MQTT Broker is successfully established
(Output "status" = 16#7003 "STATUS_MQTT_CONNECTING").

2. The function block "LMQTT_Client" has logged into the broker as the MQTT
Client via the existing TCP connection and established a connection (Output
"status" = 16#7004 "STATUS_MQTT_CONNECTED").

3. The trigger to send the message or to receive the MQTT connection ("Keep-
Alive") is active. Depending on the desired quality assurance, the message is
sent to the broker via the existing MQTT connection.

Note An MQTT connection setup is only possible if the TCP connection to the MQTT
Broker is successfully established and then maintained.

An MQTT message or Keep-Alive can only be sent if there is a TCP and MQTT
connection to the MQTT Broker.

Overview

To fulfill the mentioned requirements, several state machines were realized in the
program:

• State machine "STATE_MACHINE_FUNCTION_BLOCK_TCP": Management
of the TCP connection

• State machine "MQTT_STATE_MACHINE": Management of the MQTT
connection, the sending and receiving process

• State machine "MQTT_COMMANDS": MQTT Control Package Management

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 53

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.2 State Machine "STATE_MACHINE_FUNCION_BLOCK_TCP"

The state machine "STATE_MACHINE_FUNCTION_BLOCK_TCP" is started when
a positive edge is detected at input parameter "enable". This state machine has the
following functions:

• It controls the structure of the TCP connection.

• It monitors the existing TCP connection for connection errors (e.g., cable
breakage).

• It controls the breaking of the TCP and MQTT connection.

• If an error has occurred or no positive edge was detected at the "enable" input
parameter, it sets all static tags and the other state machines to a defined
state.

The state machine "STATE_MACHINE_FUNCTION_BLOCK_TCP" contains the
following states:

• FB_STATE_NO_PROCESSING

• FB_STATE_VALIDATE_INPUT

• FB_STATE_TCP_CONNECTING

• FB_STATE_OPERATING_MONITOR_TCP

• FB_STATE_RECONNECTING

• FB_STATE_DISABLING

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 54

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The meaning of the states is listed in the following table.

Table 3-20

State Description

FB_STATE_
NO_PROCCESSING

The state machine waits in this state until it detects a
positive edge at the input parameter "enable". As soon
as a positive edge is detected at input parameter
"enable", the state machine is set to the state
"FB_STATE_VALIDATE_INPUT" and the output "valid"
is set to the value "TRUE".

FB_STATE_
VALIDATE_INPUT

In this state, all connection parameters are read in and
evaluated. The FB changes to the state
"FB_STATE_TCP_CONNECTING" without a switching
condition.

FB_STATE_
TCP_CONNECTING

The TCP connection to the MQTT Broker is established
in this state. If the TCP connection is successfully
established with "TSEND_C", the FB changes to the
state "FB_STATE_OPERATING_MONITOR_TCP" and
the value "16#7003" is output to "status". The TCP
connection remains established until it is disconnected
with "TSEND_C".

If an error occurs when establishing the connection, the
status messages for the error are output at the "status"
and "diagnostics" outputs, and the FB changes to the
state "FB_STATE_NO_PROCESSING".

FB_STATE_OPERATING_
MONITOR_TCP

In this state, the following actions are performed:

• Receive and evaluate MQTT control packet

• Send MQTT control packets

• The state of the TCP connection is monitored. If the
TCP connection is interrupted (e.g., due to a broken
cable), the FB changes to the state
"FB_STATE_RECONNECTING".

• Manage state machine "MQTT_STATE_MACHINE"
(see section 3.2.3)

FB_STATE_RECONNECTING When the TCP connection is re-established, the FB
changes back to the state
"FB_STATE_OPERATING_MONITORING_TCP".

FB_STATE_DISABLING In this state, the MQTT and TCP connection is
disonnected.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 55

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.3 State Machine "MQTT_STATE_MACHINE"

The state machine "MQTT_STATE_MACHINE" is started automatically when the
TCP connection is established and the value "7003" is output to "status". This state
machine has the following functions:

• "Handshake procedure" for establishing the MQTT connection.

• The inputs "publish", "subscribe", and "unsubscribe" are evaluated in order to
send the MQTT control palette that matches the job.

• Managing the "MQTT_COMMANDS" state machine.

• Sending PING packet before the Keep-Alive interval expires.

The state machine "MQTT_STATE_MACHINE" contains the following states

• MQTT_CONNECT_STATE_NO_PROCESSING

• MQTT_CONNECT_STATE_BUILD_PAKET

• MQTT_CONNECT_STATE_SEND_PAKET_WAIT_FOR_CONNACK

• MQTT_CONNECT_STATE_CONNECTED

The meaning of the states is listed in the following table:

Table 3-21

State Description

MQTT_CONNECT_
STATE_NO_PROCESSING

If the TCP connection is not established or if an error
occurs, the state machine is in the
"MQTT_CONNECT_NO_PROCESSING" state.

Only when a TCP connection is established is the
switching condition to the
"MQTT_CONNECT_STATE_BUILD_PAKET" state
automatically activated.

MQTT_CONNECT_
STATE_BUILD_PAKET

The MQTT connection to the MQTT Broker is established
in this state. A "CONNECT" packet is assembled for this
purpose and then sent to the MQTT Broker with the
"TSEND_C" block.

The state machine changes to the state
"MQTT_CONNECT_STATE_SEND_PAKET_WAIT_FOR_
CONNACK".

MQTT_CONNECT_
STATE_SEND_PAKET_
WAIT_FOR_CONNACK

The MQTT Client expects a "CONNACK" packet from the
MQTT Broker to acknowledge the "CONNECT" packet.

When the MQTT Broker has confirmed receipt of the
"CONNECT" packet with a "CONNACK" packet, the output
"status" is set to the value "16#7004". The status display
"16#7004" indicates that the MQTT connection is
established.

MQTT_CONNECT_
STATE_CONNECTED

In this state, the following actions are performed:

• A check is conducted to see whether there is a send
job for one of the following MQTT control packets:

– PUBLISH

– SUBSCRIBE

– UNSUBSCRIBE

• Manage state machine "MQTT_COMMANDS" (see
section 3.2.4)

• Monitor Keep-Alive interval. If the Keep-Alive interval
is about to end, the MQTT control packet "PINGREQ"
must be sent and the Keep-Alive interval must be
restarted.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 56

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.4 State Machine "MQTT_COMMANDS"

The state machine "MQTT_COMMANDS" is only processed if the state machine
"MQTT_STATE_MACHINE" is in the state
"MQTT_CONNECT_STATE_CONNECTED". This is because the point the state
machine "MQTT_COMMANDS" is started from is decided here. If there is a send
impulse for a MQTT message, then the send routine becomes active. After each
"publish", "subscribe", or "unsubscribe" send job, the output "done" of the
FB "LMQTT_Client" is set to the value "True" and the value "16#0000" is indicated
at the "status" output for 1 cycle. Subsequently, the value of the output "status"
changes to the value "16#7004". Only when the input "publish", "subscribe", or
"unsubscribe" is reset to the value "false", is the output "done" of the
FB "LMQTT_Client" also reset to the value "false".

If the Keep-Alive time is ending soon, the PING routine starts.

The state machine "MQTT_COMMANDS" contains the following states:

• MQTT_COMMAND_NO_PROCESSING

• MQTT_COMMAND_STATE_BUILD_PUBLISH

• MQTT_COMMAND_STATE_SEND_PUBLISH

• MQTT_COMMAND_STATE_BUILD_SUBSCRIBE

• MQTT_COMMAND_STATE_SEND_SUBSCRIBE

• MQTT_COMMAND_STATE_BUILD_UNSUBSCRIBE

• MQTT_COMMAND_STATE_SEND_UNSUBSCRIBE

• MQTT_COMMAND_STATE_SEND_PING

• MQTT_COMMAND_STATE_PING_RESP

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 57

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-22

State Description

MQTT_COMMAND_
NO_PROCESSING

As long as there is no send trigger and the Keep-
Alive interval does not expire, the state is always
"MQTT_COMMAND_NO_PROCESSING".

MQTT_COMMAND_STATE_
BUILD_PUBLISH

If a positive edge is detected at the "publish" input in
the "MQTT_CONNECT_STATE_CONNECTED"
state, the internal state machine
"MQTT_COMMANDS" is set to the state
"MQTT_COMMAND_STATE_BUILD_PUBLISH".

If no other send job is running, a "PUBLISH" packet
or a "PUBREL" packet is assembled and then sent to
the MQTT Broker with the block "TSEND_C".

The output "status" is set to the value "16#7006" to
signal that the MQTT push mechanism is running.

The state machine changes to the state
"MQTT_COMMAND_STATE_SEND_PUBLISH".

MQTT_COMMAND_STATE_
SEND_PUBLISH

Depending on the QoS level, the MQTT Client may
expect one of the following MQTT control packets as
acknowledgement of the PUBLISH packet.

• QoS = 0 (dec): The send job ends here.

• QoS = 1 (dec): "PUBACK" packet". When the
MQTT Broker has confirmed receipt of the
"PUBLISH" packet with a "PUBACK" packet, the
send job is finished.

• QoS = 2 (dec): "PUBREC" packet. When the
MQTT Broker has acknowledged receipt of the
"PUBLISH" packet with a "PUBREC" packet, the
MQTT Client sends a "PUBREL" packet as
confirmation.

The MQTT Client expects a "PUBCOMP" packet from
the MQTT Broker to acknowledge the "PUBREL"
packet. When the MQTT Broker has confirmed
receipt of the "PUBREL" packet with a "PUBCOMP"
packet, the send job is finished.

When the send job is completed, the following actions
are performed:

• The output "status" is set to the value "16#0000"
for 1 cycle before it is set again to the value
"16#7004". The status display "16#7004"
indicates that the MQTT connection is
established and no job is active.

• The output "done" is set to the value "true". Only
when the input "publish" is reset to the value
"false", is the output "done" of the
FB "LMQTT_Client" also reset to the value
"false".

• The state machine changes to the state
"MQTT_COMMAND_STATE_NO_
PROCESSING".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 58

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

State Description

MQTT_COMMAND_STATE_
BUILD_SUBSCRIBE

If a positive edge is detected at the "subscribe" input
in the "MQTT_CONNECT_STATE_CONNECTED"
state, the internal state machine
"MQTT_COMMANDS" is set to the state
"MQTT_COMMAND_STATE_BUILD_SUBSCRIBE".

If no other send job is running, a "SUBSCRIBE"
packet is assembled and then sent to the MQTT
Broker with the block "TSEND_C".

The output "status" is set to the value "16#7008" to
signal that the MQTT sub-mechanism is running.

The state machine changes to the state
"MQTT_COMMAND_STATE_SEND_SUBSCRIBE".

MQTT_COMMAND_STATE_
SEND_SUBSCRIBE

The MQTT Client expects a "SUBACK" packet from
the MQTT Broker to acknowledge the "SUBSCRIBE"
packet.

When the MQTT Broker has acknowledged receipt of
the "SUBSCRIBE" packet with a "SUBACK" packet,
the following actions are performed:

• The output "status" is set to the value "16#0000"
for 1 cycle before it is set again to the value
"16#7004". The status display "16#7004"
indicates that the MQTT connection is
established and no job is active.

• The output "done" is set to the value "true". Only
when the input "subscribe" is reset to the value
"false", is the output "done" of the
FB "LMQTT_Client" also reset to the value
"false".

• The state machine changes to the state
"MQTT_COMMAND_STATE_NO_
PROCESSING".

MQTT_COMMAND_STATE_
BUILD_UNSUBSCRIBE

If a positive edge is detected at the "unsubscribe"
input in the
"MQTT_CONNECT_STATE_CONNECTED" state,
the internal state machine "MQTT_COMMANDS" is
set to the state "MQTT_COMMAND_STATE_BUILD_
UNSUBSCRIBE".

If no other send job is running, an "UNSUBSCRIBE"
packet is assembled and then sent to the MQTT
Broker with the block "TSEND_C".

The output "status" is set to the value "16#7010" to
signal that the MQTT sub-mechanism is running.

The state machine changes to the state
"MQTT_COMMAND_STATE_SEND_
UNSUBSCRIBE".

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 59

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

State Description

MQTT_COMMAND_STATE_
SEND_UNSUBSCRIBE

The MQTT Client expects an "UNSUBACK" packet
from the MQTT Broker to acknowledge the
"UNSUBSCRIBE" packet.

When the MQTT Broker has acknowledged receipt of
the "UNSUBSCRIBE" packet with a "UNSUBACK"
packet, the following actions are performed:

• The output "status" is set to the value "16#0000"
for 1 cycle before it is set again to the value
"16#7004". The status display "16#7004"
indicates that the MQTT connection is
established and no job is active.

• The output "done" is set to the value "true". Only
when the input "unsubscribe" is reset to the
value "false", is the output "done" of the
FB "LMQTT_Client" also reset to the value
"false".

• The state machine changes to the state
"MQTT_COMMAND_STATE_NO_
PROCESSING".

MQTT_COMMAND_STATE_
SEND_PING

If the Keep-Alive interval has expired in the state
"MQTT_CONNECT_STATE_CONNECTED", the
internal state machine "MQTT_COMMANDS" is set
to the state
"MQTT_COMMAND_STATE_SEND_PING" and the
Keep-Alive interval is restarted.

If no other send job is running, a "PING" packet is
assembled and then sent to the MQTT Broker with
the block "TSEND_C".

The output "status" is set to the value "16#7005" to
signal that the MQTT ping mechanism is running.

The state machine changes to the state
"MQTT_COMMAND_STATE_PING_RESP".

MQTT_COMMAND_STATE_
PING_RESP

The MQTT Client expects a "PINGRESP" packet"
from the MQTT Broker as an acknowledgement to
the "PING" packet.

When the MQTT Broker has confirmed receipt of the
"PING" packet with a "PINGRESP" packet, the state
machine changes to the state
"MQTT_COMMAND_STATE_NO_PROCESSING"
and the "status" output is again set to the value
"16#7004". The status display "16#7004" indicates
that the MQTT connection is established.

3 Useful Information

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 60

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.5 Function Diagram

The following figure shows the diagram of the operation with the three state
machines.

Figure 3-2

enable

enable

0 -> 1

enable

1 -> 0
enable=0

FB_STATE_

DISABLING

FB_STATE_NO_

PROCESSING

FB_STATE_TCP_CONNECTING

FB_STATE_OPERATING_

MONITOR_TCP

Connection interrupted

TSEND_C.DONE

TSEND_C.

ERROR

MQTT_STATE_MACHINE

FB_STATE_RECONNECTING

MQTT_CONNECT_STATE_

BUILD_CONNECT

CONNACK.

ERROR

MQTT_CONNECT_STATE_CONNECTED

MQTT_COMMAND_

STATE_SEND_PING

MQTT_COMMAND_STATE_

BUILD_UNSUBSCRIBE

MQTT_COMMAND_STATE_

BUILD_SUBSCRIBE

Keep alive or

publish or

subscribe or

unsubsribe

KeepAlive-Timer

publish=1

MQTT_COMMAND_

STATE_BUILD_PUBLISH

MQTT_COMMAND_NO_PRCESSING

subscribe=1 unsubscribe=1

CONNACK.

SUCCESS

MQTT_STATE_MACHINE

MQTT_CONNECT_STATE_SEND_

PACKET_WAIT_FOR_CONNACK

MQTT_CONNECT_STATE_

CONNECTED

Connection has

been established

MQTT_COMMAND_

STATE_PING_RESP

MQTT_COMMAND_

STATE_SEND_PUBLISH

MQTT_COMMAND_STATE_

SEND_SUBSCRIBE

MQTT_COMMAND_STATE_

SEND_UNSUBSCRIBE

TSEND_C.DONE

Connection has

been established

4 Appendix

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 61

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Appendix

4.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:

support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts.

Please send queries to Technical Support via Web form:

support.industry.siemens.com/cs/my/src

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:

siemens.com/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:

support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for iOS and Android:

support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/my/src
https://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
file:///D:/DF%20CS%20SD%20CSS%20KMT%20KD%202/support.industry.siemens.com/cs/ww/en/sc/2067

4 Appendix

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 62

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Industry Mall

The Siemens Industry Mall is the platform on which the entire siemens Industry
product portfolio is accessible. From the selection of products to the order and the
delivery tracking, the Industry Mall enables the complete purchasing processing –
directly and independently of time and location:
mall.industry.siemens.com

https://mall.industry.siemens.com/

4 Appendix

LMQTT_Client
Entry ID: 109748872, V3.0, 03/2021 63

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.3 Links and literature

Table 4-1

No. Subject

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the entry page of the application example

https://support.industry.siemens.com/cs/ww/en/view/109748872

\3\ MQTT specification
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

4.4 Change documentation

Table 4-2

Version Date Change

V1.0 07/2017 First version

V1.1 08/2018 "LMqttQdn" library added.

V2.0 08/2019 Subscribe mechanism added

V2.1 12/2019 Update to TIA Portal V16

V3.0 03/2021 FB "LMQTT_Client" V3.0 integrated in libraries for
communication for SIMATIC Controllers and documentation
for FB "LMQTT_Client" V3.0 adapted

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109748872
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

	MQTT Client for SIMATIC S7-1500 and S7-1200
	Legal information
	1 Introduction
	1.1 Overview
	1.2 Principle of Operation
	1.3 Components Used

	2 Engineering
	2.1 Block Description
	2.2 Configuration
	2.2.1 Create TIA Portal Project

	2.3 Integration of the Function Block in the User Program
	2.3.1 Opening the "LMQTT" Global Library
	2.3.2 Copying Function Blocks and Data Types to the User Program
	2.3.3 Creating Global Data Block
	2.3.4 Calling Function Blocks in the User Program

	2.4 Configuration of the Security Feature
	2.4.1 Using the TIA Portal Global Certificate Manager
	2.4.2 Using the Local CPU Certificate Manager

	2.5 Parameterization and Operation
	2.6 Error Handling

	3 Useful Information
	3.1 Fundamentals of MQTT
	3.1.1 Terminology
	3.1.2 Standard and Architecture
	3.1.3 Features
	3.1.4 Structure of the MQTT Control Packets
	3.1.5 MQTT Connection
	3.1.6 MQTT Push Mechanism
	3.1.7 MQTT Sub-Mechanism
	3.1.8 MQTT Ping Mechanism
	3.1.9 MQTT Disconnection

	3.2 How the FB "LMQTT_Client" Works
	3.2.1 Requirements and Implementation
	3.2.2 State Machine "STATE_MACHINE_FUNCION_BLOCK_TCP"
	3.2.3 State Machine "MQTT_STATE_MACHINE"
	3.2.4 State Machine "MQTT_COMMANDS"
	3.2.5 Function Diagram

	4 Appendix
	4.1 Service and support
	4.2 Industry Mall
	4.3 Links and literature
	4.4 Change documentation

