

Industry Online Support

NEWS

Communication blocks and faceplates for the SITOP SEL1200 / 1400

SITOP SEL1200 / SEL1400 SIMATIC STEP 7 Basic / Professional V17 SIMATIC WinCC Unified V17

https://support.industry.siemens.com/cs/ww/en/view/109763709

Siemens Industry Online Support

Legal information

Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several components in the form of text, graphics and/or software modules. The application examples are a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are non-binding and make no claim to completeness or functionality regarding configuration and equipment. The application examples merely offer help with typical tasks; they do not constitute customer-specific solutions. You yourself are responsible for the proper and safe operation of the products in accordance with applicable regulations and must also check the function of the respective application example and customize it for your system.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the application examples used by technically trained personnel. Any change to the application examples is your responsibility. Sharing the application examples with third parties or copying the application examples or excerpts thereof is permitted only in combination with your own products. The application examples are not required to undergo the customary tests and quality inspections of a chargeable product; they may have functional and performance defects as well as errors. It is your responsibility to use them in such a manner that any malfunctions that may occur do not result in property damage or injury to persons.

Disclaimer of liability

Siemens shall not assume any liability, for any legal reason whatsoever, including, without limitation, liability for the usability, availability, completeness and freedom from defects of the application examples as well as for related information, configuration and performance data and any damage caused thereby. This shall not apply in cases of mandatory liability, for example under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for damage typical of the type of agreement, unless liability arises from intent or gross negligence or is based on loss of life, bodily injury or damage to not imply any change in the burden of proof to your detriment. You shall indemnify Siemens against existing or future claims of third parties in this connection except where Siemens is mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any damage beyond the liability provisions described.

Other information

Siemens reserves the right to make changes to the application examples at any time without notice. In case of discrepancies between the suggestions in the application examples and other Siemens publications such as catalogs, the content of the other documentation shall have precedence. The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information

Siemens provides products and solutions with Industrial Security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the Internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit https://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at: <u>https://www.siemens.com/industrialsecurity</u>.

Table of contents

Lega	Legal information2					
1	Introduc	tion	5			
	1.1	Overview	5			
	1.2 1.2.1	Principle of operation Application with S7-1200	5 6			
	1.2.2 1.2.3 1.2.4	Application with \$7-1500 Method of action Signal profile	7 8 9			
	1.2.5	Effective reaction of the function block	10			
	1.2.6	Internally used instructions for S7-1200 CPUs	11			
	1.2.7	Content of the telegrams of the SEL1200 and SEL1400	13			
	1.3	Components used	21			
2	Enginee	ring	22			
-	 2 1	Interface description	22			
	2.1.1	PLC data type for S7-1200 and S7-1500	22			
	2.1.2	FB "LSEL_SignalEvaluationS71200"	24			
	2.1.3	FB "LSEL_SignalEvaluationS71500"	26			
	2.1.4	Faceplate "fpUnfDetailS71x00SEL"	20			
	22	Configuration	30			
	2.2.1	Creating a TIA Portal Project	30			
	2.2.2	Integrate an S7 CPU into the user project	32			
		Add S7 CPU via hardware catalog	32			
		Integration of a digital input module into the user project	34			
	2.2.3	Integrate an HMI operator device	37			
		Adding an HMI Operator Panel	37			
	2.2.4	Create HMI users				
	23	Creating communication				
	2.3.1	Creating an HMI Connection	41			
	2.3.2	Create PLC tags	43			
	2.4	Integrating the function blocks into the user program	44			
	2.4.1	Open the "LSEL_V17.0-0_V1-0-0" library in STEP 7	44			
	2.4.2	Copy data types and function blocks into the user project	46 48			
	2.4.4	Assign the process image partition (PIP) of the digital input module to the				
		cyclic interrupt OB	49			
	2.4.5	Integrate signal evaluation block into cyclic interrupt	50			
	2.4.7	Connect global data block tags	55			
	2.5 2.5.1	Integrating the faceplates	56			
	2.5.2	Copy text lists into the user project	58			
	2.5.3	Copy faceplates into the user project	59			
	2.6	Compiling and downloading	62			
	2.6.1	User program of the S7 CPU	62			
	2.0.2	Compile 66	05			
		Start simulation	69			
3	Operatio	on	70			
ation blo	ocks and fac	eplates for SITOP SEI 1x00				

	3.1 3.1.1	Faceplate "fpComAdvOverviewS71500SEL" and "fpComAdvOverviewS71200S Overview	SEL"70 70
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Faceplate "fpUnvDetailS71200SEL" and "fpUnvDetailS71500SEL" Overview Header range Status area Navigation pane Information area.	71 71 71 72 72 73
4	Trouble	eshooting	78
	4.1	FB "LSEL_SignalEvaluationS71500" and FB "LSEL_SignalEvaluationS71200" status display	78
	4.2	Hashes ("#####") appear in the faceplate	79
5	Append	dix	80
	5.1	Service and support	80
	5.2	Industry Mall	81
	5.3	Links and literature	81
	5.4	Change documentation	81

1 Introduction

1.1 Overview

The "LSEL_V17.0-0_V1_0_0" library provides function blocks and faceplates for the SITOP SEL1200 and SEL1400. You can use the function blocks to read the device data from the selectivity module. You can use the faceplates to clearly display the device data on an HMI operator device.

The prefabricated modules save you time and money in engineering. You also do not have to worry about the serial communication of the SITOP SEL1200 and SEL1400 with your controller.

1.2 Principle of operation

The "COM" diagnostic interface of the SEL1200 and SEL1400 provides a signal that transmits the following device data as a Manchester code.

- Status information of the outputs
- Current output current values at the outputs
- Current limit values of the outputs
- Device information

The signal of the diagnostics interface "COM" is read and evaluated by the S7 CPU via a digital input. The aforementioned device data is stored in the S7 CPU in a pre-defined data structure (PLC data type). The HMI device accesses this predefined data structure to display the device data.

1.2.1 Application with S7-1200

The following Figure shows the connection of the SEL1200 and SEL1400 to a digital input of the S7-1200 CPU.

Figure 1-1

1.2.2 Application with S7-1500

The following Figure shows the connection of the SEL1200 and SEL1400 to a digital input module of the S7-1500.

Figure 1-2

1.2.3 Method of action

The library provides the function block (FB) for each of the following CPUs:

- S7-1500 CPUs
- S7-1200 CPUs

Call up the S7-CPU in the FB user program to evaluate the signal from the "COM" diagnostic interface. The FB reads the "COM" diagnostic interface signal via a digital input. Status information, current values and current limit values of the outputs as well as device information are stored in a predefined data structure (PLC data type) at its output.

Figure 1-3

1.2.4 Signal profile

<u>Figure 1-4</u> shows the signal profile. A signal telegram consists of a start character and 32 bits. Start character is structured as follows:

- 50 ms low level
- 150 ms high level
- 50 ms low level

The individual bits are transferred as a Manchester code. A bit has a duration of 100 ms, whereby the high level and the low level are each 50 ms long. A "0" is represented by a falling edge, i.e. a "0" is represented by a high level followed by a low level. A "1" is represented by a rising edge, i.e. a "1" is represented by a low level followed by a high level.

1.2.5 Effective reaction of the function block

Figure 1-5 graphically depicts the functional reaction of the following function blocks:

- FB "LSEL_SignalEvaluationS71500"
- FB "LSEL_SignalEvaluationS71200"

Note The instance DB of the FB "LSEL_SignalEvaluationS71200" and FB "LSEL_SignalEvaluationS71500" is generated when the function block is called. You need a separate instance DB for each call of the function block.

1.2.6 Internally used instructions for S7-1200 CPUs

For the S7-1200 CPUs, the following instructions are used internally in the function block:

- RD_SYS_T: The instruction RD_SYS_T reads the current date and time (module time) from the CPU. The time is used in the function block to calculate the cycle time and find the length of the high and low levels. The RD_SYS_T instruction can be found in the "Instructions" task card under "Extended instructions > Date and time-of-day".
- TON: The instruction generates a switch-on delay. The switch-on delay is used in the function block when generating error messages. The TON instruction can be found in the Task Card "Instructions" under "Basic instructions > Timer operations".
- T_DIFF: The instruction calculates the difference between two time points by subtracting two DT format time points.
 The T_DIFF instruction can be found in the "Instructions" task card under "Extended instructions > Date and time-of-day".

Compare time values

To calculate the cycle time and the length of the high and low levels, the time read must be greater than the time read and stored in the last cycle, i.e. comparison expressions are used in the FB to compare the contents of two variables of data type "DTL" to greater.

Calculate cycle time

To calculate the cycle time, the read time is stored in each cycle and subtracted from the newly read time in the next cycle. The cycle time must not exceed 10 ms so that every high level in the signal path of the "COM" diagnostic interface can be detected. If the cycle time exceeds 10 ms, the function block outputs an error with the value 16#8001 at the output "status".

Calculate the length of a pulse

To calculate the length of a high level, the time is read and stored if a positive edge is detected at the "impulse" input. If a negative edge is subsequently detected, the time is read again and stored. The time stored on a positive edge is subtracted from the time stored on a negative edge.

Calculate the length of a pause

To calculate the length of a low level, the time is read and stored if a negative edge is detected at the "impulse" input. If a positive edge is subsequently detected, the time is read again and stored. The time stored on a negative edge is subtracted from the time stored on a positive edge.

Note Since the time is used in the S7-1200 to calculate the cycle time and the length of the high level and low level, the output "dataSel" must not be evaluated if the time is set by time synchronization.

1.2.7 Internally used instructions for S7-1500

The following instructions are used internally in the function block for the S7-1500 CPUs.

- TIME_TCK: The instruction TIME_TCK reads the system time of the CPU. The system time is a time counter that counts from 0 to a maximum of 2147483647 ms. In the event of an overflow, counting starts again from "0". The time grid and the accuracy of the system time is 1 ms. In the function block, the system time is used to calculate the cycle time and to determine the length of the high and low levels.
 The TIME_TCK instruction is found in the "Instructions" task card under "Extended instructions > Date and time-of-day > Clock functions".
- TON: The instruction generates a switch-on delay. The switch-on delay is used in the function block when generating error messages. The TON instruction can be found in the task card "Instructions" under "Basic instructions > Timer operations".

Compare time values

To calculate the cycle time and the length of the high and low levels, the system time read must be greater than the system time read and stored in the last cycle, i.e. comparison expressions are used in the FB to compare the contents of two variables of data type "TIME".

Calculate cycle time

To calculate the cycle time, the read system time is stored in each cycle and subtracted from the newly read system time in the next cycle. The cycle time must not exceed 10 ms so that every high level in the signal path of the "COM" diagnostic interface can be detected. If the cycle time exceeds 10 ms, the function block outputs an error with the value 16#8001 at the output "status".

Calculate the length of a high level

To calculate the length of a high level, the system time is read and stored if a positive edge is detected at the "impulse" input. If a negative edge is subsequently detected, the system time is read and stored again. The system time stored on a positive edge is subtracted from the system time stored on a negative edge.

Calculating the length of a low level

To calculate the length of a low level, the system time is read and stored if a negative edge is detected at the "impulse" input. If a positive edge is subsequently detected, the system time is read and stored again. The system time stored at a negative edge is subtracted from the system time stored at a positive edge.

1.2.8 Content of the telegrams of the SEL1200 and SEL1400

Overview

The SEL1200 and SEL1400 send 4 telegrams with the following content via the diagnostic interface:

- Bit 1 to 6: Header
- Bit 7 to 32: telegram-dependent payload

The header and the status information from the SEL1200 and SEL1400 are contained in all 4 telegrams. The following payloads are transmitted with the 4 telegrams:

- Status information of the outputs
- Current output current values at the outputs
- Current limit values of the outputs
- Device information

The following Figure shows the structure of the telegrams.

Figure 1-6

Bit	Bit 1 2 3 4 5		6	7 to 32			
			Hea	ader			
	Device type ¹⁾		:е))	R ²⁾	Con ty	tent ce	telegram-dependent payload
Telegram 1	0	x	x	0	0	0	Status information, output 1 to 8
Telegram 2	0	x	x	0	0	1	Device information
Telegram 3	0	x	x	0	1	0	Current values (output current values of current limit values), output 1 to 4
Telegram 4	0	x	x 0 1 1		1	Current values (output current values of current limit values), output 5 to 8	
¹⁾ Device type: SEL1200 or SEL1400 ²⁾ R: Reserved							

The following Table shows the contents of the device type.

Table 1-1

Bit	Meaning	Value range (binary)
1 to 3	Device type	001 _{bin} = 1 _{dez} : SEL1200 010 _{bin} = 2 _{dez} : SEL1400

Useful content of telegram 1

In telegram 1 status information of outputs 1 to 8 are transmitted. This telegram is identified in the header by the content type $00_{bin} = 0_{dez.}$

The following Table shows the payload of telegram 1.

Bit	Meaning	Value range (binary)
1 to 6	Header	See Figure 1-6 and Table 1-1
7	Input voltage	0: Input voltage too low or too high 1: Input voltage in permissible range

Bit	Meaning	Value range (binary)
8 to 10	Status of output 1	See <u>Table 1-3</u>
11 to 13	Status of output 2	See Table 1-3
14 to 16	Status of output 3	See <u>Table 1-3</u>
17 to 19	Status of output 4	See Table 1-3
20 to 22	Status of output 5	See Table 1-3
23 to 25	Status of output 6	See Table 1-3
26 to 28	Status of output 7	See <u>Table 1-3</u>
29 to 31	Status of output 8	See Table 1-3
32	Parity	The parity bit serves as a supplementary bit to supplement the number of bits occupied by 1 (including the parity bit) in the telegram as even or odd. 0: Parity sum even 1: Parity sum uneven

The following Table shows and describes the value range (binary) of the status information of outputs 1 to 8.

Value range (binary)	Description	LED of the output
000 _{bin} = 0 _{dez}	Automatically switched off, reset not possible ("Automatically switched off, reset not possible")	Illuminated red
001 _{bin} = 1 _{dez}	Automatically switched off, reset possible	Flashes red
$010_{bin} = 2_{dez}$	Manually switched off	Flashes orange
$011_{bin} = 3_{dez}$	Switched on	Illuminated green
$100_{bin} = 4_{dez}$:	Broken	LED Off
101 _{bin} = 5 _{dez} :	Device overtemperature, output switched off ("Device overtemperature, output switched off")	red
110 _{bin} = 6 _{dez} :	Isum too high ("Isum too high")	red
$111_{bin} = 7_{dez}$:	IOUT > ISET	Flashes green

Useful content of telegram 2

In telegram 2 device information is transmitted. This telegram is identified in the header by the content type $01_{bin} = 1_{dez.}$

Bit	Meaning	Value range (binary)
1 to 6	Header	See Figure 1-6 and Table 1-1
7 to 10	Month of construction	0000 _{bin} = 0 _{dez} : Reserve
		0001 _{bin} = 1 _{dez} : January
		0010 _{bin} = 2 _{dez} : February
		0011 _{bin} = 3 _{dez} : March
		0100 _{bin} = 4 _{dez} : April
		0101 _{bin} = 5 _{dez} : May
		0110 _{bin} = 6 _{dez} : June
		$0111_{bin} = 7_{dez}$: July
		1000 _{bin} = 8 _{dez} : August
		1001 _{bin} = 9 _{dez} : September
		1010 _{bin} = 10 _{dez} : October
		1011 _{bin} = 11 _{dez} : November
		1100 _{bin} = 12 _{dez} : December
		1101 _{bin} = 13 _{dez} : Reserve
		1110 _{bin} = 14 _{dez} : Reserve
		1111 _{bin} = 15 _{dez} : Reserve
11 to 13	Software version	0 to 7
14 to 16	Device version:	0 to 7
	Digit 11 of the article number	
17 to 19	Device innovations	0 to 7
	Digit 12 of the article number	
20 to 22	Variants (Number of channels)	$000_{bin} = 0_{dez}$: A (one channel)
	Digit 14 of the article number	001 _{bin} = 1 _{dez} : B (two channels)
		$010_{bin} = 2_{dez}$: C (four channels)
		$011_{bin} = 3_{dez}$: D (eight channels)
		100 _{bin} = 4 _{dez} : X (Not relevant)
		101 _{bin} = 5 _{dez} : Reserve
		110 _{bin} = 6 _{dez} : Reserve
		111 _{bin} = 7 _{dez} : Reserve
23 to 26	Year of manufacture	0 to 15 years from 2019
27 to 29	Product version	0 to 7
30	Coating	0: Circuit boards not coated
		1: Circuit boards coated
31	Manufacturer site	0: Manufacturer site Vienna
		1: Manufacturer site Sibiu
32	Parity	The parity bit serves as a supplementary
		bit to supplement the number of bits
		be telegram as even or odd
		0. Parity sum even
		1. Parity sum uneven
		I. Failly Sulli uneveil

Useful content of telegram 3

In telegram 3, the current values (measured values of the output currents and current limit values) of outputs 1 to 4 are transmitted. This telegram is identified in the header by the content type 10bin = 2dez.

Bits 7 and 8 indicate whether 3 measured values of the output currents or current limit values are transmitted in the telegram. If bits 7 and 8 have the value $00_{bin} = 0_{dez}$, then the measured values of the output currents will be transmitted.

Bit	Meaning	Value range (binary)
1 to 6	Header	See Figure 1-6 and Table 1-1
7 to 8	Measured value / current limit value	00 _{bin} = 0 _{dez} : Telegram contains measured values
		10 _{bin} = 2 _{dez} : Telegram contains current limit values
9 to 12	Output 1: current output current	0% to 150% of rated current
13 to 16	Output 2: current output current	0% to 150% of rated current
17 to 20	Output 3: current output current	0% to 150% of rated current
21 to 24	Output 4: current output current	0% to 150% of rated current
25 to 26	Reserved	0
27 to 28	boot sequence	$00_{bin} = 0_{dez}$: Load-dependent ramp-up $01_{bin} = 1_{dez}$: Time delay acceleration 25 ms $10_{bin} = 2_{dez}$: Time delay acceleration 200 ms $11_{bin} = 3_{dez}$: Time delay ramp-up 500 ms
29 to 30	Nominal current Channels	$\begin{array}{l} 00_{bin}=0_{dez};\;3\;A\\ 01_{bin}=1_{dez};\;5\;A\\ 10_{bin}=2_{dez};\;10\;A\\ 11_{bin}=3_{dez};\;reserved \end{array}$
31	Number of outputs	0: 4 Outputs 1: 8 Outputs
32	Parity	The parity bit serves as a supplementary bit to supplement the number of bits occupied by 1 (including the parity bit) in the telegram as even or odd. 0: Parity sum even 1: Parity sum uneven

Table 1-5

If bits 7 and 8 have the value $10_{bin} = 2_{dez}$, then the current limit value set at the potentiometer will be transmitted.

Bit	Meaning	Value range (binary)
1 to 6	Header	See Figure 1-6 and Table 1-1
7 to 8	Measured value / current limit value	00 _{bin} = 0 _{dez} : Telegram contains measured values 10 _{bin} = 2 _{dez} : Telegram contains current
		limit values
9 to 12	Output 1: Current limit value / cause of switch-off	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>).
13 to 16	Output 2: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>).
17 to 20	Output 3: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>).
21 to 24	Output 4: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>).
25 to 26	Reserved	0
27 to 28	boot sequence	$00_{bin} = 0_{dez}$: Load-dependent ramp-up $01_{bin} = 1_{dez}$: Time delay acceleration 25 ms $10_{bin} = 2_{dez}$: Time delay acceleration 200 ms $11_{bin} = 3_{dez}$: Time delay ramp-up 500 ms
29 to 30	Nominal current Channels	$\begin{array}{l} 00_{bin}=0_{dez}: 3 \ A \\ 01_{bin}=1_{dez}: 5 \ A \\ 10_{bin}=2_{dez}: 10 \ A \\ 11_{bin}=3_{dez}: reserved \end{array}$
31	Number of outputs	0: 4 Outputs 1: 8 Outputs
32	Parity	The parity bit serves as a supplementary bit to supplement the number of bits occupied by 1 (including the parity bit) in the telegram as even or odd. 0: Parity sum even 1: Parity sum uneven

The following Table shows an overview of the causes of shutdown. Table 1-7

Value range (binary)	Description
$0000_{bin} = 0_{dez}$:	-
0001 _{bin} = 1 _{dez} :	IOUT > ISET
0010 _{bin} = 2 _{dez} :	IOUT > 1,5X ISET
0011 _{bin} = 3 _{dez} :	ISUM > 60 A
0100 _{bin} = 4 _{dez} :	UIN < 19.4 V und IOUT > ISET
0101 _{bin} = 5 _{dez} :	U _{IN} < 19.4 V
0110 _{bin} = 6 _{dez} :	U _{IN} < 15 V
0111 _{bin} = 7 _{dez} :	U _{IN} > 30 V
1000 _{bin} = 8 _{dez} :	device overtemperature ("Device overtemperature")
1001 _{bin} = 9 _{dez} :	Reserve
1010 _{bin} = 10 _{dez} :	Reserve
1011 _{bin} = 11 _{dez} :	Reserve
1100 _{bin} = 12 _{dez} :	Reserve
1101 _{bin} = 13 _{dez} :	Reserve
1110 _{bin} = 14 _{dez} :	Reserve
1111 _{bin} = 15 _{dez} :	Reserve

Useful content of telegram 4

In telegram 4, the current values (measured values of the output currents and current limit values) of outputs 5 to 8 are transmitted. This telegram is identified in the header by the content type $11_{\text{bin}} = 3_{\text{dez}}$

Bits 7 and 8 indicate whether 4 measured values of the output currents or current limit values are transmitted in the telegram. If bits 7 and 8 have the value $00_{bin} = 0_{dez}$, then the measured values of the output currents will be transmitted.

Bit	Meaning	Value range (binary)
1 to 6	Header	See Figure 1-6 and Table 1-1
7 to 8	Measured value / current limit value	00 _{bin} = 0 _{dez} : Telegram contains measured values 10 _{bin} = 2 _{dez} : Telegram contains current limit
9 to 12	Output 5: current output current	0% to 150% of rated current
13 to 16	Output 6: current output current	0% to 150% of rated current
17 to 20	Output 7: current output current	0% to 150% of rated current
21 to 24	Output 8: current output current	0% to 150% of rated current
25 to 26	Reserved	0
27 to 28	boot sequence	$00_{bin} = 0_{dez}$: Load-dependent ramp-up $01_{bin} = 1_{dez}$: Time delay acceleration 25 ms $10_{bin} = 2_{dez}$: Time delay acceleration 200 ms $11_{bin} = 3_{dez}$: Time delay ramp-up 500 ms
29 to 30	Nominal current Channels	$\begin{array}{l} 00_{bin}=0_{dez}:\ 3\ A\\ 01_{bin}=1_{dez}:\ 5\ A\\ 10_{bin}=2_{dez}:\ 10\ A\\ 11_{bin}=3_{dez}:\ reserved \end{array}$
31	Number of outputs	0: 4 Outputs 1: 8 Outputs
32	Parity	The parity bit serves as a supplementary bit to supplement the number of bits occupied by 1 (including the parity bit) in the telegram as even or odd. 0: Parity sum even 1: Parity sum uneven

Table	1-8
-------	-----

If bits 7 and 8 have the value $10_{bin} = 2_{dez}$, then the current limit value set at the potentiometer will be transmitted.

Bit	Meaning	Value range (binary)		
1 to 6	Header	See Figure 1-6 and Table 1-1		
7 to 8	Measured value / current limit value	$00_{bin} = 0_{dez}$: Telegram contains measured values		
		limit values		
9 to 12	Output 5: Current limit value / cause of switch-off	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>). 		
13 to 16	Output 6: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>). 		
17 to 20	Output 7: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>). 		
21 to 24	Output 8: current limit value	 0% to 100% of rated current If the output is switched off automatically, the cause of the switch- off is transmitted instead of the current limit value (see <u>Table 1-7</u>). 		
25 to 26	Reserved	0		
27 to 28	boot sequence	$00_{bin} = 0_{dez}$: Load-dependent ramp-up $01_{bin} = 1_{dez}$: Time delay acceleration 25 ms $10_{bin} = 2_{dez}$: Time delay acceleration 200 ms $11_{bin} = 3_{dez}$: Time delay ramp-up 500 ms		
29 to 30	Nominal current Channels	$\begin{array}{l} 00_{bin}=0_{dez}:\ 3\ A\\ 01_{bin}=1_{dez}:\ 5\ A\\ 10_{bin}=2_{dez}:\ 10\ A\\ 11_{bin}=3_{dez}:\ reserved \end{array}$		
31	Number of outputs	0: 4 Outputs 1: 8 Outputs		
32	Parity	The parity bit serves as a supplementary bit to supplement the number of bits occupied by 1 (including the parity bit) in the telegram as even or odd. 0: Parity sum even 1: Parity sum uneven		

1.3 Components used

This application example was created with the following hardware and software components.

|--|

Component	Quantity	Item number	Alternative		
\$7-1200					
CPU 1211C	1	6ES7211-1AE40-0XB0	Any S7-1200 CPU		
S7-1500					
CPU 1513-1 PN	1	6ES7513-1AL01-0AB0	Any S7-1500 CPU, ET 200SP CPU and ET 200pro CPU		
Digital input module DI 32x24V DC HF	1	6ES7-1BL00-0AB0	Other digital input modules or digital inputs for a distributed I/O system		
HMI operator panel					
MTP700 Comfort	1	6AV2128-3GB06-0AX0	All Unified Comfort Panels ≥ 7" and PC stations with SIMATIC WinCC Unified PC RT ≥ V17 are also usable		
Engineering software					
STEP 7 V17	1	6ES7822-1AA07-0YA5	For the configuration of the S7 CPU you will need STEP 7 Professional V17 or higher.		
WinCC Advanced / Unified PC V17	1	6AV2102-0AA07-0AA5	To configure SIMATIC panels, WinCC WinCC Unified PC RT. Download license also possible		
SIMATIC WinCC Runtime Advanced 4096 PowerTags V17	1	6AV2104-0HA07-0AA0	Package V17 Download license also possible		

2 Engineering

2.1 Interface description

2.1.1 PLC data type for S7-1200 and S7-1500

The following PLC data types are predefined data structures that store the payloads of the telegrams:

- "typeDataS71200SEL"
- "typeDataS71500SEL"

The following Table shows the structure of the PLC data types. Table 2-1

Parameters	Data type	Start value	Description	
deviceName	String	SEL1200	Device name	
stateCOM	Bool	TRUE	DIP switch "COM" status TRUE: Diagnostic interface "COM" activated FALSE: Diagnostic interface "COM" deactivated	
stateDipSwitchTD1	Bool	FALSE	DIP switch "TD1" status FALSE: TD1 off (position left) TRUE: TD1 on (right position)	
stateDipSwitchTD2	Bool	FALSE	DIP switch "TD2" status FALSE: TD2 off (position left) TRUE: TD2 on (right position)	
stateOutput1	Int	0	See <u>Table 1-3</u>	
stateOutput2	Int	0	See <u>Table 1-3</u>	
stateOutput3	Int	0	See <u>Table 1-3</u>	
stateOutput4	Int	0	See <u>Table 1-3</u>	
stateOutput5	Int	0	See <u>Table 1-3</u>	
stateOutput6	Int	0	See Table 1-3	
stateOutput7	Int	0	See <u>Table 1-3</u>	
stateOutput8	Int	0	See <u>Table 1-3</u>	
outputCurrent1	Int	0	Output current at output 1	
outputCurrent2	Int	0	Output current at output 2	
outputCurrent3	Int	0	Output current at output 3	
outputCurrent4	Int	0	Output current at output 4	
outputCurrent5	Int	0	Output current at output 5	
outputCurrent6	Int	0	Output current at output 6	
outputCurrent7	Int	0	Output current at output 7	
outputCurrent8	Int	0	Output current at output 8	
outputCurrentLimit1	Int	0	Current limit value output 1	
outputCurrentLimit2	Int	0	Current limit value output 2	
outputCurrentLimit3	Int	0	Current limit value output 3	
outputCurrentLimit4	Int	0	Current limit value output 4	
outputCurrentLimit5	Int	0	Current limit value output 5	
outputCurrentLimit6	Int	0	Current limit output 6	

Parameters	Data type	Start value	Description
outputCurrentLimit7	Int	0	Current limit value 7
outputCurrentLimit8	Int	0	Current limit value 8
reasonOutputSwitchedOff1	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff2	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff3	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff4	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff5	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff6	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff7	Int	0	See <u>Table 1-7</u>
reasonOutputSwitchedOff8	Int	0	See <u>Table 1-7</u>
nominalOutputCurrent	Int	3	Rated current
outputNumber	Int	4	Number of outputs
productState	Int	1	Product version
firmwareVersion	Int	1	Firmware version
startupSequence	Int	0	0: Load-dependent ramp-up 1: Time delay acceleration 25 ms 2: Time delay acceleration 200 ms 3: Time delay ramp-up 500 ms
setReset	Bool	FALSE	This parameter initiates the resetting of the outputs, e.g. via digital input or HMI keypad.
stateReset	Bool	FALSE	TRUE: At least one output must be reset. FALSE: No output must be reset.
stateNoCommunication	Bool	FALSE	TRUE: At least 9 s no signal detected at input "impulse" of the FB. FALSE: Communication ok, signal at input "impulse" of the FB is detected and evaluated.
articleNumber	String	6EP4437- 7FB00- 0CX0	Item number
serialNumber	String	Q6/L1	Part of serial number

2.1.2 FB "LSEL_SignalEvaluationS71200"

The FB "LSEL_SignalEvaluationS71200" reads the signal of the diagnostic interface "COM" at the input "impulse" in order to evaluate the signal profile and to store the contents of the 4 telegrams in a predefined data structure at the output "dataSel".

Figure 2-1 shows the call of the FB "LSEL_SignalEvaluationS71200" in the user program.

Call the FB "LSEL_SignalEvaluationS71200" in the user program of the S7 CPU in a cyclic interrupt OB with at most a 10 ms cycle time.

The cycle time must not exceed 10 ms so that every high level in the signal path of the diagnostics interface "COM" is detected.

Note If the cycle time exceeds 10 ms, the FB "LSEL_SignalEvaluationS71200" outputs an error with the value 16#8001 at the output "status".

The following Table shows the parameters of the FB "LSEL_SignalEvaluationS71200".

Та	ble	2-2

Name	P type	Data type	Comment
impulse	IN	Bool	Input via which the signal of the diagnostic interface "COM" is read in.
done	OUT	Bool	 A telegram was evaluated completely and without errors. The data are stored in the predefined data structure at the output "dataSel". The data of the output "dataSel" can be transferred. The output "done" is set to the value "1" for one cycle. Telegram evaluation running, or no signal detected at input "impulse".
busy	OUT	Bool	1: FB "LSEL_SignalEvaluationS71200" is active 0: If done = 1, then a telegram was evaluated completely and without errors. The content of the telegram is stored in a predefined data structure at the output "dataSel". The data of the output "dataSel" can be transferred.
Error	OUT	Bool	 1: An error occurred during the processing of the routine. The output "error" is set to the value "1" for one cycle. 0: No error
status	OUT	Word	Status display If error = 1, the "status" output indicates the error number for a cycle. If error = 0, the value 16#0000 is displayed at the "status" output.
frame	OUT	DWord	Binary code of the received telegram
reset	OUT	Bool	1: Reset outputs of SEL1200 / SEL1400 0: Do not reset the outputs of the SEL1200 / SEL1400.
dataSel	IN_OUT	"typeDataS71200SEL"	Predefined data structure in which the status information and the payloads of the telegrams are stored. Detailed information on the structure of the predefined data structure can be found in chapter 2.1.1.

Note The instance DB of the FB "LSEL_SignalEvaluationS71200" is generated when the FB "LSEL_SignalEvaluationS71200" is called. For each call of the FB "LSEL_SignalEvaluationS71200" you need a separate instance DB. The FB "LSEL_SignalEvaluationS71200" must not be called multiple times with the same instance DB.

2.1.3 FB "LSEL_SignalEvaluationS71500"

The FB "LSEL_SignalEvaluationS71500" reads the signal of the diagnostic interface "COM" at the input "impulse" in order to evaluate the signal profile and to store the contents of the 4 telegrams in a predefined data structure at the output "dataSel".

Figure 2-2 shows the call of the FB "LSEL_SignalEvaluationS71500" in the user program.

Call the FB "LSEL_SignalEvaluationS71500" in the user program of the S7 CPU in a cyclic interrupt OB of maximum 10 ms.

The cycle time must not exceed 10 ms so that every high level in the signal path of the diagnostics interface "COM" is detected.

Note If the cycle time exceeds 10 ms, the FB "LSEL_SignalEvaluationS71500" outputs an error with the value 16#8001 at the output "status".

Figure 2-2

The following Table shows the parameters of the FB "SEL_SignalEvaluationS71500".

Name	P type	Data type	Comment
impulse	IN	Bool	Input via which the signal of the diagnostic interface "COM" is read in.
done	OUT	Bool	 A telegram was evaluated completely and without errors. The data are stored in the predefined data structure at the output "dataSel". The data of the output "dataSel" can be transferred. The output "done" is set to the value "1" for one cycle. Telegram evaluation running, or no signal detected at input "impulse".
busy	OUT	Bool	1: FB "LSEL_SignalEvaluationS71500" is active 0: If done = 1, then a telegram was evaluated completely and without errors. The content of the telegram is stored in a predefined data structure at the output "dataSel". The data of the output "dataSel" can be transferred.
Error	OUT	Bool	 1: An error occurred during the processing of the routine. The output "error" is set to the value "1" for one cycle. 0: No error
status	OUT	Word	Status display If error = 1, the "status" output indicates the error number for a cycle. If error = 0, the value 16#0000 is displayed at the "status" output.
frame	OUT	DWord	Binary code of the received telegram
reset	OUT	Bool	1: Reset outputs of SEL1200 / SEL1400 0: Do not reset the outputs of the SEL1200 / SEL1400.
dataSel	IN_OUT	"typeDataS71500SEL"	Predefined data structure in which the status information and the payloads of the telegrams are stored. Detailed information on the structure of the predefined data structure can be found in section 2.1.1.

Note The instance DB of the FB "LSEL_SignalEvaluationS71500" is generated when the FB "LSEL_SignalEvaluationS71500" is called. For each call of the FB "LSEL_SignalEvaluationS71500" you need a separate instance DB. The FB "LSEL_SignalEvaluationS71500" must not be called more than once with the same instance DB.

2.1.4 Faceplate "fpUnfOverviewS71x00SEL"

The following faceplates provide various parameter assignment properties via the interfaces:

- "fpUnfOverviewS71200SEL"
- "fpUnfOverviewS71500SEL"

Here, the interfaces fulfil the following purposes:

- Tag interface: Property for tag connection
- Property interface: Property for linking text lists

Figure 2-3

3_Faceplates_Unified > S	7-1200 ▶ fpUnfO	verviewS71200SEL 🕨 \	/ 1.0.0 📃 🖬 🗮 🗙
	Visualization	Tag interface	Property interface
≣x ± ∓			
Name	Data type	User data type structure	
dataSEL1200_1400	Struct 🔳	typeDataS71200SEL V 1.0.	0
<add new=""></add>			
	3_Faceplates_Unified > S → → Name dataSEL1200_1400 <add new=""></add>	3_Faceplates_Unified > \$7-1200 > fpUnfO Visualization ⇒ ↑ ↓ Name Data type data SEL1200_1400 Struct III <add new=""></add>	3_Faceplates_Unified > \$7-1200 > fpUnfOverview\$71200SEL > V Visualization Tag interface F

Figure 2-4

0	3_Faceplates_Unified > S	7-1200 ▶ fpUnfOve	rviewS7	71200SEL	▶ V 1.0.0	_ # #×
		Visualization	Tag ir	nterface	Property i	nterface
Ē	≣x ± ∓					
	Name	Data type				
	rlOutputStates	Resource list				
	rlOutputSwitchedOff	Resource list				
	rlStartupSequence	Resource list				
	<add new=""></add>					

You can specify an event to be executed when the faceplate is pressed. Use the "Events" tab to do this.

Figure 2-5

0		
btnActivateScreenWithFP	ut 國 Properties 🛛 🚺 Info 🔒	🗓 Diagnostics 🛛 🗆 📼 🤜
Properties Events	Texts	
	🔍 🐺 📇 Global definition ፤ Syr	nchronous 🔢 📲 🗙 🍋 😡
Activated Deactived Click left mouse button Press key Release key Press Pelease	<pre>1 export function btnA 2 let po = Faceplate 3 po.Left = 100; 4 po.Top = 150; 5 po.Visible = true; 6 }</pre>	activateScreenWithFP_OnTapped
Click right mouse button	4	

2.1.5 Faceplate "fpUnfDetailS71x00SEL"

The following faceplates provide various parameter assignment properties via the interfaces:

- "fpUnfDetailS71200SEL"
- "fpUnfDetailS71500SEL"

Here, the interfaces fulfil the following purposes:

- Tag interface: Property for tag connection and internal screen navigation
- Property interface: Property for linking text lists

Figure 2-6

)	03_Faceplates_Unified	S7-1200 → fpUr	nfDetailS71200SEL → V 1.0).0 💶 🖬 🖬 🗙
1		Visualization	Tag interface Prope	erty interface
	≣x ± ∓			
	Name	Data type	User data type structure	
	dataSEL1200_1400	Struct 🔳	typeDataS71200SEL V 1.0.0	
	stateSubNav	Int		
	stateSubNavOutputs	Int		
	<add new=""></add>			

Figure 2-7

)	→ 03_Faceplates_Unified → S7-1200 → fpUnfDetailS71200SEL → V 1.0.0 🛛 🗕 🖬 🗮 🗙					
		Visualization	Tag in	terface	Property	interface
	≣x ± ∓					
	Name	Data type				
	rlOutputStates	Resource list				
	rlOutputSwitchedOff	Resource list				
	rlStartupSequence	Resource list				
	<add new=""></add>					

2.2 Configuration

2.2.1 Creating a TIA Portal Project

- 1. Open the TIA Portal.
- 2. Switch to the "Project view".

From the "Project" menu, select "New". The "Create a new project" dialog opens.

VA Siemens				
Project Edit	View	Insert	Online	Options
😚 New				
Open				Ctrl+O
Migrate proj	ect			
Close				Ctrl+W
Delete proje	ct			Ctrl+E
Save				
Save as			Ctrl	+Shift+S
Archive				
Project serve	er			•
The Card Reader The Card Reader	/USB me d file	emory)

3. Enter your project name and path or accept the proposed data.

Create a new p	roject		×
	Project name:	SEL	
	Path:	D:\02_Projects	
	Version:	V17	
	Author:	Siemens Industry Online Support	
	Comment:		^ ~
		Create	Cancel

4. Click on the "Create" button. The new project is created and displayed in the project tree.

Create a new project	×
Project name:	SEL
Path:	D:\02_Projects
Version:	V17 💌
Author:	Siemens Industry Online Support
Comment:	<u>^</u>
	Control Control
	Create

2.2.2 Integrate an S7 CPU into the user project

Add S7 CPU via hardware catalog

- 1. Open the project tree.
- 2. Double-click the "Add new device" command to add a new PLC device. The dialog box "Add new device" opens.

₩ Siemens - D:\02_Projects\SEL\SEL
Project Edit View Insert Online Options To
📑 📑 🖬 Save project 📑 🐰 🗉 🗎 🗙 🍤 🗄
Project tree
Devices Plant objects
1
▼ T SEL
E Add new device
5 🚠 Devices & networks
🕨 🕨 🔛 Ungrouped devices
🕨 📷 Security settings
Cross-device functions
🕨 🙀 Common data
Documentation settings
Languages & resources
Version control interface
Online access
Cond Decident/USD memory

- 3. Under "Controllers", select the part number of the desired S7 CPU.
- 4. Set the firmware status via the drop-down list of the dialog.
- 5. Check the checkbox "Open Device view".
- Click the "OK" button to add the selected S7 CPU. The dialog box closes and the "Device view" of the S7 CPU opens in the hardware and network editor.

Add new device		_		×
Device name:				
PLC_1				
				No. of the second s
	✓ Li CPU	^	Device:	
	CPU 1511-1 PN			
	CPU 1511C-1 PN			-
Controllers	CPU 1512C-1 PN			
	- CPU 1513-1 PN			
	6ES7 513-1AL00-0AB0			CPU 1513-1 PN
	6ES7 513-1AL01-0AB0	M	-0	
	6ES7 513-1AL02-0AB0		ticle no :	6ES7 513-1AL01-0AB0
	CPU 1515-2 PN			
HMI	CPU 1516-3 PN/DP		Version:	V2.5
	CPU 1517-3 PN/DP	=		9
	CPU 1518-4 PN/DP		Description:	
	CPU 1518-4 PN/DP ODK		CPU with displ	ay; work memory 300 Kb d
	CPU 1518-4 PN/DP MFP		protection cor	ncept, technology functions :
PC systems	CPU 1511F-1 PN		motion contro	l, closed-loop control, counting &
resystems	CPU 1513F-1 PN		measuring; tra	acing; PROFINET IO controller,
	CPU 1515F-2 PN		V2.3, 2 ports, l	I-device, MRP, MRPD, transport
	CPU 1516F-3 PN/DP		protocol TCP/IF	P, secure Open User
	CPU 1517F-3 PN/DP		Communication	on, S7 communication, Web server,
	CPU 1518F-4 PN/DP		bus cycle time	e, routing; Runtime options,
	CPU 1518F-4 PN/DP ODK		firmware V2.5	3
	CPU 1518F-4 PN/DP MFP			
	CPU 1511T-1 PN			
	🕨 뒖 CPU 1515T-2 PN			
	CPU 1516T-3 PN/DP			
	🕨 뒖 CPU 1517T-3 PN/DP	~		
		Ť		
	· · · · · · · · · · · · · · · · · · ·			
6				
Open device view				OK Cancel

Adjust hardware configuration for S7 CPU

- 1. Select the S7 CPU in the graphical area of the Device view. The "Properties" of the S7 CPU are displayed in the Inspector window.
- 2. In the "General" tab, navigate to "PROFINET interface [X1] > Ethernet addresses".
- 3. Enter the IP address and subnet mask of the S7 CPU.
- 4. Click on the "Add new subnet" button or select an existing subnet from the drop-down list.

Integration of a digital input module into the user project

- 1. Open the Device view of the S7 CPU or the decentralized periphery, e.g. ET 200SP.
- 2. Select the desired digital input module in the "Hardware catalog".
- 3. Paste the selected digital input module via drag & drop into the slot where it is located in the actual hardware setup.

4. The preset address of the digital inputs is displayed in the table area of the device view. You can change it if necessary.

0\	verview					
M	odule	Rack	Slot	I address	Q address	Туре
		0	100			
		0	0			
•	PLC_1	0	1			CPU 151
	PROFINET interface_1	0	1 X1			PROFINE
	DQ 16x24VDC/0.5A HF_1	0	2		01	DQ 16x2
	DI 16x24VDC HF_1	0	3	01		DI 16x24

Set update time

If you read in the diagnostic interface "COM" of the SEL1200 or SEL1400 via a digital input module of the decentralized periphery, e.g. ET 200SP, the update time must not exceed 16 ms. You can have the update time calculated automatically or set it manually:

- 1. Open the Device view of the decentralized periphery, e.g. ET 200SP.
- 2. In the graphical area of the Device view, select the Interface Module (IM) of the ET 200SP. The "Properties" of the decentralized periphery are displayed in the Inspector window.
- 3. Navigate in the "General" tab to "PROFINET Interface [X1] > Advanced Options > Real-Time Settings".
- 4. Set the update time (max. 16 ms).

IO-Device_1 [IM 155-6 PN ST]					
General IO tags	System constants Texts				
 General Project information 	Real time settings				
Catalog information Identification & Mainten	> > IO cycle				
 PROFINET interface [X1] General 	Shared Device				
Ethernet addresses Advanced options	IO controller outside project with access to this IO device 0				
Interface options Media redundancy	IO device send clock 1.000				
Real time settings IO cycle	Update time				
Synchronization	Calculate update time automatically				
✓ General Project infor	Update time: 2.000				
2.2.3 Integrate an HMI operator device

Adding an HMI Operator Panel

1. Add a new device to your project via "Project tree > Add new device". The dialog box "Add new device" opens.

2. Select the desired HMI operating device under "HMI" and assign a name.

3. Optional

- If necessary, set the software version via the drop-down list of the dialog.
- 4. Select the check box "Start device wizard".
- 5. Click on the "OK" button to add the selected HMI Operator Panel. The dialog box closes, and the inserted HMI device is displayed in the project tree.

HMI_1			
Controllers	 HMI SIMATIC Basic Panel SIMATIC Comfort Panel SIMATIC Unified Comfort Panel T '' Display MTP700 Unified Comfort AV2 128-36806-0AXX O'' Display D'' Display D'' Display D'' Display D'' Display SIMATIC Mobile Panel HMI SIPLUS HMI SIPLUS RAIL 	Device: Article no.: Version: Description: 7.0" TFT displ Multi touch; 1 Ethernet inte Ethernet (Gig	MTP700 Unified Comfort 6AV2 128-3GB06-0AXx 17.0.00 ay, 800 x 480 pixe colors; x 422/485, 1 x PROFINE TIIndustrial rface with MRP (2 Ports); 1 x abit); 2 x SD card slot; 4 x USB
4			OK Cancel

Configuring the HMI device

- 1. Use the project tree to navigate to the device folder of the HMI Operator Panel.
- 2. Double-click on the "Device configuration" command to open the hardware and network editor in the "Device view" of the HMI operating device.

- 3. Mark the HMI operating device in the graphical area of the "Device view". The "Properties" of the HMI Operator Panel are displayed in the Inspector window.
- 4. In the "General" tab, navigate to "PROFINET interface [X1] > Ethernet addresses".
- 5. Use the drop-down list to select the subnet to which the S7 CPU is connected.
- 6. Enter the IP address and subnet mask of the HMI operator device.

HMI_1 [MTP700 Unified C	omfort]	Properties	🗓 Info 🔒	3 Diagnostics	
General IO tags	System constants Te	exts			
▶ General	Ethernet addresses				
 PROFINET Interface [X1] 					
General	Interface network	ed with			
Ethernet addresses 📐					
Time-of-day synchroni		Subnet: PN/IE	1		-
Advanced options	J		Add new subne	1 0	
PROFINET Interface [X2]					
Information	Internet protocol	version 4 (IPv4)		Q	
	4	💽 Set	IP address in th	e project	
	•	1	IP address:	192.168.0 .	2
		9	Subnet mask:	255 . 255 . 255 .	0
			router		
		R	outer address:	0.0.0.	0
		🔘 IP a	ddress is set dir	rectly at the device	

2.2.4 Create HMI users

- 1. Navigate to the "Security settings" folder via the "Project tree".
- 2. Double-click the "User and roles" command to open the settings for users and roles.
 - SEL
 Add new device
 Devices & networks
 Devices & networks
 HOLC_1 [CPU 1513-1 PN]
 HMI_1 [MTP700 Unified Comfort]
 Ungrouped devices
 Security settings
 Security settings
 Settings
 Settings
 Cross-device functions
- 3. Click in the "User name" column on "<Add new user>" and create a new local user.

SEL > Se	curity settings 🕨 l	Jsers and roles	
i		🕴 Users	👬 User groups 🔢 Roles
S≟ Is			
Users			
	User name	Password	Authentication
	<add new="" th="" users<=""><th>Add new local user</th><th></th></add>	Add new local user	

4. Set a user name and a password that a user will use to log in at the HMI.

SEL > Se	curity settings 🕨 Users and	l roles		_∎≡×
1		🕴 Users	👬 User grou	os 🗄 Roles
e <mark>∔ i</mark> e				=
Users				
	User name	Password		Authentication
i 🗹	UnifiedAdmin	*****	-	Password 💌
	<add new="" user=""></add>			

5. Select the line with the user you just created and, in the "Assigned roles" area, assign the user the "HMI Operator" role.

SEL Security settings Users and rol	les _ 🗗	×
1	🕴 Users 🛗 User groups 🔄 Roles	
e _≠ io	E	2
Users		
User name	Password Authentication .	
UnifiedAdmin	******* Password	•
Add new user>		
		_
<		>
Assigned user groups Assigned ro	bles Assigned rights	
Assigned roles		
Assigned to Name	Description Maxim	u
📔 📄 HMI Administrator	System-defined role "HMI Administ 30	
HMI Operator	System-defined role "HMI Operator" 30	
🔜 👔 🔲 🏊 🍟 HMI Monitor	System-defined role "HMI Monitor" 30	
HMI Monitor Client	System-defined role "HMI Monitor 30	

2.3 Creating communication

2.3.1 Creating an HMI Connection

- 1. Open the project tree.
- 2. Double-click the Devices & Networks command to open the Network view graphical area.

- 3. In the toolbar (symbol bar), click the "Connections" icon. This enables the connection mode.
- 4. Select the connection "HMI connection" in the adjacent drop-down list. In the network view, all S7 CPUs and HMI devices that can be used for an HMI connection are highlighted in color.

- 5. You can now have the connection path automatically defined or explicitly define a connection path via specific interfaces:
 - Having connection path defined automatically: Select the CPU from which a connection is to be set up. Move the mouse to the target component. Confirm the connection end point with another mouse click.
 - Select explicit connection path from interface to interface:
 Click on the subnet interface in the device from which you want to start a connection.
 Then move the mouse pointer while holding the mouse button down to the desired interface in the target device and release the mouse button.
- 6. In the network view, the created HMI connection is displayed in the graphical and tabular area (tab "Connections").

SEL ▶ Devices & network	S Topologyviow
Network Connections	HMI connection
PLC_1	
HI	MI_Connection_1

SEI	Þ	Devices & networks									_ 1	∎∎×
					.	Topology view	📥 Net	wor	k view	[]	Device v	/iew
	F	Network overview	Con	nections	I/O con	nmunication	VPN	Te	leContro			
		Y Local connection nam	e	Local end poir	nt	Local ID (hex)	Partner ID (h	iex)	Partner			Conn
		HMI_Connection_1		💾 HML_1		1			PLC_1	[CPU	1513-1	HMI c

7. The connection settings are displayed in the Inspector window. If necessary, change the name of the connection (e.g. "S7_1500").

HMI_Connection_1 [HM	II connection]	🔍 Pr	opertie	s 🗓 Info 🚺 🗓 Diagnostics	
General IO tags	System constants	Texts			
General Protocol setting	General				
Access point	Connection				
	Name:	HMI_Connection_1			
	Connection path				
		Local		Partner	
• • •		— —			
	End point:	HML1		PLC_1 [CPU 1513-1 PN]]
	Interface:	HMI_1.IE_CP_1, PROFINET Interface_1[X1	•	PLC_1, PROFINET interface_1[X1]]
	Interface type:	Ethernet		Ethernet	
	Subnet:	PN/IE_1		PN/IE_1	
	Address:	192.168.0.2		192.168.0.1	

2.3.2 Create PLC tags

- 1. Navigate in the "Project tree" to the device folder of the S7 CPU.
- 2. In the "PLC tags" folder, double-click the "Default tag table". The default tag table opens in the work area.

Project tree
Devices Plant objects
- E
▼ 🛅 SEL
📫 Add new device
📩 Devices & networks
PLC_1 [CPU 1513-1 PN]
Device configuration
😨 Online & diagnostics
🕨 🔜 Program blocks
🕨 🙀 Technology objects
External source files
🔻 浸 PLC tags
🍇 Show all tags
🏙 Add new tag table
💥 Default tag table [47]
▶ 🔄 PLC data types

- 3. In the column "Address" enter the address of the digital input via which the diagnostics interface "COM" is read in.
- 4. Select the "Bool" data type in the "Date type" column.
- 5. Enter a name of your choice for the PLC variable in the column "Name".
- 6. In the "Address" column, enter the address of the digital output via which the RESET input of the SEL1200 / SEL1400 is controlled.
- 7. Select the "Bool" data type in the "Date type" column.
- 8. Enter a name of your choice for the PLC variable in the column "Name".

	Default tag table							
	-	Name	Data type	Address	Retain			
1		impulse	Bool	%10.0				
2		reset	Bool	%Q0.0				
З		<add new=""></add>						

2.4 Integrating the function blocks into the user program

2.4.1 Open the "LSEL_V17.0-0_V1-0-0" library in STEP 7

Note For this chapter, you will need to have downloaded the library "LSEL_V17.0-0_V1-0-0.zip" and extracted it to a folder of your choice.

- 1. Click on the "Libraries" task card and open the palette "Global libraries".
- 2. Click the "Open global library" button to open the "LSEL_V17.0-0_V1-0-0" library. The corresponding dialog will open.

Libraries		∎ ₪ ►	
Options			
🛃 Library view 🙆			Tas
> Project library			Ś
✓ Global libraries			
		e 🗄 🗄	5
Name I B hd-Switches	Status	Version	braries
Monitoring-and-control-objects			-
Documentation templates			Ad
			d-in
			S

3. Select the "LSEL_V17.0-0_V1-0-0.al17" global library and confirm your selection with "Open".

🐘 Open global	library					×
Look in:	LSEL_V17.0	-0_V1-0-0	~	G 👂 📂 🖽 -		
Quick access Desktop	Name AdditionalF IM System TMP UserFiles Vci XRef	iles	Date modified 16/11/2021 14:36 16/11/2021 14:36 16/11/2021 14:36 16/11/2021 14:36 16/11/2021 14:36 16/11/2021 14:36 16/11/2021 14:36	Type File folder File folder File folder File folder File folder File folder	1/17 1:1	S
This PC	File name:	LSEL_V17.0-	0_V1-0-0.al17		Open	>
	ries or type.	Open as re	ad-only	· ·	Cancer	

4. The "LSEL_V17.0-0_V1-0-0.al17" library opens and appears under the "Global libraries" palette.

✓ Global libraries		
ወኛ 🗗 🖫 🐿 🖶 🗄		ĕi 🗄 ►
Name	Status	Version
Buttons-and-Switches		
Long Functions		
Monitoring-and-control-objects		
Documentation templates		
L] LSEL_V17.0-0_V1_0_0		

2.4.2 Copy data types and function blocks into the user project

- 1. In the library you find under "Types > 01_Blocks" the function blocks for communication for the S7-1200 CPUs and S7-1500 CPUs.
 - S7-1200: "LSEL_SignalEvaluationS71200" function block
 - S7-1500: Function block "LSEL_SignalEvaluationS71500"

▼ 🦵 LSEL_V17.0-0_V1-0-0
🗢 🔄 Types
D1_Blocks
▼ 1200
LSEL_SignalEvaluationS71200
▼ 1500
LSEL_SignalEvaluationS71500
Ei 02_Types
• E 03_Faceplates
Master copies
🕨 📑 Common data
🕨 🐻 Languages & resources

 Insert the function block for your S7 CPU via drag & drop into the folder "Program blocks" of your device, e.g. S7-1500 CPU.

Note

The function blocks each use their own user-defined data type (UDT).

- S7-1200: "typeDataS71200SEL"
- S7-1500: "typeDataS71500SEL"

This is automatically inserted into the "PLC data types" folder of your S7 CPU when the respective function block is inserted.

▼ 1 PLC_1 [CPU 1513-1 PN]
Device configuration
🚱 Online & diagnostics
🔻 🛃 Program blocks
📑 Add new block
📲 Main [OB1]
🔹 LSEL_SignalEvaluationS71500 [FB3]
🕨 🙀 Technology objects
External source files
🕨 🚂 PLC tags
🔻 [PLC data types
📑 Add new data type
▼ 102_Types
▼ 10 S7-1500
typeDataS71500SEL

2.4.3 Create cyclic interrupt OB

- 1. Navigate in the "Project tree" to the device folder of the S7 CPU.
- 2. Open the "Program blocks" folder and double-click the "Add new block" command to add a wake-up cyclic interrupt OB.

The dialog "Add new block" opens.

PLC_1 [CPU 1513-1 PN]
Device configuration
Q Online & diagnostics
🔻 ⋥ Program blocks
📑 Add new block
📲 Main [OB1]
🔹 LSEL_SignalEvaluation 💭 0 [FB3]
🕨 🚂 Technology objects

- 3. Make the following settings and then confirm your entries with the "OK" button.
 - Select the "Organization block" icon.
 - Select the entry "Cyclic interrupt" to create a cyclic interrupt OB.
 - Enable the "Automatic" radio button for automatic number assignment. The number of the cyclic interrupt OB is assigned by STEP 7 (TIA Portal).
 - Enter the cycle time. The cycle time is given in microseconds (μs). To call the FB "LSEL_SignalEvaluationS71200" and "LSEL_SignalEvaluationS71500", the cycle time must not exceed 10 ms (= 10000 μs).
 - Click "OK" to apply the settings.

2.4.4 Assign the process image partition (PIP) of the digital input module to the cyclic interrupt OB.

The process image contains the image of the digital input module and digital output module and is divided accordingly into an input process image and an output process image. The process image can be divided into individual process image partitions that can be updated either automatically or by the user program.

An input is the image of the corresponding bit on the digital input module. The interrogation of an input is equivalent to the interrogation of the bit directly on the module. After the CPU startup and before the first processing of OB 1, the operating system transfers the signal states of the digital input module into the input process image. Then the OB 1 is processed. Following termination of OB1, a new cycle begins with updating of the process image. Since the OB 1 cycle can be very long, depending on the user program, and can be interrupted several times by the alarm interrupt OB, you must assign a process image partition of the digital input module to the cyclic interrupt OB. Thus, the process image partition is automatically updated when the wake-up cyclic interrupt OB is called.

- 1. Open the Device view of the S7 CPU or the decentralized periphery, e.g. ET 200SP.
- 2. Select the digital input module in the graphical area of the Device view. The "Properties" of the digital input module are displayed in the Inspector window.
- 3. In the "General" tab, navigate to "Input 0 x > I/O addresses".
- 4. Select the cyclic interrupt OB under "Organization block".
- 5. Under "Process image", select the desired process image partition, e.g. "PIP 1".

DI 16x24VDC	HF_1 (DI 10	6x24VDC HF]	💁 Prop	erties	🗓 Info 🔒	🛚 Diagn	ostics	7
General	IO tags	System constan	nts Text	5				
 General Module param 	neters	I/O addresses						
✓ Input 0 - 15 General		Input addresses						
Configurati	on o		Start address:	0		.0		
Inputs I/O address	ies		End address:	1 Isochro	onous mode	.7		
		Orgar Pi	nization block: rocess image:	Cyclic inte PIP 1	errupt			
								5

2.4.5 Integrate signal evaluation block into cyclic interrupt

- 1. Double-click the cyclic interrupt OB to open the corresponding program editor.
- Drag and drop the FB "LSEL_SignalEvaluationS71200" or FB "LSEL_SignalEvaluationS71500" from the project tree into any network of the cyclic interrupt OB.

Project tree		SEL > PLC_1 [CPU 1513-1 PN] > Program blocks > Cyclic interrupt [OB30]
Devices Plant objects		
11 II I	1	🗱 🐼 👻 🔩 🗮 🚍 📟 💬 🕮 ± 😫 ± 😫 😫 🚱 😘 🥮 🤫
		Block interface
▼ 📄 SEL	^	
🗳 Add new device		
Devices & networks		▼ Block title:
PLC_1 [CPU 1513-1 PN]		Comment
Device configuration		
Q Online & diagnostics		 Network 1:
🔻 🛃 Program blocks		Comment
📑 Add new block		
Cyclic interrupt [OB30]		
Main [OB1]	≡	
🔹 LSEL_SignalEvaluationS71500 [FB3] 🗕		
Iechnology objects		

- The "Call options" dialog for generating the instance DB of the FB "LSEL_SignalEvaluationS71200" or "LSEL_SignalEvaluationS71500" will open automatically.
- 4. Make the following settings and then confirm your entries with the "OK" button.
 - Enter the name of the instance DB.
 - Check the "Automatic" radio button for the automatic number assignment. The instance DB number is assigned by STEP 7 (TIA Portal).
 - Click "OK" to apply the settings.

Note The "LSEL_SignalEvaluationS71500" signal evaluation block will be inserted into the call structure of the cyclic interrupt OB.

Tag connections are made via a global data block; see chapter 2.4.6 and 2.4.7.

2.4.6 Create a global data block for data exchange

- **Note** This chapter will show you how to create a global data block for data exchange. This data block is used for storing the data from the SITOP SEL1200 and SEL1400 that were read using the FB "LSEL_SignalEvaluationS71200" and "LSEL_SignalEvaluationS71500".
 - 1. Navigate in the "Project tree" to the device folder of the S7 CPU.
 - Open the folder "Program blocks" and double-click on the command "Add new block". ("Add new block") to add a new data block. The dialog "Add new block" opens.

Project tree	
Devices Plant objects	
Ĕ	🔲 🛃
🔻 🛅 SEL	^
📑 Add new device	
🛱 Devices & networks	
PLC_1 [CPU 1513-1 PN]	
Device configuration	
😼 Online & diagnostics	
Program blocks	
📑 Add new block	
The Cyclic Interrupt [OB30]	
📲 Main [OB1]	≡
LSEL_SignalEvaluationS71500 [FB3]	
🥃 LSEL_SignalEvaluationS71500_DB [DE	1]
-	

- 3. Make the following settings and then confirm your entries with the "OK" button.
 - Select the symbol "Data block".
 - Select "Global DB" as the type.
 - Enter the name of the DB
 - Enable the "Automatic" radio button for automatic number assignment. The number of the global DB is assigned by STEP 7 (TIA Portal).

Add new block		×
Name:		
GeneralData		
	Type:	Global DB
OB	Language:	
Organization	Number:	2
Diock		O Manual
		Automatic
	Description:	
-FB	Data blocks (DB	s) save program data.
Function block		, , , , , , , , , , , , , , , , , , ,
E FC		
Function		
Data block		
	more	
> Additional inform	nation	
Add new and open		OK Cancel

4. Double-click the newly inserted global data block to open it.

PLC_1 [CPU 1513-1 PN]	
Device configuration	
Q Online & diagnostics	≣
🔻 🔙 Program blocks	
💣 Add new block	
Cyclic interrupt [OB30]	
🜁 Main [OB1]	
LSEL_SignalEvaluationS71500 [FB3]	
🧧 GeneralData [DB2]	
LSEL_InstSignalEvalu	

5. Double-click "<Add new>" to create the tags as per Table 2-4.

SE	L 🕨	PLC_2 [CPU 1214C DC/DC	/DC] • Program blocks •	GeneralData [DB2]	
*	1	🕴 🐛 🋃 는 🏆 Keepac	tual values 🛛 🔒 Snapshot	崎 🖳 Copy snapshot	
	GeneralData				
		Name	Data type	Start value Re	
1	-	▼ Static			
2		Add new>			

Table 2-4

Name	Data type	Planned connection at FB
done	Bool	Output "done"
busy	Bool	Output "busy"
Error	Bool	Output "error"
status	Word	Output "status"
frame	DWord	Output "frame"
dataSel	typeDataS71500SEL	Output "dataSel"

Make sure that tag access from the HMI is allowed. Enable access permissions to the tags in the columns

- "Accessible from HMI/OPC UA/Web API",
- "Writable from HMI" and
- "Visible in HMI engineering".

SEL > PLC_1 [CPU 1513-1 PN] > Program blocks > GeneralData [DB2]	
🚰 🐳 🐛 蒙 🗮 🖤 Keep actual values 🔒 Snapshot 🦄 🧠 Copy snapshots to start values 🏽 🖓 Keep actual values 🦉 Copy snapshots to start values 🕷 🕵 🕨	= ×
📝 🐳 🔩 🐷 🐑 Keep actual values 🔒 Snapshot 🏝 🙄 Copy snapshots to start values 🕵 🕵 🕨	
GeneralData	
Name Determine Construction Descine According Mining Mining Construction C	
Name Data type Start value Retain Accessible II Visible II Setpoint S	Sup
1 🕣 🕶 Static	
2 💶 🖬 done Bool 🗐 faise 📃 🖌 🖌	
3 🗠 = busy Bool false	
4 💶 = error Bool false 🗌 🗹 🗹	
5 🚾 = status Word 16#0 🗌 🗹 🗹	
6 💶 = frame DWord 16#0 🗌 🗹 🗹	
7 📲 🕨 dataSel *typeDataS715005	

2.4.7 Connect global data block tags

- 1. In the Project tree, open the "Program blocks" folder for your S7 CPU.
- 2. Double-click the cyclic interrupt OB to open the corresponding program editor.

- 3. Assign the PLC variable that refers to the address of the digital input via which the diagnostic interface "COM" is read in to the "impulse" input (see chapter <u>2.3.2</u>).
- 4. Assign to the "reset" output the PLC tag that refers to the address of the digital output. This is the digital output via which the RESET input of the SEL1200 SEL1400 is controlled.
- 5. Assign the remaining outputs of the FB with the tags that you created in the global data block (see chapter <u>2.4.6</u>).

2.5 Integrating the faceplates

2.5.1 Create HMI tags

- 1. In the "Project tree", navigate to the device folder of the HMI operator device.
- 2. Open the "HMI tags" folder and double-click the "Add new tag table" command to create a new HMI tag table.

3. Give the tag table the name "SEL1200_1400" and double-click on the tag table to open it.

4. Create a tag called "DataSELModule_data1" and, in the "Connection" column, select the HMI connection you created in chapter <u>2.3.1</u>.

SEL + HMI_1 [MTP700 Unified	I Comfort] → HMI ta	ags → SEL1200_1400 [1]	
SEL1200_1400			
Name DataSELModule data1	Data type	Connection 2	PLC tag Address
<add new=""></add>			
		2 Connections	Name
			dinternal tag>
			3

5. In the global data block "GeneralData" from chapter <u>2.4.6</u>, select the tag called "dataSel" in the "PLC tag" column.

6. Select the tag "DataSELModule_data1" in the tag table. The properties of the variable are displayed in the Inspector window.

	SEL1200_1400				
	Name 🔺	Data type	Connection	PLC name	PLC tag
7	л 🕨 DataSELModule_data	1 typeDataS71500SEL	HMI_Connection_1	PLC_1	GeneralData.dataSel 🛄
	a new>				

- 7. In the "General" tab, navigate to "Settings". Select the following settings:
 - Acquisition cycle": T1 s

Properties Ev	vents Texts	
	Settings	
General	Cattings	
Settings	Settinds	
Range	Acquisition mode: Cyclic in operation	-
Linear sca 🚽	Acquisition cycle: T1s	
Values		
Comment -	Update	
۲	·	
	Update ID:	

2.5.2 Copy text lists into the user project

- 1. In the "LSEL_V17.0-0_V1-0-0" library, open the folder "Master copies > HMI_text_lists". There you will find text lists for text outputs in the faceplates.
 - OutputStates : Text list with status information on tags
 "DataSELModule_data1.stateOutput[1-8]" (see <u>Table 1-3</u>)
 - OutputSwitchedOff: Text list with status information on tags
 "DataSELModule_data1.reasonOutputSwitchedOff[1-8]" (see <u>Table 1-7</u>)
 - StartupSequence : Text list with status information on tags "DataSELModule_data1.startup" (see <u>Table 1-8</u>)
- Drag and drop to copy the folder "Master copies > HMI_text_lists" from the library and into "Text and graphic lists" in the HMI folder in the project tree.

2.5.3 Copy faceplates into the user project

- 1. In the "Project tree", navigate to the "Screens" folder under the HMI.
- Create a new screen or double-click on an existing screen where you'd like to integrate the faceplate for displaying the SITOP SEL1200 / SEL1400 device data.

The screen will open.

- 3. In the library "LSEL_V17.0-0_V1-0-0", open the folder "Types > 03_Faceplates". There you can find the faceplates for the S7-1200 CPUs and S7-1500 CPUs.
 - fpUnfDetailS71200SEL: Faceplate for communication with S7-1200 CPUs to graphically display device data as well as output voltage and current
 - fpUnfOverviewS71200SEL: Faceplate for communication with S7-1200 CPUs shows an overview of the most important device data
 - fpUnfDetailS71500SEL: Faceplate for communication with S7-1500 CPUs to graphically display device data, output voltage and current
 - fpUnfOverviewS71500SEL: Faceplate for communication with S7-1500 CPUs shows an overview of the most important device data
 - ISEL_V17.0-0_V1-0-0
 - Types
 01_Blocks
 02_Types
 03_Faceplates
 03_Faceplates
 57-1200
 10 fpUnfDetailS71200SEL
 10 fpUnfOverviewS71200SEL
 11 fpUnfOverviewS71200SEL
 12 fpUnfDetailS71500SEL
 13 fpUnfOverviewS71500SEL
 14 fpUnfOverviewS71500SEL
 15 fpUnfOverviewS71500SEL<
- 4. Add an instance of the faceplate "fpUnfOverviewS71x00SEL" or "fpUnfDetailS71x00SEL" into the open screen by dragging and dropping.
- 5. Select the faceplate in the screen and open the faceplate interface via the "Properties > Properties" tab.

Under "Miscellaneous > Interface", connect the property "dataSEL1200_1400" with the HMI 6. tag "DataSELModule_data1" you created in chapter 2.5.1.

7. Connect the following properties of the faceplate interface with the text lists for the HMI (chapter 2.5.2).

->

->

- "rlOutputStates" ->
- "OutputStates"
- "rlOutputSwitchedOff"
- "OutputSwitchedOff"
- "rlStartupSequence"
- "StartupSequence"

 Interface 				
dataSEL1200 1400	DataSELModule_data1	6		
rlOutputStates	II. E -			
rlOutputSwitchedOff				
rlStartupSequence	▼ → HML1 [MTP700 Unified C			
Laper	🔛 Text and graphic lists	Name		
Name	2	Name	$\mathbf{\nabla}$	
Tab index				<u> </u>
 Visibility 		2 OutputStates		
▼ Security		OutputSwitchedOff		=
 Allow operator control 		StartupSequence		
Anow operator control		- 🔄 SystemTextList_Allen	ıBra	
 Size and position 		SystemTextList_Confi	igEr	
 Height 		SystemTextList_Confi	igEr	
Left		System TextList_Confi	igEr	
Pivot point		System TextList_Confi	igEr	
 Rotation 		SystemTextList_Confi	igEr	
Тор		SystemTextList_Confi	igEr	
Width		SystemTextList_Confi	igEr	
 X pivot point 		2 🖬 📫 🖬 🗠 🖓		~
Y pivot point			📑 Add new	🖌 🗙
			4	
				/

Note If the faceplate "fpUnfOverviewS7x00SEL" is running in a WinCC Unified runtime environment, then the faceplate "fpUnfDetailS7x00SEL" will appear dynamically when the faceplate is clicked.

You can also insert the faceplate "fpUnfDetailS7x00SEL" directly into a screen in your HMI. The interface would then be connected in the same manner as with the faceplate "fpUnfOverviewS7x00SEL".

2.6 Compiling and downloading

2.6.1 User program of the S7 CPU

Compile

- 1. Make sure that your engineering PC and your S7 CPU are in the same subnet.
- 2. On the S7 CPU display, set the IP address and subnet mask which you entered in the hardware configuration.
- 3. Select the S7 CPU in the "Project tree".
- 4. Click on the "Compile" button in the function bar.

Pr	roject Edit View Insert Online Options Tools Window
	Project tree
	Devices Plant objects
	🖻 🖬 🔲 🖬
_	
Ŀ.	▼ 🔄 SEL
zat	💕 Add new device
1	Devices & networks
/isi	▶ 📑 PLC_1 [CPU 1513-1 PN]
	▶ [_] HMI_1 [MTP700 Un
	🕨 🔛 Ungrouped devices
	🕨 📷 Security settings
	Cross-device functions
	🕨 🙀 Common data
	Documentation settings
	Languages & resources

Downloading

- 1. Select the S7 CPU in the "Project tree".
- 2. Click on the "Download to device" button in the function bar to load the hardware configuration and the software into the S7 CPU.
- 3. The "Extended download to device" or "Load preview" dialog opens automatically.

Note

The "Extended download to device" dialog is only opened automatically if the access path from the PG/PC to the S7 CPU has to be reset.

- 4. In the "Extended download to device" dialog, make the following settings to access the S7 CPU via TCP/IP:
 - Type of PG/PC interface: PN/IE
 - PG/PC interface: PG/PC network adapter:
 - Connection to interface/subnet: Subnet of the S7 CPU, e.g. PN/IE_1
- Select the "Show all compatible devices" option.
- 6. Click the "Start search" button.
- 7. Select the S7 CPU as the target device.
- 8. Click the "Load" button

	Configured access n	odes of "PLC_1"				
	Device	Device type	Slot	Interface type	Address	Subnet
	PLC_1	CPU 1513-1 PN	1 X1	PN/IE	192.168.0.1	PN/IE_1
	Г	Type of the PG/PC int	erface:	PN/IE		
	Col	PG/PC Int nnection to interface/s	ubnet:	PN/IE_1	igabit Network Conn	ection
		1st ga	itewa			
	Select target device:	:			Show all compatible	devices
	Device	Device type	Interfa	e type Ada	Iress	Target device
—	PLC_1	CPU 1513-1 PN	PN/IE	193	2.168.0.1	PLC_1
Flash LED					ess address	
ne status informatio	n:			(Display only error	<u>S</u> tart search messages
Found accessible d Scan completed. 1 Scan and informatic	evice et200sp compatible devices of 5 on retrieval completed.	accessible devices fo	ound.			
Retrieving device in	formation					
					Loa	d <u>C</u> ancel

9. In the "Load preview" dialog, click the "Load" button to start the load process.

atus	1	Target	Message	Action
† <mark>1</mark>	<u> </u>	▼ PLC_1	Ready for loading.	
	▲	 Protection 	Protection from unauthorized access	
	A		Devices connected to an enterprise network or directly to the internet must be appropriately protected against unauthorized access, e.g. by use of firewalls and network segmentation. For more information about industrial security, please visit http://www.siemens.com/industrialsecurity	
	0	Stop modules	The modules are stopped for downloading to device.	Stop all
	0	 Device configurati 	. Delete and replace system data in target	Download to device
	0	Text libraries	Download all alarm texts and text list texts	Consistent download
			1111	
				Refresh

Load results × Status and actions after downloading to device Status ! Target Message Action Ψ. 😪 🔻 PLC_1 Downloading to device completed without error. Start modules Start modules after downloading to device. 🖌 Start all < > 1111 Finish Cancel

10. In the "Load results" dialog, click the "Finish" button to finish loading the results.

2.6.2 HMI operator panel

Download the configuration to your HMI Operator Panel or start the simulation.

Note If you only simulate the device, make sure that the PG/PC interface is set correctly.

For more on this topic, read the FAQ "Why is communication between the Runtime simulation and the S7-1200/S7-1500 not possible if the PG/PC interface is not set correctly?" You can find this FAQ at the following link:

https://support.industry.siemens.com/cs/ww/en/view/38717202

Compile

- 1. Select the HMI Operator Panel in the project tree.
- 2. Click on the "Compile" button in the function bar.

Downloading

- 1. Ensure that your engineering PC and the HMI operator device are connected to the same subnet.
- 2. On the HMI operator device in the menu "Network and Internet > Network settings > PN-X1", set the IP address and subnet mask that you entered in the hardware configuration.
- 3. On the HMI device in the menu "Service and Commissioning > Transfer", enable transfer mode with "Enable transfer".
- 4. Select the HMI in the "Project tree" in TIA Portal.
- 5. Click on the "Download to device" button in the function bar to load the configuration into the HMI device.
- 6. The "Extended download to device" or "Load preview" dialog opens automatically.

Project Edit View Insert Online Options Tools Win	dow
📑 📑 🔚 Save project 📑 🐰 🗉 🖹 🗙 🌱 🛨 (주 🛨	l II
Project tree	
Devices Plant objects	
	1
	_
5 V SEL	
Add new device	
Devices & networks	
PLC 1 [CPU 1513-1 PN]	
HMI_1 [MTP700 Unified Comfort]	
Lingrouped devices	
🕨 🏹 Security settings	
Cross-device functions	
🕨 🙀 Common data	
Documentation settings	
Languages & resources	
Version control interface	
Online access	
Card Reader/USB memory	

Note

The "Extended download to device" dialog is only opened automatically if the access path from the PG/PC to the HMI Operator Panel has to be reset.

- 7. In the "Extended download to device" dialog, make the following settings to access the HMI Operator Panel via TCP/IP:
 - Type of PG/PC interface: PN/IE
 - PG/PC interface: PG/PC network adapter:
 - Connection to interface/subnet: Subnet of the HMI, e.g. PN/IE_1
- Select the "Show all compatible devices" option.
- 9. Click the "Start search" button.
- 10. Select the HMI device as the target device.
- 11. Click the "Load" button

	Device	Device type	Slot	Interface type	Address	Subnet
	HML 1	MTP700 Unified		Ethernet	127.0.0.1	
	HMI_1.IE_CP_1	PROFINET Interface	5 X1	PN/IE	192.168.0.2	PN/IE_1
	HMI_1.IE_CP_2	PROFINET Interface	6 X2	PN/IE	192.168.1.2	-
	_					
	Г	Type of the PG/PC inte	rface:	PN/IE		
	c	PG/PC inte onnection to interface/su	rface: ibnet:	Direct at slot '5	4L Gigabit Network Co X1'	nnection 🔻 🖲
		1st gat	eway:	9 <u>×</u>		
	Select target devic	e:			Show all compatible	devices
	Device	Device type	Interfac	e tvpe 🛛 Ad	dress	Target device
Flash LED	-		PINIE	Aci	cess address	-
e status informatio onnection establis	n: hed to the device with	h address 192.168.0.2.			Display only error	<u>Start sear</u> messages
can completed. 1 etrieving device in	compatible devices of formation	f 3 accessible devices for	ind.			
can and information	on retrieval completed	ł.				

12. In the "Load preview" dialog, select the "Full download" action under "Load Runtime". Under "Runtime values", disable the action "Keep current user administration data in runtime". Then click the "Load" button to start the download process.

Status	1	Target	Message	Action
4I	<u> </u>		Ready for loading.	Load 'HMI_RT_1'
	0	Load Runtime	Full download to target system	Full download
	4	► Fit	Components with a different version are installed on the target de	
	0	Runtime start	Start Runtime after download to target system.	Start runtime
	4	 Runtime values 	Keep current values in runtime or reset to start values from the en Keep values of tags, active alarms and user management data.	Reset to start values
	4		Keep current values of tags and pending alarms in the runtime	
	Ā	[Keep current user administration data in runtime	
	4	Reset logs	Reset all logs in the runtime	Reset all 💌
	0	HMI Runtime	Informations	
	4	 Secure transfer 	Load runtime unencrypted	Unencrypted transfer
				Refrest

13. The runtime will launch automatically on the HMI operator device.

Start simulation

- 1. Make sure that your engineering PC and the S7 CPU are connected to the same subnet.
- 2. Open the "Control Panel" of the Engineering PC.
- 3. Under "Set PG/PC Interface (32-bit)", select the network card via which the visualization is to communicate with the S7 CPU.
- 4. Select the HMI operator device in the project tree.
- 5. In the function bar, click on the "Start simulation" button.

Pr	oject Edit View Insert Online Options Tools Window He	lp
2	🛉 📑 🔚 Save project 📑 🐰 🧻 🏗 🗙 🏷 ± (* ± 🔒 🛄 🚺	i 🖳 🖫
	Project tree	
	Devices Plant objects	
	1 1 1	🔲 🛃
	▼ 📋 SEL	
ä	🎽 Add new device	
	Devices & networks	
	▶ 🖬 PLC_1 [CPU 1513-1 PN]	
	HML_1 [MTP700 Unified Comfort]	
	Leg Ungrouped devices	
	🕨 🔚 Security settings	
	Karal Cross-device functions	
	🕨 🙀 Common data	
	Documentation settings	
	Languages & resources	
	Version control interface	
	Online access	
	Card Reader/USB memory	

 Under "Runtime values" in the "Load preview" dialog, select the action "Keep current user administration data in runtime" and uncheck the checkbox. Then click the "Load" button to start the download process.

atus !	Target	Message	Action
1 🕺	▼ HMI_1	Ready for loading.	Load 'HMI_RT_1'
0	Simulation mode	Load Runtime in simulation mode	
0	Load Runtime	Stop Runtime and perform full download	Full download
0	Runtime start	Start Runtime after download to target system.	Start runtime
4	 Runtime values 	Keep current values in runtime or reset to start values from the er Keep values of tags, active alarms and user management data.	Keep selected
Å		Keep current values of taos and bending alarms in the runtime Keep current user administration data in runtime	
9	Reset logs	Reset all logs in the runtime	No reset
9	HMI Runtime	Informations	
4	Secure transfer	Load runtime unencrypted	Unencrypted transfer
1		l III	
			Refresh

7. The runtime simulation will start.

3 Operation

3.1 Faceplate "fpComAdvOverviewS71500SEL" and "fpComAdvOverviewS71200SEL"

3.1.1 Overview

Figure 3-1

Table 3-1

No.	Area	Description	
1	Header range	Displays "SITOP + <device name="">" as header</device>	
2	Status area	Status line for colored display of the current communication status	
		You can find detailed information on the status area in the chapter <u>3.2.3</u> .	
3	Information area	 Area for displaying the most important device data: Color status of the outputs ("State"): see <u>Table 3-6</u> Output currents of the outputs ("Current") 	

The faceplates "fpComAdvOverviewS71500SEL" and "fpComAdvOverviewS71200SEL" represent an overview of the most important device data.

Click on the faceplate to display further device data and output voltage and output current curves in the faceplate "fpComAdvDetailS71500SEL" or "fpComAdvDetailS71200SEL".

3.2 Faceplate "fpUnvDetailS71200SEL" and "fpUnvDetailS71500SEL"

3.2.1 Overview

Figure 3-2

SITOP SEL120	0 —(1)	2			
State	Output	Information	-	-3	
No.: 1 2 3 3 4 5 5 6 5 7 8	Limit Output Current:	08 A Output 02 A Current: 02 A 07 A 02 A 02 A 02 A 02 A 02 A 02 A 02 A 02 A	00 A 00 A 00 A 00 A 00 A 00 A 00 A 00 A	Position DIP switches: Startup seque Load-depend Outputs:	COM TD2 TD2 TD1 nce: ent startup RESET
	(4)				

Table 3-2

No.	Area	Description	
1	Header range	Displays "SITOP + <device name="">" as header</device>	
2	Status area	Status line for colored display of the current communication status	
3	Navigation pane	 Navigation between the four addresses Status: Device data with status information Outputs: Device data of the various outputs Information: General device information Trends: Curve displays of the current values of the outputs 	
4	Information area	Area to display the selected device information in the navigation pane	

3.2.2 Header range

In the heading area "SITOP + <device name>" is displayed as the header of the faceplate. If more than one faceplate is used, you know immediately by the device name in the header which device information is shown.

3.2.3 Status area

The status area shows the status of the communication via the diagnostic interface "COM" of the SITOP SEL1200 / SEL1400.

The Table below describes the color states in the status area.

Table 3-3

Status	Description	Status bar		
		Color (R, G, B) Background	Color (R, G, B) Frame	Flashing
Status	ОК	161, 176, 183	161, 176, 183	No
Communication	Not OK	202, 51, 51	202, 51, 51	No

3.2.4 Navigation pane

The device data of the SITOP SEL1200 / SEL1400 are divided into four different subject areas via the navigation area.

- Status: Parameters for the status of the device
- Outputs: Output parameters
- Information: Informative device information

Use the buttons to switch between the topic areas. Depending on the button selected, the device information displayed in the information area changes.

The color of the button indicates which topic area was selected.

Table 3-4

Active topic area	Inactive topic area		
Status	Status		
3.2.5 Information area

The information area clearly displays all device data of the SITOP SEL1200 / SEL1400 via status displays of the switches (rectangles), I/O fields and curve displays. Depending on the topic area, these objects are used in different ways.

Status

The "State" information area displays the status parameters of the SITOP SEL1200 / SEL1400.

Figure 3-3					
SITOP SEL120	0				
State	Output	Information			
No.: 1 2 3 3 4 5 6 5 7 8	Limit 08 Output 02 Current: 02 07 02 02 02 02 02	A Output Current: A A A A A A A A A A	 A 00 A 00 A 	Position DIP switches: Startup seque Load-depend Outputs:	COM TD2 TD2 TD1 Ince: lent startup

The following status parameters are displayed:

- Color status of the outputs: see <u>Table 3-6</u>
- Current limit value of the outputs
- DIP switch position
 - COM
 - TD2
 - TD1
- Start-up sequence (Table 3-5)

The "StartupSequence" text list (<u>Table 3-5</u>) contains texts for the start-up sequence that you can adjust with the DIP switches "TD1" and "TD2". Depending on the state of the "startup" tag, the associated text will be displayed via a symbolic I/O field.

Table 3-5

Status value Tag	Text
0	Load-dependent ramp-up ("Load-dependent startup")
1	Time delay acceleration 25 ms ("Delay startup 25 ms")
2	Time delay acceleration 200 ms ("Delay startup 200 ms")
3	Time delay ramp-up 500 ms ("Delay startup 500 ms")

The status of an output is indicated by a colored display with animation. The background color will vary depending on the state value of the tag "stateOutput<x>" and a "flashing" animation will be executed.

Table 3-6

Status value	Status				
Tag	Color (R, G, B) Background	Color (R, G, B) Frame	Flashing		
0	202, 51, 51	204, 209, 215	No		
1	202, 51, 51	204, 209, 215	Yes		
2	255, 153, 0	204, 209, 215	Yes		
3	133, 164, 8	204, 209, 215	No		
4	218, 220, 224	204, 209, 215	No		
5	202, 51, 51	204, 209, 215	No		
6	202, 51, 51	204, 209, 215	No		
7	133, 164, 8	204, 209, 215	Yes		
	218, 220, 224	204, 209, 215	No		

Outputs

The information area "Output" shows the parameters of the selected output of the SITOP SEL1x00. The selection is made via the corresponding "Output <x>" button, where <x> is the output number.

Figure 3-4							
SITOP SEL120	SITOP SEL1200						
State	Output	Informa	ition				
Output 1 Outp	out 2 Output 3	Output 4	Output 5	Output 6	Output 7	Output 8	
State:	Man	ually switch	ned off				
Reason switch off:							
Output current	t: 00 A		Limit Output o	urrent:	0	8 A	

The following output parameters are displayed:

- Color and text status of the output ("State"): see <u>Table 3-6</u> and <u>Table 3-7</u>
- "Reason switch off": <u>see Table 3-8</u>
- "Output current"
- Current limit of the output ("Limit Output current")

The text list "OutputStates" contains the possible states of an output. Depending on the state of the tag "stateOutput<x>", the associated status text will be displayed via a symbolic I/O field.

Table 3-7

Status value Tag	Text
0	Automatically switched off, reset not possible
1	Automatically switched off, reset possible
2	Manually switched off
3	Switched on
4	Broken
5	Device overtemperature, output switched off
6	Isum too high
7	Isum > Iset

The text list "OutputSwichedOff" contains the possible shutdown reasons. Depending on the state of the "reasonOutputSwitchedOff<x>" tag, the associated reason for shutdown will be displayed via a symbolic I/O field.

Table 3-8

Status value Tag	Text
0	
1	IOUT > ISET
2	I _{OUT} > 1,5x I _{SET} ("lout > 1.5x Iset")
3	Isum > 60 A
4	$U_{IN} < 19.4 \text{ V} \text{ und } I_{OUT} > [IOUT]$ ("Uin < 19.4 V and lout > lset")
5	U _{IN} < 19.4 V ("U _{IN} < 19.4 V")
6	U _{IN} < 15 V
7	U _{IN} > 30 V
8	device overtemperature ("Device overtemperature")

Information

The information area labeled "Information" displays static device data of the SITOP SEL1x00.

Figure 3-5

SITOP SEL1200

State	Output	Information		
Device name:	SEL	1200	Device type:	24 V / 10 A
Serial number:	Q6/L1		Product state:	00
Article number:	6EP4438-7FB00-3AX0		Firmware version:	00
Outputs number:		08		

You will see the following device information:

- Device name
- Serial number
- Item number
- Number of outputs
- Device type
- Product version
- Firmware version

4 Troubleshooting

4.1 FB "LSEL_SignalEvaluationS71500" and FB "LSEL_SignalEvaluationS71200" status display

Table 4-1		
Value at output "status"	Meaning	Help/Note
16#8001	No signal change was detected at input "impulse" for at least 6 seconds.	 Check whether the diagnostic interface "COM" is connected to the digital input. Check whether you indicated the right digital input on the "pulses" input. Check whether the input voltage is connected to the SEL1x00.
16#8002	Cycle time of 10 ms exceeded	Call the function block with a maximum of 10 ms.
16#8003	Error when evaluating the telegram content	High level and low level could not be properly detected so that an error occurred when evaluating the telegram content.
16#8004	Length of the telegram is outside the value range	Value range: 3275 ms to 3625 ms
16#8005	Device type not detected	Permissible device type: SEL1x00
16#8006	Telegram unknown	Permissible content type: 0 to 3
16#8007	Communication error or device replacement	Article number change detected

4.2 Hashes ("#####") appear in the faceplate

Figure 4-1 SITOP ########## State No.: 1 Limit (####) Output (####) COM Position Output #### Current: **DIP** switches: 2 #### TD2 Current: 3 #### #### TD1 4 #### (####) Startup sequence: 5 #### #### 6 #### #### 7 #### #### Outputs: RESET 8 #### ####

If hashes ("#####") are displayed in the faceplate for device data, there is a communication problem between the HMI operator device and the S7 CPU.

Check the following items:

- Check the connection cables for proper wiring and damage.
- With WinCC Advanced / Unified PC, check whether the PG/PC interface is set correctly. If the PG/PC interface is set incorrectly, communication between the runtime simulation and the S7-1200 / S7-1500 is not possible (see FAQ <u>38717202</u>). You can find the settings under "Control Panel > Set PG/PC interface".
- Check whether the devices are in the same network.

Check if the IP address of a device is blocked in the network router.

5 Appendix

5.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire service and support know-how and portfolio.

The Industry Online Support is the central address for information about our products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos – all information is accessible with just a few mouse clicks: <u>support.industry.siemens.com</u>

Technical Support

The Technical Support of Siemens Industry provides you fast and competent support regarding all technical queries with numerous tailor-made offers

 ranging from basic support to individual support contracts. Please send queries to Technical Support via Web form:

www.siemens.com/industry/supportrequest

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with practical experience, innovative learning methods and a concept that's tailored to the customer's specific needs.

For more information on our offered trainings and courses, as well as their locations and dates, refer to our web page:

www.siemens.com/sitrain

Service offer

Our range of services includes the following:

- Plant data services
- Spare parts services
- Repair services
- On-site and maintenance services
- Retrofitting and modernization services
- Service programs and contracts

You can find detailed information on our range of services in the service catalog web page: <u>support.industry.siemens.com/cs/sc</u>

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry Online Support" app. The app is available for iOS and Android: support.industry.siemens.com/cs/ww/en/sc/2067

5.2 Industry Mall

The Siemens Industry Mall is the platform on which the entire siemens Industry product portfolio is accessible. From the selection of products to the order and the delivery tracking, the Industry Mall enables the complete purchasing processing – directly and independently of time and location: mall.industry.siemens.com

5.3 Links and literature

Table 5-1

No.	Торіс
\1\	Siemens Industry Online Support
	https://support.industry.siemens.com
\2\	Link to the article page of this application example
	https://support.industry.siemens.com/cs/ww/en/view/109763709
/3/	SIMATIC STEP 7 Basic/Professional V17 and SIMATIC WinCC V17 https://support.industry.siemens.com/cs/ww/en/view/109798671

5.4 Change documentation

Table 5-2

Version	Date	Modifications
V1.0	02/2022	First version