SIEMENS

SINAMICS DCM

SIEMENS

Fundamental safety 1
SINAMICS Parameters 2
SINAMICS DCM Function diagrams 3Faults and alarms4
List Manual
Appendix A
Valid for
Drive Firmware version
SINAMICS DCM 1.5 SP1 (based on 5.1 SP1)

Legal information

Warning concept

This Manual contains information which you must observe to ensure your own personal safety as well as to avoid material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications envisaged in the catalog and in the associated technical documentation. If third-party products and components are to be used, they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Information in the associated documentation must be observed.

Trademarks

All names identified by the trademark symbol $®$ are registered trademarks of Siemens AG. Other designations used in this document may be trademarks whose use by third parties for their own purposes could violate the rights of the trademark owners.

Disclaimer of liability

We have verified that the contents of this document correspond to the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Preface

Information about the SINAMICS documentation

The SINAMICS documentation is structured according to the following categories:

- General documentation/catalogs
- Manufacturer/service documentation

This documentation is part of the technical customer documentation for SINAMICS.
In the interests of clarity, this documentation does not contain all the detailed information for all product types and cannot take into account every possible aspect of installation, operation or maintenance.

The contents of this documentation are not part of an earlier or existing agreement, a promise, or a legal agreement, nor do they change this. All obligations on the part of Siemens can be found in the respective sales contract, which also contains the complete and sole warranty provisions. These contractual warranty provisions are neither extended nor curbed as a result of the statements made in this documentation.

Target group

This documentation addresses commissioning engineers and service personnel who use SINAMICS.

Objective

This manual contains information about all parameters, function diagrams, faults, and warnings required to commission and service the system.

This manual should be used in addition to the other manuals and tools provided for the product.

Search tools

The following guides are provided to help you locate information in this manual:

1. Table of contents

- Table of contents for the complete manual (Page 7)
- Table of contents for function diagrams (Page 718)

2. List of abbreviations (Page 1275)
3. Index (Page 1289)

Technical Support

Country-specific telephone numbers for technical support are provided at the following Internet address:
http://www.siemens.com/automation/service\&support

SINAMICS

You can find information on SINAMICS at:
http://www.siemens.com/sinamics

Compliance with the General Data Protection Regulation

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, this means:
The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

Table of contents

1 Fundamental safety instructions 9
1.1 General safety instructions 10
1.2 Warranty and liability for application examples 10
1.3 Security information 11
2 Parameters 13
2.1 Overview of parameters 14
2.1.1 Explanation of the parameter list 14
2.1.2 Number ranges of parameters 25
2.2 List of parameters 28
2.3 Parameters for data sets 702
2.3.1 Parameters for command data sets (CDS) 702
2.3.2 Parameters for drive data sets (DDS) 704
2.3.3 Parameters for encoder data sets (EDS) 709
2.4 Parameters for write protection and know-how protection 712
2.4.1 Parameters with "WRITE_NO_LOCK" 712
2.4.2 Parameters with "KHP_WRITE_NO_LOCK" 713
2.4.3 Parameters with "KHP_ACTIVE_READ" 714
3 Function diagrams 717
3.1 Table of contents 718
3.2 Explanations on the function diagrams 724
3.3 Overviews 730
3.4 CUD input/output terminals 734
3.5 Control Unit communication 745
3.6 PROFIdrive 750
3.7 Internal control/status words 778
3.8 Sequence control 785
3.9 Brake control 790
3.10 Setpoint channel 792
3.11 Encoder evaluation 807
3.12 Armature circuit control 816
3.13 Field circuit control 840
3.14 Power unit 849
3.15 Technology controller 858
3.16 Signals and monitoring functions 860
3.17 Faults and alarms. 877
3.18 Data sets 882
3.19 Communication between devices 886
3.20 Terminal Module 15 (TM15DI_DO) 892
3.21 Terminal Module 31 (TM31) 897
3.22 Terminal Module 150 (TM150) 909
3.23 Basic Operator Panel 20 (BOP20) 913
4 Faults and alarms 915
4.1 Overview of faults and alarms 916
4.1.1 General information on faults and alarms 916
4.1.2 Explanation of the list of faults and alarms 920
4.1.3 Number ranges of faults and alarms 925
4.2 List of faults and alarms 927
A Appendix 1271
A. 1 ASCII table (characters that can be displayed) 1272
A. 2 List of abbreviations 1275

Fundamental safety instructions

Content

1.1 General safety instructions 10
1.2 Warranty and liability for application examples 10
1.3 Security information 11

1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed
If the safety instructions and residual risks in the associated hardware documentation are not observed, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.
As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.3 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that can be implemented, please visit:

Industrial security (https://www.siemens.com/industrialsecurity)
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at:

Industrial security (https://new.siemens.com/global/en/products/services/cert.html\#Subscriptions).

Further information is provided on the Internet:
Industrial Security Configuration Manual
(https://support.industry.siemens.com/cs/ww/en/view/108862708)

WARNING

Unsafe operating states resulting from software manipulation
Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

1 Fundamental safety instructions
1.3 Security information

Parameters

Content

2.1 Overview of parameters 14
2.2 List of parameters 28
2.3 Parameters for data sets 702
2.4 Parameters for write protection and know-how protection 712

2.1 Overview of parameters

2.1.1 Explanation of the parameter list

Basic structure of the parameter descriptions

The data in the following example have been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.
The "List of parameters (Page 28)" has the following structure:

Start of example

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index (optional).

Examples of the representation in the parameter list:

- p... Adjustable parameters (read and write)
- r... Display parameters (read only)
- p0918 Adjustable parameter 918
- p0099[0...3] Adjustable parameter 99, indices 0 to 3
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit array from bit 0 (smallest bit) to bit 15 (largest bit)

Other examples of notation in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- r0945[2](3) Display parameter 945, index 2 of drive object 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters
The parameter value when shipped is specified under "Factory setting" with the relevant unit in square parentheses. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions and parameters:

- Executing macros p0015, p0700, p1000, p1500
- Setting the PROFIBUS telegram (BICO interconnection)
p0922
- Setting component lists
p0400
- Automatically calculating and pre-assigning
p0112, p0340, p3900
- Restoring the factory settings p0970

The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square parentheses.

Note:

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e.g. parameters for trace functions).

BICO: Full parameter name/Abbreviated name

The following abbreviations can appear in front of the parameter name:

- BI: Binector Input This parameter is used for selecting the source of a digital signal.
- BO: Binector Output

This parameter is available as a digital signal for interconnection with other parameters.

- $\mathrm{CI}: \quad$ Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector Output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note:

A connector input (CI) cannot be just interconnected with any connector output (CO, signal source).

When interconnecting a connector input using the commissioning software, only the signal sources that are actually possible are listed.

Drive object (function module)

A drive object (DO) is an independent, "self-contained" functional unit that has its own parameters and, in some cases, faults and alarms.
When carrying out commissioning using the commissioning software, you can select/deselect additional functions and their parameters by activating/deactivating function modules accordingly.

The parameter list specifies the associated drive object and function module for each individual parameter.

Example:

- r61000: PROFINET Name of Station CU_DC (PROFINET)
The parameter is only available in the case of the CU_DC drive object with the "PROFINET" function module.

A parameter can belong to a single, multiple or all drive objects.
The following information relating to "Drive object" and "Function module" can be displayed under the parameter number:

Table 2-1 Data in the "Drive object (function module)" field

Drive object (function module)	Type	Meaning
All objects	-	This parameter is used by all drive objects.
CU_DC	6	Advanced Control Unit SINAMICS DCM (CUD) is to the left.
CU_DC_R	6	Advanced Control Unit SINAMICS DCM (CUD) is to the right.
CU_DC_S	6	Standard Control Unit SINAMICS DCM (CUD) is to the left.
CU_DC_R_S	6	Standard Control Unit SINAMICS DCM (CUD) is to the right.
CU_DC (PROFINET)	-	SINAMICS DCM Control Unit with "PROFINET" function module.
DC_CTRL	17	DC closed-loop control general or DC closed-loop control on the Advanced CUD left.
DC_CTRL_R	17	DC closed-loop control extended on the Advanced CUD right.
DC_CTRL_S	17	DC closed-loop control on the standard CUD right.
DC_CTRL_R_S	17	DC closed-loop control extended on the standard CUD right.
DC_CTRL (PROFINET)	-	DC closed-loop control with "PROFINET" function module.
TM31	200	Terminal Module 31.
TM31 (PROFINET)	-	Terminal Module 31 with "PROFINET" function module.
TM15DI_DO	204	Terminal Module 15 (for SINAMICS).
TM15DI_DO (PROFINET)	-	Terminal Module 15 (for SINAMICS) with "PROFINET" function module.
TM150	208	Terminal Module 150.
TM150 (PROFINET)	-	Terminal Module 150 with "PROFINET" function module.

Note:

The drive object type is used to identify the drive objects in the drive system (e.g. r0107, r0975[1]).

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information "C1(x), C2(x), T, U" ((x): optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. This can be a single state or multiple states.

The following states are available:

- C1(x) Device commissioning

C1: Commissioning 1
Device is being commissioned (p0009 > 0).
Pulses cannot be enabled.
The parameter can only be changed for the following device commissioning settings (p0009 > 0):

- C1: Can be changed for all settings p0009 > 0 .
- C1(x): Can be changed only when p0009 = x.

A modified parameter value does not take effect until the device commissioning mode is exited with p0009 $=0$.

- C2(x) Drive object commissioning

C2: Commissioning 2
Drive commissioning is in progress ($\mathrm{p} 0009=0$ and p0010>0).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C2: Can be changed for all settings p0010>0.
- C2(x): Can only be changed for the settings p0010 = x.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation

U: Run
Pulses are enabled.

- T Ready T: Ready to run

The pulses are not enabled and the state " $\mathrm{C} 1(\mathrm{x})$ " or " $\mathrm{C} 2(\mathrm{x})$ " is not active.

Note

Parameter p0009 is CU-specific (belongs to the Control Unit).
Parameter p0010 is drive-specific (belongs to each drive object).
The operating state of individual drive objects is displayed in r0002.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
The calculation attribute defines which activities influence the parameter.
The following attributes apply:

- CALC_MOD_ALL
- $\mathrm{p} 0340=1$
- CALC_MOD_CON
- p0340 = 1
- CALC_MOD_EQU
- $\mathrm{p} 0340=1$
- CALC_MOD_LIM_REF
- p0340 = 1, 5
- CALC_MOD_REG
$-\mathrm{p} 0340=1,3$

Note:

For p3900 > 0, p0340 = 1 is also called automatically.

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.

The system uses the following access levels:

- 1: Standard
- 2: Extended
- 3: Expert
- 4: Service

Note

Parameter p0003 is CU-specific (belongs to the Control Unit).
A higher access level will also include the functions of the lower levels.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector/connector output).

Parameters can have the following data types:

- Integer8 18 8-bit integer number
- Integer16 I16 16-bit integer number
- Integer32 I32 32-bit integer number
- Unsigned8 U8 8 bits without sign
- Unsigned16 U16 16 bits without sign
- Unsigned32 U32 32 bits without sign
- FloatingPoint32 Float 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when creating BICO interconnections:

Table 2-2 Possible combinations of BICO interconnections

	BICO input parameter			
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 I Integer16	Unsigned32 / Integer32	Unsigned32 I FloatingPoint32	Unsigned32 / Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	X	X	-	-
CO: Integer16	x	x	r2050, r8850	-
CO: Unsigned32	x	x	-	-
CO: Integer32	X	X	r2060, r8860	-
CO: FloatingPoint32	x	X	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Integer16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend: $\quad$$x$ $:$ $-:$ BICO interconnection permitted rxxxx: BICO interconnection not permitted 				

Dynamic index

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)

Note:

Information on the data sets can be taken from the following references:
References: SINAMICS DC MASTER operating instructions "Data sets" Chapter

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

P group (only when accessing via BOP (Basic Operator Panel))
Specifies the functional group to which this parameter belongs. The required parameter group can be set via p0004.

Note:

Parameter p0004 is CU-specific (belongs to the Control Unit).

Unit, unit group and unit selection

The standard unit of a parameter is specified in square parentheses after the values for "Min", "Max", and "Factory setting".

Note:

The units cannot be switched over for SINAMICS DCM.
The information under unit group and unit selection has no relevance.

Parameter values

Min.	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when delivered [unit] In the case of a binector/connector input, the signal source of the default BICO interconnection is specified. A non-indexed connector output is assigned the index [0].

Not for motor type

This information is of no relevance for SINAMICS DC MASTER.

Scaling

Specification of the reference variable with which a signal value is automatically converted with a BICO interconnection.

The following reference variables are available:

- p2000 ... p2007: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex = 100 \%

Expert list

Specifies whether this parameter is available in the expert list of the specified drive objects in the commissioning software.

1: Parameter exists in the expert list.
0 : Parameter is not available in the expert list.

NOTICE
Users are themselves responsible for using parameters marked "Expert list: 0" (parameter
does not exist in the expert list).
These parameters and their functionalities have not been tested and no further user
documentation is available for them (e.g. description of functions). Furthermore, no support
is provided for these parameters by "Technical Support" (hotline).

Description

Explanation of the function of a parameter

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters.
The following applies to the values (Min, Max, Factory setting) of indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.
When the indices have different factory settings, they are all listed individually with the unit.

Bit field

For parameters with bit fields, the following information is provided about each bit:

- Bit number and signal name
- Meaning for signal states 1 and 0
- Function diagram (optional)

The signal is shown on this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

See also: List of other parameters to be additionally considered.

Safety guidelines

Important information that must be observed to avoid the risk of physical injury or material damage.

Information that must be observed to avoid any problems.
Information that the user may find useful.

Danger	The description of this safety notice can be found at the beginning of this

Warning

Notice

Note

Caution The description of this safety notice can be found at the beginning of this
The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)". manual, see "Legal information (Page 4)".

The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)".

Information that the user may find useful.

2.1.2 Number ranges of parameters

Number ranges for SINAMICS in general

Note:

The following number ranges represent an overview for all the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters (Page 28)".

Parameters are grouped into the following number ranges:
Table 2-3 Number ranges for SINAMICS

Range		Description
From	To	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power section
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data, central probe
0700	0799	Control Unit terminals, measuring sockets
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e.g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e.g. ramp-function generator)
1200	1299	Functions (e.g. motor holding brake)
1300	1399	U/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation

Table 2-3 Number ranges for SINAMICS, continued

Range		Description
From	To	
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SH/GH
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management

Table 2-3 Number ranges for SINAMICS, continued

Range		Description
From	To	
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

2 Parameters
2.1 Overview of parameters

2.2 List of parameters

2.2 List of parameters

Product: SINAMICS DC MASTER, Version: 5104032, Language: eng
Objects: CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R, DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R, TM31, TM15DI_DO, TM150

Value:

0 :	o0.0 No torque direction switched on
1:	o0.1 Torque direction I switched on
2 :	00.2 Torque direction II switched on
9:	00.9 Wait for enable from master
10:	o1.0 Wait time for brake opening time running
11:	01.1 Wait for operating enable at terminal 13
12:	01.2 Wait for operating enable (signal source acc. to p0852)
13:	01.3 Wait time running after withdrawing an OFF command
14:	o1.4 Wait until the field has been reversed
15:	01.5 Wait for operating enable from the optimization run
16:	01.6 Wait for withdrawal of the immediate pulse inhibit
17:	01.7 Wait for SINAMICS DCM connected in parallel in status 00.0
18:	01.8 Operating state 01.8
19:	01.9 Operating state o1.9
20:	02.0 Wait for setpoint
21:	o2.1 Operating state o2.1
22:	o2.2 Operating state o2.2
30:	o3.0 Wait for the thyristor check to be completed
31:	03.1 Wait for line supply symmetry
32:	o3.2 Wait for a DC contactor to pick up
33:	03.3 Wait for the feedback signal "main contactor"
34:	o3.4 Operating state 03.4
35:	o3.5 Operating state o3.5
40:	04.0 Wait for voltage at 1U1, 1V1, 1W1
41:	04.1 Wait until fuse monitoring signals OK
42:	o4.2 Operating state 04.2
43:	04.3 Operating state 04.3
44:	04.4 Operating state 04.4
45:	04.5 Wait until CCP precharged
50:	05.0 Wait for field current actual value
51:	o5.1 Wait for voltage at 3U1, 3W1
52:	05.2 Operating state 05.2
53:	o5.3 Operating state o5.3
60:	06.0 Wait until auxiliaries have been switched on
61:	06.1 Wait for small setpoint
62:	06.2 Operating state 06.2
63:	06.3 Operating state 06.3
70:	o7.0 Wait for switch-on via terminal 12
71:	o7.1 Wait for switch-on (signal source according to p0840)
72:	o7.2 Stopping saved
73:	o7.3 Wait for parallel master to switch on
74:	o7.4 Start of an optimization run
75:	o7.5 Wait until SINAMICS DCM are ready for switching on
76:	o7.6 Operating state 07.6
77:	07.7 Operating state 07.7
78:	o7.8 Operating state 07.8
79:	07.9 Operating state 07.9
80:	08.0 Switching on inhibited
81:	08.1 Simulation mode active
82:	08.2 Operating state 08.2
83:	08.3 Operating state 08.3
90:	09.0 Operating state o9.0
91:	09.1 Quick stop (OFF3) (signal source acc. to p0848) present
92:	09.2 Quick stop (OFF3) (signal source acc. to p0849) present
93:	09.3 Quick stop (OFF3) saved
94:	o9.4 SS1 command (Safe Stop 1) present
95:	09.5 Operating state 09.5
96:	09.6 Operating state 09.6
97:	09.7 Operating state 09.7
98:	09.8 Operating state 09.8
99:	09.9 Operating state 09.9
100:	010.0 Operating state 010.0
101:	o10.1 Voltage disconnect (OFF2) (signal source acc. to p0844)
102:	o10.2 Voltage disconnect (OFF2) (signal source acc. to p0845)
103:	o10.3 E stop (safety shutdown) (terminal 105/106)
104:	o10.4 STO command (Safe Torque Off) present

2.2 List of parameters

r0002	TM15DI/DO operating display / TM15D op_display		
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	250	-
Description:	Operating display for Terminal Module 15 (TM15).		
Value:	0: Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module deactivated		
	200: Wait for booting/partial booting		
	250: Device signals a topology error		
Notice:	For several missing enable signals, the	sponding value	ber is displayed.

2.2 List of parameters

p0005[0...1] BOP operating display selection / BOP op_disp sel
CU_DC_S,
CU_DC_R_S, CU_DC,
Can be changed: U, T Calculated: -

Data type: Unsigned16
Dyn. index: -
Access level: 2

Unit group: -
Scaling:
Max:
65535

Function diagram: -
Unit selection: -
Expert list: 1
Factory setting:
[0] 2
[1] 0

Description: Sets the parameter number and parameter index for display for p0006=4 for the Basic Operator Panel (BOP).

Index:	$[0]=$ Parameter number
	$[1]=$ Parameter index
Dependency:	See also: p0006
Note:	Procedure:

1.

The parameter number to be displayed should be set in index 0 . Only the monitoring parameters (read-only parameters) can be set that actually exist for the actual drive object.
If the set parameter number is not indexed, or if there is an index in index 1 that lies outside the valid range of the set parameter, then index 1 is automatically set to 0 .
2.

The index that belongs to the parameter set in index 0 should be set in index 1 . The permissible changes in index 1 always depend on the parameter number set in index 0 .

2.2 List of parameters

p0010	TM31 commissioning parameter filter / TM31 comm par_filt		
TM31	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	30	0
Description:	Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0 : Ready 29: Only Siemens internal 30: Parameter reset		
Dependency:	See also: p0970		
Note:	Only the following values are possible: p0010 $=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0011	BOP password entry (p0013) / BOP passw ent p13		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the password for the Basic Operator Panel (BOP).		
Dependency:	See also: p0012, p0013		
p0012	BOP password acknowledgment (p0013) / BOP passw ackn p13		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Acknowledges the password for the Basic Operator Panel (BOP). See also: p0011, p0013		
Dependency:			

2.2 List of parameters

p0013[0...49]	BOP user-defined list / BOP list		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the required parameters to read and write via the Basic Operator Panel (BOP).		
	1. p0003 = 3 (expert).		
	2. $\mathrm{p} 0013[0 \ldots 49]=$ requested parameter number.		
	3. If required, enter p0011 = password in order to prevent non-authorized deactivation.		
	4. p0016 = 1 --> activates the selected user-defined list.		
	Deactivation/change:		
	1. p0003 = 3 (expert).		
	2. If required, p0012 $=$ p0011, in order to be authorized to change or deactivate the list.		
	3. If required p0013[0...49] = required parameter number.		
	4. p0016 = 1 --> activates the modified user-defined list.		
	5. p0003 = 0 --> deactivates the user-defined list.		
Dependency:	See also: p0009, p0011, p0012, p0976		
Note:	The following parameters can be read and written on the Control Unit drive object:		
	- p0003 (access stage)		
	- p0009 (device commissioning, parameter filter)		
	- p0012 (BOP password acknowledgment (p0013))		
	The following applies for the user-defined list:		
	- password protection is only available on the drive object Control Unit and is valid for all of the drive object - p0013 cannot be included in the user-defined list for all drive objects.		
	- p0003, p0009, p0011, p0012, p0976 cannot, for the drive object Control Unit, be included in the user-defined list. - the user-defined list can be cleared and deactivated "restore factory setting".		
	A value of 0 means: Entry is empty.		
p0015	Macro drive unit / Macro drv unit		
CU_DC_S,	Can be changed: C1	Calculated: -	Access level: 1
$\begin{aligned} & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Data type: Unsigned32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	999999	1
Description:	Runs the corresponding macro files.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p0015 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	See also: p0700, p1000, p1500, r8570		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified directory are Macros available as standard are describe	played in r8570. in the technical	xpert list of the commiss particular product.

r0019.0...14	CO/BO: Control word BOP / STW BOP		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 9912
CU_DC_R	P group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the control word for the Basic Operator Panel (BOP).		
Bit array:	Bit Signal name	1 signal	ON
	00	ON / OFF (OFF1)	No coast down
	01	No coast-down / coast-down (OFF2)	No Quick Stop
	02	No Quick Stop / Quick Stop (OFF3)	Yes
	07	Acknowledge fault (0 -> 1)	Coast down (OFF2)
	13	Motorized potentiometer raise	Quick Stop (OFF3)
	14	Motorized potentiometer lower	Yes

r0020	Speed setpoint smoothed / n_set smth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3155
DC_CTRL,	P group: Displays, signals	Scaling: p2000	Unit selection: p0505
DC_CTRL_R	Not for motor type: -	Max:	Expert list: 1
	Min:	$-[\mathrm{rpm}]$	Factory setting:
	$-[\mathrm{rpm}]$	- [rpm]	
Description:	Displays the actual smoothed speed setpoint at the speed controller input.		
Dependency:	See also: r0060		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0021	CO: Actual speed smoothed / n_act smooth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
DC CTRL R	P group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed.		
Dependency:	See also: r0022, p0045, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022, r0063[1] with p0045) and unsmoothed (r0063[0])		

r0022	Speed actual value rpm smoothed / n_act rpm smooth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Displays, signals	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	$-[r p m]$	$-[r p m]$	
Description:	Displays the smoothed actual value of the motor speed.		
	r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	See also: r0021, p0045, r0063		

Note: \quad Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The speed actual value is available smoothed (r0021, r0022, r0063[1] with p0045) and unsmoothed (r0063[0]).

r0027	CO: Absolute current actual value smoothed / I_act abs val smth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6850
DC_CTRL, DC CTRL R	P group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min:	Max:	Factory setting:
	- [A]	- [A]	- [A]
Description:	Displays the smoothed absolute current actual value.		
Dependency:	See also: p0045, r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The absolute value of the current actual value is available smoothed (r0027, r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0031	Actual torque smoothed / M_act smooth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6851
DC_CTRL,	P group: Displays, signals	Unit group: $7 _1$	Unit selection: p0505
DC_CTRL_R	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Displays the smoothed torque actual value.		
Dependency:	See also: p0045, r0080		
Note:	Smoothing time constant = 100 ms	The signal is not suitable as a process quantity and may only be used as a display quantity.	
	The torque actual value is available smoothed (r0031, r0080[1] with p0045) and unsmoothed (r0080[0]).		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2450
DC_CTRL,	P group: Displays, signals	Unit group: $14 _10$	Unit selection: p0505
DC_CTRL_R	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min:	Max:	Factory setting:
	$-[k W]$	$-[k W]$	
Description:	Display and connector output for the smoothed actual value of the active power.		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the		
	unsmoothed value should be used.		
Note:	Smoothing time constant = 100 ms		

2.2 List of parameters

r0035	CO: Motor temperature / Mot temp	
DC_CTRL_S,	Can be changed: - Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32 Dyn. index: -	Function diagram: 7008, 8017
DC_CTRL, DC CTRL R	P group: Displays, signals Unit group: 21_1	Unit selection: p0505
	Not for motor type: - Scaling: p2006	Expert list: 1
	Min: Max:	Factory setting:
	$-\left[{ }^{\circ} \mathrm{C}\right] \quad-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the actual temperature in the motor.	
Note:	For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:	
	- this temperature display is valid.	
	- a KTY/PT1000 temperature sensor is connected.	
	For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:	
	- this temperature display is not valid (temperature sensor error).	
	- a PTC sensor or bimetallic NC contact is connected.	

2.2 List of parameters

r0056.13	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl			
DC_CTRL_S,	Can be changed: -	Calculated: -	Acces	
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Func	
DC CTRL	P group: Displays, signals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Factor	
	-	-	-	
Description:	Display and BICO output for the status word of the closed-loop control.			
Bit array:	Bit Signal name	1 signal	0 signal	FP

r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3155
DC_CTRL, DC CTRL R	P group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual speed setpoint at the speed controller input.		
Dependency:	See also: r0020		
Note:	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0061[0...1]	CO: Actual speed unsmoothed / n_act unsmoothed		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S, DC_CTRL,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 1580, 4710, 6810
	P group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the unsmoothed actual speed values sensed by the encoders.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$		

r0063[0...1]	CO: Speed actual value / n_act		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
DC_CTRL,	P group: Displays, signals	Unit group: $3 _1$	Unit selection: p0505
DC_CTRL_R	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	$-[r p m]$	- [rpm]	
	Display and connector output for the speed actual value.		
Description:	[0] = Unsmoothed		
Index:	[1] = Smoothed with p0045		
Dependency:	See also: r0021, r0022, p0045, r0061		

r0068[0...1]	CO: Absolute current actual value / I_act abs val
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Function diagram: 6850 P group: Displays, signals Unit group: - Unit selection: - Not for motor type: - Scaling: p2002 Expert list: 1 Min: Max: Factory setting: $-[\mathrm{A}]$ $-[\mathrm{A}]$ $-[\mathrm{A}]$
Description: Index: Dependency: Note:	Displays actual absolute current. [0] = Unsmoothed [1] = Smoothed with p0045 See also: r0027, p0045 The absolute value of the current actual value is available smoothed (r0027 with 100 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).
r0080[0...1] DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	CO: Torque actual value / M_act
Description: Index:	Display and connector output for actual torque value. [0] = Unsmoothed [1] = Smoothed with p0045
Dependency: Note:	See also: r0031, p0045 The value is available smoothed (r0031 with 100 ms , r 0080 [1] with p0045) and unsmoothed ($\mathrm{rO080}$ [0]). In order that the torque actual value is correctly calculated, a certain value is required as reference torque (p2003). The torque which the motor produces in the following case must be entered in p2003: - the rated device armature current flows in the armature circuit (r50072[1]). and - the rated field current flows in the field circuit (p50102).

r0082[0...1]	CO: Active power actual value / P_act		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: - Data type: FloatingPoint32 P group: Displays, signals Not for motor type: - Min: - [kW]	Calculated: - Dyn. index: - Unit group: 14_5 Scaling: r2004 Max: - [kW]	Access level: 3 Function diagram: Unit selection: p0505 Expert list: 1 Factory setting: - [kW]
Description: Index:	Displays the instantaneous active power. [0] = Unsmoothed [1] = Smoothed with p0045		
Dependency:	See also: r0032		
Note:	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		

2.2 List of parameters

p0097	Select drive object type / Select DO type		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: C 1 (1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	15	0
Description:	Executes an automatic device configuration.		
	In so doing, p0099, p0107 and p0108 are appropriately set.		
Value:	0 : No selection		
	15: Drive object type D		
Dependency:	See also: r0098, p0099		
	See also: A01330		
Note:	For p0097 = 0, p0099 is aut	the factory setti	

r0098[0...5]	Actual device topology / Device_act topo		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 1
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-

Description: Displays the automatically detected actual device topology in coded form.

p0099[0..5]	Device target topology / Device_target topo		
CU_DC_S,	Can be changed: C1(1)	Calculated: -	Access level: 1
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	0000 hex	
Description:	Sets the device target topology in coded form (refer to r0098). The setting is made during commissioning.		
	Deactivated or non-available components are also counted		

Index:
[0] = DRIVE-CLiQ socket X100
[1] = DRIVE-CLiQ socket X101
[2...5] = Reserved

Dependency:	The parameter can only be written into for $\mathrm{p} 0097=0$.
To perform an automatic device configuration run, an index of the device target topology must be set to the value of	
the device actual topology in r0098 for acknowledgment. An index of the device actual topology with a value other	
than 0 must be selected.	
See also: p0097, r0098	
See also: A01330	
Note:	The parameter can only be set to the values 0 , the value of the actual device topology, the value of the actual device
target topology and FFFFFFFF hex.	
If the value 0 is displayed in all of the indices, then the system has still not been commissioned.	
The value FFFFFFFF hex indicates that the topology was not generated by the automatic device configuration, but	
was commissioned using the commissioning tool (e.g. using parameter download).	

p0101[0...n]	Drive object numbers / DO numbers		
CU_DC_S,	Can be changed: $\mathrm{C} 1(1)$	Calculated: -	Access level: 2
CUUDC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	62	0

Description:	The parameter contains the object number via which every drive object can be addressed.
The number of an existing drive object is entered into each index.	
Value $=0:$ No drive object is defined.	
Note:	The numbers are automatically allocated.
	For the commissioning tool, this object number cannot be entered using the expert list, but is automatically assigned
when inserting an object.	

r0102[0...1]	Number of drive objects / DO count		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of existing or existing and prepared drive objects.		
Index:	[0] = Existing drive objects		
Dependency:	See also: p0101		
Note:	The numbers of the drive objects are in p0101.		
	For index [0]:		
	Displays the number of drive objects that have already been set up.		
	For index [1]:		
	Displays the number of drive objects that have already been set up and, in addition, the drive objects that still have to be set up.		

p0103[0...n]	Application-specific view / Appl_spec view		
CU_DC_S,	Can be changed: C1(2)	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	099	0
Description:	The application-specific view of an existing drive object is entered into each index.		
	The parameter cannot be changed.		
Dependency:	See also: p0107		

2.2 List of parameters

Note: \quad| The application-specific views are defined in files on the memory card with the following structure: |
| :--- |
| PDxxxyyy.ACX |
| xxx: Application-specific view (p0103) |
| yyy: Type of drive object (p0107) |
| Example: |
| PD052017.ACX |
| ---> "017" stands for the drive object of type DC_CTRL |
| --> "052" is the number of the view for this drive object |

r0103	Application-specific view / Appl_spec view		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Closed-loop control	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	-

Description: Displays the application-specific view of the individual drive object.
Dependency: See also: r0107

p0105	Activate/deactivate drive object / DO act/deact		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Setting to activate/deactivate a drive object.		
Value:	0 : Deactivate drive object 1: Activate drive object		
Dependency:	See also: r0106		
Notice:	The following applies when activating:		
	If components are inserted for the first time a automatically booted. To do this, the pulses	and the appropriat of all of the drive	ivated, then the drive system is pressed.

p0105	Activate/deactivate drive object / DO act/deact		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL, DC CTRL R	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	1
Description:	Setting to activate/deactivate a drive object.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Deactivate drive object } \\ \text { 1: } & \text { Activate drive object } \\ \text { 2: } & \text { Drive object deactivate and not present }\end{array}$		
Dependency:	See also: r0106		
	See also: A01314		
Notice:	The following applies when act If components are inserted for automatically booted. To do th	and the appropria f all of the drive	ivated, then the drive system is pressed.

2.2 List of parameters

Note:
For value $=0,2$:
When a drive object is deactivated it no longer outputs any errors.
If value $=0$:
All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error.
If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.
If value $=1$:
All components of the drive object must be available for error-free operation.
If value $=2$:
Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.

Dependency:	See also: r0103		
r0107	Drive object type / DO type		
TM150	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	208	208	-
Description:	Displays the type of each drive object.		
Value:	208: TM150 (Terminal Module)		
Dependency:	See also: p0103		
r0107	Drive object type / DO type		
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	204	204	-
Description:	Displays the type of each drive object.		
Value:	204: TM15 (Terminal Module for SINAMICS)		
Dependency:	See also: p0103		
r0107	Drive object type / DO type		
TM31	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	200	200	-
Description:	Displays the type of each drive object.		
Value:	200: TM31 (Terminal Module)		
Dependency:	See also: p0103		
p0108[0...n]	Drive objects function module / DO fct_mod		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: $\mathrm{C} 1(2)$	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	00000000000000000000 000000000000 bin
Description:	The function module of an existing drive object is entered into each index (also refer to p0101, p0107).		
	The following bits are available for the Control Unit (Index 0):		
	Bit 18: Free function blocks		
	Bit 31: PROFINET		
	For all other drive objects (Index >0), the significance of the bits should be taken from the display parameters r0108 of the drive object.		

2.2 List of parameters

r0108	Drive objects function module / DO fct_mod			
TM31, TM15DI_DO, TM150	Can be changed: - Data type: Unsigned32 P group: Closed-loop control Not for motor type: - Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access le Function Unit selec Expert list Factory se	
Description: Bit array:	Displays the activated function module Bit Signal name 18 Free function blocks / FBLOCKS 31 PROFINET CBE20 / PN CBE20	particular drive 1 signal Activated Activated	0 signal Not activated Not activated	FP
Dependency: Note:	See also: r0171, r0172, r0173 A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
$\begin{aligned} & \text { r0110[0...2] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Basic sampling times / t_bas Can be changed: Data type: FloatingPoint32 P group: Closed-loop control Not for motor type: - Min: - [$\mu \mathrm{s}$]	Calculated: Dyn. index: Unit group: Scaling: Max: - [$\mu \mathrm{s}$]	Access lev Function Unit selec Expert list Factory se - [$\mu \mathrm{s}$]	
Description: Index:	Displays the basic sampling times. The sampling times are set using p0112 and p0115. The values for the basic sampling times are determined as a result of these settings.			
```\(\mathbf{r 0 1 1 1}\) CU_DC_S, CU_DC_R_S, CU_DC CU_DC_R, DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Basic sampling time selection   Can be changed:   Data type: Integer16   P group: Closed-loop control   Not for motor type: -   Min:	basis sel   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access le   Function   Unit selec   Expert list   Factory s	
Description:   Dependency:	Displays the selected basic sampling time for this drive object.   See also: r0110			
p0112   DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Sampling times pre-setting p011   Can be changed: C1(3)   Data type: Integer16   P group: Closed-loop control   Not for motor type: -   Min:   0	/ t_sample f   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   3	Access lev   Function   Unit selec   Expert list   Factory se   3	
Description:	Pre-assignment of the sampling times in p0115.   The clock cycles for the current controller / speed controller / - / setpoint channel / - / / / technology controller are defined as follows: $\mathrm{p} 0112=3: 1000 / 2000 /-/ 4000 /-/-/ 4000 \mu \mathrm{~s}$			
Value:	0: Expert   3: $\quad$ Standard			
Note:				

### 2.2 List of parameters

p0115[0]	Sampling time for supplementary functions /t_samp suppl_fct		
CU_DC_S,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mu \mathrm{~s}]$	$16000.00[\mu \mathrm{~s}]$	$4000.00[\mu \mathrm{~s}]$
	Sets the basic sampling time for supplementary functions (DCC, free function blocks) on this object.		
Description:	Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible.		
Index:	$[0]=$ Basic sampling time		


p0115[0...6]	Sampling times for internal control loops / t_sample int ctrl		
DC_CTRL_S,	Can be changed: C 1 (3)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL_R	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1000.00 [ $\mu \mathrm{s}$ ]	16000.00 [ s ]	[0] 1000.00 [ $\mu \mathrm{s}$ ]
			[1] 2000.00 [ $\mu \mathrm{s}$ ]
			[2] 8000.00 [ $\mu \mathrm{s}$ ]
			[3] 4000.00 [ $\mu \mathrm{s}$ ]
			[4] 8000.00 [ $\mu \mathrm{s}$ ]
			[5] 8000.00 [ $\mu \mathrm{s}$ ]
			[6] 4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling times for the control loops.		
	The default setting is made using p0112 and can only be individually changed for $\mathrm{p} 0112=0$ (expert).		
Index:	[ 0 ] = Current controller		
	[1] = Speed controller		
	$[2]=-$$[3]=$ Setpoint channel		
	[4] $=$ -		
	[5] $=-$$[6]=$ Technology controller		
Dependency:	The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .		

Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = $N$ *p0115[0]; where N is an integer number). The sampling time of the speed controller ( $\mathrm{p} 0115[1]$ ) can have as a maximum a value of $800 \%$ of the current controller sampling time (p0115[0]).
See also: r0110, r0111, p0112
Note: $\quad$ For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. The current controller sampling time ( $\mathrm{p} 0115[0]$ ) is permanently set to 1 ms and cannot be changed.

p0115[0]	Sampling time for supplementary functions /t_samp suppl_fct		
TM31, TM15DI_DO,	Can be changed: C1(3)	Calculated: -	Access level: 3
TM150	Data type: FloatingPoint32	Dyn. index:	Function diagram: -
	P group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mu \mathrm{~s}]$	$16000.00[\mu \mathrm{~s}]$	$4000.00[\mu \mathrm{~s}]$
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object.		
	Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible.		
Index:	$[0]=$ Basic sampling time		


Note:	This parameter only applies to set the sampling times of possible supplementary functions.
	The sampling times for inputs/outputs must be set in p4099.


r0116[0...1]	Drive object clock cycle recommended / DO_clock recom		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R,	P group: Closed-loop control	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R, TM31, TM15DI_DO			
Description:	Displays the recommended sampling time for the drive objects. r00116[0] = recommended sampling time:		
	Recommended value which would then make the complete system operational. r00116[1] = recommended sampling time:		
	Recommended value, which after changing other clock cycles on the DRIVE-CLiQ line, would result in an operational system.		
Index:	[0] = Change only for the actual drive object		
	[1] = Changing all objects on the DRIVE-CLiQ line		
Dependency:	See also: p0115		


p0121[0...n]	Power unit component number / PU comp_no		
DC_CTRL_S,	Can be changed: C1(4), C2(15)	Calculated: -	
DC_CTRL_R_S,	Data type: Unsigned8	Dyn. index: PDS	Access level: 3
DC_CTRL,	P group: Data sets	Unit group: -	Function diagram:
DC_CTRL_R	Not for motor type: -	Scaling: -	Unit selection: -
	Min:	Max:	Expert list: 1
	0	199	Factory setting:
			0

Description: The power unit data set is assigned to a power unit using this parameter.
This unique component number is assigned when parameterizing the topology.
Only component numbers can be entered into this parameter that correspond to a power unit.
Dependency: See also: r0107

p0124[0...n]	Main component detection using LED / M_comp detect LED		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Detection of the main components of the drive object selected via the index.		


p0125[0...n]	Activate/deactivate power unit components / PU_comp act/deact		
DC_CTRL_S,	Can be changed: C1(4), T	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: PDS	Function diagram: -
DC_CTRL,	P group: Data sets	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	1
Description:	Setting to activate/deactivate a power unit component.		
Value:	$0: \quad$ Deactivate component		
	$1: \quad$ Activate component		
Recommendation:	After inserting a component, before activating, first wait for Alarm A01317.		

### 2.2 List of parameters

Dependency:
Caution:


Notice:
Note:

See also: A01314, A01317
For a parallel connection, the following applies:
When deactivating individual power units using this parameter, it is not permissible that the power units of the parallel connection involved are connected. Infeed units should be disconnected from the line supply (for example, using a contactor). Motor feeder cables should be disconnected. In addition, defective power units should be disconnected from the DC link.
It is not permissible to deactivate drive objects with safety functions enabled.
The activation of a component can be rejected if the component was inserted for the first time. In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited.
For units connected in parallel, when one of the power units is deactivated, then the enable in p7001 is withdrawn. For value $=0,2$ :
When a component is deactivated it no longer outputs any errors.
If value $=0$ :
The component was completely commissioned and is deactivated using this value. It can be removed from the DRIVE-CLiQ without any error.
If value $=1$ :
The component must be available for error-free operation.
If value $=2$ :
A component in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the component is marked to be bypassed in the DRIVE-CLiQ line.
For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.


p0142[0...n]	Encoder component number / Encoder comp_no		
DC_CTRL_S,   DC_CTRL_R_S,   DC_CTRL,   DC_CTRL_R	Can be changed: $\mathrm{C} 1(4), \mathrm{C} 2(15)$	Calculated:	Access level: 3
	Data type: Unsigned8	Dyn. index: EDS, p0140	Function diagram: 4704
	P group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	199	0
Description:	This parameter is used to assign the encoder data set to an encoder.		
	This assignment is made using the unique component number that was assigned when parameterizing the topology. Only component numbers can be entered into this parameter that correspond to an encoder.		
Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.		
	For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142).		
p0144[0...n]	Sensor Module detection via LED / SM detection LED		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: EDS, p0140	Function diagram: -
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Detects the Sensor Module assigned to this drive and data set.		
Note:	While p0144 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Sensor Module.		


p0145[0...n]	Activate/deactivate encoder interface / Enc_intf act/deact		
DC_CTRL_S,	Can be changed: C1(4), U, T	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Data sets	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	1
Description:	Setting to activate/deactivate an encoder interface (Sensor Module).		
Value:	$0: \quad$ Deactivate component		
	$1: \quad$ Activate component		
Recommendation:	$2: \quad$ Component deactivate and not present		
Dependency:	See also: r0146		
	See also: A01314, A01317		

### 2.2 List of parameters

The deactivation of an encoder interface corresponds to the"parking encoder" function and has the same effect.
The activation of a component can be rejected if the component was inserted for the first time.
In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited.
With the encoder interface for encoder 1 (motor encoder), the relevant drive object for writing the parameter must be
in the "Ready for operation" state.
With the encoder interface for encoders 2 and 3 , the parameter can also be written during operation.
For value $=0,2$ :
When a component is deactivated it no longer outputs any errors.
If value $=0$ :
The component was completely commissioned and is deactivated using this value. It can be removed from the
DRIVE-CLiQ without any error.
If value $=1$ :
The component must be available for error-free operation.
If value $=2$ :
A component in a project generated offline and set to this value must never be inserted in the actual topology from
the very start.
For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to
set just one subset to this value.

r0146[0...n]	Encoder interface active/inactive / Enc_intf act/inact		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Data sets	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	-
Description:	Displays the "active" or "inactive" state of an encoder interface (Sensor Module).		
Value:	$0: \quad$ Component inactive		
	$1: \quad$ Component active		
Dependency:	See also: p0105, p0145, p0480		


r0147[0...n]	Sensor Module EEPROM data version / SM EEPROM version		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the version of the EEPROM data of the Sensor Module.		
Dependency:	See also: r0157		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


r0148[0...n]	Sensor Module firmware version / SM FW version		
DC_CTRL_S,	Can be changed: -	Calculated: -	
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the firmware version of the Sensor Module.		
Dependency:	See also: r0018, r0158, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


p0151	Terminal Module component number / TM comp_no		
TM31, TM15DI_DO,	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 3
TM150	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	199	
Description:	Sets the component number for the Terminal Module.		
	This unique component number is assigned when parameterizing the topology.		
	Only component numbers can be entered into this parameter that correspond to a Terminal Module.		


p0154	Terminal Module detection via LED / TM detection LED		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 2
TM150	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Detects the Terminal Module assigned to this drive and data set.		
Note:	While p0154 $=1$, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Terminal Module.		
r0157	Terminal Module EEPROM data version / TM EEPROM version		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the version of the EEPROM data of the Terminal Module.		
Dependency:	See also: r0147		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


r0158	Terminal Module firmware version / TM FW version		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned32	Dyn. index:	Function diagram: -
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the firmware version of the Terminal Module.		
Dependency:	See also: r0018, r0148, r0197, ro198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

### 2.2 List of parameters

p0170	Number of Command Data Sets (CDS) / CDS count		
DC_CTRL_S,	Can be changed: C1(3)	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Commands	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	2	2
	2		
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		


p0171[0...n] D	Drive objects function module 1 / DO fct_mod 1				
CU_DC_S,   CU_DC_R_S, CU_DC,   CU_DC_R	Can be changed: $\mathrm{C} 1(2)$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Function diagram: -	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	00000000000000000000 000000000000 bin	
Description: $\begin{array}{ll}\text { T } \\ & \text { T } \\ & - \\ & \text { F } \\ & \text { of }\end{array}$	The function module of an existing drive object is entered into each index (see p0101, p0107).				
	The following bits are available in p0171 for the Control Unit (Index 0):				
	- still none				
	For all other drive objects (Index >0), the significance of the bits should be taken from the display parameters r0171 of the drive object.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-



### 2.2 List of parameters

	22	Bit 22	ON	OFF
	23	Bit 23	ON	OFF
	24	Bit 24	OFF	
	25	Bit 25	ON	OFF
	26	Bit 26	OFF	
	27	Bit 27	ON	OFF
	28	Bit 28	OFF	
	29	Bit 29	ON	OFF
Dependency:	30	Bit 30	ON	OFF
	31	Bit 31	ON	
	Active messages can prevent or influence activating a function module.			
Note:	See also: p0108, p0171, p0173			


r0172	Drive objects function module 2 / DO fct_mod 2		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group:-	Unit selection: -	
DC_CTRL_R, TM31,	P group: Closed-loop control	Scaling: -	Expert list: 1
TM15DI_DO, TM150	Not for motor type: -	Max:	Factory setting:
	Min:	-	-
	-		
Description:	Displays the activated function module for the particular drive object.		
Dependency:	See also: r0108, r0171, r0173		
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.		


p0173[0...n]	Drive objects function module 3 / DO fct_mod 3				
CU_DC_S,	Can be changed: $\mathrm{C} 1(2)$		Calculated: -	Access level: 2	
CU_DC_R_S, CU_DC,	Data type: Unsigned32		Dyn. index: -	Function diagram: -	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	00000000000000000000 000000000000 bin	
Description:	The function module of an existing drive object is entered into each index (see p0101, p0107).				
	The following bits are available in p0173 for the Control Unit (Index 0):				
	- still none				
	For all other drive objects (Index $>0$ ), the significance of the bits should be taken from the display parameters r0173 of the drive object.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-



### 2.2 List of parameters



For bit $03 \ldots 00$ :
Bit 3, 2, 1, $0=0,0,0,0$--> component not available.
Bit 3, 2, 1, $0=0,0,0,1$--> power up, non-cyclic DRIVE-CLiQ communication (LED = orange).
Bit 3, 2, 1, $0=0,0,1,0$--> operating mode, cyclic DRIVE-CLiQ communication (LED = green).
Bit 3, 2, 1, $0=0,0,1,1$--> alarm (LED = green).
Bit 3, 2, 1, $0=0,1,0,0-->$ fault (LED = red).
Bit $3,2,1,0=0,1,0,1->$ detection via LED and operating mode (LED = green/orange).
Bit 3, 2, 1, $0=0,1,1,0->$ detection via LED and alarm (LED = green/orange).
Bit 3, 2, 1, $0=0,1,1,1->$ detection via LED and fault (LED = red/orange).
Bit $3,2,1,0=1,0,0,0-->$ firmware being downloaded (LED = green/red with 0.5 Hz ).
Bit $3,2,1,0=1,0,0,1$--> firmware download completed, wait for POWER ON (LED = green/red with 2.0 Hz ).
For bits 12 ... 11:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.


p0199[0...24]	Drive object name / DO name		
All objects	Can be changed: C1	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index:	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting:
	Min:	Max:	0
	0	65535	
Description:	Freely assignable name for a drive object.		
	For the commissioning tool, this name cannot be entered using the expert list, but is specified in the configuration		
	wizards. The object name can be subsequently modified in the Project Navigator using standard Windows resources.		
Note:	The parameter is not influenced by setting the factory setting.		


r0200[0...n]	Power unit code number actual / PU code no. act		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: PDS	Function diagram: -
DC_CTRL, DC CTRL R	P group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the unique code number of the power unit. r0200 = 0: No power unit found		
Note:			


p0201[0...n]	Power unit code number / PU code no		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: PDS	Function diagram: -
DC_CTRL,	P group: All groups	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Code number of the power unit.		
	Each time the system boots, the code number is transferred from the data of the power unit to r0200 and to p0201.		



p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
DC_CTRL_S,	Can be changed: T	Calculated:	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: -
DC_CTRL,	P group: Motor	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to automatically calculate motor parameters and closed-loop control parameters from rating plate data.		
Value:	$0: \quad$ No calculation		
	$1: \quad$ Complete calculation		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996.		
	Modifications can be made again when r3996 = 0.		



### 2.2 List of parameters

p0401[0...n]	Encoder type OEM selection / Enc type OEM sel		
DC_CTRL_S,	Can be changed: C2(1, 4)	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:
	0	32767	0
Description:	Selects the encoder from the list of encoder types that the OEM supports.		

Note: $\quad$ No OEM encoders are available for the SINAMICS DCM.


p0404[0...n]	Encoder configuration effective / Enc_config eff		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type:	Scaling: -	Expert list: 1
	Min:	-	Factory setting:
	-	00000000000000000000	
		000000000000 bin	


Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B square-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
	20	Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excitation	Yes	No	-
Notice:	This   Wh   be	parameter is automatically preassigned for selecting a catalog encoder, this parame refully observed when removing write prot	oders from annot be on.	and for ide tection).	
Note:	ZM:	Eero mark			
	SM	Sensor Module Cabinet			
		chnique to determine the commutation infor coder pulse number is an integer multiple	tion/data   the pole nu	ted (e.g. tr   lowing ap	
	The	ack $A / B$ is adjusted to match the magnetic	sition of the		
	For	t 01, 02 (absolute encoder, multiturn enco			
	The	bits can only be selected for EnDat encod	, SSI enco	LiQ encod	
	For	10 (DRIVE-CLiQ encoder):			
	This DR enc	bit is only used for the large-scale integrat E-CLiQ format without converting this data ers.	RIVE-CLiQ   is bit is no	rovide their r first-gen	
	For	t 12 (equidistant zero mark):			
		ero marks occur at regular intervals (e.g. ant zero mark distance).	y encoder	per revolu	
		it activates monitoring of the zero mark dista er with 1 zero mark and p0424 $=0$ zero	ce (p0424 monitoring	ry) or in th	
	For	t 13 (irregular zero mark):			
		ero marks occur at irregular intervals (e.g. distance is not monitored.	ear scale	ark in the	
	For	14 (distance-coded zero mark):			
		istance (clearance) between two or sever ated.	nsecutive	the absol	
	For	t 15 (commutation with zero mark):			
	Only	applicable for synchronous motors.			
	The	unction can be de-selected by priority via	30.23.		
	For	stance-coded zero marks, the following a	s:		
	The trac	hase sequence of the C/D track (if availab	must be th	ase seque	
	The the	hase sequence of the Hall signal (if availa sition of the Hall sensor must be mechan	must be th y adjusted	ase seque	
		ne synchronization is only started after tw	ro marks h		

### 2.2 List of parameters

p0405[0...n]	Square-wave encoder track A/B / Sq-wave enc A/B				
DC_CTRL_S,	Can be changed: C2(4)		Calculated: -	Access level: 3	
DC_CTRL_R_S,	Data type: Unsigned32		Dyn. index: EDS, p0140	Function diagram: 4704	
DC_CTRL, DC CTRL R	P group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	00001111 bin	
Description:	Settings for the track $A / B$ in a square-wave encoder.				
	For square-wave encoders, p0404.3 must also be 1.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Signal	Bipolar	Unipolar	-
	01	Level	TTL	HTL	-
	02	Track monitoring	A/B <> -A/B	None	-
	03	Zero pulse	Same as A/B track	24 V unipolar	-
	04	Switching threshold	High	Low	-
	05	Pulse/direction	Active	Inactive	-

Notice: $\quad$ This parameter is automatically preassigned for encoders from the encoder list and for identify encoder ( p 0400 ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note: For bit 02:
When the function is activated, track monitoring can be deactivated by setting p0437.26.
For bit 05:
When the function is activated, a frequency setpoint and a direction for traveling can be entered via an encoder interface.

p0407[0...n]	Linear encoder grid division / Enc grid div		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ nm ]	250000000 [nm]	16000 [ nm ]
Description:	Sets the grid division for a linear encoder.		
	In conjunction with the values in p0418/p0419, the grid division defines the transfer format for position actual values Gn_XIST1 (r0482) and Gn_XIST2 (r0483).		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	The lowest permissible value is 250 nm .		
	This value does not always correspond to the grid division of the measuring device. For a DRIVE-CLiQ encoder, a value is entered here that facilitates optimum transfer of the resolution (p0422).		


p0408[0...n]	Rotary encoder pulse number / Rot enc pulse No.		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	16777215	2048
Description:	Sets the number of pulses for a rotary encoder.		
	In conjunction with the values in p0418/p0419, the pulse number defines the transfer format for position actual values		
	Gn_XIST1 (r0482) and Gn_XIST2 (r0483).		

Notice: $\quad$ This parameter is automatically preassigned for encoders from the encoder list and for identify encoder ( $p 0400$ ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note:
The smallest permissible value is 1 pulse.
The number of pole pairs for a resolver is entered here.
This value does not always correspond to the pulse number of the measuring device. For a DRIVE-CLiQ encoder, a value is entered here that facilitates optimum transfer of the resolution (p0423).

p0410[0...n]	Encoder inversion actual value / Enc inv act value		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: 4710, 4704
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0000 bin
Description:	Setting to invert actual values.		
Bit array:	Bit Signal name	1 signal	0 signal FP
	00 Invert speed actual value	Yes	No 4710
	01 Invert position actual value	Yes	No 4704
Note:			
	Bit 00: r0061, r0094		
	Bit 01: r0482, r0483		


p0411[0...n]	Measuring gear configuration / Meas gear config			
DC_CTRL_S,	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 1	
DC_CTRL_R_S,	Data type: Unsigned32 D	Dyn. index: EDS, p0140	Function diagram: 4704	
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	- -	-	0000 bin	
Description:	Sets the configuration for position tracking of a measuring gear.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Measuring gear activate position tracking	隹g	No	-
	01 Axis type	Linear axis	Rotary axis	-
	02 Measuring gear reset position	Yes	No	-
	03 Meas. gearbox, activate pos. tracking for incremental encoders	Or Yes	No	-
Notice:	For p0411.3 = 1 the following applies:			
	If position tracking is activated for incremental encoders, only the position actual value is stored. Axis or encoder motion is not detected when deactivated! Any tolerance window entered in p0413 has no effect.			
Note:	For the following events, the non-volatile, saved position values are automatically reset:   - when an encoder replacement has been identified.   - when changing the configuration of the Encoder Data Set (EDS).			


p0412[0...n]	Measuring gear absolute encoder rotary revolutions virtual / Abs rot rev		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	4194303	0
Description:	Sets the number of rotations that can be resolved for a rotary encoder with activated position tracking of the		
	measuring gear.		
Dependency:	This parameter is only of significance for an absolute encoder $(p 0404.1=1)$ with activated position tracking (p0411.0		
	$=1)$ and for an incremental encoder with activated position tracking $(p 0411.3=1)$.		

### 2.2 List of parameters

Note: $\quad$ The resolution that is set must be able to be represented using r0483.
For rotary axes/modulo axes, the following applies:
p0411.0 = 1:
This parameter is pre-set with p0421 and can be changed.
p0411.3 = 1:
The parameter value is pre-set to the highest possible value. The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
For linear axes, the following applies:
p0411.0 = 1:
This parameter is pre-assigned with p0421, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.
p0411.3 = 1:
The parameter value is pre-set to the highest possible value. The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).


Note: $\quad$ The value is entered in integer (complete) encoder pulses.
For $p 0411.0=1$, the value is automatically pre-assigned quarter of the encoder range.
Example:
Quarter of the encoder range $=(p 0408$ * p0421) / 4
It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).

p0414[0...n]	Redundant coarse position value relevant bits (identified) / Relevant bits		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	16	16
Description:	Sets the number of relevant bits for the redundant coarse position value.		
p0415[0...n]	Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	31	14
Description:	Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		




p0421[0...n]	Absolute encoder rotary multiturn resolution / Enc abs multiturn		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Encoder	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	4294967295	4096
	0		
Description:	Sets the number of rotations that can be resolved for a rotary absolute encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		


p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Max:	Expert list: 1
	Min:	4294967295 [nm]	Factory setting:
	$0[\mathrm{~nm}]$	100 [nm]	
Description:	Sets the resolution of the absolute position for a linear absolute encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		
Note:	The serial protocol of an absolute encoder provides the position with a certain resolution (e.g. 100 nm$).$ This value		
	must be entered here.		


p0423[0...n]	Absolute encoder rotary singleturn resolution / Enc abs singleturn		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	8192	
Description:	Sets the number of measuring steps per revolution for a rotary absolute encoder.		
	The resolution refers to the absolute position.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		


p0424[0...n]	Encoder linear zero mark distance / Enc lin ZM_dist
DC_CTRL_S,   DC_CTRL_R_S,   DC_CTRL,   DC_CTRL_R	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   $0[\mathrm{~mm}]$ $65535[\mathrm{~mm}]$ $20[\mathrm{~mm}]$
Description: Notice:	Sets the distance between two zero marks for a linear encoder.   This information is used for zero mark monitoring.   This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).   When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note:	For distance-coded zero marks this parameter signifies the basic distance.
p0425[0...n]	Encoder rotary zero mark distance / Enc rot dist ZM
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Function diagram: 4704, 8570   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 16777215 2048
Description:	Sets the distance in pulses between two zero marks for a rotary encoder. This information is used for zero mark monitoring.
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note:	For distance-coded zero marks this parameter signifies the basic distance.
p0426[0...n]	Encoder zero mark differential distance / Enc ZM Dif_dist
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   1 65535 1
Description:	Sets the differential pitch for distance-coded zero marks (signal periods). The value corresponds to jump displacement of "zero mark with interference".
Dependency: Notice:	This function can only be used when a Sensor Module property is available (r0459.9 = 1).   This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.


p0427[0...n]	Encoder SSI baud rate / Enc SSI baud rate		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\mathrm{kHz}]$	$65535[\mathrm{kHz}]$	$100[\mathrm{kHz}]$
Description:	Sets the baud rate for an SSI encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		

### 2.2 List of parameters

Note: SSI: Synchronous Serial Interface

p0428[0...n]	Encoder SSI monoflop time / Enc SSI t_monoflop		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\mu \mathrm{~s}]$	$65535[\mu \mathrm{~s}]$	$30[\mu \mathrm{~s}]$
	Sets the minimum delay time between two data transfers of the absolute value for an SSI encoder.		
Description:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		


p0429[0...n]	Encoder SSI configuration / Enc SSI config			
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3	
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -	
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	00000000 bin	
Description:	Sets the configuration for an SSI encoder.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Transfer code	Binary code	Gray code	-
	02 Transfer absolute value twice	Yes	No	-
	06 Data line during the monoflop time	High level	Low level	-

Notice: $\quad$ This parameter is automatically preassigned for encoders from the encoder list and for identify encoder ( p 0400 ). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note: For bit 06:
The quiescent signal level of the data line corresponds to the inverted, set level.

p0430[0...n]	Sensor Module configuration / SM config				
DC_CTRL_S,	Can be changed: C2(4)		Calculated: -	Access level: 3	
DC_CTRL_R_S,	Data type: Unsigned32		Dyn. index: EDS, p0140	Function diagram: -	
DC_CTRL,   DC CTRL R	P group: Encoder		Unit group: -	Unit selection	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	11100000000010000000 000000000000 bin	
Description:	Sets the configuration of the Sensor Module.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Burst oversampling	Yes	No	-
		Continuous oversa	Yes	No	-
		Safety position actua	Yes	No	-
	20	Speed calculation m	Incremental diff	Flank time meas	-


21	Zero mark tolerance	Yes	No
22	Rotor position adaptation	Yes	No
23	De-select commutation with zero mark	Yes	No
24	Commutation with selected zero mark	Yes	No
25	Switch off encoder voltage supply during	Yes	No
	parking		
27	Extrapolate position values	Yes	No
28	Cubic correction	Yes	No
29	Phase correction	Yes	No
30	Amplitude correction	Yes	No
31	Offset correction	Yes	No


Notice:	A bit-wise configuration is only possible if the corresponding property is also present in r0458.
Note:	For bit 17 (burst oversampling):
	- if bit $=1$, burst oversampling is switched on.
	For bit 18 (continuous oversampling):
	- if bit $=1$, continuous oversampling is switched on.
	For bit 19 (Safety position actual value sensing):
	- if bit $=1$, the Safety position actual value is transferred in the cyclic telegram.
	For bit 20 (speed calculation mode):
	- if bit $=1$, the speed is calculated via incremental difference without extrapolation.
	- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode.
	For bit 21 (zero mark tolerance):

For bit 21 (zero mark tolerance):

- if bit = 1, a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3x100/F3x101 does not appear, but alarm A3x400/A3x401 does
For bit 22 (rotor position adaptation):
- if bit $=1$, the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.
For bit 23 (de-select commutation with zero mark):
- the bit should only be set for encoders that have not been adjusted.

For bit 24 (commutation with selected zero mark):

- if bit $=1$, the commutation position is corrected via a selected zero mark.

For bit 25 (disconnect the encoder power supply on parking):

- if bit $=1$, the encoder power supply is switched off on parking $(0 \mathrm{~V})$.
- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .

For bit 27 (extrapolate position values):

- if bit $=1$, the extrapolation of the position values is activated.

For bit 28 (cubic correction);

- if bit = 1 , the cubic correction for track $A / B$ sine is activated.

For bit 29 (phase correction):

- if bit = 1, the phase correction for track $A / B$ sine is activated.

For bit 30 (amplitude correction):

- if bit $=1$, the amplitude correction for track $A / B$ sine is activated.

For bit 31 (offset correction):

- if bit = 1, the offset correction for track $A / B$ sine is activated

p0431[0...n]	Angular commutation offset / Ang_com offset		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-180.00\left[{ }^{\circ}\right]$	$180.00\left[{ }^{\circ}\right]$	$0.00\left[{ }^{\circ}\right]$
	Sets the angular commutation offset.		
Description:	The angular commutation offset cannot be generally taken from other drive systems.		

### 2.2 List of parameters

Note: Angular commutation offset, angular difference between electrical position of encoder and flux position.
For p0404.5 = 1 (track C/D) the following applies:
The angular offset in p0431 acts on track A/B, the zero mark on track C/D.
For p0404.6 = 1 (Hall sensor) the following applies:
The angular offset in p0431 acts on track A/B and the zero mark.

p0432[0...n]	Gearbox factor encoder revolutions / Grbx_fact enc_rev		
```DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: EDS, p0140	Function diagram: 4704, 4710, 4711
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	1048576	1
Description:	Sets the encoder revolutions for the gearbox factor of the encoder evaluation.		
	The gearbox factor specifies the ratio between the encoder shaft and motor shaft (for motor encoders) or between the encoder shaft and the load.		
Dependency:	This parameter can only be set for $\mathrm{p} 0402=9999$.		
	See also: p0402, p0410, p0433		
Note:	Negative gearbox factors should be implemented with p0410.		

p0433[0...n]	Gearbox factor motor/load revolutions / Grbx_fact mot_rev		
DC_CTRL_S,	Can be changed: C2(4)	Calculated:	Access level: 3
DC_CTRL_R_S, DC_CTRL,	Data type: Integer32	Dyn. index: EDS, p0140	Function diagram: 4704, 4710, 4711
DC_CTRL_R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	1048576	1
Description:	Sets the motor and load revolutions for the gearbox factor of the encoder evaluation. The gearbox factor specifies the ratio between the encoder shaft and motor shaft (for motor encoders) or between the encoder shaft and the load.		
Dependency:	This parameter can only be set for p0402 $=9999$. See also: p0402, p0410, p0432		
Note:	Negative gearbox factors should be implemented with p0410.		
p0434[0...n]	Encoder SSI error bit / Enc SSI error bit		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the position and level of the error bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p0446) or after (p0448) the absolute value in the SSI protocol.		

Note:	Value = dcba ba: Position of the error bit in the protocol ($0 . . .63$). c: Level (0: Low level, 1: High level). d: Status of the evaluation (0: Off, 1: On with 1 error bit, 2: On with 2 error bits ... 9: On with 9 error bits). For several error error bits, the following applies: - the position specified under ba and the additional bits are assigned increasing consecutively. - the level set under c applies to all error bits. Example: $\mathrm{p} 0434=1013$ --> The evaluation is switched in and the error bit is at position 13 with a low level. $\text { p0434 = } 1113$ --> The evaluation is switched in and the error bit is at position 13 with a high level.
p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: C2(4) Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: EDS, p0140 Function diagram: - P group: Encoder Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 0 65535 0
Description: Notice: Note:	Sets the position and level of the alarm bit in the SSI protocol. The bit may only be positioned before (p 0446) or after (p 0448) the absolute value in the SSI protocol. Value = dcba ba: Position of the alarm bit in protocol ($0 . . .63$). c: Level (0: Low level, 1: High level). d: Status of the evaluation (0: Off, 1: On with 1 alarm bit, 2: On with 2 alarm bits ... 9: On with 9 alarm bits). The following applies for several alarm bits: - the position specified under ba and the additional bits are assigned increasing consecutively. - the level set under c applies to all error bits. Example: $\mathrm{p} 0435=1014$ --> The evaluation is switched in and the alarm bit is at position 14 with a low level. $\mathrm{p} 0435=1114$ --> The evaluation is switched in and the alarm bit is at position 14 with a high level.

p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the position and parity of the parity bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p0446) or after (p 0448) the absolute value in the SSI protocol.		
Note:	Value = dcba		
	ba: Position of the parity bit in the protocol (0...63).		
	c: Parity (0: even, 1: uneven).		
	d : State of the evaluation (0: Off, 1: On).		
	Example:		
	p0436 = 1015		
	--> The evaluation is switched in and the parity bit is at position 15 with even parity. $p 0436=1115$		
	--> The evaluation is swit	ty bit is at position 15 with	rity.

2.2 List of parameters

p0437[0...n]	Sensor Module configuration extended / SM config ext				
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4) C		Calculated: -	Access level: 3	
	Data type: Unsigned32 D		Dyn. index: EDS, p0140	Function diagram: -	
	P group: Encoder U		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min: M		Max:	Factory setting:	
	-		-	00110000000000000000 100000000000 bin	
Description:	Sets the extended configuration of the Sensor Module.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Data logger	Yes	No	-
	01	Zero mark edge detection	Yes	No	-
	02	Correction position actual value XIST1	Yes	No	-
	04	Edge evaluation bit 0	Yes	No	-
	05	Edge evaluation bit 1	Yes	No	-
	06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
	07	Do not accumulate the number of incorrect pulses	Yes	No	-
	11	Fault handling after PROFIdrive	Yes	No	-
	12	Activate additional messages	Yes	No	-
	13	Support absolute position for incremental encoder	Yes	No	4750
	22	Resolution absolute position as factor	Yes	No	-
	25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
	26	Deselect track monitoring	Yes	No	-
	28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-
	29	EnDat encoder initialization with high accuracy	Yes	No	-
	31	Analog unipolar track monitoring	Yes	No	-
Dependency:	See also: p0430, r0459				

Note: A value of zero is displayed if an encoder is not present.

For bit 00:
When the data logger (trace) is activated, in the case of a fault, data before and after the event are recorded (traced) and saved in files on the non-volatile memory medium. Experts can then evaluate this data.
For bit 01:
If bit $=0$, the zero mark is evaluated by ANDing tracks A and B and the zero mark.
For bit = 1, the zero mark is evaluated depending on the direction of rotation detected. For a positive direction of rotation, the positive edge of the zero mark is considered and for a negative direction of rotation, the negative edge of the zero mark.
For bit 02:
When the bit is set, for a deviation less than the tolerance window for the zero mark ($\mathrm{p} 4681, \mathrm{p} 4682$), the pulse number is corrected. If the bit is not set, encoder fault $F 3 \times 131$ is triggered.
For bits 05, 04:
The actual hardware only supports 1 x or 4 x signal evaluation.
Bit 5/4 = 0/0: Signal evaluation per period, $4 x$.
Bit 5/4 $=1 / 0$: signal evaluation per period, $4 x$ with speed calculation over the complete pulse.
Bit $5 / 4=0 / 1$: Signal evaluation per period, $1 x$.
Bit $5 / 4=1 / 1$: Illegal setting.
For bit 06:
If the function is active, when $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the speed actual value is internally frozen for a time equivalent to two current controller sampling times. The rotor position continues to be integrated. The actual value is then re-enabled after this time has expired.
For bit 07:
When the bit is not set, the incorrect pulses that have occurred up until now are accumulated in p4688.
When the bit is not set, p4688 indicates the incorrect pulses that have still not been corrected.
For bit 11:
If the bit is set, the Sensor Module checks within a certain time grid whether the fault cause is still present. This enables the Sensor Module to switch from the fault state to the operating state and provide valid actual values automatically. The faults are displayed until the user acknowledges them.
For bit 12:
Additional fault messages can be activated for extended fault diagnostics.
For bit 13:
When the bit is set, for an incremental encoder with zero mark, the absolute value in Gn_XIST2 can be requested via Gn_STW.13. The absolute value is only valid after passing the zero mark.
For bit 22:
When the bit is set, the resolution of the absolute position in the serial protocol is set using distribution factor in p4630. The resolution for the absolute position is then calculated using p0407/p4630.

For bit 26:

Track monitoring is deactivated for the square-wave encoders when the bit is set, even if the monitoring function is selected in p0405.2.
For bit 28:
Monitoring of the difference between incremental and absolute position in the case of linear encoders.
For bit 29:
When the bit is set, the EnDat encoder is initialized under a certain speed and, therefore, with high accuracy. If initialization at a higher speed is requested, fault F31151, F32151, or F33151 is output.
For bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

2.2 List of parameters

p0438[0...n]	Squarewave encoder filter time / Enc t_filt		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	100.00 [$\mu \mathrm{s}$]	0.64 [$\mu \mathrm{s}$]
Description:	Sets the filter time for a squarewave encoder.		
	The hardware of the squarewave encoder only supports the following values:		
	0 : No filtering		
	$0.04 \mu \mathrm{~s}$		
	$0.64 \mu \mathrm{~s}$		
	$2.56 \mu \mathrm{~s}$		
	$10.24 \mu \mathrm{~s}$		
	$20.48 \mu \mathrm{~s}$		
Dependency:	See also: r0452		
Notice:	If the filter time is too long, the track signals $A / B / R$ may be suppressed and the appropriate messages output.		
Note:	The most suitable filter time depends on the number of pulses and maximum speed of the square-wave encoder.		
	The filter time is automatically corrected to the next value when entering a non-specified value. In this case, no message is output.		
	The effective filter time is displayed in r0452.		

p0439[0...n]	Encoder ramp-up time / Enc ramp-up time		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	Proup: Encoder	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	$65535[\mathrm{~ms}]$	0 [ms]
	$0[\mathrm{~ms}]$		
Description:	Sets the ramp-up time for the encoder.		
	The encoder supplies stable track signals once this time has elapsed.		
Dependency:	This function can only be used when a Sensor Module property is available (r0459.9 $=1$).		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		

p0440[0...n]	Copy encoder serial number / Copy enc ser_no		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: EDS, p0140	Function diagram: -
DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Copies the actual serial number of the encoder belonging to this Encoder Data Set (EDS) to p0441 ... p0445. Example: For $\mathrm{p} 0440[0]=1$, the serial number of the encoder belonging EDSO is copied to p0441[0] ... p0445[0].		
Value:	0 : \quad No action 1: Transfer serial num		
Dependency:	See also: p0441, p0442,	45, r0460, r0461, r0462, r0	

Note:

For encoders with serial number, encoder replacement is monitored in order to request angular commutation calibration (adjustment) for motor encoders and absolute calibration for direct measuring systems with absolute value data. The serial number, which from then onwards is used for monitoring purposes, can be transferred using p0440.
Copying is automatically started in the following cases:
1.) When commissioning 1FT6, 1FK6, 1FK7 motors.
2.) When writing into p0431.
3.) For $\mathrm{p} 1990=1$.
p0440 is automatically set to 0 when the copying has been completed
In order to permanently accept the copied values, it is necessary to save in a non-volatile fashion (p0977).

p0441[0...n]	Encoder commissioning serial number part 1/Enc comm ser_no 1		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	0000 hex	
Description:	Serial number part 1 of the encoder for the commissioning.		
Dependency:	See also: p0440, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		

p0442[0...n]	Encoder commissioning serial number part $\mathbf{2} /$ Enc comm ser_no 2		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 2 of the encoder for the commissioning.		
Dependency:	See also: p0440, p0441, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		

p0443[0...n]	Encoder commissioning serial number part $\mathbf{3} /$ Enc comm ser_no $\mathbf{3}$		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Maling: -	Expert list: 1
	Min:	FFFF FFFF hex	Factory setting:
	0000 hex	0000 hex	
Description:	Serial number part 3 of the encoder for the commissioning.		
Dependency:	See also: p0440, p0441, p0442, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		

p0444[0...n]	Encoder commissioning serial number part 4/Enc comm ser_no 4		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	FFFF FFFF hex	Factory setting:
	0000 hex	0000 hex	
Description:	Serial number part 4 of the encoder for the commissioning.		
Dependency:	See also: p0440, p0441, p0442, p0443, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		

2.2 List of parameters

p0453[0...n]	Pulse encoder evaluation zero speed measuring time /Enc_ev n_0 t_meas		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Mcaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.10[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$	
	Sets the measuring time for evaluating zero speed.		
Description:	If no pulses are detected from track A/B during this time, a speed actual value of zero is output.		
	See also: r0452		
Dependency:	This function is required for slow-running motors so that actual speeds close to zero can be output correctly.		

p0454[0...n]	Sensor Module configuration extended Part 2 / SM config ext 2		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0000 bin	
Description:	Sets the extended configuration Part 2 of the Sensor Module.		
Dependency:	See also: r0457		

r0456[0...2]	Encoder configuration supported / Enc_config supp		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the encoder configuration supported by the Sensor Module.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		

2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B square-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
	20	Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
	22	Remote sense (only SMC30)	Yes	No	-
	23	Resolver excitation	Yes	No	-
Dependency:	See	also: p0404			
Note:	ZM:	Zero mark			
	This	parameter is only used for diagnostics.			
	A va	ue of zero is displayed if an encoder is not	sent.		

r0457[0...2]	Sensor Module properties extended Part 2 / SM prop ext 2			
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3	
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram:	
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the extended properties part 2, supported by the Sensor Module.			
Index:	[0] $=$ Encoder 1 [1] $=$ Encoder 2 $[2]=$ Encoder 3			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Reserved	Yes	No	-
	02 Shift factor XIST2 supported	Yes	No	-
Dependency:	See also: p0454			
Note:	A value of zero is displayed if an encoder is not present.			

r0458[0...2]	Sensor Module properties / SM properties		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Sets the Sensor Module configuration.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Encoder data available	Yes	No	-
	01	Motor data available	Yes	No	-
	02	Temperature sensor connection available	Yes	No	-
	03	Connection for PTC for motor with DRIVECLiQ also available	Yes	No	-
	04	Module temperature available	Yes	No	-
	05	Absolute encoder p0408/p0421 no power of 2	Yes	No	-
	06	Sensor Module permits parking/unparking	Yes	No	-
	07	Hall sensor can be combined with actual value inversion	Yes	No	-
	08	Evaluation through several temperature channels possible	Yes	No	-
	09	Encoder fault and its associated information available	Yes	No	-
	10	Speed diagnostics in the Sensor Module	Yes	No	-
	11	Configuring without park state possible	Yes	No	-
	12	Extended functions available	Yes	No	-
	13	Extended encoder fault handling	Yes	No	-
	14	Extended singleturn/multiturn information available	Yes	No	-
	15	Evaluation function reserve	Yes	No	-
	16	Pole position identification	Yes	No	-
	17	Burst oversampling	Yes	No	-
	18	Continuous oversampling	Yes	No	-
	19	Safety position actual value sensing	Yes	No	-
	20	Extended speed calculation being used (only SMC30)	Yes	No	-
	21	Zero mark tolerance	Yes	No	-
	22	Rotor position adaptation	Yes	No	-
	23	Commutation with zero mark can be deselected	Yes	No	-
	24	Commutation with selected zero mark	Yes	No	-
	25	Disconnection of encoder power supply on parking supported	Yes	No	-
	26	Parking with temperature evaluation	Yes	No	-
	27	SSI position value extrapolation	Yes	No	-
	28	Cubic correction	Yes	No	-
	29	Phase correction	Yes	No	-
	30	Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Dependency:	See also: p0437, p0601				
Note:	A value of zero is displayed if an encoder is not present.				
	For bit 11:				
	When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):				
	p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445				
	For bit 12:				
	The extended functions can be configured using p0437.				
	For bit 13:				
	Encoder faults can be acknowledged via Gn_STW.15.				
	For bit 14:				
	Only for internal Siemens use.				
	For bit 23:				
	When the property is set, commutation with zero mark can be de-selected using p0430.23.				
	For bit 24:				
	If the property is set, commutation to the selected zero mark can be carried out.				

2.2 List of parameters

Dependency:	See also: p0441, p0442, p0443, p0444, p0445, r0461, r0462, r0463, r0464	
r0461[0...2]	Encoder serial number part 2 / Enc ser_no 2	
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P group: Encoder Unit group: - Not for motor type: - Scaling: - Min: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 1 Factory setting:
Description: Index: Dependency:	Displays the actual serial number part 2 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] $=-$ See also: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464	
r0462[0...2] DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Encoder serial number part 3 / Enc ser_no 3	Access level: 3 Function diagram: Unit selection: - Expert list: 1 Factory setting:
Description: Index: Dependency:	Displays the actual serial number part 3 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] $=-$ See also: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464	
r0463[0...2] DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Encoder serial number part 4 / Enc ser_no 4	Access level: 3 Function diagram: Unit selection: - Expert list: 1 Factory setting:
Description: Index: Dependency:	Displays the actual serial number part 4 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] = - See also: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464	
$\begin{aligned} & \hline \mathbf{r 0 4 6 4 [0 . . . 2] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Encoder serial number part 5 / Enc ser_no 5 Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P group: Encoder Unit group: - Not for motor type: - Scaling: - Min: Max: - -	Access level: 3 Function diagram: Unit selection: - Expert list: 1 Factory setting:
Description: Index:	Displays the actual serial number part 5 of the appropriate encoder. $\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=-} \end{aligned}$	
Dependency:	See also: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463	

r0465[0...27]	Encoder 1 identification number/serial number / Enc1 ID_no/Ser_no		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the identification/serial number of encoder 1. Index $0=$ first character of the identification number		
	\ldots		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 F$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	See also: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		

r0466[0...27]	Encoder 2 identification number/serial number / Enc2 ID_no/Ser_no		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned8	Dyn. index: -	Function diagram:
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the identification/serial number of encoder 2.		
	Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $\mathrm{x}+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $\mathrm{x}+3=$ first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	See also: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		

r0469[0...2]	Absolute encoder linear measuring step / Enc lin meas step		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Encoder	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	$-[\mathrm{nm}]$	$-[\mathrm{nm}]$
	$-[\mathrm{nm}]$		
Description:	Displays the resolution of the absolute position for a linear absolute encoder.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
	$[2]=$ Encoder 3		
Dependency:	See also: p0422		

r0470[0...2]	Redundant coarse position value valid bits / Valid bits
```DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: Function diagram: -   P group: Encoder Unit group: Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - -
Description: Index:	Displays the valid bits of the redundant coarse position value.   [0] = Encoder 1   [1] = Encoder 2   [2] $=-$
$\begin{aligned} & \hline \mathbf{r 0 4 7 1 [ 0 . . . 2 ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DCCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Redundant coarse position value fine resolution bits / Fine bit
Description: Index:	Displays the number of valid bits for the fine resolution of the redundant coarse position value.   [0] = Encoder 1   [1] = Encoder 2   [2] = -


r0472[0...2]	Redundant coarse position value relevant bits / Relevant bits		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Encoder	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	-	-

Description: Displays the number of relevant bits for the redundant coarse position value.

Index: $\quad$| $[0]=$ Encoder 1 |  |
| :--- | :--- |
|  | $[1]=$ Encoder 2 |
|  | $[2]=-$ |

r0473[0...2]	Non safety-relevant measuring steps position value pos1 / nsrPos1		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the non safety-relevant measuring steps of POS1.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
Dependency:	$[2]=$ Encoder 3		

### 2.2 List of parameters

r0474[0...2]	Redundant coarse position value configuration / Red pos config				
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Functi	
	P group: Encoder		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factor	
	-		-	-	
Description: Index:					
	$\text { [0] = Encoder } 1$				
	[1] = Encoder 2				
	[2] = -				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Incrementer	Yes		-
		Encoder CRC least	Yes	No	
		Redundant coarse significant bit left-a	Yes	No	-
		Binary comparison	Yes	No	-
	05	Single-channel enc	Yes	No	-


r0475[0...2]	Gx_XIST1 coarse position safe most significant bit / Gx_XIST1 safe MSB		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dun. index: -	Function diagram: -
DC_CTRL,	Unit selection: -		
DC_CTRL_R	P group: Encoder	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	-	-
	-		
Description:	Displays the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
Note:	$[2]=-$		
	MSB: Most Significant Bit		


r0477[0...2]	CO: Measuring gear position difference / Meas gear pos diff		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: -	Function diagram: -
DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description: Index:	Displays the position dift   [0] = Encoder 1   [1] = Encoder 2   [2] = -	easuring gear	and switching on.
Dependency:	See also: F31501, F32501		
Note:	The increments are displayed in the format the same as r0483. The position difference should be read in encoder increments.		


r0479[0...2]	CO: Diagnostics encoder position actual value Gn_XIST1 / Diag Gn_XIST1		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: -	Function diagram: 4704
DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive for diagnostics.		
Index:	$\begin{aligned} & \text { [0] = Encoder } 1 \\ & {[1]=\text { Encoder } 2} \\ & {[2]=-} \end{aligned}$		
Caution:	Following ramping-up or after a data set changeover, the new value is present at connector inputs which are interconnected to connector output r0479 and under certain circumstances take 100 ms to become available. Reason:		
	These interconnections are updated in the background, unlike interconnections involving other connector outputs (e.g. CO: r0482).		
	The value is immediately available when non-cyclically reading r0479 (e.g. via the expert list).		
p0480[0...2]	Cl: Encoder control word Gn_STW signal source / Enc Gn_STW S_src		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
$\begin{aligned} & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \end{aligned}$	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 1580, 4720, 4750
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the encoder control word Gn_STW according to PROFIdrive.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=-} \end{aligned}$		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		


r0481[0...2]	CO: Encoder status word Gn_ZSW / Enc Gn_ZSW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 4704,4730
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	
	00	Function 1 active	Yes	No	
	01	Function 2 active	Yes	No	
02	Function 3 active	Yes	No		
	03	Function 4 active	Yes	No	
	04	Value 1	Displayed in r0483	Not present	-
	05	Value 2	Displayed in r0483	Not present	-
	06	Value 3	Displayed in r0483	Not present	-
	07	Value 4	Displayed in r0483	Not present	-
08	Measuring probe 1 deflected	Yes	No	-	
	09	Measuring probe 2 deflected	Yes	No	-
	11	Encoder fault acknowledge active	Yes	No	-
13	Absolute value cyclically	Displayed in r0483	No	No	-
	14	Parking encoder active	Yes	Nisplayed in r0483	None

Note:
For bit 14:
Displays the acknowledgment for "activate parking encoder" (Gn_STW. $14=1$ ) or encoder position actual value (Gn_XIST1) invalid.
For bit 14, 15 :
r0481.14 = 1 and r0481.15 = 0 can have one of the following causes:

- the encoder is parked
- the encoder is deactivated.
- the encoder is being commissioned.
- no parameterized encoder available.
- encoder data set is being changed over.
r0481.14 = 1 and r0481.15 = 1 has the following significance:
An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid.

r0482[0...2]	CO: Encoder actual position value Gn_XIST1 / Enc Gn_XIST1		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 1580, 4704,
DC_CTRL,		4735	
DC_CTRL_R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		

```
Note: - this value is reset if necessary when the "parking encoder" (r0481.14) function is de-selected.
 - in this value, the measuring gear (p0432, p0433) is only taken into account when the position tracking is activated
 (p0411.0 = 1).
 - the update time for the position control (EPOS) corresponds to the position controller clock cycle (p0115[4]).
 - the update time in isochronous operation corresponds to the bus cycle time r2064[1].
 - the update time in isochronous operation and with position control (EPOS) corresponds to the position controller
 sampling time (p0115[4]).
 - the update time in non-isochronous operation or without position control (EPOS) must be determined from the
 default bus cycle time and the minimum cycle time:
 The default bus cycle time is the lowest common multiple (LCM) of all current controller sampling times (p0115[0]) in
 the drive group (infeed + drives).
 The minimum cycle time is four times the maximum of all current controller sampling times (p0115[0]) in the drive
 group (infeed + drives).
 If the minimum cycle time is greater than the default bus cycle time, then the update time corresponds to the
 minimum cycle time; otherwise, the update time corresponds to the default bus cycle time.
 The minimum update time is }1\textrm{ms}
 Example 1: infeed, servo
 Default bus cycle time = KGV (250 \mus,125 \mus})=250\mu\textrm{s
 Minimum cycle time = 4 * MAX(250 \mus,125 \mus)=4 * 250 \mus=1 ms
 -> update time = 1 ms
 Example 2: infeed, servo, vector
 Default bus cycle time = KGV(250 \mus, 125 \mus,400 \mus)=2 ms
 Minimum cycle time = 4 * MAX(250 \mus,125 \mus,400 \mus) = 4 * 400 \mus=1.6 ms
 -> update time = 2 ms
```

r0483[0...2]	CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 1580, 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	-	Factory setting:

Description: Displays the encoder actual position value Gn_XIST2 according to PROFIdrive.
Index: $\quad[0]=$ Encoder 1
[1] = Encoder 2
[2] = -
Notice: The encoder position actual value must be requested using the encoder control word Gn_STW. 13 .
Note: $\quad-$ in this value, the measuring gear ( $\mathrm{p} 0432, \mathrm{p} 0433$ ) is only taken into account when the position tracking is activated
( $\mathrm{p} 0411.0=1$ ).
- if GxZSW. $15=1$ (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):
1: Encoder fault.
2: Possible position shift in Gx_XIST1.
3: Encoder parking not possible.
4: Cancellation, reference block search (e.g. reference mark not available or input terminal for external zero mark not
set). Zero mark is requested, however according to p0404.12/13/14 there is no zero mark (alarm A07565).
5: Cancellation, fetch reference value (e.g. illegal change from reference mark search to flying measurement).
6: cancellation, flying measurement (e.g. input terminal for probe not set).
7: Cancellation, fetch measured value (e.g. illegal change from flying measurement to reference mark search).
8: Abort, absolute value transfer.
3841: Function not supported.
4097: Abort, reference mark search due to an initialization error. Possible cause: defective Control Unit hardware.
4098: Abort, flying measurement due to an initialization error. Possible cause: defective Control Unit hardware.
4099: Abort, reference mark search due to a measuring error. Possible cause: too many measuring pulses have
occurred.
4100: Abort, flying measurement due to a measuring error. Possible cause: too many measuring pulses have
occurred.

### 2.2 List of parameters



r0486[0...2]	CO: Measuring gear encoder raw value absolute / Enc raw val abs		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	-
	-		
Description:	Displays the raw value of the absolute encoder actual value before the measuring gear.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		


r0487[0...2]	Diagnostic encoder control word Gn_STW / Enc Gn_STW				
DC_CTRL_S,	Can be changed: -		Calculated: -	Access level: 3	
DC_CTRL_R_S, DC_CTRL,	Data type: Unsigned16		Dyn. index: -	Function diagram: 1580, 4704, 4720, 4735	
DC_CTRL_R	P group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the encoder control word Gn_STW according to PROFIdrive for diagnostics.				
Index:	[0] [1] [2]	Encoder 1 Encoder 2			
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Request function 1	Yes	No	-
	01	Request function 2	Yes	No	-
	02	Request function 3	Yes	No	-
	03	Request function 4	Yes	No	-
	04	Request command bit 0	Yes	No	-
	05	Request command bit 1	Yes	No	-
		Request command bit 2	Yes	No	-
		Flying measurement mode/search for reference mark	Flying measurement	Reference marks	-
	13	Request absolute value cyclic	Yes	No	-
	14	Request parking encoder	Yes	No	-
	15	Request acknowledge encoder fault	Yes	No	-
Notice:	Information on Gn_STW/Gn_ZSW should be taken from the corresponding product documentation.				
Note:	The signal source for the encoder control word is set with p0480.				
p0492	Square-wave encoder maximum speed difference per sampling cycle / n_dif max/samp_cyc				
```DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Can be changed: U, T		Calculated: CALC_MOD_REG Access level: 3		
	Data type: FloatingPoint32		Dyn. index: -	Function diagram: -	
	P group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	0.00 [rpm]		210000.00 [rpm]	0.00 [rpm]	
Description:	Sets the maximum permissible speed difference within the current controller sampling time for squarewave encoders.				
	When the value is exceeded, depending on p0491, either encoderless closed-loop speed/torque control is selected or the drive is switched off.				
Dependency:	See also: F31118, A31418, F32118, A32418				
Note:	if the set maximum speed difference is only exceeded for one sampling time of the current controller, then an appropriate alarm is output. However, if the maximum speed difference is exceeded over several sampling times, then a corresponding fault is output.				
p0496[0...2]	Encoder diagnostic signal selection / Enc diag select				
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: U, T		Calculated: -	Access level: 4	
	Data type: Integer16		Dyn. index: -	Function diagram: -	
	P group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	0		86	0	
Description:	Selects the trace signal to be output in r0497, r0498 and r0499 for encoder diagnostics.				

2.2 List of parameters

Note:	For p0496 = 1:360 ${ }^{\circ}$ <--> 2^32
	For p0496 $=7$, 8: input voltage in mV
	For p0496 = 10 (resolver): 2900 mV <--> 26214 dec
	For p0496 = 10, 20 (sin/cos 1 Vpp , EnDat): 500 mV <--> 21299 dec
	For p0496 = 11 (resolver): 2900 mV <--> 13107 dec , internal processor offset is corrected
	For p0496 = 11, 21 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec , internal processor offset is corrected
	For p0496 = 12: $180{ }^{\circ}$ fine position <--> 32768 dec
	For p0496 = 13 (resolver): 2900 mV <--> 13107 dec
	For p0496 = 13 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec
	For p0496 = 14: 1° <--> $286 \mathrm{dec}, 100 \%$ <--> 16384 dec
	For p0496 = 15: 100% <--> 16384 dec
	For p0496 = 16 (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec, channel A and channel B can be shifted by one sample (in time)
	For p0496 = 16: (sin/cos 1 Vpp , EnDat) channel A: 500 mV <--> 21299 dec , channel B: 500 mV <--> 21299 dec, channel A and channel B can be shifted by one sample (in time)
	For p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec , number: 1 ... 8
	For p0496 = 17 (sin/cos 1 Vpp , EnDat): absolute value 500 mV <--> 10650 dec , number: $1 . .8$
	For p0496 = 18 (resolver): angle: signal period <--> 2^16, absolute value: 2900 mV <--> 13107 dec
	For p0496 = 18 (sin/cos 1 Vpp , EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
	For p0496 = 19 (resolver): counter: dec, channel A: 2900 mV <--> 26214 dec
	For p0496 = 19 (sin/cos 1 Vpp , EnDat): counter: dec, channel A: 500 mV <--> 21299 dec
	For p0496 = 22: $180{ }^{\circ}$ <--> 32768 dec
	For p0496 $=23$, 24: r0497.31 (r0499.15) set for at least 1 current controller sampling time when encoder zero mark detected
	For p0496 = 24, 25: 500 mV <--> 21299 dec
	For p0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
	For p0496 = 31: Absolute position, incremental in 1/4 encoder pulses
	For p0496 = 32: Zero mark position in 1/4 encoder pulses
	For p0496 = 33: counter offset absolute value in 1/4 encoder pulses
	For p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
	For p0496 = 42: 2500 Ohm <--> 2^32
	For p0496 = 51: 1 rpm <--> 1000 dec
	For p0496-52: In 1/4 encoder pulses
	For p0496 = 60: voltage, channel A in mV , voltage, channel B in mV
	For p0496 = 61: Channel A: encoder periods <--> $2^{\wedge} 16$, channel B: encoder periods <--> $2^{\wedge} 16$
	For p0496 = 62: encoder periods <--> 2^16
	For p0496 = 70: r: 100% <--> 10000 dec , phase: 180° <--> 18000 dec
	For p0496 = 80, 81, 85, 86: 1 V <--> 1000 inc

r0497[0...2]	CO: Encoder diagnostic signal double word / Enc diag DW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Maling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the trace signal for encoder diagnostics (double word).		
	The signal to be output is selected in p0496.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
[2] =-			
	See also: p0496, r0498, r0499		

2.2 List of parameters

r0499[0...2]	CO: Encoder diagnostic signal high word / Enc diag high word		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (high component).		
	The signal to be output is selected in p0496.		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		
	[2] = -		
Dependency:	See also: p0496, r0497, r0498		

p0595	Technological unit selection / Tech unit select		
DC_CTRL_S	Can be changed: C2(5)	Calculated: -	Access level: 1
(Tech_ctrl),	Data type: Integer16	Dyn. index: -	Function diagram:
(Tech ctrl), DC CTRL	P group: Applications	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL_R	Min:	Max:	Factory setting:
(Tech_ctr)	1	32	1

Description: Selects the units for the parameters of the technology controller. For p $0595=1,2$, the reference variable set in p 0596 is not active.

p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: MDS	Function diagram: -
DC_CTRL,	P group: Motor	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	6	0
Description:	Sets the sensor type for the motor temperature monitoring.		
Value:	$0: \quad$ No sensor		
	$2: \quad$ KTY84		
Dependency:	$6: \quad$ PT1000		

p0700
TM31, TM15DI_DO

Macro Binector Input (BI) for TMs / Macro BI TM		
Can be changed: C2(1), T	Calculated: -	Access level: 1
Data type: Unsigned32	Dyn. index: -	Function diagram: -
P group: Commands	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:
0	999999	0
Runs the corresponding macro files.		
The selected macro file must be available on the memory card/device memory.		
Example:		
p0700 = 6 --> macro file PM000006.ACX is run.		
See also: r8571		
No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group		
When executing a specific macro, the corresponding programmed settings are made and become active.		
The macros in the specified directory are displayed in r8571. 88571 is not in the expert list of the commissioning tool.		
Macros available as standard are described in the technical documentation of the particular product.		
BI: Binector Input		
CDS: Command Data S		

p0802	Data transfer: memory card as source/target / mem_card src/
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Function diagram: - P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: Min: Max: Factory setting: 0 100 0
Description: Dependency: Note:	Sets the number for data transfer of a parameter backup from/to memory card. Transfer from memory card to device memory (p0804 = 1): - sets the source of parameter backup (e.g. p0802 = 48 --> PS048xxx.ACX is the source). Transfer from non-volatile device memory to memory card ($\mathrm{p} 0804=2$): - sets the target of parameter backup (e.g. p0802 = 23 --> PS023xxx.ACX is the target). See also: p0803, p0804 The volatile device memory is not influenced by data transfer.
```p0803 CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Data transfer: device memory as source/target / Dev_mem src/targ
Description:	Sets the number for data transfer of a parameter backup from/to the non-volatile device memory.   Transfer from memory card to device memory (p0804 = 1):   - sets the target of the parameter backup (e.g. p0803 = 10 --> PS010xxx.ACX is the target).   Transfer from non-volatile device memory to memory card (p0804 = 2):   - sets the source of the parameter backup (e.g. p0803 = 11 --> PS011xxx.ACX is the source).
Value:	$0:$ Source/target standard   10: Source/target with setting 10   11: Source/target with setting 11   12: Source/target with setting 12   20: Source/target with setting 20   $30:$ Source/target with setting 30
Dependency: Note:	See also: p0802, p0804   The volatile device memory is not influenced by data transfer.




p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8560
DC CTRL R	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	See also: r0050, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		


p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
DC_CTRL_S,	Can be changed: C2(15)	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned8	Dyn. index: -	Function diagram: 8565
	P group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	31	0
Description:	Copies one Drive Data Set (DDS) into another.		
Index:	[0] = Source Drive Data Set   [1] = Target Drive Data Set   [2] = Start copying procedure		
Note:	Procedure:   1. In Index 0, enter which drive   2. In index 1 , enter the drive   3. Start copying: set index 2 p0819[2] is automatically se	be copied. at is to be copie ing is completed	


p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 8565, 8570
DC_CTRL,   DC CTRL R	P group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	See also: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 8565, 8570
DC_CTRL_R	P group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	See also: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		



p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC_CTRL,	P group: Commands	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	-	Factory setting:
	-	1	
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		

### 2.2 List of parameters

Recommendation: When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.
Dependency: Caution:


Note: $\quad$ For drives with closed-loop speed control (p50084 = 1), the following applies:
See also: p1055, p1056
When "master control from PC " is activated, this binector input is ineffective.

For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.
The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.
For binector input p0840 $=0$ signal, the switching on inhibited is acknowledged.
Only the signal source that originally switched on can also switch off again.
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

- BI: p0840 $=0$ signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switching on inhibited)
For drives with closed-loop torque control (p50084 = 2), the following applies:
- BI: p0840 = 0 signal: immediate pulse suppression

For drives with closed-loop speed/torque control, the following applies:

- BI: p0840 = 0/1 signal: ON (pulses can be enabled)

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI : $\mathrm{p} 0845=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI : $\mathrm{p} 0844=1$ signal and BI : p0845 = 1 signal		
	- no OFF2 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
$\$$			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		


p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: T Calculated: - Access level: 3   Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 2580   P group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".   The following signals are AND'ed:   - BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"   - BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"   For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).   BI: p0844 $=0$ signal or BI: p0845 $=0$ signal   - OFF2 (immediate pulse suppression and switching on inhibited)   BI: p0844 = 1 signal and BI: p0845 = 1 signal   - no OFF2 (enable is possible)
Caution: !	When "master control from PC" is activated, this binector input is effective.
$\begin{aligned} & \hline \mathbf{p 0 8 4 8 [ 0 . . . n ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRLLR_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1     Can be changed: T Calculated: - Access level: 3   Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 2580   P group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 1
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".   The following signals are AND'ed:   - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"   - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"   For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).   BI: p0848 $=0$ signal or $\mathrm{BI}: \mathrm{p} 0849=0$ signal   - OFF3 (braking along the OFF3 ramp (p50296), then pulse suppression and switching on inhibited)   BI: p0848 = 1 signal and BI: p0849 = 1 signal   - no OFF3 (enable is possible)
Caution:   Notice:	When "master control from PC" is activated, this binector input is ineffective. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.


p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: T Calculated: - Access level: 3   Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 2580   P group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".   The following signals are AND'ed:   - BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"   - BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"   For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).   BI: p0848 $=0$ signal or BI: p0849 $=0$ signal   - OFF3 (braking along the OFF3 ramp (p50296), then pulse suppression and switching on inhibited)   BI: $00848=1$ signal and BI: p0849 $=1$ signal   - no OFF3 (enable is possible)
Caution:   !	When "master control from PC" is activated, this binector input is effective.
p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation
DC_CTRL_S, DC_CTRL_R_S, DC CTRL, DC_CTRL_R	Can be changed: T Calculated: - Access level: 3   Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 2580   P group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 1
Description:	Sets the signal source for the command "enable operation/inhibit operation".   For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).   BI: p0852 $=0$ signal   Inhibit operation (suppress pulses).   BI: $00852=1$ signal   Enable operation (pulses can be enabled).
Caution:   Notice:	When "master control from PC" is activated, this binector input is ineffective. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
p0854[0...n]   DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	BI: Control by PLC/no control by PLC / Master ctrl by PLC
Description:	Sets the signal source for the command "control by PLC/no control by PLC".   For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).   BI: p0854 $=0$ signal   No control by PLC   BI: p0854 = 1 signal   Master control by PLC.
Caution:	When "master control from PC" is activated, this binector input is ineffective.

Notice: $\quad$ The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: $\quad$ This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ( $p 0922=999$ ).

p0855[0...n]	BI: Unconditionally release holding brake / Uncond open brake		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC_CTRL,	P group: Commands	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0	
Description:	Sets the signal source for the command "unconditionally open holding brake".		
Dependency:	See also: p0858		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The signal via binector input p0858 "Unconditionally close holding brake" has a higher priority than via binector input		
	p0855 "Unconditionally open holding brake".		



p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC_CTRL,	P group: Commands	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0	

### 2.2 List of parameters

r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl				
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: -		Calculated: - Access level: 2		
	Data type: Unsigned16		Dyn. index: - Function diagram:		
	P group: Displays, signals		Unit group: - Unit se		
	Not for motor type: -		Scaling: - Expert list:		
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and connector output for the control word of the sequence control.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Continue ramp-function generator	Yes	No	
	06	Enable speed setpoint	Yes	No	-
	07	Command open brake	Yes	No	-
	08	Jog 1	Yes	No	-
	09	Jog 2	Yes	No	-
	10	Master control by PLC	Yes	No	-
	12	Speed controller enable	Yes	No	-
	14	Command close brake	Yes	No	

Note: OC: Operating condition


\begin{tabular}{|c|c|c|}
\hline p0918 \& PROFIBUS address / PB address \& \\
\hline \[
\begin{aligned}
\& \text { CU_DC_R_S, } \\
\& \text { CU_DC_R }
\end{aligned}
\] \& \begin{tabular}{ll} 
Can be changed: T \& Calculated: - \\
Data type: Unsigned16 \& Dyn. index: - \\
P group: Communications \& Unit group: - \\
Not for motor type: - \& Scaling: - \\
Min: \& Max: \\
1 \& 126
\end{tabular} \& \begin{tabular}{l}
Access level: 2 \\
Function diagram: 1520, 2410 \\
Unit selection: \\
Expert list: 1 \\
Factory setting: \\
125
\end{tabular} \\
\hline Description:

Note: \& | Sets the PROFIBUS address for PROFIBUS interface (X126) on the Control Unit. |
| :--- |
| The address can be set as follows: |
| Via p0918 |
| --> The address is saved in a non-volatile fashion using the function "copy from $R$ |
| --> A change only becomes effective after a POWER ON. |
| Permissible PROFIBUS addresses: 1 ... 126 |
| Address 126 is used for commissioning. |
| Every PROFIBUS address change only becomes effective after a POWER ON. | \& M to ROM". <br>

\hline \[
$$
\begin{aligned}
& \text { p0918 } \\
& \text { CU_DC_S, CU_DC }
\end{aligned}
$$

\] \& PROFIBUS address / PB address \& | Access level: 2 |
| :--- |
| Function diagram: 1520, 2410 |
| Unit selection: |
| Expert list: 1 |
| Factory setting: |
| 126 | <br>


\hline Description: \& | Sets the PROFIBUS address for PROFIBUS interface (X126) on the Control Unit. |
| :--- |
| The address can be set as follows: |
| Via p0918 |
| --> The address is saved in a non-volatile fashion using the function "copy from R |
| --> A change only becomes effective after a POWER ON. | \& AM to ROM". <br>


\hline Note: \& | Permissible PROFIBUS addresses: $1 \ldots 126$ |
| :--- |
| Address 126 is used for commissioning. |
| Every PROFIBUS address change only becomes effective after a POWER ON. | \& <br>

\hline
\end{tabular}

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
CU_DC_S,	Can be changed: C2(1), T	Calculated: -	Access level: 1
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 1520, 2420
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	390	999	999
Description:	Sets the send and receive telegram.		
Value:	390: SIEMENS telegram 390, PZD-2/2   999: Free telegram configuration with BICO		
p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
DC_CTRL_S,	Can be changed: C2(1), T	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 1520, 2420
DC CTRL R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	999	999

### 2.2 List of parameters

Value:	1:	Standard telegram 1, PZD-2/2
	3:	Standard telegram 3, PZD-5/9
	4:	Standard telegram 4, PZD-6/14
	20:	Standard telegram 20, PZD-2/6
	220:	SIEMENS telegram 220, PZD-10/10
	352:	SIEMENS telegram 352, PZD-6/6
	999:	Free telegram configuration with BICO
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.	
	The i	ibited interconnections can only be cha


r0924[0...1]	ZSW bit pulses enabled / ZSW pulse enab		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the position of the "Pulses enabled" status signal in the PROFIdrive telegram.		
Index:	$[0]=$ Signal number		
	$[1]=$ Bit position		


r0944	CO: Counter for fault buffer changes / Fault buff change		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the counter for changes of the fault buffer. This counter is incremented every time the fault buffer changes.		
Recommendation:	Used to check whether the fault buffer has been read out consistently.		
Dependency:	See also: r0945, r0947, r0948, r0949, r2109		
r0945[0...63]	Fault code / Fault code		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8060
$\begin{aligned} & \text { CU_DC_R, } \\ & \text { DC_CTRL_S, } \end{aligned}$	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R	-	-	
Description:	Displays the numbers of faults that have occurred.		
Dependency:	See also: r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122		
Notice:	The properties of the fault buffer should be taken from the corresponding product documentation.		


Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	Fault buffer structure (general principle):
	r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> actual fault case, fault 1
	r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> actual fault case, fault 8
	r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1
	. .
	r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8
	r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1
	r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8


r0945[0...63]	Fault code / Fault code		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 2
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 8050, 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the numbers of faults that have occurred.		
Dependency:	See also: r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122		
Notice:	The properties of the fault buffer should be taken from the corresponding product documentation.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Fault buffer structure (general principle):		
	r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> actual fault case, fault 1		
	. .		
	r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> actual fault case, fault 8		
	r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1		
	r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8		
	r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1		
	r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8		


r0946[0...65534]	Fault code list / Fault code list		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Lists the fault codes stored in the drive unit.		
	The indices can only be accessed with a valid fault code.		
	Example:		
	r0946[0...999] = 0 --> fault code $0 \ldots 999$ is not available		
	r0946[1000] = 1000 --> fault code 1000 is available		
	r0946[1001] = 1001 --> fault code 1001 is available		
	...		
	r0946[1008] = 0 --> fault code 1008 is not available		
	The parameter assigned to the fault code is entered in r0951 under the same index.		
Dependency:			


r0947[0...63]	Fault number / Fault number		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R, DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Can be changed: -   Data type: Unsigned16   P group: Messages   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max:	Access level: 3   Function diagram:   Unit selection:   Expert list: 1   Factory setting:
Description:	This parameter is identical to r0945.		
r0947[0...63]	Fault number / Fault number		
TM31, TM15DI_DO, TM150	Can be changed: Data type: Unsigned16 P group: Messages Not for motor type: Min:	Calculated: - Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: 8050, 8060 Unit selection: - Expert list: 1 Factory setting:
Description:	This parameter is identical to r0945.		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R, DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R```	Can be changed: -   Data type: Unsigned32   P group: Messages   Not for motor type: -   Min:   - [ms]	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   - [ms]	Access level: 3   Function diagram:   Unit selection:   Expert list: 1   Factory setting:   - [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	See also: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically up The structure of the fault buffer and the When the parameter is read via PROF	in the background nment of the ind the TimeDiffere	nal in r2139).   5.


r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned32	Dyn. index: -	Function diagram: 8050,8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[m s]$	$-[m s]$	
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	See also: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFldrive, the TimeDifference data type applies.		


r0949[0...63]	Fault value / Fault value		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer32	Dyn. index:	Function diagram: 8060
CU_DC_R,	Unit group: -	Unit selection: -	
DC_CTRL_S,	P group: Messages	Scaling: -	Expert list: 1
DC_CTRL_R_S,	Not for motor type: -	Max:	Factory setting:
DC_CTRL,	Min:	-	
DC_CTRL_R	-		
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	See also: r0945, r0947, ro948, r2109, r2130, r2133, r2136, r3115, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		


r0949[0...63]	Fault value / Fault value		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Integer32	Dyn. index: -	Function diagram: 8050, 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	See also: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3115, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		


p0952	Fault cases counter / Fault cases qty		
CU_DC_S,	Can be changed: U, T	Calculated:	
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Access level: 3
CU_DC_R,	P group: Messages	Unit group: -	Function diagram: 8060
DC_CTRL_S,	Not for motor type: -	Scaling: -	Unit selection: -
DC_CTRL_R_S,	Min:	Max:	Expert list: 1
DC_CTRL,	65535	Factory setting:	
DC_CTRL_R	0		0

Description: Number of fault situations that have occurred since the last reset.
Dependency: The fault buffer is deleted (cleared) by setting p0952 to 0 . See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136

p0952	Fault cases counter / Fault cases qty		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 6700,8060
	P group: Messages	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0

### 2.2 List of parameters



r0965	PROFIdrive profile number / PD profile number		
CU_DC_S,	Can be changed: -	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	-	Factory setting:
	-	-	
Description:	Displays the PROFIdrive profile number and profile version.		
	Constant value $=0329$ hex.		
	Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile		
Note:	Byte 2: Profile version $=29$ hex $=$ Version 4.1		


p0969	System runtime relative / t_System relative		
CU_DC_S,	Can be changed: T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: 8060
	P group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		


p0970	Reset drive parameters / Drive par reset		
CU_DC_S,   CU_DC_R_S, CU_DC,   CU_DC_R	Can be changed: $\mathrm{C} 2(30)$	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index:	Function diagram: -
	P group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	100	0
Description:	The parameter is used to initiate the reset of the parameters of an individual drive unit.		
	Parameters p0100, p0205 (only for VECTOR) and the parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit ( p 0976 ).		
Value:	0 : Inactive		
	1: Start a parameter		
	5: Starts a safety para		
	6: Start reset non-safe		
	10: Start loading parame	p0971 $=10$	
	11: Start loading param	p0971 $=11$	
	12: Start loading param	p0971 $=12$	
	$\begin{array}{ll}\text { 30: } & \text { Start loading delivery } \\ \text { 100: } & \text { Start a BICO interco }\end{array}$	with p0971 = 30	
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		

### 2.2 List of parameters

Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).   At the end of the calculations, p0970 is automatically set to 0 .   Parameter reset has been completed if p0970 and p0010 have been set to 0 .   For p0970 = 5 the following applies:   The password for Safety Integrated must be set.   When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed.   Then save the parameters and carry out a POWER ON.
p0970	TM150 reset parameters / TM150 par reset
TM150	Can be changed: $\mathrm{C} 2(30)$ Calculated: - Access level: 2   Data type: Unsigned16 Dyn. index: - Function diagram: -   P group: Factory settings Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 100 0
Description: Value:	The parameter is used to initiate a reset of the parameters on Terminal Module 150 (TM150).   0 : Inactive   1: Start a parameter reset   100: Start a BICO interconnection reset
Dependency: Notice:	See also: p0010   After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset). At the end of the calculations, p0970 is automatically set to 0 .


p0970	TM15DI/DO reset parameter / TM15D par reset		
TM15DI_DO	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram:
	P group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	100	0
Description:	The parameter is used to initiate a reset of the parameters on Terminal Module 15 (TM15).		
	The sampling time p4099 is not reset if in so doing a conflict occurs with the basic clock cycle.		
	Parameter p0151 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976)		
Value:	0 : Inactive		
	1: Start a parameter reset		
	100: Start a BICO interconnection reset		
Dependency:	See also: p0010		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when r3996 $=0$.		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		
	At the end of the calculations, p0970 is automatically set to 0 .		


p0970	TM31 reset parameters / TM31 par reset		
TM31	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	100	Factory setting:
Description:	0	The parameter is used to initiate a reset of the parameters on Terminal Module 31 (TM31).	
	The sampling time p4099 is not reset if in so doing a conflict occurs with the basic clock cycle.		
	Parameter p0151 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976).		



### 2.2 List of parameters

Note: $\quad$| Starting from the particular drive object, the following parameters are saved: |
| :--- |
| CU3xx: Device-specific parameters and PROFIBUS device parameters. |
| Other objects: Parameters of the actual object and PROFIBUS device parameters. |
| Prerequisite: |
| Before saving with p0971, all parameters (topology, all drive objects) must have been saved at least once using |
| p0977 $=1$. |

p0972
CU_DC_S,
CU_DC_R_S, CU_DC,
CU_DC_R

Drive unit reset / Drv_unit reset		
Can be changed: U, T	Calculated: -	Access level: 1
Data type: Unsigned16	Dyn. index: -	Function diagram: -
P group: All groups	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:
0	3	0

Description: Sets the required procedure to execute a hardware reset for the drive unit.

## Value

0 : Inactive
1: Hardware-Reset immediate
2: Hardware reset preparation
3: Hardware reset after cyclic communication has failed
Danger: It must be absolutely ensured that the system is in a safe condition.
 The memory card/device memory of the Control Unit must not be accessed.

If value = 1:
Reset is immediately executed and communications interrupted.
After communications have been established, check the reset operation (refer below).
This value cannot be set in operation.
If value $=2$ :
Help to check the reset operation.
Firstly, set p0972 = 2 and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
After communications have been established, check the reset operation (refer below).
If value $=3$ :
The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
If cyclic communication is not active, then the reset is immediately executed.
If the cyclic communication is active for both PROFIdrive interfaces, then the reset is executed after completing both cycle communications.
After communications have been established, check the reset operation (refer below).
To check the reset operation:
After the drive unit has been restarted and communications have been established, read p0972 and check the following:
p0972 = 0 --> the reset was successfully executed.
p0972 > 0 --> the reset was not executed.

r0975[0...10]	Drive object identification / DO identification		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R,TM31,	P group: Communications	Unit group: -	Unit selection: -
TM15DI_DO, TM150	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the identification of the drive object.		


	```\([0]=\) Company (Siemens \(=42\) ) [1] = Drive object type [2] = Firmware version [3] = Firmware date (year) [4] = Firmware date (day/month) [5] = PROFIdrive drive object type class [6] = PROFIdrive drive object sub-type Class 1 [7] = Drive object number [8] = Reserved [9] = Reserved [10] = Firmware patch/hot fix```
Note:	Example: r0975[0] = 42 --> SIEMENS r0975[1] = 11 --> SERVO drive object type r0975[2] = 102 --> first part, firmware version V01.02 (second part, refer to index 10) r0975[3] = 2003 --> year 2003 r0975[4] = 1401 --> 14th of January r0975[5] = 1 --> PROFIdrive drive object, type class r0975[6] = 9 --> PROFIdrive drive object sub-type class 1 r0975[7] = 2 --> drive object number $=2$ r0975[8] $=0$ (reserved) r0975[9] = 0 (reserved) r0975[10] = 600 --> second part, firmware version (complete version: V01.02.06.00)
$\begin{aligned} & \hline \mathbf{r 0 9 7 5 [0 . . . 1 0] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Drive object identification / DO identification Can be changed: - Calculated: - Access level: 2 Data type: Unsigned16 Dyn. index: - Function diagram: - P group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: - - -
Description: Index:	Displays the identification of the drive object. [0] = Company (Siemens $=42$) [1] = Drive object type [2] = Firmware version [3] = Firmware date (year) [4] = Firmware date (day/month) [5] = PROFIdrive drive object type class [6] = PROFIdrive drive object sub-type Class 1 [7] = Drive object number [8] = Reserved [9] = Reserved [10] = Firmware patch/hot fix
Note:	Example: r0975[0] = 42 --> SIEMENS r0975[1] = 17 --> DC_CTRL drive object type r0975[2] = 102 --> first part, firmware version V01.02 (second part, refer to index 10) r0975[3] = 2003 --> year 2003 r0975[4] = 1401 --> 14th of January r0975[5] = 1 --> PROFIdrive drive object, type class r0975[6] = 9 --> PROFIdrive drive object sub-type class 1 r0975[7] = 2 --> drive object number $=2$ r0975[8] $=0$ (reserved) r0975[9] $=0$ (reserved) r0975[10] = 600 --> second part, firmware version (complete version: V01.02.06.00)

p0976	Reset and load all parameters / Reset load all par		
CU_DC_S,	Can be changed: C1(30), C2(30)	Calculated: -	Access level: 1
CU_DC_R_S, CU_DC, CU_DC_R	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1013	0
Description:	Resets or downloads all parameters of the drive system.		
Value:	0 : Inactive		
	1: Start reset of all parameters to factory setting		
	3: Start download of volatile parameters from RAM		
	10: Start dnload of param. saved in non-volatile mem w/p		
	11: Start dnload of param. saved in non-volatile mem w/p		
	12: Start dnload of param. saved in non-volatile mem w/p		
	20: Start load of param. saved in non-volatile mem w/p0977		
	30: Start loading the delivery state saved with p0977=30		
	100: Start resetting of all BICO interconnections		
	200: Start deleting all user data1011: Start dnload of param. saved in volatile mem w/ p097		
	1012: Start dnload of param. saved in volatile mem w/ p097		
	1013: Start dnload of param. saved in volatile mem w/ p0977 $=1013$		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
	After executing p0976 = 200, the Control Unit is powered on automatically.		
Note:	After all of the parameters have been reset to their factory setting, the system must be commissioned for the first time again.		
	Resetting or loading is realized in the non-volatile memory.		
	Procedure:1. Set p0009 $=30$ (parameter reset)		
	2. Set p0976 to "required value". The system is rebooted.		
	p0976 is automatically set to 0 after execution.		
p0977	Save all parameters / Save all par		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$		Calculated: -	Access level: 1
	Can be changed: U, T	Dyn. index: -	Function diagram: -
	P group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1013	0
Description:	Saves all parameters of the drive system to the non-volatile memory.		
	When saving, only the adjustable parameters intended to be saved are taken into account.		
Value:	0 : Inactive		
	1: Save in non-volatile memory - loaded at POWER ON		
	10: Save as opt. in non-vol. memory - loaded with p0976		
	11: Save as opt. in non-vol. memory - loaded with p0976		
	12: Save as opt. in non-vol. memory - loaded with p0976		
	20: Save as opt. in non-vol. memory - loaded with p0976		
	30: State when delivered, save in non-volatile memory as		
	80: Save in non-volatile memory time-optimized (reserve		
	1011: Save in volatile memory, downloaded with p0976=1011		
	1012: Save in volatile memory, downloaded with $p 0976=1012$1013: Save in volatile memory, downloaded with $p 0976=1013$		
Dependency:	See also: p0976, r3996		
Caution:	Memory card inserted:		
¢	The drive parameterization is also sa	the card. Any bac	written!

Notice:	The Control Unit power supply may only be switched off after data has been saved (i.e. after data save has been		
started, wait until the parameter again has the value 0).			
Writing to parameters is inhibited while saving.			
The progress while saving is displayed in r3996.			
For p0977 = 30:			
The original state when delivered is overwritten when executing this memory function.			
Parameters saved with p0977 = 10, 11 or 12 can be downloaded again with p0976 = 10, 11 or 12.			The identification and maintenance data (I\&M data, p8806 and following) are only saved for p0977 = 1.
:---	:---		

r0979[0...30]	PROFIdrive encoder format / PD encoder format		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 4704
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the actual position encoder used according to PROFIdrive.		

2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { Header }} \\ & {[1]=\text { Type encoder } 1} \\ & {[2]=\text { Resolution encoder } 1} \\ & {[3]=\text { Shift factor G1_XIST1 }} \\ & {[4]=\text { Shift factor G1_XIST2 }} \\ & {[5]=\text { Distinguishable revolutions encoder } 1} \\ & {[6 . .10]=\text { Reserved }} \\ & {[11]=\text { Type encoder } 2} \\ & {[12]=\text { Resolution encoder } 2} \\ & {[13]=\text { Shift factor G2_XIST1 }} \\ & {[14]=\text { Shift factor G2_XIST2 }} \\ & {[15]=\text { Distinguishable revolutions encoder } 2} \\ & {[16 \ldots 20]=\text { Reserved }} \\ & {[21]=\text { Type encoder } 3} \\ & {[22]=\text { Resolution encoder } 3} \\ & {[23=\text { Shift factor G3_XIST1 }} \\ & {[24]=\text { Shift factor G3_XIST2 }} \\ & {[25]=\text { Distinguishable revolutions encoder } 3} \\ & {[26 \ldots 30]=\text { Reserved }} \end{aligned}$
Note:	Information about the individual indices can be taken from the following literature: PROFIdrive Profile Drive Technology

r0980[0...299]	List of existing parameters 1 / List avail par 1		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index:	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	See also: r0981, r0989		
Note:	Modified parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0981[0...299] List of existing parameters 2 / List avail par 2

All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	See also: r0980, r0989		
Note:	Modified parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index:	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	See also: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0991[0...99]	List of modified parameters 2 / List chang par 2		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	See also: r0990, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0999[0...99]	List of modified parameters 10 / List chang par 10		
All objects	Can be changed: -	Calculated:	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group:	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	See also: r0990, r0991		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here.		
	This list consists solely of the following parameters:		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		
p1000[0...n]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Function diagram: -
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the speed setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1000 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	See also: p0015, p0700, p1500, r8572		
Notice:	No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified Macros available as standar CI: Connector Input	played in r8572. r8572 is no in the technical documentation	xpert list of the commissioning tool. particular product.

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Setpoints	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	-	0
	-		
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is		
	present (BI: p1035).		
Dependency:	See also: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram:
DC_CTRL, DC CTRL R	P group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	See also: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC_CTRL, DC CTRL R	P group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for jog 1.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	See also: p0840		
Notice:	The drive is enabled for jogging using BI: p1055 or $\mathrm{BI}: \mathrm{p} 1056$.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to switch on can also be used to switch off again.		
p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC CTRL R	P group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for jog 2.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	See also: p0840		
Notice:	The drive is enabled for jogging using BI : p 1055 or $\mathrm{BI}: \mathrm{p} 1056$.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to switch on can also be used to switch off again.		
p1070[0...n]	CI: Main setpoint / Main setpoint		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3113
DC CTRL R	\mathbf{P} group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52011[0]
Description:	Sets the signal source for the main setpoint.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

p1113[0...n]	BI: Setpoint inversion / Setp inv		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2442,3113
DC_CTRL,	P group: Setpoints	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0	
Description:	Sets the signal source to invert the setpoint.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1140[0...n]	Bl: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG		
DC_CTRL_S,	Can be changed: T	Calculated:	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2580
DC_CTRL,	P group: Setpoints	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Min:	Expert list: 1

Description:	Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator".
For the PROFIdrive profile, this command corresponds to control word 1 bit 5 (STW1.5).	
BI: p1141 = 0 signal:	
Freezes the ramp-function generator.	
	BI: p1141 = 1 signal:
Continue ramp-function generator.	
Dependency:	See also: p1140, p1142
Caution:	When "master control from PC" is activated, this binector input is ineffective.

p1500[0...n]	Macro Connector Inputs (CI) for torque setpoints / Macro Cl M_set		
DC_CTRL_S,	Can be changed: C2(1), T	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: CDS, p0170	Function diagram: -
DC_CTRL, DC CTRL R	P group: Commands	Unit group: -	Unit selection:
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the torque setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1500 $=6$--> the macro file PM000006.ACX is run.		
Dependency:	See also: p0015, p0700, p1000, r8573		
Notice:	No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group!		
Note:	The macros in the specified Macros available as standard CI: Connector Input	played in r8573. r8573 is no in the technical documentat	xpert list of the commissioning tool. particular product.

p1821[0...n]	Direction of rotation / Dir of rot		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: C2 $(1,4)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 4704, 4710, 4711
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to change the direction of rotation. Changing the parameter reverses the direction of the encoder actual value.		
Value:	0: Clockwise 1: Counter-clockwise		
Notice:	An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled.		

p1982[0...n]	PollD selection / PollD selection		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: MDS	Function diagram: -
	P group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Pole position identification off } \\ \text { 1: } & \text { Pole position identification for commutation } \\ \text { 2: } & \text { Pole position identification for plausibility check }\end{array}$		
Recommendation:	For p1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	For p1982 = 2:		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
Note:			

p2003	Reference torque / M_ref		
DC_CTRL_S,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: 7_2	Unit selection: p0505
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.01[\mathrm{Nm}]$	$20000000.00[\mathrm{Nm}]$	$1.00[\mathrm{Nm}]$
Description:	Sets the reference quantity for torque.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

r2004	Reference power / P_ref		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9566, 9568, 9572
	P group: Communications	Unit group: 14_10	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]
Description:	Displays the reference quantity for power. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This value is calculated as follows: Closed-loop control: Calculated from torque times speed. See also: p2000, p2001, p2002, p2003		
Note:	If a BICO interconnection is estab are used as internal conversion fa The reference power is calculated -2 * Pi * reference speed / 60 * re	een different physical que (motor)	the particular reference quantities

p2005	Reference angle / Reference angle		
DC_CTRL_S,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$90.00\left[{ }^{\circ}\right]$	$90.00\left[^{\circ}\right]$	
	Sescription:	Sets the reference quantity for angle.	
	The reference quantity corresponds to 100\% or 4000 hex (word) or 4000 0000 hex (double word).		

p2006	Reference temperature / Ref temp		
DC_CTRL_S,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
DC_CTRLR_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRLL,	Unit group: -	Unit selection: -	
DC_CTRL_R, TM31,	P group: Communications	Not for motor type: -	Scaling: -
TM150	Max:	Expert list: 1	
	Min:	$300.00\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting:
	$50.00\left[{ }^{\circ} \mathrm{C}\right]$	$100.00\left[{ }^{\circ} \mathrm{C}\right]$	
Description:	Sets the reference quantity for temperature.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

p2007	Reference acceleration / a_ref		
DC_CTRL_S,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Communications	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	$500000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	0.01 [rev/s $\left.\mathrm{s}^{2}\right]$
	$0.01[$ rev/s²]		
Description:	Sets the reference quantity for acceleration.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

p2011	Comm IF address / Comm add		
CU_DC_R_S,	Can be changed: T	Calculated: -	Access level: 2
CU_DC_R	Data type: Unsigned16	Function diagram: -	
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	5	
Description:	Sets the address for the commissioning interface (PPI).		
Note:	Only odd-numbered addresses can be set.		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		

p2011	Comm IF address / Comm add	
CU_DC_S, CU_DC	Can be changed: T Calculated: -	Access level: 2
	Data type: Unsigned16 Dyn. index: -	Function diagram: -
	P group: Communications Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	1127	3
Description:	Sets the address for the commissioning interface (PPI).	
Note:	Only odd-numbered addresses can be set.	
	Changes only become effective after POWER ON.	
	The parameter is not influenced by setting the factory setting.	

r2019[0...7]	Comm IF error statistics / Comm err		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the receive errors at the commissioning interface (RS232).		
Index:			
	[0] = Number of error-free telegrams [1] = Number of rejected telegrams		
	[2] = Number of framing errors		
	[3] = Number of overrun errors		
	[4] = Number of parity errors		
	[5] = Number of starting character errors		
	$[6]=$ Number of checksum errors		
	[7] = Number of length errors		

p2020	Field bus interface baud rate / Field bus baud		
CU_DC_S,	Can be changed: T	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	4	13	8
Description:	Sets the baud rate for the fieldbus interface USS.		
Value:	4: 2400 baud		
	5: $\quad 4800$ baud 6: $\quad 9600$ baud		
	$\begin{array}{ll}\text { 7: } & 19200 \text { baud } \\ \text { 8: } & 38400 \text { baud }\end{array}$		
	$\begin{array}{ll}\text { 9: } & 57600 \text { baud } \\ \text { 10: } & 76800 \text { baud }\end{array}$		
	11: 93750 baud12: 115200 baud		
	13: 187500 baud		
Note:	Fieldbus IF: Fieldbus interface		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the	hen the protocol	

p2021	Field bus interface address / Field bus address		
CU_DC_S,	Can be changed: T	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	31	Factory setting:
	0	0	
Description:	Sets the address for the fieldbus interface USS.		
Dependency:	See also: p2030		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		

p2022	Field bus int USS PZD no. $/$ Field bus USS PZD		
CU_DC_S,	Can be changed: T	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	16	Factory setting:
	0	2	
Description:	Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface.		
Dependency:	See also: p2030		
Note:	The parameter is not influenced by setting the factory setting.		

r2029[0...7]	Field bus interface error statistics / Field bus error	
CU_DC_S,	Can be changed: -	Calculated: -
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Access level: 3
CU_DC_R	P group: Communications	Unit group: -
	Not for motor type: -	Sunction diagram: -
	Min:	Scaling: -
	Max:	Expert list: 1
	-	Factory setting:
Description:	Displays the receive errors on the field bus interface (USS).	-
Index:	$[0]=$ Number of error-free telegrams	
	$[1]=$ Number of rejected telegrams	
	$[2]=$ Number of framing errors	
	$[3]=$ Number of overrun errors	
	$[4]=$ Number of parity errors	
	$[5]=$ Number of starting character errors	
	$[6]=$ Number of checksum errors	
	$[7]=$ Number of length errors	

p2030	Field bus interface protocol selection / Field bus protocol				
CU_DC_S,	Can be changed: T		Calculated: -	Access level: 1	
CU_DC_R_S, CU_DC,	Data type: Integer16		Dyn. index: -		
CU_DC_R	P group: Communications		Unit group: - Unit s		
	Not for motor type: -		Scaling: - Expert		
	Min:		Max:	Factory setting:	
	0		3	3	
Description:	Sets the communication protocol for the field bus interface.				
Value:	0: \quad No protocol				
	1: USS				
	3: PROFIBUS				
Note:	Changes only become effective after POWER ON.				
	The parameter is not influenced by setting the factory setting.				
r2032	Master control control word effective / PcCtrl STW eff				
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: -	
	P group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-		
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
		Enable operation	Yes	No	-
		Enable ramp-function generator	Yes	No	-
		Start ramp-function generator	Yes	No	-
		Enable speed setpoint	Yes	No	-
		Acknowledge fault	Yes	No	-
		Jog bit 0	Yes	No	3030
		Jog bit 1	Yes	No	3030
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no				
CU_DC_S,	Can be changed: U, T		Calculated: -	Access level: 2	
CU_DC_R_S, CU_DC,	Data type: Integer16		Dyn. index: -	Function diagram: -	
CU_DC_R	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: - Expert		
	Min:		Max: Factory		
	162				
Description:	Sets the drive object number for communication via the field bus interface (USS).				
Dependency:	See also: p0978				
Note:	p2035 defines the destination for USS parameter requests (PIV).				
	p0978[0] defines the destination for USS process data (PZD).				
	The parameter is available globally on all drive objects.				
	The parameter is not influenced by setting the factory setting.				

2.2 List of parameters

Dependency:	See also: p2030
Note:	The parameter is only relevant for the following fieldbus protocol.
	- USS $(\mathrm{p} 2030=1)$
	Value $=0:$ Monitoring is deactivated.

p2042	PROFIBUS Ident Number / PB ident No.				
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: T		Calculated: -	Access	
	Data type: Integer16		Dyn. index: -	Functio	
	P group: Communications		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory	
	0		1	0	
Description:	Sets the PROFIBUS ident number (PNO-ID).				
	SINAMICS can be operated with various identities on PROFIBUS. This allows the use of a PROFIBUS GSD that is independent of the device (e.g. PROFIdrive VIK-NAMUR with ident number 3AAO hex).				
Value:	0 : SINAMICS 1: VIK-NAMUR				
Note:	Every change only becomes effective after a POWER ON.				
$\begin{aligned} & \text { r2043.0... } 2 \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	BO: IF1 PROFIdrive PZD state / IF1 PD PZD state				
	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned8		Dyn. index: -	Functio	
	P group: Communications		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory	
	-		-	-	
Description:	Displays the PROFIdrive PZD state.				
Bit array:		Signal name	1 signal	0 signal	FP
		Setpoint failure	Yes	No	-
		Fieldbus operation	Yes	No	-
Dependency: Note:	See also: p2044				
	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.				

p2044	IF1 PROFIdrive fault delay / IF1 PD fault delay		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2410
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Communications	Scaling: -	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	$100[\mathrm{~s}]$	$0[\mathrm{~s}]$
	$0[\mathrm{~s}]$		
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the		
	failure while the drive is still operational (e.g. emergency retraction).		

p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagra
CU_DC_R ${ }^{-}$	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS. Enables short bus faults to be compensated. If no process data is received within this time, then an appropriate message is output.		
Recommendation:	In the isochronous mode, the additional monitoring time should not be set.		
Note:	For controller STOP, the additional monitoring time is not effective.		
p2048	IF1 PROFIdrive PZD sampling time / IF1 PZD t_sample		
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: C1(3) Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1.00 [ms]	16.00 [ms]	4.00 [ms]
Description: Note:	Sets the sampling time for the cyclic interface 1 (IF1).		
	The system only permits certain sampling times and after writing to this parameter, displays the value that has actually been set.		
	For clock cycle synchronous operation, the specified bus cycle time applies (Tdp).		
r2050[0...19]	CO: IF1 PROFIdrive PZD receive word / IF1 PZD recv word		
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description: Index:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] $=$ PZD 19$[19]=$ PZD 20		
Note:	IF1: Interface 1		

r2050[0...63]	CO: IF1 PROFIdrive PZD receive word / IF1 PZD recv word		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: 2440
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
	[32] = PZD 33
	[33] = PZD 34
	[34] = PZD 35
	[35] = PZD 36
	[36] = PZD 37
	[37] = PZD 38
	[38] = PZD 39
	[39] = PZD 40
	[40] = PZD 41
	[41] = PZD 42
	[42] = PZD 43
	[43] = PZD 44
	[44] = PZD 45
	[45] = PZD 46
	[46] = PZD 47
	[47] = PZD 48
	[48] = PZD 49
	[49] = PZD 50
	[50] = PZD 51
	[51] = PZD 52
	[52] = PZD 53
	[53] = PZD 54
	[54] = PZD 55
	[55] = PZD 56
	[56] = PZD 57
	[57] = PZD 58
	[58] = PZD 59
	[59] = PZD 60
	[60] = PZD 61
	[61] = PZD 62
	[62] = PZD 63
	[63] = PZD 64
Dependency:	See also: r2060

2.2 List of parameters

p2051[0...24]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2450, 2483
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	$[4]=\text { PZD } 5$		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] $=$ PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		

p2051[0...63]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2450, 2470,
DC_CTRL,		Unit group: -	Unit selection: -
DC_CTRL_R	P group: Communications	Scaling: 4000H	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	-	0
	-		

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
	[32] = PZD 33
	[33] = PZD 34
	[34] = PZD 35
	[35] = PZD 36
	[36] = PZD 37
	[37] = PZD 38
	[38] = PZD 39
	[39] = PZD 40
	[40] = PZD 41
	[41] = PZD 42
	[42] = PZD 43
	[43] = PZD 44
	[44] = PZD 45
	[45] = PZD 46
	[46] = PZD 47
	[47] = PZD 48
	[48] = PZD 49
	[49] = PZD 50
	[50] = PZD 51
	[51] = PZD 52
	[52] = PZD 53
	[53] = PZD 54
	[54] = PZD 55
	[55] = PZD 56
	[56] = PZD 57
	[57] = PZD 58
	[58] = PZD 59
	[59] = PZD 60
	[60] = PZD 61
	[61] = PZD 62
	[62] = PZD 63
	[63] = PZD 64
Dependency:	See also: p2061

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: IF1: Interface 1

2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1:	Interface 1			

r2053[0..63]	IF1 PROFldrive diagnostics PZD send word / IF1 diag send word		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 2450,2470
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the PZD (actual values) with word format sent to the fieldbus controller.		

Index:
[0] = PZD 1
[1] = PZD 2
[2] $=$ PZD 3
[3] = PZD 4
[4] $=$ PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See	so: p2051, p2			
Note:	IF1	nterface 1			

r2053[0...4]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word				
$\begin{aligned} & \text { TM31, TM15DI_DO, } \\ & \text { TM150 } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: -	
	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with word format sent to the fieldbus controller.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				

r2054	PROFIBUS status / PB status		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: 2410
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	4	-
Description:	Status display for the PROFIBUS interface.		

Value:	0: OFF		
	1: No connection (search for baud		
	2: Connection OK (baud rate found)		
	3: Cyclic connection with master (data exchange)		
	4: Cyclic data OK		
Note:	For r2054 = 2:		
	If the state is not exited, then set or check the PROFIBUS address in p0918.		
	For r2054 = 3:		
	In state 3 (the LED flashes green), a cyclic connection has been established to the PROFIBUS master; however, one of the following prerequisites is missing for cyclic operation:		
	- no setpoints are being received as the PROFIBUS master is in the STOP condition.		
	Only for isochronous operation, the following applies:		
	- the drive is not in synchronism as the global control (GC) has an error.		
	For r2054 = 4:		
	In the status 4 (LED green), the cyclic connection to the PROFIBUS master has been established and setpoints are being received. The clock cycle synchronization is OK, the global control (GC) is error-free.		
	This state does not provide any statement regarding the quality of the clock cycle synchronous sign-of-life characters on the drive objects.		
r2055[0...2]	PROFIBUS diagnostics standard / PB diag standard		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2410
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	Diagnostics display for the PROFIBUS interface.		
Index:	[0] = Master bus address		
	[1] = Master input total length bytes		
	[2] = Master output total length bytes		
r2060[0...62]	CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: -	Function diagram: 2440, 2460
DC_CTRL_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output to intercon	ints) with double w	drom the fieldbus controller.


Index:	[0] = PZD $1+2$
	[1] $=$ PZD $2+3$
	[2] $=$ PZD $3+4$
	[3] $=$ PZD $4+5$
	[4] = PZD $5+6$
	[5] = PZD $6+7$
	[6] $=$ PZD $7+8$
	[7] = PZD $8+9$
	[8] $=$ PZD $9+10$
	[ 9 = PZD $10+11$
	[10] = PZD $11+12$
	[11] = PZD $12+13$
	[12] $=$ PZD $13+14$
	[13] = PZD $14+15$
	[14] $=$ PZD 15 + 16
	[15] = PZD $16+17$
	[16] $=$ PZD $17+18$
	[17] = PZD $18+19$
	[18] $=$ PZD $19+20$
	[19] $=$ PZD $20+21$
	[20] = PZD $21+22$
	[21] = PZD $22+23$
	[22] $=$ PZD $23+24$
	[23] = PZD $24+25$
	[24] = PZD $25+26$
	[25] $=$ PZD $26+27$
	[26] $=$ PZD $27+28$
	[27] = PZD $28+29$
	[28] = PZD $29+30$
	[29] $=$ PZD $30+31$
	[30] = PZD $31+32$
	[31] $=$ PZD $32+33$
	[32] $=$ PZD $33+34$
	[33] = PZD $34+35$
	[34] = PZD $35+36$
	[35] $=$ PZD $36+37$
	[36] = PZD $37+38$
	[37] $=$ PZD $38+39$
	$[38]=$ PZD $39+40$
	[39] $=$ PZD $40+41$
	[40] = PZD $41+42$
	[41] = PZD $42+43$
	[42] = PZD $43+44$
	[43] = PZD $44+45$
	[44] $=$ PZD $45+46$
	[45] $=$ PZD $46+47$
	[46] $=$ PZD $47+48$
	[47] = PZD $48+49$
	[48] $=$ PZD $49+50$
	[49] = PZD $50+51$
	[50] = PZD $51+52$
	[51] = PZD $52+53$
	[52] $=$ PZD $53+54$
	[53] = PZD $54+55$
	[54] = PZD $55+56$
	[55] = PZD $56+57$
	[ 56$]=$ PZD $57+58$
	[57] = PZD $58+59$
	[58] $=$ PZD $59+60$
	[59] = PZD $60+61$
	[60] $=$ PZD $61+62$
	[61] = PZD $62+63$
	[62] = PZD $63+64$
Dependency:	See also: r2050


Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		
	A maximum of 4 indices of the "trace" function can be used.		
Note:	IF1: Interface 1		
p2061[0...62]	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Integer32	Dyn. index: -	Function diagram: 2450, 2470
DC_CTRL,   DC CTRL R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.		


Index:	[0] = PZD $1+2$
	[1] = PZD $2+3$
	[2] $=$ PZD $3+4$
	[3] $=$ PZD $4+5$
	[4] = PZD $5+6$
	[ 5 ] P PZD $6+7$
	$[6]=$ PZD $7+8$
	$[7]=$ PZD $8+9$
	[8] $=$ PZD $9+10$
	[ 9 ] P PZD 10 + 11
	[10] = PZD $11+12$
	[11] = PZD $12+13$
	[12] = PZD $13+14$
	[13] = PZD $14+15$
	[14] = PZD $15+16$
	[15] = PZD $16+17$
	[16] = PZD $17+18$
	[17] = PZD $18+19$
	[18] = PZD 19 + 20
	[19] = PZD $20+21$
	[20] = PZD $21+22$
	[21] = PZD $22+23$
	[22] P PZD $23+24$
	[23] = PZD $24+25$
	[24] = PZD $25+26$
	[25] = PZD $26+27$
	[26] $=$ PZD $27+28$
	[27] P PZD $28+29$
	[28] = PZD $29+30$
	[29] = PZD $30+31$
	[30] = PZD $31+32$
	[31] = PZD $32+33$
	[32] $=$ PZD $33+34$
	[33] $=$ PZD $34+35$
	[34] = PZD $35+36$
	[35] = PZD $36+37$
	[36] = PZD $37+38$
	[37] = PZD $38+39$
	[38] $=$ PZD $39+40$
	[39] = PZD $40+41$
	[40] = PZD $41+42$
	[41] = PZD $42+43$
	[42] = PZD $43+44$
	[43] = PZD $44+45$
	[44] = PZD $45+46$
	[45] = PZD $46+47$
	[46] = PZD $47+48$
	[47] = PZD $48+49$
	[48] = PZD $49+50$
	[49] = PZD $50+51$
	[ 50$]=$ PZD $51+52$
	[51] = PZD $52+53$
	[52] P PZD $53+54$
	[53] = PZD $54+55$
	[54] = PZD $55+56$
	[55] = PZD $56+57$
	[56] = PZD $57+58$
	[57] = PZD $58+59$
	[58] = PZD $59+60$
	[59] = PZD $60+61$
	[60] = PZD $61+62$
	[61] = PZD $62+63$
	[62] = PZD $63+64$


Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
r2063[0...62]	IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 2450,2470
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type:	Scaling: -	Expert list: 1

## 2 Parameters

### 2.2 List of parameters

Index:
[0] = PZD $1+2$
[1] = PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
$[4]=$ PZD $5+6$
[5] = PZD $6+7$
[6] $=$ PZD $7+8$
[7] = PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] $=$ PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$
[15] = PZD $16+17$
[16] $=$ PZD $17+18$
[17] = PZD $18+19$
[18] = PZD $19+20$
[19] = PZD $20+21$
[20] = PZD $21+22$
[21] $=$ PZD $22+23$
[22] = PZD $23+24$
[23] $=$ PZD $24+25$
[24] = PZD $25+26$
[25] = PZD $26+27$
[26] = PZD $27+28$
[27] $=$ PZD $28+29$
[28] = PZD $29+30$
[29] $=$ PZD $30+31$
[30] = PZD $31+32$
[31] = PZD $32+33$
[32] = PZD $33+34$
[33] $=$ PZD $34+35$
[34] = PZD $35+36$
[35] = PZD $36+37$
[36] = PZD $37+38$
[37] $=$ PZD $38+39$
[38] = PZD $39+40$
[39] $=$ PZD $40+41$
[40] = PZD $41+42$
[41] = PZD $42+43$
[42] = PZD $43+44$
[43] = PZD $44+45$
[44] = PZD $45+46$
[45] = PZD $46+47$
[46] $=$ PZD $47+48$
[47] = PZD $48+49$
[48] $=$ PZD $49+50$
[49] = PZD $50+51$
[50] $=$ PZD $51+52$
[51] = PZD $52+53$
[52] $=$ PZD $53+54$
[53] = PZD $54+55$
[54] $=$ PZD $55+56$
[55] = PZD $56+57$
[56] $=$ PZD $57+58$
[57] = PZD $58+59$
[58] $=$ PZD $59+60$
[59] = PZD $60+61$
[60] = PZD $61+62$
[61] = PZD $62+63$
[62] = PZD $63+64$

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used.				
Note:	IF1: Interface 1				
r2064[0...7]	PB/PN diagnostics clock cycle synchronism / PB/PN diag clock				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Integer32		Dyn. index: -	Function diagram: -	
CU_DC_R			Unit group:	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the last parameter received from the PROFIBUS/PROFINET controller for clock synchronism.				
	The parameters for clock synchronism are created when configuring the bus and are transferred at the start of cyclic operation from the controller to the device.				
Index:	[0] = Clock synchronous mode activated				
	$\text { [1] = Bus cycle time (Tdp) [ } \mu \mathrm{s}]$				
	[2] = Master cycle time (Tmapc) [ $\mu \mathrm{s}$ ]				
	[3] = Instant of actual value acquisition (Ti) [ $\mu \mathrm{s}$ ]				
	[4] = Instant of setpoint acquisition (To) [ $\mu \mathrm{s}$ ]				
	[5] = Data exchange interval (Tdx) [ $\mu \mathrm{s}$ ]				
	[6] = PLL window (Tpll-w) [1/12 $\mu \mathrm{s}$ ]				
	[7] = PLL delay time (Tpll-d) [1/12 $\mu \mathrm{s}$ ]				

### 2.2 List of parameters



Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
Note:	IF1: Interface 1
	Value range:
	$0-125$ : Bus address of the sende
	65535: Not assigned


r2074[0...63]	IF1 PROFldrive diagnostics bus address PZD receive / IF1diag addr recv		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		

### 2.2 List of parameters

## Index:

[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

Note:	IF1: Interface 1   Value range:   $0-125$ : Bus address of the sender   65535: Not assigned
r2074[0...4]	IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv
$\begin{aligned} & \text { TM31, TM15DI_DO, } \\ & \text { TM150 } \end{aligned}$	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Function diagram: -   P group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:
Description: Index:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \end{aligned}$
Note:	IF1: Interface 1   Value range:   0-125: Bus address of the sender   65535: Not assigned
```r2075[0...19] CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv
Description: Index:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \\ & {[16]=\text { PZD } 17} \\ & {[17]=\text { PZD } 18} \\ & {[18]=\text { PZD } 19} \\ & {[19]=\text { PZD } 20} \end{aligned}$
Note:	IF1: Interface 1 Value range: 0-242: Byte offset 65535: Not assigned

r2075[0...63]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 2410
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] $=$ PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
	[32] = PZD 33
	[33] = PZD 34
	[34] = PZD 35
	[35] = PZD 36
	[36] = PZD 37
	[37] = PZD 38
	[38] = PZD 39
	[39] = PZD 40
	[40] = PZD 41
	[41] = PZD 42
	[42] = PZD 43
	[43] = PZD 44
	[44] = PZD 45
	[45] = PZD 46
	[46] = PZD 47
	[47] = PZD 48
	[48] = PZD 49
	[49] = PZD 50
	[50] = PZD 51
	[51] = PZD 52
	[52] = PZD 53
	[53] = PZD 54
	[54] = PZD 55
	[55] = PZD 56
	[56] = PZD 57
	[57] = PZD 58
	[58] = PZD 59
	[59] = PZD 60
	[60] = PZD 61
	[61] = PZD 62
	[62] = PZD 63
	[63] = PZD 64

2.2 List of parameters

Note:	IF1: Interface 1
	Value range:
	$0-242:$ Byte offset
	$65535:$ Not assigned

r2075[0...4]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 2410
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2076[0...24] IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send

CU_DC_R_S, CU_DC,
CU_DC_R

Data type: Unsigned16
P group: Communications
Not for motor type: -
Min:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:

Access level: 3
Function diagram: 2410
Unit selection: -
Expert list: 1
Factory setting:

Description: Displays the PZD byte offset in the PROFIdrive send telegram (controller input).
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25

2.2 List of parameters

Index:

[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

Note:	IF1: Interface 1 Value range: 0-242: Byte offset 65535: Not assigned
r2076[0...4]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag
TM31, TM15DI_DO, TM150	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: - Function diagram: 2410 P group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting:
Description: Index:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \end{aligned}$
Note:	IF1: Interface 1 Value range: 0 -242: Byte offset 65535: Not assigned
```r2077[0...15] CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	PROFIBUS diagnostics peer-to-peer data transfer addresses / PB diag peer addr
Description:	Displays the addresses of the slaves (peers) where peer-to-peer data transfer has been configured via PROFIBUS.
p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Function diagram: -   P group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   390 999 999
Description:	Sets the send and receive telegram.   Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.
Value:	390: SIEMENS telegram 390, PZD-2/2   999: Free telegram configuration with BICO
Note:	For p0922 < 999 the following applies:   p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.   For p0922 = 999 the following applies:   p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.   For p0922 = 999 and p2079 < 999 the following applies:   The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

### 2.2 List of parameters



p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
All objects	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2472
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 1.		
Index:	[ 0 ] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	See also: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		


p2081[0...15]	BI: Binector-connector converter status word 2 / Bin/con ZSW2		
All objects	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2472
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 2.		
Index:	[ 0 ] = Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[ 6$]=$ Bit 6		
	[ 7 ] $=$ Bit 7		
	[8] $=$ Bit 8		
	[9] $=$ Bit 9		
	[10] $=$ Bit 10		
	[11] = Bit 11		
	$[12]=$ Bit 12$[13]=$ Bit 13		
	[14] $=$ Bit 14		
	[15] = Bit 15		
Dependency:	See also: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For clock synchronous operation, bit 12 to 15 to transfer the sign-of-life are reserved in status word 2 - and may not be freely interconnected.		
p2082[0...15]	BI: Binector-connector converter status word 3 / Bin/con ZSW3		
All objects	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2472
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
		Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 3.		
Index:	[0] $=$ Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	$[6]=$ Bit 6		
	$[7]=$ Bit 7		
	[8] $=$ Bit 8		
	[9] $=$ Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] $=$ Bit 12		
	[13] = Bit 13		
	$[14]=$ Bit 14$[15]=$ Bit 15		
Dependency:	See also: p2088, r2089		
Notice:	The parameter may be protected	of p0922 or p20	anged.

### 2.2 List of parameters

p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4		
All objects	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2472
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 4.		
Index:	[ 0 ] = Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	$[6]=$ Bit 6		
	$[7]=$ Bit 7		
	[8] $=$ Bit 8		
	[ 9 ] $=$ Bit 9		
	$[10]=$ Bit 10		
	[11] $=$ Bit 11		
	[12] = Bit 12		
	[13] $=$ Bit 13		
	$[14]=$ Bit 14$[15]=$ Bit 15		
Dependency:	See also: p2088, r2089		
p2084[0...15]	BI: Binector-connector converter status word 5 / Bin/con ZSW5		
All objects	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2472
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 5 .		
Index:	[0] $=$ Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	$[6]=$ Bit 6		
	[7] $=$ Bit 7		
	[8] $=$ Bit 8		
	[ 9 ] $=$ Bit 9		
	[10] $=$ Bit 10		
	[11] $=$ Bit 11		
	[12] $=$ Bit 12		
	[13] $=$ Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:			



r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send				
All objects	Can be changed:		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Functi	
	P group: Communications		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory setting:	
	-		-	-	
Description: Index:	Connector output to interconnect the status words to a PZD send word.				
	[0] = Status word 1   [1] = Status word 2   [2] = Free status word 3   [3] = Free status word 4   [4] = Free status word 5				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-

### 2.2 List of parameters

	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: p2051, p2080, p2081, p2082, p2083				
Note:	r2089 together with p2080 to p2084 forms five binector-connector converters.				
r2090.0... 15	B0: IF1 PROFIdrive PZD1 receive bit-serial / IF1 PZD1 recv bitw				
CU_DC_S,	Can be changed:   Data type: Unsigned16		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC, CU_DC_R,			Dyn. index: -	Functi   2481	$0,2460,$
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \end{aligned}$	P group: Communications		Unit group: -	Unit selection: -	
DC_CTRL,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL_R	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIdrive controller.				
Bit array:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2090.0... 15	B0: IF1 PROFldrive PZD1 receive bit-serial / IF1 PZD1 recv bitw				
TM31, TM15DI_DO,	Can be changed: -		Calculated: -	Access level: 3	
TM150	Data type: Unsigned16		Dyn. index: -	Function diagram: 2468	
	P group: Communications		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-		
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIdrive controller.				


Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2091.0... 15	BO: IF1 PROFldrive PZD2 receive bit-serial / IF1 PZD2 recv bitw				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2460, 2481	
$\begin{aligned} & \text { CU_DC_R, } \\ & \text { DC_CTRL_S, } \end{aligned}$	P group: Communications		Unit group:	Unit selection: -	
DC_CTRL_R_S,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL,	Min:		Max:	Factory setting:	
DC_CTRL_R	-		-		
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				
Bit array:	Bit	Signal name	1 signal	$0 \text { signal }$	FP
		Bit 0	ON	OFF	
		Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2091.0... 15	BO: IF1 PROFldrive PZD2 receive bit-serial / IF1 PZD2 recv bitw				
TM31, TM15DI_DO,	Can be changed: -		Calculated: -	Access level: 3	
TM150	Data type: Unsigned16		Dyn. index: -	Function diagram: 2468	
	P group: Communications		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				


r2092.0... 15	BO: IF1 PROFldrive PZD3 receive bit-serial / IF1 PZD3 recv bitw				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned16		Dyn. index:	Function diagram: 2468	
CU_DC_R	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1:	terface 1			


r2092.0...15	BO: IF1 PROFIdrive PZD3 receive bit-serial / IF1 PZD3 recv bitw		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 2460
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.		


Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2093.0... 15	BO: IF1 PROFIdrive PZD4 receive bit-serial / IF1 PZD4 recv bitw				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2468	
CU_DC_R	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
		Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2093.0... 15	BO: IF1 PROFIdrive PZD4 receive bit-serial / IF1 PZD4 recv bitw				
DC_CTRL_S,	Can be changed: -		Calculated: -	Access level: 3	
DC_CTRL_R_S,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2460	
DC_CTRL, DC CTRL R	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:			Factory setting:	
				-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1:	nterface 1			


r2094.0... 15	BO: Connector-binector converter binector output Con/bin outp				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2460, 2481	
DC CTRL, ${ }_{\text {c }}$	P group: Communications		Unit group: -	Unit selection: -	
DC_CTRL_R_S,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL,	Min:		Max:	Factory setting:	
DC_CTRL_R	-		-	-	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See	lso: p2099			

r2094.0...15 BO: Connector-binector converter binector output / Con/bin outp

TM31, TM15DI_DO,
TM150

Description:

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: p2099				
r2095.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
CU_DC_S,	Can be changed:   Data type: Unsigned16		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC, CU_DC_R,			Dyn. index: -	Function diagram: 2440, 2460, 2481	
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \end{aligned}$	P group: Communications		Unit group: -	Unit selection: -	
DC_CTRL,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL_R	Min:		Max:	Factory setting:	
	-			-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].				
Bit array:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	Pr
		Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: p2099				
r2095.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
TM31, TM15DI_DO,	Can be changed: -		Calculated: -	Access level: 3	
TM150	Data type: Unsigned16		Dyn. index: -	Function diagram: 2468	
	P group: Communications		Unit group:	Unit selection: -	
	Not for motor type: -		Scaling:	Expert list: 1	
	Min:		Max:	Factory setting:	
			-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive The PZD is selected via p2099[1].				

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See	lso: p2099			


p2098[0...1]	Inverter connector-binector converter binector output / Con/bin outp inv				
CU_DC_S,	Can be changed: $\mathrm{U}, \mathrm{T}$		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2460, 2481	
DC CTRL S ,	$\mathbf{P}$ group: Communications		Unit group: -	Unit selection: -	
DC_CTRL_R_S,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL,	Min:		Max:	Factory setting:	
DC_CTRL_R	-		-	0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter.				
	Using p2098[0], the signals of connector input p2099[0] are influenced.				
	Using p2098[1], the signals of connector input p2099[1] are influenced.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	See also: r2094, r2095, p2099				


p2098[0...1]	Inverter connector-binector converter binector output / Con/bin outp inv		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 2468
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter.		
	Using p2098[0], the signals of connector input p2099[0] are influenced.		


Bit array:	Bit	Signal name	1 signal
00	Bit 0	Inverted	
01	Bit 1	Inverted	
02	Bit 2	Inverted	
	03	Bit 3	Inverted
04	Bit 4	Inverted	
	05	Bit 5	Inverted
06	Bit 6	Inverted	
07	Bit 7	Inverted	
08	Bit 8	Inverted	
	09	Bit 9	Inverted
10	Bit 10	Inverted	
11	Bit 11	Inverted	
12	Bit 12	Inverted	
13	Bit 13	Inverted	
14	Bit 14	Inverted	
15	Bit 15	Inverted	

0 signal
Not inverted
Not inverted -
Not inverted
No
Not inverted
Not inverted -

FP
-
-
-
-
$-$
$-$
-
-
-
-

Dependency: See also: r2094, r2095, p2099

p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2460, 2481
CU_DC_R,	P group: Communications	Unit group:	Unit selection: -
DC_CTRL_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL_R_S,	Min:	Max:	Factory setting:
DC_CTRL,	-	0	
DC_CTRL_R	-		
Description:	Sets the signal source for the connector-binector converter.		

A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).
Dependency: See also: r2094, r2095
Note: $\quad$ From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters:
Connector input p2099[0] to binector output in r2094.0... 15
Connector input p2099[1] to binector output in r2095.0... 15

p2099[0..1]	CI: Connector-binector converter signal source / Con/bin S_src		
TM31, TM15DI_DO, TM150	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2468
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the connector-binector converter.		
	A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).		
Dependency:	See also: r2094, r2095		
Note:	From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters:		
	Connector input p2099[0] to binector output in r2094.0... 15		
	Connector input p2099[1] to binector output in r2095.0... 15		

### 2.2 List of parameters

p2100[0...19]	Change fault response fault number / Chng resp F_no		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8075
CU_DC_R,	Unit group: -	Unit selection: -	
DC_CTRL_S,	Proup: Messages	Scaling: -	Expert list: 1
DC_CTRL_R_S,	Not for motor type: -	Max:	Factory setting:
DC_CTRL,	Min:	65535	0
DC_CTRL_R	0	Selects the faults for which the fault response should be changed	
Description:	The fault is selected and the required response is set under the same index.		
Dependency:	See also: p2101		
Rote:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been     resolved.		


p2100[0..19]	Change fault response fault number / Chng resp F_no		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 8050,8075
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	65535	Factory setting:
	0	0	
Description:	Selects the faults for which the fault response should be changed		
Dependency:	The fault is selected and the required response is set under the same index.		
	See also: p2101		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been		
	resolved.		


p2101[0..19]	Change fault response response / Chng resp resp		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: 8075
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	0	0
Description:	Sets the fault response for the selected fault.		
Value:	0 : NONE		
Dependency:	The fault is selected and the required response is set under the same index.		
Notice:	For the following cases, it is not possible to re-parameterize the fault response to a fault: - fault number does not exist (exception value $=0$ ).		
Note:	Re-parameterization is a resolved.	is present. The	s effective after the fault has


p2101[0...19]	Change fault response response / Chng resp resp		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: 8075
DC_CTRL,	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	7	0
Description:	Sets the fault response for the selected fault.		



p2103	BI: 1st acknowledge faults / 1st acknowledge		
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R, TM31, TM15DI_DO, TM150	Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 3   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:   0
Description:   Notice:   Note:	Sets the first signal source to acknowledge faults.   The parameter may be protected as a result of p0922 or p2079 and cannot be changed.   A fault acknowledgment is triggered with a $0 / 1$ signal.		
$\begin{aligned} & \hline \mathbf{p 2 1 0 3 [ 0 . . . n ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DCCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: 1st acknowledge fau   Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type:   Min:	cknowledge   Calculated:   Dyn. index: CDS, p0170   Unit group:   Scaling: -   Max:	Access level: 3   Function diagram: 2546   Unit selection:   Expert list: 1   Factory setting:   0
Description:   Notice:   Note:	Sets the first signal source to acknowledge faults.   The parameter may be protected as a result of p0922 or p2079 and cannot be changed.   A fault acknowledgment is triggered with a $0 / 1$ signal.		
$\begin{aligned} & \hline \mathbf{p 2 1 0 4} \\ & \text { CU_DC_S, } \\ & \text { CU_DCR_S, CU_DC, } \\ & \text { CU_DC_R, TM31, } \\ & \text { TM15DI_DO, TM150 } \end{aligned}$	BI: 2nd acknowledge fau   Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	acknowledge   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   -	Access level: 3   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:   0
Description:   Note:	Sets the second signal source to acknowledge faults.   A fault acknowledgment is triggered with a $0 / 1$ signal.		
$\begin{aligned} & \hline \text { p2104[0...n] } \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: 2nd acknowledge fau   Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	acknowledge   Calculated:   Dyn. index: CDS, p0170   Unit group:   Scaling:   Max:	Access level: 3   Function diagram: 2546   Unit selection:   Expert list: 1   Factory setting:   0
Description:   Note:	Sets the second signal source to acknowledge faults.   A fault acknowledgment is triggered with a $0 / 1$ signal.		
$\begin{aligned} & \hline \text { p2105 } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CUDCCR, TM31, } \\ & \text { TM15DI_DO, TM150 } \end{aligned}$	BI: 3rd acknowledge fau   Can be changed: $U, T$   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	cknowledge   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   -	Access level: 3   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:   0
Description:   Note:	Sets the third signal source to acknowledge faults. A fault acknowledgment is triggered with a $0 / 1$ signal.		


p2105[0...n]	BI: 3rd acknowledge faults / 3rd	knowledge	
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: -   Max:	Access level: 3   Function diagram: 2546   Unit selection:   Expert list: 1   Factory setting:   0
Description: Note:	Sets the third signal source to acknowledge A fault acknowledgment is triggered with a	aults. 1 signal.	
$\begin{aligned} & \hline \mathbf{p 2 1 0 6} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R, TM31, } \\ & \text { TM15DI_DO, TM150 } \end{aligned}$	BI: External fault 1 / External fau   Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 3   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:   1
Description:   Dependency:   Note:	Sets the signal source for external fault 1.   See also: F07860   An external fault is triggered with a 0 signal If this fault is output at the Control Unit, then	is transferred to all exist	ects.
$\begin{aligned} & \hline \text { p2106[0...n] } \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: External fault 1 / External fau   Can be changed: $U, T$   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling:   Max:	Access level: 3   Function diagram: 2546   Unit selection: -   Expert list: 1   Factory setting:   1
Description:   Dependency:   Note:	Sets the signal source for external fault 1.   See also: F07860   An external fault is triggered with a 0 signal   If this fault is output at the Control Unit, then	it is transferred to all exist	jects.
$\begin{aligned} & \hline \mathbf{p 2 1 0 7} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R, TM31, } \\ & \text { TM15DI_DO, TM150 } \end{aligned}$	BI: External fault 2 / External fa   Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 3   Function diagram:   Unit selection:   Expert list: 1   Factory setting:   1
Description:   Dependency:   Note:	Sets the signal source for external fault 2.   See also: F07861   An external fault is triggered with a 0 signal   If this fault is output at the Control Unit, then	is transferred to all exist	jects.

### 2.2 List of parameters


p2108[0...n] BI: External fault 3 / External fault 3

DC_CTRL_S,   DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2546
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	See also: p3110, p3111, p3112		
	See also: F07862		
Note:	An external fault is triggered with a 0 signal.		
	If this fault is output at the Control Unit, then	it is transferred to all existin	


r2109[0...63]	Fault time removed in milliseconds / t_flt resolved ms		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: 8050, 8060
CU_DC_R, TM31,   TM15DI DO, TM150	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	See also: r0945, r0947, r0948, r0949, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		



p2111	Alarm counter / Ala		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8065
CU_DC_R, DC CTRL S	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , the following is initiated:		
	- all of the alarms of the alarm buffer that have gone [0...7] are transferred into the alarm history [8..63].		
	- the alarm buffer [0..7] is deleted.		
	See also: r2110, r2122, r2123, r2124, r2125		
Note:	The parameter is reset to 0 at POWER ON.		



p2116	BI: External alarm 2 / External alar	2	
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R, TM31, TM15DI_DO, TM150```	Can be changed: U, T   Data type: Unsigned32 / Binary   P group: Messages   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 3   Function diagram:   Unit selection:   Expert list: 1   Factory setting:   1
Description: Dependency: Note:	Sets the signal source for external alarm 2. See also: A07851 An external alarm is triggered with a 0 signal.		
p2116[0...n] DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	BI: External alarm 2 / External alar Can be changed: U, T Data type: Unsigned32 / Binary P group: Messages Not for motor type: - Min:	m 2 Calculated: - Dyn. index: CDS, p0170 Unit group: Scaling: - Max:	Access level: 3 Function diagram: 2546 Unit selection: - Expert list: 1 Factory setting: 1
Description: Dependency: Note:	Sets the signal source for external alarm 2. See also: A07851 An external alarm is triggered with a 0 signal.		
p2117 CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R, TM31, TM15DI_DO, TM150	BI: External alarm 3 / External ala Can be changed: U, T Data type: Unsigned32 / Binary P group: Messages Not for motor type: - Min:	m 3 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 1 Factory setting: 1
Description: Dependency: Note:	Sets the signal source for external alarm 3. See also: A07852 An external alarm is triggered with a 0 signal.		
$\begin{aligned} & \hline \mathbf{p 2 1 1 7}[\mathbf{0 . . . n]} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: External alarm 3 / External ala Can be changed: U, T Data type: Unsigned32 / Binary P group: Messages Not for motor type: - Min:	m 3 Calculated: - Dyn. index: CDS, p0170 Unit group: Scaling: Max:	Access level: 3 Function diagram: 2546 Unit selection: Expert list: 1 Factory setting: 1
Description: Dependency: Note:	Sets the signal source for external alarm 3. See also: A07852 An external alarm is triggered with a 0 signal.		

2.2 List of parameters

p2118[0...19]	Change message type message number / Chng type msg_no		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index:	Function diagram: 8050, 8075
CU_DC_R, TM31, TM15DI DO, TM150	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2119		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
p2118[0...19]	Change message type message number / Chng type msg_no		
DC_CTRL_S,	Can be changed: U, T	Calculated:	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8075
DC CTRL	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed.		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2119		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
p2119[0...19]	Change message type type / Change type type		
CU_DC_S,	Can be changed: U, T	Calculated:	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index:	Function diagram: 8075
DC CTRL S ,	P group: Messages	Unit group:	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R	1	3	1
Description:	Sets the message type for the selected fault or alarm.		
Value:	1: Fault (F)		
	2: Alarm (A)		
	3: \quad No message (N)		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2118		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
	The message type can only be changed for messages with the appropriate identification (exception, value $=0$). Example:		
	F12345(A) --> Fault F12345 can be changed to alarm A12345.		
	In this case, the message number that may be possibly entered in p2100[0...19] and p2126[0...19] is automatically removed.		

p2119[0...19]	Change message type type / Change type type		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Integer16	Dyn. index: -	Function diagram: 8050, 8075
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	3	1
Description:	Sets the message type for the selected fault or alarm.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Fault (F) } \\ \text { 2: } & \text { Alarm (A) } \\ \text { 3: } & \text { No message (N) }\end{array}$		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2118		
Note:	Re-parameterization is has gone. The message type can Example: F12345(A) --> Fault F12 In this case, the messag removed.	sage is present. messages with the to alarm A12345 be possibly entere	comes effective after the message cation (exception, value $=0$). nd p2126[0...19] is automatically
r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8065
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description: Dependency:	Displays the sum of all of the fault and alarm buffer changes in the drive unit. See also: r0944, r2121		
r2121	CO: Counter alarm buffer changes / Alrm buff changed		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8065
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	This counter is incremented every time the alarm buffer changes.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2125		
r2122[0...63]	Alarm code / Alarm code		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8065
DC_CTRL_S,	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R			-
Description:	Displays the number of alarms that have occurred.		
Dependency:	See also: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
Notice:	The properties of the alarm buffer should be taken from the corresponding product documentation.		

Note: | The buffer parameters are cyclically updated in the background (refer to status signal in r2139). |
| :--- |
| Alarm buffer structure (general principle): |
| r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest) |
| . \quad r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest) |
| When the alarm buffer is full, the alarms that have gone are entered into the alarm history: |
| r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest) |
| |
| |
| |
| r2122[63], r2124[63], r2123[63], r2125[63] --> alarm 56 (the oldest) |

r2122[0...63] Alarm code / Alarm code
TM31, TM15DI_DO,
TM150

Can be changed: -	Calculated: -	Access level: 2
Data type: Unsigned16	Dyn. index: -	Function diagram: 8050, 8065
P group: Messages	Unit group:	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:
-	-	-
Displays the number of alarms that have occurred.		
See also: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
The properties of the alarm buffer should be taken from the corresponding product documentation.		
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
Alarm buffer structure (general principle):		
r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest)		
. .		
r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest)		
When the alarm buffer is full, the alarms that have gone are entered into the alarm history:		
r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest)		
' $\mathrm{r} 2122[63]$, r2124[63], r21	alarm 56 (the	

r2123[0...63]	Alarm time received in milliseconds /t_alarm recv ms		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: 8065
CU_DC_R,	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_S,	Not for motor type: -	Max:	Expert list: 1
DC_CTRL_R_S,	Min:	$-[\mathrm{ms}]$	Factory setting:
DC_CTRL,	$-[m s]$	- [ms]	
DC_CTRL_R	Displays the system runtime in milliseconds when the alarm occurred.		
Description:	See also: r2110, r2114, r2122, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
Dependency:	The time comprises r2145 (days) and r2123 (milliseconds).		
Notice:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
Note:	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

r2123[0...63] Alarm time received in milliseconds / t_alarm recv ms

TM31, TM15DI_DO, TM150
Can be changed:

Data type: Unsigned32
P group: Messages
Not for motor type: -
Min:

- [ms]

Displays the system runtime in milliseconds when the alarm occurred.
Description:
Dependency: See also: r2110, r2114, r2122, r2124, r2125, r2134, r2145, r2146, r3121, r3123
Notice: \quad The time comprises r2145 (days) and r2123 (milliseconds).

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:

- [ms]

Access level: 3
Function diagram: 8050, 8065
Unit selection: -
Expert list: 1
Factory setting:

- [ms]

Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.

r2124[0...63]
CU_DC_S,
CU_DC_R_S, CU_DC,
CU_DC_R,

CU_DC_R,

DC_CTRL_S, P group: Messages
DC_CTRL_R_S, Not for motor type: -
DC_CTRL, Min:
DC CTRL R
Description:
Dependency:
Note:
Alarm value / Alarm value

Can be changed: -
Data type: Integer32

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:

Access level: 3
Function diagram: 8065
Unit selection: -
Expert list: 1
Factory setting:

r2124[0...63]

TM31, TM15DI_DO, TM150

Displays additional information about the active alarm (as integer number).
See also: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123
The buffer parameters are cyclically updated in the background (refer to status signal in r 2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.

Alarm value / Alarm value

Can be changed:
Data type: Integer
P group: Messages
Not for motor type: -
Min:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:

Access level: 3
Function diagram: 8050, 8065
Unit selection: -
Expert list: 1
Factory setting:

Description: Displays additional information about the active alarm (as integer number).
Dependency: See also: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123
Note: The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
CU_DC_S,	Can be changed: -	Calculated:	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: 8065
CU_DC_R, DC CTRL S,	P group: Messages	Unit group: -	Unit selection:
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	See also: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146, r3121, r3123		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r 2122 .		

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned32	Dyn. index: -	Function diagram: 8050, 8065
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	See also: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146, r3121, r3123		
Notice:	The time comprises r 2146 (days) and r 2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r 2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

2.2 List of parameters

p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: 8075
CU_DC_R, DC CTRL S,	P group: Messages	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index		
Note:	Re-parameterization is al resolved.	is present. The	effective after the fault h

p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: 8050, 8075
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index		
Note:	Re-parameterization is a resolved.	is present. The	seffective after the fault has been

r2129.0... 15	CO/BO: Faults/alarms trigger word / F/A trigger word				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: - Functi		
	P group: Messages		Unit group: - Unit se		
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in p2128[0...15].				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Trigger signal p2128[0]	ON	OFF	
		Trigger signal p2128[1]	ON	OFF	-
		Trigger signal p2128[2]	ON	OFF	-
	03	Trigger signal p2128[3]	ON	OFF	-
		Trigger signal p2128[4]	ON	OFF	-
		Trigger signal p2128[5]	ON	OFF	-
		Trigger signal p2128[6]	ON	OFF	-
		Trigger signal p2128[7]	ON	OFF	-
	08	Trigger signal p2128[8]	ON	OFF	-
	09	Trigger signal 2 2128[9]	ON	OFF	-
		Trigger signal p2128[10]	ON	OFF	-
		Trigger signal p2128[11]	ON	OFF	-
		Trigger signal p2128[12]	ON	OFF	-
		Trigger signal p2128[13]	ON	OFF	-
		Trigger signal p2128[14]	ON	OFF	-
		Trigger signal p2128[15]	ON	OFF	-
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set. See also: p2128				
Note:	CO: r2129 = 0 --> None of the selected messages has occurred.				

r2130[0...63]	Fault time received in days / t_fault recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	See also: r0945, r0947, r0948, r0949, r2109, r2114, r2133, r2136, p3100, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
	The time display depends on the selected mode (p3100).		
Note:	The buffer parameters ar	in the backgrou	nal in r2139).

r2131	CO: Actual fault code / Act fault code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index:	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the code of the oldest active fault.		
Dependency:	See also: r3131, r3132		
Note:	0: No fault present.		

2.2 List of parameters

r2135.0... 15 DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
	Can be changed: -		Calculated: - Access level: 2		
	Data type: Unsigned16		Dyn. index: - Func		
	P group: Displays, signals		Unit group: - Unit		
	Not for motor type: -		Scaling: - Exper		
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and BICO output for the second status word of faults and alarms.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault encoder 1	Yes	No	-
	01	Fault encoder 2	Yes	No	-
	02	Fault encoder 3	Yes	No	-
	12	Fault motor overtemperature	Yes	No	8038
	13	Fault power unit thermal overload	Yes	No	8042
	14	Alarm motor overtemperature	Yes	No	8038
	15	Alarm power unit thermal overload	Yes	No	8042

r2135.0... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
TM31, TM15DI_DO,	Can be changed: -		Calculated: -	Access level: 2	
TM150		type: Unsigned16	Dyn. index: -	Functi	
		up: Displays, signals	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max:	Facto	
	-		-	-	
Description:		ay and BICO output for the second st	us word of faults		
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault encoder 1	Yes	No	-
	01	Fault encoder 2	Yes	No	-
	02	Fault encoder 3	Yes	No	-
	12	Fault motor overtemperature	Yes	No	8016
	13	Fault power unit thermal overload	Yes	No	8021
	14	Alarm motor overtemperature	Yes	No	8016
	15	Alarm power unit thermal overload	Yes	No	8021

r2136[0...63]

Description: Displays the system runtime in days when the fault was removed.
Dependency: See also: r0945, r0947, r0948, r0949, r2109, r2114, r2130, r2133, r3115, r3120, r3122
Notice: \quad The time comprises r2136 (days) and r2109 (milliseconds).
Note: \quad The buffer parameters are cyclically updated in the background (refer to status signal in r2139).

r2138.7...15	CO/BO: Control word faults/alarms / STW fault/alarm				
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R,```	Can be changed:		Calculated: - Acces		
	Data	type: Unsigned16	Dyn. index: -	Function diagram: 2546, 8060,	
DC_CTRL_S,   DC CTRL R S,	P gr	up: Displays, signals	Unit group: -	Unit se	
DC_CTRL,	Not	or motor type: -	Scaling: -	Expert	
DC_CTRL_R	Min:		Max:	Factory	
	-		-	-	
Description:	Display and BICO output for the control word of faults and alarms.				
Bit array:		Signal name	1 signal	0 signal	FP
		Acknowledge fault	Yes	No	8060
		External alarm 1 (A07850) effective	Yes	No	8065
		External alarm 2 (A07851) effective	Yes	No	8065
		External alarm 3 (A07852) effective	Yes	No	8065
		External fault 1 (F07860) effective	Yes	No	8060
		External fault 2 (F07861) effective	Yes	No	8060
		External fault 3 (F07862) effective	Yes	No	8060
Dependency:	See also: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112				
r2138.7... 15	CO/BO: Control word faults/alarms / STW fault/alarm				
TM31, TM15DI_DO, TM150	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2546	
	P group: Displays, signals		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-	-	
Description:	Display and BICO output for the control word of faults and alarms.				
Bit array:		Signal name	1 signal	0 signal	FP
		Acknowledge fault	Yes	No	8060
		External alarm 1 (A07850) effective	Yes	No	8065
		External alarm 2 (A07851) effective	Yes	No	8065
		External alarm 3 (A07852) effective	Yes	No	8065
		External fault 1 (F07860) effective	Yes	No	8060
		External fault 2 (F07861) effective	Yes	No	8060
		External fault 3 (F07862) effective	Yes	No	8060
Dependency:	See also: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112				
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 2	
CU_DC_R_S, CU_DC, CU_DC_R,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2548, 8060, 8065	
DC CTRL R S,	P group: Displays, signals		Unit group: -	Unit selection: -	
DC_CTRL,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL_R	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and BICO output for status word 1 of faults and alarms.				
Bit array:		Signal name	1 signal	0 signal	FP
		Being acknowledged	Yes	No	-
		Acknowledgment required	Yes	No	-

### 2.2 List of parameters

03	Fault present	Yes	No	8060
05	Safety message present	Yes	No	-
06	Internal message 1 present	Yes	No	-
07	Alarm present	Yes	No	8065
08	Internal message 2 present	Yes	No	-
11	Alarm class bit 0	High	Low	
12	Alarm class bit 1	High	Low	-
13	Maintenance required	Yes	No	-
14	Maintenance urgently required	Yes	No	-
15	Fault gone/can be acknowledged	Yes	No	-

## Note:

For bit 03, 05, 07:
These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. For this reason, the fault/alarm buffer should only be read if, after "Fault active" or "Alarm active" occurs, a change is also identified in the buffer (r0944, r9744, r2121).
For bit 06, 08:
These status bits are used for internal diagnostic purposes only.
For bit 12, 11:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.
r2139.0.. 15 CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1

$\begin{aligned} & \text { TM31, TM15DI_DO, } \\ & \text { TM150 } \end{aligned}$	Can be changed: -   Data type: Unsigned16		Calculated:   Dyn. index:	Access level: 2		
			Functi			
	P group: Displays, signals			Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min:		Max:	Factory setting:		
	-		-	-		
Description:	Display and BICO output for status word 1 of faults and alarms.					
Bit array:	Bit	Signal name	1 signal	0 signal	FP	
	00	Being acknowledged	Yes	No	-	
	01	Acknowledgment required	Yes	No	-	
	03	Fault present	Yes	No	8060	
	05	Safety message present	Yes	No	-	
	06	Internal message 1 present	Yes	No	-	
	07	Alarm present	Yes	No	8065	
	08	Internal message 2 present	Yes	No	-	
	11	Alarm class bit 0	High	Low	-	
	12	Alarm class bit 1	High	Low	-	
	13	Maintenance required	Yes	No	-	
	14	Maintenance urgently required	Yes	No	-	
	15	Fault gone/can be acknowledged	Yes	No	-	

Note:
For bit 03, 05, 07:
These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. For this reason, the fault/alarm buffer should only be read if, after "Fault active" or "Alarm active" occurs, a change is also identified in the buffer (r0944, r9744, r2121).
For bit 06, 08 :
These status bits are used for internal diagnostic purposes only.
For bit 12, 11:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.

r2145[0...63]	Alarm time received in days / t_alarm recv days				
All objects	Can	be changed: -	Calculated: -	Acces	
	Data	type: Unsigned16	Dyn. index: -	Funct	
	P grour	up: Messages	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Exper	
	Min:		Max:	Factor	
	-		-	-	
Description:	Displays the system runtime in days when the alarm occurred.				
Dependency:	See also: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2146, r3121, r3123				
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
r2146[0...63]	Alarm time removed in days / t_alarm res days				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 8065	
	P group: Messages		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the system runtime in days when the alarm was cleared.				
Dependency:	See also: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2145, r3121, r3123				
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
p2147	Delete fault buffer of all drive objects / Del fault buffer				
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T		Calculated: -	Access level: 4	
	Data type: Integer16		Dyn. index: -	Function diagram: 8060	
	P group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	0		1	0	
Description:Value:	Setting to delete the fault buffer of all existing drive objects.				
	0 : Inactive				
	1: Start to delete the fault buffer of all drive objects				
Dependency:	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136				
Note:	p2147 is automatically set to 0 after execution.				
r2197.3..7	CO/BO: Status word monitoring 1 / ZSW monitor 1				
DC_CTRL_S,   DC_CTRL_R_S, DC_CTRL, DC_CTRL_R			Calculated: -	Access level: 2	
			Dyn. index: -	Function diagram: 2534	
	Data type: Unsigned16   P group: Messages		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Display and BICO output for the first status word of the monitoring functions.				
Bit array:		Signal name	1 signal	0 signal	FP
		n_act >= 0	Yes		8011
		Speed setpoint - actu tolerance t_off	in Yes	No	8011

### 2.2 List of parameters

r2199.1	CO/BO: Status word monitoring 3 / ZSW monitor 3			
DC_CTRL_S,	Can be changed: -	Calculated: -	Acces	
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Func	
DC_CTRL,   DC CTRL R	P group: Messages	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Factor	
	-	-	-	
Description:	Display and BICO output for the third status word of the monitoring functions.			
Bit array:	Bit Signal name   01 for n comparison value reached or exceeded	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal   No	$\begin{aligned} & \text { FP } \\ & 8010 \end{aligned}$



Note:
For bit $00=0$ :
The ramp-down time (p2258) switches to the ramp-up time (p2257) when the sign for the output signal r2260 changes. When the sign changes, the output signal is kept at zero for one arithmetic cycle.
For bit $00=1$ :
When r2260 exhibits a positive gradient, the ramp-up time (p2257) is active; when it exhibits a negative gradient, the ramp-down time (p2258) is active. The sign for r2260 does not have any effect on the ramp time.
For bit $01=0$ :
The integration time of the PID controller is evaluated with the gain factor Kp ( p 2280 ) ( $\mathrm{p} 2285=$ integral time).
For bit 01 = 1 :
The integration time of the PID controller is independent of the gain factor (p2285 = integration time) if p2280 > 0 .
For bit $02=0$ :
When the PID controller is deactivated via p2200, the output signal r2294 is reduced to zero via the ramp-down time p2293.
For bit $02=1$ :
When the PID controller is deactivated via p2200, the output signal r2294 is set directly to zero.
For bit $03=0$ :
The actual values are not limited by p2267 and p2268.
For bit 03 = 1:
The actual values are limited by p2267 and p2268.

p2253[0...n]	CI: Technology controller setpo	1 / Tec_ctrl setp 1	
```DC_CTRL_S (Tech_ctrl), DC_CTRL_R_S (Tech_ctrl), DC_CTRL (Tech_ctrl), DC_CTRL_R (Tech_ctrl)```	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / FloatingPoint32   P group: Technology   Not for motor type: -   Min:	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max:	Access level: 2   Function diagram: 7958   Unit selection:   Expert list: 1   Factory setting:   0
Description: Dependency:	Sets the signal source for the setpoint 1 of the technology controller. See also: p2254, p2255		
$\begin{aligned} & \hline \text { p2254[0...n] } \\ & \text { DC_CTRL_S } \\ & \text { (Tech_ctrl), } \\ & \text { DC_CTRL_R_S } \\ & \text { (Tech_ctrl), DC_CTRL } \\ & \text { (Tech_ctr), } \\ & \text { DC_CTRL_R } \\ & \text { (Tech_ctrl) } \end{aligned}$	CI: Technology controller setpoi Can be changed: U, T Data type: Unsigned32 / FloatingPoint32 P group: Technology Not for motor type: - Min:	t 2 / Tec_ctrl setp 2 Calculated: - Dyn. index: CDS, p0170 Unit group: Scaling: PERCENT Max:	Access level: 3 Function diagram: 7958 Unit selection: - Expert list: 1 Factory setting: 0
Description: Dependency:	Sets the signal source for the setpoint 2 of the technology controller. See also: p2253, p2256		

p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 7958
(Tech_ctrl), DC_CTRL	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL_R	Min:	Max:	Factory setting:
(Tech_ctri)	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller. See also: p2253		
Dependency:			

r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
DC_CTRL_S	Can be changed:	Calculated:	Access level: 3
(Tech_ctrl),	Data type: FloatingPoint32	Dyn. index:	Function diagram: 7958
(Tech ctrl), DC CTRL	P group: Technology	Unit group: 9_1	Unit selection: p0595
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
DC_CTRL_R	Min:	Max:	Factory setting:
(Tech_ctri)	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		

p2263	Technology controller type / Tec_ctrl type		
DC_CTRL_S	Can be changed: T	Calculated: -	Access level: 3
(Tech_ctrl),	Data type: Integer16	Dyn. index: -	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	0	1	0
(Tech_ctrl)	Sets the type of technology controller.		
Description:	$0:$	D component in the actual value signal	
Value:	$1:$	D component in system deviation	

p2264[0...n]	Cl: Technology controller actual value / Tec_ctrl act val		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	-	-	0

Description:	Sets the signal source for the actual value of the technology controller.		
p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRLL	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	$0.000[\mathrm{~s}]$	$60.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
(Tech_ctrl)	Sets the time constant for the actual value filter (PT1) of the technology controller.		

r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
DC_CTRL_S	Can be changed: -	Calculated: -	Access level: 2
(Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: $9 _1$	Unit selection: p0595
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	$-[\%]$	$-[\%]$	$-[\%]$
(Tech_ctrl)			

2.2 List of parameters

p2271	Technology controller actual value inversion (sensor type) / Tech_ctrl act inv		
DC_CTRL_S	Can be changed: T	Calculated: -	Access level: 3
(Tech_ctrl),	Data type: Integer16	Dyn. index: -	Function diagram: 7958
(Tech_ctrl), DC_CTRL	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL_R	Min:	Max:	Factory setting:
ech	0	1	0
Description:	Setting to invert the actual value signal of the technology controller. The inversion depends on the sensor type for the actual value signal.		
Value:	0 : \quad No inversion 1: Inversion actual value signal		
Caution:	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
Note:	The correct setting can - inhibit the technology - increase the motor sp --> If the actual value in --> If the actual value de is inverted).	ows: measure the actu speed increase speed increase	technology controller. be set to 0 (no inversion). be set to 1 (the actual value

r2272

DC_CTRL_S
(Tech_ctrl),
DC_CTRL_R_S (Tech_ctrl), DC_CTRL (Tech_ctrl),
DC_CTRL_R (Tech_ctrl)

Description:
Dependency:
CO: Technology controller actual value scaled / Tech_ctrl act scal

Can be changed: -
Data type: FloatingPoint32
P group: Technology
Not for motor type: -
Min:

- [\%]

Display and connector output for the scaled actual value signal of the technology controller.
See also: p2264, p2265, r2266, p2267, p2268, p2269, p2270, p2271

r2273

DC_CTRL_S
(Tech_ctrl),
DC_CTRL_R_S
(Tech_ctrl), DC_CTRL
(Tech_ctrl),
DC_CTRL_R
(Tech_ctrl)
Description:
Dependency:

CO: Technology controller system deviation / Tec_ctrl sys_dev
Can be changed: - Calculated: - Access level: 2
Data type: FloatingPoint32
P group: Technology
Not for motor type: -
Min:

- [\%]

Dyn. index: -
Unit group: 9_1
Scaling: PERCENT
Max:

- [\%]

Access level: 2
Function diagram: 7958
Unit selection: p0595
Expert list: 1
Factory setting:

- [\%]

Displays the system deviation between the setpoint and actual value of the technology controller. See also: p2263
DC_CTRL_S
(Tech_ctrl),
DC_CTRL_R_S
(Tech_ctrl), DC_CTRL
(Tech_ctrl),
DC_CTRL_R
(Tech_ctrl)

Description: Note:
p2274 Technology controller differentiation time constant / Tec_ctrl D comp T

Technology controller differentiation time constant / Tec_ctrl D comp T
Can be changed: U, T Calculated: -
Data type: FloatingPoint32 Dyn. index:-
P group: Technology
Not for motor type: -
Min:
0.000 [s]

Sets the time constant for the differentiation (D component) of the technology controller.

p2280	Technology controller proportio	l gain / Tec_ctrl Kp	
```DC_CTRL_S (Tech_ctrl), DC_CTRL_R_S (Tech_ctrl), DC_CTRL (Tech_ctrl), DC_CTRL_R (Tech_ctrl)```	Can be changed: U, T   Data type: FloatingPoint32   P group: Technology   Not for motor type: -   Min:   0.000	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   1000.000	Access level: 2   Function diagram: 7958   Unit selection:   Expert list: 1   Factory setting:   1.000
Description:   Dependency:   Note:	Sets the proportional gain (P component) of th See also: p2252 p2280 = 0: The proportional gain is disabled .		
$\begin{aligned} & \hline \text { p2285 } \\ & \text { DC_CTRL_S } \\ & \text { (Tech_ctrl), } \\ & \text { DC_CTRL_R_S } \\ & \text { (Tech_ctrl), DC_CTRL } \\ & \text { (Tech_ctr), } \\ & \text { DC_CTRL_R } \\ & \text { (Tech_ctrl) } \end{aligned}$	Technology controller integral   Can be changed: U, T   Data type: FloatingPoint32   P group: Technology   Not for motor type: -   Min:   0.000 [s]	e / Tec_ctrl Tn   Calculated: -   Dyn. index:   Unit group:   Scaling:   Max: $60.000 \text { [s] }$	Access level: 2   Function diagram: 7958   Unit selection:   Expert list: 1   Factory setting: $0.000 \text { [s] }$
Description:   Dependency:   Note:	Sets the integral time (I component, integrating time constant) of the technology controller. See also: p2252   p2285 = 0: The integral time is disabled.		
$\overline{p 2286[0 \ldots n]}$   DC_CTRL_S (Tech_ctrl), DC_CTRL_R_S (Tech_ctrl), DC_CTRL (Tech_ctrl), DC_CTRL_R (Tech_ctrl)	BI: Hold technology controller in   Can be changed: T   Data type: Unsigned32 / Binary   P group: Technology   Not for motor type: -   Min:	egrator / Tec_ctr inte   Calculated: -   Dyn. index: CDS, p0170   Unit group:   Scaling:   Max:	Access level: 3   Function diagram: 7958   Unit selection:   Expert list: 1   Factory setting:   0
Description:	Sets the signal source to hold the integrator for the technology controller.		
$\begin{aligned} & \hline \text { p2289[0...n] } \\ & \text { DC_CTRL_S } \\ & \text { (Tech_ctrl), } \\ & \text { DC_CTRL_R_S } \\ & \text { (Tech_ctrl), DC_CTRL } \\ & \text { (Tech_ctr), } \\ & \text { DC_CTRL_R } \\ & \text { (Tech_ctrl) } \end{aligned}$	CI: Technology controller preco   Can be changed: U, T   Data type: Unsigned32 / FloatingPoint32   P group: Technology   Not for motor type: -   Min:	rol signal / Tec_ctr p   Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max:	ig   Access level: 2   Function diagram: 7958   Unit selection:   Expert list: 1   Factory setting:   0
Description:	Sets the signal source for the precontrol signal of the technology controller.		




p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	$-100.00[\%]$	$100.00[\%]$	$100.00[\%]$
(Tech_ctrl)			

Description: Sets the scaling for the output signal of the technology controller.

p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_crrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	-	2295[0]	
(Tech_ctrl)	Sets the signal source for the scaling value of the technology controller.		
Description:	See also: p2295		
Dependency:			

### 2.2 List of parameters

p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 7958
DC_CTRL_R_S	Unit group: -	Unit selection: -	
(Tech_ctrl), DC_CTRL	P group: Technology	Not for motor type: -	Scaling: PERCENT


p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s		
DC_CTRL_S	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_crrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 7958
(Tech ctrl), DC CTRL	P group: Technology	Unit group: -	Unit selection:
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
DC_CTRL_R	Min:	Max:	Factory setting:
(Tech_ctrl)		-	2292[0]
Description:	Sets the signal source for the minimum limiting of the technology controller. See also: p2292		
Dependency:			


p2299[0...n]	Cl: Technology controller limit offset / Tech_ctrl lim offs		
DC_CTRL_S	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	-	-	0
(Tech_ctrl)	Sets the signal source for the offset of the output limiting of the technology controller.		


$\mathbf{p 2 3 0 6}$	Technology controller system deviation inversion / Tec_ctr SysDev inv		
DC_CTRL_S	Can be changed: T	Calculated: -	Access level: 3
(Tech_ctrl),	Data type: Integer16	Dyn. index: -	Function diagram: 7958
DC_CTRL_R_S	P group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl), DC_CTRL	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min:	Max:	Factory setting:
DC_CTRL_R	1	1	0

Description: Setting to invert the system deviation of the technology controller.
The setting depends on the type of control loop.
Value: $\quad 0: \quad$ No inversion
1: Inversion
Caution: If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!

Note: The correct setting can be determined as follows:

- inhibit the technology controller (p2200 = 0).
- increase the motor speed and in so doing, measure the actual value signal (of the technology controller).
- if the actual value increases with increasing motor speed, then the inversion should be switched out.
- if the actual value decreases with increasing motor speed, then the inversion should be set.

If value $=0$ :
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).
If value $=1$ :
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).


### 2.2 List of parameters

p2504[0...n]	LR motor/load motor revolutions / Mot/load motor rev
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4) Calculated: - Access level: 1   Data type: Unsigned32 Dyn. index: DDS, p0180 Function diagram: 4704, 4711   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   1 1048576 1
Description:   Dependency:   Note:	Sets the motor revolutions for the gearbox factor between the motor shaft and load shaft.   Gearbox factor = motor revolutions (p2504) / load revolutions (p2505)   See also: p0432, p0433, p2505   The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.
$\begin{aligned} & \hline \mathbf{p 2 5 0 5 [ 0 . . . \mathbf { n } ]} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	LR motor/load load revolutions / Mot/load load rev     Can be changed: C2(4) Calculated: - Access level: 1   Data type: Integer32 Dyn. index: DDS, p0180 Function diagram: 4704, 4711   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   -1048576 1048576 1
Description:   Dependency:   Note:	Sets the load revolutions for the gearbox factor between the motor shaft and load shaft.   Gearbox factor = motor revolutions (p2504) / load revolutions (p2505)   See also: p0432, p0433, p2504   The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.
$\begin{aligned} & \hline \mathbf{r 2 7 0 0} \\ & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	CO: Reference speed / n_ref     Can be changed: - Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Function diagram: -   P group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - -
Description:	Connector output for reference speed p2000.   All speeds specified as relative values refer to this reference quantity.   The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).   This parameter has the unit rpm.
Dependency:   Note:	See also: p2000   This BICO parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.   This BICO parameter is not suitable for interconnecting for cyclic communication.

r2701
DC_CTRL_S,
DC_CTRL_R_S,
DC_CTRL,
DC_CTRL_R

Description: Connector output of the reference quantity for voltages p2001.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). This parameter has the unit [Vrms].
Dependency: See also: p2001



r2704	CO: Reference power / Reference power		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output of the reference quantity for powers p2004.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	The unit of this parameter is the same as the unit selected for p2004.		
Dependency:	This value is calculated as voltage x current for the infeed and as torque x speed for closed-loop controls.		

### 2.2 List of parameters

Note: $\quad$ This BICO parameter provides the numerical value of the reference quantity p2004 in the currently selected unit as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.
This BICO parameter is not suitable for interconnecting for cyclic communication.
The reference power is calculated as follows:
-2 * Pi * reference speed / 60 * reference torque (motor)

- reference voltage * reference current * root(3) (infeed)

r2705	CO: Reference angle / Reference angle		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output of the reference quantity for angles p2005.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit degree.		
Dependency:	See also: p2005		
Note:	This BICO parameter provides the numerical value of the reference quantity p2005 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		


r2706	CO: Reference temperature / Reference temp		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output of the reference quantity for temperatures.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). This parameter has the unit degree Celsius.		
Note:	This BICO parameter provides the numerical value of the reference quantity for the temperature as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		


r2706	CO: Reference temperature / Reference temp		
TM31, TM150	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output of the reference quantity for temperatures.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit degree Celsius.		
Note:	This BICO parameter provides the numerical value of the reference quantity for the temperature as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		



p2720[0...n]	Load gear configuration / Load gear config		
DC_CTRL_S,	Can be changed: C2 $(1,4)$	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: DDS, p0180	Function diagram: 4704
DC CTRLR	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0000 bin
Description:	Sets the configuration for position tracking of a load gear.		
Bit array:	Bit Signal name	1 signal	0 signal FP
	00 Load gear activate position tracking	Yes	No
	01 Axis type	Linear axis	Rotary axis
	02 Load gear reset position	Yes	No

Note: $\quad$ For the following events, the non-volatile, saved position values are automatically reset:

- when an encoder replacement has been identified.
- when changing the configuration of the Encoder Data Set (EDS).
- when adjusting the absolute encoder again

p2721[0...n]	Load gear rotary absolute encoder revolutions virtual / Abs rot rev		
DC_CTRL_S,	Can be changed: C2(1,4)	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: DDS, p0180	Function diagram: 4704
DC CTRLR	P group: Encoder	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	4194303	0
Description:	Sets the number of rotations that can be resolved for a rotary absolute encoder with activated position tracking of the load gear.		
Dependency:	This parameter is only of significance for an absolute encoder (p0404.1 = 1) with activated position tracking of the load gear $($ p2720.0 $=1)$.		
Note:	The resolution that is set must be able to be represented using r2723.		
	For rotary axes/modulo axes, the following applies:		
	This parameter is pre-set with p0421 when activating position tracking and can be changed.		
	For linear axes, the following applies:		
	This parameter is pre-assigned with p0421 when activating position tracking, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.		

### 2.2 List of parameters

p2722[0...n]	Load gear position tracking tolerance window / Pos track tol		
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: $\mathrm{C} 2(1,4)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram:
	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00	4294967300.00	0.00
Description:	Sets a tolerance window for position tracking.		
	After the system is switched on, the difference between the saved position and the actual position is determined, and depending on this, the following is initiated:		
	Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value. Difference outside the tolerance window --> An appropriate message is output.		
Dependency:	See also: F07449		
Caution:	Rotation, for example through a complete encoder range is not detected.		
Note:	The value is entered in integer (complete) encoder pulses.		
	For p2720.0 = 1, the value is automatically pre-assigned quarter of the encoder range.		
	Example:		
	Quarter of the encoder range $=(\mathrm{p} 0408$ * p 0421$) / 4$		
	It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).		


r2723[0...n]	CO: Load gear absolute value / Load gear abs_val		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: DDS, p0180	Function diagram: 4704
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the absolute value after the load gear.		
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW.13.		
Note:	The increments are displayed in the format the same as r0483.		
r2724[0...n]	CO: Load gear position difference / Load gear pos diff		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: DDS, p0180	Function diagram: -
DC_CTRL, DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the position difference before the load gear between switching off and switching on.		
Note:	The increments are displayed in the same format as for r0483/r2723.		
	If the measuring gear of the motor encoder is not activated, the position difference should be read in encoder increments.		
	If the measuring gear of the motor encoder is activated, the position difference is converted using the measuring gear factor.		


p2810[0..1]	BI: AND logic operation inputs / AND inputs		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 2
DC_CCRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2634
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Functions	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	-	0
	-		
Description:	Sets the signal sources for the inputs of the AND logic operation.		
Dependency:	See also: r2811		
Note:	[0]: AND logic operation, input $1-->$ the result is displayed in r2811.0.		
	[1]: AND logic operation, input $2-->$ the result is displayed in r2811.0.		

r2811.0
DC_CTRL_S,
DC_CTRL_R_S,
DC_CTRL,
DC_CTRL_R

Description: Display and BICO output for the result of the AND logic operation.
Bit array:

Dependency:

Bit	Signal name	1 signal
00	AND condition fulfilled	Yes

FP
00 AND condition fulfilled Yes No

p2816[0..1]	BI: OR logic operation inputs / OR inputs		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2634
DC CTRL R	P group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for the inputs of the OR logic operation.		
Dependency:	See also: r2817		
Note:	[0]: OR logic operation, input 1 --> the result is displayed in r2817.0.		
	[1]: OR logic operation, input 2 --> the result is displayed in r2817.0.		


r2817.0	CO/BO: OR logic operation result / OR result		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 2
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 2634
DC_CTRL,	P group: Functions	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output for the result of the OR logic operation.	1 signal	
Bit array:	Bit Signal name	Yes	0 signal
	00 OR condition fulfilled		No
Dependency:	See also: p2816		

### 2.2 List of parameters

p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Setpoints	Scaling: PERCENT	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	$10000.00[\%]$	$0.00[\%]$
	$-10000.00[\%]$		
Description:	Setting and connector output for a fixed percentage value.		
Dependency:	See also: p2901, r2902, p2930		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can be used to interconnect a scaling function (e.g. scaling the main setpoint).		


p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Setpoints	Scaling: PERCENT	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	$10000.00[\%]$	$0.00[\%]$
	$-10000.00[\%]$		
Description:	Setting and connector output for a fixed percentage value.		
Dependency:	See also: p2900, p2930		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)		


r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]
DC_CTRL_S,	Can be changed: - Calculated: -
DC_CTRL_R_S,	Data type: FloatingPoint32 Dyn. index: -
DC_CTRL,   DC CTRL R	P group: Setpoints Unit group: -
	Not for motor type: - Scaling: PERCENT
	Min: Max:
	- [\%] - [\%]
Description:	Display and connector output for frequently used percentage values.
Index:	$[0]=$ Fixed value $+0 \%$
	[1] = Fixed value +5 \%
	[2] = Fixed value +10 \%
	[3] = Fixed value $+20 \%$
	[4] = Fixed value $+50 \%$
	[5] = Fixed value +100 \%
	[6] = Fixed value $+150 \%$
	[7] = Fixed value +200 \%
	[8] = Fixed value -5\%
	[9] = Fixed value -10\%
	[10] = Fixed value -20 \%
	[11] = Fixed value -50 \%
	[12] = Fixed value -100 \%
	[13] = Fixed value -150 \%
	[14] = Fixed value -200 \%
Dependency:	See also: p2900, p2901, p2930
Note:	The signal sources can, for example, be used to interconnect scalings.


p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Setpoints	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min:	Max:	Factory setting:
	-100000.00 [ Nm ]	$100000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	Setting and connector output for a fixed torque value.		
Dependency:	See also: p2900, p2901, r2902		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can, for example, be used to interconnect a supplementary torque.		
p3100	RTC time stamp mode / RTC t_stamp mode		
CU_DC_S,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	2
Description:	Sets the mode for the time stamp		
Value:	$\begin{array}{ll}0: & \text { Operating hours } \\ \text { 1: } & \text { UTC format } \\ 2: & \text { Operating hours }+01\end{array}$		
Notice:	For p3100 = 1:		
	The system prevents this setting from being changed. The parameter can only be influenced after "Set factory setting" or with a "Project download".		
Note:	RTC: Real-time clock		
	UTC: Universal Time Coordinates		
	For p3100 = 1:		
	Time of day synchronization is only possible with this setting.		
	The UTC time started, according to the definition on 01.01.1970 at 00:00:00 and is output in days and milliseconds.		


p3101[0...1]	Setting UTC time / Set UTC time		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index:	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	4294967295	Factory setting:
	0	0	
Description:	Setting the UTC time.		
	This means that the drive system is synchronized to the time specified by the time master.		
	To start p3101[1] must be written to followed by p3101[0]. After writing to p3101[0], the UTC time is accepted.		
Index:	[0] = Milliseconds		
Dependency:	See also: p3100		


r3102[0...1]	Displaying UTC time / Display UTC time		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displaying the current UTC time.		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	See also: p3100		
Notice:	The time display depends on the selected mode (p3100).		
p3103	UTC synchronization process / UTC sync_process		
CU_DC_S,   CU_DC_R_S,CU_DC, CU_DC_R	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		3	0
Description:	Setting the synchronization process.		
Value:	0: PING/SNAP   1: Reserved   2: Parameter   3: Reserved		
Dependency:	See also: p3101, p3104		
Note:	For p3103 $=0$ :		
	The PING/SNAP technique allows the UTC time to be set with a high degree of accuracy using p3104 and p3101.		
	See the SINAMICS S120 Function Manual Drive Functions for more information.		
	Simply setting the UTC time via p3101.		
	For p3103 $=4$ :		
	Only for CU3x0-2 PN X150.		
	Synchronization via Network Time Protocol (NTP).		
p3104	BI: UTC PING synchronization / UTC PING sync		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
Description: Sets the signal source for the PIN		Sets the signal source for the PING event to set the UTC time.	
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r3107[0...3]	UTC synchronization time out of tolerance / UTC t_sync out tol		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram: -
	Data type: Unsigned32 P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the last synchronizing ev	s out of toleranc	

Index:	$\begin{aligned} & \text { [0] = Milliseconds after sync } \\ & \text { [1] }=\text { Days after sync } \\ & \text { [2] }=\text { Milliseconds before sync } \\ & \text { [3] }=\text { Days before sync } \end{aligned}$		
Dependency:	See also: p3109 See also: A01099		
Note:	For r3107[0, 1]: Displays the UTC time after synchroniza For 3107[2, 3]: Displays the UTC time before synchron		
r3108[0..1]	UTC synchronization deviati	TC sync_dev	
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: - Data type: Unsigned32 P group: Not for motor type: - Min:	Calculated: - Dyn. index: - Unit group: - Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 1 Factory setting:
Description: Index:	Displays the absolute value of the last synchronization deviation that was determined. [0] = Milliseconds [1] = Days		
p3109	UTC synchronization tolerance / UTC sync tol		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T Data type: Unsigned16 P group: - Not for motor type: - Min: 0 [ms]	Calculated: - Dyn. index: Unit group: Scaling: Max: 10000 [ms]	Access level: 3 Function diagram: Unit selection: Expert list: 1 Factory setting: 100 [ms]
Description: Dependency:	Sets the tolerance for time of day synchronization. When this tolerance is exceeded, an appropriate alarm is output.		
p3110	External fault 3 switch-on delay / Ext fault 3 t_on		
All objects	Can be changed: U, T Data type: Unsigned16 P group: Messages Not for motor type: - Min: 0 [ms]	Calculated: - Dyn. index: Unit group: Scaling: - Max: 1000 [ms]	Access level: 3 Function diagram: 2546 Unit selection: - Expert list: 1 Factory setting: 0 [ms]
Description: Dependency:	Sets the delay time for external fault 3. See also: p2108, p3111, p3112 See also: F07862		

2.2 List of parameters

p3111	BI: External fault 3 enable / Ext fault 3 enab	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R, TM31, TM15DI_DO, TM150	Can be changed: U, T Calculated: - Data type: Unsigned32 / Binary Dyn. index: - P group: Messages Unit group: - Not for motor type: - Scaling: - Min: Max: - -	Access level: 3 Function diagram: 2546 Unit selection: - Expert list: 1 Factory setting: 1
Description: Dependency:	Sets the signal source for the enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation: - BI: p2108 negated - BI: p3111 - BI: p3112 negated See also: p2108, p3110, p3112 See also: F07862	
$\begin{aligned} & \hline \mathbf{p 3 1 1 1 [0 . . . n] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DCCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	BI: External fault 3 enable / Ext fault 3 enab	Access level: 3 Function diagram: Unit selection: Expert list: 1 Factory setting: 1
Description: Dependency:	Sets the signal source for the enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation: - BI: p2108 negated - BI: p3111 - BI: p3112 negated See also: p2108, p3110, p3112 See also: F07862	
```p3112 CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R,TM31, TM15DI_DO, TM150```	BI: External fault 3 enable negated / Ext flt 3 enab neg	Access level: 3   Function diagram: 2546   Unit selection: -   Expert list: 1   Factory setting:   0
Description:	Sets the signal source for the negated enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation:   - BI: p2108 negated   - BI: p3111   - BI: p3112 negated	
Dependency:	See also: p2108, p3110, p3111   See also: F07862	



### 2.2 List of parameters

## Note:

For bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again, contact Technical Support.
For bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.
For bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.
For bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure,
...). Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
For bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.
For bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.
For bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.
For bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is either faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
For bit 08:
A safety operation monitoring function (Safety) has detected an error.
For bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
For bit 10 :
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles.
For bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.
For bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.

r3114.9... 11	CO/BO: Messages status word global / Msg ZSW global				
CU_DC_S,   CU_DC_R_S, CU_DC,   CU_DC_R	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Functio	
	P group: Displays, signals		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the global status word for messages.				
	The appropriate bit is set if at least one message is present at the drive objects.				
Bit array:		Signal name	1 signal	0 signal	FP
		Group alarm present	Yes	No	8065
		Group fault present	Yes	No	8060
		Safety group message present	Yes	No	-
Note:	The status bits are displayed with delay.				



### 2.2 List of parameters

r3120[0...63]	Component fault / Comp fault		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the component of the fault which has occurred.		
Dependency:	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122		
Note:	Value = 0: Assignment to a component not possible.		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
r3121[0...63]	Component alarm / Comp alarm		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Function diagram: 8065
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the component of the alarm which has occurred.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3123		
Note:	Value $=0$ : Assignment to a component not possible.		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		



Note:
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the fault buffer and the assignment of the indices is shown in r0945.
For bits 20 ... 16:
Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned
Bits $20,19,18,17,16=0,0,0,0,1$--> PROFIdrive message class 1 : hardware fault/software error
Bits $20,19,18,17,16=0,0,0,1,0-->$ PROFldrive message class 2 : line fault
Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault
Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFIdrive message class 4: DC link fault
Bits 20, 19, 18, 17, $16=0,0,1,0,1->$ PROFIdrive message class 5 : power electronics faulted
Bits 20, 19, 18, 17, $16=0,0,1,1,0$--> PROFIdrive message class 6 : overtemperature electronic components
Bits $20,19,18,17,16=0,0,1,1,1-->$ PROFIdrive message class 7 : ground fault/phase fault detected
Bits $20,19,18,17,16=0,1,0,0,0-->$ PROFIdrive message class 8 : motor overload
Bits $20,19,18,17,16=0,1,0,0,1-->$ PROFIdrive message class 9: communication error to the higher-level control Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error Bits $20,19,18,17,16=0,1,1,0,1-->$ PROFIdrive message class 13 : infeed unit faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,0$--> PROFIdrive message class 14: braking controller/Braking Module faulted
Bits $20,19,18,17,16=0,1,1,1,1-->$ PROFIdrive message class 15 : line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0-->$ PROFIdrive message class 16: external measured value/signal state outside the permissible range
Bits 20, 19, 18, 17, $16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted
Bits $20,19,18,17,16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits $20,19,18,17,16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault
Bits $20,19,18,17,16=0,1,1,0,0-->$ PROFIdrive message class 20 : auxiliary unit faulted

r3123[0...63]	Diagnostic attribute alarm / Diag_attr alarm				
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Functi	
	P group: Messages		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Factor	
	-		-	-	
Description:	Displays the diagnostic attribute of the alarm which has occurred.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	-
	11	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
	13	Maintenance required	Yes	No	-
	14	Maintenance urgently required	Yes	No	-
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	-
	18	PROFIdrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	-
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3121				

Note: $\quad$ The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.
For bit 12, 11:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.
For bits 20 ... 16:
Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned
Bits 20, 19, 18, 17, $16=0,0,0,0,1$--> PROFIdrive message class 1 : hardware fault/software error
Bits $20,19,18,17,16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault
Bits $20,19,18,17,16=0,0,0,1,1-->$ PROFIdrive message class 3 : supply voltage fault
Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFIdrive message class 4: DC link fault
Bits 20, 19, 18, 17, $16=0,0,1,0,1$--> PROFIdrive message class 5 : power electronics faulted
Bits 20, 19, 18, 17, $16=0,0,1,1,0-->$ PROFIdrive message class 6: overtemperature electronic components
Bits $20,19,18,17,16=0,0,1,1,1-->$ PROFIdrive message class 7 : ground fault/phase fault detected
Bits 20, 19, 18, 17, $16=0,1,0,0,0$--> PROFIdrive message class 8 : motor overload
Bits 20, 19, 18, 17, $16=0,1,0,0,1$--> PROFIdrive message class 9 : communication error to the higher-level control
Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits 20, 19, 18, 17, $16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, $16=0,1,1,0,0->$ PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error Bits 20, 19, 18, 17, $16=0,1,1,0,1-->$ PROFIdrive message class 13 : infeed unit faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,0-->$ PROFIdrive message class 14: braking controller/Braking Module faulted
Bits $20,19,18,17,16=0,1,1,1,1-->$ PROFIdrive message class 15 : line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0$--> PROFIdrive message class 16 : external measured value/signal state outside the permissible range
Bits $20,19,18,17,16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted
Bits $20,19,18,17,16=1,0,0,1,0-->$ PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits $20,19,18,17,16=1,0,0,1,1-->$ PROFIdrive message class 19: general drive fault
Bits $20,19,18,17,16=0,1,1,0,0$--> PROFIdrive message class 20 : auxiliary unit faulted

r3131	CO: Actual fault value / Act fault val		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the fault value of the oldest active fault.		
Dependency:	See also: r2131, r3132		
r3132	CO: Actual component number / Comp_no act		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the component number of the oldest fault that is still active.		
Dependency:	See also: r2131, r3131		



### 2.2 List of parameters



r3977	BICO counter topology / BICO counter topo		
CU_DC_S,	Can be changed: -	Calculated:	
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index:	Access level: 4
CU_DC_R	P group: Commands	Unit group:	Function diagram: -
	Not for motor type: -	Scaling: -	Unit selection: -
	Min:	Max:	Expert list: 1
	-	Factory setting:	
Description:	Displays the BICO interconnections that have been parameterized in the complete (overall) topology.		
	The counter is incremented by one for each modified BICO interconnection.		
Dependency:	See also: $\mathrm{r} 3978, \mathrm{r} 3979$		


r3978	BICO CounterDevice / BICO CounterDevice		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: -   Data type: Unsigned32   P group: Commands   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 4   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:
Description:	Displays the counter reading for modified BICO interconnections on this device. The counter is incremented by one for each modified BICO interconnection.		
r3979	BICO counter driv	ounter DO	
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R, TM31, TM15DI_DO, TM150	Can be changed:   Data type: Unsigned32   P group: Commands   Not for motor type: -   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 4   Function diagram:   Unit selection: -   Expert list: 1   Factory setting:
Description:	Displays the counter reading for modified BICO interconnections on this drive object. The counter is incremented by one for each modified BICO interconnection.		


p3981	Acknowledge drive object faults / Ackn DO faults		
All objects	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index:	Function diagram: 8060
	P group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	1	Factory setting:
	0	0	
Description:	Setting to acknowledge all active faults of a drive object.		
Notice:	Safety messages cannot be acknowledged using this parameter.		
Note:	Parameter should be set from 0 to 1 to acknowledge.		
	After acknowledgment, the parameter is automatically reset to 0.		


p3985	Master control mode selection / PcCtrl mode select		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the mode to change over the master control / LOCAL mode.		
Value:	0 : $\quad$ Change master control for STW1.0 $=0$   1: Change master control in operation		
Danger: $\qquad$	When changing the master control in operation, the drive can manifest undesirable behavior - e.g. it can accelerate up to another setpoint.		

### 2.2 List of parameters




### 2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { Progress calculations }} \\ & {[1]=\text { Cause }} \end{aligned}$				
Note:	For index [1]:				
	Only for internal Siemens troubleshooting.				
r4021	TM15DI/DO digital inputs, terminal actual value / TM15D DI act val				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9400, 9401, 9402	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=0$ ).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
		DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DIIDO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
		DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
	22	DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Note:	If a DI/DO is parameterized as output ( $p 4028 . x=1$ ), then $r 4021 . x=0$ is displayed. DI/DO: Bidirectional Digital Input/Output				
r4021	TM31 digital inputs terminal actual value / TM31 DI act value				
TM31	Can be changed: -   Data type: Unsigned32		Calculated: -	Access level: 2	
			Dyn. index: -	Function diagram: 9549, 9550, 9552, 9560, 9562	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ( $\mathrm{p} 4095 . \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=0$ ).				


Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-
	06	DI 6 (X530.3)	High	Low	-
	07	DI 7 (X530.4)	High	Low	-
	08	DI/DO 8 (X541.2)	High	Low	-
	09	DI/DO 9 (X541.3)	High	Low	-
		DI/DO 10 (X541.4)	High	Low	-
	11	DI/DO 11 (X541.5)	High	Low	-
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . x=1$ ), then $\mathrm{r} 4021 . x=0$ is displayed.				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
r4022.0.. 23	CO/BO: TM15DI/DO digital inputs status / TM15D DI status				
TM15DI_DO	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9399, 9400, 9401, 9402	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Displays the status of the digital inputs of Terminal Module 15 (TM15).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	$\text { DI/DO } 8 \text { (X521.2) }$	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
	21	DI/DO 21 (X522.7)	High	Low	-
	22	DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Dependency:	See also: r4023, r4024, r4025				
Notice:	For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferredDI/DO: Bidirectional Digital Input/Output				
Note:					

### 2.2 List of parameters




	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
		DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
	22	DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Dependency:	See also: r4022, r4024, r4025				
Notice:	For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferred.				
Note:	DI/DO: Bidirectional Digital Input/Output				
r4023.0... 11	CO/BO: TM31 digital inputs status inverted / TM31 DI status inv				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9549, 9550, 9552, 9560, 9562	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
			Max:	Factory setting:	
	-		-	-	
Description:	Displays the inverted status of the digital inputs of Terminal Module 31 (TM31).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X520.1)	High	Low	-
		DI 1 (X520.2)	High	Low	-
		DI 2 (X520.3)	High	Low	-
		DI 3 (X520.4)	High	Low	-
		DI 4 (X530.1)	High	Low	-
		DI 5 (X530.2)	High	Low	-
		DI 6 (X530.3)	High	Low	-
		DI 7 (X530.4)	High	Low	-
		$\text { DI/DO } 8 \text { (X541.2) }$	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
		DI/DO 10 (X541.4)	High	Low	-
		DI/DO 11 (X541.5)	High	Low	-
Dependency:	See also: r4022				
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
r4024	CO: TM15DI/DO digital inputs $16 . .23$ status / TM15D DI 16-23 St				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9402	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the status of digital inputs $16 \ldots 23$ of Terminal Module 15 (TM15).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 16 (X522.2)	ON	OFF	-
	01	DI/DO 17 (X522.3)	ON	OFF	-
	02	DI/DO 18 (X522.4)	ON	OFF	-
	03	DI/DO 19 (X522.5)	ON	OFF	-
	04	DI/DO 20 (X522.6)	ON	OFF	-
	05	DI/DO 21 (X522.7)	ON	OFF	-
	06	DI/DO 22 (X522.8)	ON	OFF	-
	07	DI/DO 23 (X522.9)	ON	OFF	-
Dependency:	See also: r4022, r4023, r4025				

### 2.2 List of parameters

Note: DI: Digital Input



### 2.2 List of parameters



	BI: TM15DI/DO signal source for terminal DI/DO 5 / TM15D s_s DI/DO 5
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Function diagram: 9400   P group: Commands Unit group: Unit selection: -   Not for motor type: - Scaling: - Expert list:   Min: Max: Factory setting:   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 5 (X520.7) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.5 = 1). DI/DO: Bidirectional Digital Input/Output
$\begin{aligned} & \hline \text { p4036 } \\ & \text { TM15DI_DO } \end{aligned}$	BI: TM15DI/DO signal source for terminal DI/DO 6 / TM15D s_s DI/DO 6
Description:   Note:	Sets the signal source for terminal DI/DO 6 (X520.8) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.6 = 1). DI/DO: Bidirectional Digital Input/Output
p4037   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 7 / TM15D s_s DI/DO 7
Description:   Note:	Sets the signal source for terminal DI/DO 7 (X520.9) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.7=1$ ).   DI/DO: Bidirectional Digital Input/Output
$\overline{p 4038}$   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 8 / TM15D s_s DI/DO 8
Description: Note:	Sets the signal source for terminal DI/DO 8 (X521.2) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.8=1$ ). DI/DO: Bidirectional Digital Input/Output

### 2.2 List of parameters



p4040	BI: TM31 signal source for terminal DI/DO 10 / TM31 S_src DI/DO10			
TM31	Can be changed: U, T	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram	9562
	P group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	0	
Description:	Sets the signal source for terminal DI/DO 10 (X541.4) of Terminal Module 31 (TM31).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.10 = 1).			
	DI/DO: Bidirectional Digital Input/Output			
p4041	BI: TM15DI/DO signal source for terminal DI/DO 11 / TM15D s_s DI/DO 11			
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram	9401
	P group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	0	
Description:	Sets the signal source for terminal DI/DO 11 (X521.5) of Terminal Module 15 (TM15).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.11 = 1).			
	DI/DO: Bidirectional Digital Input/Output			
p4041	BI: TM31 signal source for terminal DI/DO 11 / TM31 s_s DI/DO 11			
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram	9549, 9562
	P group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
			0	
Description:	Sets the signal source for terminal DI/DO 11 (X541.5) of Terminal Module 31 (TM31).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.11 = 1).			
	DI/DO: Bidirectional Digital Input/Output			
p4042	BI: TM15DI/DO signal source for terminal DI/DO 12 / TM15D s_s DI/DO 12			
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram	9401
	P group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	0	
Description:	Sets the signal source for terminal DI/DO 12 (X521.6) of Terminal Module 15 (TM15).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.12 = 1).			
	DI/DO: Bidirectional Digital Input/Output			



r4047	TM15DI/DO digital outputs status / TM15D DO status				
TM15DI_DO	Can be changed: -   Data type: Unsigned32		Calculated: -	Access level: 1	
			Dyn. index: -	Function diagram: 9400, 9401, 9402	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the status of the digital outputs of Terminal Module 15 (TM15).				
Bit array:		Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	High	Low	-
		DI/DO 1 (X520.3)	High	Low	-
		DI/DO 2 (X520.4)	High	Low	-
		DI/DO 3 (X520.5)	High	Low	-
		DI/DO 4 (X520.6)	High	Low	-
		DI/DO 5 (X520.7)	High	Low	-
		DI/DO 6 (X520.8)	High	Low	-
		DI/DO 7 (X520.9)	High	Low	-
		DI/DO 8 (X521.2)	High	Low	-
		DI/DO 9 (X521.3)	High	Low	-
		DI/DO 10 (X521.4)	High	Low	-
		DI/DO 11 (X521.5)	High	Low	-
		DI/DO 12 (X521.6)	High	Low	-
		DI/DO 13 (X521.7)	High	Low	-
		DI/DO 14 (X521.8)	High	Low	-
		DI/DO 15 (X521.9)	High	Low	-
		DI/DO 16 (X522.2)	High	Low	-
		DI/DO 17 (X522.3)	High	Low	-
		DI/DO 18 (X522.4)	High	Low	-
		DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
		DI/DO 23 (X522.9)	High	Low	-
Note:	Inver The DI/D	sion using p4048 has etting of the DI/DO a : Bidirectional Digita	ccount.   utput is of no signi		
r4047	TM31 digital outputs status / TM31 DO status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9556, 9560, 9562	
	P group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
			Max:	Factory setting:	
	-			-	
Description:	Displays the status of the digital outputs of Terminal Module 31 (TM31).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DO 0 (X542.1-3)	High	Low	-
		DO 1 (X542.4-6)	High	Low	-
		DI/DO 8 (X541.2)	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
		DI/DO 10 (X541.4)	High	Low	-
		DI/DO 11 (X541.5)	High	Low	-
Note:	Inversion using p4048 has been taken into account.   The setting of the DI/DO as either input or output is of no significance (p4028). DO: Digital Output   DI/DO: Bidirectional Digital Input/Output				

### 2.2 List of parameters




p4056[0...1]	TM31 analog inputs type / TM31 Al type		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	5	4
Description:	Sets the type of analog inputs of Terminal Module 31 (TM31).		
	$\mathrm{p} 4056[\mathrm{x}]=0,4$ correspond to a voltage input (r4052, p 4057 , p 4059 are displayed in V ).		
	$\mathrm{p} 4056[\mathrm{x}]=2,3,5$ correspond to a current input (r4052, p 4057 , p4059 are displayed in mA ).		
	In addition, the associated switch S 5 must be appropriately set.		
	AI 0: S5.0 = V --> voltage input, S5.0 = I --> current input (burden resistor = 250 Ohm )		
	Al 1: S5.1 = V --> voltage input, S5.1 = I --> current input (burden resistor = 250 Ohm)		
Value:	0 : Unipolar voltage input ( $0 \vee \ldots+10 \mathrm{~V}$ )		
	2: Unipolar current input ( $0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ )		
	3: Unipolar current input monitored ( +4 mA to +20 mA )		
	4: Bipolar voltage input (-10 V ... +10 V)		
	5: Bipolar current input ( -20 mA to +20 mA )		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\text { AI } 1(\mathrm{X} 521.3 / \mathrm{X} 521.4, \mathrm{~S} 5.1)} \end{aligned}$		
Alarm:$\qquad$	The maximum voltage difference between the analog input terminals Al+, Al- and the ground of the TM31 (X520.6, X530.3) may not exceed 35 V .		
	For operation with the load resistor switched in, the voltage between the differential inputs Al+ and AI- may not exceed 15 V or the impressed current of 60 mA ; if this is not carefully observed, the input will be damaged.		
Notice:   Note:	For operation as a voltage input/current input, switch S5.0 or 55.1 must be appropriately set.		
	When changing p4056, the parameters of the scaling characteristic (p4057, p4058, p4059, p4060) are overwritten with the following default values:		
	For p4056 $=0,4$, p4057 is set to 0.0 V , p4058 to $0.0 \%$, p4059 to 10.0 V and p4060 to $100.0 \%$.		
	For p4056 $=2,5, \mathrm{p} 4057$ is set to $0.0 \mathrm{~mA}, \mathrm{p} 4058$ to $0.0 \%$, p4059 to 20.0 mA and p4060 to $100.0 \%$.		
	For $\mathrm{p} 4056=3, \mathrm{p} 4057$ is set to 4.0 mA , p4058 to $0.0 \%$, 44059 to 20.0 mA and p 4060 to $100.0 \%$.		
p4057[0...1]	TM31 analog inputs characteristic value $\times 1 /$ TM31 AI char $\times 1$		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-20.000	20.000	0.000
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the $x$ coordinate (input voltage in $V$ or input current in mA ) of the 1 st value pair of the characteristic.		
Index:	$\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$		
Dependency:	The unit of this parameter ( V or mA ) depends on the analog input type.		
	See also: p4056		
Notice:	This parameter is automatically overwritten when the analog input type ( p 4056 ) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		



### 2.2 List of parameters

p4061[0...1]	TM31 analog inputs wire breakage monitoring response threshold TM31 WireBrkThresh
TM31	Can be changed: U, T Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Function diagram: 9566,9568   P group: Terminals Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   $0.00[\mathrm{~mA}]$ $20.00[\mathrm{~mA}]$ $2.00[\mathrm{~mA}]$
Description: Index: Dependency:	Sets the response threshold for wire-breakage monitoring of the analog inputs of Terminal Module 31 (TM31). $\begin{aligned} & {[0]=\text { Al } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$   For the following analog input type, the wire breakage monitoring is active:   p4056[x] = 3 (unipolar current input monitored (+4 mA ... +20 mA))   See also: p4056
$\begin{aligned} & \text { p4062[0...1] } \\ & \text { TM31 } \end{aligned}$	TM31 analog inputs wire breakage monitoring delay time / TM31 wirebrk t_del
Description: Index:	Sets the delay time for wire-breakage monitoring of the analog inputs on Terminal Module 31 (TM31). $\begin{aligned} & {[0]=\text { Al } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
p4063[0...1]   TM31	TM31 analog inputs offset / TM31 AI offset
Description: Index:	Sets the offset for the analog inputs of Terminal Module 31 (TM31).   The offset is added to the input signal before the scaling characteristic. $\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
p4066[0...1]	TM31 analog inputs activate absolute value generation / TM31 Al absVal act
тM31	Can be changed: U,T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Function diagram: 9566, 9568   P group: Terminals Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 1 0
Description: Value:	Activates the absolute value generation for the analog input signals of Terminal Module 31 (TM31).   0 : No absolute value generation   1: Absolute value generation switched in
Index:	$\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0 })} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$


p4067[0...1]	BI: TM31 analog inputs invert signal source / TM31 Al inv s_src		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$		
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description: Index:	Sets the signal source to invert the analog inputs signals of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4068[0...1]	TM31 analog inputs window to suppress noise / TM31 Al window		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index:	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	20.00 [\%]	0.00 [\%]
Description:	Sets the noise suppression window of the analog inputs for Terminal Module 31 (TM31). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Note:	AI: Analog Input		
p4069[0..1]	BI: TM31 analog inputs signal source for enable / TM31 Al enable		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type:	Scaling:	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description: Index:	Sets the signal source for the enable signal of the analog inputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4071[0..1]	CI: TM31 analog outputs signal source / TM31 AO s_src		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 9549, 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description: Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$		
Note:	AO: Analog Output		

### 2.2 List of parameters

r4072[0...1]	TM31 analog outputs output value currently referred / TM31 AO outp_val		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual referred output value of the analog outputs of Terminal Module 31 (TM31).		
Index:	$[0]=$ AO 0 (X522.1, X522.2, X522.3)		


p4073[0...1]	TM31 analog outputs smoothing time constant / TM31 AO T_smooth		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs of Terminal Module 31 (TM31).		
Index:	[0] = AO 0 ( X 522.1, X522.2,		


r4074[0...1]	TM31 analog outputs current output voltage/current / TM31 AO U/I_outp		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual output voltage in $\vee$ when set as voltage output.		
	Displays the actual output voltage in mA when set as current output.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, ~ X 522.3)} \\ & {[1]=A O 1(X 522.4, ~ X 522.5, ~ X 522.6)} \end{aligned}$		
Dependency:	The type of the analog output AO $\times$ (voltage or current output) is set using p4076.		
	See also: p4076		
Note:	AO: Analog Output		


p4075[0...1]	TM31 analog outputs activate absolute value generation / TM31 AO absVal act		
TM31	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Activates the absolute value generation for the analog outputs of Terminal Module 31 (TM31).		
Value:	0: $\quad$ No absolute value   1: Absolute value		
Index:	$\begin{aligned} & {[0]=A O 0(X 522.1, X 52} \\ & {[1]=\text { AO } 1 \text { (X522.4, X52 }} \end{aligned}$		



### 2.2 List of parameters

Dependency:	The unit of this parameter ( V or mA ) depends on the analog output type.		
	See also: p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4079[0...1]	TM31 analog outputs characteristic value x2 / TM31 AO char x2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		
	[1] = AO 1 (X522.4, X522.5, X522.6)		
Dependency:	See also: p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4080[0...1]	TM31 analog outputs characteristic value y2 / TM31 AO char y2		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-20.000	20.000	10.000
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the $y$ coordinate (output voltage in $V$ or output current in mA ) of the 2 nd value pair of the characteristic.		
Index:	$[0]=A O 0(X 522.1, X 522.2, X 522.3)$		
Dependency:	The unit of this parameter ( V or mA ) depends on the analog output type.		
	See also: p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4082[0...1]	BI: TM31 analog outputs invert signal source / TM31 AO inv s_src		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to invert the analog output signals of Terminal Module 31 (TM31).		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		


p4083[0...1]	TM31 analog outputs offset / TM31 AO offset		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9572
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-20.000	20.000	0.000
Description:	Sets the offset for the analog outputs of Terminal Module 31 (TM31).		
	The offset is added to the output signal after the scaling characteristic.		
Index:	$[0]=\mathrm{AO} 0(\mathrm{X} 522.1, \mathrm{X} 522.2, \mathrm{X} 522.3)$$[1]=\mathrm{AO} 1$ (X522.4, X522.5, X522.6)		
Dependency:	The unit of this parameter ( V or mA ) depends on the analog input type.		
	See also: p4076		
Note:	This means, for example, the offset of a downstream isolating amplifier can be compensated.		
p4086	BI: TM15DI/DO signal source for terminal DI/DO 16 / TM15D s_s DI/DO 16		
TM15DI_DO	Can be changed: $U, T$   Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Function diagram: 9402
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	0
Description: Note:	Sets the signal source for terminal DI/DO 16 (X522.2) of Terminal Module 15 (TM15).		
	Prerequisite: The DI/DO must be set as an output (p4028.16 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4087	BI: TM15DI/DO signal source for terminal DI/DO 17 / TM15D s_s DI/DO 17		
TM15DI_DO	Can be changed: U, T   Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Function diagram: 9402
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description: Note:	Sets the signal source for terminal DI/DO 17 (X522.3) of Terminal Module 15 (TM15).		
	Prerequisite: The DI/DO must be set as an output (p4028.17 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4088	BI: TM15DI/DO signal source for terminal DI/DO 18 / TM15D s_s DI/DO 18		
TM15DI_DO	Can be changed: $U, T$   Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Function diagram: 9402
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for terminal DI/DO 18 (X522.4) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.18=1).		
	DI/DO: Bidirectional Digital Input/Output		


	BI: TM15DI/DO signal source for terminal DI/DO 19 / TM15D s_s DI/DO 19
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Function diagram: 9402   P group: Commands Unit group: Unit selection:   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 19 (X522.5) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.19=1$ ).   DI/DO: Bidirectional Digital Input/Output
p4090   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 20 / TM15D s_s DI/DO 20     Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Function diagram: 9402   P group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 20 (X522.6) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.20=1$ ).   DI/DO: Bidirectional Digital Input/Output
p4091   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 21 / TM15D s_s DI/DO 21
Description:   Note:	Sets the signal source for terminal DI/DO 21 (X522.7) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.21=1$ ).   DI/DO: Bidirectional Digital Input/Output
p4092 TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 22 / TM15D s_s DI/DO 22
Description:   Note:	Sets the signal source for terminal DI/DO 22 (X522.8) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.22=1$ ). DI/DO: Bidirectional Digital Input/Output


p4093	BI: TM15DI/DO signal source for terminal DI/DO 23 / TM15D s_s DI/DO 23			
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9402	
	P group: Commands	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
		Max:	Factor	
	-	-	0	
Description: Note:	Sets the signal source for terminal DI/DO 23 (X522.9) of Terminal Module 15 (TM15).			
	Prerequisite: The DI/DO must be set as an output (p4028.23 = 1).			
	DI/DO: Bidirectional Digital Input/Output			
r4094.0... 23	BO: TM15 digital inputs status inverted raw data internal / TM15 DI st raw dat			
TM15DI_DO	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Functi	
	P group: Commands	Unit group: -	Unit se	
	Not for motor type:	Scaling: -	Expert	
	Min:	Max:	Factor	
	-	-	-	
Description:	Displays the inverted status of the raw data of the digital inputs of the Terminal Module 15 (TM15).			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 (X520.2)	High	Low	-
	$01 \text { DI/DO } 1 \text { (X520.3) }$	High	Low	-
	$02 \quad \mathrm{DI} / \mathrm{DO} 2(\mathrm{X} 520.4)$	High	Low	-
	$03 \text { DI/DO } 3 \text { (X520.5) }$	High	Low	-
	04 DI/DO 4 (X520.6)	High	Low	-
	05 DI/DO 5 (X520.7)	High	Low	-
	06 DI/DO 6 (X520.8)	High	Low	-
	07 DI/DO 7 (X520.9)	High	Low	-
	08 DI/DO 8 (X521.2)	High	Low	-
	09 DI/DO 9 (X521.3)	High	Low	-
	10 DI/DO 10 (X521.4)	High	Low	-
	11 DI/DO 11 (X521.5)	High	Low	-
	12 DI/DO 12 (X521.6)	High	Low	-
	$13 \text { DI/DO } 13 \text { (X521.7) }$	High	Low	-
	$14 \text { DI/DO } 14 \text { (X521.8) }$	High	Low	-
	15 DI/DO 15 (X521.9)	High	Low	-
	16 DI/DO 16 (X522.2)	High	Low	-
	17 DI/DO 17 (X522.3)	High	Low	-
	18 DI/DO 18 (X522.4)	High	Low	-
	19 DI/DO 19 (X522.5)	High	Low	-
	20 DI/DO 20 (X522.6)	High	Low	-
	21 DI/DO 21 (X522.7)	High	Low	-
	22 DI/DO 22 (X522.8)	High	Low	-
	23 DI/DO 23 (X522.9)	High	Low	-
Notice:	The raw data of the digital inputs is directly displayed (e.g. without any debounce).			
Note:	Should only used for internal Siemens purposes (alternative r4022, r4023).			
p4095	TM15DI/DO digital inputs simulation mode / TM15D DI sim_mode			
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$ Data type: Unsigned32	Calculated: -	Access level: 2	
			Function diagram: 9400, 9401, 9402	
	P group: Terminals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Factory setting:	
	-	-	00000000000000000000 000000000000 bin	
Description:	Sets the simulation mode for the	of Terminal Mod		

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Simulation	Terminal eval	-
	01	DI/DO 1 (X520.3)	Simulation	Terminal eval	-
	02	DI/DO 2 (X520.4)	Simulation	Terminal eval	-
	03	DI/DO 3 (X520.5)	Simulation	Terminal eval	-
	04	DI/DO 4 (X520.6)	Simulation	Terminal eval	-
	05	DI/DO 5 (X520.7)	Simulation	Terminal eval	-
	06	DI/DO 6 (X520.8)	Simulation	Terminal eval	-
	07	DI/DO 7 (X520.9)	Simulation	Terminal eval	-
	08	DI/DO 8 (X521.2)	Simulation	Terminal eval	-
	09	DI/DO 9 (X521.3)	Simulation	Terminal eval	-
	10	DI/DO 10 (X521.4)	Simulation	Terminal eval	-
	11	DI/DO 11 (X521.5)	Simulation	Terminal eval	-
	12	DI/DO 12 (X521.6)	Simulation	Terminal eval	-
	13	DI/DO 13 (X521.7)	Simulation	Terminal eval	-
	14	DI/DO 14 (X521.8)	Simulation	Terminal eval	-
	15	DI/DO 15 (X521.9)	Simulation	Terminal eval	-
	16	DI/DO 16 (X522.2)	Simulation	Terminal eval	-
	17	DI/DO 17 (X522.3)	Simulation	Terminal eval	-
	18	DI/DO 18 (X522.4)	Simulation	Terminal eval	-
	19	DI/DO 19 (X522.5)	Simulation	Terminal eval	-
	20	DI/DO 20 (X522.6)	Simulation	Terminal eval	-
	21	DI/DO 21 (X522.7)	Simulation	Terminal eval	-
	22	DI/DO 22 (X522.8)	Simulation	Terminal eval	-
	23	DI/DO 23 (X522.9)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
	See also: p4096				
Alarm:	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal				
	Module is being activated or deactivated.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI/DO: Bidirectional Digital Input/Output				


p4095	TM31 digital inputs simulation mode / TM31 Dl sim_mode				
TM31	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9549, 9550, 9552, 9560, 9562	
	P	up: Terminals	Unit group: -	Unit selectio	
	Not	or motor type: -	Scaling: -	Expert list:	
	Min		Max:	Factory sett	
	-		-	000000000	
Description:	Sets the simulation mode for the digital inputs of Terminal Module 31 (TM31).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X520.1)	Simulation	Terminal eval	-
		DI 1 (X520.2)	Simulation	Terminal eval	-
		DI 2 (X520.3)	Simulation	Terminal eval	-
		DI 3 (X520.4)	Simulation	Terminal eval	-
		DI 4 (X530.1)	Simulation	Terminal eval	-
	05	DI 5 (X530.2)	Simulation	Terminal eval	-
		DI 6 (X530.3)	Simulation	Terminal eval	-
		DI 7 (X530.4)	Simulation	Terminal eval	-
		DI/DO 8 (X541.2)	Simulation	Terminal eval	-
		DI/DO 9 (X541.3)	Simulation	Terminal eval	-
		DI/DO 10 (X541.4)	Simulation	Terminal eval	-
		DI/DO 11 (X541.5)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
	See also: p4096				
Alarm: I	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or deactivated.				


Note:	This   DI:   DI/	parameter is not saved   igital Input   : Bidirectional Digita	cked-up (p0971,		
p4096		DI/DO digital in	on mode, se	D DI sim	
TM15DI_DO		be changed: $\mathrm{U}, \mathrm{T}$		Acces	
		type: Unsigned32	Dyn. index: -	Functi   9402	$0,9401,$
		up: Terminals	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max:	Factor	
	-		-	$\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	
Description:	Set	he setpoint for the in	simulation mode	of Termin	
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	High	Low	-
		DI/DO 1 (X520.3)	High	Low	-
		DI/DO 2 (X520.4)	High	Low	-
		DI/DO 3 (X520.5)	High	Low	-
		DI/DO 4 (X520.6)	High	Low	-
		DI/DO 5 (X520.7)	High	Low	-
		DI/DO 6 (X520.8)	High	Low	-
		DI/DO 7 (X520.9)	High	Low	-
		DI/DO 8 (X521.2)	High	Low	-
		DI/DO 9 (X521.3)	High	Low	-
		$\text { DI/DO } 10 \text { (X521.4) }$	High	Low	-
		$\text { DI/DO } 11 \text { (X521.5) }$	High	Low	-
		$\text { DI/DO } 12 \text { (X521.6) }$	High	Low	-
		$\text { DI/DO } 13 \text { (X521.7) }$	High	Low	-
		DI/DO 14 (X521.8)	High	Low	-
		DI/DO 15 (X521.9)	High	Low	-
		DI/DO 16 (X522.2)	High	Low	-
		DI/DO 17 (X522.3)	High	Low	-
		DI/DO 18 (X522.4)	High	Low	-
		DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		$\text { DI/DO } 21 \text { (X522.7) }$	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
		DI/DO 23 (X522.9)	High	Low	-
Dependency:		simulation of a digital   also: p4095	sing p4095.		
Note:		parameter is not saved   Bidirectional Digita	cked-up (p0971,		
p4096	TM	1 digital inputs	ode setpoint	setp	
TM31	Can	be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Acces	
		type: Unsigned32	Dyn. index: -	Funct   9552,	9, 9550,
	P g	up: Terminals	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max:	Factor	
	-		-	00000	
Description:		the setpoint for the in	simulation mode	of Termin	31).

### 2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-
	06	DI 6 (X530.3)	High	Low	-
	07	DI 7 (X530.4)	High	Low	-
	08	DI/DO 8 (X541.2)	High	Low	-
	09	DI/DO 9 (X541.3)	High	Low	-
		$\text { DI/DO } 10 \text { (X541.4) }$	High	Low	-
	11	$\text { DI/DO } 11 \text { (X541.5) }$	High	Low	-
Dependency:		imulation of a digital lso: p4095	$1095 .$		
Note:	This DI: DI/D	parameter is not saved gital Input   : Bidirectional Digita	p (p0971,		


p4097[0...1]	TM31 analog inputs simulation mode / TM31 Al sim_mode	
TM31	Can be changed: U, T Calculated: -	Access level: 2
	Data type: Integer16 Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	01	0
Description:	Sets the simulation mode for the analog inputs of Terminal Module 31 (TM31).	
Value:	0 : $\quad$ Terminal evaluation for analog input $x$   1: $\quad$ Simulation for analog input $x$	
Index:	$\begin{aligned} & {[0]=\text { Al } 0(\text { X521.1/X521.2, S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$	
Dependency:	The setpoint for the input voltage is specified via p4098. See also: p4098	
Note:	This parameter is not saved when data is backed-up (p0971, p0977). AI: Analog Input	


p4098[0...1]	TM31 analog inputs simulation mode setpoint / TM31 Al sim setp		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9566, 9568
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-20.000	20.000	0.000
Description:	Sets the setpoint for the input value in simulation mode of the analog inputs of Terminal Module 31 (TM31).		
Index:	$\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$		
Dependency:	The simulation of an analog input is selected using p4097.		
	If Al x is parameterized as voltage input ( p 4056 ), then the setpoint is a voltage in V .		
	If Al x is parameterized as current input (p4056), then the setpoint is a current in mA.		
	See also: p4056, p4097		
Note:	This parameter is not saved when data is backed-up (p0971, p0977).		
	AI: Analog Input		


p4099	TM15DI/DO inputs/outputs sampling time / TM15D I/O t_sampl		
TM15DI_DO	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9399, 9400
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 15 (TM15).		
Dependency:	The parameter can only be modified for $00009=3,29$.		
	The following applies for the sampling time:		
	The sampling times at a DRIVE-CLiQ line must be integral multiples of one another.		
	The sampling times of this TM must be an integral multiple of a servo or vector drive that exists in the system.		
	The minimum permissible sampling time is $125 \mu \mathrm{~s}$.		
	See also: p0009, r0110, r0111		
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
	Parameter p4099[0] must never be equal to zero.		
p4099[0...2]	TM31 inputs/outputs sampling time / TM31 I/O t_sample		
TM31	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9549, 9550
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { Digital inputs/outputs }(\mathrm{D}} \\ & {[1]=\text { Analog inputs }(\mathrm{AI})} \\ & {[2]=\text { Analog outputs }(\mathrm{AO})} \end{aligned}$		
Dependency:	The parameter can only be modified for $\mathrm{p} 0009=3,29$.		
	The following applies for the sampling time:		
	The sampling times at a DRIVE-CLiQ line must be integral multiples of one another.		
	The sampling times of this TM must be an integral multiple of a servo or vector drive that exists in the system. The minimum permissible sampling time is $125 \mu \mathrm{~s}$.		
	The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
	See also: p0009, r0110, r0111		
Notice:	The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
Note:	The changed sampling time Parameter p4099[0] must ne	ffective after a con zero.	$00009 \text {-> 0). }$
p4100[0..11] TM150 sensor type / TM150 sensor type			
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 9626, 9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	6	5
Description:	Sets the sensor type for Terminal Module 150 (TM150)		
	This means that the temperature sensor type is selected and the evaluation is switched in.		

### 2.2 List of parameters

Value:	$0:$	Evaluation disabled
	1:	PTC thermistor
	2:	KTY84
	4:	Bimetallic NC contact
	5:	PT100
	6:	PT1000
Index:	[0] = Temperature channel 0	
	[1] = Temperature channel 1	
	[2] = Temperature channel 2	
	[3] = Temperature channel 3	
	[4] = Temperature channel 4	
	[5] = Temperature channel 5	
	[6] = Temperature channel 6	
	[7] = Temperature channel 7	
	[8] = Temperature channel 8	
	[9] = Temperature channel 9	
	[10] = Temperature channel 10	
	[11] = Temperature channel 11	
Notice:	For $\mathrm{p} 4102[0 . .23]=251{ }^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.	
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $\mathrm{p} 4100[0 \ldots 11]=1,4$ ), the following applies:	
	To activate the corresponding alarm or fault, p4102[0...23] must be set $<=250{ }^{\circ} \mathrm{C}$.	
Note:	The temperature sensors are connected to the following terminals:	
	X531 = channel 0 (for 2x2 wire evaluation, additionally channel 6)	
	X532 $=$ channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)	
	X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)	
	X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9)	
	X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)	
	X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)	
	Details on the wiring are included in the parameter description for p 4108.	


p4100	TM31 sensor type / TM31 sensor type		
TM31	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 9576
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	6	0
Description:	Sets the sensor type for Terminal Module 31 (TM31)		
	This means that the temperature sensor type is selected and the evaluation is switched in.		
Value:	0 : Evaluation disabled		
	1: PTC thermistor		
	$\begin{array}{ll}\text { 2: } & \text { KTY84 } \\ \text { 6: } & \text { PT1000 }\end{array}$		
Notice:	For p4102[0...1] = $251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.		
	For sensor type "PTC thermistor" (p4100 = 1), the following applies:		
	To activate the corresponding alarm or fault, p4102[0...1] must be set <= $250{ }^{\circ} \mathrm{C}$.		
Note:	The temperature sensor is connected at terminals X522.7(+) and X522.8(-).		


r4101[0...11]	TM150 sensor resistance / TM150 R_sensor		
TM150	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9626,9627
	P group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-[o h m]$	$-[o h m]$	$-[o h m]$
Description:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module.		


Index:	[0] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11
Note:	The maximum measurable resistance value is approx. 2500 Ohm.   For $1 \times 2$ and $2 \times 2$ wire evaluation:   The actual sensor resistance is displayed in this parameter(i.e. the wire resistance (p4110) is taken into account).   The temperature sensors are connected to the following terminals:   X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6 )   X532 = channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)   X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)   X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9 )   X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)   X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)   Details on the wiring are included in the parameter description for p 4108.
$\begin{aligned} & \overline{\mathbf{r} 4101} \\ & \text { TM31 } \end{aligned}$	TM31 sensor resistance / TM31 R_sensor     Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Function diagram: 9576   P group: Terminals Unit group: Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 1   Min: Max: Factory setting:   $-\left[\begin{array}{ll}\text { Ohm }] & -[o h m\end{array}\right]$ $-[o h m]$
Description:   Note:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module.   The maximum measurable resistance value is approx. 1720 Ohm.   The temperature sensor is connected at terminals $\mathrm{X} 522.7(+)$ and $\mathrm{X} 522.8(-)$.
p4102[0...23]	TM150 fault threshold/alarm threshold / TM150 F/A_thresh
TM150	Can be changed: U, T Calculated: - Access level: 1   Data type: Integer16 Dyn. index: Function diagram: 9626,9627   P group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   $-99\left[{ }^{\circ} \mathrm{C}\right]$ $251\left[{ }^{\circ} \mathrm{C}\right]$ $251\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold/alarm threshold for Terminal Module 150 (TM150).   For alarms (even indices [0, 2, $4 \ldots 22]$ ), the following applies:   - the corresponding alarm is initiated, if the temperature actual value associated with a temperature channel exceeds the associated alarm threshold ( $\mathrm{r} 4105[\mathrm{x}]>\mathrm{p} 4102[2 \mathrm{x}]$. In addition, the timer is started ( $\mathrm{p} 4103[\mathrm{x}]$ ).   - the alarm remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}]$ ) - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ).   For faults (uneven indices [1, 3, $5 \ldots 23]$ ), the following applies:   - the corresponding fault is initiated, if the temperature actual value associated with a temperature channel exceeds the associated fault threshold ( $r 4105[x]>p 4102[2 x+1]$ or the associated timer ( $p 4103[x]$ has expired.   - the fault remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}+1 \mathrm{]}$ ) - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ) and the fault has been acknowledged.

### 2.2 List of parameters

Index:	[0] = Channel 0 alarm threshold (A35211)   [1] = Channel 0 fault threshold (F35207)   [2] = Channel 1 alarm threshold (A35212)   [3] = Channel 1 fault threshold (F35208)   [4] = Channel 2 alarm threshold (A35213)   [5] = Channel 2 fault threshold (F35209)   [6] = Channel 3 alarm threshold (A35214)   [7] = Channel 3 fault threshold (F35210)   [8] = Channel 4 alarm threshold (A35410)   [9] = Channel 4 fault threshold (F35400)   [10] = Channel 5 alarm threshold (A35411)   [11] = Channel 5 fault threshold (F35401)   [12] = Channel 6 alarm threshold (A35412)   [13] = Channel 6 fault threshold (F35402)   [14] = Channel 7 alarm threshold (A35413)   [15] = Channel 7 fault threshold (F35403)   [16] = Channel 8 alarm threshold (A35414)   [17] = Channel 8 fault threshold (F35404)   [18] = Channel 9 alarm threshold (A35415)   [19] = Channel 9 fault threshold (F35405)   [20] = Channel 10 alarm threshold (A35416)   [21] = Channel 10 fault threshold (F35406)   [22] = Channel 11 alarm threshold (A35417)   [23] = Channel 11 fault threshold (F35407)
Dependency:	See also: p4103, r4104, r4105, p4118
Notice:	Faults F35207 ... F35210 and F35400 ... F35407 only cause the drive to be shut down if there is at least one BICO interconnection between the drive and the TM150.   For $\mathrm{p} 4102[0 \ldots 23]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.   For sensor type "PTC thermistor" (p4100[0...11] = 1), the following applies:   To activate the corresponding alarm or fault, p4102[0...23] must be set $<=250^{\circ} \mathrm{C}$.
Note:	The hysteresis can be set in p4118[0...11].
p4102[0...1]	TM31 fault threshold/alarm threshold / TM31 F/A_thresh
TM31	Can be changed: U, T Calculated: - Access level: 1   Data type: Integer16 Dyn. index: - Function diagram: 9576   P group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list:   Min: Max: Factory setting:   $-48\left[{ }^{\circ} \mathrm{C}\right]$ $251\left[{ }^{\circ} \mathrm{C}\right]$ $[0] 100\left[{ }^{\circ} \mathrm{C}\right]$     $[1] 120\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold/alarm threshold for Terminal Module 31 (TM31).   A35211 is initiated, if the temperature actual value r4105[0] > p4102[0]   F35207 is initiated if the temperature actual value $\mathrm{r} 4105[0]>p 4102[1]$ or timer $\mathrm{p} 4103[0]$ has expired   For alarm A35211 the following applies:   - Remains until the temperature actual value (r4105) reaches or falls below the value ( $\mathrm{p} 4102[0]$ - hysteresis).   For fault F35207 the following applies:   - Remains until the temperature actual value (r4105) reaches or falls below the value (p4102[1] - hysteresis) and the fault has been acknowledged.   - the hysteresis value is 5 K and cannot be changed by the user.
Index:	[ 0 ] = Alarm threshold   [1] = Fault threshold
Dependency:	See also: r4104
Notice:	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.   For p4102[0...1] $=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.   For sensor type "PTC thermistor" ( $\mathrm{p} 4100=1$ ), the following applies:   To activate the alarm or fault, p4102[0...1] must be set $<=250^{\circ} \mathrm{C}$.



### 2.2 List of parameters

Dependency:	See also: r4104				
Alarm: 1	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.				
Note:	With p4103 $=0$, the timer is deactivated and only the fault threshold is effective.				
r4104.0.. 23		TM150 temperature	status / TM	tus	
TM150	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Function diagram: 9626, 9627	
	P group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 150 (TM150).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Channel 0 alarm present	Yes	No	9626
	01	Channel 0 fault present	Yes	No	9626
	02	Channel 1 alarm present	Yes	No	9626
	03	Channel 1 fault present	Yes	No	9626
	04	Channel 2 alarm present	Yes	No	9626
	05	Channel 2 fault present	Yes	No	9626
	06	Channel 3 alarm present	Yes	No	9626
	07	Channel 3 fault present	Yes	No	9626
	08	Channel 4 alarm present	Yes	No	9626
	09	Channel 4 fault present	Yes	No	9626
	10	Channel 5 alarm present	Yes	No	9626
	11	Channel 5 fault present	Yes	No	9626
	12	Channel 6 alarm present	Yes	No	9627
	13	Channel 6 fault present	Yes	No	9627
	14	Channel 7 alarm present	Yes	No	9627
	15	Channel 7 fault present	Yes	No	9627
	16	Channel 8 alarm present	Yes	No	9627
	17	Channel 8 fault present	Yes	No	9627
	18	Channel 9 alarm present	Yes	No	9627
	19	Channel 9 fault present	Yes	No	9627
	20	Channel 10 alarm present	Yes	No	9627
	21	Channel 10 fault present	Yes	No	9627
	22	Channel 11 alarm present	Yes	No	9627
	23	Channel 11 fault present	Yes	No	9627
Dependency:	See also: p4102, p4103, r4105, p4118				
r4104.0... 1	BO: TM31 temperature evaluation status / TM31 temp status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9549, 9576	
	P group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 31 (TM31).				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Alarm is present	Yes	No	-
	01	Fault is present	Yes	No	-
Dependency:	See also: p 4102				



### 2.2 List of parameters




p4110[0..11]	TM150 wire resistance value / TM150 R_wire value		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9626, 9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [ohm]	3000.00 [ohm]	0.00 [ohm]
Description:	Sets and displays the wire resistance for Terminal Module 150 (TM150).		
	The value is automatically se channel.	wire resistance	[0...11]) of the corresponding

### 2.2 List of parameters




### 2.2 List of parameters



p4119[0...11]	TM150 activate/deactivate smoothing / TM150 smooth act		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 9626, 9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate/deactivate the filter to smooth the temperature signal for the Terminal Module 150 (TM150). The smoothing is realized with a 1st order lowpass filter   The effective smoothing time constant depends on the number of channels that are simultaneously active and is displayed in r4120.		
Value:	0: Filter deactivated   1: Filter activated		
Index:	[0] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11		
Dependency:	See also: r4120		
r4120[0...11]	TM150 actual smoothing time in ms / TM150 actval T ms		
TM150	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9626, 9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [ms]		- [ms]
Description:	Displays the implemented smoothing time constant for the temperature filter for the Terminal Module 150 (TM150).		
Index:	[0] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11		
Dependency:	See also: r4105, p4111, r4112, r4113, p4122		

### 2.2 List of parameters

p4121	TM150 filter rated line frequency / TM150 filt f_line		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 9626,9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the rated line frequency for the filter to skip the line frequency for Terminal Module 150 (TM150).		
Value:	$\begin{array}{ll} \text { 0: } & 50 \mathrm{~Hz} \\ \text { 1: } & 60 \mathrm{~Hz} \end{array}$		


p4122[0...11]	TM150 smoothing time constant / TM150 T		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9626, 9627
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	100 [ms]	10000 [ms]	100 [ms]
Description:	Sets the smoothing time constant for the 1st order lowpass filter of the temperature channels.		
	The effective smoothing time constant depends on the number of channels that are simultaneously active and is displayed in r4120.		
	In order that the value becomes effective, p4122 must be set >= 2 *channel sampling time.		
	The following applies:		
	Channel sampling time = active number of channels * 50 ms		
	For lower values, a smoothing of 2 * channel sampling time.		
Index:	[0] = Temperature channel 0		
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		
	[3] = Temperature channel 3		
	[4] = Temperature channel 4		
	[5] = Temperature channel 5		
	[6] = Temperature channel 6		
	[7] = Temperature channel 7		
	[8] = Temperature channel 8		
	[9] = Temperature channel 9		
	[10] = Temperature channel 10		
	[11] = Temperature channel 11		
Dependency:	See also: r4120		


$\mathbf{p 4 6 3 0 [ 0 . . . n ] ~}$	Absolute encoder linear measuring step factor / Abs_enc meas fact		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	4294967295	1


Description:	Sets the resolution of the absolute position for a linear absolute encoder as factor from p0407.
Note:	The serial protocol of an absolute encoder provides the position with a certain resolution (e.g. 100 nm$).$
	The resolution is calculated from $\mathrm{p} 0407 / \mathrm{p} 4630$.


r4640[0...95]	Encoder diagnostics state machine / Enc diag stat_ma		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the encoder diagnostics for the PROFIdrive interface.		


p4641[0...2]	OEM encoder diagnostic signal selection / OEM enc diag sel		
DC_CTRL_S,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the trace functionality for OEM encoder manufacturers.		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		
	[2] = Encoder 3		


p4642	Encoder fault test function / Encoder fault test		
DC_CTRL_S,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	255	0
Description:	Test function to initiate an encoder fault p4642 $=0 / 1$ signal:		
	The currently used motor encoder issues an encoder fault. p4642 = 1/0 signal:		
	The encoder fault that was issued is cleared after acknowledgment.		
Notice:	It is not permissible that	d over between	g issued and its deletio


p4649[0...n]	Encoder function reserve amplitude limit incremental signals / Enc fct amp inc		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: EDS, p0140	Function diagram:
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	500	0
Description:	Amplitude threshold of the incremental signals for the function reserve.   If the set amplitude threshold on the incremental signals is fallen below, then alarm A3x407 "Encoder $x$; function limit reached " is output.		
Note:	An amplitude threshold of	ed as default value.	

### 2.2 List of parameters




### 2.2 List of parameters



Index:	$[0]=$ Encoder 1
	$[1]=$ Encoder 2
	$[2]=$ Reserved
Dependency:	See also: r4661
Note:	A value of zero is displayed if an encoder is not present.


r4661[0...2]	Sensor Module filter bandwidth display / SM Filt_bandw disp
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Function diagram: -   P group: Encoder Unit group: - Unit selection:   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   $-[\mathrm{kHz}]$ $-[\mathrm{kHz}]$ $-[\mathrm{kHz}]$
Description: Index:	Displays the effective filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). The bandwidth of the filter is set using p4660.   [ 0 ] = Encoder 1   [1] = Encoder 2   [2] = Reserved
Dependency:	See also: p4660
Note:	A value of zero is displayed if an encoder is not present.


p4678[0...n]	Analog sensor LVDT ratio / An_sens LVDT ratio		
DC_CTRL_S,	Can be changed: C2(4)	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CTRL,	P group: Encoder	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\%]$	50.00 [\%]	
	$200.00[\%]$		


p4679[0...n]	Analog sensor LVDT phase / An_sens LVDT ph		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Function diagram: -
DC_CRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: Encoder	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	$360.00\left[{ }^{\circ}\right]$	$0.00\left[{ }^{\circ}\right]$
	$-360.00\left[{ }^{\circ}\right]$		


p4680[0...n]	Zero mark monitoring tolerance permissible / ZM_monit tol perm
DC_CTRL_S,   DC_CTRL_R_S,   DC_CTRL,   DC_CTRL_R	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 1000 4
Description: Dependency:	Sets the permissible tolerance in encoder pulses for the zero mark distance in the context of zero mark monitoring. Causes fault F3x100 to appear less frequently.   See also: F31100
p4681[0...n]   DC_CTRL_S,   DC_CTRL_R_S,   DC_CTRL,   DC_CTRL_R	Zero mark monitoring tolerance window limit 1 positive / ZM tol lim 1 pos
Descriptio	Sets the positive tolerance window in encoder pulses for limit 1 for the zero mark monitoring.   The pulse number is corrected if the deviation is less than this limit. If it is higher than this limit, fault $\mathrm{F} 3 \times 131$ is triggered.   If fault F3x131 is re-parameterized to an alarm (A) or no message $(N)$, then the encoder pulses that are not corrected are transferred to the accumulator ( p 4688 ). The accumulator can be deactivated using p0437.7.
Dependency: Note:	See also: p0437, p4688   See also: F31131   This monitoring is activated by setting p0437.2 $=1$ (position actual value correction).   The positive limit describes additional pulses due to EMC.
p4682[0...n]   DC_CTRL_S,   DC_CTRL_R_S,   DC_CTRL,   DC_CTRL_R	Zero mark monitoring tolerance window limit 1 negative / ZM tol lim 1 neg
Description:	Sets the negative tolerance window in encoder pulses for limit 1 for the zero mark monitoring.   The pulse number is corrected if the deviation is less than this limit. If it is higher than this limit, fault F3x131 is triggered.   If fault F3x131 is re-parameterized to an alarm (A) or no message $(N)$, then the encoder pulses that are not corrected are transferred to the accumulator (p4688). The accumulator can be deactivated using p0437.7.
Dependency:	See also: p0437, p4681, p4688   See also: F31131
Note:	This monitoring is activated by setting p0437.2 = 1 (position actual value correction). For a set value $=-1001$, the negated value of $p 4681$ becomes active.   The negative limit describes the pulses lost due to a covered glass panel in the incremental encoder.

### 2.2 List of parameters

p4683[0...n]	Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr po
$\begin{aligned} & \text { DC_CTRL_S, } \\ & \text { DC_CTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list:   Min: Max: Factory setting:   0 100000 0
Description: Dependency: Note:	Sets the positive tolerance window in encoder pulses for limit 2 for the zero mark monitoring.   Accumulator ( p 4688 ) is compared with this parameter, and where relevant, alarm A3x422 is output for 5 seconds.   See also: p0437, p4681, p4682, p4688   See also: F31131, A31422   Zero mark monitoring is activated by setting p0437.2 = 1 (position actual value correction).
$\begin{aligned} & \hline \mathbf{p 4 6 8 4 [ 0 . . . n ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DC_CTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
Description: Dependency: Note:	Sets the negative tolerance window in encoder pulses for limit 2 for the zero mark monitoring.   Accumulator ( p 4688 ) is compared with this parameter, and where relevant, alarm $\mathrm{A} 3 \times 422$ is output for 5 seconds.   See also: p0437, p4683, p4688   See also: F31131, A31422   Zero mark monitoring is activated by setting p0437.2 = 1 (position actual value correction).   For a set value $=-100001$, the negated value of $p 4683$ is effective.
$\begin{aligned} & \hline \mathbf{p 4 6 8 5 [ 0 . . . n ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DCCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Speed actual value mean value generation / n_act mean val     Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 20 0
Description:   Note:	Sets the number of current controller sampling times for mean value generation of the speed actual value. Value $=0,1$ : No mean value generation.   Higher values also mean higher dead times for the speed actual value.
$\begin{aligned} & \hline \mathbf{p 4 6 8 6 [ 0 . . . n ] ~} \\ & \text { DC_CTRL_S, } \\ & \text { DCCCTRL_R_S, } \\ & \text { DCCCTRL, } \\ & \text { DC_CTRL_R } \end{aligned}$	Zero mark minimum length / ZM min length     Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Function diagram: -   P group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 10 1
Description:   Dependency:   Note:	Sets the minimum length for the zero mark in $1 / 4$ encoder pulses.   See also: p0425, p0437   The minimum length of the zero mark must be less than the zero mark distance ( p 4686 < p 0425 ). The parameter is activated using p0437.1 = 1 (zero mark edge detection).



r4689[0...2]	CO: Squarewave encoder diagnostics / Sq-wave enc diag		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the encoder status according to PROFIdrive for a squarewave encoder.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=-} \end{aligned}$		
Dependency:	See also: A31422		
Note:	After alarm A3x422 is output, this parameter is set for 100 ms .		
p4700[0...1]	Trace control / Trace control		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
C	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	2	0

Description: Setting to control the trace function.

Value:	$0:$	Stop tr
	$1:$	Start tr
	$2:$	Start tr
Index:	$[0]=$	Trace 0
	$[1]=$ Trace 1	


p4701	Measuring function control / Meas fct ctrl		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	0	0
Description:	Setting to control the measurement function.		

### 2.2 List of parameters



r4705[0...1]	Trace status / Trace status		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	6	-
Description:	Displays the actual status of the trace.		
Value:	0: Trace inactive		
	1: Trace is recording presamples		
	2: Trace is waiting for trigger event		
	3: Trace is recording		
	4: Recording (trace) ended		
	5: Trace inactive with permissible co	uration data	
	6: Trace inactive with inadmissible con	guration data	
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		


r4706	Measuring function status / Meas fct status		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 0
	Min:	5	Factory setting:
	0		
Description:	Displays the actual status of the measuring function.		
Value:	$0:$	Measurement function inactive	
	$1:$	Measuring function parameterization checked	
	$2:$	Measuring function waits for stabilizing time	
	$3:$	Measuring function recording (tracing)	
$4:$	Measuring function trace ended with error		
	$5:$	Measuring function trace successfully completed	


p4707	Measurement function configuration / Meas fct config		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to configure the measurement function.		
Value:	0 : $\quad$ Standard   1: Free measurement function		
Dependency:	The parameter cannot be changed when the measurement function has been started (r4706=2,3).		
Note:	This parameter involves free measurement functions, and is only active for p4810 $=6$.		
	For value $=0$ :		
	The free measuring function is parameterized with master control.		
	For value $=1$ :		
	The free measuring function is parameterized without master control.		
r4708[0...1]	Trace memory space required / Trace mem required		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the required memory in bytes for the actual parameterization.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	See also: r4799		
r4709[0...1]	Trace memory space required for measuring functions / Trace mem required		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram: -
	Data type: Unsigned32 P group: Trace and function generator	Unit group: -	Unit selection: -
	P group: Trace and function generator Not for motor type:	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	- -		
Description:	Displays the required memory in bytes for the actual parameterization. This applies, if the trace for the measurement functions is used.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	See also: r4799		
p4710[0...1]	Trace trigger condition / Trace Trig_cond		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	1	8	2
Description:	Sets the trigger condition for the trace.		

2.2 List of parameters

Value:	$1:$	Immediate trace start
	$2:$	Positive edge
	$3:$	Negative edge
	$4:$	Entry to hysteresis band
	$5:$	Leaving hysteresis band
	$6:$	Trigger at bit mask
	$7:$	Start with function generator
	$8:$	Trigger at bit mask with edge
	Index:	$[0]=$ Trace 0
	$[1]=$	Trace 1

p4711[0...5]	Trace trigger signal / Trace trig_signal		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0

Description:	Selects the trigger signal for the trace.
Index:	$[0]=$ Trace 0 parameter in BICO format
	$[1]=$ Trace 1 parameter in BICO format
	$[2]=$ Trace 0 PINx with DO Id and chart Id
	$[3]=$ Trace 0 PINx with block Id and PIN Id
	$[4]=$ Trace 1 PINy with DO Id and chart Id
	$[5]=$ Trace 1 PINy with block Id and PIN Id
	Only effective when p4710 does not equal 1.
Dependency:	It only makes sense to trace the PINs using the commissioning tool.
Note:	For index 2(4) and 3(5) equal to zero, index $0(1)$ can only be written and vice versa.
	For index [0...1]:
	Here, the trigger signal for trace 0 or 1 is entered as parameter in the BICO format.
	For trace with a physical address (p4789), the data type of the trigger signal is set here.
	For index [2...3]:
	The triggering PIN for trace 0 is entered here.
	Index 2 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 3 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN
	For index [4...5]:
	The triggering PIN for trace 1 is entered here.
	Index 4 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 5 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN

p4712[0...1]	Trace trigger threshold / Trace trig_thresh		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_D__R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	$-340.28235 E 36$	$340.28235 E 36$	0.00

Description: Sets the trigger threshold for the trace.
Index:
[0] = Trace 0
[1] = Trace 1
Dependency: \quad Only effective when p4710 = 2, 3 .

2.2 List of parameters

r4719[0...1]	Trace trigger index / Trace Trig_index		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the trigger index in the trace buffer.		
	The trigger event occurred at this point.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only valid when p4705 $=4$.		

p4720[0...1]	Trace recording cycle / Trace record_cyc		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_D__R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~ms}]$	$60000.000[\mathrm{~ms}]$	$1.000[\mathrm{~ms}]$
	Sets the recording cycle for the trace.		
Description:	$[0]=$ Trace 0		
Index:	$[1]=$ Trace 1		

p4721[0...1]	Trace recording time / Trace record_time		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~ms}]$	$340.28235 \mathrm{E} 36[\mathrm{~ms}]$	$1000.000[\mathrm{~ms}]$

Description: Sets the recording time for the trace.

Index:	$[0]=$ Trace 0
	$[1]=$ Trace 1

p4722[0...1]	Trace trigger delay / Trace trig_delay		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	$-340.28235 \mathrm{E} 36[\mathrm{~ms}]$	$340.28235 \mathrm{E} 36[\mathrm{~ms}]$	$0.000[\mathrm{~ms}]$

Description:	Sets the trigger delay for the trace.
	Trigger delay < 0 :
	Pretrigger: Tracing (recording) starts the selected time before the trigger event actually occurs.
	Trigger delay > 0
	Post trigger: Tracing does not start until the set time after the trigger event.
Index:	$[0]=$ Trace 0
	$[1]=$ Trace 1

p4723[0...1]	Trace time slice cycle / Trace cycle		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	$0.03125[\mathrm{~ms}]$	$0.12500[\mathrm{~ms}]$	
Sescription:	Sets the time slice cycle in which the trace is called.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

p4724[0...1]	Trace average in the time range / Trace average		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0000 bin	0000 bin	
	Sets the averaging in the time range for the trace.		
Description:	$[0]=$ Trace 0		
Index:	$[1]=$ Trace 1		

r4725[0...1]	Trace data type 1 traced / Trace rec type 1		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the recorded data type 1 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

r4726[0...1]	Trace data type 2 traced / Trace rec type 2		
CU_DC_S,	Can be changed: -	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Scaling: -
	Not for motor type: -	Max:	Expert list: 0
	Min:	-	Factory setting:
	-	-	
Description:	Displays the recorded data type 2 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

r4727[0...1]	Trace data type 3 traced / Trace rec type 3		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the recorded data type 3 for the trace.		

2.2 List of parameters

Index: \quad| $[0]=$ Trace 0 |
| :--- |
| |
| |
| $[1]=$ Trace 1 |

r4728[0...1]	Trace data type $\mathbf{4}$ traced / Trace rec type 4		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the recorded data type 4 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

r4729[0...1]	Trace number of recorded values / Trace rec values		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the number of traced values for each signal.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only valid when p4705 $=4$.		

p4730[0...5]	Trace record signal 0 / Trace record sig 0		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the first signal to be traced.		
Index:	[0] = Trace 0 parameter in BICO format		
	[1] = Trace 1 parameter in BICO format		
	[2] = Trace 0 PINx with DO Id and chart Id		
	[3] = Trace 0 PINx with block Id and PIN Id		
	[4] = Trace 1 PINy with DO Id and chart Id		

p4731[0...5]	Trace record signal 1 / Trace rec	rd sig 1	
CU_DC_s, CU_DC_R_S,CU_DC, CU_DC_R	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0
Description: Index:	Selects the second signal to be traced.		
	[0] = Trace 0 parameter in BICO format [1] = Trace 1 parameter in BICO format [2] = Trace 0 PINx with DO Id and chart Id [3] = Trace 0 PINx with block Id and PIN Id [4] = Trace 1 PINy with DO Id and chart Id [5] = Trace 1 PINy with block Id and PIN Id		

p4732[0...5]	Trace record signal 2 / Trace rec	rd sig 2	
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the third signal to be traced.		
Index:	[0] = Trace 0 parameter in BICO format		
	[1] = Trace 1 parameter in BICO format		
	[2] = Trace 0 PINx with DO Id and chart Id		
	[3] = Trace 0 PINx with block Id and PIN Id		
	[4] = Trace 1 PINy with DO Id and chart Id		
	[5] = Trace 1 PINy with block Id and PIN Id		

p4734[0...5]	Trace record signal 4 / Trace reco	rd sig 4	
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0
Description: Index:	Selects the fifth signal to be traced.		
	[ 0 ] = Trace 0 parameter in BICO format   [1] = Trace 1 parameter in BICO format   [2] = Trace 0 PINx with DO Id and chart Id   [3] = Trace 0 PINx with block Id and PIN Id   [4] = Trace 1 PINy with DO Id and chart Id   [5] = Trace 1 PINy with block Id and PIN Id		


p4735[0...5]	Trace record signal 5 / Trace record sig 5		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram:-
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0

### 2.2 List of parameters

Index: $\quad$| $[0]$ | $=$ Trace 0 parameter in BICO format |
| :--- | :--- |
| $[1]$ | $=$ Trace 1 parameter in BICO format |
| $[2]$ | $=$ Trace 0 PINx with DO Id and chart Id |
| $[3]$ | $=$ Trace 0 PINx with block Id and PIN Id |
| $[4]$ | $=$ Trace 1 PINy with DO Id and chart Id |
| $[5]$ | $=$ Trace 1 PINy with block Id and PIN Id |

p4736[0..5]	Trace record signal $6 /$ Trace record sig $\mathbf{6}$		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	0

Description: Selects the seventh signal to be traced.

Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

p4737[0...5]	Trace record signal 7 / Trace record sig 7		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	0	
Description:	Selects the eighth signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		




r4746[0...16383]	Trace 0 trace buffer signal 6 flo		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type:   Min:	Calculated:   Dyn. index:   Unit group:   Scaling:   Max:	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4740, p4795	0 and signal	
$\begin{aligned} & \text { r4747[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal 7 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ng point / Tr Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4740, p4795	ace 0 and signal	
$\begin{aligned} & \text { r4750[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 0 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: Min:	ng point / Tr Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4740, p4795	1 and signal	
$\begin{aligned} & \text { r4751[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 1 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: Min:	ng point / Tr Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4740, p4795	ace 1 and signal	
$\begin{aligned} & \text { r4752[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 2 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ng point / Tr Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4740, p4795	race 1 and signal 2	

r4753[0...16383]	Trace 1 trace buffer signal 3 flo	g point / Tr	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type:- Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) fo See also: r4740, p4795	ace 1 and sign	
$\begin{aligned} & \hline \mathbf{r 4 7 5 4 [0 . . 1 6 3 8 3]} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 4 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ng point / T Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) fo See also: r4740, p4795	tace 1 and sign	
$\begin{aligned} & \text { r4755[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CUUDC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 5 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ing point / T Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4740, p4795	race 1 and sign	
$\begin{aligned} & \text { r4756[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 6 flo Can be changed: Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ing point / T Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) fo See also: r4740, p4795	ace 1 and sign	
$\begin{aligned} & \text { r4757[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 7 flo Can be changed: - Data type: FloatingPoint32 P group: Trace and function generator Not for motor type: - Min:	ng point / T Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) fo See also: r4740, p4795	race 1 and signa	

r4760[0...16383]	Trace 0 trace buffer signal 0 / Trace 0 rec sig 0		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 0 as integer number.		
Note:	For signals, data type I32 or U32, the trace buffer is assigned as follows:		
	r4760[0] = value 0		
	r4760[1] = value 1		
	...		
	r4760[8191] = value 8191		
	For signals, data type I16 or U16, the trace buffer is assigned as follows:		
	r4760[0] = value 1 (bit $31 \ldots 16$) and value 0 (bit $15 \ldots 0$)		
	r4760[1] = value 3 (bit $31 \ldots 16$) and value 2 (bit $15 \ldots 0$)		
	r4760[8191] = value 16383 (bit $31 \ldots 16$) and value 16382 (bit $15 \ldots 0$)		
	For signals, data type 18 or U8, the trace buffer is assigned as follows:		
	r4760[0] = value 3 (bit $31 \ldots 24$) value 2 (bit $23 \ldots 16)$ value 1 (bit $15 \ldots 8)$ value 0 (bit $7 \ldots 0$)		
	$\mathrm{r} 4760[1]=$ value 7 (bit $31 \ldots 24$) value 6 (bit $23 \ldots 16)$ value 5 (bit $15 \ldots 8)$ value 4 (bit $7 \ldots 0$)		
	-.. $\mathrm{r} 4760[8191]$ = value 32767 (bit $31 . . .24$)	e 32766 (bit 23 .	bit 15 ... 8) value 32764

r4761[0...16383]	Trace 0 trace buffer signal 1 / T	0 rec sig 1	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: Min:	Calculated: Dyn. index: Unit group: Scaling: - Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4760	race 0 and signal 1	
$\begin{aligned} & \text { r4762[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal $2 / 7$ Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	ce 0 rec sig 2 Calculated: Dyn. index: Unit group: Scaling: - Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4760	race 0 and signal 2	
$\begin{aligned} & \text { r4763[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DCR_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal 3 / Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	ce 0 rec sig 3 Calculated: Dyn. index: Unit group: Scaling: - Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description:	Displays the trace buffer (record buffer) for	race 0 and signal 3 .	

r4764[0...16383]	Trace 0 trace buffer signal 4 / T	0 rec sig 4	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4760	0 and signal	
$\begin{aligned} & \hline \mathbf{r 4 7 6 5 [0 . . . 1 6 3 8 3]} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal 5 / T Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	0 rec sig 5 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	ace and signal	
$\begin{aligned} & \text { r4766[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal 6 / T Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	0 rec sig 6 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	ace 0 and signa	
$\begin{aligned} & \text { r4767[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 0 trace buffer signal 7 / T Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	0 rec sig 7 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	ace 0 and signal	
$\begin{aligned} & \text { r4770[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 0 / Trad Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: Min:	1 rec sig 0 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	ace 1 and signal	

r4771[0...16383]	Trace 1 trace buffer signal 1 / T	1 rec sig 1	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	race 1 and signal 1	
$\begin{aligned} & \text { r4772[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 2 / T Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	ce 1 rec sig 2 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) for See also: r4760	race 1 and signal 2	
$\begin{aligned} & \text { r4773[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 3 / T Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: - Min:	ce 1 rec sig 3 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	race 1 and signal 3	
$\begin{aligned} & \text { r4774[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 4 / Tra Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: Min:	ce 1 rec sig 4 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	race 1 and signal 4	
$\begin{aligned} & \text { r4775[0...16383] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace 1 trace buffer signal 5 / Tra Can be changed: - Data type: Unsigned32 P group: Trace and function generator Not for motor type: Min:	ce 1 rec sig 5 Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Dependency:	Displays the trace buffer (record buffer) See also: r4760	tace 1 and signal 5	

2.2 List of parameters

p4782[0...1]	Trace physical address signal 2 / Trace PhyAddr Sig2		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0000 bin	111111111111111111111111 11111111 bin	0000 bin
Description:	Sets the physical address for the third signal to be traced. The data type is defined using p4732.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4783[0...1]	Trace physical address signal 3 / Trace PhyAddr Sig3		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_D	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0000 bin	111111111111111111111111 11111111 bin	0000 bin
Description:	Sets the physical address for the fourth signal to be traced. The data type is defined using p4733.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		

Trace physical address signal 4 / Trace PhyAddr Sig4
p4784[0...1]
CU_DC_S,
CU_DC_R_S, CU_DC,
CU_DC_R

Can be changed: U, T
Data type: Unsigned32
P group: Trace and function generator Not for motor type: -
Min:
0000 bin

Sets the physical address for the fifth signal to be traced The data type is defined using p4734.
Index:
[0] = Trace 0
[1] = Trace 1

p4785[0...1]	Trace physical address signal 5 / Trace PhyAddr Sig5		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0000 bin	111111111111111111111111	0000 bin
Sescription:	Sets the physical address for the sixth signal to be traced.		
	The data type is defined using p4735.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

2.2 List of parameters

	Trace data type 6 traced / Trace rec type 6	
CU_DC_S, CU_DC_R_S, CU_DC, CU_DC_R	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: P group: Trace and function generator Unit group: - Not for motor type: - Scaling: - Min: Max:	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Index:	Displays the recorded data type 6 for the trace. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \text { r4792[0...1] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace data type 7 traced / Trace rec type 7	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Index:	Displays the recorded data type 7 for the trace. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \text { r4793[0...1] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace data type 8 traced / Trace rec type 8	Access level: 3 Function diagram: Unit selection: - Expert list: 0 Factory setting:
Description: Index:	Displays the recorded data type 8 for the trace. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
```p4795 CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Trace memory bank changeover / Trace mem changeov	Access level: 3   Function diagram:   Unit selection: -   Expert list: 0   Factory setting:   0
Description:   Dependency:	Changes over the memory bank to read out the contents of the trace buffer. See also: r4740, r4741, r4742, r4743, r4750, r4751, r4752, r4753	
$\begin{aligned} & \text { r4797[0...1] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Trace $\mathbf{0}$ trigger instant / Trace $\mathbf{0} \mathbf{t}$ trigger    Can be changed: - Calculated: -   Data type: Unsigned32 Dyn. index: -   P group: Trace and function generator Unit group: -   Not for motor type: - Scaling: -   Min: Max:   - -	Access level: 3   Function diagram:   Unit selection: -   Expert list: 0   Factory setting:
Description:	Displays the instant in time for fulfilling the trigger condition for trace recorder 0 . The time comprises milliseconds (index 0 ) and days (index 1 ).	


Index:	$\begin{aligned} & \text { [0] }=\text { Milliseconds } \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	See also: r2114, r3102, r4719		
Notice:	The accuracy of the trigger instant depends on the accuracy of the underlying basis time.		
	For clarification:		
	The trigger instant is calculated with a $\mu \mathrm{s}$ accuracy. If the underlying basis time is only available with ms accuracy, then as a result of rounding effects, an inaccuracy of 1 ms can occur.		
	When referred to r4719, the trigger instant can therefore deviate somewhat.		
Note:	If the time calculation of the drive can be synchronized with a higher-level control, then this time can be taken from the actual UTC time (r3102). Otherwise, the time is based on the system runtime (r2114).		
r4798[0...1]	Trace 1 trigger instant / Trace 1 t_trigger		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the instant in time for fulfilling the trigger condition for trace recorder 1.		
	The time comprises milliseconds (index 0 ) and days (index 1 ).		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	See also: r2114, r3102, r4719		
Notice:	The accuracy of the trigger instant depends on the accuracy of the underlying basis time.		
	For clarification:		
	The trigger instant is calculated with a $\mu \mathrm{s}$ accuracy. If the underlying basis time is only available with ms accuracy, then as a result of rounding effects, an inaccuracy of 1 ms can occur.		
	When referred to r4719, the trigger instant can therefore deviate somewhat.		
Note:	If the time calculation of the drive can be synchronized with a higher-level control, then this time can be taken from the actual UTC time (r3102). Otherwise, the time is based on the system runtime (r2114).		
r4799	Trace memory location free / Trace mem free		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram:
	$\mathbf{P}$ group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
		-	-
Description:	Displays the free memory for the trace in bytes.		
Dependency:	See also: r4708		
p4800	Function generator control / FG control		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R	Data type: Integer16	Dyn. index: -	Function diagram: -
	$\mathbf{P}$ group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	3	0
Description:	The function generator is started with p4800 $=1$.		
	The signal is only generated for a 1 signal of binector input p4819.		
Value:			
	1: Start function generator		
	2: Check function generator parameterization		
	3: Start function generator without enable signals		
Dependency:	See also: p4819		

### 2.2 List of parameters

r4805	Function generator status / FG status		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	6	-
Description:	Displays the actual status of the function generator.		
Value:	0 : Inactive		
	1: Generate accelerating ramp to off		
	2: Generate parameterized signal sh		
	3: Generate brake ramp		
	4: Function generator stopped due to	issing enable signals	
	5: Function generator waits for BI: p4		
	6: Function generator parameterizatio	has been checked	
Dependency:	See also: p4800, p4819		



p4810	Function generator mode / FG operating mode		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	99	0

Description: Sets the operating mode of the function generator.
Value:
0: Connection at connector output r4818
1: Connection at current setpoint after filter and r4818
2: $\quad$ Connection as disturbing torque and r 4818
3: $\quad$ Connection at speed setpoint after filter and r4818
4: $\quad$ Connection at current setpoint before filter and r4818
5: $\quad$ Connection at speed setpoint before filter and r4818
6: Connection for free measurement function r4818 and r4834
99: Connection at physical address and r4818

Access level: 3
ction diagram: -
selection:

Factory setting:


### 2.2 List of parameters





p4826	Function generator offset / FG offset		
CU_DC_S,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-1600.00 [\%]	1600.00 [\%]	0.00 [\%]
Description:	Sets the offset (DC component) of the signal to be generated for the function generator.		
Dependency:	Units are dependent on p4810.		
	If p4810 $=1,2,4$ : The offset is referred to p2002 (reference current).		
	If p4810 $=3,5$ : The offset is referred to p2000 (reference speed).		
	If p4810 $=2$ : In order to avoid the undesirable effects of play (backlash), the offset does not act on the current setpoint, but instead on the speed setpoint.		


p4827	Function generator ramp-up time to offset / FG ramp-up offset		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min:   0.00 [ms]	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max:   100000.00 [ms]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   32.00 [ms]
Description:	Sets the ramp-up time to the offset for the function generator.		
$\begin{aligned} & \hline \mathbf{p 4 8 2 8} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Function generator lower limit   Can be changed: U, T   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type:   Min:   -10000.00 [\%]	G lower limit   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   0.00 [\%]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting: -100.00 [\%]
Description:   Dependency:	Sets the lower limit for the function generator.   For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		
$\begin{aligned} & \hline \mathbf{p 4 8 2 9} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Function generator upper limit   Can be changed: $U, T$   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type:-   Min:   0.00 [\%]	G upper limi   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   10000.00 [\%]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   100.00 [\%]
Description:   Dependency:	Sets the upper limit for the function generator.   For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		
$\begin{aligned} & \hline \mathbf{p 4 8 3 0} \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Function generator time slice   Can be changed: U, T   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min:   0.03125 [ms]	le / FG time   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   2.00000 [ms]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   0.12500 [ms]
Description:	Sets the time slice cycle in which the function generator is called.		
$\begin{aligned} & \text { p4831 } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Function generator amplitude   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min:   0.00000 [\%]	aling / FG am   Calculated:   Dyn. index:   Unit group:   Scaling:   Max:   200.00000 [\%]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   100.00000 [\%]
Description:	Sets the scaling for the amplitude of the signal waveforms for all output channels. The value can be changed while the function generator is running.		


p4832[0...2]	Function generator amplitude	ing / FG amplitu	
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min:   -340.28235E36 [\%]	Calculated: -   Dyn. index:   Unit group:   Scaling:   Max:   340.28235E36 [\%]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   100.00000 [\%]
Description: Index:	Sets the scaling for the amplitude of the   The value cannot be changed while the fun   [0] = First drive for connection   [1] = Second drive for connection   [2] = Third drive for connection	al waveforms separate ion generator is runnin	put channel.
$\begin{aligned} & \text { p4833[0...2] } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Function generator offset scal   Can be changed: U, T   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min: -340.28235E36 [\%]	/ FG offset scal   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max:   340.28235E36 [\%]	Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   100.00000 [\%]
Description: Index:	Sets the scaling for the offset of the signa   The value cannot be changed while the   [0] = First drive for connection   [1] = Second drive for connection   [2] = Third drive for connection	veforms separately for ion generator is runnin	channel.
```r4834[0...4] CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	CO: Function generator free m   Can be changed: -   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min:   - [\%]	surement output   Calculated:   Dyn. index:   Unit group:   Scaling: PERCENT   Max:   - [\%]	fr MeasFct outp   Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting: - [\%]
Description: Index:	Displays the output signal for the free measurement function.$\begin{aligned} & {[0]=\text { Signal } 1} \\ & {[1]=\text { Signal } 2} \\ & {[2]=\text { Signal } 3} \\ & {[3]=\text { Signal } 4} \\ & {[4]=\text { Signal } 5} \end{aligned}$		
Dependency: Note:	The signals are only output in the "free measurement function" operating mode (p4810 = 6)		
```p4835[0...4] CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Function generator free meas   Can be changed: U, T   Data type: FloatingPoint32   P group: Trace and function generator   Not for motor type: -   Min: $-200.00000 \text { [\%] }$	ment function sc   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max:   200.00000 [\%]	MeasFct scal   Access level: 3   Function diagram:   Unit selection:   Expert list: 0   Factory setting:   100.00000 [\%]
Description:	Sets the scaling of the output signals for the free measurement function.		

### 2.2 List of parameters

Index:	$[0]=$ Signal 1
$[1]=$ Signal 2	
$[2]=$ Signal 3	
$[3]=$ Signal 4	
	$[4]=$ Signal 5
Note: $\quad$	The parameter cannot be changed when the measurement function has been started $(\mathrm{r} 4706=2,3)$.


p4840[0...1]	MTrace cycle number setting / Cycle number		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the number of cycles of a multiple trace.		
	The multiple trace is deactivated with a value $=0$.		
	The multiple trace is permanently activated for a value >= 100000 .		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	See also: r4841, p4844		
	See also: A02097, A02098		
Notice:	A multiple trace can have a negative impact on the total system performance.		
	From their inherent principle of operation, flash memory cards are subject to wear as a result of write operations. As a consequence, the lifetime of flash memory cards is reduced when using the multiple trace functionality.		


r4841[0...1]	MTrace cycle actual display / Cycle act display		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the currently running cycle (including deadtime) of the multiple trace.		
Index:	$[0]=$ Trace 0		
	[1] = Trace 1		
Dependency:	See also: p4840, p4844		


p4844[0...1]	MTrace ring buffer files number / Ring buff file qty		
CU_DC_S,	Can be changed: T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Trace and function generator	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max:
	Min:	5	Factory setting:
	5	5	
Description:	Sets the number of ring buffer files for the measurement results of the multiple trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	See also: p4840, r4841		


r4950	TEC DO-specific number / TEC DO qty		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	32	-
Description:	Number of Technology Extensions installed on this drive object.		
Dependency:	See also: r4951, r4952, r4955, p4956, r4957, r4958, r4959, r4960		
Note:	DO: Drive Object		
	TEC: Technology Extension		
r4951	TEC DO-specific identifier total length / TEC DO ident tot_I		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	288	-
Description:	Displays the total length of the identifier of the Technology Extensions installed on this drive object.		
Dependency:	See also: r4950, r4952, r4955, p4956, r4957, r4958, r4959, r4960		
Note:	TEC: Technology Extension		
r4952	TEC DO-specific GUID total length / TEC DO GUID length		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	576	-
Description:	Displays the total length of the GUIDs of the Technology Extensions installed on this drive object.		
Dependency:	See also: r4950, r4951, r4955, p4956, r4957, r4958, r4959, r4960		
Note:	The GUID of a Technology Extension comprises 16 characters plus 1 character major information plus 1 character minor information.		
	GUID: Globally Unique IDentifier		
	TEC: Technology Extension		
r4955[0...n]	TEC DO-specific identifier / TEC DO ident		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: r4951	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the identifier of the r4955[0...8]: Identifier of r4955[9...17]: Identifier of	nsions installed on this on 1 ion $2, \ldots$	
Dependency:	See also: r4950, r4951, r4952, p4956, r4957, r4958, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0)		
Note:	TEC: Technology Extension		

### 2.2 List of parameters

p4956[0...n]	TEC DO-specific activation / TEC DO act		
All objects	Can be changed: $\mathrm{C} 1, \mathrm{~T}$	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: r4950	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate the Tec r4956[0]: Activation of Tec r4956[1]: Activation of Tec	s installed on this driv 1   2, ...	
Value:	0: Technology Exten   1: Technology Exten		
Dependency:	See also: r4950, r4951, r	, r4958, r4959, r4960	
Notice:	This parameter is only ind	drive object-specific	ension exists (p4950 > 0).
Note:	TEC: Technology Extensio		


r4957[0...n]	TEC DO-specific version / TEC DO Version		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	4294967295	-
Description:	Displays the version of the r4957[0]: Version of Tech r4957[1]: Version of Tech	sions installed on thi	
Dependency:	See also: r4950, r4951, r4952, r4955, p4956, r4958, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists ( $\mathrm{p} 4950>0$ ).		
Note:	TEC: Technology Extension		
	Example:		
	The value 1010100 should	V01.01.01.00.	


r4958[0...n]	TEC DO-specific interface version / TEC DO interf_vers		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the interface version of Technology Extensions installed on this drive object. r4958[0]: Interface version of Technology Extension 1   r4958[1]: Interface version of Technology Extension 2, ...		
Dependency:	See also: r4950, r4951, r4952, r4955, p4956, r4957, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0).		
Note:	TEC: Technology Extension		
	Example:		
	The value 1010100 should	V01.01.01.00.	


r4959[0...n]	TEC DO-specific GUID / TEC DO GUID		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: r4952	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the GUIDs of the Technology Extensions installed on this drive object.		
	r4959[0...15]: GUID of Technology Extension 1		
	r4959[16]: Major information of Technology Extension 1		
	r4959[17]: Minor information of Technology Extension 1		
	r4959[18...33]: GUID of Technology Extension 2		
	r4959[34]: Major information of Technology Extension 2		
	r4959[35]: Minor information of Technology Extension 2, ...		
Dependency:	See also: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0)		
Note:	TEC: Technology Extension		
r4960[0...n]	TEC DO-specific GUID drive object / TEC DO GUID DO		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: r4952	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the GUIDs of this drive object of the Technology Extensions installed on the memory card/device memory.		
	r4960[16]: Major information of this drive object of Technology Extension 1		
	r4960[17]: Minor information of this drive object of Technology Extension 1		
	r4960[18...33]: GUID of this drive object of Technology Extension 2		
	r4960[34]: Major information of this drive object of Technology Extension 2		
	r4960[35]: Minor information of this drive object of Technology Extension 2, ...		
Dependency:	See also: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4959		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0)		
Note:	TEC: Technology Extension		
p4961[0...n]	TEC DO-specific logbook module selection / TEC DO log module		
All objects	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Only for service purposes.		
Note:	TEC: Technology Extension		

### 2.2 List of parameters

r4975	TEC invalid number / TEC inval qty		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of invalid Technology Extensions installed on the memory card/device memory.		
Dependency:	See also: r4976, r4978, r4979		
Note:	TEC: Technology Extension		
r4976	TEC invalid identifier total length / TEC inval ID tot_I		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the total length of the IDs of all the invalid Technology Extensions installed on the memory card/device memory.		
Dependency:	See also: r4975, r4978, r4979		
Note:	TEC: Technology Extension		
	The identifier of an invalid Technology Extension comprises a maximum of 8 characters plus separator.		


r4978[0...n]	TEC invalid identifier / TEC inval ID		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: r4976	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the IDs of all the invalid Technology Extensions installed on the memory card/device memory. r4978[0...8]: Identifier of invalid Technology Extension 1   r4978[9...17]: Identifier of invalid Technology Extension 2, ...		
Dependency:	See also: r4975, r4976, r4979		
Notice:	This parameter is only indexed if at least one invalid Technology Extension exists (p4975 > 0).		
Note:	TEC: Technology Exten		


r4979[0...n]	TEC invalid error code / TEC inv error code		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: r4975	Function diagram:
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the error code of the invalid Technology Extensions installed on the memory card/device memory. r4979[0]: error code from Technology Extension 1   r4979[1]: error code from Technology Extension 2, ...		
Dependency:	See also: r4975, r4976, r4978		
Notice:	This parameter is only indexed if at least one invalid Technology Extension exists (p4975 > 0).		


Note:	TEC: Technology Extension   The value in the error code must be interpreted in binary form. The bits have the following meaning:   Bit 00: Incompatible version of the TEC interface.   Bit 01: Technology Extension could not be loaded.   Bit 02: Incorrect description files.   Bit 03: Technology Extension does not define a CPU type.   Bit 04: Technology Extension for this device not available (incorrect CPU type).   Bit 05: Technology Extension for this device not available (incorrect type ID).   Bit 06: Incorrect description files (Const/Startup incompatible).   Bit 07: Number range of the Technology Extension overlaps with the number range of another Technology Extension   Bit 08: No compatible custom interface was found.   Bit 09: The custom interface defined by the Technology Extension already exists.   Bit 10: The version of the System Technology Extension differs from the SINAMICS firmware version.
r498	TEC number / TEC qty
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Function diagram: -   P group: OEM range Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 32 -
Description:   Dependency:   Note:	Displays the number of Technology Extensions installed on the memory card/device memory.   See also: r4986, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994   TEC: Technology Extension
$\begin{aligned} & \text { r4986 } \\ & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	TEC identifier total length / TEC ident tot_I
Description:   Dependency:   Note:	Displays the total length of the IDs of all the Technology Extensions installed on the memory card/device memory.   See also: r4985, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994   TEC: Technology Extension   The identifier of a Technology Extension comprises a maximum of 8 characters plus separator.
r498	TEC GUID total length / TEC GUID tot_lgth
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & C U _D C _R \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Function diagram: -   P group: OEM range Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   0 576 -
Description:   Dependency:   Note:	Displays the total length of the GUIDs of all the Technology Extensions installed on the memory card/device memory.   See also: r4985, r4986, r4988, r4989, r4990, r4991, r4992, r4993, r4994   The GUID of a Technology Extension comprises 16 characters plus 1 character major information plus 1 character, minor information.   GUID: Globally Unique IDentifier   TEC: Technology Extension



r4991[0...n]	TEC GUID / TEC GUID		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: r4987	Function diagram: -
CU_DC_R	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the GUIDs of all the Technology Extensions installed on the memory card/device memory. r4991[0...15]: GUID of Technology Extension 1		
	r4991[16]: Major information of Technology Extension 1		
	r4991[17]: Minor information of Technology Extension 1		
	r4991[18...33]: GUID of Technology Extension 2		
	r4991[34]: Major information of Technology Extension 2		
	r4991[35]: Minor information of Technology Extension 2, ...		
Dependency:	See also: r4985, r4986, r4987, r4988, r4989, r4990, r4992, r4993, r4994		
Notice:	This parameter is only indexed if at least one Technology Extension exists (p4985 > 0).		
Note:	TEC: Technology Extension		
r4992[0...n]	TEC GUID ES / TEC GUID ES		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: r4987	Function diagram: -
	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the GUIDs of all the Technology Extensions installed on the memory card/device memory. r4992[0...15]: GUID of Technology Extension 1		
	r4992[16]: Major information of Technology Extension 1		
	r4992[17]: Minor information of Technology Extension 1		
	r4992[18...33]: GUID of Technology Extension 2		
	r4992[34]: Major information of Technology Extension 2		
	r4992[35]: Minor information of Technology Extension 2, ...		
Dependency:	See also: r4985, r4986, r4987, r4988, r4989, r4990, r4991, r4993, r4994		
Notice:	This parameter is only indexed if at least one Technology Extension exists (p4985 > 0).		
Note:	TEC: Technology Extension		
r4993[0...n]	TEC activation status / TEC act stat		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: r4985	Function diagram: -
CU_DCR	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	-
Description:	Displays the activation status r4993[0]: Activation of Techno r4993[1]: Activation of Techno	gy Extensions instal   1 $2, \ldots$	ry card/device memory
Value:	0 : Technology Extension inactive		
Dependency:	See also: r4985, r4986, r4987, r4988, r4989, r4990, r4991, r4992, r4994		
Notice:	This parameter is only indexed if at least one Technology Extension exists (p4985 > 0).		
Note:	TEC: Technology Extension		


r4994[0...n]	TEC properties / TEC property				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 4	
CU_DC_R_S, CU_DC,	Data type: Unsigned32		Dyn. index: r4985	Function diagram: -	
	P group: OEM range		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the properties of all the Technology Extensions installed on the memory card/device memory. r4994[0]: Property of Technology Extension 1   r4994[1]: Property of Technology Extension 2, ...				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Properties diagnostics bit 0	Yes	No	-
		Properties diagnostics bit 1	Yes	No	-
		Properties diagnostics bit 2	Yes	No	-
		OEM	No	Yes	-
		Properties diagnostics bit 4	Yes	No	-
		Properties diagnostics bit 5	Yes	No	-
		Properties diagnostics bit 6	Yes	No	-
Dependency:	See also: r4985, r4986, r4987, r4988, r4989, r4990, r4991, r4992, r4993				
Notice:	This parameter is only indexed if at least one Technology Extension exists ( $\mathrm{p} 4985>0$ ).				
Note:	TEC: Technology Extension				
	The parameter is only for internal Siemens diagnostics.				


r4995[0...n]	TEC external version / TEC ext version		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: r4985	Function diagram: -
CU_DC_R	P group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the external version of all the Technology Extensions installed on the memory card/device memory. r4995[0]: External version of Technology Extension 1   r4995[1]: External version of Technology Extension 2, ...		
Dependency:	See also: r4985, r4986, r4987, r4988, r4990, r4991, r4992, r4993, r4994		
Notice:	This parameter is only indexed if at least one Technology Extension exists (p4985 > 0).		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual serial number of the Control Unit.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning tool, the ASCII characters are displayed uncoded.		
Dependency:	See also: p7765, p7766, p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:			


p7759[0...19]	KHP Control Unit reference serial number / KHP CU ref ser_no		
CU_DC_S,	Can be changed: T	Calculated:	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the reference serial number for the Control Unit.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	See also: p7765, p7766, p7767, p7768		
Note:	KHP: Know-How Protection		
	- the OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		



### 2.2 List of parameters

Note: $\quad$ KHP: Know-How Protection $\quad$ For bit 00: $\quad$ Write protection can be activated/deactivated via p7761 on the Control Unit. $\quad$ For bit 01: $\quad$ The know-how protection can be activated by entering a password (p7766 ... p7768).

If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766. In this case, bit $1=0$ and bit $2=1$ offset.
For bit 03:
Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory setting is possible). This bit is only set if know-how protection is active (bit $1=1$ ) and $p 7766$ has not been entered in the OEM exception list.
For bit 04:
When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards/Control Units. This bit is only set if know-how protection is active and in p7765.0 is set $=1$.
For bit 05:
When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards. This bit is only set if know-how protection is active and p7765.1 is set $=1$ and p 7765.0 is set $=0$.
For bit 06:
When know-how protection is activated, the drive data can be traced using the device trace function. This bit is only set if know-how protection is active and p7765.2 is set $=1$.
For bit 12:
Together with p7755, the bit is used to monitor write protection.
Bit $=1$, if $p 7755$ is not equal to 0 and write protection is active ( $r 7760.0=1$ ).
Bit $=0$, if write protection was deactivated. p7755 is set to 0 , and when write protection is activated again, bit 12 remains at 0 .


Note: | KHP: Know-How Protection |
| :--- |
| For bit 00: |
| Write protection can be activated/deactivated via p7761 on the Control Unit. |
| For bit 01: |
| The know-how protection can be activated by entering a password (p7766 ... p7768). |
| For bit 02: |
| If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password |
| in p7766. In this case, bit $1=0$ and bit $2=1$ offset. |
| For bit 03: |
| Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory |
| setting is possible). This bit is only set if know-how protection is active (bit $1=1$ ) and p7766 has not been entered in |
| the OEM exception list. |
| For bit 04: |
| When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be |
| additionally protected against being used with other memory cards/Control Units. This bit is only set if know-how |
| protection is active and in p7765.0 is set $=1$. |
| For bit $05:$ |
| When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be |
| additionally protected against being used with other memory cards. This bit is only set if know-how protection is |
| active and p7765.1 is set = 1 and p7765.0 is set = 0 . |
| For bit 06: |
| When know-how protection is activated, the drive data can be traced using the device trace function. This bit is only |
| set if know-how protection is active and p7765.2 is set = 1 . |
| For bit 12 : |
| Together with p7755, the bit is used to monitor write protection. |
| Bit $=1$, if p7755 is not equal to 0 and write protection is active (r7760.0 = 1 ). |
| Bit $=0$, if write protection was deactivated. p7755 is set to 0 , and when write protection is activated again, bit 12 |
| remains at 0 . |

p7761	Write protection / Write protection		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting for activating/deactivating the write protection for adjustable parameters.		
Value:	0 : Deactivate write protection   1: Activate write protection		
Dependency:	See also: r7760		
Notice:	While write protection is active, a download is prevented; however, it is still possible to restore the factory settings.		
Note:	Parameters with the "WRITE_NO_LOCK" attributes are excluded from the write protection.		
	A product-specific list of these parameters is also available in the corresponding List Manual.		
p7762	Write protection multi-master fieldbus system access behavior / Fieldbus acc_behav		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the behavior for write protection when accessing via multi-master fieldbus systems (e.g. CAN, BACnet).		
Value:	0 : Write access independent of p 7761   1: Write access dependent on p7761		
Dependency:	See also: r7760, p7761		

### 2.2 List of parameters

p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	500	1


Description:	Sets the number of parameters for the OEM exception list $(p 7764[0 \ldots n])$.
	$\mathrm{p} 7764[0 \ldots \mathrm{n}]$, with $\mathrm{n}=\mathrm{p} 7763-1$
Dependency:	See also: p 7764
Note:	KHP: Know-How Protection
	Even if know-how protection is set, parameters in this list can be read and written to.


p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: p7763	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	[0] 7766
			[1...499] 0
Description:	OEM exception list ($\mathrm{p} 7764[0 \ldots \mathrm{n}]$ for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p 7763 .		
	See also: p7763		
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		

p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: p7763	Function diagram: -
DC CTRL R, TM31,	P group: -	Unit group: -	Unit selection: -
TM15DI_DO, TM150	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	OEM exception list ($\mathrm{p} 7764[0 \ldots \mathrm{n}]$ for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p7763.		
	See also: p7763		
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		

p7765	KHP configuration / KHP config				
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$			Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: -	
	P group: - U		Unit group: -	Unit se	
	Not for motor type: - S		Scaling: -	Expert list:	
	Min:		Max:	Factory setting:	
	- -			0000 bin	
Description:	Configuration settings for know-how protection.				
	For bit 00, 01:				
	When KHP is activated, this means that the OEM can define whether the parameters and DCC data encrypted on the memory card should be protected before using on other memory cards/Control Units.				
	For bit 02:				
	This means that the OEM can define whether it is possible or not to trace the drive data using the device trace function although KHP is activated.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Extended copy protection - linked to the memory card and CU	Yes	No	-
		Basic copy protection - linked to the memory card	Yes	No	-
		Permit trace and measuring functions for diagnostic purposes	Yes	No	-
Dependency:	See also: p7766, p7767, p7768				
Note:	KHP: Know-How Protection				
	For copy protection, the serial numbers of the memory card and/or Control Unit are checked.				
	The memory card copy protection and preventing data to be traced are only effective when the know-how protection has been activated.				
	For bit 00, 01:				
	If both bits are inadvertently set to 1 (e.g. at the BOP), then the setting of bit 0 applies. There is no copy protection if both bits are set to 0 .				

2.2 List of parameters

Note: \quad KHP: Know-How Protection \quad When reading, p7766[0...29] = 42 dec (ASCII character $=$ "*") is displayed.

p7767[0...29]	KHP password new / KHP passw new		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the new password for know-how protection.		
Dependency:	See also: p7766, p7768		
Note:	KHP: Know-How Protection		
	When reading, p7767[0...29] $=42 \mathrm{dec}($ ASCII character $=$ "*") is displayed.		

p7768[0...29]	KHP password confirmation / KHP passw confirm		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
Description:	-	-	
Dependency:	Confirms the new password for know-how protection.		
Note:	See also: p7766, p7767		
	KHP: Know-How Protection		
	When reading, p7768[0...29] = 42 dec (ASCII character $=" * ")$ is displayed.		

2.2 List of parameters

p7829	Activate firmware download / FW download act		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
$\begin{aligned} & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Data type: Integer16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-1	999	0
Description:	Activating the firmware download for the DRIVE-CLiQ components specified in p7828.		
	1: Activate download.		
	-1 : activate the download and carry out a reset.		
	0 : Download successfully completed.		
	> 1: Fault code		
	011: DRIVE-CLiQ component has detected a checksum error.		
	015: The selected DRIVE-CLiQ components did not accept the contents of the firmware file.		
	018: Firmware version is too old and is not accepted by the component.		
	019: Firmware version is not suitable for the hardware release of the component.		
	101: After several communication attempts, no response from the DRIVE-CLiQ component.		
	140: Firmware file for the DRIVE-CLiQ component not available on the memory card/device memory.		
	143: Component has not changed to the mode for firmware download. It was not possible to delete the existing firmware.		
	144: When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible that the file on the memory card/device memory is defective.		
	145: Checking the loaded firmware (checksum) was not completed by the component in the appropriate time. 156: Component with the specified component number is not available.		
	Additional values:		
	Only for internal Siemens troubleshooting.		
Dependency:	See also: p7828		
Note:	p7829 is automatically set to 0 after the firmware has been successfully downloaded.		
	The new firmware only becomes active at the next system run-up.		
p7830	Telegram diagnostics selection / Telegr diag sel		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram:
DC_CTRL_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Selects a telegram whose contents should be shown in r7831 ... r7836.		
Value:			
	$\begin{array}{ll}0: & \text { Reserved } \\ \text { 1: } & \text { First cyclic receive telegram sensor } 1\end{array}$		
	2: First cyclic receive telegram sensor 2		
	3: First cyclic receive telegram sensor 3		
Dependency:	See also: r7831, r7832, r7833, r7834, r7835, r7836		
r7831[0...23]	Telegram diagnostics signals / Telegr diag sig		
DC_CTRL_S, DC_CTRL_R_S, DC_CTRL, DC_CTRL_R	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	15157	-
Description:	Displays the signals con	d telegram (p7830)	

2.2 List of parameters

Value:	0 :	UNUSED
	1 :	UNKNOWN
	102:	SAPAR_ID_DSA_ALARM
	110:	SAPAR_ALARMBITS_FLOAT_0
	111:	SAPAR_ALARMBITS_FLOAT_1
	112:	SAPAR_ALARMBITS_FLOAT_2
	113:	SAPAR_ALARMBITS_FLOAT_3
	114:	SAPAR_ALARMBITS_FLOAT_4
	115:	SAPAR_ALARMBITS_FLOAT_5
	1050	ENC_ID_TIME_PRETRIGGER
	1050	ENC_ID_TIME_SEND_TELEG_1
		ENC_ID_TIME_CYCLE_FINISHED
	1050	ENC_ID_TIME_DELTA_FUNMAN
	1050	ENC_ID_SUBTRACE_CALCTIMES
	1050	ENC_ID_SYNO_PERIOD
	1051	ENC_ID_AB_SQUARE_SUM
	1051	ENC_ID_ADC_TRACK_A
	1051	ENC_ID_ADC_TRACK_B
	1051	ENC_ID_ADC_TRACK_C
	1051	ENC_ID_ADC_TRACK_D
	1052	ENC_ID_ADC_TRACK_A_SAFETY
	1052	ENC_ID_ADC_TRACK_B_SAFETY
	1052	ENC_ID_ADC_TEMP_1
	1052	ENC_ID_SUBTRACE_TRACK_A
	1052	ENC_ID_SUBTRACE_TRACK_B
	1052	ENC_ID_ADC_TRACK_R
	1053	ENC_ID_TRACK_AB_X
	1053	ENC_ID_TRACK_AB_Y
	1053	ENC_ID_OFFSET_CORR_AB_X
	1053	ENC_ID_OFFSET_CORR_AB_Y
	1053	ENC_ID_AB_ABS_VALUE
	1053	ENC_ID_TRACK_CD_X
	1053	ENC_ID_TRACK_CD_Y
	1053	ENC_ID_TRACK_CD_ABS
	1054	ENC_ID_AB_RAND_X
	1054	ENC_ID_AB_RAND_Y
		ENC_ID_AB_RAND_ABS_VALUE
		ENC_ID_SUBTRACE_ABS_ARRAY
	1054	ENC_ID_PROC_OFFSET_0
	1054	ENC_ID_PROC_OFFSET_4
	1055	ENC_ID_SUBTRACE_AMPL
	1056	ENC_ID_ENCODER_TEMP
	1056	ENC_SELFTEMP_ACT
	1056	ENC_ID_MOTOR_TEMP_TOP
	1056	ENC_ID_MOTOR_TEMP_1
	1056	ENC_ID_MOTOR_TEMP_1_COD
	1056	ENC_ID_MOTOR_TEMP_2_COD
	1057	ENC_ID_MOTOR_TEMP_3_COD
	1058	ENC_ID_RESISTȦNCE_1
	1059	ENC_ID_ANA_CHAN_A
	1059	ENC_ID_ANA_CHAN_B
	1059	ENC_ID_ANA_CHAN_X
	1059	ENC_ID_ANA_CHAN_Y
	1059	ENC_ID_AB_ANGLE
	1059	ENC_ID_CD_ANGLE
		ENC_ID_MECH_ANGLE_HI
	1059	ENC_ID_RM_PŌ_PHI_COMMU
	1060	ENC_ID_PHI_COMMU
	1060	ENC_ID_SUBTRACE_ANGLE
	1061	ENC_ID_DIFF_CD_INC
	1061	ENC_ID_RM_POS_PHI_COMMU_RFG
		ENC_ID_MECH_ANGLE
		ENC_ID_MECH_RM_POS
	1064	ENC_ID_INIT_VECTOR
	1064	FEAT_INIT_VECTOR
	1066	ENC_ID_SENSOR_STATE

```
10661: ENC_ID_BASIC_SYSTEM
10662: ENC_ID_REFMARK_STATUS
10663: ENC_ID_DSA_STATUS1_SENSOR
10664: ENC_ID_DSA_RMSTAT_HANDSHAKE
10665: ENC_ID_DSA_CONTROL1_SENSOR
10667: ENC_ID_SAFETY
10669: ENC_ID_SUB_STATE
10676: ENC_ID_COUNTCORR_SAW_VALUE
10677: ENC ID COUNTCORR ABS VALUE
10678: ENC_ID_SAWTOOTH_CORR
10680: ENC_ID_SM_XIST1_CORRECTED_QUADRANTS
10692: ENC_ID_RESISTANCE_CALIB_INSTANT
10693: ENC_ID_SERPROT_POS
10700: ENC_ID_AB_VIOL_COUNT
10701: ENC ID SUBTRACE TRACK A TRIG
10702: ENC_ID_SUBTRACE_TRACK_B_TRIG
10723: ENC ID ACT STATEMACHINE FUNCTION
10724: ENC_ID_ACT_FUNMAN_FUNCTION
10725: ENC ID SAFETY COUNTER CRC
10728: ENC_ID_SUBTRACE_AREA
10740: ENC_ID_POS_ABSOLUTE
10741: ENC_ID_POS_REFMARK
10742: ENC_ID_SAWTOOTH
10743: ENC_ID_SAFETY_PULSE_COUNTER
10745: ENC_ID_EIU_ZEROCTRL
10756: ENC_ID_DSA_ACTUAL_SPEED
10757: ENC_ID_SPEED_DEV_ABS
10772: ENC_ID_DSA_PO-\_XIST1
10788: ENC ID AB CROSS CORR
10789: ENC_ID_AB_GAIN_Y_CORR
10790: ENC_ID_AB_PEAK_CORR
11825: ENC_ID_RES_TRANSITION_RATIO
11826: ENC_ID_RES_PHASE_SHIFT
12088: ENC_ID_SM_DIFF_PULSE_ACCU
15150: ENC_ID_SPINDLE_S1_RAW
15151: ENC_ID_SPINDLE_S4_RAW
15152: ENC_ID_SPINDLE_S5_RAW
15155: ENC_ID_SPINDLE_S1_CAL
15156: ENC_ID_SPINDLE_S4_CAL
15157: ENC_ID_SPINDLE_S5_CAL
```

r7832[0...23]	Telegram diagnostics numerical format / Telegr diag format		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL,	U group: -	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Max:	Factory setting:
	Min:	14	-
	-1		
Description:	Displays the original numerical format of the signals contained in the telegram.		
	The associated signal number is represented in the appropriate index of r7831.		

2.2 List of parameters

Value:	$-1:$	Unknown
	$0:$	Boolean
	$1:$	Signed 1 byte
	$2:$	Signed 2 byte
	$3:$	Signed 4 byte
	$4:$	Signed 8 byte
	$5:$	Unsigned 1 byte
	$6:$	Unsigned 2 byte
	$7:$	Unsigned 4 byte
	$8:$	Unsigned 8 byte
	$9:$	Float 4 byte
	$10:$	Double 8 byte
	$11:$	mm dd yy HH MM SS MS DOW
	$12:$	ASCII string
Dependency:	$13:$	SINUMERIK frame type
	$14:$	SINUMERIK axis type
	See also: r7831	

r7833[0...23] Telegram diagnostics unsigned / Telegr diag unsign

DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: -	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:

Description: Parameter to display a DSA signal in the unsigned-integer format.
The associated signal number is represented at the appropriate index in r7831.
r7834[0...23] Telegram diagnostics signed / Telegr diag sign

DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: -	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Parameter to display a DSA signal in the signed-integer format.		
	The associated signal number is represented at the appropriate index in r7831.		

r7835[0...23] Telegram diagnostics real / Telegr diag real

DC_CTRL_R_S,
DC_CTRL,
DC_CTRL_R

Description:

Access level: 4
Function diagram: -
Unit selection: -
Expert list: 1
Factory setting

Parameter to display a DSA signal in the float format.
The associated signal number is represented at the appropriate index in r7831.
Can be changed: -
Data type: FloatingPoint32
P group: -
Not for motor type: -
Min:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:

r7836[0...23]	Telegram diagnostics unit / Telegr diag unit		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R	P group: -	Scaling: -	Expert list: 1
	Not for motor type:	Max:	Factory setting:
	Min:	147	-
	-1		
Description:	Displays the units of a DSA signal.		
	The associated signal number is represented at the appropriate index in r7831.		

2.2 List of parameters

Value:	-1:	Unknown
	0 :	None
	1:	Millimeter or degrees
	2 :	Millimeter
	3:	Degrees
	4:	$\mathrm{mm} / \mathrm{min}$ or RPM
	5 :	Millimeter / min
	6 :	Revolutions / min
	7:	$\mathrm{m} / \mathrm{sec}^{\wedge} 2$ or $\mathrm{U} / \mathrm{sec}^{\wedge} 2$
	8:	$\mathrm{m} / \mathrm{sec}^{\wedge} 2$
	9:	$\mathrm{U} / \sec ^{\wedge} 2$
	10:	$\mathrm{m} / \mathrm{sec}^{\wedge} 3$ or U/sec${ }^{\wedge} 3$
	11:	$\mathrm{m} / \mathrm{sec}^{\wedge} 3$
	12:	$\mathrm{U} / \sec ^{\wedge} 3$
	13:	sec
	14:	16.667 / sec
	15:	$\mathrm{mm} /$ revolution
	16:	ACX_UNIT_COMPENSATION_CORR
	18:	Newton
	19:	Kilogram
	20:	Kilogram meter^2
	21:	Percent
	22:	Hertz
	23:	Volt peak-to-peak
	24:	Amps peak-to-peak
	25:	Degrees Celsius
	26:	Degrees
	28:	Millimeter or degrees
	29:	Meters / minute
	30:	Meters / second
	31:	ohm
	32:	Millihenry
	33:	Newton meter
	34:	Newton meter/Ampere
	35:	Volt/Ampere
	36:	Newton meter second / rad
	38:	31.25 microseconds
	39:	Microseconds
	40:	Milliseconds
	42:	Kilowatt
	43:	Micro amps peak-to-peak
	44:	Volt seconds
	45:	Microvolt seconds
	46:	Micro newton meters
	47:	Amps / volt seconds
	48:	Per mille
	49:	Hertz / second
	53:	Micrometer or millidegrees
	54:	Micrometer
	55:	Millidegrees
	59:	Nanometer
	61:	Newton/Amps
	62:	Volt seconds/meter
	63:	Newton seconds/meter
	64:	Micronewton
	65:	Liters / minute
	66:	Bar
	67:	Cubic centimeters
	68:	Millimeter / volt minute
	69:	Newton/Volt
	80:	Millivolts peak-to-peak
	81:	Volt rms
	82:	Millivolts rms
	83:	Amps rms
	84:	Micro amps rms
	85:	Micrometers / revolution

90:	Tenths of a second
91:	Hundredths of a second
92:	10 microseconds
93:	Pulses
94:	256 pulses
95:	Tenths of a pulse
96:	Revolutions
97:	100 revolutions / minute
98:	10 revolutions / minute
99:	0.1 revolutions / minute
100:	Thousandth revolution / minute
101:	Pulses / second
102:	100 pulses / second
103:	10 revolutions / (minute x seconds)
104:	10000 pulses/second^2
105:	0.1 Hertz
106:	0.01 Hertz
107:	0.1 / seconds
108:	Factor 0.1
109:	Factor 0.01
110:	Factor 0.001
111:	Factor 0.0001
112:	0.1 Volt peak-to-peak
113:	0.1 Volt peak-to-peak
114:	0.1 amps peak-to-peak
115:	Watt
116:	100 Watt
117:	10 Watt
118:	0.01 percent
119:	1/second^3
120:	0.01 percent/millisecond
121:	Pulses / revolution
122:	Microfarads
123:	Milliohm
124:	0.01 Newton meter
125:	Kilogram millimeter^2
126:	Rad / (seconds newton meter)
127:	Henry
128:	Kelvin
129:	Hours
130:	Kilohertz
131:	Milliamperes peak-to-peak
132:	Millifarads
133:	Meter
135:	Kilowatt hours
136:	Percent
137:	Amps / Volt
138:	Volt
139:	Millivolts
140:	Microvolts
141:	Amps
142:	Milliamperes
143:	Micro amps
144:	Milliamperes rms
145:	Millimeter
146:	Nanometer
147:	Joules

2.2 List of parameters

r7843[0...20]	Memory card serial number / Mem_card ser.no
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: - Calculated: - Access level: 1   Data type: Unsigned8 Dyn. index: - Function diagram: -   P group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:
Description:	Displays the actual serial number of the memory card. The individual characters of the serial number are displayed in the ASCII code in the indices.
Dependency:   Notice:   Note:	See also: p9920, p9921   An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.   Example: displaying the serial number for a memory card:   r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1   r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2   r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3   r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4   r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5   r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6   r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7   r7843[7] $=0$ dec --> ASCII characters = " " --> serial number, character 8   r7843[19] = 0 dec --> ASCII characters = " " --> serial number, character 20   r7843[20] $=0 \mathrm{dec}$   Serial number $=111923 E$
r7844[0.	Device memory firmware version / Dev_mem FW
CU_DC_S,   CU_DC_R_S, CU_DC,   CU_DC_R	Can be changed: - Calculated: - Access level: 1   Data type: Unsigned32 Dyn. index: - Function diagram: -   P group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min: Max: Factory setting:   - - -
Description: Index:	Displays the version of the firmware stored on the device memory.   [0] = Internal   [1] = External   [2] = Parameter backup
Note:	For index [0]:   Displays the internal firmware version (e.g. 01402315).   This firmware version is the version of the device memory and not the CU firmware (r0018), however, normally they   have the same versions.   For index [1]:   Displays the external firmware version (e.g. 01040000 -> 1.4).   For index [2]:   Displays the internal CU firmware version (r0018) of the parameter backup.   With this CU firmware version, the parameter backup was saved, which was used when powering up.



r7853[0...n]	Component available/not available / Comp present		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: p7852	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	FFFF hex	-
Description:	Displays the component and whether this component is currently present.		
	High byte: Component number		
	Low byte: 0/1 (not available/available)		
Dependency:	See also: p7852		
Note:	The values are valid if all available Control Units adopt the "Initialization finished" state $(\mathrm{r} 3988=800)$ following power up.		


p7857	Sub-boot mode / Sub-boot mode		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL,	Unit group: -	Unit selection: -	
DC_CTRL_R, TM31,	P group: -	Scaling: -	Expert list: 1
TM15DI_DO, TM150	Not for motor type: -	Max:	Factory setting:
	Min:	1	1
	0		
Description:	Sets the mode for the sub-boot.		
Value:	$0: \quad$ Sub-boot manual		
	$1: \quad$ Sub-boot automatic		
Note:	For p7857 = 0 (manual sub-boot) the following applies:		
	The parameter should be set to 1 to start the sub-boot.		


p7859[0...199]	Component number global / Comp_no global		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-32786	32767	0
Description:	Sets the global and unique component number in a drive system with several Control Units.		
	Each index of the parameter corresponds to a possible local component number on the corresponding Control Unit.		
	The indices are allocated to the global component numbers as follows:		
	p7859[0]: Not used		
	p7859[1]: Sets the global component number for the local component number 1		
	p7859[2]: Sets the global component number for the local component number 2		
	...		
	p7859[199]: Sets the global component number for the local component number 199		
Notice:	This parameter is preferably set via suitable commissioning tool (e.g. UpdateAgent, STARTER, SCOUT).		
	Changing the parameter via the AOP (Advanced Operator Panel) or BOP (Basic Operator Panel) can destroy a valid unique setting.		
Note:	The parameter is not influenced by setting the factory setting.		
r7867	Status/configuration changes global / Changes global		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -   Data type: Unsigned32	Calculated: -	Access level: 4
		Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
			-
Description:	Displays status and configuration changes of all of the drive objects in the complete unit.		
	When changing the status or the configuration of the Control Unit or a drive object, the value of this parameter is incremented.		
Dependency:	See also: r7868, r7869, r7870		
r7868[0...24]	Configuration changes drive object reference / Config_chng DO ref		
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -   Data type: Unsigned32	Calculated: -	Access level: 4
		Dyn. index:	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	Reference to the drive objects whose configuration has changed. Index 0:		
	When changing one of the following indices, then the value in this index is increased.		
	Index 1...n:		
	The drive object with object number in $\mathrm{p} 0101[\mathrm{n}-1]$ has changed its configuration.		
	Example:		
	r7868[3] was incremented since the last time it was read.		
	--> the configuration of the drive object with object number in $\mathrm{p} 0101[2]$ was changed.		



### 2.2 List of parameters

Index:	[ 0 ] = Sum of the following indices   [1] = Object number in p0101[0]   [2] = Object number in p 0101 [1]   [3] = Object number in p0101[2]   [4] = Object number in p0101[3]   [5] = Object number in p0101[4]   [6] = Object number in 00101 [5]   [7] = Object number in p0101[6]   [8] = Object number in $00101[7]$   [9] = Object number in p0101[8]   [10] = Object number in p0101[9]   [11] = Object number in 00101 [10]   [12] = Object number in p0101[11]   [13] $=$ Object number in 00101 [12]   [14] = Object number in p0101[13]   [15] = Object number in p0101[14]   [16] $=$ Object number in 00101 [15]   [17] = Object number in p0101[16]   [18] = Object number in p0101[17]   [19] = Object number in p 0101 [18]   [20] = Object number in p0101[19]   [21] = Object number in 00101 [20]   [22] = Object number in p0101[21]   [23] = Object number in p0101[22]   [24] = Object number in p 0101 [23]	
Dependency:	See also: $00101, \mathrm{r} 7867, \mathrm{r} 7872$	
r7870[0...8]	Configuration changes global / Config_chng global	
CU_DC_S,	Can be changed: - Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32 Dyn. index:	Function diagram: -
	P group: - Unit group: -	Unit selection:
	Not for motor type: - Scaling: -	xpert list: 1
	Min: Max:	Factory setting:
Description:	Displays the configuration changes of all of the drive objects in the complete unit.	
Index:	[ 0 ] = Sum of the following indices   [1] = r7871[0] of a drive object   [2] = p0101 or r0102   [3] = PROFIBUS configuration (p0978)   [4] = DRIVE-CLiQ actual topology (r9900 or r9901)   [5] = DRIVE-CLiQ target topology (r9902 or r9903)   [6] = DRIVE-CLiQ sockets (p0109)   [7] = Technology Extensions   [8] = Topology comparison result	
Dependency:	See also: r7867, r7871	

### 2.2 List of parameters

## Note:

For index [0]:
When changing one of the following indices, then the value in this index is incremented.
For index [1]:
Drive object configuration. When changing r7871[0] on a drive object, the value in this index is incremented.
For index [2]:
Drive object, configuration unit. When changing either p0101 or r0102, the value in this index is incremented.
For index [3]:
PROFIBUS configuration unit. When changing p0978, the value in this index is incremented.
For index [4]:
DRIVE-CLiQ actual topology. When changing either r9900 or r9901, the value in this index is incremented.
For index [5]:
DRIVE-CLiQ target topology. When changing either p9902 or p9903, the value in this index is incremented.
For index [6]:
DRIVE-CLiQ sockets. When changing p0109, the value in this index is incremented.
For index [7]:
Technology Extensions When changing Technology Extensions, the value in this index is incremented.
For index [8]:
Topology comparison result. When changing the topology comparison result, the value in this index is incremented.

r7871[0...15]	Configuration changes drive object / Config_chng DO		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R, TM31,   TM15DI DO, TM150	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the configuration changes on the drive object.		
Index:	[0] = Sum of the following indices		
	[1] = p0010, p0107, p0108		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/deactivate drive object		
	[6] = Data backup required		
	[7] = Reserved		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	[10] = p0107, p0108		
	[11] = Reserved		
	[12] = Write protection and know-how protection status		
	[13] = Reserved		
	[14] = Reserved		
	[15] = Reserved		
Dependency:	See also: r7868, r7870		

### 2.2 List of parameters

## Note:

For index [0]:
When changing one of the following indices, then the value in this index is incremented.
For index [1]:
Drive object commissioning: When changing p0010, p0107 or p0108, the value in this index is incremented.
For index [2]:
Drive object name. When changing p0199, the value in this index is incremented.
For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [10]:
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.
For index [12]:
Drive object configuration. When activating/deactivating write protection or know-how protection, the value in this index is incremented.

r7871[0...15]	Configuration changes drive object / Config_chng DO		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 4
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL,   DC CTRL R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the configuration changes on the drive object.		
Index:	[ 0 ] = Sum of the following indices		
	[1] = p0010, p0107, p0108, p0171, p0172 or p0173		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/deactivate drive object		
	[6] = Data backup required		
	[7] = Activate/deactivate component		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	[10] = p0107, p0108, p0171, p0172 or p0173		
	[11] = Reserved		
	[12] = Write protection and know-how protection status		
	[13] $=$ Reserved$[14]=$ Reserved		
	[15] = Enc type (p0400)		
Dependency:	See also: r7868, r7870		

## Note:

For index [0]:
When changing one of the following indices, then the value in this index is incremented.
For index [1]:
Drive object commissioning: When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.
For index [2]:
Drive object name. When changing p0199, the value in this index is incremented.
For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [7]:
Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [10]:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.

For index [15]:
Encoder configuration. When changing p0400, the value in this index is incremented.

r7872[0...3]	Drive object status changes / DO stat_chng	
All objects	Can be changed: - Calculated: -	Access level: 4
	Data type: Unsigned32 Dyn. index: -	Function diagram: -
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	-	-
Description:	Displays the status changes on the drive object.	
Index:	[0] = Sum of the following indices	
	[1] = Faults (r0944)	
	[2] = Alarms (r2121)	
	[3] = Safety messages (r9744)	
Dependency:	See also: r7869	
Note:	For index [0]:	
	When changing one of the following indices, then the value in this index is incremented.	
	For index [1]:	
	Drive object faults. When changing r0944, the value in this index is incremented.	
	For index [2]:	
	Drive object alarms. When changing r2121, the value in this index is incremented.	
	For index [3]:	
	Drive object safety messages. When changing r9744, the value in this index is incremented.	


p7900[0...23]	Drive objects priority / DO priority		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets the priority for processing the existing drive objects in the system.		
	The parameter enables a free sequence to be set for processing the drive objects. For this purpose all the drive object numbers existing in the system have to be written in the desired sequence into the corresponding indices of the parameter. After re-booting this sequence will be effective without a plausibility check.		
	With the factory setting the following priorities regarding processing are applicable:		
	- the drive objects are pre-sorted according to type as follows: CU_DC, DC_CTRL, TM		
	- if they are of the same type, they are sorted in ascending order according to their drive object number, i.e. the lower the number, the higher the priority for processing.		
Index:			
	[0] = Drive object number Control Unit   [1] = Drive object number object 1		
	[2] = Drive object number object 2	[3] = Drive object number object 3	
	[4] = Drive object number object 4		
	[5] = Drive object number object 5		
	[6] = Drive object number object 6		
	[7] $=$ Drive object number object 7		
	[8] = Drive object number object 8		
	[9] $=$ Drive object number object 9		
	[10] = Drive object number object 10		
	[11] = Drive object number object 11		
	[12] = Drive object number object 12		
	[13] = Drive object number object 13		
	[14] = Drive object number object 14		
	[15] = Drive object number object 15		
	[16] = Drive object number object 16		
	[17] = Drive object number object 17		
	[18] = Drive object number object 18		
	[19] = Drive object number object 19		
	[20] = Drive object number object 20		
	[21] = Drive object number object 21		
	[22] = Drive object number object 22		
	[23] = Drive object number object 23		
Notice:	This parameter may only be used by qualified service personnel.		
Note:	If the same drive object numbers are used and if the existing drive object numbers in the system are entered incompletely, the content of this parameter is ignored entirely. The behavior as with factory setting will then become effective.		



r7903	Hardware sampling times still assignable / HW t_samp free			
```CU_DC_S, CU_DC_R_S,CU_DC, CU_DC_R```	Can be changed: -	Calculated: -	Access	
	Data type: Unsigned16	Dyn. index: -	Functio	
	P group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Factory	
	-	-	-	
Description:	Displays the number of hardware sampling times that can still be assigned.			
Note:	DCC: Drive Control Chart			
	FBLOCKS: free blocks			
	TEC: Technology Extension			
p8550	AOP LOCAL/REMOTE / AOP LOCAL/REMOTE			
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4	
	Data type: Unsigned32	Dyn. index: -	Function diagram: -	
		Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	0000000000001001 bin	
Description:	Setting for saving the actual configuration of the Advanced Operator Panel (AOP).			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 LOCAL save	Yes	No	-
	01 Start in LOCAL	Yes	No	-
	02 Change in oper	Yes	No	-
	03 OFF acts like OFF1	Yes	No	-
	04 OFF acts like OFF2	Yes	No	-
	05 OFF acts like OFF3	Yes	No	-
	06 Reserved	Yes	No	-
	07 CW/CCW active	Yes	No	-
	08 Jog active	Yes	No	-
	09 Save speed setpoint	Yes	No	-
	14 Inhibit operation	Yes	No	-
	15 Inhibit parameterization	Yes	No	-
p8552	IOP speed unit / IOP speed unit			
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Integer16	Dyn. index: -	Function diagram: -	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	1	2	2	
Description: Value:	Sets the unit for displaying and entering speeds.			
	$\begin{array}{ll}\text { 1: } & \mathrm{Hz} \\ \text { 2: } & \mathrm{rpm}\end{array}$			
r8570[0...39]	Macro drive object / Macro DO			
All objects	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dyn. index: -	Function diagram: -	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 0	
	Min:	Max:	Factory setting:	
	-	-		
Description:	Displays the macro file saved in the appropriate directory on the memory card/device memory.			

2.2 List of parameters

Dependency:	See also: p0015
Note:	For a value $=9999999$, the following applies: The read operation is still running.

r8571[0...39]	Macro Binector Input (BI) / Macro BI		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 1
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index:	Function diagram: -
CU_DC_R, DC CTRLS	P group: -	Unit group: -	Unit selection: -
DC_CTRL_R_S,	Not for motor type: -	Scaling: -	Expert list: 0
DC_CTRL,	Min:	Max:	Factory setting:
DC_CTRL_R, TM31, TM15DI_DO	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	See also: p0700		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		

r8572[0...39]	Macro Connector Inputs (Cl) for speed setpoints / Macro Cl n_set		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC CTRL R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	See also: p1000		
Note:	For a value = 9999999, the following applies: The read operation is still running.		

r8573[0...39]	Macro Connector Inputs (CI) for torque setpoints / Macro CIM_set		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 1
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
DC_CTRL, DC CTRL R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	See also: p1500		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		
r8585	Macro execution actual / Macro executed		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the macro currently being executed on the drive object.		
Dependency:	See also: p0015, p0700, p1000, p1500, r8570, r8571, r8572, r8573		

p8806[0...53]	Identification and Maintenance 1 / I\&M 1		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1). This information is known as "System identifier" and "Location identifier".		
Dependency:	See also: p8807, p8808		
Notice:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	For p8806[0...31]:		
	System identifier.		
	For p8806[32...53]:		
	Location identifier.		

p8807[0...15]	Identification and Maintenance 2 / I\&M 2		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 2" (I\&M 2). This information is known as "Installation date".		
Dependency:	See also: p8806, p8808		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	For p8807[0...15]:		
	Dates of installation or first commissioning of the device with the following format options (ASCII): YYYY-MM-DD		
	or		
	YYYY-MM-DD hh:mm		
	- YYYY: year		
	- MM: month $01 . . .12$		
	- DD: day $01 \ldots 31$		
	- hh: hours $00 . . .23$		
	- mm: minutes $00 \ldots 59$		
	The separators between	i.e. hyphen '-', s	must be entered.

p8808[0...53]	Identification and Maintenance 3/I\&M 3		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-		
Description:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3).		
	This information is known as "Supplementary information".		
Dependency:	See also: p8806, p8807		
Notice:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		

2.2 List of parameters

Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
For p8808[0...53]:	
Any supplementary information and comments (ASCII).	

r8809[0..53]	Identification and Maintenance 4 / I\&M 4		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4). This information is known as "Signature".		
Note:	Parameter r8809 contains the information described below.		
	For r8809[0...3]:		
	Contains the value from r9781[0] "SI change tracking checksum functional".		
	For r8809[4...7]:		
	Contains the value from r9782[0] "SI change tracking time stamp checksum functional".		
	For r8809[8...53]:		
	Reserved.		

p8811

CU_DC_S (PN
CBE20), CU_DC_R_S
(PN CBE20), CU DC (PN CBE20), CU_DC (PN CBE20), CU_DC_R (PN CBE20)

Description:
Value:

Note:

SINAMICS Link project selection / Project sel
Can be changed: $\mathrm{C} 1(1)$
Data type: Integer16
P group: Communications
Not for motor type: -
Min:
8

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:
64

Access level: 3
Function diagram: 2197, 2198
Unit selection: -
Expert list: 1
Factory setting:
64

Project selection for SINAMICS Link.
8: \quad Project 8 participants, 32 words
12: Project 12 participants, 24 words
16: Project 16 participants, 16 words
64: Project 64 participants, 16 words
SINAMICS Link requires that the appropriate CBE20 firmware version is selected (p8835 = 3).
The parameter must be set the same for all participants.
A change only becomes effective after a POWER ON.
The parameter is not influenced by setting the factory setting.

Dependency:	See also: p8811
Note:	SINAMICS Link requires that the appropriate CBE20 firmware version is selected (p8835 = 3). A change only becomes effective after a POWER ON. The parameter is not influenced by setting the factory setting. For index [0]: Is applicable for the synchronization of the application. The SINAMICS Link itself is always synchronous. For index [1]: The value must be set the same for all participants. When newly selecting the project p8811, p8812[1] is set to the factory setting. For $\mathrm{p} 8811=8,12,16$ the following applies: Min/max/factory setting: 500/500/500 $\mu \mathrm{s}$ For p8811 = 64, the following applies: Min/max/factory setting: 1000/2000/2000 $\mu \mathrm{s}$
p8	CBE20 firmware selection / CBE20 FW sel
CU_DC_S (PN CBE20), CU_DC_R_S (PN CBE20), CU_DC (PN CBE20), CU_DC_R (PN CBE20)	Can be changed: C1(1) Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Function diagram: 2197, 2198 P group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 1 99 1
Description: Value:	Selects the firmware version for the CBE20. $\begin{array}{ll}\text { 1: } & \text { PROFINET Device } \\ \text { 3: } & \text { SINAMICS Link } \\ \text { 4: } & \text { EtherNet/IP } \\ \text { 5: } & \text { Modbus TCP } \\ \text { 99: } & \text { Customer-specific from the OEM directory }\end{array}$
Note:	A change only becomes effective after a POWER ON. The parameter is not influenced by setting the factory setting. CBE20: Communication Board Ethernet 20
p8836	SINAMICS link node address / Node address
CU_DC_S (PN CBE20), CU_DC_R_S (PN CBE20), CU_DC (PN CBE20), CU_DC_R (PN CBE20)	Can be changed: $\mathrm{C} 1(1)$ Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: - Function diagram: 2198 P group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 0 64 0
Description:	Selects the node address for the SINAMICS Link on the Communication Board Ethernet 20 (CBE20). p8836 = 0: SINAMICS Link deactivated p8836 = 1 ... 64: SINAMICS Link node address
Dependency:	See also: p8811, p8835
Note:	The maximum number of permitted participant addresses is limited by the project selection p8811. SINAMICS Link requires that the appropriate CBE20 firmware version is selected (p8835 = 3). A change only becomes effective after a POWER ON. The parameter is not influenced by setting the factory setting.

2.2 List of parameters

p8837	IF2 STW1.10 = 0 mode / IF2 STW1.10=0		
DC_CTRL_S,	Can be changed: T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer16	Dyn. index: -	Function diagram: -
DC_CTRL, DC CTRL R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	2
Description:	Sets the processing mode for Generally, control world 1 is profile). The behavior of ST deviate from this, the behav	TW1.10 "master e first receive w ponds to that of ed using this pa	conformance to the PROFIdrive e. For other applications that

p8839[0...1]	PZD interface hardware assignment / PZD IF HW assign		
CU_DC_S,	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: 2197,2198
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	99	99
	Assignment of the hardware for cyclic communications via PZD interface 1 (IF1) and interface 2 (IF2)		

Description: Assignment of the hardware for cyclic communications via PZD interface 1 (IF1) and interface 2 (IF2).
Value: 0 : Inactive
Control Unit onboard
COMM BOARD
Automatic
Index: $\quad[0]=$ Interface 1
[1] = Interface 2
Dependency: See also: p2030
Note: \quad For value $=99$ (automatic) the following applies:

- if a COMM BOARD is not inserted, then the integrated communication interface (PROFIBUS/USS) communicates via IF1.
- if a CBE20 is inserted, then PROFINET CBE20 communicates via IF1 and PROFIBUS/USS via IF2.

For a value not equal to 99 (automatic) the following applies:

- both indices must be set to a number not equal to 99 (automatic).

A new setting only becomes effective after POWER ON, reset or download.

p8840	COMM BOARD monitoring time / CB t_monit		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: Communications	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_DC_R (PN	Min:	Max:	Factory setting:
CBE20)	0 [ms]	$65535000[\mathrm{~ms}]$	20 [ms]
	Sets the monitoring time to monitor the process data received via COMM BOARD.		
Description:	If, during this time, the Control Unit does not receive any process data from the COMM BOARD, then an appropriate		
	message is output.		
Dependency:	See also: p8835		

Note: This monitoring function only monitors the connection between the Control Unit and COMM BOARD and not the data traffic on the fieldbus.

For CBE20, the parameter is only active for firmware version "SINAMICS Link" or "EtherNet/IP" (p8835 = 3, 4, 5). For CBE20 firmware version Modbus TCP $(\mathrm{p} 8835=5)$ then the fieldbus data traffic is also monitored.
Value $=0$: Monitoring is deactivated.

p8841[0...239]	COMM BOARD send configuration data / CB s config_dat		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned16	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: Communications	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_DC_R (PN	Min:	Max:	Factory setting:
CBE20)	0	0	
	Sets the send configuration data for the COMM BOARD.		
Description:	The setting is activated with p8842.		
	See also: p8842		
Dependency:	The configuration data are specific to the inserted COMM BOARD.		
Note:	For CBE20, the configuration data are not relevant.		

p8842

CU_DC_S (PN
CBE20), CU_DC_R_S
(PN CBE20), CU_DC
(PN CBE20),
CU_DC_R (PN
CBE20)

Description:

Activate COMM BOARD send configuration / CB s config act

Can be changed: U, T
Data type: Unsigned16
P group: Communications
Not for motor type: -
Min:
0

Calculated: -
Dyn. index: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max:
1

Access level: 3
Function diagram: 2199, 2200

Factory setting:
0

Activate a modified send configuration for COMM BOARD.
With p8842 = 1, the values in p8841 are transferred to the COMM BOARD and activated. After this, p8842 is automatically set to zero.
Dependency: See also: p8841
Note: For CBE20, certain SINAMICS parameters are newly evaluated and activated. An existing, cyclic bus connection is interrupted.
For CBE20, the parameter is only active for firmware selection "SINAMICS Link" (p8835 = 3).

r8843.0.. 2	BO: IF2 PZD state / IF2 PZD state			
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: 2410	
	P group: Communications	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the PROFIdrive PZD state.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Setpoint failure	Yes	No	-
	02 Fieldbus operation	Yes	No	-
Dependency:	See also: p2044			
Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.			

2.2 List of parameters

p8844	IF2 fault delay / IF2 F delay		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2410
DC_CTRL, DC CTRL R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	See also: r2043		
p8848	IF2 PZD sampling time / IF2 PZD t_sample		
CU_DC_S,	Can be changed: C 1 (3)	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1.00 [ms]	16.00 [ms]	4.00 [ms]
Description:	Sets the sampling time for the cyclic interface 2 (IF2).		
Note:	The system only permits certain sampling times and after writing to this parameter, displays the value that has actually been set.		
	For clock cycle synchronous operation, the specified bus cycle time applies (Tdp).		

r8849[0...139]	COMM BOARD receive configuration data / CB r config_dat		
CU_DC_S (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned16	Dyn. index: -	Function diagram: -
(PN CBEE20), CU_DC	P group: Communications	Unit group: -	Unit selection: -
(PN CBE20),	Scaling: -	Expert list: 1	
CUUDC_R (PN	Not for motor type: -	Max:	Factory setting:
CBE20)	Min:	-	-
	-		
Description:	Displays the receive configuration data for the COMM BOARD.		
Note:	For CBE20, the parameter is only active for firmware version "SINAMICS Link" or "EtherNet/IP" (p8835 = 3, 4).		

r8850[0...19]	CO: IF2 PZD receive word / IF2 PZD recv word		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: 2491
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		

Index:			
Note:	IF2: Interface 2 PZD1 to PZD2 are displayed	890 to r8891.	
r8850[0...63]	CO: IF2 PZD receive	D recv word	
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S, DC_CTRL,	Data type: Integer16	Dyn. index: -	Function diagram: 2485, 2491, 9204, 9206
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		

2.2 List of parameters

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
	[32] = PZD 33
	[33] = PZD 34
	[34] = PZD 35
	[35] = PZD 36
	[36] = PZD 37
	[37] = PZD 38
	[38] = PZD 39
	[39] = PZD 40
	[40] = PZD 41
	[41] = PZD 42
	[42] = PZD 43
	[43] = PZD 44
	[44] = PZD 45
	[45] = PZD 46
	[46] = PZD 47
	[47] = PZD 48
	[48] = PZD 49
	[49] = PZD 50
	[50] = PZD 51
	[51] = PZD 52
	[52] = PZD 53
	[53] = PZD 54
	[54] = PZD 55
	[55] = PZD 56
	[56] = PZD 57
	[57] = PZD 58
	[58] = PZD 59
	[59] = PZD 60
	[60] = PZD 61
	[61] = PZD 62
	[62] = PZD 63
	[63] = PZD 64

Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or
	FloatingPoint data types.
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.
Note:	IF2: Interface 2
	PZD1 to PZD4 are displayed bit-serially in r8890 to r8893.

r8850[0...4]	CO: IF2 PZD receive word / IF2 PZD recv word		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Integer16	Dyn. index: -	Function diagram: 2491
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF2: Interface 2		
	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		

p8851[0...24]	CI: IF2 PZD send word / IF2 PZD send word		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2493, 9210
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	$\text { [0] = PZD } 1$		
	$\text { [1] = PZD } 2$		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
Note:	IF2: Interface 2		

p8851[0...63]	CI: IF2 PZD send word / IF2 PZD send word		
DC_CTRL_S,	Can be changed: U, T	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2487, 9208
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	0	

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
	[32] = PZD 33
	[33] = PZD 34
	[34] = PZD 35
	[35] = PZD 36
	[36] = PZD 37
	[37] = PZD 38
	[38] = PZD 39
	[39] = PZD 40
	[40] = PZD 41
	[41] = PZD 42
	[42] = PZD 43
	[43] = PZD 44
	[44] = PZD 45
	[45] = PZD 46
	[46] = PZD 47
	[47] = PZD 48
	[48] = PZD 49
	[49] = PZD 50
	[50] = PZD 51
	[51] = PZD 52
	[52] = PZD 53
	[53] = PZD 54
	[54] = PZD 55
	[55] = PZD 56
	[56] = PZD 57
	[57] = PZD 58
	[58] = PZD 59
	[59] = PZD 60
	[60] = PZD 61
	[61] = PZD 62
	[62] = PZD 63
	[63] = PZD 64
Dependency:	See also: 88861

2.2 List of parameters

Note: IF2: Interface 2

p8851[0...4]	CI: IF2 PZD send word / IF2 PZD send word		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM150	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 2493,9210
	P group: Communications	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	$[0]=$ PZD 1		
	$[1]=$ PZD 2		
	$[2]=$ PZD 3		
	$[3]=$ PZD 4		
	$[4]=$ PZD 5		
	IF2: Interface 2		

r8853[0...24] IF2 diagnostics PZD send / IF2 diag PZD send
CU_DC_S,

Can be changed: - Calculated: -
Data type: Unsigned16
P group: Communications
Not for motor type: -
Min:

Displays the sent PZD (actual values) sent via interface 2.
Description:
Index:
0] = PZD
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
Bit array:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Bit 0	ON	OFF	
01	Bit 1	ON	OFF	-
02	Bit 2	ON	OFF	-
03	Bit 3	ON	OFF	-
04	Bit 4	ON	OFF	-
05	Bit 5	ON	OFF	-

06	Bit 6	ON	OFF
07	Bit 7	ON	OFF
08	Bit 8	ON	OFF
09	Bit 9	ON	OFF
10	Bit 10	ON	OFF
11	Bit 11	ON	OFF
12	Bit 12	ON	OFF
13	Bit 13	ON	OFF
14	Bit 14	ON	OFF
15	Bit 15	ON	OFF

Note: IF2: Interface 2

r8853[0...63]	IF2 diagnostics PZD send / IF2 diag PZD send		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: 2487,9208,
DC_CTRL,			9210
DC_CTRL_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the sent PZD (actual values) sent via interface 2.		

2.2 List of parameters

Index:

[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

2.2 List of parameters

Value:	$0:$	No initialization
	$1:$	Fatal fault
	$2:$	Initialization
	$3:$	Send configuration
	$4:$	Receive configuration
	$5:$	Non-cyclic communication
	$6:$	Cyclic communications but no setpoints (stop/no clock cycle)
	$255:$	Cyclic communication
Note:	For CBE20, the parameter is only active for firmware version "SINAMICS Link" (p8835 = 3).	
	For firmware version "PROFINET Device" or "EtherNet/IP" (p8835 = 1, 4), parameter p8956 should be observed.	

r8859[0...7]	COMM BOARD identification data / CB ident_data
CU_DC_S (PN	Can be changed: - Calculated: -
CBE20), CU_DC_R_S	Data type: Unsigned16 Dyn. index: -
(PN CBE20), CU_DC (PN CBE20),	P group: Communications Unit group: -
CU_DC_R (PN	Not for motor type: - Scaling: -
CBE20)	Min: Max:
	065535
Description:	Displays the COMM BOARD identification data
Index:	[0] = Version interface structure
	[1] = Version interface driver
	[2] = Company (Siemens $=42$)
	[3] = CB type
	[4] = Firmware version
	[5] = Firmware date (year)
	[6] = Firmware date (day/month)
	[7] = Firmware patch/hot fix
Note:	Example for CBE20:
	r8859[0] = 100 --> version of the interface structure V1.00
	$\mathrm{r} 8859[1]=111$--> version of the interface driver V1.11
	r8859[2] = 42 --> SIEMENS
	r8859[3] = 0 --> CBE20
	r8859[4] = 1200 --> first part, firmware version V12.00 (second part, see index 7)
	r8859[5] = 2010 --> year 2010
	r8859[6] = 2306 --> 23rd June
	r8859[7] = 1300 --> second part, firmware version (complete version: V12.00.13.00)

r8860[0...62]	CO: IF2 PZD receive double word / IF2 PZD recv DW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Integer32	Dyn. index: -	Function diagram: 2485,9204,
DC_CTRL,		Unit group: -	Unit selection: -
DC_CTRL_R	P group: Communications	Scaling: 4000 H	Expert list: 1
	Not for motor type: -	Max:	Factory setting:
	Min:	-	-
	-		
	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format.		

2.2 List of parameters

Index:	[0] = PZD $1+2$
	[1] $=$ PZD $2+3$
	[2] $=$ PZD $3+4$
	[3] $=$ PZD $4+5$
	[4] $=$ PZD $5+6$
	[5] $=$ PZD $6+7$
	[6] PZD $7+8$
	$[7]=$ PZD $8+9$
	[8] $=$ PZD $9+10$
	[9] P PZD $10+11$
	[10] = PZD $11+12$
	[11] = PZD $12+13$
	[12] = PZD $13+14$
	[13] = PZD $14+15$
	[14] = PZD 15 + 16
	[15] $=$ PZD 16 + 17
	[16] = PZD $17+18$
	[17] = PZD $18+19$
	[18] = PZD $19+20$
	[19] = PZD $20+21$
	[20] = PZD $21+22$
	[21] $=$ PZD $22+23$
	[22] = PZD $23+24$
	[23] = PZD $24+25$
	[24] = PZD $25+26$
	[25] = PZD $26+27$
	[26] $=$ PZD $27+28$
	[27] $=$ PZD $28+29$
	[28] = PZD $29+30$
	[29] = PZD $30+31$
	[30] = PZD $31+32$
	[31] = PZD $32+33$
	[32] $=$ PZD $33+34$
	[33] $=$ PZD $34+35$
	[34] = PZD $35+36$
	[35] = PZD $36+37$
	$[36]=$ PZD $37+38$
	[37] = PZD $38+39$
	[38] $=$ PZD $39+40$
	[39] $=$ PZD $40+41$
	[40] = PZD $41+42$
	[41] $=$ PZD $42+43$
	[42] = PZD $43+44$
	[43] $=$ PZD $44+45$
	[44] = PZD $45+46$
	[45] $=$ PZD $46+47$
	[46] $=$ PZD $47+48$
	[47] = PZD $48+49$
	[48] = PZD $49+50$
	[49] = PZD $50+51$
	[50] = PZD $51+52$
	[51] $=$ PZD $52+53$
	[52] = PZD $53+54$
	[53] $=$ PZD $54+55$
	[54] $=$ PZD $55+56$
	[55] = PZD $56+57$
	[56] = PZD $57+58$
	[57] = PZD 58 + 59
	[58] $=$ PZD $59+60$
	[59] = PZD $60+61$
	[60] = PZD $61+62$
	[61] = PZD $62+63$
	[62] = PZD $63+64$

Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or
FloatingPoint data types.	
A BICO interconnection for a single PZD can only take place either on r8850 or r8860.	
A maximum of 4 indices of the "trace" function can be used.	
Note:	IF2: Interface 2

p8861[0...62] CI: IF2 PZD send double word / IF2 PZD send DW
DC_CTRL_S, Can be changed: U, T Calculated: -

Data type: Unsigned32 / Integer32	Dyn. index: -	Function diagram: 2487, 9208,
		9210
P group: Communications	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: 4000H	Expert list: 1
Min:	Max:	Factory setting:
-	-	0
Selects the PZD (actual values) to be sent via interface 2 in the double word format.		

2.2 List of parameters

Index:	[0] = PZD $1+2$
	[1] $=$ PZD $2+3$
	[2] $=$ PZD $3+4$
	[3] $=$ PZD $4+5$
	[4] = PZD $5+6$
	[5] P PZD $6+7$
	$[6]=$ PZD $7+8$
	$[7]=$ PZD $8+9$
	[8] $=$ PZD $9+10$
	[9] P PZD 10 + 11
	[10] = PZD $11+12$
	[11] = PZD $12+13$
	[12] = PZD $13+14$
	[13] = PZD $14+15$
	[14] = PZD $15+16$
	[15] = PZD $16+17$
	[16] = PZD $17+18$
	[17] = PZD $18+19$
	[18] = PZD 19 + 20
	[19] = PZD $20+21$
	[20] = PZD $21+22$
	[21] = PZD $22+23$
	[22] P PZD $23+24$
	[23] $=$ PZD $24+25$
	[24] = PZD $25+26$
	[25] = PZD $26+27$
	[26] $=$ PZD $27+28$
	[27] $=$ PZD $28+29$
	[28] $=$ PZD $29+30$
	[29] = PZD $30+31$
	[30] = PZD $31+32$
	[31] = PZD $32+33$
	[32] $=$ PZD $33+34$
	[33] $=$ PZD $34+35$
	[34] = PZD $35+36$
	[35] = PZD $36+37$
	[36] = PZD $37+38$
	[37] = PZD $38+39$
	[38] $=$ PZD $39+40$
	[39] = PZD $40+41$
	[40] = PZD $41+42$
	[41] $=$ PZD $42+43$
	[42] $=$ PZD $43+44$
	[43] = PZD $44+45$
	[44] = PZD $45+46$
	[45] = PZD $46+47$
	[46] = PZD $47+48$
	[47] = PZD $48+49$
	[48] $=$ PZD $49+50$
	[49] = PZD $50+51$
	[50$]=$ PZD $51+52$
	[51] $=$ PZD $52+53$
	[52] P PZD $53+54$
	[53] = PZD $54+55$
	[54] = PZD $55+56$
	[55] $=$ PZD $56+57$
	[56] = PZD $57+58$
	[57] $=$ PZD $58+59$
	[58] = PZD $59+60$
	[59] = PZD $60+61$
	[60] = PZD $61+62$
	[61] $=$ PZD $62+63$
	[62] = PZD $63+64$
Dependency:	See also: 88851

Notice:

A BICO interconnection for a single PZD can only take place either on p8851 or p8861.
Note: IF2: Interface 2

r8863[0...62]	IF2 diagnostics PZD send double word / IF2 diag send DW		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned32	Dyn. index: -	Function diagram: 2487
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the PZD sent via interface 2 (actual values) with double word format.		

2.2 List of parameters

Index:
[0] = PZD $1+2$
[1] = PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
$[4]=$ PZD $5+6$
[5] $=$ PZD $6+7$
[6] $=$ PZD $7+8$
[7] = PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] $=$ PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$
[15] = PZD $16+17$
[16] $=$ PZD $17+18$
[17] = PZD $18+19$
[18] = PZD $19+20$
[19] = PZD $20+21$
[20] = PZD $21+22$
[21] $=$ PZD $22+23$
[22] = PZD $23+24$
[23] = PZD $24+25$
[24] = PZD $25+26$
[25] = PZD $26+27$
[26] = PZD $27+28$
[27] $=$ PZD $28+29$
[28] = PZD $29+30$
[29] = PZD $30+31$
[30] = PZD $31+32$
[31] = PZD $32+33$
[32] = PZD $33+34$
[33] = PZD $34+35$
[34] = PZD $35+36$
[35] = PZD $36+37$
[36] $=$ PZD $37+38$
[37] = PZD $38+39$
[38] = PZD $39+40$
[39] $=$ PZD $40+41$
[40] = PZD $41+42$
[41] = PZD $42+43$
[42] $=$ PZD $43+44$
[43] = PZD $44+45$
[44] = PZD $45+46$
[45] = PZD $46+47$
[46] $=$ PZD $47+48$
[47] = PZD $48+49$
[48] $=$ PZD $49+50$
[49] = PZD $50+51$
[50] $=$ PZD $51+52$
[51] = PZD $52+53$
[52] $=$ PZD $53+54$
[53] = PZD $54+55$
[54] $=$ PZD $55+56$
[55] $=$ PZD $56+57$
[56] $=$ PZD $57+58$
[57] = PZD $58+59$
[58] $=$ PZD $59+60$
[59] = PZD $60+61$
[60] = PZD $61+62$
[61] = PZD $62+63$
[62] = PZD $63+64$

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used. IF2: Interface 2				
Note:					
r8867[0...1]	IF2 PZD maximum interconnected / IF2 PZDmaxIntercon				
All objects	Can	e changed: -	Calculated: -	Access	
	Dat	type: Unsigned16	Dyn. index: -	Functio	
	P gr	up: Communications	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max:	Factory	
	-		-	-	
Description:	Display for the maximum interconnected PZD in the receive/send direction Index 0: receive (r8850, r8860) Index 1: send (p8851, p8861)				

2.2 List of parameters

p8870[0...31]
 DC_CTRL_S (PN

 CBE20),DC_CTRL_R_S (PN CBE20), DC_CTRL (PN CBE20),
DC_CTRL_R (PN
CBE 20)
0

SINAMICS Link PZD receive word / PZD recv word

Can be changed: T
Data type: Unsigned16
P group: Communications
Not for motor type: -
Min:
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:
32

Description: Assignment of a PZD to a telegram word from a SINAMICS Link receive telegram. For p8839[0] = 2 (COMM BOARD via interface 1), the following applies: - PZD p2050[index] is assigned by means of p8870[index], p8872[index]. For p8839[1] = 2 (COMM BOARD via interface 2), the following applies: - using p8870[index], p8872[index], the PZD is assigned r8850[Index].

Access level: 3

Function diagram: 2198, 2199
Unit selection: -
Expert list: 1
Factory setting: 0

2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \end{aligned}$
Dependency:	See also: p2051, p8851 See also: A50002
Note:	Value range: 0 : Not used 1 ... 32: send telegram word A specific telegram word send may only be used once within a single device. A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.

p8871[0...31]	SINAMICS Link PZD send word / PZD send word		
DC_CTRL_S (PN	Can be changed: T	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Function diagram: 2198, 2199
DC_CTRL_R_S (PN CBE20), DC CTRL	P group: Communications	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
DC_CTRL_R (PN	Min:	Max:	Factory setting:
CBE20)	0	32	0
Description:	Assigns a PZD to a telegram word in the SINAMICS Link send telegram.		
	For p8839[0] = 2 (COMM BOARD via interface 1), the following applies:		
	- p8871[index] assigns PZD p2051[index].		
	For p8839[1] = 2 (COMM BOARD via interface 2), the following applies:		

2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & \text { [10] = PZD } 11 \\ & \text { [11] = PZD } 12 \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \end{aligned}$
Dependency:	See also: p8870
Note:	Value range: 0: Not used 1 ... 64: address A change only b

p8872[0...31] SINAMICS Link PZD receive address / PZD recv adr.

DC_CTRL_S (PN CBE20),
DC CTRL R S (PN CBE20), DC_CTRL (PN CBE20), DC_CTRL_R (PN CBE20)

Can be changed: T
Data type: Unsigned16
P group: Communications
Not for motor type: -
Min:
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -

Max:

64

Access level: 3
Function diagram: 2198, 2199
Unit selection: -
Expert list: 1
Factory setting:
0

Description: Selects the address of the SINAMICS Link sender from which the process data (PZD) is received.
Index:
[0] = PZD
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32

Dependency:	See also: p8870
Note:	Value range:
	$0:$ Not used
	$1 \ldots 64:$ address
	A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.

r8874[0..19]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the bus address of sender from which the PZD is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		

r8874[0...63]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the bus address of sender from which the PZD is received.		

2.2 List of parameters

Index:

[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

r8875[0...19]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the byte offset of the PZD in the receive telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		

r8875[0...63]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the byte offset of the PZD in the receive telegram.		

2.2 List of parameters

Index:

[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

r8876[0...63]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
DC_CTRL_S,	Can be changed: -	Calculated: -	Access level: 3
DC_CTRL_R_S,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
DC_CTRL,	P group: Communications	Unit group: -	Unit selection: -
DC_CTRL_R	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the byte offset of the PZD in the send telegram.		

Index:
[0] = PZD 1
[1] = PZD 2
[2] $=$ PZD 3
[3] = PZD 4
[4] $=$ PZD 5
[5] = PZD 6
[6] $=$ PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
[36] = PZD 37
[37] = PZD 38
[38] = PZD 39
[39] = PZD 40
[40] = PZD 41
[41] = PZD 42
[42] = PZD 43
[43] = PZD 44
[44] = PZD 45
[45] = PZD 46
[46] = PZD 47
[47] = PZD 48
[48] = PZD 49
[49] = PZD 50
[50] = PZD 51
[51] = PZD 52
[52] = PZD 53
[53] = PZD 54
[54] = PZD 55
[55] = PZD 56
[56] = PZD 57
[57] = PZD 58
[58] = PZD 59
[59] = PZD 60
[60] = PZD 61
[61] = PZD 62
[62] = PZD 63
[63] = PZD 64

Note:	IF2: Interface 2 Value range: 0-242: Byte offset 255: Not assigned		
r8876[0...4]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM150	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		

p8880[0...15]	BI: IF2 binector-connector converter status word $1 /$ Bin/con ZSW1		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2489
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0

Description: \quad Selects bits to be sent via interface 2.	
	The individual bits are combined to form status word 1.

Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
Dependency:	See also: p8888, r8889		
p8881[0...15]	BI: IF2 binector-connector converter status word 2 / Bin/con ZSW2		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2489
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent via interface The individual bits are combined	us word 2.	

Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
Dependency:	See also: p8888, r8889		
p8882[0...15]	BI: IF2 binector-connecto	ter status w	ZSW3
All objects	Can be changed: U, T Data type: Unsigned32 / Binary P group: Communications Not for motor type: - Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: 2489 Unit selection: - Expert list: 1 Factory setting: 0
Description:	Selects bits to be sent via interfac The individual bits are combined	status word 3.	
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
Dependency:	See also: p8888, r8889		
p8883[0...15]	BI: IF2 binector-connector converter status word 4 / Bin/con ZSW4		
All objects	Can be changed: U, T Data type: Unsigned32 / Binary P group: Communications Not for motor type: - Min:	Calculated: Dyn. index: Unit group: Scaling: Max:	Access level: 3 Function diagram: 2489 Unit selection: - Expert list: 1 Factory setting: 0
Description:	Selects bits to be sent via interface 2. The individual bits are combined to form free status word 4.		

2.2 List of parameters

Index:	$[0]=$ Bit 0
$[1]=$	Bit 1
$[2]=$	Bit 2
$[3]=$ Bit 3	
$[4]=$ Bit 4	
$[5]=$ Bit 5	
$[6]=$ Bit 6	
$[7]=$ Bit 7	
$[8]=$ Bit 8	
$[9]=$ Bit 9	
$[10]=$ Bit 10	
$[11]=$ Bit 11	
$[12]=$ Bit 12	
$[13]=$ Bit 13	
	$[14]=$ Bit 14
	$[15]=$ Bit 15
	See also: p8888, r8889

p8884[0...15]	BI: IF2 binector-connector converter status word 5 / Bin/con ZSW5		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2489
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects bits to be sent via interface 2.		
	The individual bits are combined to form free status word 5.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	$\begin{aligned} & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \end{aligned}$		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	$\text { [15] }=\text { Bit } 15$		
Dependency:	See also: p8888, r8889		

p8888[0...4]	IF2 invert binector-connector converter status word / Bin/con ZSW inv		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2489
	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0000000000000000 bin
Description:	Setting to invert the individual binector inputs of the binector-connector converter.		
Index:	$[0]=$ Status word 1		
	$[1]=$ Status word 2		
	$[2]=$ Free status word 3		
	$[3]=$ Free status word 4		
	$[4]=$ Free status word 5		

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	See also: p8880, p8881, p8882, p8883, p8884, r8889				
r8889[0...4]	CO: IF2 send binector-connector converter status word / Bin/con ZSW send				
All objects	Can be changed: -		Calculated: -	Access le	
	Data type: Unsigned16		Dyn. index: -	Function	
	P group: Communications		Unit group: -	Unit selec	
	Not for motor type: -		Scaling: -	Expert list	
	Min:		Max:	Factory se	
	-		-	-	
Description:	Connector output to interconnect the status words to a PZD send word.				
Index:	[0] = Status word 1				
	[1] = Status word 2				
	[2] = Free status word 3				
	[3] = Free status word 4				
	[4] = Free status word 5				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: p8851, p8880, p8881, p8882, p8883, p8884, p8888				
Note:	r8889 together with p8880 to p8884 forms five binector-connector converters.				

2.2 List of parameters

r8890.0... 15	BO: IF2 PZD1 receive bit-serial / IF2 PZD1 recv bitw				
All objects	Can be changed: - Data type: Unsigned16		Calculated: -	Access level: 3	
			Dyn. index: -	Function diagram: 2485, 2491, 9204, 9206	
	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received via interface 2.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: r8850				
Note:	IF2: Interface 2				
r8891.0.. 15	BO: IF2 PZD2 receive bit-serial / IF2 PZD2 recv bitw				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2485, 2491, 9204, 9206	
	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received via interface 2.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: r8850				
Note:	IF2:	nterface 2			

r8892.0... 15	BO: IF2 PZD3 receive bit-serial / IF2 PZD3 recv bitw				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S,CU_DC, CU_DC_R, DC CTRL S	Data type: Unsigned16		Dyn. index: -	Function diagram: 2485, 9204, 9206	
DC_CTRL_S, DC_CTRL_R_S,	P group: Communications		Unit group: -	Unit selection: -	
DC_CTRL, DC_CTRL_R	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received via interface 2.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: r8850				
Note:	IF2: Interface 2				
r8893.0... 15	BO: IF2 PZD4 receive bit-serial / IF2 PZD4 recv bitw				
CU_DC_S,	Can be changed: -		Calculated: -	Access level: 3	
CU_DC_R_S, CU_DC, CU_DC_R,	Data type: Unsigned16		Dyn. index: -	Function diagram: 2485, 9204, 9206	
DC_CTRL_S, DC_CTRL_R_S,	P group: Communications		Unit group: -	Unit selection: -	
DC_CTRL,	Not for motor type: -		Scaling: -	Expert list: 1	
DC_CTRL_R	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received via interface 2.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: r8850				
Note:	IF2: Interface 2				

2.2 List of parameters

r8894.0... 15	BO: IF2 connector-binector converter binector output / Con/bin outp				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2485, 2491	
	P group: Communications		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory	
	-		-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received via interface 2.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:		also: p8899			
r8895.0... 15	BO: IF2 connector-binector converter binector output / Con/bin outp				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2485, 2491	
	P group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-		
Description:	Binector output for bit-serial interconnection of a PZD word received via interface 2.				
	The PZD is selected via p8899[1].				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	See also: p8898, p8899				

2.2 List of parameters

Note: | List of the SINAMICS Device IDs: | |
| :--- | :--- |
| 0501 hex: S120/S150 | |
| 0504 hex: G130/G150 | |
| 050A hex: DC MASTER | |
| 050C hex: MV | |
| 050F hex: G120P | |
| 0510 hex: G120C | |
| 0511 hex: G120 CU240E-2 | |
| 0512 hex: G120D | |
| | 0513 hex: G120 CU250S-2 Vector |
| | 0514 hex: G110M |
| 051B hex: S210 | |

p8940[0...239]	CBE2x Name of Station / CBE2x Name Stat		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: -	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Maling: -	Expert list: 1
CU_DC_R (PN	Min:	-	Factory setting:
CBE20)	-	-	
	Sets the station name for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Description:	See also: p8945, r8950		
Dependency:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		

p8941[0...3] CBE2x IP address / CBE2x IP addr

CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: -	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_DC_R (PN	Min:	Max:	Factory setting:
CBE20)	0	255	0

Description: Sets the IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).
Dependency: See also: p8945, r8951
Note: \quad The interface configuration (p8940 and following) is activated with p8945.
The parameter is not influenced by setting the factory setting.

p8942[0...3]	CBE2x Default Gateway / CBE2x Def Gateway		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20, CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: -	Unit group: -	Unit selection: -
(PN CBE20),	Scaling: -	Expert list: 1	
CU_DC_R (PN	Not for motor type: -	Max:	Factory setting:
CBE20)	Min:	255	0
	0		
Description:	Sets the standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Dependency:	See also: p8945, r8952		
Note $:$	The setting p8942[0...3] $=0$ or p8942 $=$ p8941 (own IP address) means that a standard gateway has not been set.		
	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		

p8943[0...3]	CBE2x Subnet Mask / CBE2x Subnet Mask		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram:
(PN CBE20), CU_DC (PN CBE20),	P group:	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the subnet mask for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Dependency:	See also: p8945, r8953		
Note:	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		
p8944	CBE2x DHCP Mode / CBE2x DHCP Mode		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Integer16	Dyn. index: -	Function diagram:
(PN CBE20), CU_DC (PN CBE20),	P group: -	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE $20{ }^{-}$	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the DHCP mode for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Value:	0: DHCP off		
	2: DHCP on, identification using MAC address		
	3: DHCP on, identification via name of station		
Dependency:	See also: p8945, r8954		
Notice:	When the DHCP mode is active (p8944 not equal to 0), then PROFINET communication via this interface is no longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.		
Note:	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		
p8945	CBE2x activate interface configuration / CBE2x int config		
CU_DC_S (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Integer16	Dyn. index: -	Function diagram:
(PN CBE20),	P group: -	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0	3	0
Description:	Setting to activate the interface configuration for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Value:	0 : No function		
	1: Activate configuration		
	2: Activate and save configuration		
	3: Delete configuration		
Dependency:	See also: p8940, p8941, p8942, p8943, p8944		
	See also: A08565		
Notice:	When the DHCP mode is However, the interface	then PROFINE TARTER/SCOU	his interface is no long

Note: \quad For CBE20, the parameter is only valid for firmware version "PROFINET Device" (p8835 = 1), "EtherNet/IP" (p8835 = 4) or "MODBUS TCP (p8835 = 5). Otherwise, it is locked.
This restriction is not applicable for the CBE25.
When a project is downloaded, the interface configuration is only activated if parameter p8945 is set = 1 or 2 in the offline project.
For p8945 = 1:
The interface configuration (p8940 and following) is activated.
For p8945 = 2:
The interface configuration (p8940 and following) is activated - and is saved in a non-volatile fashion (retentively).
For p8945 = 3:
All storage locations for the interface configuration are restored to the factory setting.
The factory setting of the interface configuration is loaded when activated (p8945 =1) or with the next POWER ON.

r8950[0...239]	CBE2x Name of Station actual / CBE2x Name act		
CU_DC_S (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: -
(PN CBE20), CU_DC	P group: -	Unit group: -	Unit selection: -
(PN CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_DC_R (PN	Min:	Max:	Factory setting:
CBE20)	-	-	-
	Displays the actual station name for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8951[0...3]	CBE2x IP Address actual / CBE2x IP addr	
CU_DC_S (PN	Can be changed: -	Calculated: -
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -
(PN CBE20), CU_DC	P group: -	Unit group: -
(PN CBE20),	Not for motor type: -	Scaling: -
CU_DC_R (PN	Min:	Max:
CBE20)	0	255

Description: Displays the actual IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).

r8952[0...3]	CBE2x Default Gateway actual / CBE2x def GW act		
CU_DC_S (PN	Can be changed: -	Calculated:	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram:
(PN CBE20), CU_DC (PN CBE20),	P group: -	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the actual standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
r8953[0...3]	CBE2x Subnet Mask actual / CBE2x Sub Mask act		
CU_DC_S (PN	Can be changed:	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram:
(PN CBE20),	P group: -	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the actual subnet mask for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8954	CBE2x DHCP Mode actual / CBE2x DHCP act		
CU_DC_S (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Integer16	Dyn. index: -	Function diagram: -
(PN CBE20),	P group: -	Unit group: -	Unit selection: -
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0	3	-
Description:	Displays the actual DHCP mode for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Value:	0: DHCP off		
	2: DHCP on, identification using MAC address		
	3: DHCP on, identification via name of station		
Notice:	When the DHCP mode longer possible! Howev	value greater tha be used by the ST	munication via this inte mmissioning tool.

r8955[0...5]	CBE2x MAC address / CBE2x MAC Addr		
CU_DC_S (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: -
(PN CBE20),	P group: -	Unit group: -	Unit selection:
CU_DC_R (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20)	Min:	Max:	Factory setting:
	0000 hex	00FF hex	-
Description:	Displays the MAC address for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

2.2 List of parameters

r8959

CU_DC_S (PN
CBE20), CU_DC_R_S

(PN CBE20), CU_DC

(PN CBE20),
CU_DC_R (PN
CBE20)

CBE2x DAP ID / CBE2x DAP ID

Can be changed: -
Data type: Unsigned32
P group: -
Not for motor type: -
Min:
0000 hex

Calculated: -
Dyn. index: - Function diagram: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max:
FFFF FFFF hex

Factory setting:

Description: Displays the DAP ID for PROFINET via the Communication Board Ethernet $20 / 25$ (CBE20/CBE25). The combination of device ID (r8909) and DAP ID (r8959) uniquely identifies a PROFINET access point.
Note: \quad DAP ID: Device Access Point ID
DAP ID $=20008$ hex: SINAMICS CBE20 V4.6
DAP ID $=20009$ hex: SINAMICS CBE20 V4.7
DAP ID $=2000$ A hex: SINAMICS CBE20 V4.8
DAP ID $=20209$ hex: SINAMICS CBE25 V4.7

r8960[0...3]	PN subslot controller assignment / PN subslot assign		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	8	-
Description:	Displays the controller assignment of a PROFINET subslot on the actual drive object.		
Index:	$\begin{aligned} & {[0]=\text { Subslot } 2 \text { PROFIsa }} \\ & {[1]=\text { Subslot } 3 \text { PZD tele }} \\ & {[2]=\text { Subslot } 4 \text { PZD sup }} \\ & {[3]=\text { Subslot } 5 \text { PZD sup }} \end{aligned}$		
Note:	Example:		
	If the parameter contains the value 2 in index [1], then this means that subslot 3 is assigned to controller 2		

2.2 List of parameters

r9207	Topology direct access integer value / Topo access int		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the value for the property set in p9206.		
	A value is only displayed for integer type properties.		

r9208[0...50]	Topology direct access string / Topo access string		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the value for the property set in p9206.		
	A value is only displayed for string type properties.		
Dependency:	See also: p9206, r9207		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
p9210	Flashing component number / Flash comp_no.		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	499	0
Description:	Sets the component number for a component to get its status LED to flash.		
Dependency:	See also: p9211		
p9211	Flash function / Flash fct.		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram: -
	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-1	1	-1
Description:	Sets the function for the components selected in p9210.		
	After initiating a function, the parameter is automatically reset again.		
	Example:		
	- set the component number (p9210).		
	- select the "flashing on" function (set p9211 = 1).		
Value:	-1: Select function 0: Flashing off 1: Flashing on		
Dependency:	See also: p9210		
Notice:	If a task cannot be execut - there is no negative feed - the value is reset anywa	nent number in), the following applies:
r9220	Statistics number of entries / Stat entries qty		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: - Data type: Unsigned16	Calculated: -	Access level: 4
		Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- -		-
Description:	Displays the number of st		
Dependency:	In p9221, the component See also: p9221	tistical entries ar	

2.2 List of parameters

p9400	Safely remove memory card / Mem_card rem		
CU_DC_S,	Can be changed: T	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	100	0
Description:	Setting and display when memory card is "removed safely".		
	Setting p9400 $=2$ results in a value of 3		
	--> The memory card can be removed safely. After removal the value sets itself to 0 automatically. Setting p9400 $=2$ results in a value of 100		
	--> The memory card cannot be removed safely. Removal may destroy the file system on the memory card. It may be necessary to set p9400 $=2$ again.		

r9406[0...19]	PS file parameter number parameter not transferred / PS par_no n transf		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[0...x] > 0		
	--> indicates the parameter number in the following cases:		
	- parameter, whose value was not able to be completely accepted.		
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.		
Dependency:	See also: r9407, r9408		

2.2 List of parameters

Note:	All indices from r9406 to r9408 designate the same parameter. r9406[x] parameter number, parameter not accepted r9407[x] parameter index, parameter not accepted r9408[x] fault code, parameter not accepted
r9407[0...19]	PS file parameter index parameter not transferred / PS parameter index
All objects	Can be changed: - Calculated: - Access level: 1
	Data type: Unsigned16 Dyn. index: - Function diagram:
	P group: - Unit group: - Unit selection: -
	Not for motor type: Scaling: - Expert list: 1
	Min: Max: Factory setting:
	- -
Description:	Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).
	If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in r9406[n] and the first index that was not transferred is displayed in r9407[n].
	$\mathrm{r} 9406[0]=0$
	--> All of the parameter values were able to be transferred error-free.
	r9406[n] > 0
	--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.
Dependency:	See also: r9406, r9408
Note:	All indices from r9406 to r9408 designate the same parameter.
	r9406[x] parameter number, parameter not accepted
	r9407[x] parameter index, parameter not accepted
	r9408[x] fault code, parameter not accepted

r9408[0...19]	PS file fault code parameter not transferred / PS fault code		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	Factory setting:	
Description:	-	-	
Dependency:	Only for internal Siemens service purposes.		
Note:	See also: r9406, r9407		
	All indices from r9406 to r9408 designate the same parameter.		
	$r 9406[x]$ parameter number, parameter not accepted		
	$r 9407[\mathrm{x}]$ parameter index, parameter not accepted		
	$\mathrm{r} 9408[\mathrm{x}]$ fault code, parameter not accepted		

r9409	Number of parameters to be saved / Qty par to save		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the number of modified parameters and those that have still not be saved for this drive object.		
Dependency:	See also: p0971, p0977		

Note:	The list is sorted according to signal sources and is structured as follows: r9842[0]: Interconnection 1 (signal sink, BICO coded), r9843[0]: Interconnection 1 (signal source, BICO coded) r9842[1]: Interconnection 2 (signal sink, BICO coded), r9843[1]: Interconnection 2 (signal source, BICO coded)
r9483[0...n]	BICO interconnections BO/CO parameters / BICO BO/CO par
All objects	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: r9481 Function diagram: - P group: Commands Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 0 Min: Max: Factory setting: - - -
Description:	Displays the signal sources (binector/connector outputs, $\mathrm{BO} / \mathrm{CO}$ parameters). The number of BICO interconnections is displayed in r9481.
Dependency: Note:	See also: r9481, r9482 The list is sorted according to signal sources and is structured as follows: r9842[0]: Interconnection 1 (signal sink, BICO coded), r9843[0]: Interconnection 1 (signal source, BICO coded) r9842[1]: Interconnection 2 (signal sink, BICO coded), r9843[1]: Interconnection 2 (signal source, BICO coded)
p9484	BICO interconnections search signal source / BICO S_src srch
All objects	Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: - Function diagram: - P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 0 Min: Max: Factory setting: 0 4294967295 0
Description:	Sets the signal source (BO/CO parameter, BICO coded) to search in the signal sinks. The question is answered: How often is a connection made to a signal source in the drive object and from which index are these interconnections saved (r9482 and r9483)?
Dependency:	See also: r9481, r9482, r9483, r9485, r9486
r9485	BICO interconnections signal source search count / BICO S_src srchQty
All objects	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: - Function diagram: - P group: - Unit group: Unit selection: - Not for motor type: - Scaling: - Expert list: 0 Min: Max: Factory setting: - - -
Description: Dependency: Note:	Displays the number of BICO interconnections to the signal sink being searched for. See also: r9481, r9482, r9483, p9484, r9486 The signal source to be searched is set in p9484 (BICO-coded). The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).
r9486	BICO interconnections signal source search first index / BICO S_src srchldx
All objects	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: Function diagram: - P group: Unit group: Unit selection: - Not for motor type: - Scaling: - Expert list: 0 Min: Max: Factory setting: - - -
Description:	Displays the first index of the signal source being searched for

Dependency:	See also: r9481, r9482, r9483, p9484, r9485
Note:	The signal source to be searched is set in p9484 (BICO-coded).
	The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).

2.2 List of parameters

Note: | The BI/CI parameters involved are listed in p9498[0...29] (signal sink). |
| :--- |
| The associated BO/CO parameters are listed in p9499[0...29] (signal source). |
| After p9496 $=1,2$ the following applies: |
| - -p9497 $=0$ |
| - p9496 $=0$ |

p9497	BICO interconnections to deactivated drive objects number / Interconn obj qty		
All objects	Can be changed: T	Calculated:	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Displays the number of saved BICO interconnections to drive objects that are either not capable of operation or have been deactivated.		
	$\mathrm{BO} / \mathrm{CO}$ parameters are on the drive object that is either not capable of operation or has been deactivated (signal source).		
Dependency:	See also: p9495, p9496, p9498, p9499		
	See also: A01318, A01507		

p9498[0...29]	BICO BI/Cl parameters to deactivated drive objects / BI/Cl to deact obj		
All objects	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Function diagram: -
	P group: Commands	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0

r9900	Actual topology number of indices / Act topo indices		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the number of indices of the actual topology.		

2.2 List of parameters

Dependency:	See also: r9901
Note:	Only for internal Siemens use.
	The parameter is not displayed for the STARTER commissioning tool.

p9902	Target topology number of indices / TargetTopo indices		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned16	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min:	Max:	Factory setting:
	1	65535	1
Description:	Sets the number of target topology indices.		
Dependency:	See also: p9903		
Note:	Only for internal Siemens use.		

2.2 List of parameters

Note: \quad\begin{tabular}{l}
The electronic rating plate comprises the following data:

- component type (e.g. "SMC20")

- article number (e.g. "6SL3055-0AA0-5BAO")

- manufacturer (e.g. SIEMENS)

- hardware version (e.g. "A")

- Serial No. (e.g. "T-P30050495")

When comparing the topology, the following data is compared in the target and actual topologies:

p9908 = 0: Component type, Article No., Hardware version, Manufacturer, Serial No.

p9908 = 1: Component type, Article Number

p9908 = 2: Component type

p9908 = 3: Component class (e.g. Sensor Module or Motor Module)
\end{tabular}

p9909	Topology comparison component replacement / Topo_cmpr replace		
CU_DC_S,	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: Topology	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1

Description: \quad For $\mathrm{p} 9909=1$, the serial number and the hardware version of the new replaced component is automatically transferred from the actual topology into the target topology and then saved in a non-volatile fashion.
For the components that have been replaced, the electronic rating plate must match as far as the following data is concerned:

- component type (e.g. "SMC20")
- article number (e.g. "6SL3055-0AA0-5BA0")

For p9909 $=0$, serial numbers and hardware versions are not automatically transferred. In this case, the transfer must be made using p9904.
Dependency: See also: p9904, p9905
Note: \quad The modified target topology is automatically saved in a non-volatile fashion when the drive object runs-up (e.g. after a POWER ON).
Special case for Control Unit and option slot modules:
When replacing these components, independent of p9909, the serial number and hardware version are automatically transferred and saved in a non-volatile fashion.

p9920[0...99]	Licensing enter license key / Enter license key		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Enters the license key for this drive unit.		
	Example of the license key:		
	EACZ-QBCA = 696567904581666765 dec (ASCII characters)		
	Index 0 = license key character 1 (e.g. 69 dec)		
	Index 1 = license key character 2 (e.g. 65 dec)		
	...		
	Index 8 = license key character 9 (e.g. 65 dec)		
	Index 9 = license key character 10 (e.g. 0 dec)		
Dependency:	See also: r7843, p9921		
	See also: F13000, A130		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	With the STARTER commissioning tool, the ASCII characters are not entered coded, i.e. the license key characters can be entered as printed in the Certificate of License. In this case, the commissioning tool codes the characters.		
Note:	For an invalid license key, all the indices have the value 0 dec .		
	Only the ASCII characters contained in a license key can be entered ("1" to "9", "A" to "H", "K" to "N", "P" to "Z" as well as "-").		
	When manually changing p9920[x] to the value 0 dec, all the values of all the following indices are also set to 0 dec. After entering the license key, the license key must be activated (p9921).		
	The following fault and LED indicate that the licensing is not adequate:		
	- F13000 --> licensing not adequate		
	- LED READY --> flashes red at approximately 2 Hz		

r9925[0...99]	Firmware file incorrect / FW file incorr		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram:
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the directory and name of the file whose status as shipped from the factory was identified as impermissible.		
Dependency:	See also: r9926		
	See also: A01016		
Note:	The directory and name of the file is displayed in the ASCII code.		
r9926	Firmware check status / FW check status		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 2
$\begin{aligned} & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Data type: Unsigned8	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the status when the firmware is checked when the system is booted.		
	0: Firmware not yet checked.		
	1: Check running.		
	2: Check successfully completed.		
	3: Check indicates an error.		
Dependency:	See also: r9925		
	See also: A01016		

p9930[0..8]	System logbook activation / SYSLOG activation		
CU_DC_S,	Can be changed: U, T	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: Unsigned8	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	255	0

Index:	[0] = System logbook stage (0: Not active)
	[1] = COM2/COM1 (0: COM2, 1: COM1)
	[2] = Activate file write (0: Not active)
	[3] = Display time stamp (0: Not displayed)
	[4...7] = Reserved
	[8] = System logbook file size (stages, each 10 kB)
Notice:	Before switching off the Control Unit, ensure that the system logbook is switched out (p9930[0] = 0).
	If writing to the file is activated ($\mathrm{p} 9930[2]=1$), writing to the file must be deactivated again before switching off the Control Unit ($\mathrm{p} 9930[2]=0$) in order to ensure that the system logbook has been completely written to the file.

p9931[0...194]	System logbook module selection / SYSLOG mod select.		
CU_DC_S,	Can be changed: U, T	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0000 hex	FFFF FFFF hex	0000 hex

Dependency:	See also: r9936, p9938		
	See also: A01839		
Note:	For bit 00:		
	To activate this function, p9938 must be set to 0 (inactive).		
	After changing the error counter (r9936), an appropriate alarm is output.		
	The alarm automatically disappears after 5 seconds.		
	For bit 08:		
	With p9937.8 = 1, the error counters are reset (r9936[0...199]).		
	After the reset, p9937.8 is automatically set to 0 .		
p9938	DRIVE-CLiQ detailed diagnostics configuration / DQ diag config		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	6	0
Description:	Sets the configuration for the DRIVE-CLiQ detailed diagnostics (r9943).		
	Using the detailed diagnostics, it is possible to investigate data transfer errors on an individual connection, selected using p9942.		
Value:	0 : Inactive		
	1: Sum send and receive errors		
	2: Only send errors		
	3: Only receive errors		
	4: Siemens internal		
	5: Siemens internal		
	6: Siemens internal		
Dependency:	The functions in p9938 can only be set for p9937.0 $=0$.		
	See also: r9936, p9937, p9939, p9942		
Notice:	If value $=0$:		
	- detailed diagnostics is inactive.		
	- the error counter is active (r9936).		
	If value > 0 :		
	- the error counter is inactive (r9936).		
	- the detailed diagnostics as configured is active (r9943).		
p9939	DRIVE-CLiQ detailed diagnostics time interval / DQ detail t_interv		
$\begin{aligned} & \text { CU_DC_S, } \\ & \text { CU_DC_R_S, CU_DC, } \\ & \text { CU_DC_R } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1 [s]	3600 [s]	1 [s]
Description:	Sets the time interval for recording the error counter in r9943.		
Dependency:	See also: r9936, p9938, p9942, r9943		

Dependency:	See also: r9976, r9979, r9980, r9981
	See also: F01054, F01205
Note:	For index [3...5]:
	The total utilizations are determined using all sampling times used. The largest total utilizations are mapped here.
	The sampling time with the largest total utilization is displayed in r9979.
	Total utilization:
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

The total utilization is determined using all sampling times used. The largest total utilization is mapped here. The sampling time with the largest total utilization is displayed in r9979.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9979	Sampling time with largest total utilization / t_sampl Ig total	
CU_DC_S,	Can be changed: - Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32 Dyn. index: -	Function diagram: -
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	$-[\mu \mathrm{s}] \quad-[\mu \mathrm{s}]$	- [$\mu \mathrm{s}$]
Description:	Displays the sampling time with the largest total utilization.	
Dependency:	See also: r7901, r9976	
	See also: F01054	
Note:	The largest total utilization is displayed in r9976[5].	
	Total utilization:	
	Computing time load of sampling time involved including load from higher-priority	ampling times (interru

r9980[0...165]	Sampling times utilization calculated / t_sampl util calc		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the calculated utilizations for the active sampling times based on the existing target topology.		

Index:
[0] = Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] = Total utilization 5
[12] = Net utilization 6
[13] = Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] = Net utilization 8
[17] = Total utilization 8
[18] = Net utilization 9
[19] $=$ Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] $=$ Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] $=$ Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] = Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] = Total utilization 49
[100] = Net utilization 50
[101] = Total utilization 50
[102] = Net utilization 51
[103] $=$ Total utilization 51
[104] = Net utilization 52
[105] $=$ Total utilization 52
[106] = Net utilization 53
[107] $=$ Total utilization 53
[108] = Net utilization 54
[109] $=$ Total utilization 54
[110] = Net utilization 55
[111] = Total utilization 55
[112] = Net utilization 56
[113] = Total utilization 56
[114] = Net utilization 57
[115] $=$ Total utilization 57
[116] = Net utilization 58
[117] $=$ Total utilization 58
[118] = Net utilization 59
[119] = Total utilization 59
[120] = Net utilization 60
[121] $=$ Total utilization 60
[122] = Net utilization 61
[123] $=$ Total utilization 61
[124] = Net utilization 62
[125] $=$ Total utilization 62
[126] = Net utilization 63
[127] = Total utilization 63
[128] = Net utilization 64
[129] = Total utilization 64
[130] = Net utilization 65
[131] $=$ Total utilization 65

	[132] $=$ Net utilization 66
	[133] = Total utilization 66
	[134] = Net utilization 67
	[135] = Total utilization 67
	[136] = Net utilization 68
	[137] = Total utilization 68
	[138] = Net utilization 69
	[139] = Total utilization 69
	[140] = Net utilization 70
	[141] = Total utilization 70
	[142] = Net utilization 71
	[143] = Total utilization 71
	[144] = Net utilization 72
	[145] = Total utilization 72
	[146] = Net utilization 73
	[147] = Total utilization 73
	[148] = Net utilization 74
	[149] = Total utilization 74
	[150] = Net utilization 75
	[151] = Total utilization 75
	[152] = Net utilization 76
	[153] = Total utilization 76
	[154] = Net utilization 77
	[155] = Total utilization 77
	[156] $=$ Net utilization 78
	[157] = Total utilization 78
	[158] = Net utilization 79
	[159] = Total utilization 79
	[160] = Net utilization 80
	[161] = Total utilization 80
	[162] = Net utilization 81
	[163] = Total utilization 81
	[164] = Net utilization 82
	[165] = Total utilization 82
Dependency:	See also: r7901, r9976, r9979
	See also: F01054

Note: The corresponding sampling times can be read out in parameter r7901.

Net utilization:
Computing time load that is only called by the sampling time involved.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).
r9981[0...165]
CU_DC_S,
CU_DC_R_S, CU_DC,
CU_DC_R

Sampling times utilization measured / t_sampl util meas
Can be changed: - Calculated: -
Data type: FloatingPoint32
Dyn. index: -
P group: -
Not for motor type: -
Unit group: -

Min:
Scaling: -

- [\%]

Max:

- [\%]

Access level: 4
Function diagram: -
Unit selection: -
Expert list: 1
Factory setting:

- [\%]

Description: Displays the utilizations measured for the active sampling times.

2.2 List of parameters

Index:
[0] = Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] $=$ Net utilization 5
[11] = Total utilization 5
[12] $=$ Net utilization 6
[13] = Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] $=$ Net utilization 8
[17] $=$ Total utilization 8
[18] = Net utilization 9
[19] = Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] $=$ Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] = Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] = Total utilization 49
[100] = Net utilization 50
[101] $=$ Total utilization 50
[102] = Net utilization 51
[103] $=$ Total utilization 51
[104] = Net utilization 52
[105] $=$ Total utilization 52
[106] = Net utilization 53
[107] $=$ Total utilization 53
[108] = Net utilization 54
[109] $=$ Total utilization 54
[110] = Net utilization 55
[111] $=$ Total utilization 55
[112] = Net utilization 56
[113] = Total utilization 56
[114] = Net utilization 57
[115] $=$ Total utilization 57
[116] $=$ Net utilization 58
[117] $=$ Total utilization 58
[118] = Net utilization 59
[119] $=$ Total utilization 59
[120] = Net utilization 60
[121] $=$ Total utilization 60
[122] = Net utilization 61
[123] = Total utilization 61
[124] = Net utilization 62
[125] $=$ Total utilization 62
[126] = Net utilization 63
[127] $=$ Total utilization 63
[128] = Net utilization 64
[129] $=$ Total utilization 64
[130] = Net utilization 65
[131] $=$ Total utilization 65

2.2 List of parameters

	[132] = Net utilization 66
	[133] = Total utilization 66
	[134] = Net utilization 67
	[135] = Total utilization 67
	[136] = Net utilization 68
	[137] = Total utilization 68
	[138] = Net utilization 69
	[139] = Total utilization 69
	[140] = Net utilization 70
	[141] = Total utilization 70
	[142] = Net utilization 71
	[143] $=$ Total utilization 71
	[144] = Net utilization 72
	[145] = Total utilization 72
	[146] = Net utilization 73
	[147] = Total utilization 73
	[148] = Net utilization 74
	[149] = Total utilization 74
	[150] = Net utilization 75
	[151] = Total utilization 75
	[152] = Net utilization 76
	[153] = Total utilization 76
	[154] = Net utilization 77
	[155] = Total utilization 77
	[156] = Net utilization 78
	[157] = Total utilization 78
	[158] = Net utilization 79
	[159] = Total utilization 79
	[160] = Net utilization 80
	[161] = Total utilization 80
	[162] = Net utilization 81
	[163] = Total utilization 81
	[164] = Net utilization 82
	[165] = Total utilization 82
Dependency:	See also: r7901, r9975, r9980
	See also: F01054

Note: The corresponding sampling times can be read out in parameter r7901.
Net utilization:
Computing time load that is only called by the sampling time involved.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9982[0...4]	Data memory utilization / Mem_util dat_mem		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the calculated data memory utilization rates based on the existing target topology.
Index:
[0] = Fast data memory 1
[1] = Fast data memory 2
[2] = Fast data memory 3
[3] = Fast data memory 4
[4] = Reserved
Dependency: See also: F01068

r9983[0...4]	Measured data memory utilization (actual load)/ Mem_ut dat_mem ms		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the measured data memory utilization rates based on the existing target topology.		
Index:	[0] = Fast Memory 1		
	[1] = Fast Memory 2		
	[2] = Fast Memory 3		
	[3] = Fast Memory 4		
	[4] = Heap		
Dependency:	See also: F01068		

r9984[0...4]	Data memory utilization TEC / Data mem util TEC		
CU_DC_S,	Can be changed: -	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the data memory utilization as a result of Technology Extensions.

Index:	$[0]=$ Fast Memory 1
	$[1]=$ Fast Memory 2
	$[2]=$ Fast Memory 3
	$[3]=$ Fast Memory 4
	$[4]=$ Reserved
	See also: F01068
Dependency:	TEC: Technology Extension

r9986[0...7]	DRIVE-CLiQ system load / DQ system load		
CU_DC_S,	Can be changed: -	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the calculated DRIVE-CLiQ system utilization based on the existing target topology.		
	The values are only available in the "Initialization finished" state (r3988 = 800).		
	Index $0 \ldots 7$ corresponds to DRIVE-CLiQ socket X100 ... X107.		
Dependency:	See also: F01340		

r9987[0...7]	DRIVE-CLiQ bandwidth load / DQ bandw load		
CU_DC_S,	Can be changed: -	Calculated: -	
CU_DC_R_S, CU_DC,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the calculated DRIVE-CLiQ bandwidth utilization based on the existing target topology. The values are only available in the "Initialization finished" state (r3988 = 800).
Index 0 ... 7 corresponds to DRIVE-CLiQ socket X100 ... X107.

2.2 List of parameters

r9991[0...4]	Memory usage drive object actual value / Mem_use DO ActVal		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the memory usage for each drive object as actual value.		
Index: $[0]=$ Fast Memory 1 $[1]=$ Fast Memory 2 $[2]=$ Fast Memory 3			
	$[3]=$ Fast Memory 4		
	$[4]=$ Heap		

r9992[0...4]	Memory usage drive object reference value / Mem_use DO ref val		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-

Description: Displays the memory usage for each drive object as reference value.

Index: \quad| $[0]$ | $=$ Fast Memory 1 |
| ---: | :--- |
| | $[1]=$ Fast Memory 2 |
| $[2]$ | $=$ Fast Memory 3 |
| | $[3]=$ Fast Memory 4 |
| | $[4]=$ Heap |

r9993[0...4]	Memory utilization Technology	Extension / Mem_util TEC	
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 4
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Fxpert list: 1
	Min:	Max:	-
	-		
Description:	Displays the memory usage of a Technology Extension.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		
	$[4]=$ Heap		
	TEC: Technology Extension		

r9999[0...99]	Software error internal supplementary diagnostics / SW_err int diag		
CU_DC_S,	Can be changed: -	Calculated: -	Access level: 3
CU_DC_R_S, CU_DC,	Data type: Unsigned32	Dyn. index: -	Function diagram: -
CU_DC_R	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description: Note:	Diagnostics parameter to display additional information for internal software errors. Only for internal Siemens troubleshooting.		
p60000	PROFIdrive reference speed / PD n_ref		
DC_CTRL_S,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
DC_CTRL_R_S,	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
DC_CTRL, DC CTRL R	P group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	6.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the reference quantity for speed.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	See also: p2000		
Note:	Parameter p60000 is an image of parameter p2000 in conformance with PROFIdrive. A change always effects both parameters.		

r61000[0...239]
CU_DC_S (PN
CBE20), CU_DC_R_S
(PN CBE20), CU DC (PN CBE20), CU_DC (PN CBE20), CU_DC_R (PN CBE20)

Description:
Notice:

PROFINET Name of Station / PN Name of Station
Can be changed: -
Data type: Unsigned8
P group: -
Not for motor type: -
Min:
-
Displays PROFINET Name of Station.
An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.

r61001[0..3]	PROFINET IP of Station / PN IP of Station		
CU_DC_S (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20), CU_DC_R_S	Data type: Unsigned8	Dyn. index: -	Function diagram: 2410
(PN CBE20), CU_DC	P group: -	Unit group: -	Unit selection: -
(PN CBE20,	Scaling: -	Expert list: 1	
CU_DC_R (PN	Not for motor type: -	Max:	Factory setting:
CBE20)	Min:	-	-
	-		
Description:	Displays PROFINET IP of Station.		

Product: SINAMICS DC MASTER OA, Version: 1503000, Language: eng Objects: DC CTRL

2.2 List of parameters

> o11.0 Fault
> o12.0 Initializ. of line voltage sensing for field in progress
> o12.1 Initializ. of line voltage sensing for armature in progr.
> o12.3 Read out data from gating modules (armature and field)
> o12.4 Offset calibr. of curr. act. val. sensing being performed
> o12.5 Read out data from the power unit
> o12.6 Wait for second processor (TMS320) to go into normal operation

r50012	Motor temperature / Mot temp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8030
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [${ }^{\circ} \mathrm{C}$]	- [$\left.{ }^{\circ} \mathrm{C}\right]$	- [${ }^{\circ} \mathrm{C}$]
Description:	Displays the motor temperature.		
	The temperature sensor is connected via terminal X177.53/54/55 of the CUD.		
Dependency:	The temperature value is only displayed when using one of the following temperature sensors:		
	- KTY84 (p50490 = 1): measuring range $=-40^{\circ} \mathrm{C}$ to $+300{ }^{\circ} \mathrm{C}$		
	- PT100 (p50490 = 6): measuring range $=-200^{\circ} \mathrm{C}$ to $+300{ }^{\circ} \mathrm{C}$		
	- NTC thermistor K227 (p50490 = 7): measuring range $=+85^{\circ} \mathrm{C}$ to $+200{ }^{\circ} \mathrm{C}$		
	- PT1000 (p50490 = 8): measuring range $=-200{ }^{\circ} \mathrm{C}$ to $+300{ }^{\circ} \mathrm{C}$		
	See also: p50490, r52051		
Note:	If p50490 $=0$, 2 to 5 , a value		

r50013[0...4]	Temperature sensor/Module / Temp sensor/Mod		
DC_CTRL	Can be changed: -	Calculated:	
	Data type: FloatingPoint32	Dyn. index:	Access level: 1
	P group: -	Unit group: -	Function diagram: 8048
	Not for motor type: -	Scaling: -	Unit selection: -
	Min:	Max:	Expert list: 1
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting:
		$-\left[{ }^{\circ} \mathrm{C}\right]$	

Description:	Displays the temperature of the various temperature sensors for device and modules.
Index:	$[0]=$ Temperature sensor 1
	$[1]=$ Temperature sensor 2
	$[2]=$ Temperature sensor 3
	$[3]=$ Gating module temperature
	$[4]=$ CUD Control Unit temperature
Note:	Temperature sensors which are not in use return a high negative value (approx. $\left.-200^{\circ} \mathrm{C}\right)$.

r50014[0...1]	Temperature rises calculated / Temp rise calc		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8038,8042
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the values calculated for the temperature rise of the motors and the thyristors

Index:	$[0]=$ Motor temperature rise
	$[1]=$ Thyristor temperature rise
Dependency:	See also: p 50075, r52310

Dependency: See also: p50075, r52310

2.2 List of parameters

r50020	Closed-loop armature current control motor current set abs value / la ctr l_set abs
DC_CTRL	Can be changed: - Calculated: - Access level: 1 Data type: FloatingPoint32 Dyn. index: - Function diagram: 6855 P group: - Unit group: Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Note:	Displays the absolute value of the motor current setpoint. This parameter is referred to the rated motor current. The following applies: 100% corresponds to p50100[ii], were ii $=$ active DDS
$\overline{\mathrm{r} 50021}$ DC_CTRL	Torque limiting torque setpoint after limiting / Tqe set after lim
Description: Note:	Displays the torque setpoint after limiting. 1 corresponds to 0.1% of the rated torque of the motor.
$\begin{aligned} & \hline \mathbf{r 5 0 0 2 2} \\ & \text { DC_CTRL } \end{aligned}$	Torque limiting torque setpoint before limiting / Tqe set bef lim
Description: Note:	Displays the torque setpoint before limiting. 1 corresponds to 0.1% of the rated torque of the motor.
$\overline{\text { r50025 }}$ DC_CTRL	Speed controller actual value selection / Act sel Can be changed: - Calculated: - Access level: 1 Data type: FloatingPoint32 Dyn. index: - Function diagram: 6810 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description:	Display and connector output of the selected speed actual value on the speed controller.
$\overline{\mathrm{r} 50028}$ DC_CTRL	Speed setpoint before the ramp-function generator display / n_set bef RFG disp Can be changed: - Calculated: - Access level: 1 Data type: FloatingPoint32 Dyn. index: - Function diagram: 3135 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: p2000 Expert list: 1 Min: Max: Factory setting: $-[\mathrm{rpm}]$ $-[\mathrm{rpm}]$ $-[\mathrm{rpm}]$
Description: Dependency:	Displays the speed setpoint before the ramp-function generator. See also: r52193

r50029	Speed setpoint AOP30 display / n	_set AOP30 disp	
DC_CTRL	Can be changed: - Data type: FloatingPoint32 P group: Not for motor type:- Min: - [rpm]	Calculated: - Dyn. index: - Unit group: - Scaling: p2000 Max: - [rpm]	Access level: 1 Function diagram: 3113 Unit selection: Expert list: 1 Factory setting: - [rpm]
Description:	Displays the speed setpoint from the Advanced	ed Operator Panel 30 (AOP30).	
r50030[0...3]	CO: Device fan speed / Dev fan n		
DC_CTRL	Can be changed: - Data type: FloatingPoint32 P group: - Not for motor type: - Min: - [rpm]	Calculated: Dyn. index: Unit group: Scaling: Max: - [rpm]	Access level: 1 Function diagram: 8047 Unit selection: Expert list: 1 Factory setting: - [rpm]
Description: Index:	Displays the speed of the device fan. [0] = Fan 1 speed [1] = Fan 2 speed [2] = Fan 3 speed [3] = Fan 4 speed		
Dependency:	See also: p50082, p50096 See also: F60167		
Note:	The following options are available, dependen - No fans - 2 DC fans - 1 AC fan - 2 AC fan - 2 AC fans + 1 DC fan	nt upon the power unit used:	
r50033	Field voltage actual value / Uf act		
DC_CTRL	Can be changed: - Data type: FloatingPoint32 P group: Not for motor type: - Min: - [V]	Calculated: Dyn. index: Unit group: Scaling: Max: - [V]	Access level: 1 Function diagram: 6952 Unit selection: Expert list: 1 Factory setting: - [V]
Description:	Displays the actual value of the field voltage.		
r50034	Field firing angle / Field fir angle		
DC_CTRL	Can be changed: - Data type: FloatingPoint32 P group: Not for motor type: - Min: - [${ }^{\circ}$]	Calculated: Dyn. index: Unit group: Scaling: Max: - [${ }^{\circ}$]	Access level: 1 Function diagram: 6915 Unit selection: Expert list: 1 Factory setting: - [${ }^{\circ}$]
Description:	Displays the firing angle on the field circuit.		

2.2 List of parameters

r50035	Field current controller actual value / I_field ctr act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual value on the field current controller.		
r50036	Field current controller setpoint / I_field ctr set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the setpoint value on the field current controller.		
r50037	EMF actual value / EMF act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the EMF actual value.		

r50038	Armature voltage actual value / Ua act	
DC_CTRL	Can be changed: - Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: -	Function diagram: 6902
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	-[V] - [V]	- [V]
Description:	Displays the actual value of the armature voltage.	
r50039	Motor EMF setpoint / Mot EMF set	
DC_CTRL	Can be changed: - Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: -	Function diagram: 6900
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	-[V] -[V]	- [V]
Description:	Displays the EMF setpoint calculated from the motor data.	

r50047[0...31]	Faults additional information / Fault add info		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2651
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays more detailed information about faults which have occurred with numbers 60000 and higher. [0] = Fault value		
	[1] = Additional information about the most recent fault which occurred (see corresponding fault)		
	...		
	[29] = Additional information about the most recent fault which occurred (see corresponding fault)		
	[30] = software version (internal like parameter r50060[1] or r7844[0])		
	[31] = Fault number		
p50051	Optimization run selection / Opt run sel		
DC_CTRL	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	30	0
Description:	Setting to select the optimization run for the next ON command.		
Value:	0: No optimization run		
	23: Armature current control (for inductive loads)		
	24: Closed-loop field cur		
	25: Closed-loop armatur		
	26: Closed-loop speed co	nt of inertia	
	27: Field weakening con		
	28: Friction compensatio		
	29: Torsion optimization		
	30: CCP (Converter Com	tor)	
Notice:	If value $=30$:		
	The CCP optimization run does not require a switch-on command and is directly started when selecting the value.		

2.2 List of parameters

Only a value of 0 can be set at the right-hand CUD.
A value not equal to 0 can only be set in the operating states o7.0 and o7.1 if an optimization run is presently not
active.
If value $=0$:
No optimization run has been selected.
If value $=23$:
Optimization run for pre-control and the current controller for the armature converter (for inductive loads).
If value $=24$:
Optimization run for pre-control and the current controller for the field converter.
If value $=25$:
Optimization run for pre-control and the current controller for the armature converter.
If value $=26$:
Optimization run for the speed controller and moment of inertia.
If value $=27$:
Optimization run for field weakening.
If value $=28$:
Optimization run for friction compensation.
If value $=29$:
Optimization run for speed controllers and moment of inertia for drives that are capable of oscillation.
If value $=30$:
Optimization run for CCP (Converter Commutation Protector).

r50052	Optimization run status / Opt run status		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling:	Expert list: 1
	Min:	Max:	Factory setting:
	0	701	-
Description:	Displays the status during the optimization run.		

Value:	$0:$	No optimization run
	1:	Wait for operating state 7.4
	2 :	Check prerequisites
	3:	Save original interconnection
	4:	Interconnect optimization parameters
	5:	Wait for operating state $0 . x$ or 1.5
	6:	Set optimized parameter values
	7:	Wait for operating state 8.0
	8:	Troubleshooting
	9:	Exit optimization run
	101:	Set field current to 100\%
	102:	Measure field circuit resistance
	103:	Measure field circuit inductance
	201:	Wait for field decay
	202:	Set armature current to 100\%
	203:	Measure armature circuit resistance
	204:	Measure armature circuit inductance
	301:	Record speed characteristic
	302:	Stop motor
	401:	Calculate nominal EMF
	402:	Calculate nominal speed
	403:	Record field characteristic 91\% field current
	404:	Record field characteristic 83\% field current
	405:	Record field characteristic 76\% field current
	406:	Record field characteristic 70\% field current
	407:	Record field characteristic 65\% field current
	408:	Record field characteristic 60.5\% field current
	409:	Record field characteristic 56.5\% field current
	410:	Record field characteristic 53\% field current
	411:	Record field characteristic 50\% field current
	412:	Record field characteristic 47\% field current
	413:	Record field characteristic 44\% field current
	414:	Record field characteristic 41\% field current
	415:	Record field characteristic 38\% field current
	416:	Record field characteristic 35\% field current
	417:	Record field characteristic 32\% field current
	418:	Record field characteristic 29\% field current
	419:	Record field characteristic 26\% field current
	420:	Record field characteristic 23\% field current
	421:	Record field characteristic 20\% field current
	422:	Record field characteristic 17\% field current
	423:	Record field characteristic 14\% field current
	424:	Record field characteristic 11\% field current
	425:	Record field characteristic 8\% field current
	426:	Recording of field characteristic is complete
	501:	Wait for field to build up
	502:	Recording the friction characteristic - 10\% rated speed
	503:	Recording the friction characteristic - 20% rated speed
	504:	Recording the friction characteristic - 30\% rated speed
	505:	Recording the friction characteristic - 40\% rated speed
	506:	Recording the friction characteristic - 50\% rated speed
	507:	Recording the friction characteristic - 60\% rated speed
	508:	Recording the friction characteristic - 70\% rated speed
	509:	Recording the friction characteristic - 80\% rated speed
	510:	Recording the friction characteristic - 90\% rated speed
	511:	Recording the friction characteristic - 100\% rated speed
	701:	Calculation is carried out

2.2 List of parameters

r50060[0...14]	Software version / SW version	
DC_CTRL	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P group: - Unit group: - Not for motor type: - Scaling: - Min: Max:	Access level: 1 Function diagram: Unit selection: Expert list: 1 Factory setting:
Description: Index:	Displays the existing software versions. [0] = Complete device version external [1] = Complete device version internal [2] = DSAC Bootloader Version [3] = BIOS version [4] = Configuration EEPROM version [5] = Base system version [6] = DC MASTER version [7] = TMS version [8] = TMS image version [9] = TMS bootloader version [10] = TMS bootloader image version [11] = Powerstack properties version [12] = In-plant information [13] = DCC version [14] = FBLOCKS version	
Note:	Some of these software versions are also displayed at other parameters. Index 0 <--> r7844[1] Index 1 <--> r7844[0] Index 2 <--> r0197 Index 5 <--> r0018 Index 6, 13, 14 <--> r4957[x]	
r50063[0...1]	CUD information / CUD info	
DC_CTRL	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P group: - Unit group: - Not for motor type: - Scaling: - Min: Max:	Access level: 1 Function diagram: 8054 Unit selection: Expert list: 1 Factory setting:
Description: Index:	Displays information about the Control Unit DC MASTER (CUD). [0] = CUD position [1] = CUD variant	
Note:	For index [0]: Indicates the position of the Control Unit DC MASTER (CUD) in the device. - Value $=0$: CUD is installed on the left. - Value $=1$: CUD is installed on the right. For index [1]: Indicates the variant of the Control Unit DC MASTER (CUD). - Value = 0 : CUD is the "Standard" version. - Value = 1: CUD is the "Advanced" version.	

p50066	Power unit l2t monitoring derating factor K1 limit value / PU fact K1 lim val		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8042
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.50	1.00	0.50
Description:	Sets the limit value for derating factor K1 (thermal power reduction factor). This limit value is necessary for devices with option L99. If this limit value is fallen below, then an appropriate alarm is output.		
Dependency:	See also: A60082		
Note:	The derating factor K1 should be taken from the following reference:		
	SINAMICS DCM Operating Instructions - Chapter "Sensor for ambient or air intake temperature"		
p50067	Load class / Load class		
DC_CTRL	Can be changed: C2(1), T	Calculated: -	Access level: 1
		Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	5	1
Description:	Load class setting.		
	Dependent upon the selected load class, the device's rated direct current is reduced to a value which will vary according to power unit and load class.		
	The current value of the device's rated direct current is displayed via r50072[1].		
Value:	1: DCI		
	2: DC II		
	3: DC III		
	4: DC IV		
Note:	If the device's rated direct current is also reduced via p50076[0], the smaller of the two values will be applied.		
	If p50067 is set to a value > 1 , you must ensure that the "dynamic overload capability of the power unit" is enabled (in other words, a value >0 must be set in p50075).		
	The device does not check for compliance with the load class set in p50067. If the power unit is able to tolerate it, the device can run at overload for longer than is permitted by the load class.		
	The actual permissible overload duration for each power unit is always longer than the overload duration permitted by the load class. The device checks for compliance with the overload duration actually permitted by the power unit.		
r50068[0...95]	Power unit nameplate options / PU options		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
Description:	Displays the options according to the power unit's nameplate.		
Note:	The individual digits of the number are displayed in ASCII code in the indices.		

2.2 List of parameters

r50069[0...31]	Power unit serial number / PU ser no.		
DC_CTRL	Can be changed: -	Calculated:	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	-	Faxtory setting:
	-	-	
Description:	Displays the serial number of the power unit.		
Note:	The individual digits of the number are displayed in ASCII code in the indices.		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		

r50070[0...31]	Power unit article number / PU article no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the article number (MLFB) of the power unit.		
Note:	The individual digits of the number are displayed in ASCII code in the indices.		
	An ASCI table (excerpt) can be found, for example, in the appendix to the List Manual.		
$\mathbf{r 5 0 0 7 1}$	Device rated line-side voltage armature / Device Ua_rated		
DC_CTRL	Can be changed: -	Calculated: -	Function diagram: 6960
	Data type: FloatingPoint32	Dyn. index: -	Unit selection: -
	P group: -	Unit group: -	Expert list: 1

r50072[0...1] Device rated direct current armature / Device la rated

	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [A]	- [A]	- [A]
Description:	Displays the device rated direct current (armature). [0] = Device rated direct current armature or power unit (CM) [1] = Reduced rated direct current armature		
Index:			
Dependency:	See also: p51822		
Note:	For index [0]:		
	Device rated direct current (armature) as indicated on the device rating plate - or for the Control Module corresponding to the value in parameter p51822.		
	For index [1]:		
	Actual device rated direct current (armature) according to the setting in parameter p50076[0] or p50067		

r50073[0...1]	Device rated direct current field / Device If_rated		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6900,6905, 6910, 6912, 6960, 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [A]	- [A]	- [A]
Description:	Displays the device rated direct current (field).		
Index:	[0] = Device rated direct current field [1] = Reduced rated direct current field		
Note:	When using an external field device (p 50082 > 20) the rated device DC field current is taken from the value set in p51838.		
	For index [0]:		
	Device rated direct current (field) as indicated on the device's nameplate (output direct current at power connections 3C and 3D).		
	For index [1]:		
	Actual device rated direct current (field) according to the setting in parameter p50076[1].		
r50074	Device rated line-side voltage field / V_rated field		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the device rated line-side voltage for the field as indicated on the device's nameplate.		
p50075	Power unit l2t monitoring response / PU I2t mon resp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8042
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the response for 12 t monitoring of the power unit.		
Value:	0: Dynamic overload not permitted 1: Dynamic overload possible, A60039 2: Dynamic overload possible, F60139		
Note:	If value $=0$:		
	Dynamic overload capability is not permissible. The armature current setpoint (r52133) is limited to p50077 * r50072[1].		
	A value of 0 can only be set, if p50067 $=1$.		
	If value = 1 :		
	Dynamic overload capability is permissible. As long as the calculated temperature rise of the thyristors does not exceed the permissible value, the armature current setpoint is limited to the value p50077 * r50072[1] * 180\%.		
	The armature current setpoint limit will only be increased back to the value p50077 * r50072[1] * 180\% and alarm A60039 will only disappear once the calculated temperature rise of the thyristors falls back below the permissible value and the armature current setpoint is less than the device rated current r50072[1].		

p50076[0...1]	Device rated direct current reduction / Device I_rated red		
DC_CTRL	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6850, 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	1.0 [\%]	100.0 [\%]	100.0 [\%]
Description:	Sets the reduction of the device rated direct current for armature and field.		
Index:	$\begin{aligned} & {[0]=\text { Armature }} \\ & {[1]=\text { Field }} \end{aligned}$		
Note:	- If a load class has been set in parameter p50067 which reduces the device rated direct current, the smaller of the two values will be applied.		
	- The value set in index 0 (armature) results in a hardware-based adaption of the current actual value sensing gain. This can only be adapted in a discrete stages. As a consequence, the value set here is not precisely effective, but the next possible value. The actually effective rated device current can be seen in parameter r50072[1].		
	The following applies:		
	r50072[1] = K * r50072[0]		
	$\mathrm{K}=\mathrm{A} / 255$		
	$A=p 50076[0] * 255 / 100$ (rounded to the next lower integer number)		

p50077	Power unit l2t monitoring derating factor / PU I2t mon derat		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6840, 8042
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.50	1.00	1.00
Description:	Sets the derating factor for 12 t monitoring of the power unit.		
Note:	Derating is required in the following cases:		
	- Operation at increased ambient temperature		
	- Installation altitude more than 1000 m above sea level		
	The derating factor should be taken from the following reference:		
	SINAMICS DCM Operating Instructions - Chapter "Derating" and "Sensor for ambient or air intake temperature"		

p50078[0...1]	Supply voltage rated value / V_supp rated val		
DC_CTRL	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6855, 6900, 6902, 6950, 6952, 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	10 [Vrms]	2000 [Vrms]	400 [Vrms]
Description:	Sets the rated value of the supply voltage for armature and field.		
	This parameter should be used to set the rated voltage value of the actual line used to supply power to the power unit.		
Index:	$\begin{aligned} & {[0]=\text { Armature } 1 \mathrm{U} 1 / 1 \mathrm{~V} 1 / 1 \mathrm{~W} 1} \\ & {[1]=\text { Field } 3 \mathrm{U} 1 / 3 \mathrm{~W} 1} \end{aligned}$		

Note:	This value is the reference value for the following parameters: p50351, p50352, p50353 r52285 to r52289, r52291, r52292, r52301, r52302, r52303, r52305 For index [0]: Only values less than r50071 can be set. For index [1]: Only values less than r50074 can be set.
p50079	Armature gating unit short pulses/long pulses / Arm sh/lg pulse
DC_CTRL	Can be changed: T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Function diagram: 6860 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 0 1 0
Description: Value:	Sets the short pulses/long pulses on the armature gating unit. Value $=0$: The gating unit emits short pulses ($0.89 \mathrm{~ms}=$ approx. 16 degrees at 50 Hz). Value $=1$: The gating unit emits long pulses (pulse duration up to approx. 0.1 ms before the next pulse) (e.g. required in the case of field infeed from the armature terminals). $\begin{array}{ll}0 \text { : } & \text { Short pulses } \\ 1 \text {. } & \text { Long pulses }\end{array}$ 1. Long pulses
p50080 DC_CTRL	Brake control braking mode / Brake ctr mode
Description: Value:	Sets the braking mode for brake control. 0: \quad No brake 1: Holding brake 2: Operational brake
Dependency: Note:	See also: p50370, p50371 If p50080 $=1$ (holding brake): If the "Enable operation" command is withdrawn or the "Disconnect voltage" or "E-stop" command is set, the "Close brake" command will not be set until " $n<n _m i n "$ is reached. If p50080 = 2 (operational brake): If the "Enable operation" command is withdrawn or the "Disconnect voltage" or "E-stop" command is set, the "Close brake" command will be set immediately (in other words, even if the motor is still running).
p50081[0...n]	Field weakening activation / Field weak act
DC_CTRL	Can be changed: C2(1), T Calculated: - Access level: 1 Data type: Integer16 Dyn. index: DDS, p0180 Function diagram: 6900 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 0 1 0
Description: Value:	Sets the activation/de-activation of EMF-dependent field weakening. 0: Deactivated 1: Activated
Notice:	When field weakening is active ($p 50081=1$), a valid field characteristic must be available ($p 50117=1$); if not, the optimization run for field weakening $(p 50051=27)$ must be performed.

2.2 List of parameters

p50088	Brake control brake closing time / Br ctr t close		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2750
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	10.00 [s]	0.00 [s]
Description:	Sets the brake closing time. When "Close brake" is sent, the firing pulse inhibit is delayed by this time.		
Note:	During this time, the drive is in operating state $01.1,01.2$, or 01.0 and is still applying torque.		
p50089	Sequence control voltage at power unit wait time / S ctr V at PU t		
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2651
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01 [s]	60.00 [s]	2.00 [s]
Description:	Sets the wait time for voltage and field current at the power unit.		
	Once the line contactor has dropped out and the "Switch on", "Jog" or "Creep" commands have been sent, in operating states 04 and 05 , the drive waits for voltage at the power unit and for a field current actual value (r52265) > 50% of the field current setpoint (r52268).		
	If, during this time, no voltage is detected at the power unit and the field current is missing, a message is output accordingly.		
Dependency:	See also: p50353		
Caution: !	The value in p50090 must be smaller than that in p50086 (unless p50086 $=0.0$) and p50089!		
Note:	This parameter indicates the total wait times during which the drive must pass through operating states 04 and 05 (response threshold for monitoring for the presence of voltage at the power unit, see p50353).		
p50090	Line voltage stabilization time / V_line t_stabil		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6950, 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01 [s]	1.00 [s]	0.05 [s]
Description:	Sets the line voltage stabilization time.		
Caution: \leqq	The value in p 50090 must be smaller than that in p50086 (unless p50086 $=0.0$) and p50089!		
Note:	When the "Switch on", "Jog" or "Creep" command is sent and also after a phase failure affecting the line infeed has been detected with the "Automatic restart" function parameterized (p50086 >0), the drive waits in operating state o4 for voltage at the power unit.		
	If amplitude, frequency and phase symmetry remain within the permissible tolerance for longer than this set stabilization time, line voltage is assumed to be present at the power connections.		

2.2 List of parameters

p50091[0...1]	Sequence control setpoint threshold / S ctr set thresh			
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2650, 2651	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: PERCENT	Expert list: 1	
	Min:	Max:	Factory setting:	
	0.00 [\%]	200.00 [\%]	[0] 200.00 [\%]	
			[1] 0.00 [\%]	
Description:	Sets the thresholds for "Switch on only with low setpoint" and "Automatic pulse inhibit with low setpoint".			
Index:	[0] = Switch on only with low setpoint [1] = Automatic pulse inhibit with low setpoint			
Dependency:	See also: r52166, r52193			
Note:	If p50091[0]:			
	Switching on is possible only if a setpoint \|r52193	< p50091[0] is present at the RFG input. If a higher setpoint is present, following activation, state 06 will remain set until $\|\mathrm{r} 52193\|<\mathrm{p} 50091$ [0]. If p50091[1]:		
	If \|r52193	and r52166 are smaller than p50091[1], the firing pulses will be inhibited and the motor will switch to state o2.0.		

p50092[0...3] Field reversal wait times / Field rev t_wait

Description:
Index:
Can be changed: U,
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max:
10.0 [s]
[0] = Field decay

Access level: 2
Function diagram: 6920
Unit selection: -
Expert list: 1
Factory setting:
[0] 3.0 [s]
[1] 0.2 [s]
[2] 0.1 [s]
[3] 3.0 [s]
Sets the times to control the reversing contactor to reverse the field for a 2-quadrant device with field reversal.
[1] = Control new field contactor
[2] = Enable field firing pulses
[3] = After field build up before armature enable
Dependency: See also: p50580, p50581, p50583, r53195

p50094	Sequence control auxiliaries OFF delay / Aux t_OFF		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2651
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\mathrm{~s}]$	$6500.0[\mathrm{~s}]$	$0.0[\mathrm{~s}]$
Description:	Sets the OFF delay for the auxiliaries.		
	The switching off of the auxiliaries in relation to that of the line contactor is delayed by the time set here.		

p50095	Sequence control DC circuit contactor wait time / DC cont t_wait		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2651
	N group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	$1.00[\mathrm{~s}]$	Factory setting:
	$0.00[\mathrm{~s}]$	$0.00[\mathrm{~s}]$	
Description:	Sets the wait time for a contactor in the DC circuit.		
	The time set in p50095 starts to elapse during a switch-on operation when operating state o5 is reached.		
	If this time is still running when operating state o4 is exited, then the system stays in state o3.2 until this time lapses.		

2.2 List of parameters

Notice:	If the motor is connected to the DC current output (terminal 1C1, 1D1) via a contactor, then generally, this contactor
is also controlled from the relay for the line contactor (terminals 109, 110). In this case, it must be ensured that the	
firing pulses are only enabled after it is completely certain that the contactor has closed. To realize this, this additional	
wait time is required when switching on.	
If the function "Feedback line contactor" is used, a change to 1 signal must be detected via p50691 within the time set	
in p50095. Otherwise, state o3.3 is kept until this time elapses and afterwards fault F60104 is triggered with fault	
value 6.	

p50096	Device fan run-on time / Dev fan t_run-on		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8047
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [s]	3600.0 [s]	240.0 [s]
Description:	Sets the run-on time for the device fan(s).		
	After a pulse inhibit (reaching an operating state $>=0.9$), the device fan(s) run-on until the power unit has coole down and until the run-time has expired.		
	The power unit is considered to have been cooled down if all of the following conditions apply:		
	- The thermal model for the thyristors supplies a value of less than 5%.		
	- The field current is less than 10 A .		
Dependency:	See also: r53135		
	See also: F60167		
p50097	Field current response to faults / I_field resp to F		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets the response of the field current to faults.		
Value:	0 : Inhibit field pulses		
	1: Enable field pulses		
Note:	If value $=0$:		
	The field pulses are inhibited when a fault occurs.		
	If value $=1$:		
	The field pulses are not inhibited when a fault occurs. However, it will not be possible to increase the field current setpoint any further.		

Dependency:	See also: r50037, r50038, r52123, r52286, r52287, r52291, r52292		
p50099	Communication monitoring delay time / Com mon t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9300, 9350
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the delay time for monitoring the communication interfaces.		
	Following the switching on of the electronic supply, the monitoring mechanisms for the communication interfaces in the proximity of the drive (parallel interface and peer-to-peer interface) do not become active until the delay time set here has elapsed.		
Dependency:	See also: r53300, r53310		
	See also: F60012, F60014		
Note:	This will prevent the interface monitoring mechanisms responding in the event of the electronic power supply to the components being switched on at different times.		
p50100[0...n]	Motor rated armature current / Mot rated I_armat		
DC_CTRL	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6851, 8038
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [A]	20000.0 [A]	0.0 [A]
Description:	Sets the rated armature current as indicated on the motor's nameplate.		
Note:	If p50100 $=0.0 \mathrm{~A}$, the drive cannot be switched on and put into operation.		
p50101[0...n]	Motor rated armature voltage / Mot rated V_armat		
DC_CTRL	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	10 [V]	2800 [V]	400 [V]
Description:	Sets the rated armature voltage as indicated on the motor's nameplate.		
	This parameter is used, for example, to specify the trigger point in field weakening operation.		
Note:	If a significant voltage drop is to be expected at the motor's supply line when the motor is at rated current (e.g. very long motor cable), a value increased by this voltage drop should be set at p50101.		
p50102[0...n]	Motor rated excitation current / Mot rated I_exc		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [A]	600.00 [A]	0.00 [A]
Description:	Sets the rated excitation current as indicated on the motor's nameplate. If p50102 $=0.00 \mathrm{~A}$, the drive cannot be switched on and put into operation.		
Note:			

p50103[0...n]	Minimum motor excitation current / Mot I_exc min		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~A}]$	$600.00[\mathrm{~A}]$	$0.00[\mathrm{~A}]$
Description:	Sets the minimum excitation current for the motor.		

p50104[0...n]	Speed-dependent current limitation speed n1 / I_lim n_dep n1		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1 [rpm]	10000 [rpm]	5000 [rpm]
Description:	Sets speed n 1 according to the motor's nameplate for "speed-dependent current limitation".		
	The characteristic for "speed-dependent current limitation" is defined by 2 pairs of values (p50104/p50105, p50106/p50107).		
	This parameter sets speed n 1 for the 1st pair of values ($\mathrm{p} 50104 / \mathrm{p} 50105$).		
Dependency:	See also: p50105, p50106, p50107, p50108, p50109		
Note:	The following condition applies:p50104 <= p50106 (n1 <= n2)		

p50105[0...n]	Speed-dependent current limitation armature current I1 / I_lim n_dep I1		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.1 [A]	20000.0 [A]	0.1 [A]
Description:	Sets armature current I1 according to the motor's nameplate for "speed-dependent current limitation".		
	The characteristic for "speed-dependent current limitation" is defined by 2 pairs of values (p50104/p50105, p50106/p50107).		
	This parameter sets armature current I1 for the 1st pair of values (p50104/p50105).		
Dependency:	See also: p50104, p50106, p50107, p50108, p50109		
Note:	The following condition applies:		
	p50105 >= p50107 (11 >= 12)		

p50106[0...n]	Speed-dependent current limitation speed n2 / I_lim n_dep n2		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1 [rpm]	10000 [rpm]	5000 [rpm]
Description:	Sets speed n 2 according to the motor's nameplate for "speed-dependent current limitation".		
	The characteristic for "speed-dependent current limitation" is defined by 2 pairs of values ($\mathrm{p} 50104 / \mathrm{p} 50105$, p50106/p50107).		
	This parameter sets speed n 2 for the 2nd pair of values ($\mathrm{p} 50106 / \mathrm{p} 50107$).		
Dependency:	See also: p50104, p50105, p50107, p50108, p50109		

Note: \quad| The following condition applies: | |
| :--- | :--- |
| | p50104 <= p50106 $(\mathrm{n} 1<=\mathrm{n} 2)$ |

p50107[0...n]	Speed-dependent current limitation armature current I2 / I_lim n_dep I2		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.1 [A]	20000.0 [A]	0.1 [A]
Description:	Sets armature current 12 according to the motor's nameplate for "speed-dependent current limitation".		
	The characteristic for "speed-dependent current limitation" is defined by 2 pairs of values ($\mathrm{p} 50104 / \mathrm{p} 50105$, p50106/p50107).		
	This parameter sets armature current 12 for the 2nd pair of values (p50106/p50107).		
Dependency:	See also: p50104, p50105, p50106, p50108, p50109		
Note:	The following condition applies:		
	p50105 >= p50107 (I1 >= I2)		

p50108[0...n]	Speed-dependent current limitation maximum operating speed n3 / l_lim n_dep n3		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1 [rpm]	10000 [rpm]	5000 [rpm]
Description:	Sets the maximum operating speed n3 for "speed-dependent current limitation".		
Dependency:	See also: p50104, p50105, p50106, p50107, p50109		
Note:	In this parameter, the following maximum speed must be set dependent upon the setting of the signal source for the speed actual value (p 50083):		
	- p50083 = 1 (analog tachometer): Speed prevailing at a tachometer voltage according to p50741		
	- p50083 = 2 (incremental encoder TTL/HTL): Same value as maximum speed according to p50143.		
	- p50083 = 3 (operation without tachometer): Speed prevailing at an EMF according to p50115.		

p50109[0...n]	Speed-dependent current limitation activation / I_lim n_dep act		
DC_CTRL	Can be changed: $\mathrm{C} 2(1), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 8040
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets activation/de-activation of the "speed-dependent current limitation" function.		
Value:	$\begin{array}{ll}0: & \text { Deactivated } \\ \text { 1: } & \text { Activated }\end{array}$		
p50110[0...n]	Armature circuit resistance / Ra		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6852, 6855, 6900, 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [ohm]	4000.000 [ohm]	0.000 [ohm]
Description:	Sets the armature circuit resistance.		

2.2 List of parameters

Note:	The parameter is set automatically during the optimization run for pre-control and the current controller for the
armature converter $(\mathrm{p} 50051=25)$.	

p50111[0...n]	Armature circuit inductance / La		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6852,6854,
	P group: -	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.000[\mathrm{mH}]$	$1000000.000[\mathrm{mH}]$	$0.000[\mathrm{mH}]$
Description:	Sets the armature circuit inductance.		
Note:	The parameter is set automatically during the optimization run for pre-control and the current controller for the		

p50112[0...n]	Field circuit resistance / R_field circuit		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.000[o h m]$	$4000.000[0 h m]$	0.000 [ohm]
Description:	Sets the field circuit resistance.		
Note:	The parameter is set automatically during the optimization run for closed-loop field current control (p50051 = 24$).$		

p50113[0...n]	Motor I2t monitoring continuous current factor / Mot l2t I_cont		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8038
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.50	2.00	1.00
Description:	Sets the permissible continuous armature current for motor l2t monitoring.		
Note:	At this permissible continuous current, fault F60137 is not output.		
	The current is calculated as follows: p50113*p50100		

p50114[0...n]	Motor thermal time constant / Mot T therm		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8038
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\mathrm{~s}]$	600 [s]	
Description:	Sets the thermal time constant of the motor.		
Note:	Value $=0:$		

p50115[0...n]	Speed controller EMF at maximum speed / EMF at n_max		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$1.00[\%]$	$140.00[\%]$	100.00 [\%]
Description:	Setting of the percentage value in relation to p50078[0] for specifying the EMF at maximum speed.		
	The speed is adjusted using the EMF as the speed actual value.		

p50116[0...n]	Field circuit inductance / L_field circuit		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\mathrm{mH}]$	$0.0[\mathrm{mH}]$	
Description:	Sets the field circuit inductance.		
Dependency:	See also: p51597		
Note:	The parameter is set automatically during the optimization run for pre-control and the current controller for the field		
	converter (p50051 =24).		

p50117[0...n]	Field characteristic status / Field char stat		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Status of the field characteristic.		
Value:	$0: \quad$ Field characteristic not recorded		
	$1: \quad$ Field characteristic recorded		
Note:	The parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	If p50117 = 1, the field characteristic is valid (p50118 to p50139).		

p50118[0...n]	EMF rated value / EMF rated		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0 [\%]	200 [\%]	63 [\%]
Description:	Sets the EMF generated at full field (corresponding to p 50102) and a speed according to p 50119.		
Dependency:	See also: p50119		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only the ratio of p50118 to p50119 is decisive for field weakening control.		
	If p50102 is modified subsequently or the maximum speed is altered downstream, the optimization run for field weakening has to be repeated.		
	If p50100, p50101 or p50110 is modified subsequently, the optimization run for field weakening does not have to be repeated.		

p50119[0...n]	Rated speed / n_rated		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the speed generated at full field (corresponding to p50102) and an EMF actual value according to p50118.		
Dependency:	See also: p50118		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only the ratio of p 50118 to p 50119 is decisive for field weakening control.		
	If p50102 is modified subsequently or the maximum speed is altered downstream, the optimization run for field weakening has to be repeated.		
	If p50100, p50101 or p50110 is modified subsequently, the optimization run for field weakening does not have to repeated.		

p50122[0...n]	Field current for motor flux 10\% / I_field flux 10\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	7.3 [\%]
Description:	Sets the field current for a motor flux of 10\%.		
Note:	This parameter is set automatically during the optimization run for field weakening ($\mathrm{p} 50051=27$).		
	Only values greater than p50121 and less than p50123 can be set.		

p50123[0...n]	Field current for motor flux 15\% / I_field flux 15\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$1 \%]$
Description:	Sets the field current for a motor flux of 15\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50124[0...n]	Field current for motor flux 20\% / I_field flux 20\%		
DC_CTRL	Can be changed: T	Calculated: -	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	14.7 [\%]
Description:	Sets the field current for a motor flux of 20\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only values greater than p50123 and less than p50125 can be set.		

p50125[0...n]	Field current for motor flux 25\% / I_field flux 25\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$18.4[\%]$
Description:	Sets the field current for a motor flux of 25\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50126[0...n]	Field current for motor flux 30\% / I_field flux 30\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	22.0 [\%]
Description:	Sets the field current for a motor flux of 30\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50127[0...n]	Field current for motor flux 35\% / I_field flux 35\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	25.7 [\%]
Description:	Sets the field current for a motor flux of 35%.		
Note:	This parameter is set automatically during the optimization run for field weakening ($\mathrm{p} 50051=27$).Only values greater than p50126 and less than p50128 can be set.		

p50128[0...n]	Field current for motor flux 40\% / I_field flux 40\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	29.4 [\%]
Description:	Sets the field current for a motor flux of 40%.		
Note:	This parameter is set automatically during the optimization run for field weakening ($\mathrm{p} 50051=27$). Only values greater than p50127 and less than p50129 can be set.		

p50129[0...n]	Field current for motor flux 45\% / I_field flux 45\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$33.1[\%]$	
	Sets the field current for a motor flux of 45\%.		
Description:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
Note:	Only values greater than p50128 and less than p50130 can be set.		

p50130[0...n]	Field current for motor flux 50\% / I_field flux 50\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	36.8 [\%]
Description:	Sets the field current for a motor flux of 50\%.		
Note:	This parameter is set automatically during the optimization run for field weakening ($\mathrm{p} 50051=27$).Only values greater than p50129 and less than p50131 can be set.		

p50131[0...n]	Field current for motor flux 55\% / I_field flux 55\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$40.6[\%]$
Description:	Sets the field current for a motor flux of 55\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50132[0...n]	Field current for motor flux 60\% / I_field flux 60\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$44.6[\%]$
Description:	Sets the field current for a motor flux of 60%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only values greater than p50131 and less than p50133 can be set.		

p50133[0...n]	Field current for motor flux 65\% / I_field flux 65\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$48.9[\%]$
Description:	Sets the field current for a motor flux of 65\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50134[0...n]	Field current for motor flux 70\% / I_field flux 70\%		
DC_CTRL	Can be changed: T	Calculated: -	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$53.6[\%]$
Description:	Sets the field current for a motor flux of 70\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50135[0...n]	Field current for motor flux 75\% / _field flux 75\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	58.9 [\%]
Description:	Sets the field current for a motor flux of 75%.		
Note:	This parameter is set automatically during the optimization run for field weakening ($\mathrm{p} 50051=27$).		
	Only values greater than p50134 and less than p50136 can be set.		

p50136[0...n]	Field current for motor flux 80\% / I_field flux 80\%		
DC_CTRL	Can be changed: T	Calculated:	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$64.9[\%]$
Description:	Sets the field current for a motor flux of 80%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only values greater than p50135 and less than p50137 can be set.		

p50137[0...n]	Field current for motor flux 85\% / I_field flux 85\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$71.8[\%]$
Description:	Sets the field current for a motor flux of 85\%.		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		
	Only values greater than p50136 and less than p50138 can be set.		

p50138[0...n]	Field current for motor flux 90\% / I_field flux 90\%		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900,6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	$79.8[\%]$
Description:	Sets the field current for a motor flux of 90%		
Note:	This parameter is set automatically during the optimization run for field weakening (p50051 = 27).		

p50150[0...n]	Armature converter Alpha G limit / Arm Alpha G lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0{ }^{\circ}{ }^{\prime}$	$\left.165.0{ }^{\circ}{ }^{\circ}\right]$	30.0 [${ }^{\circ}$]
Description:	Sets the rectifier stability limit for the firing angle of the armature converter. See also: r53190		
Dependency:			
Note:	The status of the Alpha G limit is shown in r53190.7.		
p50151[0...n]	Armature converter Alpha W limit / Arm Alpha W lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	120.0 [${ }^{\circ}$]	165.0 [$\left.{ }^{\circ}\right]$	$150.0{ }^{\circ} \mathrm{]}$
Description:	Sets the inverter stability limit for the firing angle of the armature converter.		
Dependency:	See also: r53190		
Note:	The status of the Alpha W limit is shown in r53190.8.		
p50152[0...n]	Armature average number of line periods / Arm line per no.		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	20	20
Description: Note:	Setting of the number of line periods for line frequency correction in the armature circuit.		
	The internal line synchronization for the armature firing pulses derived from the power terminals (line infeed) is averaged over the number of line periods set in this parameter.		
	In the case of operation on "weak" power supplies with unstable frequencies (on a diesel-driven generator, for example (isolated operation)), this parameter must be set lower than for operation on "constant V / Hz " systems to achieve a higher frequency correction speed.		
p50153[0...n]	Control word for armature pre-control / A prec STW		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	1
Description: Value:	Sets the control word for armature pre-control.		
	0: Armature pre-control	-control $=165^{\circ}$	
	1: Armature pre-control		
	2: Armature pre-control	with torque direction chge	
	3: Armature pre-control	evant	
Note:	If value $=3$:		
	For pre-control, in this case the EMF is applied with a value of 0 (recommended setting in the case of supplying high inductances from armature terminals, e.g. solenoids, field supply).		

p50154[0...n]	Closed-loop armature current control integral comp activation / la ctr I comp act			
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2	
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6855	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	0	1	1	
Description:	Sets activation/de-activation of the integral component on the armature current controller.			
Value:	$0:$ Deactivated 1: Activated			
Note:	If value $=0$:			
	The integral component of the armature current controller is kept constantly at zero (i.e. the armature current controller functions solely as a proportional controller).			
p50155[0...n]	Closed-loop armature current control P gain / la ctr Kp			
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6855	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	0.01	200.00	0.10	
Description:	Sets the P gain of the armature current controller.			
Dependency:	See also: p50175			
Note:	The parameter is set automatically during the optimization run for pre-control and the current controller for the armature converter (p50051 = 25).			
	The P gain (Kp) for the armature current controller is calculated as follows:			
	Kp $=$ p50155 \times \|p50175			

p50156[0...n]	Closed-loop armature current control integral time / la ctr Tn		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.001 [s]	10.000 [s]	0.200 [s]
Description:	Sets the integral time of the armature current controller.		
Dependency:	See also: p50176		
Note:	The parameter is set automatically during the optimization run for pre-control and the current controller for the armature converter (p50051 = 25).		
	The integral time (Tn) for the	t controller is calculated as	

p50157[0...n]	Current limitation setpoint integrator selection / I_set integ sel		
DC_CTRL	Can be changed: T	Calculated: -	
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6845
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Selection of the current setpoint integrator.		
Value:	$0: \quad$ Reduced gearbox stressing		
	$1: \quad$ Current setpoint integrator		

2.2 List of parameters

Note:
If value $=0$:
The integrator is only effective after a change in torque direction (only functions as a ramp-function generator for the current setpoint until the 1st time the output reaches the setpoint at the integrator input after a change in torque direction).
If value $=1$:
The integrator is always effective (functions as a ramp-function generator for the current setpoint).

p50158[0...n]	Current limitation setpoint integrator ramp-up time / Set integ t_r-up		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6845
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [s]	1.000 [s]	0.000 [s]
Description:	Sets the ramp-up time for the setpoint integrator during current limitation.		
	Duration of a ramp-up in the event of a setpoint jump from 0 to 100\% of parameter r50072[1].		
Notice:	When setting a ramp-up time $>0.000 \mathrm{~s}$, it is not permissible to enter a supplementary current setpoint via p50601[5]. p50601[5] must be set $=0$.		
	Possible effect if this is not observed:		
	Torque direction change will not be able to be completed. The drive remains in one torque direction.		

p50159[0...n]	Auto-reversing stage changeover threshold / Auto-rev thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	0.01 [\%]
Description:	Sets the changeover threshold for the torque direction in the auto-reversing stage.		
p50160[0...n]	Auto-reversing stage additional torque-free interval / Auto-rev interval		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [s]	2.000 [s]	0.000 [s]
Description:	Sets the additional torque-free interval when switching over the torque direction in the auto-reversing stage.		

p50161[0...n] Auto-reversing stage Alpha W pulses second pulse inhibited / Auto-rev Alpha W1

Can be changed: U, T	Calculated: -	Access level: 2
Data type: Unsigned16	Dyn. index: DDS, p0180	Function diagram: 6860
P group: -	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:
0	50000	0
Sets the additional Alpha W pulses with inhibited second pulse in the auto-reversing stage.		
This parameter should be set to values >0 in particular when supplying high inductances (e.g. infeed of solenoids).		
See also: p50179		

Note: \quad Number of additional Alpha W pulses with disabled second pulse following detection of I = 0 signal prior to a change in torque direction.
These pulses cause the current to decay prior to a change in torque direction.
When it drops below the thyristor holding current value, the current is suddenly chopped by the unfired second thyristor and the residual energy stored in the load inductance must be dissipated via a protective circuit (e.g. a varistor) to prevent the load inductance from producing an overvoltage.

p50162[0...n]	EMF selection / EMF sel		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6852
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	4	1
Description:	Sets the calculation method for the EMF in armature pre-control.		
Value:	1: Measured EMF 2: EMF with Ua from p50193 3: EMF with EMF from p50193 4: EMF with EMF from r52167		
Note:	If p50162 = 1:		
	The EMF derived from the measured armature voltage (r 52123) is used. If $\mathrm{p} 50162=2$:		
	The EMF for armature current pre-control is calculated from the armature voltage selected with p50193 (the resistive + inductive armature voltage drop is subtracted internally).		
	If p50162 = 3:		
	The parameter selected with p50193 is used as the EMF for armature current pre-control. This setting also allows a closed-loop DC link voltage control to be implemented.		
	If p50162 = 4:		
	The EMF for the armature precontrol (12-pulse in parallel) is calculated as follows:		
	r52290 * (r52167/p50119) * p50118		

p50163[0...n] EMF smoothing selection / EMF smoothing sel

DC CTRL Can be changed: T Calculated:
Data typ
P group: -
Not for motor type: -
Min:
0

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max:
160

Access level: 2
Function diagram: 6852
Unit selection: -
Expert list: 1
Factory setting:
6

Description: Sets the method for filtering the EMF for armature pre-control.
Value:

No filtering
Averaging over last 1 EMF values
Average over last 2 EMF values
Average over last 3 EMF values
Average over last 4 EMF values
Average over last 5 EMF values
Average over last 6 EMF values
PT1 time constant $=10 \mathrm{~ms}$
PT1 time constant $=20 \mathrm{~ms}$
PT1 time constant $=40 \mathrm{~ms}$
PT1 time constant $=80 \mathrm{~ms}$
160: \quad PT1 time constant $=160 \mathrm{~ms}$

2.2 List of parameters

p50164[0...n]	Closed-loop armature current ctr proportional comp activation / la ctr Kp act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets activation/de-activation of the proportional component for armature current control.		
Value:	0: Deactivated 1: Activated		
Note:	If value $=0$:		
	The proportional component of the armature current controller is kept constantly at zero (i.e. the armature current controller functions solely as an integral controller).		
p50165[0...n]	BI: Signal source for change in torque direction enable / Torq dir en sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	53190.0
Description:	Sets the signal source to enable a torque direction in the event of a change in torque direction. 1 signal:		
	Enable available for M0 or MI.		
	0 signal:		
	Enable available for MO or MII.		
p50166	Thyristor blocking voltage calculation activation / Thy_block_calc act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate/de-activate the	of the thyristor blocking vo	
Value:	0 : De-activating 1: Activating		
Note:	The calculation of the thyristor blocking voltage can only be activated if the hardware (Power Interface Module) supports this function.		
	This parameter is only evaluated once while powering up, i.e. a change only becomes effective after a new start or after powering up with saved parameters ($\mathrm{p} 0976=11$).		
p50169[0...n]	Torque limiting selection torque limiting/current limitation / T lim sel T/I_lim		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Setting to select torque limiting or current limitation.		
Value:	0 : Current limiting 1: Torque limiting		

Dependency:	If $p 50169=1$ or $p 50170=1:$
	A valid field characteristic $(p 50117=1)$ is required, otherwise fault F60055 will be output on power up. If this setting
is selected, the optimization run for field weakening must be performed in advance $(p 50051=27)$.	
	Parameter $p 50263$ defines the input variable for determining the motor flux.
	If $p 50169=1$ and $p 50170=1$:
This is an invalid setting.	
If $p 50170=1$, it will not be possible to set $p 50169=1$.	
See also: $p 50051, p 50117, p 50263$	
If $p 50169=0:$	
Current limitation.	
	If $p 50169=1:$
	Torque limiting; in other words, the pre-set torque limit is converted into a current limit:
	current limit = torque limit/motor flux

p50170[0...n]	Selection of control type for closed-loop current/torque control / Ctrl type I/tq sel		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	0	
Description:	Sets the controller's control type (closed-loop current control or closed-loop torque control).		
	p50170 = 0:		
	The controller is current-controlled.		
	p50170 $=1:$		

Value:	0 : Current control 1: Torque control
Dependency:	If p50169 or p50170 is set to a value of 1 , there must be a valid field characteristic (p50117 = 1); otherwise fault F60055 will be output on power up. If this setting is selected, the optimization run for field weakening must be performed in advance (p50051 = 27).
	Parameter p50263 defines the input variable for determining the motor flux.
	If p50169 = 1 and p50170 = 1:
	This is an invalid setting. If p50169 = 1, it will not be possible to set p50170=1.
	See also: p50051, p50117, p50173, p50263
Note:	The following parameters are used to change over between current control and torque control: - Signal source via connector input p50173.
	or
	- Fixed set value in p50170.

p50171[0...n]	Current limitation armature current limit torque dir I factor / la lim t d I fact		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825,6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\%]$	$300.0[\%]$	$100.0[\%]$
Description:	Sets the factor for the armature current limit in torque direction I.		

p50172[0...n]	Current limitation armature current limit torque dir II factor / la lim t d II fact		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825, 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-300.0[\%]$	$-100.0[\%]$	
Description:	Sets the factor for the armature current limit in torque direction II.		

p50173[0...n]	BI: Signal source for closed-loop current/torque control ctr type / Ctr l/tq ctr sig s	
DC_CTRL	Can be changed: T	Calculated: -
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170

p50174	Torque limiting for OFF1 \& OFF3 / T_lim OFF1 \& OFF3		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Selects whether the torque limiting should be active for OFF1 and for OFF3.		
Value:	$0: \quad$ Torque limiting for OFF1 \& OFF3 active		
	$1: \quad$ Torque limiting for OFF1 \& OFF3 not active		
Dependency:	See also: r52133, r52147		

p50175[0...n]	CI: Signal source for closed-loop armature current control P gain / la ctr Kp sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	1	
Description:	Sets the signal source for variable control of the armature current controller's P gain.		
Dependency:	See also: p50155		

Note:	The P gain (Kp) for the armature current controller is calculated as follows:
$\mathrm{Kp}=\mathrm{p} 50155 \times\|\mathrm{p} 50175\|$	

p50176[0...n]	Cl: Signal source for closed-loop armature current ctr integr time / la ctr Tn sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1

Description: Sets the signal source for variable control of the armature current controller's integral time
Note: The integral time (Tn) for the armature current controller is calculated as follows:
Tn = p50156 x |p50176|

p50177[0...n]	BI: Signal source for the "No immediate pulse inhibit" command / No pulse inh sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the "No immediate pulse inhibit" command.		
	A low signal will cause the armature firing pulses to be inhibited immediately without waiting for the $I=0$ signal or sending Alpha W pulses for current decay. The additional Alpha W pulses (as set in p50161 and p50179) are not output either. As long as this command is pending, it will not be possible to switch to an operating state lower than o1.6.		
Note:	This command can be used, for example, if the drive is being used to supply a field rather than a motor and the current is to be reduced via an external built-on field discharge resistor connected in parallel.		

p50178[0...n]	BI: Sig source for the "Fire all thyristors simultaneously" command / All thy fire sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	-	Factory setting:
	-	0	
Description:	Sets the signal source for the "Fire all thyristors simultaneously" command.		
	The default setting of this command (high signal) causes all 6 thyristors on thyristor bridge I to be fired continuously		
	and simultaneously. Changeover to long pulses is automatic.		
Note:	However, this command is only active if no line voltage is applied to the armature power unit.		

p50179[0...n] Auto-reversing stage Alpha W pluses second pulse enabled / Auto-rev Alpha W2

Can be changed: U, T
Calculated:
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max:
50000

Access level: 2
Function diagram: 6860
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the additional Alpha W pulses with enabled second pulse in the auto-reversing stage.
Recommendation: This parameter should be set to values >0 in particular when supplying high inductances (e.g. infeed of solenoids).

Note: \quad Number of additional Alpha W pulses with enabled second pulse following detection of $I=0$ signal prior to a change in torque direction.
These pulses cause the current to decay before a change in torque direction; the thyristors are fired in pairs to prevent sudden chopping and the generation of overvoltage by the load inductance when the current drops below the thyristor holding current.
When a change in torque direction is required, the current in the existing direction must be reduced.

p50180[0...n]	Torque limiting torque limit 1 positive / T lim 1 pos		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-300.00[\%]$	$300.00[\%]$	
	Sets positive torque limit 1.		
Description:	See also: p50182		
Dependency:	If torque limit changeover is selected (p50694 =1) and the speed is higher than the set changeover speed (p50184),		
Note:	then torque limit 2 is activated in place of torque limit 1.		

p50181[0...n]	Torque limiting torque limit 1 negative / T lim 1 neg		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-300.00 [\%]	300.00 [\%]	-300.00 [\%]
Description:	Sets negative torque limit 1.		
Dependency:	See also: p50183		
Note:	If torque limit changeover is selected $(p 50694=1)$ and the speed is higher than the set changeover speed ($p 50184$), then torque limit 2 is activated in place of torque limit 1.		

p50182[0...n]	Torque limiting torque limit 2 positive / M_lim 2 pos		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-300.00 [\%]	300.00 [\%]	300.00 [\%]
Description:	Sets positive torque limit 2.		
Dependency:	See also: p50180		
Note:	If torque limit changeover is then torque limit 2 is activated	$=1)$ and the speed is highe que limit 1.	e set changeover speed (p50184),

p50183[0...n]	Torque limiting torque limit 2 negative / M_lim 2 neg		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-300.00[\%]$	$300.00[\%]$	$-300.00[\%]$
Description:	Sets negative torque limit 2.		
Dependency:	See also: p50181		

p50184[0...n]	Torque limiting changeover speed / T lim n_chng		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	120.00 [\%]	0.00 [\%]
Description:	Sets the changeover speed for torque limit selection.		
Dependency:	See also: r52166		
Note:	If torque limit changeover is selected ($\mathrm{p} 50694=1$) and the speed (p 52166) is higher than the changeover speed set in p 50184 , then torque limit 2 ($\mathrm{p} 50182, \mathrm{p} 50183$) is activated in place of torque limit 1 ($\mathrm{p} 50180, \mathrm{p} 50181$).		

p50190[0...n]	Cl-loop arm current ctr prectr setpoint smoothing time constant / la prec set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the armature current setpoints at the armature current pre-control input for closed-loop armature current control.		
Note:	The smoothing time constant is used to decouple armature current pre-control from the armature current controller.		
p50191[0...n]	Cl-loop arm current ctr curr controller setp sm time constant / la ctr set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the armature setpoint for closed-loop armature current control. The parameter is set automatically during the "optimization run for pre-control and the current controller for the armature converter" (p50051 = 25).		
Note:	The smoothing time constant is used to decouple armature current pre-control from the armature current controller.		

p50192[0...n]	Armature Alpha W limit control word / A Alpha W lim STW	
DC_CTRL	Can be changed: U, T Calculated: -	Access level: 2
	Data type: Integer16 Dyn. index: DDS, p0180	Function diagram: 6860
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	0 1	0
Description:	Sets the control word for the Alpha W limit on the armature.	
Value:	0 : Alpha W limit $=165^{\circ}$ with pulsating armature current 1: \quad Alpha W limit $=p 50151$	
Note:	If value $=0$:	
	Continuous current: Alpha W limit = parameter p50151	
	Pulsating current: Alpha W limit $=165^{\circ}$	
	If value = 1 :	
	Alpha W limit = parameter p50151	

2.2 List of parameters

p50193	CI: EMF/Ua external signal source / EMF/Ua ext sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6852
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$52287[0]$
Description:	Sets the signal source for EMF actual value or armature voltage actual value for armature current pre-control.		
	If p50162[D] = 2: Armature voltage actual value		
	If $p 50162[D]=3:$ EMF actual value		

p50200[0...n]	Speed controller speed actual value smoothing time constant / \mathbf{n} _ctr \mathbf{n} _act \mathbf{T}		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	$0[\mathrm{~ms}]$
Description:	Sets the smoothing time constant for smoothing the speed actual value on the speed controller.		

p50201[0...n]	Band-stop 1 resonant frequency / Band-st 1 f_n		
DC_CTRL	Can be changed: U, T	Calculated:-	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$1[\mathrm{~Hz}]$	$1[\mathrm{~Hz}]$	
Description:	Sets the resonant frequency for band-stop 1.		
Dependency:	See also: p50202, p50628, r52177		

p50202[0...n]	Band-stop 1 quality / Band-st 1 quality		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the quality for band-stop 1.		
Value:	$\begin{array}{ll} 0: & \text { Quality }=0.5 \\ \text { 1: } & \text { Quality }=1 \\ \text { 2: } & \text { Quality }=2 \\ \text { 3: } & \text { Quality }=3 \end{array}$		
Dependency:	See also: p50201, p50628, r52177		
p50203[0...n]	Band-stop 2 resonant frequency / Band-st 2 f_n		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1 [Hz]	140 [Hz]	1 [Hz]
Description:	Sets the resonant frequency		

Dependency:	See also: p50204, p50629, r52178		
p50204[0...n]	Band-stop 2 quality / Band-st 2 quality		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the quality for band-stop 2.		
Value:	0 : \quad Quality $=0.5$		
	1: \quad Quality = 1		
	2: \quad Quality = 2		
	3: Quality = 3		
Dependency:	See also: p50203, p50629, r52178		
p50205[0...n]	Derivative-action element derivative-action time / D-act el t_d-act		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the derivative-action time for the derivative-action element.		
Dependency:	See also: p50206, p50627, r52168, r52169		
p50206[0...n]	Derivative-action element smoothing time / Der-act el t_DAE		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	100 [ms]	0 [ms]
Description:	Sets the smoothing time for the derivative-action element.		
Dependency:	See also: p50205, p50627, r52168, r52169		
p50207	CI: Lead/lag element signal source / Lead/lag elem S_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52179[0]
Description:	Sets the signal source for the lead/lag element.		
Dependency:	See also: p50208, p50209, r52156		

2.2 List of parameters

p50220[0...n]	Speed controller changeover PI/P speed setpoint threshold / PI/P n_set thresh		
DC_CTRL	Can be changed: U, T	Calculated:	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	200.00 [\%]
Description:	Sets the threshold for the speed setpoint to changeover between PI and P control, so that overshoot-free stopping of the drive with setpoint $=0$ is possible with the controllers enabled.		
Dependency:	See also: p50221, p50222, p50698, r52166		
p50221[0...n]	Speed controller changeover PI/P hysteresis / PI/P hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	2.00 [\%]
Description:	Sets the hysteresis to changeover over between Pl and P control, so that overshoot-free stopping of the drive with setpoint $=0$ is possible with the controllers enabled.		
Dependency:	See also: p50222, p50698, r52166		
p50222[0...n]	Speed controller changeover PI/P speed actual value threshold / PI/P n_act thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	10.00 [\%]	0.00 [\%]
Description:	Sets the threshold for the speed actual value to changeover between Pl and P control, so that overshoot-free stopping of the drive with setpoint $=0$ is possible with the controllers enabled.		
Dependency:	See also: p50221, p50698, r52166		
p50223[0...n]	Speed controller pre-control enable / n_ctr prec ena		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the enable signal for pre-control of the speed controller.		
Value:	0: No enable 1: Enable		
Note:	Dependent upon the setting, Value $=0$: No enable (0%) Value = 1: Enable (r52171)	lues are added to the outpu	eed controller as a torque

2.2 List of parameters

p50224[0...n]	Speed controller integral component configuration / n_ctr I comp conf		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	1
Description:	Sets the response of the integral component on the speed controller.		
Value:	0: Integral component off (absolute P controller)		
	1: Stop integral component from defined tqe/l limit		
	2:3:		

p50225[0...n]	Speed controller adaptation Kp y coordinate 2 / Adapt Kp y2		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01	2000.00	3.00
Description:	Sets the y coordinate for pair of values 2 for adaptation of the P gain (Kp).		
Note:	The value is set automatically during the optimization run for the speed controller (p50051 $=26$).		
	The adaptation of the P gain (Kp) is defined using 2 pairs of values.		
	Pair of values 1:		
	p50556/p50550 (x/y coordinate)		
	Pair of values 2:		
	p50559/p50225 (x/y coordinate)		

p50226[0...n]	Speed controller adaptation Tn y coordinate 2 / Adapt Tn y2		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.010 [s]	10.000 [s]	0.650 [s]
Description:	Sets the y coordinate for pair of values 2 for adaptation of the integral time (Tn).		
Note:	The value is set automatically during the optimization run for the speed controller (p50051 = 26).		
	The adaptation of the integral time (Tn) is defined using 2 pairs of values.		
	Pair of values 1:		
	p50557/p50551 (x/y coordinate)		
	Pair of values 2:		
	p50560/p50226 (x/y coordinate)		

p50227[0...n]	Speed controller adaptation droop y coordinate 2 / Adapt droop y2		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000	10.000	0.000

Description: Sets the y coordinate for pair of values 2 for adaptation of the droop.

Notice:	- For the droop, generally values up to 10% are practical (p50227 $=0.000 \ldots 0.100$). Under certain circumstances, higher values can result in an unstable response of the speed controller.
	- The droop is entered as absolute factor without any dimensions and it is especially important to note that it is not a percentage.
	Example:
	Set droop $=5 \%$--> p50227 $=0.05$
Note:	The adaptation of the droop is defined using 2 pairs of values.
	Pair of values 1:
	p50558/p50552 (x/y coordinate)
	Pair of values 2:
	p50561/p50227 (x/y coordinate)
p50228[0...n]	Speed controller speed setpoint smoothing time constant / n_ctr n_set T
DC_CTRL	Can be changed: U, T Calculated: - Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6810
	P group: - Unit group: - Unit selection: -
	Not for motor type: Scaling: - Expert list: 1
	Min: Max: Factory setting:
	0 [ms] 10000 [ms] 0 [ms]
Description:	Sets the smoothing time constant for smoothing the speed setpoint on the speed controller.
Recommendation:	If the ramp-function generator is being used, setting lower values may be sensible.
p50229[0...n]	Master/slave drive ctrl speed controller tracking l component / M/S drve ctr track
DC_CTRL	Can be changed: T Calculated: - Access level: 2
	Data type: Integer16 Dyn. index: DDS, p0180 Function diagram: 6810
	P group: - Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min: Max: Factory setting:
	0 1 0
Description:	Setting for the control of the integral component tracking on the speed controller.
Value:	0 : \quad Tracking ON 1: Tracking OFF
Dependency:	See also: p50084, p50687
Note:	p50229 = 0:
	Tracking of the integral component on the speed controller activated. The speed actual value is used as speed setpoint and the integral component of the speed controller is tracked so that r52148 $=$ r52140 results. p50229 = 1:
	Tracking of the integral component on the speed controller de-activated.
p50230[0...n]	Set speed controller integral component duration / Set I_comp dur
DC_CTRL	Can be changed: U, T Calculated: - Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6815
	P group: - Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min: Max: Factory setting:
	0 [ms] 10000 [ms] 0 [ms]
Description:	Sets the duration for setting the integral component on the speed controller.
	Following a positive edge on binector input p50695, the integral component of the speed controller is set to the value of the signal source set at connector input p50631. If $\mathrm{p} 50230=0$:
	The integral component of the speed controller is set to the instantaneous value of the signal present at connector input p50631.
	If p50230 > 0:
	The integral component of the speed controller is tracked continuously during the time set to the value of the signal present at connector input p50631.

2.2 List of parameters

p50231[0...n]	Speed controller adaptation selection / n_ctrl Adapt sel		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Selects the calculation of the Kp adaptation for the speed controller. If $p 50230=0$.		
	$\mathrm{Kp}=\mathrm{p} 50553$ * 50225		
	For p50230 = 1, the following applies:		
	Kp is calculated based on the parameterized characteristic.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Basic } \\ \text { 1: } & \text { Standard }\end{array}$		
Dependency:	See also: p50225, p50553		
$\overline{p 50234[0 \ldots n]}$	Speed controller proportional component enable / n_ctr P_comp ena		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description: Value:	Setting for enabling the proportional component for the speed controller.		
	0: Without proportional component1: With proportional component		
p50236	Speed controller optimization speed controller dynamic response / n_ctr_opt dyn		
DC_CTRL	Can be changed: T Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram: 2660
	\mathbf{P} group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	10 [\%]	100 [\%]	75 [\%]
Description: Recommendation:	Sets the dynamic response of the speed control circuit as the default for the speed controller optimization run.		
	On drives with gear backlash, for example, optimization should be started commencing with low dynamic response values at and above 10%.		
	Values of up to 100% can be selected for drives with the highest demands placed on synchronous operation and dynamic performance.		
Note:	If this value is changed, the optimization run for the speed controller will have to be performed again before the new value is applied.		
$\overline{p 50237[0 \ldots n]}$	Speed controller reference model natural frequency / n_ctrl ref_m fn		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [Hz]	150.0 [Hz]	0.0 [Hz]
Description: Recommendation:	Sets the natural frequency of a PT2 element for the reference model of the speed controller. The reference model is correctly set when the characteristics of r52154 (reference model output) and r52167 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		

Dependency: | In conjunction with p50238 and p50239, the characteristics (in time) of the P-controlled speed control loop can be |
| :--- |
| emulated. |
| See also: p50238, p50239 |

p50238[0...n]	Speed controller reference model damping / n_ctrl ref_m d		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000	5.000	1.000
Description:	Sets the damping of a PT2 element for the reference model of the speed controller.		
Recommendation:	The reference model is correctly set when the characteristics of r52154 (reference model output) and r52167 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	In conjunction with p50237 and p50239, the characteristics (in time) of the P-controlled speed control loop can be emulated.		
See also: p50237, p50239			

p50239[0...n]	Speed controller reference model dead time / n_ctr ref_m t_dead		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1

p50240[0...n]	Speed controller reference model activation / n_ctrl ref_m act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate the influence of the reference model for the speed controller.		
Value:	$0: \quad$ Reference model not effective		
	$1: \quad$ Reference model effective		

p50241	CI: Speed controller reference model signal source / n_ctrl ref_m sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52155[0]
Description:	Sets the signal source for the input signal of the reference model for the speed controller.		

2.2 List of parameters

Dependency:	See also: p50240		
p50250[0...n]	Field converter Alpha	ld Alpha G lim	
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$\left.0{ }^{\circ}{ }^{\circ}\right]$	180 [$\left.{ }^{\circ}\right]$	$0{ }^{[1]}$
Description:	Sets the rectifier stability limit for the firing angle of the field converter. See also: r53191		
Dependency:			
Note:	The status of the Alpha G limit is shown in r53191.1.		
$\overline{\mathrm{p} 50251[0 \ldots \mathrm{n}]}$ DC_CTRL	Field converter Alpha W limit / Field Alpha W lim		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [${ }^{\circ}$]	180 [$\left.{ }^{\circ}\right]$	180 [${ }^{\circ}$
Description:	Sets the inverter stability limit for the firing angle of the field converter.		
Dependency:	See also: r53191		
Note:	The status of the Alpha W limit is shown in r53191.0.		
p50252[0...n]	Field average number of line periods / Field line per no.		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	20	20
Description:	Setting of the number of line periods for line frequency correction in the field circuit.		
Note:	The internal line synchronization for the field firing pulses derived from the power terminals (line infeed) is averaged over the number of line periods set in this parameter.		
	In the case of operation on "weak" power supplies with unstable frequencies (on a diesel-driven generator, for example (isolated operation)), this parameter must be set lower than for operation on "constant V/Hz" systems to achieve a higher frequency correction speed.		
p50253[0...n]	Field pre-control activation / Field prec act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets activation/de-activation for field pre-control.		
Value:	0: Deactivated 1: Activated		
Note:	If value $=0$:		
	The field pre-control output is -100\% (corresponds to 180°).		

p50254[0...n]	Field current controller integral component activation / I_field_ctr I comp		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets activation/de-activation of the integral component on the field current controller.		
Value:	0: Deactivated 1: Activated		
Dependency:	See also: p50255, p50256		
Note:	If value $=0$:		
	The integral component of the field current controller is kept constantly at zero (i.e. the field current controller functions solely as a proportional controller).		
p50255[0...n]	Field current controller P gain / I_field ctr Kp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01	100.00	5.00
Description:	Sets the P gain of the field current controller.		
Dependency:	See also: p50256		
Note:	The parameter is set automatically during the optimization run for closed-loop field current control (p50051 = 24).		
p50256[0...n]	Field current controller integral time / I_field ctr Tn		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.001 [s]	10.000 [s]	0.200 [s]
Description:	Sets the integral time of the field current controller.		
Dependency:	See also: p50255		
Note:	The parameter is set automatically during the optimization run for closed-loop field current control (p50051 = 24).		
p50257[0...n]	Closed-loop field current control standstill field / If_ctr stst_field		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	0.0 [\%]
Description:	Sets the standstill field for closed-loop field current control.		
Dependency:	See also: p50692		
Note:	The field current is reduced to this value when the "Automatic field current reduction" function is parameterized ($\mathrm{p} 50082=2$) or in the case of signal-driven selection of the "Standstill excitation" function (p 50692).		

2.2 List of parameters

p50258[0...n]	CI-loop field current control field current reduction delay time / If_ctr I_red t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\mathrm{~s}]$	$60.0[\mathrm{~s}]$	$10.0[\mathrm{~s}]$
Description:	Sets the delay time for automatic field current reduction.		

p50260[0...n]	Field current pre-control setpoint smoothing time constant / Field_prec set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the setpoint for field current pre-control.		
Dependency:	See also: p50261		
Note:	This smoothing enables field-current pre-control to be decoupled from the field current controller.		
p50261[0...n]	Field current controller setpoint smoothing time constant / I_field_ctr set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the setpoint for the field current controller.		
Dependency:	See also: p50260		
Note:	This smoothing enables field-current pre-control to be decoupled from the field current controller.		
p50263[0...n]	Selection of motor flux input variable / Mot fl input sel		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	1
Description:	Selection of the input variable for determining the motor flux.		
Value:	$0:$ Field current controlle 1: EMF pre-control outp $2:$ Field current controlle	$\begin{aligned} & \text { r52265) } \\ & 2268) \\ & 68) \end{aligned}$	

2.2 List of parameters

p50267[0...n]	CI: Field current controller Kp factor signal source / If_ctrKpFact sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for a factor of the proportional gain Kp for the field current controller. See also: p50255		
Dependency:			
p50269	Freeze field current setpoint operating mode / If freeze op_mode		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	2
Description:	Sets the operating mode for the "Freeze field current setpoint" function.		
Value:	$0:$ Never freeze 1: Freeze for tachometer breakage $2:$ Freeze for every fault		
Notice:	For settings 0 and 1, when a fault message occurs, the EMF control remains active.		
	Even if the speed sensing is faulted or if the contactor on the DC side is open.		
	In these cases, the EMF controller cannot prevent overvoltages occurring at the motor.		
	As a consequence, measures must be ensured on the system side that ensure that the motor is not damaged by overvoltages.		
p50272	Field current reduction activation / I_field_red act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets activation/de-activation of automatic field current reduction if the EMF is too high for braking operation.		
Value:	0: Fault		
	1: Alarm and field reduction		
Dependency:	See also: F60043, A60143		
Note:	If value $=0$:		
	If the EMF is too high for braking operation, a message is output accordingly.		
p50273[0...n]	EMF controller pre-control activ	tion / EMF ctr prec ac	
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets activation/de-activation for EMF controller pre-control.		
Value:	0: Deactivated 1: Activated		

2.2 List of parameters

p50280[0...n]	EMF controller pre-control setpoint smoothing time constant / EMF prec set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the setpoint for EMF controller pre-control. See also: p50283		
Dependency:			
Note:	This smoothing enables the EMF controller pre-control to be decoupled from the EMF controller.		
p50281[0...n]	EMF controller setpoint smoothing time constant / EMF ctr set T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the EMF controller's setpoint.		
Dependency:	See also: p50282		
Note:	This smoothing enables the EMF controller pre-control to be decoupled from the EMF controller.		
p50282[0...n]	EMF controller actual value smoothing time constant / EMF ctr act T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the EMF controller's actual value.		
Dependency:			
Note:	This smoothing enables the EMF controller pre-control to be decoupled from the EMF controller.		
p50283[0...n]	EMF controller pre-control actual value smoothing time constant / EMF prec act T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the actual value for EMF controller pre-control.		
Dependency:	See also: p50280		
Note:	This smoothing enables the EMF controller pre-control to be decoupled from the EMF controller.		

p50284[0...n]	EMF controller proportional component activation / EMF ctr P comp act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets activation/de-activation of the proportional component on the EMF controller.		
Value:	0: Deactivated		
Dependency: Note:	See also: p50275, p50276		
	If value $=0$:		
	The proportional component of the EMF controller is kept constantly at zero (i.e. the EMF controller functions solely as an integral controller).		
p50285[0...n] EMF setpoint reduction line voltage smooth			
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6895
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	10.00 [s]	0.00 [s]
Description:	Sets the smoothing time for the line voltage for the EMF setpoint reduction.		
Dependency:	See also: p50286, p50287, p50288, p50289, r52294		
p50286[0...n]	EMF setpoint reduction line voltage upper limit / EMF set line upper		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6895
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	100.0 [\%]	150.0 [\%]	110.0 [\%]
Description:	Sets the upper limit for the line voltage for EMF setpoint reduction.		
Dependency:	See also: p50287, p50288, p50289, r52294		
p50287[0...n]	EMF setpoint reduction line voltage lower limit / EMF set line lower		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6895
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	0.0 [\%]
Description:	Sets the lower limit for the line voltage for the EMF setpoint reduction.		
Dependency:	See also: p50286, p50288, p50289, r52294		

p50288[0...n]	EMF setpoint reduction evaluation factor / EMF set eval_fact
DC_CTRL	Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6895 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $0.0[\%]$ $200.0[\%]$ $100.0[\%]$
Description: Dependency:	Sets the evaluation factor for the EMF setpoint reduction. See also: p50286, p50287, p50289, r52294
$\overline{p 50289[0 \ldots r}$ DC_CTRL	BI: EMF setpoint reduction activation signal source / EMF set act sig s Can be changed: T Calculated: - Access level: 2 Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 6895 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: - - 0
Description: Dependency:	Sets the signal source to activate the EMF setpoint reduction. See also: p50285, p50286, p50287, p50288, r52294
$\begin{aligned} & \text { p50295[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Transition rounding operating mode / RFG rounding mode
Description: Value:	Sets the response to setpoint inversion on the ramp-function generator. 0 : Hard setpoint change 1: Soft setpoint change
Note:	If $\mathrm{p} 50295=0$: In the event of setpoint inversion during ramping up, ramp-up is aborted and ramp-down initial rounding commences immediately, and vice versa. As the setpoint is not increased (decreased) any further, the signal at the ramp-function generator output has a breakpoint (in other words, there is a step change in the acceleration rate). If $\mathrm{p} 50295=1$: In the event of setpoint inversion during ramping up, ramp-up is slowly switched over to ramp-down, and vice versa. The setpoint increases/decreases further. There is no breakpoint in the signal at the ramp-function generator output (in other words, there is no step change in the acceleration rate).

p50296[0...n]	RFG quick stop (OFF3) ramp-down time / RFG OFF3 t_ramp-dn		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~s}]$	$6.00[\mathrm{~s}]$	
Description:	Sets the ramp-down time for quick stop (OFF3) on the ramp-function generator.		
	When the "Quick stop" command is sent, the drive is decelerated to 0 speed at the current limit.		
	However, if this is not permissible or desirable for mechanical reasons, a value >0 must be set in this parameter. The		
	drive will then decelerate along the down ramp set here.		

2.2 List of parameters

Note: \quad If $\mathrm{p} 50302=0$:

- The parameter sets are not changed over and ramp-function generator setting 1 is always used (or the setting made using p50637, p50638).
If p50302 = 1:
- Once the setpoint has been reached for the first time, the ramp-function generator parameter set is changed over from 1 to 0 .
If p50302 = 2:
- Once the setpoint has been reached for the first time, the ramp-function generator parameter set is changed over from 1 to 2.
If p50302 = 3:
- Once the setpoint has been reached for the first time, the ramp-function generator parameter set is changed over from 1 to 3 .

p50303[0...n]	RFG ramp-up time 1 / RFG t_ramp-up 1	
DC_CTRL	Can be changed: C2(1), U, T Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 3150
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [s] 650.00 [s]	10.00 [s]
Description:	Sets the ramp-up time for ramp-function generator parameter set 1.	
Note:	The parameter is effective in the following cases:	
	- No quick stop (OFF3) active	
	- No other ramp-function generator parameter set selected	
	- No selection via ramp-up integrator	

p50304[0...n]	RFG ramp-down time 1 / RFG t_ramp-dn 1		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~s}]$	$650.00[\mathrm{~s}]$	$10.00[\mathrm{~s}]$
Description:	Sets the ramp-down time for ramp-function generator parameter set 1.		
Note:	The parameter is effective in the following cases:		
	- No quick stop (OFF3) active		
	- No other ramp-function generator parameter set selected		
	- No selection via ramp-up integrator		

p50305[0...n]	RFG initial rounding 1 / RFG init rndg 1	
DC_CTRL	Can be changed: C2(1), U, T Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 3150
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [s] 100.00 [s]	0.00 [s]
Description:	Sets the initial rounding for ramp-function generator parameter set 1.	
Dependency:	See also: p50295	
Note:	The parameter is effective in the following cases:	
	- No quick stop (OFF3) active	
	- No other ramp-function generator parameter set selected	
	- No selection via ramp-up integrator	

2.2 List of parameters

p50311[0...n]	Ramp-function generator ramp-up time 3/RFG t_ramp-up 3		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~s}]$	$650.00[\mathrm{~s}]$	$10.00[\mathrm{~s}]$
Description:	Sets the ramp-up time for ramp-function generator parameter set 3.		

p50312[0...n]	Ramp-function generator ramp-down time 3 / RFG t_ramp-down 3		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	10.00 [s]
Description:	Sets the ramp-down time for ramp-function generator parameter set 3 .		

p50313[0...n]	Ramp-function generator initial rounding 3 / RFG init rndg 3		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	0.00 [s]
Description:	Sets the initial rounding for ramp-function generator parameter set 3 .See also: p50295		
Dependency:			
p50314[0...n]	Ramp-function generator final rounding 3 / RFG fin rndg 3		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	0.00 [s]
Description:	Sets the final rounding for ramp-function generator parameter set 3 .		
Dependency:	See also: p50295		

r50315[0...3] RFG effective times / RFG t effective
DC_CTRL

Description
Index:
Displays the effective times on the ramp-function generator.
[0] = Ramp-up time
[1] = Ramp-down time
[2] = Initial rounding
[3] = Final rounding

r50316	Ramp-function generator state / RFG state				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 3152	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the state on the ramp-function generator.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Ramp-function generator enable	ON	OFF	3152
		Ramp-function generator start	ON	OFF	3152
	02	Setpoint enable \& OFF1	ON	OFF	3152
	03	Set ramp-function generator	ON	OFF	3152
		Track ramp-function generator	ON	OFF	3152
		Bypass ramp-function generator	ON	OFF	3152
		Ramp-down	ON	OFF	3152
	15	Ramp-up	ON	OFF	3152
p50317[0...n]	RFG tracking enable / RFG track ena				
DC_CTRL	Can be changed: T		Calculated: -	Access level: 2	
	Data type: Integer16		Dyn. index: DDS, p0180	Function diagram: 3152	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	0		1	0	
Description:	Sets the enable for ramp-function generator tracking.				
Value:	$\begin{array}{ll}\text { 0: } & \text { Inhibit } \\ \text { 1: } & \\ \text { Enable }\end{array}$				
Dependency:	RFG tracking has to be controlled by setting a 1 signal at binector input p50647. See also: p50647				
p50318[0...n]	RFG setting value selection / RFG set val sel				
DC_CTRL	Can be changed: T		Calculated: -	Access level: 2	
	Data type: Integer16		Dyn. index: DDS, p0180	Function diagram: 3152	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	0		2	0	
Description: Selection of the setting value for the ram			Selection of the setting value for the ramp-function generator output for OFF1.		
Value:	$0:$ Ramp-function generator output not set 1: Set RFG output to setting value 1 2: Set ramp-function generator output to setting value 2				
Recommendation:	During "shutdown", limiting is not applied to the ramp-function generator output. As limiting the ramp-function generator output during "shutdown" does not generate a temporary increase in speed, p50318 should be set to 1 or 2.				
Dependency:	See also: p50650				
Note:	If p50318 = 0:				
	The ramp-function generator output is not set.				
	The value supplied via connector input $p 50650[0]$ is applied as the setting value. If p50318 = 2:				
	The value supplied via connector input p50650[1] is accepted as the setting value.				

p50319[0...n]	RFG setpoint enable delay time / RFG set_ena i_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3151
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~s}]$	$0.00[\mathrm{~s}]$	
Description:	Sets the delay time for enabling the setpoint on the ramp-function generator.		
	In the case of a setpoint enable, the setpoint is not injected on the ramp-function generator until this time has		
	elapsed.		

Description: Sets the signal source for the variable factor for the main setpoint.
Dependency: See also: p50320
p50323[0...n] CI: Setpoint processing signal source for additional setpoint factor / Add set fac sig s

Description: Sets the signal source for the variable factor for the additional setpoint.
Dependency: See also: p50321

p50330[0...n]	RFG time unit / RFG time unit		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 3150, 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the unit for the ramp-function generator times.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Second } \\ \text { 1: } & \text { Minute }\end{array}$		
Note:	This time unit is applied to the following p50296, p50297, p50298: - Ramp-down time 4, initial rounding 4, fi p50303, p50304, p50305, p50306: - Ramp-up time 1, ramp-down time 1, ini p50307, p50308, p50309, p50310: - Ramp-up time 2, ramp-down time 2, ini p50311, p50312, p50313, p50314: - Ramp-up time 3, ramp-down time 3, ini p50542: - RFG dy/dt time difference	meters: rounding 4 ounding 1, final rounding 1 ounding 2 , final rounding 2 rounding 3 , final rounding 3	
p50331 DC_CTRL	Braking distance Encoder Data Set selection / Br dist EDS sel		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index:	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	15	0
Description:	Sets the Encoder Data Set (EDS) used to	Iculate the braking distance	r52048).
p50351[0...n]	Line undervoltage threshold / Line V_under thr		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-97 [\%]	0 [\%]	-20 [\%]
Description:	Sets the threshold for detecting line unde	tage for armature or field.	
Dependency:	See also: F60006		
Note:	If the line voltage deviates by a higher value and does not fall back within the tolerance limits by the end of the restart time set in p50086, fault F60006 is triggered.		
	During the time of excess deviation, the drive is kept in operating state "04".		
	For "optimization run for CCP" ($\mathrm{p} 50051=30$) the parameter is automatically set to -20% if the actual value is less than - 20%.		

p50352[0...n]	Line overvoltage threshold / Line V_over thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\%]$	$20[\%]$	
Description:	Sets the threshold for detecting line undervoltage for armature or field.		
Dependency:	See also: F60007		
Note:	If the line voltage deviates by a higher value and return within the tolerance limits by the end of the restart time set in		
	p50086, fault F60007 is triggered.		
	During the time of excess deviation, the drive is kept in operating state "o4".		

p50353[0...n]	Line monitoring phase failure threshold / Ph_fail thresh		
DC_CTRL	Can be changed: U, T	Calculated:	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	3 [\%]	100 [\%]	40 [\%]
Description:	Sets the threshold for phase failure detection in the context of line monitoring.		
Note:	If the line voltage in operating states $<=04$ undershoots the setting value and does not adopt an "OK" state within the restart time set in p50086, fault F60004 is triggered.		
	During the time that the threshold value is undershot and the voltage stabilization time which follows (set in p50090), the drive is kept in operating state o4.		
	If the drive is switched on in threshold until the time set in	4 , the voltages of all phases psed.	checked for compliance with this

p50362[0...n]	Line monitoring overvoltage delay time / Line V_over t_del		
DC_CTRL	Can be changed: U, T	Calculated:	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	60000 [ms]	0 [ms]
Description:	Sets the delay time for overvoltage monitoring in the context of line monitoring.		
Dependency:	See also: F60007		
Note:	The triggering of fault F60007 (line overvoltage) is delayed by the time set at this parameter.		
	Firing pulses are emitted while this time is running. If a time has been set for automatic restart (p50086), it will not begin until the time set here has elapsed.		

p50363[0...n]	Line frequency minimum threshold /f_line min thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max:	Expert list: 1
	Min:	$60.0[\mathrm{~Hz}]$	Factory setting:
	$23.0[\mathrm{~Hz}]$	$45.0[\mathrm{~Hz}]$	
Description:	Sets the threshold for detecting that the line frequency has been undershot.		
Dependency:	See also: F60008		
Note:	If the line frequency undershoots the value set here and does not rise back above it within the restart time set in		
	p50086, fault F60008 is triggered.		
	All the while the line frequency remains lower than the value set here, the drive is kept in operating state "o4".		

p50364[0...n]	Line frequency maximum threshold / f_line max thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6954
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	50.0 [Hz]	500.0 [Hz]	65.0 [Hz]
Description:	Sets the threshold for detecting that the line frequency has been overshot.		
Dependency:	See also: F60009		
Caution:	SINAMICS DCM DC converters are suitable for line frequencies from 50 Hz up to 60 Hz (rated value). Restricted operation in the extended frequency range (20 Hz to 500 Hz) is possible on request.		
	If a SINAMICS DCM DC converter is continuously operated in the extended frequency range, then it would be damaged or destroyed as a result of overheating.		
	The SINAMICS DCM Control Module is suitable for line frequencies from 20 Hz up to 500 Hz if it is operated with a power unit designed for this frequency range.		
Note:	If the line frequency overshoots the value set here and does not fall back below it within the restart time set in p50086, fault F60009 is triggered.		
	All the while the line frequency remains higher than the value set here, the drive is kept in operating state "04".		

p50366[0...1]	CI: Current limitation signal source for speed and I2t monitoring / la lim n l2t sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52129[0]
			[1] 52130[0]
Description: Note:	Sets the signal source for speed-dependent current limitation and current limitation from $12 t$ monitoring. [0] = Speed-dependent current limitation		
p50370[0...n]	Messages for speed less than minimum speed threshold / \mathbf{n} < \mathbf{n} _min thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	0.50 [\%]
Description:	Sets the threshold for the "Speed less then minimum speed" message.		
Dependency:	See also: p50371, p50593, r53025		
Note:	The "Speed less than minimum speed" message is available as follows:		
	- r53025.6 (not inverted)		
	- r53025.7 (inverted)		
p50371[0...n]	Messages for speed less than minimum speed hysteresis / n < n_min hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	0.50 [\%]
Description:	Sets the hysteresis for the "Speed less then minimum speed" message.		
	The message is triggered when the threshold is undershot.		
	Once the value rises above the threshold plus the hysteresis, the message is withdrawn.		
Dependency:	See also: p50370, p50593, r53025		
Note:	The "Speed less than minimum speed reached" message is available as follows:		
	- r53025.6 (not inverted)		
	- r53025.7 (inverted)		

p50372[0...n]	Messages speed positive hysteresis / Msg n > O hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\%]$	10.00 [\%]	0.10 [\%]
Description:	Sets the hysteresis for the "Speed positive" message.		
	This parameter acts on the "Speed setpoint positive" message as well as on the "Speed actual value positive"		
	message.		
	See also: p50594, p50598, r53025		

Note: \quad| The "Speed positive" message is available as follows: | |
| :--- | :--- |
| Setpoint: | |
| | $-r 53025.8$ (not inverted) |
| | $-r 53025.9$ (inverted) |
| | Actual value: |
| | $-r 53025.12$ (not inverted) |
| | $-r 53025.13$ (inverted) |

p50373[0...n]	Messages for reference speed threshold / Ref_speed thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the threshold for the "Reference speed reached" message.		
Dependency:	See also: p50374, p50375, p50592, r53025		
Note:	The "Reference speed reached" message is available as follows:		
	- r53025.4 (not inverted)		
	- r53025.5 (inverted)		

p50374[0...n]	Messages for reference speed hysteresis / Ref_speed hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	3.00 [\%]
Description:	Sets the hysteresis for the "Reference speed reached" message The message is triggered when the threshold is overshot		
	Once the value falls below the threshold minus the hysteresis, the message is withdrawn.		
Dependency:	See also: p50373, p50375, p50592, r53025		
p50375[0...n]	Messages for reference speed OFF delay / Ref_speed t_OFF		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [s]	100.0 [s]	3.0 [s]
Description:	Sets the OFF delay for the "Reference speed reached" message.		
Dependency:	See also: p50373, p50374, p50592, r53025		
p50376[0...n]	Messages for setpoint/actual value deviation 2 threshold / Set/act 2 thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	3.00 [\%]
Description:	Sets the threshold for the "Setpoint/actual value deviation 2 reached" message. See also: p50377, p50378, p50596, p50597, r53025		
Dependency:			

Note:	The "Setpoint/actual value deviation 2 reached" message is available as follows: - r53025.2 (not inverted) - r53025.3 (inverted)
p50377[0...n]	Messages for setpoint/actual value deviation 2 hysteresis / Set/act 2 hyst
DC_CTRL	Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 8020 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $0.00[\%]$ $200.00[\%]$ $1.00[\%]$
Description: Dependency:	Sets the hysteresis for the "Setpoint/actual value deviation 2 reached" message. The message is triggered when the threshold is overshot. Once the value falls below the threshold minus the hysteresis, the message is withdrawn. See also: p50376, p50378, p50596, p50597, r53025
$\begin{aligned} & \hline \mathbf{p 5 0 3 7 8 [0 . . . n] ~} \\ & \text { DC_CTRL } \end{aligned}$	Messages for setpoint/actual value deviation 2 OFF delay / Set/act 2 t_OFF
Description: Dependency:	Sets the OFF delay for the "Setpoint/actual value deviation 2 reached" message. See also: p50376, p50377, p50596, p50597, r53025
p50380[0...n] DC_CTRL	Messages for overspeed threshold positive direction of rotation / Msg n_over pos
Description: Dependency: Note:	Sets the threshold for the maximum speed in positive direction of rotation. See also: p50381, p50595, r53025 See also: F60038 The "Overspeed" message is available as follows: - F60038 - r53025.10 (not inverted) - r53025.11 (inverted)
p50381[0...n] DC_CTRL	Messages for overspeed threshold negative direction of rotation / Msg n_over neg
Description: Dependency:	Sets the threshold for the maximum speed in negative direction of rotation. See also: p50380, p50595, r53025 See also: F60038

2.2 List of parameters

Note: \quad| The "Overspeed" message is available as follows: | |
| :--- | :--- |
| | - F60038 |
| | -r 53025.10 (not inverted) |
| | -r 53025.11 (inverted) |

p50388[0...n]	Messages for setpoint-actual value deviation 1 threshold / Set/act 1 thresh	
DC_CTRL	Can be changed: U, T Calculated: -	Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 8020
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: PERCENT	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [\%] 200.00 [\%]	3.00 [\%]
Description:	Sets the threshold for the "Setpoint/actual value deviation 1 reached" message.	
Dependency:	See also: p50389, p50390, p50590, p50591, r53025	
	See also: F60031	
Note:	The "Setpoint/actual value deviation 1 reached" message is available as follows:- F60031	
	- r53025.0 (not inverted)	
	- r53025.1 (inverted)	

p50389[0...n]	Messages for setpoint-actual value deviation 1 hysteresis / Set/act 1 hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\%]$	1.00 [\%]	
Description:	Sets the hysteresis for the "Setpoint/actual value deviation 1 reached" signal.		
	The message is triggered when the threshold is overshot.		
Dependency:	Once the value falls below the threshold minus the hysteresis, the message is withdrawn.		
	See also: p50388, p50390, p50590, p50591, r53025		
	See also: F60031		

p50390[0...n]	Messages for setpoint-actual value deviation 1 OFF delay / Set/act t_OFF		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.0[\mathrm{~s}]$	$100.0[\mathrm{~s}]$	$3.0[\mathrm{~s}]$
Description:	Sets the OFF delay for the "Setpoint/actual value deviation 1 reached" signal.		
Dependency:	See also: p50388, p50389, p50590, p50591, r53025		
	See also: F60031		

p50394[0...n]	Messages for field current threshold minimum threshold / Msg If min thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\%]$	$300.00[\%]$	$3.00[\%]$
Description:	Sets the threshold for the "Field current threshold minimum" message.		
Dependency:	See also: p50395, r53026		

Note:	This threshold also affects the phase logic execution in the context of the Direction reversal by field reversal and
Braking by field reversal functions.	
The "Field current threshold minimum" message is displayed via r53026.0.	

p50395[0...n]	Messages for field current threshold minimum hysteresis / Msg If min hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	1.00 [\%]
Description:	Sets the hysteresis for the "Field current threshold minimum" message. The message is triggered when the threshold is undershot.		
	Once the value rises above the threshold plus the hysteresis, the message is withdrawn.		
Dependency:	See also: r53026		
Note:	The "Field current threshold minimum" message is displayed via r53026.0.		
p50396[0...n]	Field current monitoring setpoint factor / If_mon set_fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	1 [\%]	100 [\%]	50 [\%]
Description:	Sets the factor for the setpoint in the context of field current monitoring.		
Dependency:	See also: p50265, p50397		
	See also: F60005		
p50397[0...n]	Field current monitoring fault delay time / If_mon F t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.02 [s]	60.00 [s]	0.50 [s]
Description:	Sets the delay time for triggering fault F60005 in the context of field current monitoring.		
Dependency:	See also: p50265, p50396		
	See also: F60005		
p50398[0...n]	Messages for field current actual value less than setpoint fact / Msg lf<set fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the factor for the setpoint for the "Field current actual value less than setpoint" message.		
Dependency:	See also: p50399, r53026		
Note:	This threshold also affects the phase logic execution in the context of the Direction reversal by field reversal and Braking by field reversal functions.		

2.2 List of parameters

p50399[0...n]	Messages for field current actual value less than setpoint hyst / Msg If<set hyst		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	1.00 [\%]
Description:	Sets the hysteresis for the "Field current actual value less than setpoint" message. The message is triggered when the threshold is undershot (setpoint x factor).		
Dependency:	See also: p50398, r53026 The "Field current actual value less than setpoint" message is displayed via r53026.1.		
Note:			
p50401[0...n]	Fixed value 1 / Fix val 1		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets fixed value 1.		
Dependency:	See also: r52401		
Note:	This value can be interconnected via connector output r52401.		
p50402[0...n]	Fixed value 2 / Fix val 2		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets fixed value 2.		
Dependency:	See also: r52402		
Note:	This value can be interconnected via connector output r52402.		
p50403[0...n]	Fixed value 3 / Fix val 3		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets fixed value 3.		
Dependency:	See also: r52403		
Note:	This value can be interconnected via connector output r52403.		

	Fixed value 4 / Fix val 4	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-200.00[\%]$ 200.00 [\%]	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 4. See also: r52404 This value can be interconnected via connector output r52404.	
$\begin{aligned} & \hline \mathbf{p 5 0 4 0 5 [0 . . . n]} \\ & \text { DC_CTRL } \end{aligned}$	Fixed value 5 / Fix val 5	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: 0.00 [\%]
Description: Dependency: Note:	Sets fixed value 5. See also: r52405 This value can be interconnected via connector output r52405.	
$\begin{aligned} & \hline \mathbf{p 5 0 4 0 6 [0 . . . n]} \\ & \text { DC_CTRL } \end{aligned}$	Fixed value 6 / Fix val 6	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 6. See also: r52406 This value can be interconnected via connector output r52406.	
p50407[0...n]	Fixed value 7 / Fix val 7	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-200.00[\%]$ 200.00 [\%]	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0.00 [\%]
Description: Dependency: Note:	Sets fixed value 7. See also: r52407 This value can be interconnected via connector output r52407.	

2.2 List of parameters

	Fixed value 8 / Fix val 8	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-200.00[\%]$ 200.00 [\%]	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 8. See also: r52408 This value can be interconnected via connector output r52408.	
$\begin{aligned} & \text { p50409[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Fixed value 9 / Fix val 9	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 9. See also: r52409 This value can be interconnected via connector output r52409.	
$\begin{aligned} & \hline \mathbf{p 5 0 4 1 0 [0 . . . n]} \\ & \text { DC_CTRL } \end{aligned}$	Fixed value 10 / Fix val 10	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 10. See also: r52410 This value can be interconnected via connector output r52410.	
p50411[0...n]	Fixed value 11 / Fix val 11	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-200.00[\%]$ $200.00[\%]$	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0.00 [\%]
Description: Dependency: Note:	Sets fixed value 11. See also: r52411 This value can be interconnected via connector output r52411.	

	Fixed value 12 / Fix val 12	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-340.28235 E 36[\%]$ $340.28235 E 36[\%]$	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 12. See also: r52412 This value can be interconnected via connector output r52412.	
$\begin{aligned} & \hline \text { p50413[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Fixed value 13 / Fix val 13	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 13. See also: r52413 This value can be interconnected via connector output r52413.	
p50414[0...n] DC_CTRL	Fixed value 14 / Fix val 14	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: $0.00 \text { [\%] }$
Description: Dependency: Note:	Sets fixed value 14. See also: r52414 This value can be interconnected via connector output r52414.	
p50415[0...n]	Fixed value 15 / Fix val 15	
DC_CTRL	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P group: - Unit group: - Not for motor type: - Scaling: PERCENT Min: Max: $-340.28235 E 36[\%]$ $340.28235 E 36[\%]$	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0.00 [\%]
Description: Dependency: Note:	Sets fixed value 15. See also: r52415 This value can be interconnected via connector output r52415.	

2.2 List of parameters

p50416[0...n]	Fixed value 16 / Fix val 16		
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: -340.28235E36 [\%]	Calculated: Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: 340.28235E36 [\%]	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0.00 [\%]
Description: Dependency: Note:	Sets fixed value 16. See also: r52416 This value can be interconnected va	tor output r52416.	
$\overline{p 50421[0 \ldots n]}$ DC_CTRL	Fixed bit 0 / Fixed bit 0 Can be changed: U, T Data type: Integer16 P group: Not for motor type: - Min: 0	Calculated: Dyn. index: DDS, p0180 Unit group: Scaling: Max: 1	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0
Description: Value: Dependency: Note:	Sets the signal level for fixed bit 0 . 0 : Low 1: High See also: r53230 This signal can be interconnected	output r53230.0.	
$\begin{aligned} & \hline \text { p50422[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Fixed bit 1 / Fixed bit 1 Can be changed: U, T Data type: Integer16 P group: Not for motor type: - Min: 0	Calculated: Dyn. index: DDS, p0180 Unit group: Scaling: Max: 1	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0
Description: Value: Dependency: Note:	Sets the signal level for fixed bit 1. 0 : Low 1: High See also: r53230 This signal can be interconnected	output r53230.1.	
$\overline{p 50423[0 \ldots n]}$ DC_CTRL	Fixed bit 2 / Fixed bit 2 Can be changed: U, T Data type: Integer16 P group: Not for motor type: - Min: 0	Calculated: - Dyn. index: DDS, p0180 Unit group: Scaling: - Max: 1	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: 0
Description: Value:	Sets the signal level for fixed bit 2. 0 : Low 1: High		
Dependency: Note:	See also: r53230 This signal can be interconnected	output r53230.2.	

2.2 List of parameters

p50428[0...n]	Fixed bit 7 / Fixed bit 7		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the signal level for fixed bit 7.		
Value:	$\begin{array}{ll} \text { 0: } & \text { Low } \\ \text { 1: } & \text { High } \end{array}$		
Dependency:	See also: r53230		
Note:	This signal can be interconnected via binector output r53230.7.		
p50430[0...7]	BI: Fixed setpoint signal source for connector selection / Fix set conn sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the selection of the connectors (p50431[0 to 7]).		
Dependency:	See also: p50431, p50432, p50680, p50681, r52204, r52209, r52210, r53170		
p50431[0...7]	CI: Signal source for fixed setpoint / Fix set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for generating the fixed setpoint (CO: r52204).		
Dependency:	See also: p50430, p50432, p50680, p50681, r52204, r52209, r52210, r53170		
p50432[0...7]	Fixed setpoint bypass ramp-function generator / Fix set bypass RFG		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to enable or disable the impact of the individual fixed setpoints when generating signal r53170.10, "Bypass ramp-function generator".		
Value:	0 : Inhibit 1: Enable		
Dependency:	See also: r53170		
Note:	[0] = Enable bypassing of ramp-function generator at fixed setpoint 0		
	$[7]=$ Enable bypassing of ramp-function generator at fixed setpoint 7		

p50433[0...n]	CI: Signal source for default setpoint / Def set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3113
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52011[0]
Description:	Sets the signal source for the default setpoint.		
p50435[0...7]	BI: Jog setpoint signal source for connector selection / Jog set conn sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the selection of the connectors (p50436[0 to 7]).		
p50436[0...7]	CI: Signal source for jog setpoint / Jog set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for generating the jog setpoint (CO: r52202).		
p50437[0...7]	Jog setpoint bypass ramp-function generator / Jog set bypass RFG		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to enable or disable the impact of the individual jog setpoints when generating signal r53170.11, "Bypass ramp-function generator".		
Value:	0 : Do not bypass 1: Bypass		
Note:	[0] = Enable bypassing of ramp-function ge ... [7] = Enable bypassing of ramp-function ge	erator at jog setpoint 0 erator at jog setpoint 7	
p50438[0...n]	CI: Jog signal source for default setpoint / Jog def set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52208[0]
Description:	Sets the signal source for the default setpoint when jog is not selected.		

2.2 List of parameters

p50440[0...7]	BI: Creep setpoint signal source for connector selection / Cr set sig s		
DC_CTRL	Can be changed: T	Calculated:	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the selection of the connectors (p50441[0 to 7]) for the creep setpoint.		
Dependency:	See also: p50441		

p50441[0...7]	CI: Signal source for creep setpoint / Cr set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for generating the creep setpoint (CO: r52201).		
Dependency:	See also: r52201		
p50442[0...7]	Creep setpoint bypass ramp-function generator / Cr set bypass RFG		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to enable/disable the impact of the individual creep setpoints when generating signal r53170.12, "Bypass ramp-function generator".		
Value:	0 : Do not bypass 1: Bypass		

Note: [0]: Enable bypassing of ramp-function generator at creep setpoint 0
[7]: Enable bypassing of ramp-function generator at creep setpoint 7

p50443[0...n]	CI: Creep signal source for default setpoint / Cr def set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52207[0]
Description:	Sets the signal source for the default setpoint when creep is not selected.		

p50444[0...n]	BI: Creep signal source for shutdown / Cr shutdn sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for shutting down/resetting the injection of the creep setpoint.		

p50445	Creep setpoint level/edge / Cr set lev/ed		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets whether the ON command is triggered by a logic 1 level or a 0/1 edge.		
Value:	$\begin{array}{ll}0: & 1 \text { level } \\ \text { 1: } & 0 / 1 \text { edge }\end{array}$		
p50460[0...n]	Motorized potentiometer activate ramp-function generator / Mot pot act RFG		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description: Value:	Setting to activate/de-activate the ramp-function generator on the motorized potentiometer.		
	0 : RFG de-activated in automatic mode		
$\begin{aligned} & \text { p50461[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	CI: Motorized potentiometer signal source for automatic setpoint / MotP aut s sig s		
	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the ramp-function generator's setpoint in automatic mode on the motorized potentiometer.		
p50462[0...n]	Motorized potentiometer ramp-up time / MotP t_r-up		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01 [s]	300.00 [s]	10.00 [s]
Description:	Sets the ramp-up time on the motorized potentiometer.		
p50463[0...n]	Motorized potentiometer ramp-down time / MotP t_r-dn		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.01 [s]	300.00 [s]	10.00 [s]
Description:	Sets the ramp-down time on the motorized potentiometer.		

2.2 List of parameters

p50464[0...n]	Motorized potentiometer time difference for dy/dt/ MotP t_dif dy/dt		
DC_CTRL	Can be changed: U, T	Calculated:	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.01[\mathrm{~s}]$	$300.00[\mathrm{~s}]$	$10.00[\mathrm{~s}]$
Description:	Sets the time difference for the ramp-function generator dy/dt on the motorized potentiometer.		

p50466[0...n]	CI: Motor potentiometer setting value signal source / MotP s val sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	See also: p50472		
Note:	The setting value $(\mathrm{Cl}: \mathrm{p50466)}$ becomes effective on a $0 / 1$ edge of the setting command (BI: p50472).		

p50467[0...n] Motorized potentiometer starting value / MotP start value

DC_CTRL

Description Dependency Note:
-200.00 [\%] 200.00 [\%]
Sets the starting value on the motorized potentiometer.

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: PERCENT
Max:

Access level: 2
Function diagram: 3110
Unit selection: -
Expert list: 1
Factory setting:
0.00 [\%]

See also: p50473
The value is only effective when saving of the output value is de-activated (p50473 = 0) .

2.2 List of parameters

p50472[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer. See also p50466		
Dependency:			
Note:	The setting value (CI: p50466) becomes effective on a 0/1 edge of the setting command (BI: p50472).		
p50473[0...n]	Motorized potentiometer save output value / MotP save outp val		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets how the output value is saved on the motorized potentiometer.		
Value:	0 : Save de-activated 1: Save activated		
Dependency:	See also: p50467, r52240		
Note:	If $\mathrm{p} 50473=0$:		
	The output value (CI: r52240) is not saved. The starting value specified in p50467 is applied after ON. If $\mathrm{p} 50473=1$:		
	The output value (CI: r52240) is saved to non-volatile memory after OFF. The saved value is applied after ON.		
p50480[0...n]	Oscillation setpoint 1 / Oscillation set 1		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3120
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.0 [\%]	200.0 [\%]	0.5 [\%]
Description:	Sets setpoint 1 for the square-wave generator.		
Dependency:	See also: p50481, p50482, p50483		
Note:	This setpoint is applied for the time set in p50481.		
p50481[0...n]	Oscillation setpoint 1 time / Oscill set 1 t		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3120
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.1 [s]	300.0 [s]	0.1 [s]
Description: Dependency:	Sets the time during which setpoint 1 should be applied for the square-wave generator. See also: p50480, p50482, p50483		

	Oscillation setpoint 2 / Oscillation set 2		
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: -200.0 [\%]	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: 200.0 [\%]	Access level: 2 Function diagram: 3120 Unit selection: - Expert list: 1 Factory setting: -0.4 [\%]
Description: Dependency: Note:	Sets setpoint 2 for the square-wave generator. See also: p50480, p50481, p50483 This setpoint is applied for the time set in p50483.		
$\overline{p 50483[0 \ldots n]}$ DC_CTRL	Oscillation setpoint 2 time / Osc Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: 0.1 [s]	set 2 t Calculated: Dyn. index: DDS, p0180 Unit group: Scaling: - Max: 300.0 [s]	Access level: 2 Function diagram: 3120 Unit selection: Expert list: 1 Factory setting: 0.1 [s]
Description: Dependency:	Sets the time during which setpoint 2 should be applied for the square-wave generator. See also: p50480, p50481, p50482		
p50484[0...n] DC_CTRL	CI: Oscillation signal source for Can be changed: T Data type: Unsigned32 / FloatingPoint32 P group: - Not for motor type: - Min:	lefault setpoint / Osc Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: PERCENT Max:	et Access level: 2 Function diagram: 3120 Unit selection: - Expert list: 1 Factory setting: 52209[0]
Description: Dependency:	Sets the signal source for the default setpoint for oscillation. This setpoint is injected when the "Oscillate" function is not selected. See also: p50485		
$\begin{aligned} & \text { p50485[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	BI: Oscillation selection of signa Can be changed: T Data type: Unsigned32 / Binary P group: Not for motor type: - Min:	source / Oscill sel si Calculated: Dyn. index: CDS, p0170 Unit group: Scaling: Max:	Access level: 2 Function diagram: 3120 Unit selection: Expert list: 1 Factory setting: 0
Description: Dependency: Note:	Oscillation is not selected. The default setpoint is applied (CI: p50484). BI: p50485 = 1 signal Oscillation is selected. The square-wave generator is active (p50480, p50481, p50482, p50483).		

2.2 List of parameters

p50486	BI: Motor interface signal source for brush length / Mot br I sig s		
DC_CTRL	Can be changed: T	Calculated:	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8035
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for triggering fault F60025 "Brush length".		
Dependency:	See also: r53120		
	See also: F60025		
Note:	The fault is triggered with a delay.		
	The signal is available via binector output r53210.0 for further interconnection.		
p50487	BI: Motor interface signal source for bearing condition / Mot brg cond sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8035
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for triggering fault F60026 "Bearing condition".		
Dependency:	See also: r53120		
	See also: F60026		
Note:	The fault is triggered with a delay.		
	The signal is available via binector output r53120.1 for further interconnection.		
p50488	BI: Motor interface signal source for motor fan / Mot mot fan sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8035
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description: Dependency:	Sets the signal source for triggering fault F60027 "Motor fan".		
	See also: r53120		
	See also: F60027		
Note:	The fault is triggered with a delay.		
	The signal is available via binector output r53210.0 for further interconnection.		
p50489	BI: Motor interface signal source for motor temperature / Mot mot temp s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8035
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for triggering fault F60028 "Motor temperature".		
Dependency:	See also: r53120		
	See also: F60028		
Note:	The fault is triggered with a delay.		
	The signal is available via binecto	3210.3 for further	

p50490	Motor interface temperature sensor / Mot temp sensor		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8030
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	8	0
Description:	Sets the temperature sensor for monitoring the motor temperature.		
Value:	0: No sensor		
	1: KTY84		
	2: PTC thermistor R_rat		
	3: PTC thermistor R_rated 1200		
	4: PTC thermistor R_rated 1330		
	5: PTC thermistor R_rat		
	6: PT100		
	7: NTC thermistor K227		
	8: PT1000		
Dependency:	See also: r50012, r52051		
	See also: F60029, A60032		
Note:	Comments regarding PTC thermistors:		
	- PTC thermistors according to DIN 44081 / 44082 with the specified R for the rated response temperature. - For Siemens motors, PTC thermistors with 1330 Ohm are used.		
	- Parameters p50491 and p50492 (alarm and switch-off temperature) are ineffective. The alarm and switch-off temperatures are defined by the PTC thermistor type being used.		
	Comments on NTC thermistor K227:		
	The evaluation electronics on the CUD only allow resistance values of less than approx. 2 kOhm to be measured. As a consequence, only temperatures greater than approx. $90^{\circ} \mathrm{C}$ can be measured when using these temperature sensors. For lower temperatures, the lowest possible value (approx. $90^{\circ} \mathrm{C}$) is displayed.		
p50491[0...n]	Motor interface alarm threshold for temperature monitoring / Mot_temp al thr		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8030
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [${ }^{\text {C }}$]	200 [${ }^{\circ} \mathrm{C}$]	$0\left[^{\circ} \mathrm{C}\right]$
Description: Dependency:	Sets the alarm threshold for monitoring the motor temperature.		
	The parameter is only valid for the following temperature sensors with a continuous characteristic:		
	- PT100 (p50490 = 6)		
	- NTC thermistor K227 (p50490 = 7)		
	- PT1000 (p50490 = 8)		
	See also: p50490, p50492, r52051		
	See also: A60032		
p50492[0...n]	Motor interface fault threshold for temperature monitoring / Mot_temp flt thr		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 8030
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0\left[{ }^{\circ} \mathrm{C}\right]$	200 [${ }^{\text {C }}$]	$0\left[^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold for m	tor temperature.	

2.2 List of parameters

Dependency: \quad The parameter is only valid for the following temperature sensors with a continuous characteristic:

p50500[0...n]	CI: Torque limiting signal source for t_set in slave mode / T_set s mode sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$52170[0]$
Description:	Sets the signal source for the torque setpoint in slave mode.		
Dependency:	See also: p50503		

p50501[0...n]	CI: Torque limiting signal source for torque additional setpoint / T_lim add s sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0

Description: Sets the signal source for the torque additional setpoint in torque limiting. The value is injected in addition to friction and moment of inertia compensation.

p50502	Cl: Speed controller additional setpoint signal source / Add set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0

Description: Sets the signal source for the additional setpoint of the speed controller. This value is added to the speed controller's output value.

p50503[0...n]	Torque limiting t_set factor in slave mode / T_set fact sl mode		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-300.00[\%]$	$300.00[\%]$	$100.00[\%]$
Description:	Sets the factor for the torque setpoint in slave mode.		
Dependency:	See also: p50500		

p50509	CI: Speed limiting controller signal source for speed actual value / n_lim n_act sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52167[0]
Description:	Sets the signal source for the speed actual value (n _act) on the speed limiting controller.		
p50510	CI: Speed limiting controller signal source for pos torque limit / T lim pos sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52002[0]
Description:	Sets the signal source for the positive torque limit on the speed limiting controller. See also: r52136		
Dependency:			
Note:	This parameter specifies which parameter is to be injected as the limit value for torque limiting 1 (r52136).		
p50511	CI: Speed limiting controller signal source for neg torque limit / T lim neg sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52004[0]
Description:	Sets the signal source for the negative torque limit on the speed limiting controller. See also: r52137		
Dependency:			
Note:	This parameter specifies which parameter is to be injected as the limit value for torque limiting 2 (r52137).		
p50512[0...n]	Speed limiting controller max speed pos direction of rotation / n_max pos dir rot		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	105.0 [\%]
Description:	Sets the maximum speed for the positive direction of rotation on the speed limiting controller.		
p50513[0...n]	Speed limiting controller max speed neg direction of rotation / n_max neg dir		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.0 [\%]	0.0 [\%]	-105.0 [\%]
Description:	Sets the maximum speed for the negative direction of rotation on the speed limiting controller.		

2.2 List of parameters

p50515[0...n]	Speed limiting controller P gain / n_lim Kp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.10	3.00	
Description:	Sets the P gain on the speed limiting controller.		

p50519[0...1]	CI: Input signal for friction compensation / Fric comp inp sig		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$[0] 52179[0]$
		$[1] 0$	

Description: Sets the signal sources for friction compensation.
Index:
[0] = Signed
[1] = Absolute
Note: The signals in $\mathrm{p} 50519[0]$ and $\mathrm{p} 50519[1]$ are summed and applied to the friction compensation input.

p50520[0...n]	Friction compensation 0\% speed / Fric comp n 0\%		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	0.0 [\%]
Description:	Sets friction compensation at 0% speed.		
Recommendation:	In the case of operation in both directions of rotation, this basic value should be set to 0% to prevent the armature current from oscillating.		
Note:	The basic values are based on the device rated direct current or the device rated torque.		
	The basic values for friction compensation (p50520 ... p50530) are set automatically during the optimization run for friction compensation (p50051 = 28).		
	There is linear interpolation between the basic values; here, the friction compensation value takes on the input signal's sign.		

p50521[0...n] Friction compensation 10\% speed / Fric comp n 10\%
DC_CTRL Can be changed: U, T Calculated: -

Data type: FloatingPoint32 Dyn. index: DDS, p0180
P group: -
Not for motor type: -
Min:
0.0 [\%]

Description:
Sets friction compensation at 10% speed.

Access level: 2
Function diagram: 6820
Unit selection: -
Expert list: 1
Factory setting:
0.0 [\%]

p50522[0...n]	Friction compensation 20\% spe	/ Fric comp n 20\%	
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: 0.0 [\%]	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: $100.0 \text { [\%] }$	Access level: 2 Function diagram: 6820 Unit selection: Expert list: 1 Factory setting: $0.0 \text { [\%] }$
Description:	Sets friction compensation at 20\% speed.		
p50523[0...n]	Friction compensation 30\% spe	Fric comp n 30\%	
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: Not for motor type: - Min: 0.0 [\%]	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: 100.0 [\%]	Access level: 2 Function diagram: 6820 Unit selection: Expert list: 1 Factory setting: $0.0 \text { [\%] }$
Description:	Sets friction compensation at 30\% speed.		
p50524[0...n]	Friction compensation 40\% spe	/ Fric comp n 40\%	
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: Not for motor type: - Min: 0.0 [\%]	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: 100.0 [\%]	Access level: 2 Function diagram: 6820 Unit selection: Expert list: 1 Factory setting: 0.0 [\%]
Description:	Sets friction compensation at 40\% speed.		
p50525[0...n]	Friction compensation 50\% spe	/ Fric comp n 50\%	
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: 0.0 [\%]	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: $100.0 \text { [\%] }$	Access level: 2 Function diagram: 6820 Unit selection: Expert list: 1 Factory setting: $0.0 \text { [\%] }$
Description:	Sets friction compensation at 50\% speed.		
p50526[0...n]	Friction compensation 60\% spe	/ Fric comp n 60\%	
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32 P group: - Not for motor type: - Min: $0.0 \text { [\%] }$	Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: PERCENT Max: $100.0 \text { [\%] }$	Access level: 2 Function diagram: 6820 Unit selection: Expert list: 1 Factory setting: $0.0 \text { [\%] }$
Description:	Sets friction compensation at 60\% speed.		

p50541[0...3]	Speed controller setpoint/actual value difference factor / Set/act dif fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00	650.00	0.00
Description:	Sets the factor for the acceleration on the speed controller, which is dependent upon the difference between the setpoint and the actual value.		
	In the case of the "Acceleration dependent upon setpoint/actual value difference" function, only the proportion of the speed controller's setpoint/actual value difference which has an absolute value in excess of the threshold (p50543) is switched through.		
Dependency:	See also: p50543		
p50542[0...n]	RFG dy/dt time difference / RFG dy/dt t_dif		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	0.01 [s]
Description:	Sets the dt for the output of dy/dt in r52191.		
	The change in the ramp-function generator's output variable (p 52190) in relation to the time set in p 50542 is output in r52191.		
Dependency:	See also: p50330, r52191		
Note:	Example:		
	A ramp-up time of 5 s is set on the ramp-function generator; in other words, a complete ramp-up from $\mathrm{y}=0 \%$ to 100% will take 5 s .		
	A time difference dt of 2 s is set in p50542. This results in a dy/dt of 40% at r 52191 , since the set dt of 2 s produces a dy of ($2 \mathrm{~s} / 5 \mathrm{~s}$) * $100 \%=40 \%$.		
p50543[0...n]	Speed controller setpoint/actual value difference threshold / Set/act dif thresh		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	0.00 [\%]
Description:	Sets the threshold for acceleration dependent upon the setpoint/actual value difference. In the case of the "Acceleration dependent upon setpoint/actual value difference" function, only the proportion of the speed controller's setpoint/actual value difference which has an absolute value in excess of the threshold (p50543) is switched through.		
Dependency:	See also: p50541		
p50546[0...n]	Smoothing time constant for inertia compensation / Comp inert T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the smoothing time constant for the acceleration value for moment of inertia compensation. See also: p50619		
Dependency:			

2.2 List of parameters

DC_CTRL	Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6805 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: Min: Max: Factory setting: 0.01 2000.00 3.00
Description: Note:	Sets the y coordinate for pair of values 1 for adaptation of the P gain (Kp). This P gain (Kp) is effective up to x coordinate 1 (p 50556). The adaptation of the P gain (Kp) is defined using 2 pairs of values. Pair of values 1 : p50556/p50550 (x/y coordinate) Pair of values 2: p50559/p50225 (x/y coordinate)
$\begin{aligned} & \hline \text { p50551[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Speed controller adaptation Tn y coordinate 1 / Adapt Tn y1 Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6805 P group: Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: $0.010[\mathrm{~s}]$ $10.000[\mathrm{~s}]$ $0.650[\mathrm{~s}]$
Description: Note:	Sets the y coordinate for pair of values 1 for adaptation of the integral time (Tn). This integral time (Tn) is effective up to x coordinate 1 (p 50557). The adaptation of the integral time (Tn) is defined using 2 pairs of values. Pair of values 1: p50557/p50551 (x/y coordinate) Pair of values 2: p50560/p50226 (x/y coordinate)
$\begin{aligned} & \text { p50552[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Speed controller adaptation droop y coordinate 1 / Adapt droop y1 Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Function diagram: 6805 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min: Max: Factory setting: 0.000 10.000 0.000
Description: Notice:	Sets the y coordinate for pair of values 1 for adaptation of the droop. - For the droop, generally values up to 10% are practical (p50552 = $0.000 \ldots 0.100$). Under certain circumstances, higher values can result in an unstable response of the speed controller. - The droop is entered as absolute factor without any dimensions and it is especially important to note that it is not a percentage. Example: Set droop = 5%--> p50552 = 0.05
Note:	This droop is effective up to x coordinate 1 (p50558). The adaptation of the droop is defined using 2 pairs of values. Pair of values 1: p50558/p50552 (x/y coordinate) Pair of values 2: p50561/p50227 (x/y coordinate)

p50553[0...n]	CI: Speed controller adaptation Kp signal source / Adapt Kp sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the P gain (Kp) on the speed controller.		
p50554[0...n]	CI: Speed controller adaptation Tn signal source / Adapt Tn sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the integral time (Tn) on the speed controller.		
p50555[0...n]	Cl : Speed controller adaptation droop signal source / Adapt droop sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the droop on the speed controller.		
Note:	A setting of 10% droop means that at 100% controller output (100% torque or current setpoint), the speed will deviate from the setpoint by 10% ("softening" of closed-loop control).		
p50556[0...n]	Speed controller adaptation Kp x coordinate 1 / Adapt Kp x1		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	0.00 [\%]
Description:	Sets the x coordinate for pair of values 1 for adaptation of the P gain (Kp).		
Notice:	The following condition applies for x coordinate $1 / 2$: p50556 < p50559		
Note:	The adaptation of the P gain (Kp) is defined using 2 pairs of values.		
	Pair of values 1:		
	p50556/p50550 (x/y coordinate)		
	Pair of values 2:		
	p50559/p50225 (x/y coordinate)		

2.2 List of parameters

p50557[0...n]	Speed controller adaptation Tn x coordinate 1 / Adapt Tn x1	
DC_CTRL	Can be changed: U, T Calculated: -	Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 6805
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: PERCENT	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [\%] 100.00 [\%]	0.00 [\%]
Description:	Sets the x coordinate for pair of values 1 for adaptation of the integral time (Tn).	
Notice:	The following condition applies for x coordinate $1 / 2$: p50557 < p50560	
Note:	The adaptation of the integral time (Tn) is defined using 2 pairs of values.	
	Pair of values 1:	
	Pair of values 2:	

p50558[0...3] Speed controller adaptation droop x coordinate 1 / Adapt droop x1

Can be changed: U, T
Data type: FloatingPoint32
P group: -
Not for motor type: -
Min:
0.00 [\%]

The following condition applies for x coordinate $1 / 2$:
p50558 < p50561
Note: \quad The adaptation of the droop is defined using 2 pairs of values.
Pair of values 1 : p50558/p50552 (x/y coordinate)
Pair of values 2 :
p50561/p50227 (x/y coordinate)

p50560[0...n]	Speed controller adaptation Tn x coordinate 2 / Adapt Tn x2	
DC_CTRL	Can be changed: U, T Calculated: -	Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 6805
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: PERCENT	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [\%] 100.00 [\%]	0.00 [\%]
Description:	Sets the x coordinate for pair of values 2 for adaptation of the integral time (Tn).	
Notice:	The following condition applies for x coordinate $1 / 2$: p50557 < p50560	
Note:	The adaptation of the integral time (Tn) is defined using 2 pairs of values.	
	Pair of values 1:	
	Pair of values 2:	

p50561[0...n]	Speed controller adaptation droop x coordinate 2 / Adapt droop x2	
DC_CTRL	Can be changed: U, T Calculated: -	Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Function diagram: 6805
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: PERCENT	Expert list: 1
	Min: Max:	Factory setting:
	0.00 [\%] 100.00 [\%]	0.00 [\%]
Description:	Sets the x coordinate for pair of values 2 for adaptation of the droop.	
Notice:	The following condition applies for x coordinate 1/2:	
	p50558 < p50561	
Note:	The adaptation of the droop is defined using 2 pairs of values.	
	Pair of values 1:	
	p50558/p50552 (x/y coordinate)	
	Pair of values 2:	
	p50561/p50227 (x/y coordinate)	

p50562[0...n]	Speed controller droop positive limiting / Droop pos lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$0.00[\%]$	$100.00[\%]$	
Description:	Sets positive limiting for the droop on the speed controller.		
Dependency:	See also: p50563		

p50563[0...n]	Speed controller droop negative limiting / Droop neg lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-200.00[\%]$	$-100.00[\%]$	
Description:	Sets negative limiting for the droop on the speed controller.		
Dependency:	See also: p50562		

2.2 List of parameters

p50565	Speed controller optimization frequency response plot base speed / f_plot n_base		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	1.0 [\%]	30.0 [\%]	20.0 [\%]
Description:	Sets the base speed for the frequency response plot for the optimization run "Speed control optimization for drives that are capable of oscillation" (p50051 = 29).		
Dependency:	See also: p50566, p50567		
p50566	Speed controller optimization frequency response plot amplitude / f_plot amplitude		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.01 [\%]	5.00 [\%]	1.00 [\%]
Description:	Sets the amplitude for the frequency response plot for the optimization run "Speed control optimization for drives that are capable of oscillation" (p50051 $=29$).		
p50567	Speed controller optimization frequency response plot time / f_plot time		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.30 [s]	3.00 [s]	1.00 [s]
Description:	Sets the time for the frequency response plot for the optimization run "Speed control optimization for drives that are capable of oscillation" (p50051 = 29).		
	In this case, an average is generated over the time set here per measuring frequency.		
Note:	High values improve the result, however they slow down the measuring time.		
	For the 3.0 s setting, it takes approximately 9 minutes to plot the frequency response.		
p50570[0...n]	Adaptation armature current controller changeover input / Adapt la chgov inp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6853
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the input quantity for armature current controller adaptation.		
Value:	$\begin{array}{ll} \text { 0: } & \text { la_act r52117 } \\ \text { 1: } & \text { la_set r52119 } \end{array}$		
Dependency:	See also: p50571, p50572		

p50571[0...n]	Adaptation armature current controller non-linear L activation / Adapt N_lin L act		
DC_CTRL	Can be changed: U,T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6853
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate the adaptation of non-linear inductances for the armature current controller.		
Value:	$0: \quad$ Adaptation non-linear L active		
Dependency:	$1: \quad$ Fixed value 100% effective		
	See also: p50570, p50572, r52350		

p50572[0...n]	Adapt arm curr controller intermittent adapt activation / Adapt Interm Act		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6853
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate the intermittent adaptation for the armature current controller.		
Value:	$0: \quad$ Intermittent adaptation effective		
	$1: \quad$ Fixed value 100%		
Dependency:	See also: p50570, p50571, r52350		

p50573[0...n]	Adaptation armature current controller limiting / Adapt la_ctrl lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6853
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	1.0 [\%]	200.0 [\%]	200.0 [\%]
Description:	Setting to limit the armature current controller adaptation.		
Dependency:	See also: p50571, p50572,		

p50574[0...n]	Adapt arm curr controller intermittent adapt Kp increase / Ad Interm Kp incr		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6853
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0	10.0	1.0
Description:	Sets the Kp increase for the intermittent adaptation for the armature current controller.		
Dependency:	See also: p50572		

p50575[0...n] Adaptation field current controller changeover input / Adapt lf chgov inp
DC CTRL Can be changed: U T
Data type: Integer16 Dyn. index: DDS, p0180 Function diagram: 6908
P group: - Unit group: - Unit selection: -
Not for motor type: - Scaling: - Expert list: 1
Min: Max: Factory setting:
0 1 0
Description: Sets the input variable for the field current controller adaptation.

2.2 List of parameters

| Value: | $0: \quad$ If_act r52265 |
| :--- | :--- | :--- |
| | 1: If_set r52268 |
| Dependency: | See also: $p 50576$, p50577 |

p50576[0...n]	Adaptation field current controller non-linear L activation / Adapt n_lin act		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate the adaptation of non-linear inductances for the field current controller.		
Value:	$0:$ Adaptation non-linear L active		
	$1:$ Fixed value 100% effective		
Dependency:	See also: p50575, p50577, r52355		

p50577[0...n]	Adapt field curr controller non-linear gating unit activation / Adapt n_lin GU act		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Activates the adaptation to the non-linearity of the gating unit for the field current controller.		
Value:	$0:$ Adaptation gating unit effective		
	$1:$ Fixed value 100% effective		
Dependency:	See also: p50575, p50576, r52355		

p50578[0...n]	Adaptation field current controller limiting / Adapt If_ctrl lim		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6908
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$1.0[\%]$	$200.0[\%]$	$200.0[\%]$
Description:	Setting to limit the field current controller adaptation.		
Dependency:	See also: p50576, p50577, r52355		

2.2 List of parameters

p50592	CI: Messages for ref speed signal source for speed actual value / Msg ref act sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52167[0]
Description:	Sets the signal source for the speed actual value for the "Reference speed reached" message. See also: r53025		
Dependency:			
p50593	Cl: Messages for speed less than min speed signal source for act val / Msg $\mathbf{n}<\mathbf{n}$ _min sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52167[0]
Description:	Sets the signal source for the "Speed less then minimum speed" message. See also: r53025		
Dependency:			
p50594[0...n]	CI: Messages polarity speed setpoint signal source / MsgPol n_set S_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52170[0]
Description:	Sets the signal source for the "Speed setpoint polarity" message.		
Dependency:	See also: p50372, r53025		
p50595	CI: Signal source for overspeed messages / Msg n_over sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
		-	52167[0]
Description:	Sets the signal source for the speed actual value for the overspeed message.		
Dependency:	See also: p50380, p50381, r53025		
	See also: F60038		
p50596	CI: Messages for setp-actual value deviation 2 s_src speed setpoint / Msg dev2 set s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52174[0]
Description:	Sets the signal source for the speed setpoint for the "Setpoint/actual value deviation 2" signal.		

Dependency:	See also: p50597, r53025		
p50597	CI: Messages for setp-actual value deviation 2 s_src speed act value / Msg dev2 act s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8020
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52167[0]
Description:	Sets the signal source for the speed actual value for the "Setpoint/actual value deviation 2" message.		
Dependency:	See also: p50596, r53025		
p50598[0...n]	CI: Messages polarity speed actual value signal source / MsgPol n_act S_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 8025
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52179[0]
Description:	Sets the signal source for the "Speed actual value polarity" message.		
Dependency:	See also: p50372, r53025		
p50600[0...4]	Cl: Signal source for armature gating unit input / A g unit in sig s		
DC_CTRL	Can be changed: T Data type: Unsigned32 / FloatingPoint32 P group: -	Calculated: -	Access level: 3
		Dyn. index: -	Function diagram: 6858, 6860
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52102[0]
			[1...4] 0
Description:	Sets the signal source for the gating unit input on the armature circuit.		
p50601[0...5]	CI: Signal source for speed limiting controller setpoint / n_lim set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6835, 6840, 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52141[0]
			[1] 0
			[2] 52134[0]
			[3] 0
			[4] 52125[0]
			[5] 0
Description:	Sets the signal source for the setpoint on the armature current controller.		
Notice:	For index [5]:		
	When entering a supplementary current se integrator or the reduced gearbox load func Possible effect if this is not observed: Torque direction change will not be able to	When entering a supplementary current setpoint via p50601[5] it is not permissible to use the current setpoint integrator or the reduced gearbox load function. p50158 must be set $=0.000 \mathrm{~s}$.	

2.2 List of parameters

Note:

For index [0...1]:
Speed limiting controller
Sets the signal sources for the setpoint on the speed limiting controller. The two values are added together.
For index [2...3]:
Current limiting
Sets the signal sources for the setpoint on the current controller (before current limitation). The two values are added together.
For index [4...5]:
Current control
Sets the signal sources for the setpoint on the current controller (before the current controller). The two values are added together. The absolute value is generated from the value in index 5 .

p50602	Cl : $\mathrm{Cl}-\mathrm{loop}$ arm current control sig source for arm current act val / la ctr la ac sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52117[0]
Description:	Sets the signal source for the armature current actual value for closed-loop armature current control.		
p50603[0...6]	CI: Current limitation current limit torque direction I / I_lim I_lim t d I		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0...4] 1
			[5] 52002[0]
			[6] 52002[0]

Description: Sets the signal source for the variable current limit in torque direction I.
Note:
About [0 to 3]:
Selects which parameter is injected as the variable current limit in torque direction I.
Scaling: $+100 \%$ corresponding to p50100 * p50171.
About [4]:
Selects which parameter is injected as the current limit in torque direction I for quick stop or shutdown.
Scaling: $+100 \%$ corresponding to p50100 *p50171.
For [5]:
Selects which parameter is injected as the variable current limit in torque direction I.
Scaling: +100\% corresponding to r50072[1].
For [6]:
Selects which parameter is injected as the current limit in torque direction I for quick stop or shutdown.
Scaling: $+100 \%$ corresponding to r50072[1].

p50604[0...6]	CI: Current limitation current limit torque direction II / I_lim I_lim t d II		
DC_CTRL	Can be changed: T Data type: Unsigned32 / FloatingPoint32 P group: - Not for motor type: - Min:	Calculated: - Dyn. index: - Unit group: Scaling: PERCENT Max:	Access level: 3 Function diagram: 6840 Unit selection: Expert list: 1 Factory setting: [0] 52135[0] [1] 52135[1] [2] 52135[2] [3] 52135[3] [4] 52135[4] [5] 52135[5] [6] 52135[6]
Description: Note:	Sets the signal source for the variable current limit in torque direction II. About [0 to 3]: Selects which parameter is injected as the variable current limit in torque direction II. Scaling: +100\% corresponding to p50100 * p50171. About [4]: Selects which parameter is injected as the current limit in torque direction II for quick stop or shutdown. Scaling: +100\% corresponding to p50100 * p50171. For [5]: Selects which parameter is injected as the variable current limit in torque direction II. Scaling: +100\% corresponding to r50072[1]. For [6]: Selects which parameter is injected as the current limit in torque direction II for quick stop or shutdown. Scaling: $+100 \%$ corresponding to r50072[1].		
p50605[0...4] DC_CTRL	CI: Torque limiting signal source Can be changed: T Data type: Unsigned32 / FloatingPoint32 P group: Not for motor type: - Min:	for positive torqu Calculated: - Dyn. index: Unit group: Scaling: PERCENT Max:	im pos sig s Access level: 3 Function diagram: 6825 Unit selection: Expert list: 1 Factory setting: 52002[0]
Description: Note:	Sets the signal source for the variable positive torque limit. Scaling: [0 to 3] $=100 \%$ of the parameter value corresponds to the positive system torque limit according to la $=p 50171$ $[4]=100 \%$ of the parameter value corresponds to the positive torque limit according to la $=r 50072[1]$.		

p50606[0...4]	CI : Torque limiting signal source for negative torque limit / T lim neg sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52138[0]
			[1] 52138[1]
			[2] 52138[2]
			[3] 52138[3]
			[4] 52138[4]

Description: Sets the signal source for the variable negative torque limit.

2.2 List of parameters

Note: \quad Scaling:
[0 to 3] $=100 \%$ of the parameter value corresponds to the negative system torque limit according to la $=p 50171$.
[4] = 100\% of the parameter value corresponds to the negative torque limit according to la =r50072[1].

p50607[0...n]	CI : Torque limiting signal source for master drive t_set / Mst tq set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52148[0]
Description:	Sets the signal source for the master drive's torque setpoint.		
p50608	CI: Auto-reversing stage signal source for torque direction setpoint / Tqe dir set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52119[0]
Description:	Sets the signal source for the torque direction setpoint for the auto-reversing stage.		

p50609[0...n]	Cl : Signal source for speed controller actual value / n_ctr act sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value on the speed controller. See also: p50083		
Dependency:			
p50610	Cl: Signal source for field gating unit input value / Field g unit sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52252[0]
Description:	Sets the signal source for the input value on the field gating unit.		
p50611[0...3]	CI: Field curr setp limiting setpoint sig source / If_lim set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52277[0]
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal sources for generating the field current setpoint (CO: r52275).		

Dependency:	See also: r52275		
p50612[0...1]	CI: Cl-loop field current ctrl sig source for field current act val / If_ctr If_ac sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52266[0]
			[1] 0
Description:	Sets the signal source for the field current actual value for closed-loop field current control.		
p50613[0...4]	CI: Field current setpoint limiting sig source for var upper limit / If_li up li sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
		-	1
Description: Dependency:	Sets the signal sources for generating the upper limit of the field current setpoint (CO: r52273).		
p50614[0...4]	CI: Field current setpoint limiting sig source for var lower limit / If_lim I lim sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6905
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
			[0...3] 1
			[4] 0
Description:	Sets the signal sources for generating the lower limit of the field current setpoint (CO: r52274).		
Dependency:	See also: p50103, r52274		
p50615[0...3]	CI: EMF controller setpoint signal source / EMF ctr set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52289[0]
			[1] 0
			[2] 0
			[3] 0
Description: Index:	Sets the signal source for the setpoints on [0] = Setpoint 0 [1] = Setpoint 1 [2] = Setpoint 2 [3] = Setpoint 3	e EMF controller.	
Dependency:	See also: r52288		
Note:	The overall setpoint is available via connector output r52288 for further interconnection.		

2.2 List of parameters

p50616	CI: EMF controller actual value signal source / EMF ctr act sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52286[0]
Description:	Sets the signal source for the actual value on the EMF controller. See also: r52285		
Dependency:			
Note:	The actual value is available via connector output r52285 for further interconnection.		
p50618	CI: Field gating unit signal source for field direction / Field g unit dir		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52268[0]
Description:	Sets the signal source for the field direction on the field gating unit.		
p50619	CI: Acceleration value for inertia compensation / Comp inert acc val		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52191[0]
Description:	Sets the signal source for the acceleration value for inertia compensation.		
p50620	CI: Speed controller setpoint/actual value difference signal source / n_ctr set/ac sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
			$52165[0]$
Description:	Sets the signal source for the setpoint/actual value difference on the speed controller. See also: r52164		
Dependency:			
Note:	The setpoint/actual value difference for the speed controller is available in r52164 for further interconnection.		
p50621	CI: Speed controller setpoint 1 signal source / n_ctr set 1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index:	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52176[0]
Description:	Sets the signal source for setpoint 1 on the speed controller.		
Dependency:	See also: p50622, p50623, p50624, r52165		
Note:	The setpoint/actual value difference (r52165) results from setpoint 1 and 2 (p 50621 , p 50622) and actual value 2 (p50623, p50624).		

p50622	CI: Speed controller setpoint 2 signal source / n_ctr set 2 s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52174[0]
Description:	Sets the signal source for setpoint 2 on the speed controller.		
Dependency:			
Note:	The setpoint/actual value difference (r52165) results from setpoint 1 and 2 (p 50621 , p 50622) and actual value 1 and 2 (p50623, p50624).		
p50623	CI: Signal source for speed controller actual value $1 / \mathrm{n}$ _ctr act 1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52179[0]
Description:	Sets the signal source for actual value 1 on the speed controller.		
Dependency:	See also: p50621, p50622, p50624, r52165		
Note:	The setpoint/actual value difference (r52165) results from setpoint 1 and 2 (p 50621 , p 50622) and actual value 1 and 2 (p50623, p50624).		
p50624	CI: Signal source for speed controller actual value 2 / n_ctr act 2 s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index:	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for actual value 2 on the speed controller.		
Dependency:	See also: p50621, p50622, p50623, r52165		
Note:	The setpoint/actual value difference (r52165) results from setpoint 1 and 2 (p 50621 , p 50622) and actual value 1 and 2 (p50623, p50624).		

p50625[0...n]	Cl: Signal source for speed controller setpoint /n_ctr set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$52170[0]$
Description:	Sets the signal source for the setpoint on the speed controller.		
	This signal can be smoothed using p50228.		
Dependency:	See also: p50228		

2.2 List of parameters

p50626[0...n]	CI: Signal source for speed controller actual value smoothing / Act v smoo sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52167[0]
Description:	Sets the signal source to enable smoothing of the actual value on the speed controller.		
p50627	Cl : Derivative-action element signal source / D elem sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52178[0]
Description:	Sets the signal source for the derivative-action element. See also: p50205, p50206, r52168, r52169		
Dependency:			
p50628	CI: Band-stop 1 signal source / Band-st 1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52179[0]
Description:	Sets the signal source for band-stop 1.		
Dependency:	See also: p50201, p50202, r52177		
p50629	CI: Band-stop 2 signal source / Band-st 2 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52177[0]
Description:	Sets the signal source for band-stop 2.		
Dependency:	See also: p50203, p50204, r52178		
p50630	CI: Speed controller droop signal source / Droop sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	㖪	-	52162[0]
Description:	Sets the signal source for the droop on the speed controller. See also: p50697		
Dependency:			

p50631	CI: Speed controller integral component setting value signal source / I_co set v sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setting value of the integral component for the speed controller. See also: p50230, p50695		
Dependency:			
p50632[0...3]	CI: RFG signal source for positive limiting after RFG / RFG pos lim sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal sources for positive limiting after the ramp-function generator (setpoint limiting).		
Note:	The minimum of the signals is forwarded to the limiter via connector input p50632[0 to 3].		
p50633[0...3]	CI: RFG signal source for negative limiting after RFG / RFG neg lim sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
		-	[0] 52210[0]
			[1] 52210[1]
			[2] 52210[2]
			[3] 52210[3]
Description:	Sets the signal sources for negative limiting after the ramp-function generator (setpoint limiting).		
Note:	The maximum of the signals is forwarded to the limiter via connector input p50633[0 to 3].		
p50634[0...1]	CI: RFG input signal for limiting after RFG / RFG lim inp sig		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52190[0]
			[1] 0
Description:	Sets the signal sources for the input signals in the case of limiting after the ramp-function generator (setpoint limiting).		
Note:	The signals via connector input p50634[0 to 1] are added to the input and forwarded to "Limiting after ramp-function generator".		

2.2 List of parameters

p50635[0...n]	CI: Setpoint processing signal source for RFG setpoint / RFG set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$52194[0]$
Description:	Sets the signal source for the ramp-function generator's setpoint.		

p50636[0...5]	Cl: RFG signal source for valuation factor $1 /$ RFG val_f 1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	1	
	Sets the signal sources for the valuation factors for ramp-function generator parameter set 1.		

p50638[0...n]	BI: Ramp-function generator parameter set 3 select signal source / RFG par set 3 s_s
DC_CTRL	Can be changed: T Calculated: Access level: 3
	Data type: Unsigned32 / Binary Dyn. index: CDS, p0170 Function diagram: 3150
	P group: - Unit group: - Unit selection: -
	Not for motor type: Scaling: - Expert list: 1
	Min: Max: Factory setting:
	0
Description:	Sets the signal source for the selection of "ramp-function generator parameter set 3 ". 1 signal:
	RFG parameter set 3 is effective (p50311, p50312, p50313, p50314).
Dependency:	See also: p50311, p50312, p50313, p50314, p50637
	See also: F60041
Note:	The following applies regarding selection of ramp-function generator parameter set 3:
	- This selection has a higher priority than selection by means of the ramp-up integrator.
	- This selection has a lower priority than quick stop (OFF3); in other words, in the event of a quick stop (OFF3) the values set in p50296, p50297, and p50298 become effective.
	- A corresponding message is output if ramp-function generator parameter sets 2 and 3 are selected at the same time.

p50639[0...1]	CI: RFG signal source for setting value / RFG set val sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	$52167[0]$

Description:	Sets the signal source for the ramp-function generator's setting values.
Index:	$[0]=$ Setting value
	$[1]=$ Setting value if machine is not running
Dependency:	The setting value for the ramp-function generator output is selected via binector input p 50640.
	$\mathrm{p} 50640=0$ signal:
	If the machine is not running, the value supplied via connector input $\mathrm{p} 50639[1]$ is accepted.
$\mathrm{p} 50640=1$ signal:	
	The value supplied via connector input $\mathrm{p} 50639[0]$ is accepted as the setting value.
	See also: p 50640

p50640[0...n]	Bl: RFG signal source for accepting setting value / RFG accept set v		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0

Description: Sets the signal source for accepting the setting value of the ramp-function generator.
Dependency: See also: p50639

p50641[0...n]	Bl: Bypass ramp-function generator signal source / Bypass RFG sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for "Bypass ramp-function generator".		
Note:	The "Bypass ramp-function generator" signal can also be set via binector input p50649[0 to 2].		
p50642[0...3]	CI: Setpoint processing sig source for pos limiting of main setpoint / M set lim p sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52002[0]
Description:	Sets the signal source for variable positive limiting of the main setpoint.		
Notice:	Negative values at the selected parameters generate a negative maximum value at the limiting output.		
Note:	The minimum of the values set via index 0 to 3 is applied as the limit.		
p50643[0...3]	Cl : Setpoint processing sig source for neg limiting of main setpoint / M set lim n sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 52184[0]
			[1] 52185[0]
			[2] 52186[0]
			[3] 52187[0]
Description:	Sets the signal source for variable positive limiting of the main setpoint.		
Notice:	Positive values at the selected parameters generate a positive minimum value at the limiting output.		
Note:	The maximum of the values set via index 0 to 3 is applied as the limit.		
p50644[0...n]	CI: Setpoint processing signal source for main setpoint / M set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52206[0]
Description:	Sets the signal source for the main setpoint in the context of setpoint processing.		
Dependency:	See also: p50320, p50322		

p50645[0...n]	CI: Setpoint processing signal source for additional setpoint / A set sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the additional setpoint in the context of setpoint processing.		
Dependency:	See also: p50321, p50323		
p50646[0...n]	BI: RFG signal source for ramp-up integrator enable / R-up int ena sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3150
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for enabling the ramp-up integrator on the ramp-function generator.		
p50647[0...n]	BI: RFG tracking activation signal source / RFG trck act sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for activating/de-activating ramp-function generator tracking.		
Dependency:	The enable for ramp-function generator tracking must be available (p50317 = 1).		
	See also: p50317		
p50648	CI: RFG signal source for input signal / RFG inp sig s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 3151
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
		-	52193[0]
Description:	Sets the signal source for the ramp-function generator's input signal.		
p50649[0...2]	BI: Bypass ramp-function generator signal source / Bypass RFG sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3152
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	[0] 53170.10
			[1] 53170.11
			[2] 53170.12
Description:	Sets the signal sources for "Bypass ramp-function generator".		
Dependency:	See also: p50641		

2.2 List of parameters

Note:	The "Bypass ramp-function generator" signal can also be set via binector input p50641. For index [0, 1, 2]: Information about their factory setting. The "Bypass ramp-function generator" signal comes from the "Fixed setpoint", "Jog setpoint", "Creep setpoint" function.
p50650[0...1]	CI: RFG signal source for setting value with OFF1 / RFG s v OFF1 sig s
DC_CTRL	Can be changed: T Calculated: - Access level: 3 Data type: Unsigned32 / FloatingPoint32 Dyn. index: - Function diagram: 3152 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: - - $[0] 52167[0]$ $[1] 52179[0]$
Description: Index:	Sets the signal sources for the ramp-function generator's setting value with OFF1. The ramp-function generator is set to this value once. [0] = Setting value 1 [1] = Setting value 2
Dependency:	The selection of the signal source for the setting value is set via p50318. p50318 = 0: Do not set ramp-function generator output p50318 = 1: Set ramp-function generator output to the value supplied via connector input p50650[0]. p50318 = 2: Set ramp-function generator output to the value supplied via connector input p50650[1]. See also: p50318

p50651[0...6]	CI: RFG tracking signal sources / RFG track sig s	
DC_CTRL	Can be changed: T	Calculated: -
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -
	P group: -	Access level: 3
	Not for motor type: -	Fcaling: PERCENT
	Min:	Max:
	-	Unit selection: -
		Expert list: 1
		Factory setting:
		$[0] 52290[0]$
		$[1] 52167[0]$
		$[2] 52143[0]$
		$[4] 52144[0]$
		$[5] 52132[0]$
		$[6] 50219[0]$

Description: Sets the signal sources for the effective limits for ramp-function generator tracking.
Index:
[0] = Scaled motor flux
[1] = Actual speed
[2] = Effective positive torque limit
[3] = Effective negative torque limit
[4] = Effective positive current limit
[5] = Effective negative current limit
[6] = Effective speed controller proportional gain

p50671[0...n]	Bl: Setpoint processing sig source to enable neg dir of rotation / Ena n dir r sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:	

Description: Sets the signal source to enable the negative direction of rotation.
Dependency: See also: p50672
Note: $\quad 1$ signal: Negative direction of rotation enabled

p50672[0...n]	BI: Setpoint processing signal source to enable pos dir of rotation / Ena p dir r sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to enable the positive direction of rotation.		
Dependency:	See also: p50671		
Note:	1 signal: Positive direction of rotation enabled		
	0 signal: Positive direction of rotation disabled		
p50673[0...n]	BI: Motorized potentiometer signal source to increase setpoint / MotP incr sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to increase the setpoint for the motorized potentiometer.		
Dependency:	See also: p50471		
Note:	This parameter is only effective in manual mode (p50471 = 0).		
p50674[0...n]	BI: Motorized potentiometer signal source to lower setpoint / MotP lower sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3110
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source to lower the setpoint for the motorized potentiometer.		
Dependency:	See also: p50471		
Note:	This parameter is only effective in manual mode (p50471 = 0).		
p50680[0...n]	BI: Fixed setpoint signal source for connector selection 0 / Fix set con0 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the selection of connector 0 (p50431[0]).		
Dependency:	See also: p50430, p50431		

2.2 List of parameters

p50681[0...n]	BI: Fixed setpoint signal source for connector selection 1 / Fix set con1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the selection of connector 1 (p50431[1]).		
Dependency:	See also: p50430, p50431		
p50684[0...n]	BI: Speed controller droop enable / Droop enable		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to enable droop on the speed controller.		
Note:	The following values are multiplied by the droop output dependent upon the signal state:		
	1 signal: Enable (r50630)		
	0 signal: No enable (0\%)		
p50687[0...n]	BI: Speed controller signal source for master/slave drive / Mast/sl sig s		
DC_CTRL	Can be changed: T Data type: Unsigned32 / Binary	Calculated: -	Access level: 2
		Dyn. index: CDS, p0170	Function diagram: 6810, 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- -		0
Description: Note:	Sets the signal source for the master or slave drive on the speed controller.		
	1 signal:		
	Torque control is active on the slave drive.		
	0 signal:		
	Speed control is active on the master drive.		
p50688[0...n]	BI: Hold speed controller I component direction pos. signal source / I comp HoldPos s_s		
DC_CTRL	Can be changed: T Data type: Unsigned32 / Binary	Calculated: -	Access level: 2
		Dyn. index: CDS, p0170	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source for holding the integral component in the positive direction on the speed controller.		
Note:	Dependent upon the signal state, the following applies:		
	0 signal:		
	The I component is not held.		
	1 signal:		
	The I component is held.		

p50694[0...n]	BI: Torque limiting signal source to enable changeover / T lim ch ena sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6825
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to enable the torque limits to be changed over.		
Dependency:	See also: p50180, p50181, p50182, p50183		
Note:	1 signal: Changeover enabled		
	0 signal: Changeover disabled		
p50695[0...n]	BI: Signal source for setting speed controller integral component / Set l_co sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for setting the integral component on the speed controller. The value supplied via connector input p50631 is used as the setting value.		
	With a $0 / 1$ signal from p50695, the integral component of the speed controller is tracked continuously to the value of the signal present at connector input p50631 for the time that has been set in p50230.		
Dependency:	See also: p50230, p50631		
Note:	For the same signal source for the speed controller enable and integral component, the time in p50230 must be set greater than 0 ms .		

p50696[0...n]	Bl: Signal source for stop speed controller integral component / Stop I_co sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max:
	Min:	-	Fxpert list: 1
	-	0	
Description:	Sets the signal source for stopping the integral component on the speed controller.		
Note:	Dependent upon the signal state, the following applies:		
	0 signal: Integral component is not stopped		
	1 signal: Integral component is stopped		

p50697[0...n]	BI: Enable for inertia compensation / Inert comp ena		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	1	
Description:	Sets the signal source for enabling moment of inertia compensation.		
Note:	Dependent upon the signal state, the following values are added to the output for friction and moment of inertia		
	compensation:		
	1 signal: Enable (r52173)		

p50698[0...n]	BI: Signal source for speed controller PI/P controller changeover / n_ctr PI/P sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description: Dependency:	Sets the signal source for the speed-dependent changeover between PI and P controller on the speed controller. See also: p50221, p50222, r52166		
p50700	CUD analog input 0 type / CUD Al 0 type		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the type for analog input 0 ($\mathrm{X} 177.25 / 26$) on the CUD.		
Value:	$\begin{array}{ll}0: & \text { Bipolar voltage input (-10 } \\ \text { 1: } & \text { Bipolar current input (-20 } \\ \text { 2: } & \text { Unipolar current input mon }\end{array}$	$\mathrm{mA})$ to +20 mA)	
Note:	AI: Analog Input		
p50701[0...n]	CUD analog input 0 scaling / CUD AI 0 scal		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-1000.0 [\%]	1000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for analog input 0 (X177.25/26) on the CUD.		
	The value indicates the percentage value for the mapping of an input voltage of 10 V or an input current of 20 mA at the analog input.		
	Example:		
	p50701 = 90\%		
	--> 10 V or 20 mA is scaled to 90%		
	--> 5 V or 10 mA is equivalent to 45%		
p50702	CUD analog input 0 offset / CUD Al 0 offs		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the offset for analog input 0 (X177.25/26) on the CUD.		

2.2 List of parameters

p50703	CUD analog input 0 signal processing / CUD AI 0 sig proc		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the signal processing mode for analog input 0 (X177.25/26) on the CUD.		
Value:	0: Signal not controlled 1: Signal absolute value gen 2: Signal inverted 3: Signal absolute value gen	rted	
$\overline{\mathrm{p} 50704}$	BI: CUD analog input 0 inversion / CUD AI 0 inv		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- -		0
Description:	Sets the signal source for inverting the signal from analog input 0 (X177.25/26) on the CUD. 1 signal: Inversion		
p50705	CUD analog input 0 smoothing time constant/ CUD AI 0 T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the signal from analog input 0 (X177.25/26) on the CUD.		
$\overline{\mathrm{p} 50706}$	BI: CUD analog input 0 signal source for enable / CUD AI 0 ena sig s		
DC_CTRL	Can be changed: T Data type: Unsigned32 / Binary	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description: Note:	Sets the signal source for enabling analog input 0 (X177.25/26) on the CUD.		
	1 signal: Analog input enabled		
	0 signal: Analog input not enabled (r52011 $=0 \%$)		
p50707	CUD analog input 0 simulation setpoint / CUD AI 0 sim setp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-130.0 [\%]	130.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for the simulation of analog input 0 (X177.25/26) on the CUD.		

2.2 List of parameters

p50712	CUD analog input 1 offset / CUD AI 1 offs		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the offset for analog input 1 (X177.27/28) on the CUD.		
p50713	CUD analog input 1 signal processing / CUD AI 1 sig proc		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the signal processing mode for analog input 1 (X177.27/28) on the CUD.		
Value:	0 : Signal not controlled		
	1: Signal absolute value generation		
	2: Signal inverted		
	3: Signal absolute value generation inverted		
p50714	BI: CUD analog input 1 inversion / CUD AI 1 inv		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for inverting the signal from analog input 1 (X177.27/28) on the CUD. 1 signal: Inversion 0 signal: No inversion		
p50715	CUD analog input 1 smoothing time constant / CUD AI 1 T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the signal from analog input 1 (X177.27/28) on the CUD.		
p50716	BI: CUD analog input 1 signal source for enable / CUD AI 1 ena s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for enablin	put 1 (X177.27/28) on the	

Note:	1 signal:		
	Analog input is enabled		
	0 signal:		
	Analog input is disabled (value $=0 \%$)		
p50717	CUD analog input 1 simulation setpoint / CUD AI 1 sim setp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-130.0 [\%]	130.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for the simulation of analog input 1 (X177.27/28) on the CUD.		
Dependency:	See also: p50719		
Note:	Simulation is selected using p50719 = 1 .		
p50719	CUD analog input 1 simulation selection / CUD Al 1 sim sel		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to select the simulation of analog input 1 (X177.27/28) on the CUD.		
Value:	0 : Simulation deactivated		
Dependency:	See also: p50717		
Note:	The setpoint for the simulation is set in p50717.		
p50721[0...n]	CUD analog input 2 scaling / CUD AI 2 scal		
DC_CTRL	Can be changed: U, T Data type: FloatingPoint32	Calculated: -	Access level: 2
		Dyn. index: DDS, p0180	
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-1000.0 [\%]	1000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for analog input 2 (X177.29/30) on the CUD.		
	The value indicates the percentage value for the mapping of an input voltage of 10 V at the analog input.		
	Example:		
	p50721 = 90\%		
	--> 10 V is scaled to 90%		
	--> 5 V corresponds to 45%		
Note:	AI: Analog Input		
p50722	CUD analog input 2 offset / CUD AI 2 offs		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the offset for analog input 2 (X177.29/30) on the CUD.		

2.2 List of parameters

p50723	CUD analog input 2 signal processing / CUD AI 2 sig proc		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the signal processing mode for analog input 2 (X177.29/30) on the CUD.		
Value:	0: Signal not controlled		
	1: Signal absolute value generation		
	2: Signal inverted		
	3: Signal absolute value generation inverted		
p50724	BI: CUD analog input 2 inversion / CUD AI 2 inv		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / BinaryP group:-	Dyn. index: -	Function diagram: 2080
		Unit group: -	Unit selection: -
	P group: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for inverting the signal from analog input 2 (X177.29/30) on the CUD. 1 signal: Inversion		
p50725	CUD analog input 2 smoothing time constant / CUD AI 2 T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the signal from analog input 2 (X177.29/30) on the CUD.		
p50726	BI: CUD analog input 2 signal source for enable / CUD AI 2 ena s_src		
DC_CTRL	Can be changed: T Data type: Unsigned32 / Binary Pgroup: -	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2080
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
			1
Description: Note:	Sets the signal source for enabling analog input 2 (X177.29/30) on the CUD.		
	1 signal:		
	Analog input is enabled		
	0 signal:		
	Analog input is disabled (value $=0 \%$)		

2.2 List of parameters

Index: \quad| $[0]=$ Select input $3(\times 177.1 / 2)$ | |
| ---: | :--- |
| | $[1]=$ Select input $4(\times 177.3 / 4)$ |
| | $[2]=$ Select input $5(\times 177.5 / 6)$ |
| | $[3]=$ Select input $6(\times 177.7 / 8)$ |

p50734[0...3]	BI: Fast analog inputs inversion / Fast Al inv		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2085, 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for invertin 1 signal: Inversion 0 signal: No inversion	s for fast analo	$3 \text { to 6". }$
Index:	$\begin{aligned} & {[0]=\text { Select input } 3(\text { X177.1/2 })} \\ & {[1]=\text { Select input } 4(\text { (X177.3/4) }} \\ & {[2]=\text { Select input } 5(\text { X177.5/6) }} \\ & {[3]=\text { Select input } 6(\text { X177.7/8) }} \end{aligned}$		

p50735[0...3]	Fast analog inputs smoothing time constant / Fast Al T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2085, 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the signals for fast analog inputs "Select input 3 to 6".		
Index:	[0] = Select input 3 (X177.1/2)		
	[1] = Select input 4 (X177.3/4) [2] = Select input 5 (X177.5/6)		
	[3] = Select input 6 (X177.7/8)		

p50736[0...3]	BI: Signal source to enable fast analog inputs / Fast Al ena	
DC_CTRL	Can be changed: T Calculated: - Data type: Unsigned32 / Binary Dyn. index: - P group: - Unit group: - Not for motor type: - Scaling: - Min: Max:	Access level: 2 Function diagram: 2085, 2090 Unit selection: Expert list: 1 Factory setting: 1
Description: Index: Note:	Sets the signal source for enabling fast analog inputs "Select input 3 to 6 ". [0] = Select input 3 (X177.1/2) [1] = Select input 4 (X177.3/4) [2] = Select input 5 (X177.5/6) [3] = Select input 6 (X177.7/8) 1 signal: Analog input is enabled 0 signal: Analog input is disabled (value $=0 \%$)	
$\begin{aligned} & \hline \text { p50737[0...3] } \\ & \text { DC_CTRL } \end{aligned}$	Fast analog inputs setpoint simulation / Fast Al sim setp	Access level: 2 Function diagram: 2085, 2090 Unit selection: Expert list: 1 Factory setting: 0.0 [\%]
Description: Index: Dependency: Note:	Sets the setpoint for the simulation of the fast analog inputs (select input $3 \ldots 6$). [0] = Select input 3 (X177.1/2) [1] = Select input 4 (X177.3/4) [2] = Select input 5 (X177.5/6) [3] = Select input 6 (X177.7/8) See also: p50739 Simulation is selected using p50739[0...3] = 1 .	
$\begin{aligned} & \hline \text { p50739[0...3] } \\ & \text { DC_CTRL } \end{aligned}$	Fast analog inputs simulation selection / Fast Al sim sel	Access level: 2 Function diagram: 2085, 2090 Unit selection: Expert list: 1 Factory setting: 0
Description: Value: Index:	Setting to select the simulation of the fast analog inputs (select input $3 \ldots 6$). 0 : Simulation deactivated 1: Simulation activated [0] = Select input 3 (X177.1/2) [1] = Select input 4 (X177.3/4) [2] = Select input 5 (X177.5/6) [3] = Select input 6 (X177.7/8)	
Dependency: Note:	See also: p50737 The setpoint for the simulation is set in $\mathrm{p} 50737[0 . . .3]$.	

2.2 List of parameters

p50741[0...n]	Analog input main actual value scaling / AI m act scal		
DC_CTRL	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-270.00 [V]	270.00 [V]	60.00 [V]
Description:	Sets the input voltage (8-270 V) for scaling to 100%.		
	Rated value of the input voltage at $\mathrm{n}_{\mathbf{m}} \max$ ($=$ tachometer voltage at maximum speed).		
	This parameter specifies the maximum speed at p50083 $=1$.		
Note:	Al: Analog Input		
	Example:		
	p50741 $=60$		
	--> 30 V is scaled to 50% for analog input main actual value scaled		

p50742	Analog input main actual value offset / Al m act offs		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-200.00[\%]$	$0.00[\%]$	
Description:	Sets the offset for the "main actual value" (XT1.103/104).		

p50743	Analog input main actual value signal processing / Al m act sig		
DC_CTRL	Can be changed: T	Calculated:	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the mode for signal processing for the "main actual value" analog input (XT1.103/104).		
Value:	0 : Signal not controlled		
	1: Signal absolute value		
	2: Signal inverted		
	3: Signal absolute value generation inverted		

p50744	BI: Analog input main actual value inversion / Al m act inv		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-		
Description:	Sets the signal source for inverting the signal from the "main actual value" analog input (XT1.103/104).		
	0 signal: No inversion		
	1 signal: Inversion		

p50745	Analog input main actual value smoothing time constant / AI m act T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the time constant for smoothing the signal from the "main actual value" analog input (XT1.103/104).		
p50746	BI: Signal source to enable analog input main actual value / Al m act ena sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		㖪	1
Description:	Sets the signal source for enabling the analog input for the "main actual value" (XT1.103/104).		
Note:			
	0 signal: Analog input not enabled (r52013 $=0 \%$).		
p50747	Analog input main actual value setpoint simulation / AI m_actV sim setp		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-130.0 [\%]	130.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for the simulation of the "main actual value" analog input (XT1.103/104).		
Dependency:	See also: p50749		
Note:	Simulation is selected using p50749 $=1$.		
p50749	Analog input main actual value simulation selection / Al m_actV sim sel		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to select the simulation of the "main actual value" analog input (XT1.103/104).		
Value:	0 : \quad Simulation deactivated 1: Simulation activated		
Dependency:	See also: p50747		
Note:	The setpoint for the simulation is set in p50747.		
p50750	CI: CUD analog output 0 signal source / CUD AO 0 sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source for the output value at analog output 0 (X177.49/50).		

2.2 List of parameters

p50752	CUD analog output 0 smoothing time constant / CUD AO 0 T		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	$0[\mathrm{~ms}]$
	Sets the time constant for smoothing the signal from analog output $0(X 177.49 / 50)$.		

p50753	CUD analog output 0 scaling / CUD AO 0 scal		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-200.00 [V]	200.00 [V]	10.00 [V]
Description:	Sets the scaling for analog output 0 (X177.49/50).		
	The value indicates the output value for the mapping of an input value of 100% at the analog output.		
Note:	Example:		
	p50753 = 5 V		
	--> 100% is scaled to 5 V		
	--> 50% corresponds to 2.5 V		

p50754	CUD analog output 0 offset / CUD AO 0 offs		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-10.00[\mathrm{~V}]$	$0.00[\mathrm{~V}]$	
	Sescription:		

2.2 List of parameters

p50759	CUD analog output 1 offset / CUD AO 1 offs				
DC_CTRL	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: FloatingPoint32		Dyn. index: -	Function diagram: 2095	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-10.00 [V]		10.00 [V]	0.00 [V]	
Description:	Sets the offset for analog output 1 (X177.51/52).				
p50765	CUD digital inputs simulation selection / CUD DI sim sel				
DC_CTRL	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2050, 2060, 2065	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	00000	
Description:	Setting to select the simulation of the digital inputs on the CUD.				
Bit array:		Signal name	1 signal	0 signal	FP
		DI 0 (X177.11)	High	Low	2050
		DI 1 (X177.12)	High	Low	2050
		DI 2 (X177.13)	High	Low	2050
		DI 3 (X177.14)	High	Low	2050
		DI 4 (X177.15)	High	Low	2060
		DI 5 (X177.16)	High	Low	2060
		DI 6 (X177.17)	High	Low	2065
		DI 7 (X177.18)	High	Low	2065
Dependency:	See also: p50766				
Note:	The setpoint for the simulation is set in p50766.0...7.				
p50766	CUD digital inputs simulation setpoint / CUD DI simul setp				
DC_CTRL	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2050, 2060, 2065	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	00000000 bin	
Description:	Sets the setpoint for the simulation of the digital inputs on the CUD.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X177.11)	High	Low	2050
	01	DI 1 (X177.12)	High	Low	2050
	02	DI 2 (X177.13)	High	Low	2050
	03	DI 3 (X177.14)	High	Low	2050
	04	DI 4 (X177.15)	High	Low	2060
	05	DI 5 (X177.16)	High	Low	2060
	06	DI 6 (X177.17)	High	Low	2065
	07	DI 7 (X177.18)	High	Low	2065
Dependency:	See also: p50765				
Note:	Sim	ation is selected using p			

p50770[0...3]	CUD digital outputs inversion / CUD DO inv		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to invert the signals at the CUD's digital outputs.		
Value:	0: Not inverted 1: Inverted		
Index:	$\begin{aligned} & {[0]=\text { DO } 0(X 177.19)} \\ & {[1]=\text { DO } 1(X 177.20)} \\ & {[2]=\text { DO } 2(X 177.21)} \\ & {[3]=\text { DO } 3(X 177.22)} \end{aligned}$		
Note:	DO: Digital Output		
p50771	BI: CUD digital output 0 signal source / CUD DO 0 sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index:	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
		Max:	Factory setting:
			0
Description:	Sets the signal source for digital output 0 (X177.19) on the CUD.		
p50772	BI: CUD digital output 1 signal source / CUD DO 1 s_src		
DC_CTRL	Can be changed: U, T Data type: Unsigned32 / Binary P group:	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2055
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for digital output 1 (X177.20) on the CUD.		
p50773	BI: CUD digital output 2 signal source / CUD DO 2 s_src		
DC_CTRL	Can be changed: U, T Data type: Unsigned32 / Binary P group:	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2055
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
		Max:	Factory setting:
	- -		0
Description:	Sets the signal source for digital output 2 (X177.21) on the CUD.		
p50774	BI: CUD digital output 3 signal source / CUD DO 3 s_src		
DC_CTRL	Can be changed: U, T Data type: Unsigned32 / Binary P group:	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 2055
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source for digital output 3 (X177.22) on the CUD.		
	If p50774 is linked with (2)r51579.0, then this setting only becomes active after the device has restarted!		

p50775	CUD digital output 0 delay time / CUD DO 0 t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the delay time for digital output 0 (X177.19) on the CUD.		
Note:	The level at the digital output can only change if the changed internal level remains constant for longer than the set delay time.		
p50776	CUD digital output 1 delay time / CUD DO 1 t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the delay time for digital output 1 (X177.20) on the CUD.		
Note:	The level at the digital output can only change if the changed internal level remains constant for longer than the set delay time.		
p50777	CUD digital output 2 delay time / CUD DO 2 t_del		
DC_CTRL	Can be changed: U, T	Calculated:	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the delay time for digital output 2 (X177.21) on the CUD.		
Note:	The level at the digital output can only change if the changed internal level remains constant for longer than the set delay time.		
p50778	CUD digital output 3 delay time / CUD DO 3 t_del		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2055
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the delay time for digital output 3 (X177.22) on the CUD.		
Note:	The level at the digital output can only change if the changed internal level remains constant for longer than the set delay time.		
p50780[0...3]	CUD digital inputs/outputs inversion / CUD DI/DO inv		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2060, 2065
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to invert the signals at the CUD's digital outputs.		

p50789[0...3]	CUD digital inputs/outputs type / CUD DI/DO typ		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2060, 2065
	P group: -	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the type for the digital inputs/outputs on the CUD.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Input } \\ \text { 1: } & \text { Output }\end{array}$		
Index:	$[0]=$ DI/DO $4($ (X177.15 $)$ $[1]=$ DI/DO $5(\mathrm{X} 177.16)$ $[2]=$ DI/DO $6(\mathrm{X} 177.17)$ $[3]=$ DI/DO 7 (X177.18)		
Note:	DI/DO: Bidirectional Digital Input/Output		
p50790	P2P IF operating mode / P2P op mode		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 9300
	P group:	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	6	0
Description:	Sets the operating mode for the peer-to-peer interface (P2P IF).		
Value:	0: No function 5: Peer-to-peer com 6: Communication w		
Note:	P2P IF: Peer-to-peer interface		
	CCP: Converter Commutation Protector		
p50791	P2P IF number of data words / P2P num words		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	5	5
Description:	Sets the number of words to be transmitted for the peer-to-peer interface (P2P IF) in "Peer-to-peer communication" mode (p50790 = 5).		
Dependency:	See also: p50790		
p50793	P2P IF baud rate / P2P baud rate		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	13	13
Description:	Sets the baud rate for the peer-to-peer interface (P2P IF).		

2.2 List of parameters

Value:	$1:$	300 baud
	$2:$	600 baud
$3:$	1200 baud	
	$4:$	2400 baud
	$5:$	4800 baud
	$6:$	9600 baud
	$7:$	19200 baud
	$8:$	38400 baud
	$9:$	56700 baud
	$11:$	93750 baud
	$13:$	187500 baud

p50794[0...4]	CI: P2P IF transmit data signal source / P2P tr data sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the data to be transmitted on the peer-to-peer interface (P2P IF). The transmit data is displayed in r50813[0 to 4].		
Index:	$\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \end{aligned}$		
Dependency:	See also: r50813		
p50795	P2P/CCP bus terminator / P2P/CCP bus term		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6970, 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the bus terminator for the peer-to-peer interface and the interface to the SIMOREG CCP.		
Value:	$\begin{array}{ll} 0: & \text { OFF } \\ \text { 1: } & \text { ON } \end{array}$		
Note:	CCP: Converter Commutation Protector		
	P2P: Peer-to-Peer interface		

p50797	P2P IF telegram monitoring time / P2P t_telegr mon		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [s]	65.000 [s]	0.000 [s]
Description:	Sets the telegram monitoring time for the peer-to-peer interface (P2P IF).		
	The time set is only effective in "Peer-to-peer interface" operating mode (p50790 = 5). p50797 $=0$:		
	Monitoring is deactivated.		
	p50797 > 0:		
	Monitoring is activated.		
	As well as one valid telegram being received, the next valid telegram must be received within the set time. Otherwise, fault F60012 is triggered.		

Dependency:	See also: F60012
Note:	Telegram monitoring is activated in the following cases:
	- From receipt of the first error-free telegram
	- After switching on of the electronics power supply
	- From receipt of the first error-free telegram after telegram monitoring has responded (i.e. telegram monitoring
timeout).	
	The telegram monitoring time (p50797) depends on the baud rate set (p50793) The following minimum setting values
are recommended for safe operation:	
	-300 baud --> p50797 $=0.520 \mathrm{~s}$ (recommended minimum value)
	-600 baud --> p50797 $=0.260 \mathrm{~s}$ (recommended minimum value)
	-1200 baud --> p50797 $=0.140 \mathrm{~s}$ (recommended minimum value)
	-2400 baud --> p50797 $=0.080 \mathrm{~s}$ (recommended minimum value)
	-4800 baud --> p50797 $=0.040 \mathrm{~s}$ (recommended minimum value)
	If the "Automatic restart" function (p50086 >0) has been selected on the peer-to-peer communication partner, only a
parameter setting p50797 $>\mathrm{p} 50086$ (on the communication partner) will be meaningful.	

2.2 List of parameters

r50813[0...4]	P2P IF transmit data display / P2P tr data disp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the transmit data for the peer-to-peer interface (P2P IF). The signal source for the data to be transmitted is set via connector input p50794[0 to 4].		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	$[3]=$ Word 4$[4]=$ Word 5		
Dependency:	See also: p50794		
p50816	BI: P2P IF receive enable signal source / P2P recv ena sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	1
Description:	Sets the signal source to enable data to be received on the peer-to-peer interface (P2P IF). 1 signal: Data receive enabled 0 signal: Data receive not enabled		
p50817	BI: P2P IF transmit enable signal source / P2P tr ena sig s		
DC_CTRL	Can be changed: T Data type: Unsigned32 / Binary	Calculated: -	Access level: 2
		Dyn. index: -	Function diagram: 9300
	P group:	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-		1
Description:	Sets the signal source to enable 1 signal: Data transmission enabled 0 signal: Data transmission not en	ransmitted on the	ce (P2P IF).
p50820	PPI/USS bus terminator / PPI/USS bus term		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Function diagram: 2410
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets the bus terminator for the RS485 interface (PPI/USS, X178).		
Value:	0: OFF 1: ON		

2.2 List of parameters

$\mathbf{r 5 0 8 2 7}$	Internal diagnostics / Int diag		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8060
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the counter reading for internal errors.		

r50829[0...55] CUD compensation values / CUD calib. val

DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index:	Function diagram: 8054
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
Description:	-	-	-
	Displays the compensation values for the analog inputs/outputs on the Control Unit DC MASTER (CUD).		

Note:

Analog input 0 - X177.25/26 - voltage input
[0] = Compensation value at 0 V
[1] = Compensation value at +10 V
[2] = Compensation value at -10 V
[3] = Compensation value at reference value
Analog input 0 - X177.25/26 - current input
[4] = Compensation value at 0 mA
[5] = Compensation value at +20 mA
[6] = Compensation value at -+20 mA
[7] = Compensation value at reference value
Analog input 1 - X177.27/28 - voltage input
[8] = Compensation value at 0 V
[9] $=$ Compensation value at +10 V
[10] = Compensation value at -10 V
[11] = Compensation value at reference value
Analog input 1 - X177.27/28 - current input
[12] $=$ Compensation value at 0 mA
[13] = Compensation value at +20 mA
[14] = Compensation value at +20 mA
[15] = Compensation value at reference value Analog input 2 - X177.29/30
[16] = Compensation value at 0 V
[17] = Compensation value at +10 V
[18] = Compensation value at -10 V
[19] = Compensation value at reference value
Analog input XT1.103/104-25 V
[20] = Compensation value at 0 V
[21] = Compensation value at +25 V
[22] = Compensation value at -25 V
[23] = Compensation value at reference value Analog input XT1.103/104-80 V
[24] = Compensation value at 0 V
[25] = Compensation value at +80 V
[26] = Compensation value at -80 V
[27] = Compensation value at reference value Analog input XT1.103/104-270 V
[28] = Compensation value at 0 V
[29] = Compensation value at +270 V
[30] = Compensation value at -270 V
[31] = Compensation value at reference value Analog input 3 - X177.1/2
[32] = Compensation value at 0 V
[33] = Compensation value at +10 V
[34] = Compensation value at -10 V
[35] = Compensation value at reference value
Analog input 4 - X177.3/4
[36] = Compensation value at 0 V
[37] = Compensation value at +10 V
[38] = Compensation value at -10 V
[39] = Compensation value at reference value
Analog input 5-X177.5/6
[40] = Compensation value at 0 V
[41] = Compensation value at +10 V
[42] = Compensation value at -10 V
[43] = Compensation value at reference value

2.2 List of parameters

Analog input 6 - X177.7/8
[44] = Compensation value at 0 V
[45] = Compensation value at +10 V
[46] = Compensation value at -10 V
[47] = Compensation value at reference value
Analog output 0 - X177.49/50
[48] = Compensation value for 0 V
[49] = Compensation value for +10 V
[50] = Compensation value for -10 V
[51] = Compensation value for reference value
Analog output 1 - X177.51/52
[52] = Compensation value for 0 V
[53] = Compensation value for +10 V
[54] = Compensation value for -10 V
[55] = Compensation value for reference value
The compensation values for analog outputs 0 and 1, as well as for analog inputs 3 to 6 , are calculated from the measurement result + an offset of 32768 .

p50830

DC_CTRL

Dependency
Note:

Thyristor diagnostics mode / Thyr_diag mode
Can be changed: T Calculated: -
Data type: Integer16 Dyn. index: -
P group: -
Not for motor type: -
Min:
0

Unit group: -
Scaling: -
Max:
3

Access level: 2
Function diagram: 6865
Unit selection: -
Expert list: 1

Factory setting:

Description: Sets the thyristor diagnostics mode.
Value $=0$:
The thyristor test is de-activated.
Value $=1$:
The thyristors are tested when first switching on or jogging after the electronics power supply has been switched on.
Value $=2$:
The thyristors are tested at each switch-on or jogging.
Value $=3$:
The thyristors are tested at the next switch-on or jogging. p50830 is set to 0 if the test was completed error-free.
Value:
0: \quad Switched off
After the first ON command
After each ON command
After next ON command
See also: F60061
The thyristor test function cannot be used when supplying extremely high inductances (e.g. when supplying a field from armature terminals, supplying solenoids, etc.) and must be de-activated (p50830 = 0) .

When SINAMICS DCM are connected in parallel (6 pulse or 12 pulse), thyristor diagnostics may only be selected at the master. The thyristor diagnostics is then first carried out at the master, and then automatically at all of the slaves one after the other. If a defective thyristor is detected at a SINAMICS DCM, then the corresponding fault message is initiated at this SINAMICS DCM and not at the master where thyristor diagnostics was started.

p50831	Diagnostics memory trace control word / Trace STW		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 8052
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the trigger resolution for the trace.		
Value:	0: \quad No trigger for start		
	1: Start immediately		
	2: Start together with STARTER trace		
Note:	If p50831 = 2:		
	This setting is only active once, and before the next common		
	initiation must be set back to a value of 0 - and after that, back to a value of 2 again.		

p50833	Device fan test / Dev fan test		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8047
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to test the device fans.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Stop fan } \\ \text { 1: } & \text { Start fan }\end{array}$		
Dependency:	See also: r53135		
	See also: F60167		
Note:	The status of the fans is displayed in binector outputs r53135.8 to 11.		
r50836[0...3]	Voltage sensing communication error counter / V_sens comm_err		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Function diagram: 8054
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the communication error for ar	e and field volta	

2.2 List of parameters

Index: \quad| $[0]$ | $=$ Number of CRC errors armature |
| :--- | :--- |
| | $[1]=$ Number of communication errors armature |
| $[2]$ | $=$ Number of CRC errors field |
| | $[3]=$ Number of communication errors field |

p50837[0...11]	Reset thyristor load data / Thyr_load reset		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to reset the thyristor load data for a thyristor.		
Value:	0: Do not reset data 1: Reset data		
Index:	[0] = Thyristor X11 [1] = Thyristor X12 [2] = Thyristor X13 [3] = Thyristor X14 [4] = Thyristor X15 [5] = Thyristor X16 [6] = Thyristor X21 [7] = Thyristor X22 [8] = Thyristor X23 [9] = Thyristor X24 [10] = Thyristor X25 [11] = Thyristor X26		
Note:	It is only permissible to re	d data after a th	ced.

p50838[0...2]	Diagnostics memory message number / Diag_mem msg_no		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8052
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory list: 1
	Min:	Max:	60000
	60000	60999	
Description:	Sets message numbers for the diagnostics memory.		
	A trace is saved in the diagnostics file if one of these messages occurs.		

r50840[0...31]	Gating module serial number / Gate_mod ser_no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the serial number of the gating module.		
	For the Control Module, the serial number of the voltage sensing module is displayed.		
	r50840[0]: Serial number character 1		
	...		
	r50840[31]: serial number character 32		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Note:	An ASCII table (excerpt)	xample, in the ap	anual.

r50841[0...31]	Gating module part number / Gat_mod part no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the part number of the gating module.		
	For the Control Module, the part number of the voltage sensing module is displayed.		
	r50841[0]: Part number character 1		
	...		
	r50841[31]: Part number character 32		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r50842[0...31]	Field module serial number / Field mod ser no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the serial number of the field module.		
Note:	The individual digits of the number are displayed in ASCII code in the indices.		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r50843[0...31]	Field module part number / Field mod part no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6960
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	Displays the part number of the field module.		
Note:	The individual digits of the number are displayed in ASCII code in the indices.		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
p50899[0...6]	Control blocks activation / Ctrl blocks act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 1721
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	1
Description:	Setting to activate/de-activate control blocks.		
	For index [0] (FP3130):		
	The switch-on command and the intervention of r0807.0 and r53010.2 are always active.		
	For index [2] (FP6810):		
	The "speed actual value selection" is always active.		
Value:	0: Control block de 1: Control block ac		

2.2 List of parameters

Index:	$[0]=$ Speed setpoint processing (FP3105 to FP3135)
	$[1]=$ RFG (FP3150 to FP3155)
$[2]$	$=$ Closed-loop speed control (FP6800 to FP6820)
$[3]$	$=$ Torque limiting/Current limitation (FP6825 to FP6845, FP8040)
$[4]$	$=$ Closed-loop armature current control (FP6852 to FP6855)
$[5]$	$=$ EMF setpoint processing and closed-loop control (FP6900)
$[6]$	$=$ Closed-loop field current control (FP6905 to FP6910)

r50960[0...4]	Device fan operating hours display / Dev_fan h disp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8045
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	- [h]	- [h]	- [h]
Description:	Displays the operating hours for the device fan.		
Index:	$\begin{aligned} & {[0]=\text { Fan terminal XV1 }} \\ & {[1]=\text { Fan terminal XV2 }} \\ & {[2]=\text { Fan terminal XV3 }} \\ & {[3]=\text { Fan terminal XV4 }} \\ & {[4]=\text { Fan ON }} \end{aligned}$		
Dependency:	See also: p50961, p50962		
	See also: A60165		
Note:	The operating hours from "fan on" are only increased for the Control Module.		
p50961[0...4]	Device fan service life / Dev_fan serv life		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8045
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [h]	1000000 [h]	[0...3] 30000 [h]
			[4] 0 [h]
Description:	Sets the service life for the device fan.		
Index:	[0] = Fan terminal XV1		
	[1] = Fan terminal XV2		
	[2] = Fan terminal XV3		
	[3] = Fan terminal XV4		
	[4] = Fan ON		
Dependency:	See also: r50960, p50962		
	See also: A60165		
Note:	An appropriate alarm is issued 500 hours before the set service life expires.		
p50962[0...4]	Device fan reset operating hours / Dev_fan reset h		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8045
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to reset the operating hours of the device fan that have accumulated.		

Value:	$\begin{array}{ll} 0: & \text { Inactive } \\ \text { 1: } & \text { Reset } \end{array}$		
Index:	$\begin{aligned} & \text { [0] = Fan terminal XV1 } \\ & {[1]=\text { Fan terminal XV2 }} \\ & \text { [2] = Fan terminal XV3 } \\ & \text { [3] = Fan terminal XV4 } \\ & {[4]=\text { Fan ON }} \end{aligned}$		
Dependency:	See also: r50960, p50961		
Note:	Procedure to reset the operating hours:		
	Set p50962[x] = 1		
	The parameter is automatically set to zero after this is done.		
p50963	Response of the fan control / Resp fan ctrl		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8047
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Response of the fan control:		
	0: The fan control takes into account the temperature sensor.		
	1: The fan control does not take into account the temperature sensor.		
Value:	0 : \quad The fan control takes into account the temperature sensor. 1: The fan control doesn't take into account the temperature sensor		
Dependency:	See also: r50960, p50961		
Note:	Setting 1:		
	The fan is only switched off after the parameterized fan run-on time, independent of the various temperature measurements and independent of the calculated thyristor temperature rise (=barrier layer temperature of the thyristors).		
	As a consequence, it is also possible to acknowledge a fan fault even at ambient temperatures $>35^{\circ}$.		

p51117[0...15]	BI: Binector-connector converter signal source / Bin/con sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	0	
Description:	Sets the signal sources for the binector inputs on the binector-connector converter.		
Dependency:	See also: r52620		

p51118	Invert binector-connector converter signals / Bin/con sig inv		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9300
	P group: -	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0000000000000000 bin
Description:	Setting to invert the individual binector inputs of the binector-connector converter.		

2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	BI p51117[0]	Inverted	Not inverted	-
	01	BI p51117[1]	Inverted	Not inverted	-
	02	BI p51117[2]	Inverted	Not inverted	-
	03	BI p51117[3]	Inverted	Not inverted	-
	04	BI p51117[4]	Inverted	Not inverted	-
	05	BI p51117[5]	Inverted	Not inverted	-
	06	BI p51117[6]	Inverted	Not inverted	-
	07	BI p51117[7]	Inverted	Not inverted	-
	08	BI p51117[8]	Inverted	Not inverted	-
	09	BI p51117[9]	Inverted	Not inverted	-
	10	BI p51117[10]	Inverted	Not inverted	-
	11	BI p51117[11]	Inverted	Not inverted	-
	12	BI p51117[12]	Inverted	Not inverted	-
		BI p51117[13]	Inverted	Not inverted	-
		BI p51117[14]	Inverted	Not inverted	-
	15	BI p51117[15]	Inverted	Not inverted	-
Dependency:		lso: p51117, r52620			
Note:	BI:	nector Input			
p51400		-phase AC powe	control type	type	
DC_CTRL		be changed: T	Calculated: -	Access le	
		type: Integer16	Dyn. index: -	Function	
	P	up: -	Unit group: -	Unit selec	
		or motor type: -	Scaling: -	Expert lis	
	Min		Max:	Factory s	
	0		3	0	
Description:		ts the control mode whe	-phase AC powe		
Value:		No AC power controlle			
		Three-phase AC powe	ase angle control		
		Three-phase AC powe	wave control		
		Three-phase AC pow	wave control		
Dependency:	See	also: p51405, p51406, p			
p51404		voltage sensing	scaling / U		
DC_CTRL		be changed: T	Calculated: -	Access le	
		type: FloatingPoint32	Dyn. index: -	Function	
		up: -	Unit group: -	Unit selec	
		or motor type: -	Scaling: -	Expert lis	
	Min		Max:	Factory s	
		0 [V]	2000.000 [V]	540.000 [V]	
Description:		g that line voltage (insta) that is to be em	t analog input	
Dependency:	The	parameter is only effectiv			
p51405		e-phase AC powe	synchronizi	lection / A	y
DC_CTRL	Can	be changed: T	Calculated: -	Access le	
	Dat	type: Integer16	Dyn. index: -	Function	
		up: -	Unit group: -	Unit selec	
	Not	or motor type: -	Scaling: -	Expert lis	
	Min		Max:	Factory s	
	0		1	1	
Description:	Set	the synchronizing voltag	ed as three-phas	oller.	
Value:		Synchronization volta Synchronizing voltage			
Dependency:	See	also: p51400, p51406			

Note: | - The parameter is only active, if p51400 is set > 0 (used as three-phase AC power controller). | |
| :--- | :--- |
| - The phase-to-phase voltage U-V must always be sensed as synchronizing voltage. | |
| - A clockwise phase sequence must always be used when connecting the power. | |
| - For p51405 = 0, the internal synchronizing voltage is used. An external potential transformer is not required. | |
| - A setting value of 0 is only permissible for DCM Control Modules or for devices with option L30. | |
| | - Siemens must always be contacted regarding the availability of devices with option L30 (DCM with three-phase |
| controller power unit) before ordering. | |
| | - The parameter only becomes active the next time that the electronics power supply is switched-off/switched-on. |

p51406	CI: Three-phase AC power controller duty cycle signal source / AC_ctr DutyCyc s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the duty cycle when used as three-phase AC power controller.		
Dependency:	See also: p51400, p51405		
Note:	For phase angle control, the following applies:		
	0% to 100% corresponds to $150{ }^{\circ}$ to 0°.		
	For full and half-wave control, the following applies:		
	0% to 100% corresponds to 0% to 100% duty cycle (= switch-on time/cycle time).		
p51410	AC power controller cycle time / AC_ctr cycle time		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	5	5000	50
Description: Dependency:	Sets the cycle time (in line periods) when used as three-phase AC power controller for full and half wave control See also: p51400		
p51411	Three-phase AC power controller full wave control distribution / AC_ctrl full distr		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	2	1
Description:	Selects the distribution of the full waves when used as three-phase AC power controller.		
Value:	1: Block distribution 2: Even distribution		
Dependency:	See also: p51400		
p51415	Three-phase AC power controller starting firing angle / AC_ctrl strt_angle		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [${ }^{\circ}$]	90.00 [${ }^{\text {] }}$]	0.00 [$\left.{ }^{\circ}\right]$
Description:	Sets the starting firing angle when used as three-phase AC power controller for full and half wave control.		

2.2 List of parameters

Dependency:	See also: p51400		
p51416	Three-phase AC power controller phase chop / AC_ctr ph chop		
DC_CTRL	Can be changed: T	Calculated:	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the phase chop when used as three-phase AC power controller for full and half wave control.		
Value:	$\begin{array}{ll}0: & \text { No phase chop } \\ \text { 1: } & \text { Phase chop of the last half wave } \\ \text { 2: } & \text { Phase chop of the last two half waves }\end{array}$		
Dependency:	See also: p51400		
Note:	Setting 2 is suitable for a transformer load.		
p51420	Three-phase AC power controller soft start ramp duration / AC_ctrl soft t		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	500	0
Description:	Sets the duration of the soft start ramp (in line periods) when used as three-phase AC power controller for full and half wave control.		
	The duration of the soft start ramp is defined as follows:		
	Number of line periods in which the firing angle is shifted from 180° to the final firing angle (p 51421).		
Dependency:	See also: p51400		
p51421	Three-phase AC power controller soft start final firing angle / AC_ctrl soft fin_a		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$\left.0.00{ }^{[0}\right]$	180.00 [$\left.{ }^{\circ}\right]$	$\left.0.00{ }^{[1}\right]$
Description: Dependency:	Sets the final firing angle for a soft start when used as three-phase AC power controller for full and half wave control. See also: p51400		
p51422	AC power controller max switch off duration w/out new soft start / AC_ctrl max off		
DC_CTRL	Can be changed: T	Calculated:	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.0 [s]	100.0 [s]	0.0 [s]
Description:	Sets the maximum off duration without a new soft start ramp when used as three-phase AC power controller for full and half wave control. See also: p51400		
Dependency:			

r51430	CO: Three-phase AC power controller cycle output not shifted / AC_ctrl cyc outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the unshifted cycle output when used as three-phase AC power controller. See also: p51400		
Dependency:			
Note:	This output supplies a staircase-type signal (0% to 100%). This signal specifies how many line periods of the cycle period have already gone The offset of the cycle by the signal specified with p51437 is not taken into account.		
r51431	CO: Three-phase AC power controller actual cycle output / AC_ctrl cyc act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual cycle output when used as three-phase AC power controller.		
Dependency:	See also: p51400		
Note:	The same as r51430; however, the offset by the signal specified with p51437 is taken into account.		
p51435	Three-phase AC power controller type of cycle generation / AC_ctrl cyc gen		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the cycle generation type when used as three-phase AC power controller for full and half wave contro		
Value:	1: Internal cycle generation		
Dependency:	See also: p51400		
p51436	CI: AC power controller cycle external signal source / AC_ctrl cyc s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the external cycle when used as three-phase AC power controller		
Dependency:	See also: p51400		

2.2 List of parameters

p51437	CI: Three-phase AC power controller cycle offset signal source / AC_ctr cyc off s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the cycle offset when used as three-phase AC power controller		
Dependency:	See also: p51400		
Note:	This allows a higher-level control system to specify by how many percent (0% to 100%) the clock cycles of individual three-phase AC power controllers should be shifted.		
r51560[0...1]	CCP software version / CCP SW version		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the software version for the Converter Commutation Protector (CCP).		
	Index 0: CCP software version		
	Index 1: Version of the CCP boot sector software		
r51569[0..15]	CCP serial number / CCP ser no.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description: Note:	Displays the serial number of the Converter Commutation Protector (CCP).		
	The individual digits of the number are displayed in ASCII code in the indices.		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r51570	CCP article number / CCP Article No.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	254	-
Description: Value:	Displays the article number (MLFB) of the connected Converter Commutation Protector (CCP).		
	0: No CCP connected		
	250: 6RA7085-6FC00-0		
	251: 6RA7091-6FC00-0		
	252: 6RA7095-6FC00-0		
	253: 6RA7090-6KC00-0		

r51571	CCP rated supply voltage / CCP V_rated					
DC_CTRL	Can be changed: -		Calculated: -		Access level: 3	
	Data type: FloatingPoint32		Dyn. index: -		Function diagram: 6970	
	P group: -		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min:		Max:		Factory setting:	
	- [V]		- [V]		- [V]	
Description:	Displays the rated supply voltage according to the rating plate of the Converter Commutation Protector (CCP).					
r51572	CCP rated current / CCP I_rated					
DC_CTRL		be changed: -	Calc	lated: -	Access	
	Dat	type: FloatingPoint32	Dyn.	index: -	Functio	
	P g	up: -	Unit	group: -	Unit se	
		or motor type: -	Scal	g: -	Expert	
	Min		Max:		Factory	
	- [A]		- [A]		- [A]	
Description:	Displays the rated current according to the rating plate of the Converter Commutation Protector (CCP).					
r51574.0.. 12	CO/BO: CCP state / CCP state					
DC_CTRL	Can be changed: -		Calculated: -		Access level: 3	
	Dat	type: Unsigned16	Dyn.	index: -	Functio	
	P g	up: -	Unit	group: -	Unit se	
		or motor type: -	Scal		Expert	
	Min		Max:		Factory	
	-		-		-	
Description:	Display and connector output for the state of the Converter Commutation Protector (CCP).					
Bit array:	Bit	Signal name		1 signal	0 signal	FP
	00	Voltage at U, V, W ok		Yes	No	6970
	01	Voltage at C-D greate		Yes	No	6970
	02	Voltage at C-D less th		Yes	No	6970
	03	Turn-off capacitors hav setpoint voltage		Yes	No	6970
	04	Turn-off in progress		Yes	No	6970
	05	Connection between pa		Yes	No	6970
	08	Connector X165_2 (at with X165 (at CCP)	cted	Yes	No	6970
	09	12 t value voltage limiting	high	Yes	No	6970
	10	12 t value voltage limiting	high	Yes	No	6970
	11	Memory for technical da		Yes	No	6970
	12	Chopper capacitors pre	leted	Yes	No	6970

r51575	CO: CCP 12t value voltage limiting chopper 1 / CCP I2t chopper 1		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the I2t value for the voltage limiting chopper 1 for Converter Commutation Protector (CCP).		

2.2 List of parameters

r51576	CO: CCP I2t value voltage limiting chopper 2 / CCP I2t chopper 2		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the I2t value for voltage limiting chopper 2 for the Converter Commutation Protector (CCP).		

p51577	CCP chopper voltage setpoint response threshold upper / CCP U_set thr up		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	850 [V]	2900 [V]	1600 [V]
Description:	Sets the upper response threshold of the voltage limiter implemented in the CCP.		
	During the turn-off operation of the CCP when reducing the armature current, this limits the counter voltage that is created - and which is also necessary - to a non-hazardous value for the basic device and for the associated CCP.		
Note:	CCP: Converter Commutation Protector		
	The parameter is set automatically during the "optimization run for CCP" (p50051 = 30).		
	The correct setting of this parameter can be taken from the following reference:		
	SIMOREG CCP Operating Instructions		

r51579.0...	CO/BO: CCP command / CCP command		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index:	Function diagram: 6970
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the command from the SINAMICS DCM to the SIMOREG CCP.		

2.2 List of parameters

Note:	If the test command is issued in operation (i.e. in operating state 00.1 or 00.2), then the turn-off operation of the SIMOREG CCP acts on the thyristor bridge that is presently enabled. This is independent of whether the turn-off command is issued in torque direction I or II.
$\begin{aligned} & \text { p51590[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Cl: Armature current ctrl armature cct resistance adaptation s_src / la ctr Ra s_src Can be changed: T Calculated: - Access level: 3 Data type: Unsigned32 / FloatingPoint32 Dyn. index: CDS, p0170 Function diagram: 6854 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: - - 1
Description: Dependency:	Sets the signal source to adapt the armature circuit resistance. See also: p50110
$\begin{aligned} & \text { p51591[0...n] } \\ & \text { DC_CTRL } \end{aligned}$	Armature inductance reduction factor / L_armat red fact
Description:	Sets the reduction factor for the current-dependent armature inductance. At 100% motor rated current (p 50100), the armature inductance is lower than it is at armature current 0 by this factor
Dependency:	See also: p50111
Note:	The parameter is set automatically during the "optimization run for pre-control and the current controller for the armature converter" ($\mathrm{p} 50051=25$).

p51592[0...n] Armature commutating inductance / Arm Lk

Description: Sets the commutating inductance in the armature circuit.

p51594[0...n]	Interphase inductance in 12-pulse operation / L_intph 12-pulse		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6854
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [mH]	1000000.00 [mH]	0.00 [mH]
Description:	Sets the inductance of the interphase transformer in 12-pulse operation (two 6-pulse thyristor bridge circuits connected in parallel).		
Dependency:	See also: p51595		
Note:	The parameter is set automatically during the "optimization run for pre-control and the current controller for the armature converter" ($\mathrm{p} 50051=25$).		

p51595[0...n]	Interphase inductance reduction factor / L_intph red fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6854
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	10 [\%]	100 [\%]	100 [\%]
Description:	Sets the reduction factor for the current-dependent interphase inductance.		
	At 100% motor rated current (p 50100), the interphase inductance is lower than it is at armature current 0 by this factor.		
Dependency:	See also: p51594		
Note:	The parameter is set automatically during the "optimization run for pre-control and the current controller for the armature converter" (p50051 = 25).		
p51596[0...n]	Interphase resistance in 12-pulse operation / R_intph 12-pulse		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: -
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [ohm]	1000.000 [ohm]	0.000 [ohm]
Description:	Sets the resistance of an interphase transformer in 12-pulse operation.		
Note:	The parameter is set automatically during the "optimization run for pre-control and the current controller for the armature converter" (p50051 = 25).		
p51597[0...n]	Field inductance reduction factor / L_field red fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	10 [\%]	100 [\%]	100 [\%]
Description:	Sets the reduction factor for the current-dependent field inductance.		
	At 100\% motor rated current (p50102), the field inductance is lower than it is at field current 0 by this factor.		
Dependency:	See also: p50116		
Note:	The parameter is set automatically during the "optimization run for pre-control and the current controller for the field current controller" (p50051 = 24).		
r51598	Short-circuit voltage Uk, per unit / V_sh-cct Uk p.u.		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6854
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the per unit short-circuit voltage of the line supply.		
	The value is calculated from the commutation inductance (p 51592) and the rated converter data ($\mathrm{In}=\mathrm{r} 50072[1], \mathrm{Vn}=$ $\mathrm{p} 50078[0], \mathrm{fn}=\mathrm{r} 50017$).		

p51608[0...n]	Setpoint processing reduction factor / Red factor		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	15.00 [\%]
Description:	Sets the reduction factor for the speed setpoint in the context of setpoint processing. Dependent upon binector input (p51607):		
Dependency:			
	Dependent upon binector input (p51607): 1 signal:		
	The reduction factor (p 51608) is not applied (r52194 $=$ r52195).		
	0 signal:		
	The reduction factor (p 51608) is applied ($\mathrm{r} 52194=\mathrm{r} 52195 \times \mathrm{p} 51608$).		
	See also: p51607, r52194, r52195		
p51615	Zero current signal maximum wait time / la=0 t_wait max		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6860
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	10000 [ms]
Description:	Sets the maximum delay time for the zero current signal.		
	Here, the maximum wait time for the zero current signal for transitions into operating states greater than equal to 07.0 is parameterized.		
Note:	For value $=0$, the associated function is deactivated.		
p51616	E stop response / E stop response		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2070
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the response of the control to the triggering of an E stop.		
Value:	0: E stop has the same effect as OFF2 1: E stop triggers immediate pulse inhibit		

Note:	If value $=0$: E stop has the same effect as OFF2. If value $=1$: E stop interrupts the firing pulse sequence immediately. The process does not wait for $\mathrm{la}=0$ and Alpha W pulses are not emitted.		
p51618	LOCAL mode enable behavior / LOCAL enab behav		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 2580
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the behavior for enable via terminal X177.13 in the LOCAL mode.		
Value:	0: \quad Terminal X 177.13 is not effective in the LOCAL mode 1: Terminal X177.13 is effective in the LOCAL mode		
p51619[0...n]	BI: Signal source for switching on line contactor / Line cont ON sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 2070
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	53081.0
Description:	Sets the signal source for the "Line contactor ON" relay output (XR1.109/110).		

p51651[0...n]	Speed controller start pulse positive setpoint / Start pul pos set		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-100.00[\%]$	$100.00[\%]$	$0.00[\%]$
Description:	Sets the setpoint for the positive start pulse on the speed controller.		
Recommendation:	The value can also be used as an integrator setting value for the speed controller.		

p51652[0...n]	Speed controller start pulse negative factor / Start pul neg fact		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	50.00 [\%]
Description:	Sets the factor for the start pulse when the setpoint is negative.		
p51653[0...n]	Speed controller start pulse negative setpoint / Start pul neg set		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-100.00 [\%]	100.00 [\%]	0.00 [\%]
Description:	Sets the setpoint for the negative start pulse on the speed controller.		

p51655	CI: Speed controller start pulse positive signal source / Start p pos sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52451[0]
Description:	Sets the signal source for the setpoint of the positive start pulse on the speed controller.		
p51656	Cl: Speed controller start pulse negative signal source / Start p neg sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	52452[0]
Description:	Sets the signal source for the setpoint of the negative start pulse on the speed controller.		
p51657[0...n]	BI: Speed controller start pulse pos/neg changeover signal source / Start p ch sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for changing over the setpoint between positive and negative start pulses on the speed controller.		
p51660	BI: Signal source for master switch travel command 1 / Trav comm 1 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for travel command 1 on the 4-step master switch.		
p51661	BI: Signal source for master switch travel command 2 / Trav comm 2 s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for travel command 2 on the 4 -step master switch.		

p51662	BI: Signal source for master switch setpoint step S2 / Set step S2 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for changing over to setpoint step S2 on the 4-step master switch.		
p51663	BI: Signal source for master switch setpoint step S3 / Set step S3 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for changing over to setpoint step S3 on the 4-step master switch.		
p51664	BI: Signal source for master switch setpoint step S4 / Set step S4 sig s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for changing over to setpoint step S4 on the 4-step master switch.		
p51665	Master switch setpoint step S1 value / Set step S1 value		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	110.00 [\%]	10.00 [\%]
Description:	Sets the setpoint for setpoint step S1 on the 4-step master switch.		
p51666	Master switch setpoint step S2 value / Set step S2 value		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	110.00 [\%]	25.00 [\%]
Description:	Sets the setpoint for setpoint step S2 on the 4-step master switch.		

p51667	Master switch setpoint step S3 value / Set step S3 value		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	110.00 [\%]	40.00 [\%]
Description:	Sets the setpoint for setpoint step S3 on the 4-step master switch.		
p51668	Master switch setpoint step S4 value / Set step S4 value		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	0.00 [\%]	110.00 [\%]	100.00 [\%]
Description:	Sets the setpoint for setpoint step S4 on the 4-step master switch.		
p51700[0...1]	CI: Signal source for connector recorder function / Rec fct con sig s		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 8050
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the connectors to be recorded by the recorder function.		
Dependency:	See also: p51701, p51702, p51703, p51704, p51705, p51706		
Note:	[0] = Signal source for the first connector to be recorded		
	[1] = Signal source for the second connector to be recorded		
$\begin{aligned} & \text { p51701[0...1] } \\ & \text { DC_CTRL } \end{aligned}$	BI: Signal source for binector recorder function / Rec fct bin sig s		
	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 8050
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the binectors to be recorded by the recorder function.		
Dependency:			
Note:	[0] = Signal source for the first binector to be recorded		
	[1] = Signal source for the second binector to be recorded		
p51702	Recorder function channel selection / Rec fct sel		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Function diagram: 8050
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1111 bin
Description:	Setting to select the channels to be recorded		

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Channel 0	Active	Not active	-
	01	Channel 1	Active	Not active	-
	02	Channel 2	Active	Not active	-
	03	Channel 3	Active	Not active	-
Dependency:	See also: p51700, p51701, p51703, p51704, p51705, p51706				
p51703	Recorder function recording interval / Rec fct t_rec				
DC_CTRL	Can be changed: U, T		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Functio	
	P group: -		Unit group: -	Unit sel	
	Not for motor type: -		Scaling: -	Expert I	
	Min:		Max:	Factory	
	1 [s]		1000 [s]	1 [s]	
Description:	Sets the recording interval,	during which the signals selected with the channel selection parameters (p51702.0...3) are scanned and saved internally.			
Dependency:	See also: p51700, p51701, p51702, p51704, p51705, p51706				
p51704	Recorder function save interval / Rec fct t_save				
DC_CTRL	Can be changed: U, T		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Functio	
	P group: -		Unit group: -	Unit sel	
	Not for motor type: -		Scaling: -	Expert I	
	Min:		Max:	Factory	
	1		60	1	
Description:	Set dur IUS	the save interval, which the signals RISINAMICSIDATA	are saved to the	file:	
Dependency:	See also: p51700, p51701, p51702, p51703, p51705, p51706				
Notice:	The value is set in minutes.				
p51705	Start/stop recorder function / Rec fct StartStop				
DC_CTRL	Can be changed: U, T		Calculated: -	Access	
	Data type: Integer16		Dyn. index: -	Functio	
	P group: -		Unit group: -	Unit sel	
	Not for motor type: -		Scaling: -	Expert I	
	Min:		Max:	Factory	
			2	0	
Description:	Setting to start and stop the recorder function.				
	Value = 1:				
	Recording is started and stopped after reaching of the number of entries set in p51706. p51705 is set to 0 .				
	Value $=2$: \quad R				
	Recording is started: After reaching of the number of entries set in p51706, the file is overwritten from the beginning Recording runs until it is stopped by setting of p51705 $=0$.				
Value:		Stop Start Start with overwri			
Dependency:	See	also: p51700, p5170	, p51704, p51706		
Notice:		ng the recorder func	existing recording		

2.2 List of parameters

p51706	Recorder function number of entries / Rec fct num ent		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Function diagram: 8050
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	10	100000	3600
Description:	Sets the number of entries in the recorder function's recording file.		
	Dependent upon the start command ($\mathrm{p} 51705=1$ or 2), recording is stopped after this number of entries has been reached or the recording file is overwritten from the beginning.		
Dependency:	See also: p51700, p51701, p51702, p51703, p51704, p51705		
p51780	Fault message response delay time / F delay_time		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2651
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	All fault responses are not immediately initiated, but only after a parameterizable delay time. For a description of the fault responses, see the parameter description for parameter p2101.		
Danger:	When using the parameter, the fault responses of ALL fault messages are involved. Take into account the behavior when considering the safety situation in your plant or system. If in any doubt, leave the parameter at 0 .		
Caution: 个	If the cause of the fault message disappears during the delay time, the fault response is still realized after this time expires.		
\square	If the cause of the fault message disappears during the delay time, and is acknowledged before the delay time expires, the fault message disappears, and a fault response is not initiated.		
Note:	Active faults are signaled at r2139.3 and r3114.10.		
p51790	BI: Topology switchover signal source / Top_switch s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9360
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the required power unit topology.		
p51791	BI: Topology switchover feedback signal source / Top_sw fdbk s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Function diagram: 9360
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the feedback signal of the active power unit topology.		

2.2 List of parameters

Value:	$0:$	Parallel interface not active
	$1:$	Power unit independent/CUD right
	$11:$	6-pulse parallel master
	$12:$	6-pulse parallel slave
	$13:$	6-pulse parallel slave/replacement master
	$21:$	12-pulse parallel master
	$22:$	12-pulse parallel slave
	$23:$	12-pulse parallel, slave parallel to master
	$24:$	12-pulse parallel, slave parallel to slave
	$31:$	6-pulse serial master
	$32:$	6-pulse serial slave
	$33:$	6-pulse serial parallel to master
	$34:$	6-pulse serial parallel to slave
	$35:$	6-pulse serial master, slave is a diode bridge
	$41:$	12-pulse serial master
	$42:$	12-pulse serial slave
	$43:$	12-pulse serial parallel to master
	$44:$	12-pulse serial parallel to slave
	$45:$	12-pulse serial master, slave is a diode bridge
	See also: p51799	
Dependency:	Comments, the same as for p51800	
Note:		

p51797[0...1]	Sequential phase control switch-on threshold/hysteresis / Seq ph ctr on/hys	
DC_CTRL	Can be changed: T Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dyn. index:-	Function diagram: 6860
	P group: - Unit group: -	Unit selection: -
	Not for motor type: - Scaling: PERCENT	Expert list: 1
	Min: Max:	Factory setting:
	$5[\%]$	[0] 35 [\%]
		[1] 30 [\%]
Description:	Sets the switch-on threshold and hysteresis for the phase sequence control.	
	The values are referred to the rated device current r50072[1].	
Index:	[0] = Switch-on threshold [1] = Hysteresis	
Dependency:	See also: p51799	
Note:	The switch-off threshold is calculated as follows:	
	Switch-off threshold = switch-on threshold - hysteresis	

p51798	Armature converter voltage diode bridge / la_convert U diode		
DC_CTRL	Can be changed: T	Calculated:	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	50.00 [\%]	100.00 [\%]	85.00 [\%]
Description:	Sets the line voltage at the diode bridge for a 6 -pulse/12-pulse series circuit of a SINAMICS DCM with an uncontrolled rectifier (diode bridge).		
Note:	The value set here is a perce	voltage at the SINAM	

p51799	Armature converter mode of operation / la_conv mode_op		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Function diagram: 6855
	P group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	42	0
Description:	Sets the mode of operation of the armature converter		

2.2 List of parameters

Description: Sets the number of converters whose power units operate together in the selected converter topology (p51800). It is not permissible that "Independent power units" (i.e. SINAMICS DCM devices with p51800 $=0$ or 1) are taken into account.
Note: \quad For a 6-pulse parallel connection ($p 51800=11,12$ or 13) and activated redundant operation ($p 51803=1$), then the power units may fail (e.g. go into a fault condition). In this operating mode, using this parameter, the minimum number of power units must be set which must be ready for operation. In this case, the total number of converters should be set at p51812.
In all other cases, the number of power units that operate together must be precisely set.

p51803

DC_CTRL

Description: Setting to activate/de-activate redundancy mode for the parallel interface.

Parallel interface activation of redundancy mode / Par IF redund mod		
Can be changed: T	Calculated: -	Access level: 2
Data type: Integer16	Dyn. index: -	Function diagram: 9350
P group: -	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min:	Max:	Factory setting:
0	2	0

Value:

$0:$	Deactivated
1:	Activated armature
2:	Activated armature + field

Note: When a SINAMICS DCM is operated together with a SIMOREG DC-MASTER Converter Commutation Protector (CCP), then the redundant mode must be deactivated.

p51804[0...15]	CI: Parallel interface slave transmit data / PI slave tr data		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 9355
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for transmit data when operating the device as a slave on the parallel interface.		
Index:	$\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$		
p51805	Parallel interface bus terminator / Par IF bus term		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 9350
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate/de-activate the bus terminator on the parallel interface.		
Value:	0 : Bus terminator OFF		
Dependency:	See also: p51806		
p51806	Parallel interface station address / Par IF stat addr		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index:	Function diagram: 9350
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	16	1
Description:	Sets the station address for connecting devices in parallel.		
Dependency:	See also: p51805		

2.2 List of parameters

r51810	Parallel interface activity display / Par IF act disp				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9350	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the activities on the individual stations on the parallel interface.				
Bit array:		Signal name	1 signal	0 signal	FP
		Station 1 transmitting data	Yes	No	-
		Station 2 transmitting data	Yes	No	-
	02	Station 3 transmitting data	Yes	No	-
	03	Station 4 transmitting data	Yes	No	-
		Station 5 transmitting data	Yes	No	-
		Station 6 transmitting data	Yes	No	-
		Station 7 transmitting data	Yes	No	-
	07	Station 8 transmitting data	Yes	No	-
		Station 9 transmitting data	Yes	No	-
		Station 10 transmitting data	Yes	No	-
		Station 11 transmitting data	Yes	No	-
		Station 12 transmitting data	Yes	No	-
		Station 13 transmitting data	Yes	No	-
		Station 14 transmitting data	Yes	No	-
		Station 15 transmitting data	Yes	No	-
		Station 16 transmitting data	Yes	No	-
r51811	Parallel interface CAN diagnostic information / PI CAN diag info				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9350	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the CAN diagnostic information for the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Abort acknowledge flag			9350
		Write denied flag			9350
	02	Wake-up flag			9350
	03	Received msg lost flag			9350
	04	Bus-off condition flag			9350
	05	Error passive mode flag			9350
	06	Warning level flag			9350
	07	Form error flag			9350
	08	Bit error flag			9350
	09	Stuck at dominant bit			9350
	10	CRC error			9350
	11	Stuff bit error			9350
	12	ACK error			9350
	13	Bus-off status			9350
	14	Error passive state			9350
	15	Warning status			9350

2.2 List of parameters

p51812	Parallel connection interface redundancy mode power units qty / Par_IF PU red qty		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Function diagram: 9350
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	16	1
Description:	Sets the number of converters whose power units operate together in the selected converter topology (p 51800). It is not permissible that "Independent power units" (i.e. SINAMICS DCM devices with p51800 $=0$ or 1) are taken into account.		
Dependency:	See also: p51803		
Note:	This parameter is only active if the following applies		
	- 6 -pulse parallel circuit (i.e. p51800 $=11,12,13$).		
	and		
	- The redundancy mode is activated (i.e. p51803 > 0).		
r51813[0...15]	Parallel interface transmit data display / PI trans data disp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Function diagram: 9355
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the data selected for transmission.		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	[3] = Word 4		
	[4] = Word 5		
	[5] = Word 6		
	$[6]=$ Word 7		
	[7] $=$ Wort 8		
	[8] = Wort 9		
	$[9]=$ Word 10$[10]=$ Word 11		
	[11] = Word 12		
	$[12]=$ Word 13$[13]=$ Word 14		
	[14] = Word 15		
	[15] = Word 16		
p51814[0...15]	CI: Parallel interface master transmit data / PI master tr data		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer16	Dyn. index: -	Function diagram: 9355
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal sources for transmit d	n operating the dev	n the parallel interface.

2.2 List of parameters

Note: \quad The parameter is only effective on the Control Module. \quad Example:

p51820	Armature rated supply voltage / Arm V_rated		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6965
	Not for motor type: -	Unit group: -	Unit selection: -
	Min:	Max:	Expert list: 1
	50 [Vrms]	$5000[\mathrm{Vrms}]$	Factory setting:
Description:	Sets the rated supply voltage (rms value) for which the power unit is suitable (electric strength of the thyristors).		
Note:	The parameter is only effective on the Control Module.		
	The set supply voltage is displayed in r50071.		
	Parameter p50078[0] (armature rated input voltage) is limited to this value.		

p51821[0...1]	Measurement cable connection / Meas cab conn		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1000	1000
Description:	Sets the connections used to measure the line voltage and the armature voltage on the A7117 module.		
Value:	0: No selection		
	6: XU6 / XV6 / XW6 or XC6 / XD6		
	50: XU5 / XV5 / XW5 or XC5 / XD5		
	125: XU4 / XV4 / XW4 or XC4 / XD4		
	250: XU3 / XV3 / XW3 or XC3 / XD3		
	575: XU2 / XV2 / XW2 or XC2 / XD2		
	1000: XU1 / XV1 / XW1 or XC1 / XD1		
Index:	[0] = Line voltage		
Note:	The parameter is only effective on the Control Module.		
	The parameter value indicates the rated rms value of the maximum measurable line voltage.		

p51822	Armature rated direct current / Arm I_rated		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Maling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$0.1[\mathrm{~A}]$	$0.1[\mathrm{~A}]$	
Description:	Sets the rated direct current for the armature.		
	The output direct current supported by the power unit in continuous operation should be set in this parameter.		

p51823	Load voltage at armature rated current / V_load la_rated		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6850,6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.1000 [V]	1.2000 [V]	1.0000 [V]
Description:			
	V_load: The load voltage to be set in this parameter		
	R_load: The load resistance (default 10 ohm)		
	r : Transformation ratio of the current transformer (12 / 11)		
	Id: Output direct current according to parameter p51822		
Note:	The parameter is only effective on the Control Module.		
p51824	Current transformer configuration / I_transf config		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6850,6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	1	5	2
Description: Value:	Sets the configuration for the current transformer for current actual value sensing.		
	1: Current transformer in phase U and V		
	2: \quad Current transformer in phase U and W		
	3: Current transformer in phase V and W		
	4: External current transformer connected in V circuit		
	5: Bipolar current actual value signal (external shunt)		
Note:	The parameter is only effective on the Control Module.		
p51825	Power unit type / PU typ		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	2	4	2
Description:	Sets the power unit type.		
Value:	2: 2-quadrant power unit 4: 4-quadrant power un		
Note:	The parameter is only effectiv	Module.	
p51826[0...2]	Armature current con	pulse chopp	se chop t
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6860,6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0 [$\mu \mathrm{s}$]	105 [ss]	[0] 50 [$\mu \mathrm{s}$]
			[1] 35 [$\mu \mathrm{s}$]
			[2] 70 [$\mu \mathrm{s}$]
Description:	Sets the times for firing pulse	e armature curre	

2.2 List of parameters

Index:	$[0]=$ Length of first pulse
	$[1]=$ Length additional pulses
	$[2]=$ Break length
Note:	The parameter is only effective on the Control Module.
	Block pulses are generated (i.e. firing pulses without pulse chopping) with the following setting:
	$-\mathrm{p} 51826[0]=105 \mu \mathrm{~s}$
	$-\mathrm{p} 51826[1]=105 \mu \mathrm{~s}$
	$-\mathrm{p} 51826[2]=0 \mu \mathrm{~s}$

p51830[0...2]	Heat sink temperature sensor type / Htsk temp type		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8048
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the sensor type for the temperature sensors on the Control Module.		
Value:	0: \quad No temperature sensor present 1: \quad NTC with 6.8 kOhm 2: NTC with 10 kOhm		
Index:	$\begin{aligned} & {[0]=\text { Temperature sensor } 1 / \text { XT5 / A7109 }} \\ & {[1]=\text { Temperature sensor } 2 / \text { XT6 / A7109 }} \\ & {[2]=\text { Temperature sensor } 3 / \text { XT7 / A7116 }} \end{aligned}$		
Dependency:	See also: p51829 See also: F60067		
Note:	The NTC temperature sensor should be co The parameter is only effective on the Con	nected at modul Module.	terminal XT5, XT6 or XT7.

p51831[0...4]	Fuse monitoring activation / Fuse mon act		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6957,6965
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to activate/de-activate fuse monitoring on the Control Module.		
Value:	$0: \quad$ Deactivated		
	$1: \quad$ Activated		

2.2 List of parameters

Note: \quad The parameter is only effective on the Control Module.

p51839	External field monitoring / Ext field monit		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting for activating/de-activating the monitoring for the external field.		
Value:	0 : Deactivated 1: Activated		
Dependency:	See also: p50082		
p51840	Auto-reversing stage simulation mode / Auto-rev simul		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Function diagram: 6865
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	26	0
Description:	Setting to control simulation mode in the auto-reversing stage.		
Value:	0 : No simulation mode		
	11: Fire thyristor 11		
	12: Fire thyristor 12		
	13: Fire thyristor 13		
	14: Fire thyristor 14		
	15: Fire thyristor 15		
	16: Fire thyristor 16		
	21: Fire thyristor 21		
	22: Fire thyristor 22		
	23: Fire thyristor 23		
	24: Fire thyristor 24		
	25: Fire thyristor 25		
	26: Fire thyristor 26		
Note:	The simulation mode can only be activated in operating states $>=07.0$.		
p51845	Line zero crossings offset angle fixed / Line offset fixed		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-120.00 [$\left.{ }^{\circ}\right]$	120.00 [$\left.{ }^{\circ}\right]$	$\left.0.00{ }^{[}\right]$
Description:	Sets a fixed offset angle between the line zero crossings at the power unit and the synchronizing voltage.		
Dependency:	See also: p51846, p51847		
Note:	The parameter is only effective on the Control Module.		

2.2 List of parameters

p51846[0...5]	Line zero crossings offset angle thyristor pair-dependent / Line offset		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-10.00[${ }^{\circ}$]	10.00 [${ }^{\text {] }}$	$0.00{ }^{\text {[}}$]
Description:	Sets an offset angle dependent on a thyristor pair between the line zero crossings at the power unit and the synchronizing voltage.		
Index:	[0] = Thyristor pair 1-6 (UV+) [1] = Thyristor pair 1-2 (WU-) [2] = Thyristor pair 2-3 (VW+) [3] = Thyristor pair 3-4 (UV-) [4] = Thyristor pair 4-5 (WU+) [5] = Thyristor pair 5-6 (VW-)		
Dependency:	See also: p51845, p51847		
Note:	The parameter is only effective on the Control Module.		
p51847[0...5]	CI: Line zero crossings offset angle thyr. pair-depend. fact. s_src / Line offs fact s_s		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for a factor for the offset angle dependent on a thyristor pair between the line zero crossings at the power unit and the synchronizing voltage.		
Index:	[0] = Thyristor pair 1-6 (UV+) [1] = Thyristor pair 1-2 (WU-) [2] = Thyristor pair 2-3 (VW+) [3] = Thyristor pair 3-4 (UV-) [4] = Thyristor pair 4-5 (WU+) [5] = Thyristor pair 5-6 (VW-)		
Dependency:	See also: p51845, p51846		
Note:	The parameter is only effective on the Control Module.		
p51852	Current actual value sensing analog input configuration / I_sens AI config		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index:	Function diagram: 6850
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0	4	0
Description:	Sets the configuration for the armature current actual value sensing.		
	Value $=0$:		
	The device-internal armature current actual value sensing is active.		
	Value > 0 :		
	An external armature currrent actual value sensing is fed to the SINAMICS DC MASTER via an analog input. Th device-internal armature current actual value sensing is not active.		
Value:	0 : la sensing internal		
	1: Sensing via analog input 3 (X177.1		
	2: Sensing via analog input 4 (X177.3		
	$\begin{array}{ll}\text { 3: } & \text { Sensing via analog input } 5 \text { (X177.5 } \\ \text { 4: } & \text { Sensing via analog input } 6 \text { (X177.7 }\end{array}$		
Dependency:	See also: p51823, p51824		

2.2 List of parameters

p51855	Armature voltage sensing analog input reference voltage / Va_sens AI V_ref		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	10.000 [V]	2000.000 [V]	10.000 [V]
Description:	Sets the armature voltage, which corresponds to a +10 V voltage at analog input 2 (X177.29/30).		
Dependency:	See also: p51854		
Note:	The parameter is only effective for p51854 $=1$.		
p51861[0...n]	Capacitance of the DC link capacitor / Capac_DClink		
DC_CTRL	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	0.000 [$\mu \mathrm{F}$]	10000000.000 [$\mu \mathrm{F}]$	1000.000 [$\mu \mathrm{F}$]
Description:	Load connection: capacitance of the DC link capacitor		
p51862	CI: Capacitance of the DC link capacitor signal source / C_DC link s_src		
DC_CTRL	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	1
Description:	Load connection: signal source for varying the capacitance of the DC link capacitor		
r52000	CO: Fixed value 0 \% / Fix val 0\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value 0%.		
r52001	CO: Fixed value 100 \% / Fix val 100\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value 100%.		

r52002	CO: Fixed value 200 \% / Fix val 200\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value 200%.		
r52003	CO: Fixed value -100 \% / Fix val -100\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value -100%.		
r52004	CO: Fixed value -200 \% / Fix val -200\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value - 200%.		
r52005	CO: Fixed value 50 \% / Fix val 50\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		- [\%]
Description:	Connector output with constant fixed value 50%.		
r52006	CO: Fixed value 150 \% / Fix val 150\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value 150%.		

2.2 List of parameters

r52007	CO: Fixed value -50 \% / Fix val -50\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value - 50%.		
r52008	CO: Fixed value -150 \% / Fix val -150\%		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3100
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Connector output with constant fixed value -150\%.		
r52010	CO: CUD analog input main setpoint raw value / CUD AI m set raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at the "Main setpoint" analog input (X177.25/26).		
r52011	CO: CUD analog input main setpoint / CUD AI m set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		
Description:	Display and connector output for the "Main setpoint" analog input (X177.25/26).		
r52012	CO: CUD analog input main actual value raw value / CUD AI m act raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at the "Main actual value" analog input (XT1.103/104).		

r52013	CO: CUD analog input main actual value / CUD AI m act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2075, 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the "Main actual value" analog input (XT1.103/104).		
r52014	CO: CUD analog input select input 1 raw value / CUD AI sel 1 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at the analog "Select input 1" (X177.27/28).		
r52015	CO: CUD analog input select input 1 / CUD AI sel 1		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the analog "Select input 1" (X177.27/28).		
r52016	CO: CUD analog input select input 2 raw value / CUD AI sel 2 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at the analog "Select input 2" (X177.29/30).		
r52017	CO: CUD analog input select input 2 / CUD AI sel 2		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the analog "Select input 2" (X177.29/30).		

2.2 List of parameters

r52018	CO: CUD analog input 3 raw value / CUD AI 3 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2085
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at analog input 3 (X177.1/2) on the CUD.		
Dependency:	See also: r52019		
Note:	Al: Analog Input		
r52019	CO: CUD analog input 3 result / CUD AI 3 res		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2085
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the conversion result at analog input 3 (X177.1/2) on the CUD.		
r52020	CO: CUD analog input 4 raw value / CUD AI 4 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2085
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at analog input 4 (X177.3/4) on the CUD.		
Dependency:	See also: r52021		
r52021	CO: CUD analog input 4 result / CUD AI 4 res		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2085
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the conversion result at analog input 4 (X177.3/4) on the CUD.		
r52022	CO: CUD analog input 5 raw value / CUD AI 5 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at analog input 5 (X177.5/6) on the CUD. See also: r52023		
Dependency:			

r52023	CO: CUD analog input 5 result / CUD Al 5 res		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the conversion result at analog input 5 (X177.5/6) on the CUD.		
r52024	CO: CUD analog input 6 raw value / CUD Al 6 raw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the raw value at analog input 6 (X177.7/8) on the CUD.		
Dependency:	See also: r52025		
r52025	CO: CUD analog input 6 result / CUD Al 6 res		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2090
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	
Description:	Display and connector output for the conversion result at analog input 6 (X177.7/8) on the CUD.		
r52026	CO: CUD analog output 0 value after smoothing / CUD AO 0 v aft sm		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for analog output 0 (X177.49/50) on the CUD.		
Dependency:	See also: p50750		
Note:	AO: Analog Output		
r52027	CO: CUD analog output 1 value after smoothing / CUD AO 1 v aft sm		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2095
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for analog output 1 (X177.51/52) on the CUD.		
Dependency:	See also: p50755		
Note:	AO: Analog Output		

2.2 List of parameters

r52048	oatingPoint32) / RFG br dist floa
DC_CTRL	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Function diagram: 3152
	P group: - Unit group: - Unit selection:
	Not for motor type: Scaling: Expert list: 1
	Min: Max: Factory setting:
	- - -
Description:	Display and connector output for the braking distance required as increments of the pulse encoder defined in p0400. The pulse encoder to be used must be selected using p50331.
	The required braking distance is calculated assuming that the speed setpoint at the ramp-function generator input has been set to 0 and the speed actual value is approaching 0 , taking the set ramp-down time and roundings into consideration.
Note:	For $\mathrm{p} 0400[\mathrm{p} 50331]=0$, a braking distance of 0 is displayed.
	The braking distance calculation is only correct if the ramp-down time and the roundings do not change during braking (p50302, r00899.5, p50637, p50638).

r52049	Temperature sensor available / Temp_sens avail			
DC_CTRL	Can be changed:	Calculated: - Access level: 1		
	Data type: Unsigned16	Dyn. index: - Function diagram: 6960		
	P group: -	Unit group: - Unit selection: -		
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the integrated temperature sensors.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Temperature sensor XT5	Available	Not present	6960
	01 Temperature sensor XT6	Available	Not present	6960
	02 Temperature sensor XT7	Available	Not present	6960
	03 Gating module temperature sensor	Available	Not present	6960

Note: \quad The display is independent of the temperature sensor status and only indicates the desired state.

r52050[0...4]	CO: Temperature sensor display / Temp sensor disp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8047, 8048
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the device's temperature outputs.		
Index:	[0] = Temperature 1		
	[1] = Temperature 2		
	[2] = Temperature 3		
	[3] = Gating module temperature		
	[4] = CUD Control Unit temperature		
Note:	Temperature sensors which are not in use return a high negative value (approx. -200 ${ }^{\circ} \mathrm{C}$).		
r52051	CO: Motor temperature output / Mot temp outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 8030
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the motor temperature.		
	Scaling:		
	0% corresponds to $0^{\circ} \mathrm{C}$		
	100% corresponds to $100^{\circ} \mathrm{C}$		
Dependency:	The parameter is only valid for the following temperature sensors with a continuous characteristic:		
	- PT100 (p50490 = 6)		
	- NTC thermistor K227 (p50490 = 7)		
	- PT1000 (p50490 = 8)		
	See also: p50490		
Note:	If $\mathrm{p} 50490=0,2$ to 5 , a value of 0 is displayed.		
r52100	CO: Armature firing angle after limiting / Fir ang aft lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6870
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the armature firing angle after limiting by the auto-reversing stage.		
r52101	CO: Armature firing angle before limiting / Fir ang bef lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6860,6900
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output	e firing angle before lim	uto-reversing stage.

2.2 List of parameters

2.2 List of parameters

r52112	CO: CI-Ioop arm curr control curr controller outp integral comp / la ctr outp I comp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the integral component of closed-loop armature current control.		
r52113	CO: Cl-loop arm curr control curr setpoint/actual value difference / la ctr set/act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint/actual value difference of closed-loop armature current control.		
r52114	CO: Armature current actual value averaged over 1 cycle / la act 1 cyc		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6851
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the signed armature current actual value. The value is averaged over 1 firing cycle.		
r52115	CO: CI-loop arm curr control curr controller actual value abs value / la ctr I_act abs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the absolute value of the current controller actual value for closed-loop armature current control.		

r52116	CO: Armature current actual value internal absolute value / A I_act int abs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6851
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Display and connector output for the absolute value of the internal armature current actual value. The value is averaged over one firing cycle.

2.2 List of parameters

r52122	CO: EMF actual value armature current pre-control / EMF act prec
DC_CTRL	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: Function diagram: 6852, 6855 P group: - Unit group: Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Note:	Display and connector output for the EMF actual value for armature current pre-control. 100% corresponds to p50078[0] * (3 * sqrt(2)) / Pi.
r52123 DC_CTRL	CO: EMF actual value signed / EMF act sign Can be changed: - Calculated: Access level: 2 Data type: FloatingPoint32 Dyn. index: - Function diagram: 6852, 6902 P group: Unit group: Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Note:	Display and connector output for the signed unsmoothed EMF actual value. 100% corresponds to p50078[0] * (3 * sqrt(2)) / Pi.
$\overline{\text { r52124 }}$ DC_CTRL	CO: Active power for a pure ohmic load / P_act ohm load
Description: Note:	Display and connector output for the active power for a pure ohmic load ($=\mathrm{r} 52126$ * r52127). The value is averaged over six firing cycles. This quantity is used for heating applications (rms value current control or rms value power control).
$\overline{\mathrm{r} 52125}$ DC_CTRL	CO: Curr limitation arm curr setpoint aft reduced gearbox stressing / la set aft gear
Description:	Display and connector output for the current controller setpoint after reduced gearbox stressing.
r52126	CO: Armature current actual value rms value / la_act rms
DC_CTRL	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: - Function diagram: 6851 P group: Unit group: Unit selection: Not for motor type: - Scaling: PERCENT Expert list: Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description:	Display and connector output for the rms value of the internal armature current actual value. The value is averaged over six firing cycles, and referred to the rated device current (r50072[1]).

r52132	CO: Current limitation maximum negative armature current limit / la lim neg max		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6840,6845
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the maximum negative armature current limit.		
r52133	CO: Current limitation setpoint before limitation (with add_s) / Set bef lim w add		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6840, 8042
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the armature current controller setpoint before limitation (with additional setpoint).		
r52134	CO: Speed limiting controller curr controller setp before limitation / la set bef lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the current controller setpoint before current limitation.		
r52135[0...6]	CO: Current limitation default for torque direction II / la lim def t d II		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the variable torque limiting defaults in torque direction II.		
Dependency:	See also: p50603, p50604		
Note:	Connector output r52135[0 to 6] is the inverse of p50603[0 to 6] and interconnected by default via connector input p50604[0 to 6].		
r52136	CO: Speed limiting controller upper torque limit effective / n_lim tim up max		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6835
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]

Description: Display and connector output for the effective upper torque limit (maximum value) on the speed limiting controller. Dependency: See also: r52137

2.2 List of parameters

r52143	CO: Torque limiting armature torque limit min pos / T lim arm min pos		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the minimum positive torque limit for the armature.		
r52144	CO: Torque limiting armature torque limit max neg / T lim arm max neg		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the maximum negative torque limit for the armature.		
r52145	CO: Torque limiting setpoint before limiting (with add_s) / Set bef lim w add		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6830
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the torque setpoint before limiting (with additional setpoint).		
r52147	CO: Torque limiting setpoint before limiting (without add_s) / Set b lim w/o add		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6830, 6840
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the torque setpoint before limiting (without additional setpoint).		
r52148	CO: Speed controller torque setpoint / n_ctr tq set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the speed controller's output value with friction and inertia compensation and additional torque setpoint.		

r52149	CO: Torque actual value referred to the motor / Tqe act ref		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6851
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the torque actual value referred to the rated motor variables.		
	Reference value:		
	Rated motor torque		
	This is the torque that the motor generates if the rated motor armature current (p 50100) and the rated motor field current (p50102) flow.		
	We recommend that this torque should be taken from the manufacturer's motor data and set in p2003.		
r52150	CO: Speed controller setpoint change / n_ctr set chng		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint change on the speed controller. See also: p50540, r52174		
Dependency:			
r52152	CO: Speed controller setpoint/actual value difference output / Set/act dif outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index:	Function diagram: 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for acceleration dependent upon setpoint/actual value difference. In the case of the "Acceleration dependent upon setpoint/actual value difference" function, only the proportion of the speed controller's setpoint/actual value difference which has an absolute value in excess of the threshold (p50543) is switched through.		
Dependency:	See also: p50541, p50543		
r52154	CO: Speed controller reference model output / n_ctrl ref outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the reference model for the speed controller. See also: p50237, p50238, p50239		
Dependency:			

2.2 List of parameters

r52155	CO: Speed controller reference model setpoint-actual val difference / n_ctr ref set-act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6812
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint-actual value difference after the influence of the reference model for the speed controller.		
Dependency:	See also: p50621, p50622, p50623, p50624		
r52156	CO: Lead/lag element output value / Lead/lag output		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output value of the lead/lag element.		
Dependency:	See also: p50207, p50208, p50209		
r52160	CO: Speed controller output value / n_ctr outp val		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the speed controller's output value.		
r52161	CO: Speed controller proportional component output value / P comp outp val		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		
Description:	Display and connector output for the output value of the proportional component on the speed controller.		
r52162	CO: Speed controller integral component output value / I_comp outp val		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the integral component of the speed controller's output value.		

r52164	CO: Speed controller setpoint/actual value difference / n_ctr set/act dif		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6815, 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description: Dependency:	Display and connector output of the speed setpoint/actual value difference used for the speed controller. See also: p50620		
r52165	CO: Speed controller setpoint/actual value difference / n_ctr set/act dif		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6812
	P group:	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the result of the setpoint/actual value difference on the speed controller. See also: p50621, p50622, p50623, p50624		
Dependency:			
Note:	The setpoint/actual value difference (r52165) results from setpoint 1 and 2 ($p 50621, p 50622$) and actual value 1 and 2 (p50623, p50624).		
r52166	CO: Speed controller actual value selection absolute value / Sel act abs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810, 6815, 6825, 6900, 8040, 8046
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the selected speed actual value as an absolute value on the speed controller.		
r52167	CO: Speed controller actual value selection / Act sel		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the selected speed actual value on the speed controller.		
r52168	CO: Derivative-action element negative output value / D elem neg outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	
Description:	Display and connector output for the negative output value of the derivative-action element. See also: p50205, p50206, p50627, r52169		
Dependency:			

2.2 List of parameters

r52174	CO: Speed controller setpoint smoothed / n_ctr set smooth		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810, 6820
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the smoothed setpoint on the speed controller.		
r52176	CO: Speed controller droop output value / Droop outp val		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6805
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the droop output value on the speed controller.		
r52177	CO: Band-stop 1 output value / Band-st 1 outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		- [\%]
Description:	Display and connector output for output value of band-stop 1.		
Dependency:	See also: p50201, p50202, p50628		
r52178	CO: Band-stop 2 output value / Band-st 2 outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for output value of band-stop 2.		
Dependency:	See also: p50203, p50204, p50629		
r52179	CO: Speed controller actual value smoothed / n_ctr act sm		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6810
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the smoothed actual value on the speed controller.		

2.2 List of parameters

r52181	CO: RFG effective positive setpoint limit / RFG set lim pos		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the effective positive setpoint limit with "Limiting after ramp-function generator".		
r52182	CO: RFG effective negative setpoint limit / RFG set lim neg		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the effective negative setpoint limit with "Limiting after ramp-function generator".		
r52183	CO: RFG speed setpoint before limiting / RFG n_set bef lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3155
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the speed setpoint with "Limiting after ramp-function generator".		
r52184	CO: Setpoint processing main setpoint lim neg default 0 / M set neg def 0		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the default value of variable negative main setpoint limiting with index 0 . See also: p50642		
Dependency:			
Note:	The value represents the inversion of p50642[0].		
r52185	CO: Setpoint processing main setpoint lim neg default 1 / M set neg def 1		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index:	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the default value of variable negative main setpoint limiting with index 1 .		
Dependency:	See also: p50642		
Note:	The value represents the inversion of p50642[1].		

r52193	CO: Setpoint processing output to ramp-function generator / Outp to RFG		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint to the ramp-function generator.See also: p50648		
Dependency:			
r52194	CO: Setpoint processing setpoint after reduction / Set after reduc		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the sum "main setpoint (limited) + additional setpoint" after setpoint reduction. See also: p51607, p51608, r52195		
Dependency:			
Note:	Setpoint reduction is set via p51608 and activated/de-activated via binector input p51607.		
r52195	CO: Setpoint processing setpoint before reduction / Set before reduc		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the sum "main setpoint (limited) + additional setpoint" before setpoint reduction. See also: p51607, p51608, r52194		
Dependency:			
Note:	Setpoint reduction is set via p51608 and activated/de-activated via binector input p51607.		
r52196	CO: Setpoint processing main setpoint upper limit effective / M set up lim eff		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the effective upper limit in the case of main setpoint limiting.		
r52197	CO: Setpoint processing main setpoint lower limit effective / M set low lim eff		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the effective lower limit in the case of main setpoint limiting.		

r52198	CO: Setpoint processing main setpoint before limiting / M_setp bef lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3135
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the main setpoint before setpoint limiting.		
r52201	CO: Creep setpoint output / Creep set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the sum of all creep setpoints (p504441[0 to 7]). See also: p50440, p50441		
Dependency:			
r52202	CO: Jog setpoint output / Jog set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the sum of all jog setpoints (p50436[0 to 7]). See also: p50435, p50436		
Dependency:			
r52203	CO: Oscillation square-wave generator setpoint / Oscill sq-w gen		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3120
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the square-wave generator.		
Dependency:	See also: p50480, p50481, p50482, p50483		
r52204	CO: Fixed setpoint output / Fix set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the sum of all fixed setpoints (p50431[0 to 7]). See also: p50430, p50431		
Dependency:			

2.2 List of parameters

r52206	CO: Creep setpoint output after selection / Cr set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3130
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the setpoint dependent upon creep.		
r52207	CO: Jog setpoint output after selection / Jog set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3125
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the setpoint dependent upon jog.		
r52208	CO: Oscillation output after selection / Oscil outp aft sel		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3120
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		- [\%]
Description: Note:	Display and connector outp If oscillation is selected (p50 r52208 = r52203 If oscillation is de-selected r52208 $=$ p50484	dependent upon oscilla l):	
r52209	CO: Fixed setpoint output after selection / Fix set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3115
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]		- [\%]
Description:	Display and connector output of the sum of all fixed setpoints following selection of at least one connector.		
Dependency:	See also: p50430, p50431		
Note:	If at least one connector has been selected via p50430[0 to 7]:		
	r52209 = r52204		
	If no connectors have been selected via p50430[0 to 7]:r52209 $=$ r52210		

2.2 List of parameters

r52250	CO: Field firing angle after limiting / Fir ang aft lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the field firing angle after limiting by the auto-reversing stage.		
r52251	CO: Field firing angle before limiting / Fir ang bef lim		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6915
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the field firing angle before limiting by the auto-reversing stage.		
r52252	CO: Cl-Ioop field curr ctrl prectr and field curr controller output / If_ctr prec+ctrl		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the output value from pre-control and the field current controller.		
r52260	CO: Closed-loop field current control current controller output / If_ctr I_ctr outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output in the case of closed-loop field current control.		
r52261	CO: CI-Ioop field curr control curr controller proportional comp / If_ctr I_ctr P com		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the proportional component in the case of closed-loop field current control.		

r52262	CO: CI-loop field curr control curr controller integral comp / If_ctr I_ctr I com		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the integral component in the case of closed-loop field current control.		
r52263	CO: CI-Ioop field curr ctrl current controller set/act val diff / If_ctr I_ctr dif		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint/actual value difference in the case of closed-loop field current control.		
r52265	CO: CI-Ioop field curr ctrl current controller actual value / If_ctr act		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6905, 6910 8025, 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the field current controller's actual value.		
r52266	CO: Field current actual value internal absolute value / If_act int abs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6912
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the absolute value of the internal field current actual value as a percentage of p50073.01.		
r52268	CO: Closed-loop field current control current controller setpoint / If_ctr set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910, 8025 8044
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the field current controller's setpoint.		

2.2 List of parameters

2.2 List of parameters

2.2 List of parameters

Dependency:	See also: r52291		
Note:	100\% corresponds to p50078[0] * (3 sqrt(2)) / Pi		
r52293	CO: EMF controller pre-control output / EMF ctr prec outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6900, 6910
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for pre-control on the EMF controller.		
Dependency:	See also: p50273		
r52294	CO: EMF setpoint reduction output / EMF setp_red outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6895
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the EMF setpoint reduction.		
Dependency:	See also: p50287, p50288		
r52295	CO: Field voltage actual value absolute value / Uf act abs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value of the field voltage as an absolute value.		
Dependency:	See also: r52296		
Note:	100\% corresponds to p50078[1] * (3 * sqrt(2)) / Pi.		
	The parameter assumes (as a result of the B2HZ bridge) a maximum value of approximately 0.9 * p50078[1].		
r52296	CO: Field voltage actual value signed / Uf act val sign		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the signed actual value of the field voltage.		
Dependency:	See also: r52295		
Note:	100\% corresponds to p50078[1] * (3 * sqrt(2)) / Pi.		
	The parameter assumes (as a result of the B2HZ bridge) a maximum value of approximately 0.9 * p50078[1].		

2.2 List of parameters

r52303	CO: Armature line voltage W-U / Arm V_line W-U		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the line voltage W-U in the armature circuit.		
r52304	CO: Field line voltage / Field V_line		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6910, 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the line voltage in the field circuit.		
r52305	CO: Average armature line voltage / Arm V_line avg		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6950, 6855
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the average line voltage over the 3 phases in the armature circuit.		
Note:	The smoothing time for a 50 Hz main frequency is 132 ms .		
	The smoothing time for a 60 Hz main frequency is 100 ms .		
r52306	CO: Armature line frequency / Arm f_line		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6855, 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the line frequency in the armature circuit. The value is a percentage of 50 Hz .		
r52307	CO: Average motor power supplied / Mot P supp avg		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6902
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the average motor power supplied. See also: r52109, r52287		
Dependency:			

2.2 List of parameters

2.2 List of parameters

r52407	CO: Fixed value 7 / Fix val 7	
DC_CTRL	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: - P group: - Unit group: Not for motor type: - Scaling: PERCENT Min: Max: $-[\%]$ $-[\%]$	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: - [\%]
Description: Dependency:	Connector output for fixed value 7 set in p50407. See also: p50407	
$\overline{\mathrm{r} 52408}$ DC_CTRL	CO: Fixed value 8 / Fix val 8	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: - [\%]
Description: Dependency:	Connector output for fixed value 8 set in p50408. See also: p50408	
$\overline{\text { r52409 }}$ DC_CTRL	CO: Fixed value 9 / Fix val 9	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: - [\%]
Description: Dependency:	Connector output for fixed value 9 set in p50409. See also: p50409	
$\overline{\mathrm{r} 52410}$ DC_CTRL	CO: Fixed value 10 / Fix val 10	Access level: 2 Function diagram: 3100 Unit selection: Expert list: 1 Factory setting: - [\%]
Description: Dependency:	Connector output for fixed value 10 set in p50410. See also: p50410	
$\overline{\mathrm{r} 52411}$ DC_CTRL	CO: Fixed value 11 / Fix val 11	Access level: 2 Function diagram: 3100 Unit selection: - Expert list: 1 Factory setting: - [\%]
Description: Dependency:	Connector output for fixed value 11 set in p50411. See also: p50411	

2.2 List of parameters

r52451	CO: Speed controller start pulse positive setpoint / Start pul pos set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the positive setpoint of the start pulse on the speed controller.		
r52452	CO: Speed controller start pulse negative setpoint evaluated / Start pul neg set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	
Description:	Display and connector output for the negative setpoint of the start pulse on the speed controller. The setpoint is evaluated via p51652.		
Dependency:	See also: p51652		
r52453	CO: Speed controller start pulse negative setpoint / Start pul neg set		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the negative setpoint of the start pulse on the speed controller.		
r52454	CO: Speed controller start pulse output value / Start pul outp val		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6800
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output value of the start pulse on the speed controller.		
$\overline{\mathrm{r} 52510}$	CO: Master switch setpoint output / Set outp		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 3105
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint prevailing on the 4-step master switch.		

2.2 List of parameters

r52606.0... 15	CO/BO: P2P IF receive data word 1 bit by bit / P2P recv 1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9300	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for the bit-by-bit interconnection of word 1 of the receive data on the peer-to-peer interface (P2P IF)				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	P2P IF receive data bit 0	1	0	9300
	01	P2P IF receive data bit 1	1	0	9300
	02	P2P IF receive data bit 2	1	0	9300
	03	P2P IF receive data bit 3	1	0	9300
	04	P2P IF receive data bit 4	1	0	9300
	05	P2P IF receive data bit 5	1	0	9300
	06	P2P IF receive data bit 6	1	0	9300
	07	P2P IF receive data bit 7	1	0	9300
	08	P2P IF receive data bit 8	1	0	9300
	09	P2P IF receive data bit 9	1	0	9300
	10	P2P IF receive data bit 10	1	0	9300
	11	P2P IF receive data bit 11	1	0	9300
	12	P2P IF receive data bit 12	1	0	9300
	13	P2P IF receive data bit 13	1	0	9300
	14	P2P IF receive data bit 14	1	0	9300
	15	P2P IF receive data bit 15	1	0	9300
Dependency:	See also: r52601				
r52607.0... 15	CO/BO: P2P IF receive data word 2 bit by bit / P2P recv 2 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9300	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Binector output for the bit-by-bit interconnection of word 2 of the receive data on the peer-to-peer interface (P2P IF)				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	P2P IF receive data bit 0	1	0	9300
	01	P2P IF receive data bit 1	1	0	9300
	02	P2P IF receive data bit 2	1	0	9300
	03	P2P IF receive data bit 3	1	0	9300
	04	P2P IF receive data bit 4	1	0	9300
	05	P2P IF receive data bit 5	1	0	9300
	06	P2P IF receive data bit 6	1	0	9300
	07	P2P IF receive data bit 7	1	0	9300
	08	P2P IF receive data bit 8	1	0	9300
	09	P2P IF receive data bit 9	1	0	9300
	10	P2P IF receive data bit 10	1	0	9300
	11	P2P IF receive data bit 11	1	0	9300
	12	P2P IF receive data bit 12	1	0	9300
	13	P2P IF receive data bit 13	1	0	9300
	14	P2P IF receive data bit 14	1	0	9300
	15	P2P IF receive data bit 15	1	0	9300
Dependency:	See	Iso: r52602			

$\overline{\mathbf{r 5 2 6 1 0 . 0} . .15}$	CO/BO: P2P IF receive data word 5 bit by bit / P2P recv 5 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9300	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for the bit-by-bit interconnection of word 5 of the receive data on the peer-to-peer interface (P2P IF)				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	P2P IF receive data bit 0	1	0	9300
	01	P2P IF receive data bit 1	1	0	9300
	02	P2P IF receive data bit 2	1	0	9300
	03	P2P IF receive data bit 3	1	0	9300
	04	P2P IF receive data bit 4	1	0	9300
	05	P2P IF receive data bit 5	1	0	9300
	06	P2P IF receive data bit 6	1	0	9300
	07	P2P IF receive data bit 7	1	0	9300
	08	P2P IF receive data bit 8	1	0	9300
	09	P2P IF receive data bit 9	1	0	9300
	10	P2P IF receive data bit 10	1	0	9300
	11	P2P IF receive data bit 11	1	0	9300
	12	P2P IF receive data bit 12	1	0	9300
	13	P2P IF receive data bit 13	1	0	9300
	14	P2P IF receive data bit 14	1	0	9300
	15	P2P IF receive data bit 15	1	0	9300
Dependency:	See also: r52605				
$\overline{\mathbf{r 5 2 6 2 0 . 0}} .15$	CO/BO: Binector-connector converter output / Bin/con outp				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9300	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-				
Description:	Display and connector output on the binector-connector converter.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	P2P binector-connector converter bit 0	1	0	9300
	01	P2P binector-connector converter bit 1	1	0	9300
	02	P2P binector-connector converter bit 2	1	0	9300
	03	P2P binector-connector converter bit 3	1	0	9300
	04	P2P binector-connector converter bit 4	1	0	9300
	05	P2P binector-connector converter bit 5	1	0	9300
	06	P2P binector-connector converter bit 6	1	0	9300
	07	P2P binector-connector converter bit 7	1	0	9300
	08	P2P binector-connector converter bit 8	1	0	9300
	09	P2P binector-connector converter bit 9	1	0	9300
	10	P2P binector-connector converter bit 10	1	0	9300
	11	P2P binector-connector converter bit 11	1	0	9300
	12	P2P binector-connector converter bit 12	1	0	9300
	13	P2P binector-connector converter bit 13	1	0	9300
	14	P2P binector-connector converter bit 14	1	0	9300
	15	P2P binector-connector converter bit 15	- 1	0	9300
Dependency:	See also: p51117				
Note:	The individual signals supplied via binector input p51117[0 to 15] are combined to form connector output r52620.				

r52700[0...15]	CO: Parallel interface master receive data word by word / Master recv wbw
DC_CTRL	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: - Function diagram: 9352 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Index:	Display and connector output of the word-by-word receive data from the master on the parallel interface. $\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$
Dependency: Note:	See also: r52720 The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.
$\begin{aligned} & \text { r52701[0...15] } \\ & \text { DC_CTRL } \end{aligned}$	CO: Parallel interface station 1 receive data word-by-word / Stat1 recv wbw
Description: Index:	Display and connector output of the word-by-word receive data from slave 1 on the parallel interface. [0] = Word 1 [1] = Word 2 [2] = Word 3 [3] = Word 4 [4] = Word 5 [5] = Word 6 [6] = Word 7 [7] = Wort 8 [8] = Wort 9 [9] = Word 10 [10] = Word 11 [11] = Word 12 [12] = Word 13 [13] = Word 14 [14] = Word 15 [15] = Word 16
Dependency:	See also: r52721
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.

2.2 List of parameters

	CO: Parallel interface station 4 receive data word by word / Stat4 recv wbw
DC_CTRL	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: - Function diagram: 9352 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Index:	Display and connector output of the word-by-word receive data from slave 4 on the parallel interface. $\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$
Dependency: Note:	See also: r52724 The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.
$\begin{aligned} & \text { r52705[0..15] } \\ & \text { DC_CTRL } \end{aligned}$	CO: Parallel interface station 5 receive data word by word / Stat5 recv wbw
Description: Index:	Display and connector output of the word-by-word receive data from slave 5 on the parallel interface. $\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$
Dependency:	See also: r52725
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.

2.2 List of parameters

r52706[0...15]	CO: Parallel interface station 6 receive data word by word / Stat6 recv wbw
DC_CTRL	Can be changed: - Calculated: - Access level: 2
	Data type: FloatingPoint32 Dyn. index: - Function diagram: 9352
	P group: - Unit group: - Unit selection: -
	Not for motor type: - Scaling: PERCENT Expert list: 1
	Min: Max: Factory setting:
	-[\%] - [\%] - [\%]
Description:	Display and connector output of the word-by-word receive data from slave 6 on the parallel interface. [0] = Word 1
Index:	
	[1] = Word 2
	[2] = Word 3
	[3] = Word 4
	[4] = Word 5
	[5] = Word 6
	[6$]=$ Word 7
	[7] = Wort 8
	[8] = Wort 9
	[9] = Word 10
	[10] = Word 11
	[11] = Word 12
	[12] = Word 13
	[13] = Word 14
	[14] = Word 15
	[15] = Word 16
Dependency:	See also: r52726
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.

	CO: Parallel interface station 8 receive data word by word / Stat8 recv wbw
DC_CTRL	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: - Function diagram: 9352 P group: - Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min: Max: Factory setting: $-[\%]$ $-[\%]$ $-[\%]$
Description: Index:	Display and connector output of the word-by-word receive data from slave 8 on the parallel interface. $\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$
Dependency: Note:	See also: r52728 The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.
r52709[0...15] DC_CTRL	CO: Parallel interface station 9 receive data word by word / Stat9 recv wbw
Description: Index:	Display and connector output of the word-by-word receive data from slave 9 on the parallel interface. $\begin{aligned} & {[0]=\text { Word } 1} \\ & {[1]=\text { Word } 2} \\ & {[2]=\text { Word } 3} \\ & {[3]=\text { Word } 4} \\ & {[4]=\text { Word } 5} \\ & {[5]=\text { Word } 6} \\ & {[6]=\text { Word } 7} \\ & {[7]=\text { Wort } 8} \\ & {[8]=\text { Wort } 9} \\ & {[9]=\text { Word } 10} \\ & {[10]=\text { Word } 11} \\ & {[11]=\text { Word } 12} \\ & {[12]=\text { Word } 13} \\ & {[13]=\text { Word } 14} \\ & {[14]=\text { Word } 15} \\ & {[15]=\text { Word } 16} \end{aligned}$
Dependency:	See also: r52729
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.

2.2 List of parameters

r52710[0...15]	CO: Parallel interface station 10 receive data word by word / Stat10 recv wbw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9352
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the word-by-word receive data from slave 10 on the parallel interface.		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	[3] = Word 4		
	[4] = Word 5		
	[5] = Word 6		
	[6] = Word 7		
	[7] = Wort 8		
	[8] = Wort 9		
	[9] = Word 10		
	[10] = Word 11		
	[11] = Word 12		
	[12] = Word 13		
	[13] = Word 14		
	[14] = Word 15		
	[15] = Word 16		
Dependency:	See also: r52730		
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.		

r52711[0...15]	CO: Parallel interface station 11 receive data word by word / Stat11 recv wbw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the word-by-word receive data from slave 11 on the parallel interface.		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	[3] = Word 4		
	[4] = Word 5		
	[5] = Word 6		
	[6] = Word 7		
	[7] = Wort 8		
	[8] = Wort 9		
	[9] = Word 10		
	[10] = Word 11		
	[11] = Word 12		
	[12] = Word 13		
	[13] = Word 14		
	[14] = Word 15		
	[15] = Word 16		
Dependency:	See also: r52731		
Note:	The receive data in word 1 is interconnection.	non-scaled format bit	d by word for further

2.2 List of parameters

r52714[0...15]	CO: Parallel interface station 14 receive data word by word / Stat14 recv wbw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 9352
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the word-by-word receive data from slave 14 on the parallel interface.		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	[3] = Word 4		
	[4] = Word 5		
	[5] = Word 6		
	[6] = Word 7		
	[7] = Wort 8		
	[8] = Wort 9		
	[9] = Word 10		
	[10] = Word 11		
	[11] = Word 12		
	[12] = Word 13		
	[13] = Word 14		
	[14] = Word 15		
	[15] = Word 16		
Dependency:	See also: r52734		
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.		

r52715[0...15]	CO: Parallel interface station 15 receive data word by word / Stat15 recv wbw		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram:
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the word-by-word receive data from slave 15 on the parallel interface.		
Index:	[0] = Word 1		
	[1] = Word 2		
	[2] = Word 3		
	[3] = Word 4		
	[4] = Word 5		
	[5] = Word 6		
	[6] = Word 7		
	[7] = Wort 8		
	[8] = Wort 9		
	[9] = Word 10		
	[10] = Word 11		
	[11] = Word 12		
	[12] = Word 13		
	[13] = Word 14		
	[14] = Word 15		
	[15] = Word 16		
Dependency:	See also: r52735		
Note:	The receive data in word 1 is interconnection.	non-scaled format bit	d by word for further

r52716[0...15]	CO: Parallel interface station 16 receive data word by word / Stat16 recv wbw			
DC_CTRL	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Funct	
	P group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: PERCENT	Exper	
	Min:	Max:	Factory	
	- [\%]	- [\%]	- [\%]	
Description:	Display and connector output of the word-by-word receive data from slave 16 on the parallel interface.			
Index:	$\text { [0] = Word } 1$			
	[1] = Word 2			
	[2] = Word 3			
	[3] = Word 4			
	[4] = Word 5			
	[5] = Word 6			
	[6] = Word 7			
	[7] = Wort 8			
	[8] = Wort 9			
	[9] = Word 10			
	[10] = Word 11			
	[11] = Word 12			
	[12] = Word 13			
	[13] = Word 14			
	[14] = Word 15			
	[15] = Word 16			
Dependency:	See also: r52736			
Note:	The receive data in word 1 is also available in non-scaled format bit by bit and word by word for further interconnection.			
r52720.0.. 15	CO/BO: Parallel interface master receive word 1 bit by bit / Master recv1 bbb			
DC_CTRL	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Functi	
	P group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Factor	
	-	-	-	
Description:	Display and binector/connector output for receive word 1 from the master on the parallel interface.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	Yes	No	9352
	01 Bit 1	Yes	No	9352
	02 Bit 2	Yes	No	9352
	03 Bit 3	Yes	No	9352
	04 Bit 4	Yes	No	9352
	05 Bit 5	Yes	No	9352
	06 Bit 6	Yes	No	9352
	07 Bit 7	Yes	No	9352
	08 Bit 8	Yes	No	9352
	09 Bit 9	Yes	No	9352
	10 Bit 10	Yes	No	9352
	11 Bit 11	Yes	No	9352
	12 Bit 12	Yes	No	9352
	13 Bit 13	Yes	No	9352
	14 Bit 14	Yes	No	9352
	15 Bit 15	Yes	No	9352
Dependency:	See also: r52700			
Note:	Receive word 1 is also available scaled word by word for further interconnection.			

2.2 List of parameters

r52721.0... 15	CO/BO: Parallel interface station 1 receive word 1 bit by bit / Stat1 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
			Max:	Factory setting:	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 1 on the parallel interface.				
Bit array:		Signal name	1 signal	0 signal	FP
		Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
		Bit 11	Yes	No	9352
		Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52701				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52722.0.. 15	CO/BO: Parallel interface station 2 receive word 1 bit by bit / Stat2 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-		
Description:	Display and binector/connector output for receive word 1 from station 2 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52702				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

r52723.0... 15	CO/BO: Parallel interface station 3 receive word 1 bit by bit / Stat3 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Function	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factor	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 3 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	Yes	No	9352
		Bit 1	Yes	No	9352
		Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
		Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
		Bit 11	Yes	No	9352
		Bit 12	Yes	No	9352
		Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52703				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52724.0.. 15	CO/BO: Parallel interface station 4 receive word 1 bit by bit / Stat4 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Function	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factor	
			-	-	
Description:	Display and binector/connector output for receive word 1 from station 4 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52704				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

2.2 List of parameters

r52725.0... 15	CO/BO: Parallel interface station 5 receive word 1 bit by bit / Stat5 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Dat	type: Unsigned16	Dyn. index: -	Funct	
	P gr	up: -	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Exper	
	Min		Max:	Facto	
	-		-	-	
Description:	Disp	ay and binector/con	ceive word 1 from	parallel inte	
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See	also: r52705			
Note:	Rec	ve word 1 is also a	by word for furth		

$\overline{\mathbf{r 5 2 7 2 6 . 0} . .15}$	CO/BO: Parallel interface station 6 receive word 1 bit by bit / Stat6 recv1 bbb			
DC_CTRL	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Funct	
	P group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min:	Max:	Facto	
	硣	-	-	
Description:	Display and binector/con	eive word 1 from	parallel inte	
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	Yes	No	9352
	01 Bit 1	Yes	No	9352
	02 Bit 2	Yes	No	9352
	03 Bit 3	Yes	No	9352
	04 Bit 4	Yes	No	9352
	05 Bit 5	Yes	No	9352
	06 Bit 6	Yes	No	9352
	07 Bit 7	Yes	No	9352
	08 Bit 8	Yes	No	9352
	09 Bit 9	Yes	No	9352
	10 Bit 10	Yes	No	9352
	11 Bit 11	Yes	No	9352
	12 Bit 12	Yes	No	9352
	13 Bit 13	Yes	No	9352
	14 Bit 14	Yes	No	9352
	15 Bit 15	Yes	No	9352
Dependency:	See also: r52706			
Note:	Receive word 1 is also av	by word for furth		

r52727.0... 15	CO/BO: Parallel interface station 7 receive word 1 bit by bit / Stat7 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 7 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
		Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52707				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52728.0.. 15	CO/BO: Parallel interface station 8 receive word 1 bit by bit / Stat8 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 8 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52708				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

2.2 List of parameters

r52729.0... 15	CO/BO: Parallel interface station 9 receive word 1 bit by bit / Stat9 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 9 on the parallel interface.				
Bit array:		Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
		Bit 11	Yes	No	9352
		Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52709				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52730.0...15	CO/BO: Parallel interface slave 10 receive word 1 bit by bit / Stat10 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
			-		
Description:	Display and binector/connector output for receive word 1 from station 10 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52710				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

r52731.0.. 15	CO/BO: Parallel interface station 11 receive word 1 bit by bit / Stat11 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Factor	
	-		-	-	
Description: Bit array:	Display and binector/connector output for receive word 1 from station 11 on the parallel interface.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52711				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52732.0.. 15	CO/BO: Parallel interface station 12 receive word 1 bit by bit / Stat12 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index:	Functi	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 12 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52712				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

2.2 List of parameters

r52733.0... 15	CO/BO: Parallel interface station 13 receive word 1 bit by bit / Stat12 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Funct	9352
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Facto	
	-		-	-	
Description: Bit array:	Display and binector/connector output for receive word 1 from station 13 on the parallel interface.				
		Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
		$\text { Bit } 11$	Yes	No	9352
		Bit 12	Yes	No	9352
		Bit 13	Yes	No	9352
		Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52713				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52734.0... 15	CO/BO: Parallel interface station 14 receive word 1 bit by bit / Stat14 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Functi	9352
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Factory	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 14 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52714				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

r52735.0.. 15	CO/BO: Parallel interface slave 15 receive word 1 bit by bit / Slave15 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Factor	
	-		-	-	
Description: Bit array:	Display and binector/connector output for receive word 1 from slave 15 on the parallel interface.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52715				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				
r52736.0.. 15	CO/BO: Parallel interface station 16 receive word 1 bit by bit / Stat16 recv1 bbb				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 9352	
	P group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min:		Max:	Factor	
	-		-	-	
Description:	Display and binector/connector output for receive word 1 from station 16 on the parallel interface.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Yes	No	9352
	01	Bit 1	Yes	No	9352
	02	Bit 2	Yes	No	9352
	03	Bit 3	Yes	No	9352
	04	Bit 4	Yes	No	9352
	05	Bit 5	Yes	No	9352
	06	Bit 6	Yes	No	9352
	07	Bit 7	Yes	No	9352
	08	Bit 8	Yes	No	9352
	09	Bit 9	Yes	No	9352
	10	Bit 10	Yes	No	9352
	11	Bit 11	Yes	No	9352
	12	Bit 12	Yes	No	9352
	13	Bit 13	Yes	No	9352
	14	Bit 14	Yes	No	9352
	15	Bit 15	Yes	No	9352
Dependency:	See also: r52716				
Note:	Receive word 1 is also available scaled word by word for further interconnection.				

2.2 List of parameters

r52800	CO: Sequence control operating state / S ctr op state		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2651
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the sequence control operating state.		
Note:	The values correspond to the operating state of the drive (r0002 (DC_CTRL)).		
r52900	CO: Optimization run output 0 / Opt run outp 0		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of output 0 during the optimization run.		
Note:	This parameter is used solely for internal diagnostics.		
r52901	CO: Optimization run output 1 / Opt run outp 1		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of output 1 during the optimization run.		
Note:	This parameter is used solely for internal diagnostics.		
r52902	CO: Optimization run output 2 / Opt run outp 2		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of output 2 during the optimization run.		
Note:	This parameter is used solely for internal diagnostics.		
r52903	CO: Optimization run output 3 / Opt run outp 3		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 2660
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of output 3 during the optimization run. This parameter is used solely for internal diagnostics.		
Note:			

2.2 List of parameters

Note: \quad This parameter is used solely for internal diagnostics.

2.2 List of parameters

r52965[0...1]	Line analysis armature line phase offset / Arm line ph offs		
DC_CTRL	Can be changed: -	Calculated:	Access level: 4
	Data type: FloatingPoint32	Dyn. index:	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting:
	Min:	Max:	$-[V]$
	$-[V]$	$-[V]$	
Descristion:	Displays the DC offset (= direct-current component) of the armature line phases in volts.		
Index:	$[0]=$ Armature phase UV		
	$[1]=$ Armature phase VW		

r52966	Line analysis field line phase offset / Field line ph offs		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	$-[V]$	$-[V]$	
	Description:	Displays the DC offset (= direct-current component) of the field line phases in volts.	

r52970	CO: Line analysis armature line zero crossing positive phase UV / Arm zero pos UV		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last positive zero crossing of armature phase UV.		
Note:	The value is displayed in [10 ns] unit.		
r52971	CO: Line analysis armature line zero crossing negative phase UV / Arm zero neg UV		
DC_CTRL	Can be changed: -	Calculated:	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last negative zero crossing of armature phase UV.		
Note:	The value is displayed in [10 ns] unit.		
r52972	CO: Line analysis armature line zero crossing positive phase VW / Arm zero pos VW		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	Displays the point in time (timer value) of the last positive zero crossing of armature phase VW.		
Note:	The value is displayed in [10 ns] unit.		
r52973	CO: Line analysis armature line zero crossing negative phase VW / Arm zero neg VW		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last negative zero crossing of armature phase UV.		
Note:	The value is displayed in [10 ns] unit.		
r52974	CO: Line analysis armature line zero crossing positive phase WU / Arm zero pos WU		
DC_CTRL	Can be changed: -	Calculated:	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last positive zero crossing of armature phase WU. The value is displayed in [10 ns] unit.		
Note:			

2.2 List of parameters

r52975	CO: Line analysis armature line zero crossing negative phase WU / Arm zero neg WU		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6950
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last negative zero crossing of armature phase WU.The value is displayed in [10 ns] unit.		
Note:			
r52976	CO: Line analysis field line zero crossing positive phase F/ Field zero pos F		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
		-	-
Description:	Displays the point in time (timer value) of the last positive zero crossing of the field phase.		
Note:	The value is displayed in [10 ns] unit.		
r52977	CO: Line analysis field line zero crossing negative phase F/ Field zero neg F		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Function diagram: 6952
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the point in time (timer value) of the last negative zero crossing of the field phase.		
Note:	The value is displayed in [10 ns] unit.		

2.2 List of parameters

	06	DI 3 (X177.14)	High	Low	2050
	07	DI 3 inverted (X177.14)	High	Low	2050
	08	DI/DO 4 (X177.15)	High	Low	2060
	09	DI/DO 4 inverted (X177.15)	High	Low	2060
	10	DI/DO 5 (X177.16)	High	Low	2060
	11	DI/DO 5 inverted (X177.16)	High	Low	2060
	12	DI/DO 6 (X177.17)	High	Low	2065
	13	DI/DO 6 inverted (X177.17)	High	Low	2065
	14	DI/DO 7 (X177.18)	High	Low	2065
	15	DI/DO 7 inverted (X177.18)	High	Low	2065
Dependency:	For bits $08 . . .15$:				
	The terminal must be set as an input (p50789[0...3] = 0).				
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				

r53020.0...7	CO/BO: CUD digital outputs status / CUD DO status				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Dat	type: Unsigned16	Dyn. index: -	$\begin{aligned} & \text { Functi } \\ & 2065 \end{aligned}$	$5,2060,$
	P g	up: -	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max:	Factor	
	-		-	-	
Description:	Display and connector output for the CUD's digital outputs.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
		DO 0 (X177.19)	High	Low	2055
		DO 1 (X177.20)	High	Low	2055
		DO 2 (X177.21)	High	Low	2055
		DO 3 (X177.22)	High	Low	2055
		DI/DO 4 (X177.15)	High	Low	2060
		DI/DO 5 (X177.16)	High	Low	2060
		DI/DO 6 (X177.17)	High	Low	2065
		DI/DO 7 (X177.18)	High	Low	2065
Dependency:	For bits 04 to 07:				
	The terminal must be set as an output (p50789[0...3] = 1).				
Note:	DO: Digital Output				
	DI/DO: Bidirectional Digital Input/Output				

r53021.0... 7	CO/BO: CUD digital outputs overload monitoring / CUD DO overload			
DC_CTRL	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Funct 2065	$5,2060,$
	P group: -	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min:	Max:	Factor	
	-	-	-	
Description:	Display and connector output for the overload monitoring of the digital outputs.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0 (X177.19) overload present	Yes	No	2055
	01 DO 1 (X177.20) overload present	Yes	No	2055
	02 DO 2 (X177.21) overload present	Yes	No	2055
	03 DO 3 (X177.22) overload present	Yes	No	2055
	04 DI/DO 4 (X177.15) overload present	Yes	No	2060
	05 DI/DO 5 (X177.16) overload present	Yes	No	2060
	06 DI/DO 6 (X177.17) overload present	Yes	No	2065
	07 DI/DO 7 (X177.18) overload present	Yes	No	2065
Dependency:	For bits 04 to 07:			
	The terminal must be set as an output (p50789[0...3] = 1) .			

Note:	DO: Digital Output
	DI/DO: Bidirectional Digital Input/Output

r53025.0... 13	CO/BO: Speed messages / n messages				
DC_CTRL	Can be changed: - C		Calculated: -	Access level: 2	
		type: Unsigned16 Dy	Dyn. index: -	Function diagram: 8020, 8025	
		up: - Un	Unit group: -	Unit selection: -	
		or motor type: - Sc	Scaling: -	Expert list: 1	
	Min		Max:	Factory setting:	
	-	-		-	
Description:	Displays the state of the messages for speed comparisons and limits.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Setpoint/actual value deviation 1 less than threshold	Yes	No	8020
	01	Setpoint/actual value deviation 1 less than threshold inverted	Yes	No	8020
	02	Setpoint-actual value deviation 2 less than threshold	Yes	No	8020
	03	Setpoint-actual value deviation 2 less than threshold inverted	Yes	No	8020
	04	Comparison setpoint reached	Yes	No	8020
	05	Comparison setpoint reached inverted	Yes	No	8020
	06	Deceleration speed reached	Yes	No	8020
	07	Deceleration speed reached inverted	Yes	No	8020
	08	Positive speed setpoint	Yes	No	8025
	09	Positive speed setpoint inverted	Yes	No	8025
	10	Overspeed	Yes	No	8025
	11	Overspeed inverted	Yes	No	8025
	12	Positive speed actual value	Yes	No	8025
	13	Positive speed actual value inverted	Yes	No	8025

r53026.0... 1	CO/BO: Field current messages / If messages				
DC_CTRL	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Funct	
	P group: -		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min:		Max:	Factory	
	-		-	-	
Description:	Control word for field current thresholds.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Field current less than minimum field current threshold	Yes	No	-
	01	Field current actual value less than field current setpoint x	d Yes	No	-

r53030.0...	CO/BO: CUD analog inputs wire break message / CUD AI wire brk		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2075,2080
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the "Wire break" message in the case of the CUD analog inputs.		

2.2 List of parameters

Bit array:		Signal name	1 signal	0 signal	FP
	00	AI "Main setpoint" wire-break monitoring responded	Yes	No	2075
	01	AI 1 (X177.27/28) Wire-break monitoring responded	Yes	No	2080
Dependency:	See also: F60046, F60047				
r53081.0...	CO/BO: Sequence control line contactor control / Ctrl line cont				
DC_CTRL	Can be changed: - C		Calculated: -	Acces	
	Data type: Unsigned16 D		Dyn. index: -	Funct	
	P group: -		group: -	Unit se	
	Not for motor type: - S		ing: -	Expert	
	Min:		Max:	Factory	
	- -		-		
Description:	Display and connector output for the line contactor control.				
Bit array:		Signal name	1 signal	0 signal	FP
		Line contactor	ON	OFF	2651
		Line contactor inverted	ON	OFF	2651
r53082.0	CO/BO: Line contactor state / Line cont state				
DC_CTRL	Can be changed: - C		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Functi	
	P group: -		Unit group: -	Unit se	
	Not for motor type: - S		Scaling:	Expert	
	Min:			Factory setting:	
	- -		-		
Description:	Displays the status of the line contactor control.				
Bit array:		Signal name	1 signal	0 signal	FP
		Line contactor ON	Yes	No	2070
Dependency:	See also: p51619				
Note:	For bit 00:				
	1 signal: The relay output for the line contactor is activated via binector input p51619.				
	0 signal: The relay output for the line contactor is de-activated via binector input p51619.				

r53100.0..1	CO/BO: E stop status / E stop stat			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2070, 2580	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Display and connector output for the status in the event of an E stop (emergency stop).			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 No E stop	Yes	No	$\begin{aligned} & 2070 \\ & 2580 \end{aligned}$
	01 E stop active	Yes	No	2070

r53120.0...	CO/BO: Motor control checks / Mot mon state			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8035	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the state of the motor interface.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Brush length too short	Yes (fault)	No	-
	01 Poor bearing condition	Yes (fault)	No	-
	02 Motor fan fault	Yes (fault)	No	-
	03 Motor temperature too high	Yes (fault)		-
Dependency:	See also: p50486, p50487, p50488, p50489			
	See also: F60025, F60026, F60027, F60028			
r53130.0...	CO/BO: Motor interface temperature monitoring state / Mot temp_mon			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 8030	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
		-	Factory	
Description:	Displays the state of temperature monitoring on the motor interface.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Motor temperature alarm	Yes	No	-
	01 Motor temperature fault	Yes	No	-
Dependency:	See also: p50490, p50491, p50492			
	See also: F60029, A60032			
r53135.0.. 12	CO/BO: Device fan state / Dev fan state			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: -	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
		-	-	
Description:	Display and connector output/binector output for the state of the device fan.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Switch on fan	ON	OFF	8047
	01 Switch on fan inverted	ON	OFF	8047
	08 Fan 1 speed OK	Yes	No (too low)	8047
	09 Fan 2 speed OK	Yes	No (too low)	8047
	10 Fan 3 speed OK	Yes	No (too low)	8047
	11 Fan 4 speed OK	Yes	No (too low)	8047
	12 Control Module fan speed OK	Yes	No	8049
Dependency:	See also: p50082, p50096			

2.2 List of parameters

Note: \quad For the Control Module, fan "available" is always displayed as the Control Module only has one output to control the fan.

The display is independent of the state of the fan and only indicates the desired state.

r53145.0...13	CO/BO: Line state / Line state		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6950,6954
	P group: -	Unit group: -	Unit selection:
	Not for motor type:	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the state of the line for armature and field.		

Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Armature supply system overvoltage	Yes	No	-
	01	Armature supply system undervoltage	Yes	No	-
	02	Armature supply system overfrequency	Yes	No	-
	03	Armature supply system underfrequency	Yes	No	-
	04	Armature supply system phase failure	Yes	No	-
	05	Field supply system overvoltage	Yes	No	-
	06	Field supply system undervoltage	Yes	No	-
	07	Field supply system overfrequency	Yes	No	-
	08	Field supply system underfrequency	Yes	No	-
	09	Field supply system phase failure	Yes	No	-
	10	Armature supply system OK	Yes	No	-
	11	Field supply system OK	Yes	No	-
	12	Phase rotating clockwise	Yes	No	-
	13	Line symmetry	Yes	No	-
Dependency:	See also: p50351, p50352, p50361, p50362				
Note:	Bit 00 or bit 01 and bit 05 or bit 06 only indicate a line undervoltage condition or line overvoltage condition if the line voltage lies outside the limits (p50351, p50352) and delay times (p50361, p50362) have elapsed.				
r53146.0.. 13	CO/BO: Thyristor state / Thyr state				
DC_CTRL	Can be changed: - C		Calculated: - Access level:		
	Data type: Unsigned16 D		Dyn. index: -	Function diagram: 6950	
	P group: - U		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	- -		-		
Description:	Display and connector output for the state of the thyristors.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Thyristor X11 conducting	Yes	No	-
	01	Thyristor X12 conducting	Yes	No	-
	02	Thyristor X13 conducting	Yes	No	-
	03	Thyristor X14 conducting	Yes	No	-
	04	Thyristor X15 conducting	Yes	No	-
	05	Thyristor X16 conducting	Yes	No	-
	08	Thyristor X21 conducting	Yes	No	-
	09	Thyristor X22 conducting	Yes	No	-
	10	Thyristor X23 conducting	Yes	No	-
	11	Thyristor X24 conducting	Yes	No	-
	12	Thyristor X25 conducting	Yes	No	-
	13	Thyristor X26 conducting	Yes	No	-

r53147.0... 13 CO/BO: Thyristor blocking state / Thyr block state

DC_CTRL	Can be changed: -	Calculated: -
	Data type: Unsigned16	Dyn. index: -
	P group: -	Unit group: -
	Not for motor type: -	Scaling: -
	Min:	Max:
	-	-
Description:	Displays the blocked state of the thyristors.	
Bit array:	Bit Signal name	1 signal
	$00 \quad$ Thyristor X11	Blocking
	$01 \quad$ Thyristor X12	Blocking

Access level: 3
Function diagram: 6950
Unit selection: -
Expert list: 1
Factory setting:

0 signal
Inhibited Inhibited

2.2 List of parameters

	02	Thyristor X13		Blocking	Inhibited	
	03	Thyristor X14		Blocking	Inhibited	
	04	Thyristor X15		Blocking	Inhibited	-
	05	Thyristor X16		Blocking	Inhibited	
	08	Thyristor X21		Blocking	Inhibited	-
	09	Thyristor X22		Blocking	Inhibited	
	10	Thyristor X23		Blocking	Inhibited	
	11	Thyristor X24		Blocking	Inhibited	
	12	Thyristor X25		Blocking	Inhibited	
	13	Thyristor X26		Blocking	Inhibited	
Note:		blocked state is only	"non	-conducting		
r53148.0... 1		BO: Power unit	2 t st			
DC_CTRL		be changed: -	Calcu	lated: -	Access	
		type: Unsigned16	Dyn.	index: -	Functio	
		up: -	Unit	group: -	Unit se	
		or motor type: -	Scali	g: -	Expert	
	Mi		Max:		Factor	
	-		-		-	
Description:		ays the state of the	power	unit.		
Bit array:		Signal name I2t power unit resp	eded	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal No	$\begin{aligned} & \text { FP } \\ & 8042 \end{aligned}$
	01	I2t power unit resp and saved	eded	Yes	No	8042
r53149.0		BO: Power unit	U pro	perties		
DC_CTRL		be changed: -	Calcu	lated: -	Access	
		type: Unsigned16	Dyn.	index: -	$\begin{aligned} & \text { Functi } \\ & 6965 \end{aligned}$, 6960,
		up: -	Unit	group: -	Unit s	
		or motor type: -	Scali	ng: -	Expert	
	Mi		Max:		Factor	
	-		-		-	
Description:		lay and BICO output	powe	unit.		
Bit array:	Bit	Signal name		1 signal	0 signal	
	00	4Q power unit		Yes	No	6960

r53150.0...5	CO/BO: Speed limiting controller/torque limiting state / n_lim/T lim state			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6830, 6835	
	P group: -	Unit group: -	Unit selection:	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the state on the speed limiting controller and with regard to torque limiting.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Positive speed limit reached	Yes	No	6835
	01 Negative speed limit reached	Yes	No	6835
	02 Limiting controller active	Yes	No	6835
	03 Positive torque limit reached	Yes	No	6830
	04 Negative torque limit reached	Yes	No	6830
	05 Torque limiting active	Yes	No	6830

r53160.0	CO/BO: Speed controller enable /n_ctr ena		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6815
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output to enable the speed controller.		
Bit array:	Bit Signal name	1 signal	Yes
	00 Speed controller enable present		No
			Nignal

r53170.4...15 CO/BO: Setpoint processing control word / Set proc STW

DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 2585	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Control word for setpoint processing.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	04	Direction of rotation enable	No enable	Enable	3135
	08	Jog ON command	ON	OFF	3125
	09	Creep ON command	ON	OFF	3130
	10	Fixed setpoint bypass ramp-function generator	ON	OFF	3115
	11	Jog setpoint bypass ramp-function generator	ON	OFF	3125
	12	Creep setpoint bypass ramp-function generator	ON	OFF	3130
	13	Fixed setpoint input active	Yes	No	3115
	14	Setpoint from AOP/PC active	Yes	No	3113
	15	Jogging setpoint enabled	Yes	No	3125

2.2 List of parameters

r53190.0... 12	CO/BO: Armature auto-reversing stage state / Arm stage state		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6815, 6855, $\text { 6860, 6862, } 8046$
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the state of the auto-reversing stage.		
Bit array:	Bit Signal name	1 signal	0 signal FP
	00 Torque direction enabled	$\mathrm{MO} \text { or } \mathrm{MI}$	MO or MII
	01 Torque direction I active	Yes	No
	02 Torque direction II active	Yes	No
	03 Torque direction 0 requested	Yes	No
	04 Torque direction I requested	Yes	No
	05 Torque direction II requested	Yes	No
	06 Torque direction change in progress	Yes	No
	07 Alpha G limit reached	Yes	No
	08 Alpha W limit reached	Yes	No
	09 Alpha G limit or Alpha W limit reached	Yes	No
	10 Positive limit of n, M, I, Alpha reached	Yes	No
	11 Negative limit of n, M, I, Alpha reached	Yes	No
	12 Alpha W shift active	Yes	No -
r53191.0... 2	CO/BO: Field auto-reversing stage state / Field stage state		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6910, 6915
	P group: -	Unit group:	Unit selection:
	Not for motor type: -	Scaling:	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the state of the auto-reversing stage for field control.		

2.2 List of parameters

Bit array:	Bit	Signal name	1 signal	Yes
	00	Output is zero $(y=0)$	0 signal	No
	01	Ramp-up/ramp-down complete $(y=x)$	Yes	No

$\overline{\mathbf{r 5 3 2 1 0 . 0} . .5}$	CO/BO: Sequence control output signals / Seq_ctrl outp_sig		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Function diagram: 2585, 2651, 2750
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output for the sequence control output signals.		
Bit array:	Bit Signal name	1 signal	0 signal FP
	00 Close brake	Yes	No 2585, 2750
	01 Close brake inverted	Yes	No 2750
	02 Switch on auxiliaries	Yes	No 2651
	03 Switch on auxiliaries inverted	Yes	No 2651
	04 Automatic restart active	Yes	No 2651, 2750
	05 Automatic restart active inverted	Yes	No2651, 2750

r53220.0... 5	CO/BO: Fuses at X23B state / Fuses X23B				
DC_CTRL	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 6957	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and connector output/binector output for the state of the fuses at X23B.				
	The fuses are monitored via connection A7109:X23B or A7112:X23B.				
Bit array:		Signal name	1 signal	0 signal	FP
		Fuse XS1	Okay	Ruptured	-
		Fuse XS2	Okay	Ruptured	-
		Fuse XS3	Okay	Ruptured	-
		Fuse XS4	Okay	Ruptured	-
		Fuse XS5	Okay	Ruptured	-
		Fuse XS6	Okay	Ruptured	-
Dependency:	See also: p51831				
	See also: F60204				
Note:	The fuses are only set to "OK" in operating state o7.0. The fuses are set to "ruptured" in all other operating states. The parameter is only relevant for the Control Module.				

r53221.0...5	CO/BO: Fuses at X23C state / Fuses X23C		
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index:	Function diagram: 6957
	P group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min:	Max:	Factory setting:
	-	-	
Description:	Display and connector output/binector output for the state of the fuses at X23C.		
	The fuses are monitored via connection $A 7112: \times 23 \mathrm{C}$.		

Bit array:	Bit	Signal name	1 signal	O signal
	00	Fuse XS1	Okay	Ruptured
	01	Fuse XS2	Okay	Ruptured
	02	Fuse XS3	Rupay	Ruptured
	03	Fuse XS4	Okay	Ruptured
Dependency:	04	Fuse XS5	Okay	Ruptured
	05	Fuse XS6	Okay	-
Note:	See also: p51831		-	
	See also: F60204			
	The fuses are only set to "OK" in operating state o7.0. The fuses are set to "ruptured" in all other operating states.			
	The parameter is only relevant for the Control Module.			

r53222.0... 5	CO/BO: Fuses at X23D state / Fuses X23D			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6957	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-		
Description:	Display and connector output/binector output for the state of the fuses at X23D. The fuses are monitored via connection A7112:X23D.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Fuse XS1	Okay	Ruptured	-
	01 Fuse XS2	Okay	Ruptured	-
	02 Fuse XS3	Okay	Ruptured	-
	03 Fuse XS4	Okay	Ruptured	-
	04 Fuse XS5	Okay	Ruptured	-
	05 Fuse XS6	Okay	Ruptured	-
Dependency:	See also: p51831			
	See also: F60204			
Note:	The fuses are only set to "OK" in operating state o7.0. The fuses are set to "ruptured" in all other operating states. The parameter is only relevant for the Control Module.			

r53223.0... 5	CO/BO: Fuses at X23E state / Fuses X23E			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6957	
	P group: -	Unit group: -	Unit selection:	
	Not for motor type: -	Scaling: -	Expert list: 1	
		Max:	Factory setting:	
	-	-		
Description:	Display and connector output/binector output for the state of the fuses at X23E.			
	The fuses are monitored via connection A7112:X23E.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Fuse XS1	Okay	Ruptured	-
	01 Fuse XS2	Okay	Ruptured	-
	02 Fuse XS3	Okay	Ruptured	-
	03 Fuse XS4	Okay	Ruptured	-
	04 Fuse XS5	Okay	Ruptured	-
	05 Fuse XS6	Okay	Ruptured	-
Dependency:	See also: p51831			
	See also: F60204			
Note:	The fuses are only set to "OK" in operating state o7.0. The fuses are set to "ruptured" in all other operating states. The parameter is only relevant for the Control Module.			

r53224.0... 5	CO/BO: Fuses at X23F state / Fuses X23F			
DC_CTRL	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Function diagram: 6957	
	P group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min:	Max:	Factory setting:	
	-	-		
Description:	Display and connector output/binector output for the state of the fuses at X23F. The fuses are monitored via connection A7112:X23F.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Fuse XS1	Okay	Ruptured	-
	01 Fuse XS2	Okay	Ruptured	-
	02 Fuse XS3	Okay	Ruptured	-
	03 Fuse XS4	Okay	Ruptured	-
	04 Fuse XS5	Okay	Ruptured	-
	05 Fuse XS6	Okay	Ruptured	-
Dependency:	See also: p51831			
	See also: F60204			
Note:	The fuses are only set to "OK" in operating state o7.0. The fuses are set to "ruptured" in all other operating states. The parameter is only relevant for the Control Module.			

r53230.0...7 DC_CTRL	CO/BO: Fixed bit 0 ... 7 / Fix bit 0... 7				
	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Function diagram: 3100	
	P group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Connector/binector output for fixed bit $0 \ldots 7$.				
Bit array:	Bit	Signal name	1 signal	0 signal	FP
	00	Fixed bit 0 (p50421)	High	Low	-
	01	Fixed bit 1 (p50422)	High	Low	-
	02	Fixed bit 2 (p50423)	High	Low	-
	03	Fixed bit 3 (p50424)	High	Low	-
	04	Fixed bit 4 (p50425)	High	Low	-
	05	Fixed bit 5 (p50426)	High	Low	-
	06	Fixed bit 6 (p50427)	High	Low	-
	07	Fixed bit 7 (p50428)	High	Low	-
Dependency:	See also: p50421, p50422, p50423, p50424, p50425, p50426, p50427, p50428				

2.3 Parameters for data sets

2.3.1 Parameters for command data sets (CDS)

Note:
 References: SINAMICS DC MASTER operating instructions "Data sets" Chapter

The following list contains the parameters that are dependent on the command data sets.

```
Product: SINAMICS DC MASTER, Version: 5104032, Language: eng, Type: CDS
p0700[0...n] Macro Binector Input (BI) / Macro BI
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit }
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Enable operation
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Enable speed controller / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n] Macro Connector Inputs (CI) for speed setpoints / Macro Cl n_set
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1055[0...n] BI: Jog bit 0 / Jog bit 0
p1056[0...n] BI: Jog bit 1 / Jog bit 1
p1070[0...n] Cl: Main setpoint / Main setpoint
p1113[0...n] BI: Setpoint inversion / Setp inv
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1500[0...n] Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set
p2103[0...n] BI: 1st acknowledge faults / 1st acknowledge
p2104[0...n] BI: 2nd acknowledge faults / 2nd acknowledge
p2105[0...n] BI: 3rd acknowledge faults / 3rd acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2107[0...n] Bl: External fault 2 / External fault 2
p2108[0...n] BI: External fault 3 / External fault 3
p2112[0..n] BI: External alarm 1 / External alarm 1
p2116[0...n] BI: External alarm 2 / External alarm 2
p2117[0\ldots..n] BI: External alarm 3 / External alarm 3
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2253[0...n] Cl: Technology controller setpoint 1/ Tec_ctrl setp 1
p2254[0...n] Cl: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n] CI: Technology controller actual value / Tec_ctrl act val
p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ hold
p2289[0..n] Cl: Technology controller precontrol signal / Tec_ctr prectr_sig
p2296[0...n] Cl: Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n] Cl: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
```

p2298[0...n]	CI: Technology controller minimum limit signal source
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated / Ext fit 3 enab neg
Product SINAMICS DC MASTER OA, Version: 1503000, Language: eng, Type: CDS	
p50165[0...n]	BI: Signal source for change in torque direction enable / Torq dir en sig s
p50173[0...n]	BI: Signal source for closed-loop current/torque control ctr type / Ctr I/tq ctr sig s
p50175[0...n]	CI: Signal source for closed-loop armature current control P gain / la ctr Kp sig s
p50176[0...n]	CI: Signal source for closed-loop armature current ctr integr time / la ctr Tn sig s
p50177[0...n]	BI: Signal source for the "No immediate pulse inhibit" command / No pulse inh sig s
p50178[0...n]	BI: Sig source for the "Fire all thyristors simultaneously" command / All thy fire sig s
p50265[0...n]	BI: Signal source for field current monitoring / I_field mon sig s
p50266[0...n]	CI: Field current controller Tn factor signal source / If_ctrTnFact sig s
p50267[0...n]	Cl : Field current controller Kp factor signal source / If_ctrKpFact sig s
p50289[0...n]	BI: EMF setpoint reduction activation signal source / EMF set act sig s
p50322[0...n]	CI: Setpoint processing signal source for main setpoint factor / M set factor sig s
p50323[0...n]	CI: Setpoint processing signal source for additional setpoint factor / Add set fac sig s
p50433[0...n]	CI: Signal source for default setpoint / Def set sig s
p50438[0...n]	CI: Jog signal source for default setpoint / Jog def set sig s
p50443[0...n]	CI: Creep signal source for default setpoint / Cr def set sig s
p50444[0...n]	BI: Creep signal source for shutdown / Cr shutdn sig s
p50461[0...n]	CI: Motorized potentiometer signal source for automatic setpoint / MotP aut s sig s
p50466[0...n]	CI: Motor potentiometer setting value signal source / MotP s val sig s
p50470[0...n]	BI: Motorized potentiometer signal source for CW/CCW / MotP CW/CCW sig s
p50471[0...n]	BI: Motorized potentiometer signal source for manual/automatic / MotP man/aut sig s
p50472[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val
p50484[0...n]	CI: Oscillation signal source for default setpoint / Oscill def set
p50485[0...n]	BI: Oscillation selection of signal source / Oscill sel sig s
p50500[0...n]	CI: Torque limiting signal source for t_set in slave mode / T_set s mode sig s
p50501[0...n]	CI: Torque limiting signal source for torque additional setpoint / T_lim add s sig s
p50553[0...n]	CI: Speed controller adaptation Kp signal source / Adapt Kp sig s
p50554[0...n]	CI: Speed controller adaptation Tn signal source / Adapt Tn sig s
p50555[0...n]	CI: Speed controller adaptation droop signal source / Adapt droop sig s
p50580[0...n]	BI: Field reversal direction of rotation signal source / Field rev sig s
p50581[0...n]	BI: Field reversal braking signal source / Field rev br sig s
p50583[0...n]	CI: Field reversal speed actual value signal source / FldRev n_act sig s
p50594[0...n]	CI: Messages polarity speed setpoint signal source / MsgPol n_set S_src
p50598[0...n]	CI: Messages polarity speed actual value signal source / MsgPol n_act S_src
p50607[0...n]	CI: Torque limiting signal source for master drive t_set / Mst tq set sig s
p50609[0...n]	Cl : Signal source for speed controller actual value / n _ctr act sig s
p50625[0...n]	CI: Signal source for speed controller setpoint / $n _c t r$ set sig s
p50626[0...n]	CI: Signal source for speed controller actual value smoothing / Act v smoo sig s
p50635[0...n]	Cl: Setpoint processing signal source for RFG setpoint / RFG set sig s
p50637[0...n]	BI: RFG parameter set 2 selection signal source / RFG par s 2 sig s
p50638[0...n]	BI: Ramp-function generator parameter set 3 select signal source / RFG par set 3 s_s
p50640[0...n]	BI: RFG signal source for accepting setting value / RFG accept set v
p50641[0...n]	BI: Bypass ramp-function generator signal source / Bypass RFG sig s
p50644[0...n]	Cl: Setpoint processing signal source for main setpoint / M set sig s
p50645[0...n]	Cl : Setpoint processing signal source for additional setpoint / A set sig s
p50646[0...n]	BI: RFG signal source for ramp-up integrator enable / R-up int ena sig s
p50647[0...n]	BI: RFG tracking activation signal source / RFG trck act sig s
p50671[0...n]	BI: Setpoint processing sig source to enable neg dir of rotation / Ena n dir r sig s
p50672[0...n]	BI: Setpoint processing signal source to enable pos dir of rotation / Ena p dir r sig s
p50673[0...n]	BI: Motorized potentiometer signal source to increase setpoint / MotP incr sig s
p50674[0...n]	BI: Motorized potentiometer signal source to lower setpoint / MotP lower sig s

p50680[0...n]	BI: Fixed setpoint signal source for connector selection 0 / Fix set con0 sig s
p50681[0...n]	BI: Fixed setpoint signal source for connector selection 1 / Fix set con1 sig s
p50684[0...n]	BI: Speed controller droop enable / Droop enable
p50687[0...n]	BI: Speed controller signal source for master/slave drive / Mast/sl sig s
p50688[0...n]	BI: Hold speed controller I component direction pos. signal source / I comp HoldPos s_s
p50689[0...n]	BI: Hold speed controller I component direction neg. signal source / I comp HoldNeg s_s
p50691[0...n]	BI: Sequence control line contactor feedback / Line cont feedb
p50692[0...n]	BI : CI-loop field curr ctrl sig source for inject of standst field / If_ctr stst sig s
p50693[0...n]	BI: EMF controller enable signal source / EMF ctr ena sig s
p50694[0...n]	BI : Torque limiting signal source to enable changeover / T lim ch ena sig s
p50695[0...n]	BI: Signal source for setting speed controller integral component / Set I_co sig s
p50696[0...n]	BI: Signal source for stop speed controller integral component / Stop I_co sig s
p50697[0...n]	BI: Enable for inertia compensation / Inert comp ena
p50698[0...n]	BI : Signal source for speed controller Pl / P controller changeover / n_ctr PI / P sig s
p51590[0...n]	CI : Armature current ctrl armature cct resistance adaptation s_src / la ctr Ra s_src
p51607[0...n]	BI: Setpoint processing reduction signal source / Red sig s
p51619[0...n]	BI: Signal source for switching on line contactor / Line cont ON sig s
p51657[0...n]	BI: Speed controller start pulse pos/neg changeover signal source / Start p ch sig s

2.3.2 Parameters for drive data sets (DDS)

Note:

References: SINAMICS DC MASTER operating instructions "Data sets" Chapter

The following list contains the parameters that are dependent on the drive data sets.

```
Product: SINAMICS DC MASTER, Version: 5104032, Language: eng, Type: DDS
p0187[0...n] Encoder 1 encoder data set number / Enc 1 EDS number
p0188[0...n] Encoder 2 encoder data set number / Enc 2 EDS number
p0340[0...n] Automatic calculation motor/control parameters / Calc auto par
p1441[0...n] Actual speed smoothing time / n_act T_smooth
p1821[0...n] Direction of rotation / Dir of rot
p2504[0..n] LR motor/load motor revolutions / Mot/load motor rev
p2505[0...n] LR motor/load load revolutions / Mot/load load rev
p2720[0...n] Load gear configuration / Load gear config
p2721[0...n] Load gear rotary absolute encoder revolutions virtual / Abs rot rev
p2722[0...n] Load gear position tracking tolerance window / Pos track tol
r2723[0...n] CO: Load gear absolute value / Load gear abs_val
r2724[0...n] CO: Load gear position difference / Load gear pos diff
p2900[0...n] CO: Fixed value 1 [%] / Fixed value 1 [%]
p2901[0...n] CO: Fixed value 2 [%] / Fixed value 2 [%]
p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]
Product: SINAMICS DC MASTER OA, Version: 1503000, Language: eng, Type: DDS p50081[0...n] Field weakening activation / Field weak act
p50083[0...n] Speed controller actual value selection / n_ctr act sel p50100[0...n] Motor rated armature current / Mot rated I_armat p50101[0...n] Motor rated armature voltage / Mot rated V_armat
p50102[0...n] Motor rated excitation current / Mot rated I_exc
p50103[0...n] Minimum motor excitation current / Mot I_exc min
p50104[0...n] Speed-dependent current limitation speed n1 / I_lim n_dep n1
p50105[0...n] Speed-dependent current limitation armature current I1 / I_lim n_dep I1
p50106[0...n] Speed-dependent current limitation speed n2 / I_lim n_dep n2
```


2.3 Parameters for data sets

p50107[0...n] Speed-dependent current limitation armature current I2 / I_lim n_dep I2
p50108[0...n] Speed-dependent current limitation maximum operating speed n3 / I_lim n_dep n3
p50109[0...n] Speed-dependent current limitation activation / I_lim n_dep act
p50110[0...n] Armature circuit resistance / Ra
p50111[0...n] Armature circuit inductance / La
p50112[0...n] Field circuit resistance / R_field circuit
p50113[0...n] Motor I2t monitoring continuous current factor / Mot I2t I_cont
p50114[0...n] Motor thermal time constant / Mot T therm
p50115[0...n] Speed controller EMF at maximum speed / EMF at n_max
p50116[0...n] Field circuit inductance / L_field circuit
p50117[0...n] Field characteristic status / Field char stat
p50118[0...n] EMF rated value / EMF rated
p50119[0...n] Rated speed / n_rated
p50120[0...n] Field current for motor flux 0\% / I_field flux 0\%
p50121[0...n] Field current for motor flux 5\% / I_field flux 5\%
p50122[0...n] Field current for motor flux 10\% / I_field flux 10\%
p50123[0...n] Field current for motor flux 15\% / I_field flux 15\%
p50124[0...n] Field current for motor flux 20\% / I_field flux 20\%
p50125[0...n] Field current for motor flux 25\% / I_field flux 25\%
p50126[0...n] Field current for motor flux 30\% / I_field flux 30\%
p50127[0...n] Field current for motor flux 35\% / I_field flux 35\%
p50128[0...n] Field current for motor flux 40\% / I_field flux 40\%
p50129[0...n] Field current for motor flux 45\% / I_field flux 45\%
p50130[0...n] Field current for motor flux 50\% / I_field flux 50\%
p50131[0...n] Field current for motor flux 55\% / I_field flux 55\%
p50132[0...n] Field current for motor flux 60\% / I_field flux 60\%
p50133[0...n] Field current for motor flux 65\% / I_field flux 65\%
p50134[0...n] Field current for motor flux 70\% / I_field flux 70\%
p50135[0...n] Field current for motor flux 75\% / I_field flux 75\%
p50136[0...n] Field current for motor flux 80\% / I_field flux 80\%
p50137[0...n] Field current for motor flux 85\% / I_field flux 85\%
p50138[0...n] Field current for motor flux 90\% / I_field flux 90\%
p50139[0...n] Field current for motor flux 95\% / I_field flux 95\%
p50148[0...n] Armature converter Alpha W limit (single-phase operation) / A Alpha W lim 1-ph
p50149[0...n] Armature converter correction angle Alpha W limit / Arm corr Alpha W
p50150[0...n] Armature converter Alpha G limit / Arm Alpha G lim
p50151[0...n] Armature converter Alpha W limit / Arm Alpha W lim
p50152[0...n] Armature average number of line periods / Arm line per no.
p50153[0...n] Control word for armature pre-control / A prec STW
p50154[0...n] Closed-loop armature current control integral comp activation / la ctr I comp act
p50155[0...n] Closed-loop armature current control P gain / la ctr Kp
p50156[0...n] Closed-loop armature current control integral time / la ctr Tn
p50157[0...n] Current limitation setpoint integrator selection / I_set integ sel
p50158[0...n] Current limitation setpoint integrator ramp-up time / Set integ t_r-up
p50159[0...n] Auto-reversing stage changeover threshold / Auto-rev thresh
p50160[0...n] Auto-reversing stage additional torque-free interval / Auto-rev interval
p50161[0...n] Auto-reversing stage Alpha W pulses second pulse inhibited / Auto-rev Alpha W1
p50162[0...n] EMF selection / EMF sel
p50163[0...n] EMF smoothing selection / EMF smoothing sel
p50164[0...n] Closed-loop armature current ctr proportional comp activation / la ctr Kp act
p50169[0...n] Torque limiting selection torque limiting/current limitation / T lim sel T/I_lim
p50170[0...n] Selection of control type for closed-loop current/torque control / Ctrl type I/tq sel
p50171[0...n] Current limitation armature current limit torque dir I factor / la lim t d I fact
p50172[0...n] Current limitation armature current limit torque dir II factor / la lim t d II fact
p50179[0...n] Auto-reversing stage Alpha W pluses second pulse enabled / Auto-rev Alpha W2
p50180[0...n] Torque limiting torque limit 1 positive / T lim 1 pos
p50181[0...n] Torque limiting torque limit 1 negative / T lim 1 neg
p50182[0...n] Torque limiting torque limit 2 positive / M_lim 2 pos
p50183[0...n] Torque limiting torque limit 2 negative / M_lim 2 neg
p50184[0...n] Torque limiting changeover speed / T lim n_chng
p50190[0...n] Cl-loop arm current ctr prectr setpoint smoothing time constant / la prec set T
p50191[0...n] Cl-loop arm current ctr curr controller setp sm time constant / la ctr set T
p50192[0...n] Armature Alpha W limit control word / A Alpha W lim STW
p50200[0...n] Speed controller speed actual value smoothing time constant / n_ctr n_act T
p50201[0...n] Band-stop 1 resonant frequency / Band-st 1 f_n
p50202[0...n] Band-stop 1 quality / Band-st 1 quality
p50203[0...n] Band-stop 2 resonant frequency / Band-st 2 f_n
p50204[0...n] Band-stop 2 quality / Band-st 2 quality
p50205[0...n] Derivative-action element derivative-action time / D-act el t_d-act
p50206[0...n] Derivative-action element smoothing time / Der-act el t_DAE
p50208[0...n] Lead/lag element rate time / Lead/lag t_rate
p50209[0...n] Lead/lag element filter time / Lead/lag t_filter
p50220[0...n] Speed controller changeover PI/P speed setpoint threshold / PI/P n_set thresh
p50221[0...n] Speed controller changeover PI/P hysteresis / PI/P hyst
p50222[0...n] Speed controller changeover PI/P speed actual value threshold / PI/P n_act thresh
p50223[0...n] Speed controller pre-control enable / n_ctr prec ena
p50224[0...n] Speed controller integral component configuration / n_ctr I comp conf
p50225[0...n] Speed controller adaptation Kp y coordinate 2 / Adapt Kp y2
p50226[0...n] Speed controller adaptation Tn y coordinate 2 / Adapt Tn y2
p50227[0...n] Speed controller adaptation droop y coordinate 2 / Adapt droop y2
p50228[0...n] Speed controller speed setpoint smoothing time constant / n_ctr n_set T
p50229[0...n] Master/slave drive ctrl speed controller tracking I component / M/S drve ctr track
p50230[0...n] Set speed controller integral component duration / Set I_comp dur
p50231[0...n] Speed controller adaptation selection / n_ctrl Adapt sel
p50234[0...n] Speed controller proportional component enable / n_ctr P_comp ena
p50237[0...n] Speed controller reference model natural frequency / n_ctrl ref_m fn
p50238[0...n] Speed controller reference model damping / n_ctrl ref_m d
p50239[0...n] Speed controller reference model dead time / n_ctr ref_m t_dead
p50240[0...n] Speed controller reference model activation / n_ctrl ref_m act
p50250[0...n] Field converter Alpha G limit / Field Alpha G lim
p50251[0...n] Field converter Alpha W limit / Field Alpha W lim
p50252[0...n] Field average number of line periods / Field line per no.
p50253[0...n] Field pre-control activation / Field prec act
p50254[0...n] Field current controller integral component activation / I_field_ctr I comp
p50255[0...n] Field current controller P gain / I_field ctr Kp
p50256[0...n] Field current controller integral time / I_field ctr Tn
p50257[0...n] Closed-loop field current control standstill field / If_ctr stst_field
p50258[0...n] Cl-loop field current control field current reduction delay time / If_ctr I_red t_del
p50260[0...n] Field current pre-control setpoint smoothing time constant / Field_prec set T
p50261[0...n] Field current controller setpoint smoothing time constant / I_field_ctr set T
p50263[0...n] Selection of motor flux input variable / Mot fl input sel
p50264[0...n] Field current controller proportional component activation / I_field_ctr P comp
p50273[0...n] EMF controller pre-control activation / EMF ctr prec act
p50274[0...n] EMF controller integral component activation / EMF ctr I comp act
p50275[0...n] EMF controller P gain / EMF ctr Kp
p50276[0...n] EMF controller integral time / EMF ctr Tn
p50277[0...n] EMF controller droop / EMF ctr droop
p50280[0...n] EMF controller pre-control setpoint smoothing time constant / EMF prec set T
p50281[0...n] EMF controller setpoint smoothing time constant / EMF ctr set T
p50282[0...n] EMF controller actual value smoothing time constant / EMF ctr act T

2.3 Parameters for data sets

p50283[0...n] EMF controller pre-control actual value smoothing time constant / EMF prec act T
p50284[0...n] EMF controller proportional component activation / EMF ctr P comp act
p50285[0...n] EMF setpoint reduction line voltage smoothing time / EMF set line t_sm
p50286[0...n] EMF setpoint reduction line voltage upper limit / EMF set line upper
p50287[0...n] EMF setpoint reduction line voltage lower limit / EMF set line lower
p50288[0...n] EMF setpoint reduction evaluation factor / EMF set eval_fact
p50295[0...n] Transition rounding operating mode / RFG rounding mode
p50296[0...n] RFG quick stop (OFF3) ramp-down time / RFG OFF3 t_ramp-dn
p50297[0...n] RFG quick stop (OFF3) initial rounding / RFG OFF3 init rndg
p50298[0...n] RFG quick stop (OFF3) final rounding / RFG OFF3 fin rndg
p50300[0...n] RFG positive setpoint limit after ramp-function generator / RFG pos after RFG
p50301[0...n] RFG negative setpoint limit after ramp-function generator / RFG neg after RFG
p50302[0...n] RFG ramp-up integrator operating mode / RFG integ op mode
p50303[0...n] RFG ramp-up time 1 / RFG t_ramp-up 1
p50304[0...n] RFG ramp-down time 1 / RFG t_ramp-dn 1
p50305[0...n] RFG initial rounding 1 / RFG init rndg 1
p50306[0...n] RFG final rounding 1 / RFG fin rndg 1
p50307[0...n] Ramp-function generator ramp-up time 2 / RFG t_ramp-up 2
p50308[0...n] Ramp-function generator ramp-down time 2 / RFG ramp-dn time 2
p50309[0...n] Ramp-function generator initial rounding 2 / RFG init rndg 2
p50310[0...n] Ramp-function generator final rounding 2 / RFG fin rndg 2
p50311[0...n] Ramp-function generator ramp-up time 3 / RFG t_ramp-up 3
p50312[0...n] Ramp-function generator ramp-down time 3 / RFG t_ramp-down 3
p50313[0...n] Ramp-function generator initial rounding 3 / RFG init rndg 3
p50314[0...n] Ramp-function generator final rounding 3 / RFG fin rndg 3
p50317[0...n] RFG tracking enable / RFG track ena
p50318[0...n] RFG setting value selection / RFG set val sel
p50319[0...n] RFG setpoint enable delay time / RFG set_ena i_del
p50320[0...n] Setpoint processing main setpoint factor / m_set_factor
p50321[0...n] Setpoint processing additional setpoint factor / Add_set_factor
p50330[0...n] RFG time unit / RFG time unit
p50351[0...n] Line undervoltage threshold / Line V_under thr
p50352[0...n] Line overvoltage threshold / Line V_over thresh
p50353[0...n] Line monitoring phase failure threshold / Ph_fail thresh
p50355[0...n] Stall protection monitoring time / Stall t_mon
p50356[0...n] Stall protection threshold / Stall prot thresh
p50357[0...n] Tachometer interruption monitoring threshold / Tacho_mon thresh
p50358[0...n] Blocking protection speed filter time / Block nt_filter
p50361[0...n] Line monitoring undervoltage delay time / V_under t_del
p50362[0...n] Line monitoring overvoltage delay time / Line V_over t_del
p50363[0...n] Line frequency minimum threshold / f_line min thresh
p50364[0...n] Line frequency maximum threshold / f_line max thresh
p50370[0...n] Messages for speed less than minimum speed threshold / $\mathrm{n}<\mathrm{n}$ _min thresh
p50371[0...n] Messages for speed less than minimum speed hysteresis / n < n_min hyst
p50372[0...n] Messages speed positive hysteresis / Msg n>0 hyst
p50373[0...n] Messages for reference speed threshold / Ref_speed thresh
p50374[0...n] Messages for reference speed hysteresis / Ref_speed hyst
p50375[0...n] Messages for reference speed OFF delay / Ref_speed t_OFF
p50376[0...n] Messages for setpoint/actual value deviation 2 threshold / Set/act 2 thresh
p50377[0...n] Messages for setpoint/actual value deviation 2 hysteresis / Set/act 2 hyst
p50378[0...n] Messages for setpoint/actual value deviation 2 OFF delay / Set/act 2 t_OFF
p50380[0...n] Messages for overspeed threshold positive direction of rotation / Msg n_over pos
p50381[0...n] Messages for overspeed threshold negative direction of rotation / Msg n_over neg
p50388[0...n] Messages for setpoint-actual value deviation 1 threshold / Set/act 1 thresh
p50389[0...n] Messages for setpoint-actual value deviation 1 hysteresis / Set/act 1 hyst
p50390[0...n] Messages for setpoint-actual value deviation 1 OFF delay / Set/act t_OFF
p50394[0...n] Messages for field current threshold minimum threshold / Msg If min thresh
p50395[0...n] Messages for field current threshold minimum hysteresis / Msg If min hyst
p50396[0...n] Field current monitoring setpoint factor / If_mon set_fact
p50397[0...n] Field current monitoring fault delay time / If_mon F t_del
p50398[0...n] Messages for field current actual value less than setpoint fact / Msg If<set fact
p50399[0...n] Messages for field current actual value less than setpoint hyst / Msg If<set hyst
p50401[0...n] Fixed value 1 / Fix val 1
p50402[0...n] Fixed value 2 / Fix val 2
p50403[0...n] Fixed value 3 / Fix val 3
p50404[0...n] Fixed value 4 / Fix val 4
p50405[0...n] Fixed value 5 / Fix val 5
p50406[0...n] Fixed value 6 / Fix val 6
p50407[0...n] Fixed value 7 / Fix val 7
p50408[0...n] Fixed value 8 / Fix val 8
p50409[0...n] Fixed value 9 / Fix val 9
p50410[0...n] Fixed value 10 / Fix val 10
p50411[0...n] Fixed value 11 / Fix val 11
p50412[0...n] Fixed value 12 / Fix val 12
p50413[0...n] Fixed value 13 / Fix val 13
p50414[0...n] Fixed value 14 / Fix val 14
p50415[0...n] Fixed value 15 / Fix val 15
p50416[0...n] Fixed value 16 / Fix val 16
p50421[0...n] Fixed bit 0 / Fixed bit 0
p50422[0...n] Fixed bit 1 / Fixed bit 1
p50423[0...n] Fixed bit 2 / Fixed bit 2
p50424[0...n] Fixed bit 3 / Fixed bit 3
p50425[0...n] Fixed bit 4 / Fixed bit 4
p50426[0...n] Fixed bit 5 / Fixed bit 5
p50427[0...n] Fixed bit 6 / Fixed bit 6
p50428[0...n] Fixed bit 7 / Fixed bit 7
p50460[0...n] Motorized potentiometer activate ramp-function generator / Mot pot act RFG
p50462[0...n] Motorized potentiometer ramp-up time / MotP t_r-up
p50463[0...n] Motorized potentiometer ramp-down time / MotP t_r-dn
p50464[0...n] Motorized potentiometer time difference for dy/dt / MotP t_dif dy/dt
p50465[0...n] Motorized potentiometer expansion factor / MotP exp fact
p50467[0...n] Motorized potentiometer starting value / MotP start value
p50468[0...n] Motorized potentiometer maximum speed / MotP n_max
p50469[0...n] Motorized potentiometer minimum speed / MotP n_min
p50473[0...n] Motorized potentiometer save output value / MotP save outp val
p50480[0...n] Oscillation setpoint 1 / Oscillation set 1
p50481[0...n] Oscillation setpoint 1 time / Oscill set 1 t
p50482[0...n] Oscillation setpoint 2 / Oscillation set 2
p50483[0...n] Oscillation setpoint 2 time / Oscill set 2 t
p50491[0...n] Motor interface alarm threshold for temperature monitoring / Mot_temp al thr p50492[0...n] Motor interface fault threshold for temperature monitoring / Mot_temp flt thr p50503[0...n] Torque limiting t_set factor in slave mode / T_set fact sl mode
p50512[0...n] Speed limiting controller max speed pos direction of rotation / n_max pos dir rot
p50513[0...n] Speed limiting controller max speed neg direction of rotation / n_max neg dir
p50515[0...n] Speed limiting controller P gain / n_lim Kp
p50520[0...n] Friction compensation 0\% speed / Fric comp n 0\%
p50521[0...n] Friction compensation 10\% speed / Fric comp n 10\%
p50522[0...n] Friction compensation 20\% speed / Fric comp n 20\%
p50523[0...n] Friction compensation 30\% speed / Fric comp n 30\%
p50524[0...n] Friction compensation 40\% speed / Fric comp n 40\%
p50525[0...n] Friction compensation 50\% speed / Fric comp n 50\%
p50526[0...n] Friction compensation 60\% speed / Fric comp n 60\%
p50527[0...n] Friction compensation 70\% speed / Fric comp n 70\%
p50528[0...n] Friction compensation 80\% speed / Fric comp n 80\%
p50529[0...n] Friction compensation 90\% speed / Fric comp n 90\%
p50530[0...n] Friction compensation 100\% speed / Fric comp n 100\%
p50540[0...n] Speed controller acceleration time / n_ctr t_accel
p50542[0...n] RFG dy/dt time difference / RFG dy/dt t_dif
p50543[0...n] Speed controller setpoint/actual value difference threshold / Set/act dif thresh
p50546[0...n] Smoothing time constant for inertia compensation / Comp inert T
p50550[0...n] Speed controller adaptation Kp y coordinate 1 / Adapt Kp y1
p50551[0...n] Speed controller adaptation Tn y coordinate 1 / Adapt Tn y1
p50552[0...n] Speed controller adaptation droop y coordinate 1 / Adapt droop y1
p50556[0...n] Speed controller adaptation Kp x coordinate 1 / Adapt Kp x1
p50557[0...n] Speed controller adaptation Tn x coordinate $1 /$ Adapt Tn x1
p50559[0...n] Speed controller adaptation Kp x coordinate 2 / Adapt Kp x2
p50560[0...n] Speed controller adaptation Tn x coordinate 2 / Adapt Tn x2
p50561[0...n] Speed controller adaptation droop x coordinate 2 / Adapt droop x2
p50562[0...n] Speed controller droop positive limiting / Droop pos lim
p50563[0...n] Speed controller droop negative limiting / Droop neg lim
p50570[0...n] Adaptation armature current controller changeover input / Adapt la chgov inp
p50571[0...n] Adaptation armature current controller non-linear L activation / Adapt N_lin L act
p50572[0...n] Adapt arm curr controller intermittent adapt activation / Adapt Interm Act
p50573[0...n] Adaptation armature current controller limiting / Adapt la_ctrl lim
p50574[0...n] Adapt arm curr controller intermittent adapt Kp increase / Ad Interm Kp incr
p50575[0...n] Adaptation field current controller changeover input / Adapt If chgov inp
p50576[0...n] Adaptation field current controller non-linear L activation / Adapt n_lin act
p50577[0...n] Adapt field curr controller non-linear gating unit activation / Adapt n _lin GU act
p50578[0...n] Adaptation field current controller limiting / Adapt If_ctrl lim
p50701[0...n] CUD analog input 0 scaling / CUD AI 0 scal
p50711[0...n] CUD analog input 1 scaling / CUD AI 1 scal
p50721[0...n] CUD analog input 2 scaling / CUD AI 2 scal
p50741[0...n] Analog input main actual value scaling / Al m act scal
p51591[0...n] Armature inductance reduction factor / L_armat red fact
p51592[0...n] Armature commutating inductance / Arm Lk
p51594[0...n] Interphase inductance in 12-pulse operation / L_intph 12-pulse
p51595[0...n] Interphase inductance reduction factor / L_intph red fact
p51596[0...n] Interphase resistance in 12-pulse operation / R_intph 12-pulse
p51597[0...n] Field inductance reduction factor / L_field red fact
p51608[0...n] Setpoint processing reduction factor / Red factor
p51651[0...n] Speed controller start pulse positive setpoint / Start pul pos set
p51652[0...n] Speed controller start pulse negative factor / Start pul neg fact
p51653[0...n] Speed controller start pulse negative setpoint / Start pul neg set
p51861[0...n] Capacitance of the DC link capacitor / Capac_DClink

2.3.3 Parameters for encoder data sets (EDS)

Note:

References: SINAMICS DC MASTER operating instructions
"Data sets" Chapter

The following list contains the parameters that are dependent on the encoder data sets.

Product: SINAMI	STER, Version: 5104032, Language: eng, Type: E
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0142[0...n]	Encoder component number / Encoder comp_no
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0145[0...n]	Activate/deactivate encoder interface / Enc_intf act/deact
r0146[0...n]	Encoder interface active/inactive / Enc_intf act/inact
r0147[0...n]	Sensor Module EEPROM data version / SM EEPROM version
r0148[0...n]	Sensor Module firmware version / SM FW version
p0400[0...n]	Encoder type selection / Enc_typ sel
p0401[0...n]	Encoder type OEM selection / Enc type OEM sel
p0402[0...n]	Gearbox type selection / Gearbox type sel
p0404[0...n]	Encoder configuration effective / Enc_config eff
p0405[0...n]	Square-wave encoder track A/B / Sq-wave enc A/B
p0407[0...n]	Linear encoder grid division / Enc grid div
p0408[0...n]	Rotary encoder pulse number / Rot enc pulse No.
p0410[0...n]	Encoder inversion actual value / Enc inv act value
p0411[0...n]	Measuring gear configuration / Meas gear config
p0412[0...n]	Measuring gear absolute encoder rotary revolutions virtual / Abs rot rev
p0413[0...n]	Measuring gear position tracking tolerance window / Pos track window
p0414[0...n]	Redundant coarse position value relevant bits (identified) / Relevant bits
p0415[0...n]	Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB
p0416[0...n]	Non safety-relevant meas. steps position value POS1 (detected) / nsrPos1
p0417[0...n]	Encoder safety comparison algorithm (detected) / Safety comp_algo
p0418[0...n]	Fine resolution Gx_XIST1 (in bits) / Enc fine Gx_XIST1
p0419[0...n]	Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2
p0420[0...n]	Encoder connection / Enc_connection
p0421[0...n]	Absolute encoder rotary multiturn resolution / Enc abs multiturn
p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step
p0423[0...n]	Absolute encoder rotary singleturn resolution / Enc abs singleturn
p0424[0...n]	Encoder linear zero mark distance / Enc lin ZM_dist
p0425[0...n]	Encoder rotary zero mark distance / Enc rot dist ZM
p0426[0...n]	Encoder zero mark differential distance / Enc ZM Dif_dist
p0427[0...n]	Encoder SSI baud rate / Enc SSI baud rate
p0428[0...n]	Encoder SSI monoflop time / Enc SSI t_monoflop
p0429[0...n]	Encoder SSI configuration / Enc SSI config
p0430[0...n]	Sensor Module configuration / SM config
p0431[0...n]	Angular commutation offset / Ang_com offset
p0432[0...n]	Gearbox factor encoder revolutions / Grbx_fact enc_rev
p0433[0...n]	Gearbox factor motor/load revolutions / Grbx_fact mot_rev
p0434[0...n]	Encoder SSI error bit / Enc SSI error bit
p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit
p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit
p0437[0...n]	Sensor Module configuration extended / SM config ext
p0438[0...n]	Squarewave encoder filter time / Enc t_filt
p0439[0...n]	Encoder ramp-up time / Enc ramp-up time
p0440[0...n]	Copy encoder serial number / Copy enc ser_no
p0441[0...n]	Encoder commissioning serial number part 1 / Enc comm ser_no 1
p0442[0...n]	Encoder commissioning serial number part 2 / Enc comm ser_no 2
p0443[0...n]	Encoder commissioning serial number part 3 / Enc comm ser_no 3
p0444[0...n]	Encoder commissioning serial number part 4 / Enc comm ser_no 4
p0445[0...n]	Encoder commissioning serial number part 5 / Enc comm ser_no 5
p0453[0...n]	Pulse encoder evaluation zero speed measuring time / Enc_ev n_0 t_meas
p0454[0...n]	Sensor Module configuration extended Part 2 / SM config ext 2
p4630[0...n]	Absolute encoder linear measuring step factor / Abs_enc meas fact
p4649[0...n]	Encoder function reserve amplitude limit incremental signals / Enc fct amp inc

2.3 Parameters for data sets

```
p4678[0...n] Analog sensor LVDT ratio / An_sens LVDT ratio
p4679[0\ldotsn] Analog sensor LVDT phase / An_sens LVDT ph
p4680[0..n] Zero mark monitoring tolerance permissible / ZM_monit tol perm
p4681[0..n] Zero mark monitoring tolerance window limit 1 positive / ZM tol lim 1 pos
p4682[0...n] Zero mark monitoring tolerance window limit 1 negative / ZM tol lim 1 neg
p4683[0...n] Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr pos
p4684[0...n] Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
p4685[0\ldotsn] Speed actual value mean value generation / n_act mean val
p4686[0..n] Zero mark minimum length / ZM min length
```

2.3 Parameters for data sets

2.4 Parameters for write protection and know-how protection

2.4.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute. These parameters are not affected by the write protection.

Product: SINAMICS DC MASTER, Version: 5104032, Language: eng, Type: WRITE_NO_LOCK	
p0003	BOP access level / BOP acc_level
p0009	Device commissioning parameter filter / Dev comm par_filt
p0124[0...n]	Main component detection using LED / M_comp detect LED
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0154	Terminal Module detection via LED / TM detection LED
p0972	Drive unit reset / Drv_unit reset
p0976	Reset and load all parameters / Reset load all par
p0977	Save all parameters / Save all par
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2102	BI: Acknowledge all faults / Ackn all faults
p2111	Alarm counter / Alarm counter
p3100	RTC time stamp mode / RTC t_stamp mode
p3101[0...1]	Setting UTC time / Set UTC time
p3103	UTC synchronization process / UTC sync_process
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p4700[0...1]	Trace control / Trace control
p4701	Measuring function control / Meas fct ctrl
p4703[0...1]	Trace options / Trace options
p4707	Measurement function configuration / Meas fct config
p 4710 [0...1]	Trace trigger condition / Trace Trig_cond
p4711[0...5]	Trace trigger signal / Trace trig_signal
p4712[0...1]	Trace trigger threshold / Trace trig_thresh
p4713[0...1]	Trace tolerance band trigger threshold 1 / Trace trig thr 1
p4714[0...1]	Trace tolerance band trigger threshold 2 / Trace trig thr 2
p4715[0...1]	Trace bit mask trigger, bit mask / Trace trig mask
p4716[0...1]	Trace bit mask trigger trigger condition / Trace Trig_cond
p4720[0...1]	Trace recording cycle / Trace record_cyc
p 4721 [0...1]	Trace recording time / Trace record_time
p4722[0...1]	Trace trigger delay / Trace trig_delay
p4723[0...1]	Trace time slice cycle / Trace cycle
p4724[0...1]	Trace average in the time range / Trace average
p4730[0...5]	Trace record signal 0 / Trace record sig 0
p4731[0...5]	Trace record signal 1 / Trace record sig 1
p4732[0...5]	Trace record signal 2 / Trace record sig 2
p4733[0...5]	Trace record signal 3 / Trace record sig 3
p4734[0...5]	Trace record signal 4 / Trace record sig 4
p4735[0...5]	Trace record signal 5 / Trace record sig 5
p4736[0...5]	Trace record signal 6 / Trace record sig 6
p4737[0...5]	Trace record signal 7 / Trace record sig 7
p4780[0...1]	Trace physical address signal 0 / Trace PhyAddr Sig0
p4781[0...1]	Trace physical address signal 1 / Trace PhyAddr Sig1
p4782[0...1]	Trace physical address signal 2 / Trace PhyAddr Sig2

p4783[0...1] Trace physical address signal 3 / Trace PhyAddr Sig3
p4784[0...1] Trace physical address signal 4 / Trace PhyAddr Sig4
p4785[0...1] Trace physical address signal 5 / Trace PhyAddr Sig5
p4786[0...1] Trace physical address signal 6 / Trace PhyAddr Sig6
p4787[0...1] Trace physical address signal 7 / Trace PhyAddr Sig7
p4789[0...1] Trace physical address trigger signal / Trace PhyAddr Trig
p4795 Trace memory bank changeover / Trace mem changeov
p4800 Function generator control / FG control
p4810 Function generator mode / FG operating mode
p4812 Function generator physical address / FG phys address
p4813 Function generator physical address reference value / FG phys addr ref
p4816 Function generator output signal integer number scaling / FG outp integ scal
p4819 BI: Function generator control / FG control
p4820 Function generator signal shape / FG signal shape
p4821 Function generator period / FG period duration
p4822 Function generator pulse width / FG pulse width
p4823 Function generator bandwidth / FG bandwidth
p4824 Function generator amplitude / FG amplitude
p4825 Function generator 2nd amplitude / FG 2nd amplitude
p4826 Function generator offset / FG offset
p4827 Function generator ramp-up time to offset / FG ramp-up offset
p4828 Function generator lower limit / FG lower limit
p4829 Function generator upper limit / FG upper limit
p4830 Function generator time slice cycle / FG time slice
p4831 Function generator amplitude scaling / FG amplitude scal
p4832[0...2] Function generator amplitude scaling / FG amplitude scal
p4833[0...2] Function generator offset scaling / FG offset scal
p4835[0...4] Function generator free measurement function scaling / FG fr MeasFct scal
p4840[0...1] MTrace cycle number setting / Cycle number
p7761 Write protection / Write protection
p7770 NVRAM action / NVRAM action
p8550 AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8806[0...53] Identification and Maintenance 1 / I\&M 1
p8807[0...15] Identification and Maintenance 2 / I\&M 2
p8808[0...53] Identification and Maintenance 3 / I\&M 3
p9210 Flashing component number / Flash comp_no.
p9211 Flash function / Flash fct.
p9400 Safely remove memory card / Mem_card rem
p9484 BICO interconnections search signal source / BICO S src srch

2.4.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

Product: SINAMICS DC MASTER, Version: 5104032, Language: eng, Type: KHP_WRITE_NO_LOCK	
p0003	BOP access level / BOP acc_level
p0009	Device commissioning parameter filter / Dev comm par_filt
p0124[0...n]	Main component detection using LED / M_comp detect LED
p0144[0...n]	Sensor Module detection via LED / SM detection LED p0154

2.4 Parameters for write protection and know-how protection

p0972	Drive unit reset / Drv_unit reset
p0976	Reset and load all parameters / Reset load all par
p0977	Save all parameters / Save all par
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2102	BI: Acknowledge all faults / Ackn all faults
p2111	Alarm counter / Alarm counter
p3100	RTC time stamp mode / RTC t_stamp mode
p3101[0...1]	Setting UTC time / Set UTC time
p3103	UTC synchronization process / UTC sync_process
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p7770	NVRAM action / NVRAM action
p8550	AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8806[0...53]	Identification and Maintenance 1 / I\&M 1
p8807[0...15]	Identification and Maintenance $2 /$ I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8835	CBE20 firmware selection / CBE20 FW sel
p8839[0...1]	PZD interface hardware assignment / PZD IF HW assign
p8840	COMM BOARD monitoring time / CB t_monit
p9210	Flashing component number / Flash comp_no.
p9211	Flash function / Flash fct.
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

2.4.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.

Product: SINAMICS DC MASTER, Version: 5104032, Language: eng, Type: KHP_ACTIVE_READ	
p0015	Macro drive unit / Macro drv unit
p0015	Macro drive object / Macro DO
p0101[0...n]	Drive object numbers / DO numbers
p0103[0...n]	Application-specific view / Appl_spec view
p0105	Activate/deactivate drive object / DO act/deact
p0107[0...n]	Drive object type / DO type
p0108[0...n]	Drive objects function module / DO fct_mod
p0121[0...n]	Power unit component number / PU comp_no
p0125[0...n]	Activate/deactivate power unit components / PU_comp act/deact
p0140	Number of Encoder Data Sets (EDS) / EDS count
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0142[0...n]	Encoder component number / Encoder comp_no
p0145[0...n]	Activate/deactivate encoder interface / Enc_intf act/deact
p0151	Terminal Module component number / TM comp_no
p0170	Number of Command Data Sets (CDS) / CDS count
p0171[0...n]	Drive objects function module $1 /$ DO fct_mod 1
p0172[0...n]	Drive objects function module $2 /$ DO fct_mod 2
p0173[0...n]	Drive objects function module $3 /$ DO fct_mod 3
p0180	Number of Drive Data Sets (DDS) / DDS count

p0199[0...24] Drive object name / DO name
p0400[0...n] Encoder type selection / Enc_typ sel
p0595 Technological unit selection / Tech unit select
p0806 BI: Inhibit master control / PcCtrl inhibit
p0922 IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr
p0978[0...n] List of drive objects / List of the DO
p2000 Reference speed / n_ref
p2001 Reference voltage / Reference voltage
p2002 Reference current / I_ref
p2003 Reference torque / M_ref
p2005 Reference angle / Reference angle
p2006 Reference temperature / Ref temp
p2007 Reference acceleration / a_ref
p2030 Field bus interface protocol selection / Field bus protocol
p2038 IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079 IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
p4956[0...n] TEC DO-specific activation / TEC DO act
p7763 KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n] KHP OEM exception list / KHP OEM excep list
p7852 Number of indices for r7853 / Qty indices r7853
p8836 SINAMICS link node address / Node address
p8870[0...15] SINAMICS Link PZD receive word / PZD recv word
p8870[0...31] SINAMICS Link PZD receive word / PZD recv word
p8871[0...15] SINAMICS Link PZD send word / PZD send word
p8871[0...31] SINAMICS Link PZD send word / PZD send word
p8872[0...15] SINAMICS Link PZD receive address / PZD recv adr.
p8872[0...31] SINAMICS Link PZD receive address / PZD recv adr.
p9902 Target topology number of indices / TargetTopo indices

2 Parameters

2.4 Parameters for write protection and know-how protection

Function diagrams

Content
3.1 Table of contents 718
3.2 Explanations on the function diagrams 724
3.3 Overviews 730
3.4 CUD input/output terminals 734
3.5 Control Unit communication 745
3.6 PROFIdrive 750
3.7 Internal control/status words 778
3.8 Sequence control 785
3.9 Brake control 790
3.10 Setpoint channel 792
3.11 Encoder evaluation 807
3.12 Armature circuit control 816
3.13 Field circuit control 840
3.14 Power unit 849
3.15 Technology controller 858
3.16 Signals and monitoring functions 860
3.17 Faults and alarms 877
3.18 Data sets 882
3.19 Communication between devices 886
3.20 Terminal Module 15 (TM15DI_DO) 892
3.21 Terminal Module 31 (TM31) 897
3.22 Terminal Module 150 (TM150) 909
3.23 Basic Operator Panel 20 (BOP20) 913

3.1 Table of contents

3.2 Explanations on the function diagrams 724
1020 - Explanation of the symbols (part 1) 725
1021 - Explanation of the symbols (part 2) 726
1022 - Explanation of the symbols (part 3) 727
1030 - Handling BICO technology 728
1032 - Management of BICO technology 729
3.3 Overviews 730
1720 - Closed-loop control 731
1721 - Closed-loop control functions - activation/deactivation 732
1722 - CUD left, CUD right 733
3.4 CUD input/output terminals 734
2050 - Digital inputs (DI 0 ... DI 3) 735
2055 - Digital outputs (DO 0 ... DO 3) 736
2060 - Digital inputs/outputs, bidirectional (DI/DO 4 ... DI/DO 5) 737
2065 - Digital inputs/outputs, bidirectional (DI/DO 6 ... DI/DO 7) 738
2070 - E-Stop (Emergency Stop), relay output, main contactor 739
2075 - Analog inputs (AI 0 and XT1.103/104) 740
2080 - Analog inputs (AI 1 ... AI 2) 741
2085 - Analog inputs (AI 3 ... AI 4) 742
2090 - Analog inputs (AI 5 ... AI 6) 743
2095 - Analog outputs (AO 0 ... AO 1) 744
3.5 Control Unit communication 745
2197 - SINAMICS Link overview (r0108.31 = 1, p8835 = 3) 746
2198 - SINAMICS Link configuration (r0108.31 = 1, p8835 = 3) 747
2199 - SINAMICS Link receive data (r0108.31 = 1, p8835 = 3) 748
2200 - SINAMICS Link send data (r0108.31 = 1, p8835 = 3) 749
3.6 PROFIdrive 750
2401 - Overview 751
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 752
2420 - Telegrams and process data (PZD) 753
2425 - STW1_BM control word, metal industry interconnection 754
2426 - STW2_BM control word, metal industry interconnection 755
2428 - ZSW1_BM status word, metal industry interconnection 756
2429 - ZSW2_BM status word, metal industry interconnection 757
2440 - PZD receive signals interconnection 758
2442 - STW1 control word interconnection 759
2444 - STW2 control word interconnection 760
2450 - PZD send signals interconnection 761
2452 - ZSW1 status word interconnection 762
2454 - ZSW2 status word interconnection 763
2460 - IF1 receive telegram free interconnection via BICO (p0922 = 999) 764
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 765
2472 - IF1 status words, free interconnection 766
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 767
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 768
2485 - IF2 receive telegram, free interconnection via BICO (p0922 = 999) 769
2487 - IF2 send telegram, free interconnection via BICO (p0922 = 999) 770
2489 - IF2 status words, free interconnection 771
2491 - PROFIdrive - IF2 receive telegram, free interconnection via BICO (p0922 = 999) 772
2493 - PROFIdrive - IF2 send telegram, free interconnection via BICO (p0922 = 999) 773
2495 - CU_STW1 control word 1, Control Unit interconnection 774
2496 - CU_ZSW1 status word 1, Control Unit interconnection 775
2497 - A_DIGITAL interconnection 776
2498 - E_DIGITAL interconnection 777
3.7 Internal control/status words 778
2534 - Status word, monitoring functions 1 779
2537 - Status word, monitoring functions 3 780
2546 - Control word faults/alarms 781
2548 - Status word, faults/alarms 1 and 2 782
2580 - Control word, sequence control 783
2585 - Status word, sequence control 784
3.8 Sequence control 785
2650 - Sequencer (Part 1) 786
2651 - Sequencer (Part 2) 787
2655 - Missing enable signals, logic operations 788
2660 - Optimization runs 789
3.9 Brake control 790
2750 - Brake control 791
3.10 Setpoint channel 792
3100 - Fixed values (Part 1) 793
3102 - Fixed values (Part 2) 794
3105 - 4-stage master switch 795
3110 - Motorized potentiometer 796
3113 - AOP30 display and control unit 797
3115 - Fixed setpoint 798
3120 - Oscillation/square-wave generator 799
3125 - Jog setpoint 800
3130 - Creep setpoint 801
3135 - Setpoint processing 802
3150 - Ramp-function generator (Part 1) 803
3151 - Ramp-function generator (Part 2) 804
3152 - Ramp-function generator (Part 3) 805
3155 - Limit after ramp-function generator 806
3.11 Encoder evaluation 807
4700 - Overview 808
4704 - Position sensing, encoders 1 ... 2 809
4710 - Speed actual value sensing, motor encoder (encoder 1) 810
4711 - Speed actual value sensing, encoder 2 811
4720 - Encoder interface, receive signals, encoders 1 ... 2 812
4730 - Encoder interface, send signals, encoders1 ... 2 813
4735 - Reference mark search, encoders 1 ... 2 814
4750 - Absolute value for incremental encoder 815
3.12 Armature circuit control 816
6800 - Speed controller start pulse 817
6805 - Speed controller (Part 1) 818
6810 - Speed controller (Part 2) 819
6812 - Speed controller (Part 3) 820
6815 - Speed controller (Part 4) 821
6820 - Friction/moment of inertia compensation 822
6825 - Torque limitation (Part 1) 823
6830 - Torque limitation (Part 2) 824
6835 - Speed limiting controller 825
6840 - Current limiting (Part 1) 826
6845 - Current limiting (Part 2) 827
6850 - Actual armature current value sensing (Part 1) 828
6851 - Actual armature current value sensing (Part 2) 829
6852 - Selection of EMF actual value for armature current pre-control 830
6853 - Armature current controller adaptation 831
6854 - Armature circuit model parameters 832
6855 - Armature current control 833
6858 - Gating unit characteristic linearization 834
6860 - Auto-reversing stage 835
6862 - State limits 836
6865 - Simulation mode/thyristor check/commutation monitoring 837
6870 - Three-phase AC power controller and armature gating unit 838
6895 - Line-dependent EMF reduction 839
3.13 Field circuit control 840
6900 - EMF control 841
6902 - Actual value acquisition, armature voltage/EMF 842
6905 - Field current setpoint limitation 843
6908 - Field current controller adaptation 844
6910 - Field current control 845
6912 - Actual field current value sensing 846
6915 - Field gating unit 847
6920 - Field reversal 848
3.14 Power unit 849
6950 - Armature line analysis 850
6952 - Field line analysis 851
6954 - Line monitoring 852
6956 - Fuse monitoring (DC converter) 853
6957 - Fuse monitoring (Control Module) 854
6960 - Power unit properties 855
6965 - Adaptation to external power unit (Control Module) 856
6970 - Converter Commutation Protector (CCP) 857
3.15 Technology controller 858
7958 - Closed-loop control (r0108.16 = 1) 859
3.16 Signals and monitoring functions 860
8020 - Messages (Part 1) 861
8025 - Messages (Part 2) 862
8030 - Motor interface (Part 1, X177.53/54/55) 863
8035 - Motor interface (Part 2) 864
8038 - I2t monitoring motor 865
8040 - Speed-dependent current limiting 866
8042 - Power unit I2t monitoring 867
8044 - Field current monitoring 868
8045 - Device fan operating hours counter 869
8046 - Monitoring blocking protection/tacho loss monitoring 870
8047 - Device fan (DC converter) 871
8048 - Device-internal monitoring functions 872
8049 - Device fan (Control Module) 873
8050 - Trace function 874
8052 - Diagnostic memory 875
8054 - Internal diagnostics 876
3.17 Faults and alarms 877
8060 - Fault buffer 878
8065 - Alarm buffer 879
8070 - Faults/alarms trigger word (r2129) 880
8075 - Faults/alarms configuration 881
3.18 Data sets 882
8560 - Command Data Sets (CDS) 883
8565 - Drive Data Sets (DDS) 884
8570 - Encoder data sets (EDS) 885
3.19 Communication between devices 886
9300 - Peer-to-peer interface 887
9350 - Parallel connection interface (Part 1) 888
9352 - Parallel connection interface (Part 2) 889
9355 - Parallel connection interface (Part 3) 890
9360 - Switchover of the power unit topology 891
3.20 Terminal Module 15 (TM15DI_DO) 892
9399 - Overview TM15DI_DO (SINAMICS) 893
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) 894
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) 895
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) 896
3.21 Terminal Module 31 (TM31) 897
9549 - Overview 898
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) 899
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7) 900
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1) 901
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 902
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 903
9566 - Analog input 0 (AI 0) 904
9568 - Analog input 1 (AI 1) 905
9572 - Analog outputs (AO 0 ... AO 1) 906
9576 - Temperature evaluation 907
9577 - Sensor monitoring KTY/PTC/PT1000 908
3.22 Terminal Module 150 (TM150) 909
9625 - Temperature evaluation structure (channels $0 \ldots$ 11) 910
9626 - Temperature evaluation 1x2-, 3-, 4-wire (channels 0 ... 5) 911
9627 - Temperature evaluation $2 x 2$-wire (channels 0 ... 11) 912
3.23 Basic Operator Panel 20 (BOP20) 913
9912 - Control word interconnection 914

3.2 Explanations on the function diagrams

Function diagrams

1020 - Explanation of the symbols (part 1) 725
1021 - Explanation of the symbols (part 2) 726
1022 - Explanation of the symbols (part 3) 727
1030 - Handling BICO technology 728
1032 - Management of BICO technology 729

Handling BICO technology

Binectors are binary signals that can be freely interconnected ($\mathrm{BO}=$ Binector Output)
They represent a bit of a "BO:" display parameter (e.g. bit 15 from r0723).

Connector: \qquad Connectors are bit fields or numerical values that can be freely interconnected (e.g. "analog signals", like percentage variables, speeds or torques). Connectors are also "CO:" display parameters ($\mathrm{CO}=$ Connector Output)

Parameterization:

At the signal destination, the required binector or connector is selected using appropriate parameters:
BI:" parameter for binectors ($\mathrm{BI}=$ Binector Input)
"Cl:" parameter for connectors ($\mathrm{Cl}=$ Connector Input)

Example:

The main setpoint for the speed controller (CI: p 1070) should be received from the output of the motorized potentiometer (CO: r1050) and the "jog" command (BI: p1055) from digital input DI 0 (BO: r0722.0, X122.1 terminal) on the CU320.

$3.3 \quad$ Overviews

Function diagrams

1720 - Closed-loop control 731
1721 - Closed-loop control functions - activation/deactivation 732
1722 - CUD left, CUD right 733

The most important control blocks can be activated/deactivated using parameter p50899.

Note 1:
This parameter is evaluated only once during a ramp-up, meaning that a change only becomes effective after a POWER ON or after a ramp-up with saved parameters ($\mathrm{p} 0976=11$).

The ability to deactivate control function blocks is intended for all users who wish to configure their own control system using Drive Control Chart (DCC), e.g. because they are using the SINAMICS DC MASTER to operate something other than a motor (such as the excitation winding of a synchronous generator).
Deactivating control function blocks that are not required frees up CPU time for the DCC function blocks.

Parameter	Meaning	
p50899[0]	Speed setpoint processing ([3105] ... [3135])	$<1>$
p50899[1]	Ramp-function generator ([3150] ... [3155])	
p50899[2]	Speed control ([6800] ... [6820])	$<2>$
p50899[3]	Torque limitation/current limitation ([6825] ... [6845], [8040])	
p50899[4]	Armature current control ([6852] ... [6855])	
p50899[5]	EMF setpoint processing and EMF control ([6900])	
p50899[6]	Field current control ([6905] ... [6910])	

<1> Exception [3130]
The switch-on command and the intervention of r0807.0 and r53010.2 are always active.
<2> Exception [6810]:
The "Selection of the actual speed value" is always active
p50899[0...6] $=0$: Block is deactivated
p50899[0...6] = 1: Block is activated

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_1721_13_eng.vsd	Function diagram	- 1721 -
Overviews - Control functions activation/deactivation					23.08.18 V01.05.01	SINAMICS DCM	

3.4 CUD input/output terminals

Function diagrams

2050 - Digital inputs (DI 0 ... DI 3) 735
2055 - Digital outputs (DO 0 ... DO 3) 736
2060 - Digital inputs/outputs, bidirectional (DI/DO 4 ... DI/DO 5) 737
2065 - Digital inputs/outputs, bidirectional (DI/DO 6 ... DI/DO 7) 738
2070 - E-Stop (Emergency Stop), relay output, main contactor 739
2075 - Analog inputs (AI 0 and XT1.103/104) 740
2080 - Analog inputs (AI 1 ... Al 2) 741
2085 - Analog inputs (AI 3 ... Al 4) 742
2090 - Analog inputs (AI 5 ... Al 6) 743
2095 - Analog outputs (AO 0 ... AO 1) 744

1	2	3	4	5	6	7	8
DO: DC_CTRL, DCP_CTRL					fp_2080_70_eng.vsd	Function diagram	- 2080 -
CUD input/output terminals - Analog inputs (Al $1 \ldots \mathrm{Al} 2)$					05.10.18 V01.05.01	SINAMICS DCM/DCP	

3.5 Control Unit communication

Function diagrams

2197 - SINAMICS Link overview (r0108.31 = 1, p8835 = 3) 746
2198 - SINAMICS Link configuration (r0108.31 = 1, p8835 = 3)747
2199 - SINAMICS Link receive data (r0108.31 = 1, p8835 = 3) 748
2200 - SINAMICS Link send data (r0108.31 = 1, p8835 = 3) 749

$3.6 \quad$ PROFIdrive

Function diagrams

2401 - Overview 751
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 752
2420 - Telegrams and process data (PZD) 753
2425 - STW1_BM control word, metal industry interconnection 754
2426 - STW2_BM control word, metal industry interconnection 755
2428 - ZSW1_BM status word, metal industry interconnection 756
2429 - ZSW2_BM status word, metal industry interconnection 757
2440 - PZD receive signals interconnection 758
2442 - STW1 control word interconnection 759
2444 - STW2 control word interconnection 760
2450 - PZD send signals interconnection 761
2452 - ZSW1 status word interconnection 762
2454 - ZSW2 status word interconnection 763
2460 - IF1 receive telegram free interconnection via BICO (p0922 = 999) 764
2470 - IF1 send telegram, free interconnection via BICO $($ p0922 = 999) 765
2472 - IF1 status words, free interconnection 766
2481 - IF1 receive telegram, free interconnection via BICO $(p 0922=999)$ 767
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 768
2485 - IF2 receive telegram, free interconnection via BICO $(p 0922=999)$ 769
2487 - IF2 send telegram, free interconnection via BICO $(p 0922=999)$ 770
2489 - IF2 status words, free interconnection 771
2491 - PROFIdrive - IF2 receive telegram, free interconnection via BICO (p0922 = 999) 772
2493 - PROFIdrive - IF2 send telegram, free interconnection via BICO (p0922 = 999) 773
2495 - CU_STW1 control word 1, Control Unit interconnection 774
2496 - CU_ZSW1 status word 1, Control Unit interconnection 775
2497 - A_DIGITAL interconnection 776
2498 - E_DIGITAL interconnection 777

<1> p2040: for USS
p2047: for PROFIBUS
p8840: for Modbus TCP
<2> For p8839[0] = 99 is valid
CBE20 inserted: corresponds to switch position 2.
CBE20 not inserted: corresponds to switch position 1.
<3> For p8839[1] = 99 is valid.
CBE20 inserted: corresponds to switch position 1.
CBE20 not inserted: corresponds to switch position 0 .
<4> Not with stop of master CPU
<5> Only one of the two interfaces - RS 485 (X178-3, 4) or RS 232 (X179-3, 4) may be used.
<6> Bus termination can be switched on/off with p50820.
<7> Monitoring is only performed if at least one "valid" cyclic telegram has been received for the first time.
"Valid" means: Master is in operation and user data are transferred.

ω	Signal destinations for STW1_BM for telegram 220					
σ	Signal	Meaning		Interconnection parameter	Function diagram	Inverted
$\begin{aligned} & N \\ & N \\ & N \\ & 1 \\ & 1 \\ & 0 \\ & \sum \\ & \sum \end{aligned}$	STW1.0	$\begin{aligned} & 0=\text { OFF (OFF1) } \\ & \boldsymbol{S}=\text { ON } \end{aligned}$		p0840[0] = r2090.0	[2580.1]	-
	STW1.1	$\begin{aligned} & 0=\text { OFF2 (immediate } \\ & 1=\text { No OFF2 (enable } \end{aligned}$	sion and switching on inhibited)	p0844[0] = r2090.1	[2580.1]	-
	STW1.2	$0=0 F F 3$ (braking al 1 = No OFF3 (enable	ramp, then pulse suppression and switching on inhibited)	p0848[0] = r2090.2	[2580.1]	-
	STW1.3	$\begin{aligned} & 0=\text { Inhibit operation } \\ & 1=\text { Enable operatior } \end{aligned}$		p2816[0] = r2090.3	[2655.7]	-
	STW1.4	$0=$ Set ramp-functio 1 = Enable ramp-func		p1140[0] $=$ r2090.4	[2580.3]	-
	STW1.5	0 = Freeze ramp-fun 1 = Continue ramp-fu		p1141[0] = r2090.5	[2580.3]	-
	STW1.6	0 = Speed setpoint 1 = Speed setpoint en		p1142[0] = r2090.6	[2580.3]	-
	STW1.7	5 = Acknowledge fa		p2103[0] = r2090.7	[2546.1]	-
	STW1.8	Reserved		-	-	-
	STW1.9	Reserved		-	-	-
	STW1.10	1 = Control via PLC	<1>	p0854[0] $=$ r2090.10	[2580.3]	-
	STW1.11	Reserved		-	-	-
	STW1.12	Reserved	<2>	- <2>	-	-
	STW1.13	Reserved	<2>	- <2>	-	-
	STW1.14	Reserved	<2>	- <2>	-	-
	STW1.15	Reserved	<2>	- <2>	-	-

$\stackrel{\omega}{\omega}$	Signal sources for PZD send signals				<2>		<1>	
	Signal	Meaning		PROFIdrive signal no.	Interconnection parameter	Function diagram	Data type	Normalization
	ZSW1	Status word 1		2	r2089[0]	[2452], [2472]	U16	-
	ZSW2	Status word 1		4	r2089[1]	[2054], [2472]	U16	-
	NIST_A	Actual speed value A (16-bit)	<3>	6	r0063[0]	[6810.4]	116	4000 hex 今 100% = p2000
	G1_ZSW	Encoder 1 status word		10	r0481[0]	[4730.5]	U16	-
	G1_IST1	Encoder 1 actual position value 1		11	r0482[0]	[4704.8]	U32	-
	G1_IST2	Encoder 1 actual position value 2		12	r0483[0]	[4704.8]	U32	-
	G2_ZSW	Encoder 2 status word		14	r0481[1]	[4704.8]	U32	-
	G2_IST1	Encoder 2 actual position value 1		15	r0482[1]	[4704.8]	U32	-
	G2_IST2	Encoder 2 actual position value 2		16	r0483[1]	[4704.8]	U32	-
	E_DIGITAL	Digital input (16-bit)		21	r2089[2]	[2498], [2472]	U16	-
	IAIST_GLATT	Absolute actual current value smoothed		51	r0027	[6851.6]	116	4000 hex $\widehat{100 \% ~=~ p 2002 ~}$
	MIST_GLATT	Actual torque value smoothed	<4>	53	r0080	[6851.7]	116	4000 hex $\widehat{100 \% ~=~ p 2003 ~}$
	PIST_GLATT	Active power smoothed	<5>	54	r0082[1]	-	116	4000 hex $\widehat{100} \%=$ p2004
	NIST_A_GLATT	Actual speed value smoothed	<3>	57	r0063[1]	[6810.5]	116	4000 hex $\widehat{\wedge} 100 \%=\mathrm{p} 2000$
	MELD_NAMUR	VIK-NAMUR message bit bar		58	r3113	-	U16	-
	FAULT_CODE	Fault code		301	r2131	[8060.3]	U16	-
	WARN_CODE	Alarm code		303	r2132	[8065.3]	U16	-
	ZSW1_BM	Status word 1, variant for BM		323	r2089[0]	[2428], [2472]	U16	-
	ZSW2_BM	Status word 2, variant for BM		325	r2089[1]	[2429], [2472]	U16	-
	CU_ZSW1	Status word 1 for Control Unit		501	r2089[1]	[2496], [2472]	U16	-

<1> Data type according to PROFIdrive profile:
I16 = Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32
<2> When selecting a standard telegram or a manufacturer-specific telegram (telegram number <> 999) via p0922
arameters of command data set CDS0 are set automatically
<3> Depending on the setting of p50083[D], further reference quantities must be set, see [6810.3], [2075.2].
<4> Value refers to device data (i.e. 100% corresponds to p2003).
<5> Electric power output of the SINAMICS DCM.

PROFIdrive sampling time
<1> A PZD send word can either be supplied via connector input p2051[x] (WORD) or via p2061[x] (DWORD). The two corresponding connector inputs cannot be interconnected.
<2> The following representation applies: For words 4000 hex $=100 \%$ resp. for double words 40000000 hex $=100 \%$.
For further interconnecting the reference quantities of the interconnected connector outputs are relevant.

- For DC_CTRL (SINAMICS DCM) is valid

Interconnecting to connector outputs with scaling "PERCENT is recommended
For physical quantities the reference values p200x are valid (100% corresponds to p 200 x).
For speed values is valid: Depending on the setting of p50083[D], further reference quantities must be set, see [6810.3], [2075.2]
Current and torque are related to motor or de
For physical quantities the reference values r 5007 x are valid (100% corresponds to r 5007 x).
The following applies for temperature values: $100^{\circ} \mathrm{C}$ corresponds to $100 \%=4000$ hex or 40000000 hex; $0^{\circ} \mathrm{C}$ corresponds to 0%
<2> To comply with the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1), not as DWORD.
<4> Using the binector/connector converters at [2472], bits of 5 send words can be interconnected with any binectors.

The following applies for temperature values: $100{ }^{\circ} \mathrm{C}$ corresponds to $100 \%=4000$ hex or 40000000 hex; $0^{\circ} \mathrm{C}$ corresponds to 0%.
$<3>$ In
<3> In order to maintain the PROFldrive profie, receive word 1 must be used as control word (STW1) (due to bit 10 "control requested"),
<4> Using the connector-binector converters, the bits can be extracted from two of the PZD receive words 5 to 64 and used as binectors.
<5> Every PZD word can be assigned a word or a double word. Only one of the 2 interconnection parameters r8850 or r8860 can have a value $\neq 0$ for a PZD word. $<6>$ When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type.

1	2	3	4	5	6	7	8
DO: DC_CTRL, DCP_CTRL					fp_2485_70_eng.vsd	Function diagram	- 2485 -
PROFIdrive - IF2 receive telegram, free interconnection via BICO (p0922 = 999)					09.01.19 V01.05.01	SINAMICS DCM/D	

[^0]

<1> CU_ZSW1 is formed via binector-connector converter (BI: p2080[0...15], inversion: p2088[0].0...15).

1	2	3	4	5	6	7	8
DO: CU_DC					fp_2496_13_eng.vsd	Function diagram	-2496-
PROFIdrive - CU_ZSW1 status word 1, Control Unit interconnection					16.11.18 V01.05.01	SINAMICS DCM	

Signal destinations for A_DIGITAL for telegram 390			<1>		
Signal	Meaning		Interconnection parameter	Function diagram	Inverted
A_DIGITAL. 0	CUD digital output 0 (DO 0)	<2>	DC_CTRL CU_DC $\mathrm{p} 50 \overline{7} 71=\mathrm{r} 2091.0$	[2055.1]	-
A_DIGITAL. 1	CUD digital output 1 (DO 1)	<2>	DC_CTRL CU_DC p50772 $=$ r2091. 1	[2055.1]	-
A_DIGITAL. 2	CUD digital output 2 (DO 2)	<2>	DC_CTRL CU_DC p50773 $=$ r2091. 2	[2055.1]	-
A_DIGITAL. 3	CUD digital output 3 (DO 3)	<2>	DC_CTRL CU_DC $\mathrm{p} 50 \overline{774}$ = r 2091.3	[2055.1]	-
A_DIGITAL. 4	Reserved		-	-	-
A_DIGITAL. 5	Reserved		-	-	-
A_DIGITAL. 6	Reserved		-	-	-
A_DIGITAL. 7	Reserved		-	-	-
A_DIGITAL. 8	Reserved		-	-	-
A_DIGITAL. 9	Reserved		-	-	-
A_DIGITAL. 10	Reserved		-	-	-
A_DIGITAL. 11	Reserved		-	-	-
A_DIGITAL. 12	Reserved		-	-	-
A_DIGITAL. 13	Reserved		-	-	-
A_DIGITAL. 14	Reserved		-	-	-
A_DIGITAL. 15	Reserved		-	-	-

	Signal sources for E＿DIGITAL for telegram 390				＜1＞		
	Signal	Meaning			Interconnection parameter	Function diagram	Inverted
	E＿DIGITAL． 0	CUD digital input 4 （DI 4）	＜3＞	＜2＞	CU DC DC CTRL $\mathrm{p} 2082[0]=\mathrm{r} 53010.8$	［2060．8］	－
	E＿DIGITAL． 1	CUD digital input 5 （DI 5）	＜3＞	＜2＞	CU＿DC DC＿CTRL $\mathrm{p} 2082[1]=\mathrm{r} 530 \overline{10} 0.10$	［2060．8］	－
	E＿DIGITAL． 2	CUD digital input 6 （DI 6）	＜3＞	＜2＞	CU＿DC DC＿CTRL p2082［2］＝r53010．12	［2065．8］	－
	E＿DIGITAL． 3	CUD digital input 7 （DI 7）	＜3＞	＜2＞	CU DC DC CTRL $\mathrm{p} 2082[3]=\mathrm{r} 53010.14$	［2065．8］	－
	E＿DIGITAL． 4	Reserved			－	－	－
	E＿DIGITAL． 5	Reserved			－	－	－
	E＿DIGITAL． 6	Reserved			－	－	－
	E＿DIGITAL． 7	Reserved			－	－	－
	E＿DIGITAL． 8	CUD digital input 0 （DI 0）		＜2＞	CU＿DC DC＿CTRL $\mathrm{p} 20 \overline{8} 2[8]=\mathrm{r} 53010.0$	［2050．7］	－
	E＿DIGITAL． 9	CUD digital input 1 （DI 1）		＜2＞	CU＿DC DC＿CTRL $\mathrm{p} 2082[9]=\mathrm{r} 53010.2$	［2050．7］	－
	E＿DIGITAL． 10	CUD digital input 2 （DI 2）		＜2＞	CU＿DC DC＿CTRL p2082［10］＝r53010．4	［2050．7］	－
	E＿DIGITAL． 11	CUD digital input 3 （DI 3）		＜2＞	CU＿DC DC＿CTRL $\mathrm{p} 2082[11]=\mathrm{r} 5 \overline{3} 010.6$	［2050．7］	－
	E＿DIGITAL． 12	Reserved			－	－	－
	E＿DIGITAL． 13	Reserved			－	－	－
	E＿DIGITAL． 14	Reserved			－	－	－
	E＿DIGITAL． 15	Reserved			－	－	－

＜1＞Default can be changed by user
＜2＞This interconnection will not be established automatically by setting of p0922 $=390$ ．If required the interconnection must be established by the user．＜3＞Can be set via p50789［0．．．3］as digital input or digital output．

3.7 Internal control/status words

Function diagrams

2534 - Status word, monitoring functions $1 \quad 779$
2537 - Status word, monitoring functions $3 \quad 780$
2546 - Control word faults/alarms 781
2548 - Status word, faults/alarms 1 and $2 \quad 782$
2580 - Control word, sequence control 783
2585 - Status word, sequence control 784

3.8 Sequence control

Function diagrams

2650 - Sequencer (Part 1) 786
2651 - Sequencer (Part 2) 787
2655 - Missing enable signals, logic operations 788
2660 - Optimization runs 789

Execution of an optimization run:

1) Select the requested optimization run in p50051.
2) Switch on drive ($\mathrm{OFF} 10 \rightarrow 1$; not for p50051 $=30$)
n run has ended (drive switches to state 08 automatically). For p50051 = 30 applies: drive switches back in the same state as before arting the optimization run.
3) Check if optimization results are usable.

Characteristics of the optimization runs

$3.9 \quad$ Brake control

Function diagrams

2750 - Brake control

3.10 Setpoint channel

Function diagrams

3100 - Fixed values (Part 1) 793
3102 - Fixed values (Part 2) 794
3105 - 4-stage master switch 795
3110 - Motorized potentiometer 796
3113 - AOP30 display and control unit 797
3115 - Fixed setpoint 798
3120 - Oscillation/square-wave generator 799
3125 - Jog setpoint 800
3130 - Creep setpoint 801
3135 - Setpoint processing 802
3150 - Ramp-function generator (Part 1) 803
3151 - Ramp-function generator (Part 2) 804
3152 - Ramp-function generator (Part 3) 805
3155 - Limit after ramp-function generator 806

11 fixed values
0.00\% ris2000
100.00% r
200.00% r52002
-100.00% r52003
-200.00% r52004
50.00% r52005
150.00\% r \quad r52006
$-50.00 \% \longrightarrow$ r52007
-150.00% r
$0.00 \%-0$
$100.00 \% \longrightarrow 1$

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_3120_13_eng.vsd	Function diagram	3120 -
Setpoint channel - Oscillation/square-wave generator					26.10.18 V01.05.01	SINAMICS DCM	

3.11 Encoder evaluation

Function diagrams

4700 - Overview 808
4704 - Position sensing, encoders 1 ... 2 809
4710 - Speed actual value sensing, motor encoder (encoder 1) 810
4711 - Speed actual value sensing, encoder 2 811
4720 - Encoder interface, receive signals, encoders 1 ... 2 812
4730 - Encoder interface, send signals, encoders1 ... 2 813
4735 - Reference mark search, encoders 1 ... 2 814
4750 - Absolute value for incremental encoder 815

＜1＞The［E］ncoder Data Set switchover is displayed at［8570］
＜2＞For
rotary motor encoder／linear direct measuring system，
inear motor encoder／rotary direct measuring system，
the following applies：
Parameters p2503（LU per 10 mm ）and p2506（LU per load rev）also still have an effect．

1	2	3	4	5	6	7	8
DO：DC＿CTRL					fp＿4711＿13＿eng．vsd	Function diagram	4711 －
Encoder evaluation－Speed actual value sensing，encoder 2					17．08．18 V01．05．01	SINAMICS DCM	

Actual position value
from encoder n
[4704.8]
r0482[n-1] <2>

3.12 Armature circuit control

Function diagrams

6800 - Speed controller start pulse 817
6805 - Speed controller (Part 1) 818
6810 - Speed controller (Part 2) 819
6812 - Speed controller (Part 3) 820
6815 - Speed controller (Part 4) 821
6820 - Friction/moment of inertia compensation 822
6825 - Torque limitation (Part 1) 823
6830 - Torque limitation (Part 2) 824
6835 - Speed limiting controller 825
6840 - Current limiting (Part 1) 826
6845 - Current limiting (Part 2) 827
6850 - Actual armature current value sensing (Part 1) 828
6851 - Actual armature current value sensing (Part 2) 829
6852 - Selection of EMF actual value for armature current pre-control 830
6853 - Armature current controller adaptation 831
6854 - Armature circuit model parameters 832
6855 - Armature current control 833
6858 - Gating unit characteristic linearization 834
6860 - Auto-reversing stage 835
6862 - State limits 836
6865 - Simulation mode/thyristor check/commutation monitoring 837
6870 - Three-phase AC power controller and armature gating unit 838
6895 - Line-dependent EMF reduction 839

This function is only used for internal Siemens applications (THYRISIEM® excitation equipment)
x : Input variable (Cl: p50600[4], -100% to $+100 \%$).
Firing angle that is required so that, with B 6 switching and a non-pulsating current, the output voltage changes linearly with the input variable.

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_6858_13_eng.vsd	Function diagram	- 6858-
Armature circuit control - Gating unit characteristic linearization					15.05.18 V01.05.01	SINAMICS DCM	

1	2	3	4	5		6	7	8
DO: DC_CTRL					fp_6865	_-eng.vsd	Function diagram	6865-
Armature circuit control - Simulation mode/thyristor check/commutation monitoring					20.07.18	V01.05.01	SINAMICS DCM	

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_6895_13_eng.vsd	Function diagram	6895-
Armature circuit control - Line-dependent EMF reduction					02.10.18 V01.05.01	SINAMICS DCM	

3.13 Field circuit control

Function diagrams

6900 - EMF control 841
6902 - Actual value acquisition, armature voltage/EMF 842
6905 - Field current setpoint limitation 843
6908 - Field current controller adaptation 844
6910 - Field current control 845
6912 - Actual field current value sensing 846
6915 - Field gating unit 847
6920 - Field reversal 848

$3.14 \quad$ Power unit

Function diagrams

6950 - Armature line analysis 850
6952 - Field line analysis 851
6954 - Line monitoring 852
6956 - Fuse monitoring (DC converter) 853
6957 - Fuse monitoring (Control Module) 854
6960 - Power unit properties 855
6965 - Adaptation to external power unit (Control Module) 856
6970 - Converter Commutation Protector (CCP) 857

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_6956_13_eng.vsd	Function diagram	-6956-
Power unit - Fuse monitoring (DC Converter)					26.07.18 V01.05.01	SINAMICS DCM	

＜2＞If＜1＞is connected to slot X23A，slot X23B cannot be used for＜2＞．

r r53220
$\underset{\mathrm{r} 53220.0}{\mathrm{r} 53220}$
r53220．1
$\begin{array}{r}\mathrm{r} 53220.1 \\ \hline \mathrm{r} 5320.2 \\ \hline\end{array}$
$\begin{array}{r}\text { r53220．2 } \\ \hline \mathbf{r} 5220.3 \\ \hline\end{array}$
$\begin{array}{r}\text { r53220．3 } \\ \hline\end{array}$

| r53220．4 |
| ---: | ---: |
| r53220．5 |

1	2	3	4	5	6	7	8
DO：DC＿CTRL					fp＿6957＿13＿eng．vsd	Function diagram	－ 6957 －
Power unit－Fuse monitoring（Control Module）					26．07．18 V01．05．01	SINAMICS DCM	

3.15 Technology controller

Function diagrams

7958 - Closed-loop control (r0108.16 = 1)

3.16 Signals and monitoring functions

Function diagrams

8020 - Messages (Part 1) 861
8025 - Messages (Part 2) 862
8030 - Motor interface (Part 1, X177.53/54/55) 863
8035 - Motor interface (Part 2) 864
8038 - I2t monitoring motor 865
8040 - Speed-dependent current limiting 866
8042 - Power unit l2t monitoring 867
8044 - Field current monitoring 868
8045 - Device fan operating hours counter 869
8046 - Monitoring blocking protection/tacho loss monitoring 870
8047 - Device fan (DC converter) 871
8048 - Device-internal monitoring functions 872
8049 - Device fan (Control Module) 873
8050 - Trace function 874
8052 - Diagnostic memory 875
8054 - Internal diagnostics 876

[^1]| 1 | 2 | 3 | 4 | 5 | | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: DC_CTRL | | | | | fp_8038 | 3_eng.vsd | Function diagram | 8038- |
| Signals and monitoring functions - I2t monitoring, motor | | | | | 27.09.18 | V01.05.01 | SINAMICS DCM | |

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_8045_13_eng.vsd	Function diagram	-8045 -
Signals and monitoring functions - Device fan operating hours counter					27.09.18 V01.05.01	SINAMICS DCM	

<1> Circuit example.

1	2	3	4	5	6	7	8
DO: DC_CTRL					fp_8049_13_eng.vsdx	Function diagram	- 8049 -
Signals and monitoring functions - Device fan (Control Module)					06.02.22 V01.05.01	SINAMICS DCM	

$3.17 \quad$ Faults and alarms

Function diagrams

8060 - Fault buffer 878
8065 - Alarm buffer 879
8070 - Faults/alarms trigger word (r2129) 880
8075 - Faults/alarms configuration 881

F/A trigger word
(e.g. as trigger condition to record traces)

1	2	3	4	5	6	7	8
DO: All objects					fp_8070_51_eng.vsd	Function diagram	
Diagnostics - Faults/alarms trigger word (r2129)					05.11.13 V01.05.01	Function diagram -8070 - -	

Changing the message type (fault <=> alarm) (for a maximum of 20 faults/alarms) <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting Changes that may be required are only possible in specific value ranges specified by SIEMENS
When the message type is changed, the supplementary information is transferred from fault value r0949 to alarm value r2124 and vice versa.

1	2	3	4	5	6	7	8
DO: All objects					fp_8075_70_eng.vsd	Function diagram	- 8075 -
Diagnostics - Faults/alarms configuration					25.09.18 V01.05.01	SINAMICS DCM/DCP	

3.18 Data sets

Function diagrams

8560 - Command Data Sets (CDS) 883
8565 - Drive Data Sets (DDS) 884
8570 - Encoder data sets (EDS) 885

3.19 Communication between devices

Function diagrams

9300 - Peer-to-peer interface 887
9350 - Parallel connection interface (Part 1) 888
9352 - Parallel connection interface (Part 2) 889
9355 - Parallel connection interface (Part 3) 890
9360 - Switchover of the power unit topology 891

3.20 Terminal Module 15 (TM15DI_DO)

Function diagrams

9399 - Overview TM15DI_DO (SINAMICS) 893
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) 894
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) 895
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) 896

3.21 Terminal Module 31 (TM31)

Function diagrams

9549 - Overview 898
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) 899
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7) 900
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1) 901
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 902
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 903
9566 - Analog input 0 (AI 0) 904
9568 - Analog input 1 (AI 1) 905
9572 - Analog outputs (AO 0 ... AO 1) 906
9576 - Temperature evaluation 907
9577 - Sensor monitoring KTY/PTC/PT1000 908

$3.22 \quad$ Terminal Module 150 (TM150)

Function diagrams

9625 - Temperature evaluation structure (channels 0 ... 11) 910
9626 - Temperature evaluation 1x2-, 3-, 4-wire (channels $0 \ldots 5$) 911
9627 - Temperature evaluation 2x2-wire (channels 0 ... 11) 912

3.23 Basic Operator Panel 20 (BOP20)

Function diagrams

9912 - Control word interconnection

Faults and alarms

Content

4.1 Overview of faults and alarms 916
4.2 List of faults and alarms 927

4.1 Overview of faults and alarms

4.1.1 General information on faults and alarms

Display of faults/alarms

In the case of a fault, the drive signals the corresponding fault(s) and/or alarm(s).
The following methods are available for displaying faults and alarms:

- Display via the fault and alarm buffer for PROFIBUS.
- Display via the commissioning software in online operation.

Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 4-1 Differences between faults and alarms

Type	\quad Description
Faults	What happens when a fault occurs? - The appropriate fault response is triggered. - Status signal ZSW1.3 is set. - The fault is entered in the fault buffer.
	How are faults eliminated? - Remove the original cause of the fault. - Acknowledge the fault.
Alarms	What happens when an alarm occurs? - Status signal ZSW1.7 is set. - The alarm is entered into the alarm buffer.
How are alarms eliminated? - Alarms acknowledge themselves. If the cause of the alarm is no longer present, they automatically reset themselves.	

Fault reactions

The following fault reactions are defined:
Table 4-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No response when a fault occurs.
OFF1	ON/ OFF	Brake along the ramp-function generator down ramp followed by pulse inhibit	Closed-loop speed control (p50084 = 1) - n _set $=0$ is input immediately to brake the drive along the rampfunction generator down ramp. - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the closing time (p 50088) expires. Zero speed is detected when the actual speed value falls below the speed threshold (p50370). Closed-loop torque control (p50084 = 2) - The following applies for closed-loop torque control: Reaction as for OFF2.
OFF2	$\begin{array}{\|l\|} \hline \text { COAST } \\ \text { STOP } \end{array}$	Internal/external pulse disable	Closed-loop speed and torque control - Instantaneous pulse suppression, the drive "coasts" to a standstill. - Switching-on inhibited is activated.
OFF3	QUICK STOP	Brake along the OFF3 down ramp followed by pulse inhibit	Closed-loop speed control (p50084 = 1) - n _set $=0$ is input immediately to brake the drive along the OFF3 down ramp (p50296). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the holding brake's closing time (p50088) expires. Zero speed is detected when the actual speed value falls below the speed threshold (p50370). - Switching-on inhibited is activated. Closed-loop torque control (p50084 = 2) - Reaction as for OFF2.
STOP2	-	OFF2	For SINAMICS DCM, these fault reactions have the same effect as for OFF2.
$\begin{aligned} & \text { IASC/ } \\ & \text { DCBRAKE } \end{aligned}$			
ENCODER			

Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been eliminated.

Table 4-3 Acknowledging faults

Acknowledgment	Description
POWER ON	The fault is acknowledged by a POWER ON (switch drive unit off and on again). Note: If this action has not removed the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged on one drive object (Points 1 to 3) or on all drive objects (Point 4) as follows: 1 Set acknowledgment by parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledging via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledging via a PROFIdrive control signal: STW1.7 = 0 --> 1 (edge) 4 Acknowledge all faults p2102 BI: Acknowledge all faults All of the faults on all of the drive objects of the drive system can be acknowledged using this binector input. Note: - These faults can also be acknowledged by a POWER ON operation. - If this action has not eliminated the fault cause, the fault will continue to be displayed after acknowledgment.
PULSE SUPPRESSION	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0). The same options are available for acknowledging as described under acknowledge IMMEDIATELY.

Fault buffer - saved when switching off

The contents of the fault buffer are saved to non-volatile memory when the Control Unit is powered down, i.e. the fault buffer history is still available when the unit is powered up again.

The fault buffer of a drive object comprises the following parameters:

- r0945[0...63], r0947[0...63], r0948[0...63], r0949[0...63]
- r2109[0...63], r2130[0...63], r2133[0...63], r2136[0...63]

The fault buffer contents can be deleted manually as follows:

- Delete fault buffer for all drive objects: p2147 = 1 --> p2147 = 0 is automatically set after execution.
- Delete fault buffer for a specific drive object: p0952 = 0 --> The parameter belongs to the specified drive object

The fault buffer contents are automatically deleted when the following occurs:

- Restore factory setting (p0009 = 30 and p0976 = 1).
- Download with modified structure (e.g. number of drive objects changed).
- Power-up after other parameter values have been loaded (e.g. p0976 = 10).
- Upgrade firmware to later version.

4.1.2 Explanation of the list of faults and alarms

The data in the following example have been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms (Page 927)" has the following layout:

Start of example

Axxxxx (F, N)	Fault location (optional): Name
Message value:	Component number: \%1, fault cause: \%2
Message class:	Text of the message class (number according to PROFldrive)
Drive object:	List of objects.
Reaction:	NONE
Acknowledgment:	NONE
Cause:	Description of possible causes.
	Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)
	Information about fault or alarm values (optional).
Remedy:	Description of possible remedies.
Reaction to F:	NO (OFF1, OFF2, OFF3)
Acknowledgment for F: IMMEDIATELY (POWER ON)	
Reaction to N:	NONE
Acknowledgment for N: NONE	

End of example

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed in F or N)
Fxxxxx	Fault $\mathbf{x x x x x}$
Fxxxxx (A, N)	Fault xxxxx (message type can be changed in A or N)
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed in A)

A message comprises a letter followed by the relevant number.
The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No report" or "Internal report"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters ($\mathrm{p} 2118, \mathrm{p} 2119$).

Information on reaction and acknowledgment is specified independently for a message with an adjustable message type (e.g. reaction to F, acknowledgment for F).

Note:

You can change the default properties of a fault or alarm by setting parameters.
References: SINAMICS DC MASTER operating instructions
The "List of faults and alarms (Page 927)" supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

Message value:

The information provided under the message value informs you about the compositionof the fault/alarm value.

Example:

Message value: Component number: \%1, fault cause: \%2
This message value contains information about the component number and cause of the fault. The entries \%1 and \%2 are placeholders, which are filled appropriately in online operation (e.g. with the commissioning software).

Message class:

For each message, specifies the associated message class with the following structure:
Text of the message class (number according to PROFIdrive)
The message classes are transferred at different interfaces to higher-level control systems and their associated display and operating units.
The message classes that are available are shown in Table "Message classes and coding of various diagnostic interfaces (Page 922)". In addition to the text of the message class and their number according to PROFIdrive - as well as a brief help text regarding the cause and remedy - they also include information about the various diagnostic interfaces:

- PN (hex)

Specifies the "Channel error type" of the PROFINET channel diagnostics.
When activating the channel diagnostics, using the GSDML file, the texts listed in the table can be displayed.

- DS1 (dec)

Specifies the bit number in date set DS1 of the diagnostic alarm for SIMATIC S7.
When the diagnostic alarms are activated, the texts listed in the table can be displayed.

- DP (dec)

Specifies the "Error type" of the channel-related diagnostics for PROFIBUS.
When the channel diagnostics are activated, the texts listed in the standard and the GSD file can be displayed.

- ET 200 (dec)

Specifies the "Error type" of the channel-related diagnostics for the SIMATIC ET 200pro FC-2 device.

When the channel diagnostics are activated, the texts listed in the standard and the GSD file of the ET 200pro can be displayed.

- NAMUR (r3113.x)

Specifies the bit number in parameter r3113.
For the interfaces DP, ET 200, NAMUR, in some instances, the message classes are combined.

Table 4-4 Message classes and coding of various diagnostic interfaces

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	PN (hex)	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{aligned} & \text { ET } 200 \\ & \text { (dec) } \end{aligned}$	NAMUR (r3113.x)
Hardware/software errors (1) A hardware or software malfunction was detected. Carry out a POWER ON for the relevant component. If it occurs again, contact the hotline.	9000	0	16	9	0
Line fault (2) A line supply fault has occurred (phase failure, voltage level ...). Check the line supply and fuses. Check the supply voltage. Check the wiring.	9001	1	17	24	1
Supply voltage fault (3) An electronics supply voltage fault ($48 \mathrm{~V}, 24 \mathrm{~V}, 5 \mathrm{~V}$...) was detected. Check the wiring. Check the voltage level.	9002	2	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	15
DC-link overvoltage (4) The DC-link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.	9003	3	18	24	2
Power electronics fault (5) An impermissible operating state of the power electronics was detected (overcurrent, overtemperature, IGBT failure ...). Check compliance with the permissible load cycles. Check the ambient temperatures (fan).	9004	4	19	24	3
Overtemperature of the electronic component (6) The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet ventilation.	9005	5	20	5	4
Ground fault / inter-phase short-circuit detected (7) A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.	9006	6	21	20	5
Motor overload (8) The motor was operated outside the permissible limits (temperature, current, torque ...). Check the load cycles and set limits. Check the ambient temperature / motor cooling.	9007	7	22	24	6

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{gathered} \text { PN } \\ \text { (hex) } \end{gathered}$	$\begin{aligned} & \text { DS1 } \\ & \text { (dec) } \end{aligned}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	ET 200 (dec)	NAMUR (r3113.x)
Communication to the higher-level controller faulted (9) The communication to the higher-level controller (internal coupling, PROFIBUS, PROFINET ...) is faulted or interrupted. Check the state of the higher-level controller. Check the communication connection/-wiring. Check the bus configuration/cycles.	9008	8	23	19	7
Safety monitoring channel has detected an error (10) A safe operation monitoring function has detected an error.	9009	9	24	25	8
Actual position/speed value incorrect or not available (11) An illegal signal state was detected while evaluating the encoder signals (track signals, zero marks, absolute values ...). Check the encoder / state of the encoder signals. Observe the maximum permissible frequencies.	900A	10	25	29	9
Internal (DRIVE-CLiQ) communication faulted (12) The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMCcompliant installation. Observe the maximum permissible quantity structures / cycles.	900B	11	26	31	10
Infeed fault (13) The infeed is faulty or has failed. Check the infeed and its environment (line supply, filters, reactors, fuses ...). Check the infeed control.	900C	12	27	24	11
Braking controller / Braking Module faulted (14) The internal or external Braking Module is faulted or overloaded (temperature). Check the connection/state of the Braking Module. Comply with the permissible number of braking operations and their duration.	900D	13	28	24	15
Line filter fault (15) The line filter monitoring has detected an excessively high temperature or another impermissible state. Check the temperature / temperature monitoring. Check the configuration to ensure that it is permissible (filter type, infeed, thresholds).	900E	14	17	24	15
External measured value / signal state outside of the permissible range (16) A measured value / signal state read in via the input area (digital/analog/temperature) has assumed an impermissible value/state. Identify and check the relevant signal. Check the set thresholds.	900F	15	29	26	15
Application / technological function faulty (17) The application / technological function has exceeded a (set) limit (position, velocity, torque ...). Identify and check the relevant limit. Check the setpoint specification of the higher-level controller.	9010	16	30	9	15

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	PN (hex)	DS1 (dec)	DP (dec)	ET 200 (dec)	NAMUR (r3113.x)
Error in the parameterization/configuration/commissioning procedure (18)	9011	17	31	16	15
An error was identified in the parameterization or in a commissioning procedure, or the parameterization does not match the actual device configuration. Determine the precise cause of the fault using the commissioning tool. Adapt the parameterization or device configuration.					
General drive fault (19) Group fault. Determine the precise cause of the fault using the commissioning tool.	9012	18	9	9	15
Auxiliary unit fault (20) The monitoring of an auxiliary unit (incoming transformer, cooling unit ...) has detected an illegal state. Determine the exact cause of the fault and check the relevant device.	9013	19	29	26	15

1. Undervoltage condition of the electronics power supply
2. Overvoltage condition of the electronics power supply

Drive object:

Each message (fault/alarm) specifies the drive object in which it can be found.
A message can belong to either one, several, or all drive objects.

Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note

See Table "Fault reactions (Page 917)"

Acknowledgment: Default acknowledgment (adjustable acknowledgment)

Specifies the default method of acknowledging faults after the cause has been eliminated.
The optional parentheses indicate whether the default acknowledgment can be changed and which acknowledgment can be adjusted via parameters (p2126, p2127).

Note

See Table "Acknowledging faults (Page 918)"

Cause:

Describes the possible causes of the fault or alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...7] and specifies additional, more precise information about an alarm.

Remedy:

Describes the methods available for eliminating the cause of the active fault or alarm.

WARNING

In certain cases, service and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults

4.1.3 Number ranges of faults and alarms

Note:

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family

The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms (Page 927)".

Faults and alarms are organized into the following number ranges:
Table 4-5 Number ranges of faults and alarms

of	To	
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power section
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13033	Licensing
13034	13099	Reserved

Table 4-5 Number ranges of faults and alarms, continued

of	To	Area
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
36000	36999	DRIVE-CLiQ Hub Module
37000	37999	HF Damping Module
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

4.2 List of faults and alarms

	Product: SINAMICS DC MASTER, Version: 5104032, Language: eng Objects: CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
F01000	Internal software error
Message value:	Module: \%1, line: \%2
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (r0945).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- if required, check the data on the non-volatile memory (e.g. memory card).
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
F01001	FloatingPoint exception
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.
	The error may be caused by the basic system or a technology function (e.g. FBLOCKS, DCC, TEC).
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Note:
	Refer to r9999 for further information about this fault.
	r9999[0]: Fault number.
	r9999[1]: Program counter at the time when the exception occurred.
	r9999[2]: Cause of the FloatingPoint exception.
	Bit $0=1$: Operation invalid
	Bit $1=1$: Division by zero
	Bit 2 = 1: Overflow
	Bit 3 = 1: Underflow
	Bit 4 = 1: Inaccurate result
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check configuration and signals of the blocks in FBLOCKS.
	- check configuration and signals of DCC charts.
	- check configuration and signals of TEC charts.
	- upgrade firmware to later version.
	- contact Technical Support.

F01002	Internal software error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU) Propagation:	GLOBAL
Reaction:	OFF2	
Acknowledge:	IMMEDIATELY	
Cause:	An internal software error has occurred.	
	Fault value (r0949, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	
	- upgrade firmware to later version.	

N01004 (F, A)	Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999).
	- contact Technical Support.
	See also: r9999 (Software error internal supplementary diagnostics)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01005	Firmware download for DRIVE-CLiQ component unsuccessful
Message value:	Component number: \%1, fault cause: \%2
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY

A01007	POWER ON for DRIVE-CLiQ component required
Message value:	Component number: \%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ component must be switched on again (POWER ON) (e.g. due to a firmware update).
	Alarm value (r2124, interpret decimal):
	Component number of the DRIVE-CLiQ component.
	Note:
	For a component number $=1$, a POWER ON of the Control Unit is required.
Remedy:	- Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again.
	- For SINUMERIK, auto commissioning is prevented. In this case, a POWER ON is required for all components and the auto commissioning must be restarted.

F01010	Drive type unknown
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: IMMEDIATELY Cause: An unknown drive type was found. Fault value (r0949, interpret decimal): Drive object number (refer to p0101, p0107). - replace Power Module. Remedy: - carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support.	

F01011 (N)	Download interrupted
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction: NONE Acknowledge: IMMEDIATELY Cause: The project download was interrupted. Fault value (r0949, interpret decimal): 1: The user prematurely interrupted the project download. 2: The communication cable was interrupted (e.g. cable breakage, cable withdrawn). 3: The project download was prematurely exited by the commissioning tool. 100: Different versions between the firmware version and project files which were loaded by loading into the file system "Download from memory card". Note: The response to an interrupted download is the state "first commissioning". - check the communication cable. Remedy: - download the project again. - boot from previously saved files (switch-off/switch-on or p0976). - when loading into the file system (download from memory card), use the matching version. Reaction upon $\mathrm{N}:$ NONE Acknowl. upon $\mathrm{N}:$ NONE	

F01015	Internal software error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU) Propagation:	GLOBAL
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	An internal software error has occurred.	
	Fault value (r0949, interpret decimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	
	- upgrade firmware to later version.	

A01016 (F)	Firmware changed
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0 : Checksum of one file is incorrect.
	1: File missing.
	2: File too many.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON

A01017	Component lists changed		
Message value:	\%1		
Message class:	Hardware/software error (1)		
Drive object:	All objects	Propagation:	LOCAL
Component:	Control Unit (CU)		
Reaction:	NONE		
Acknowledge:	NONE		

4.2 List of faults and alarms

Cause: | On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been |
| :--- |
| illegally changed with respect to that supplied from the factory. No changes are permitted in this directory. |
| Alarm value (r2124, interpret decimal): |
| zyx dec: $x=$ Problem, $y=$ Directory, $z=$ File name |
| $x=1:$ File does not exist. |
| $x=2:$ Firmware version of the file does not match the software version. |
| $x=3:$ File checksum is incorrect. |
| $y=0:$ Directory /SIEMENS/SINAMICS/DATA/ |
| $y=1:$ Directory /ADDON/SINAMICS/DATA/ |
| $z=0:$ File MOTARM.ACX |
| $z=1:$ File MOTSRM.ACX |
| $z=2:$ File MOTSLM.ACX |
| $z=3:$ File ENCDATA.ACX |
| $z=4:$ File FILTDATA.ACX |
| $z=5:$ File BRKDATA.ACX |
| $z=6:$ File DAT_BEAR.ACX |
| $z=7:$ File CFG_BEAR.ACX |
| $z=8:$ File ENC_GEAR.ACX |
| $z=9:$ File CFG_BRK.ACX |
| $z=10:$ File THERMMOTMOD.ACX |
| $z=11:$ File MAPPING.ACX |
| $z=12:$ File LOADGEAR.ACX |
| $z=13:$ File MOTRSM.ACX |
| For the file on the memory card involved, restore the status originally supplied from the factory. |

F01018	Booting has been interrupted several times
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	Module booting was interrupted several times. As a consequence, the module boots with the factory setting. Possible reasons for booting being interrupted: - power supply interrupted. - CPU crashed. - parameterization invalid.
Remedy:	- carry out a POWER ON (switch-off/switch-on). After switching on, the module reboots from the valid parameterization (if available). - restore the valid parameterization. Examples: a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on). b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-off/switch-on). Note: If the fault situation is repeated, then this fault is again output after several interrupted boots.
A01019	Writing to the removable data medium unsuccessful
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Writing to RAM disk unsuccessful
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930).
	See also: p9930 (System logbook activation)
F01023	Software timeout (internal)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
F01030	Sign-of-life failure for master control
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time.
	The master control was returned to the active BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function.
	The monitoring time is set as follows using the commissioning tool:
	<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
	Notice:
	The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!
F01031	Sign-of-life failure for OFF in REMOTE
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 seconds.
Remedy:	- check the data cable connection at the serial interface for the Control Unit (CU) and operator panel. - check the data cable between the Control Unit and operator panel.

A01032 (F)	ACX: all parameters must be saved
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameters of an individual drive object were saved ($\mathrm{p} 0971=1$), although there is still no backup of all drive system parameters.
	The saved object-specific parameters are not loaded the next time that the system powers up.
	For the system to successfully power up, all of the parameters must have been completely backed up.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save drive object parameters)
Remedy:	Save all parameters (p0977 = 1 or "copy RAM to ROM").
	See also: p0977 (Save all parameters)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F01033	Units changeover: Reference parameter value invalid
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
	Fault value (r0949, parameter):
	Reference parameter whose value is 0.0 .
	See also: p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0 .
	See also: p0596 (Technological unit reference quantity), p2000 (Reference speed), p2001 (Reference voltage), p2002 (Reference current), p2003 (Reference torque), r2004 (Reference power)
F01034	Units changeover: Calculation parameter values after reference value change unsuccessful
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.
	Fault value (r0949, parameter):
	Parameter whose value was not able to be re-calculated.
	See also: p0596 (Technological unit reference quantity), p2000 (Reference speed), p2001 (Reference voltage), p2002 (Reference current), p2003 (Reference torque), r2004 (Reference power)
Remedy:	- Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
	- Technology unit selection (p0595) before changing the reference parameter p0596, set p0595 $=1$.

F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2:
	255: Incorrect drive object type.
	254: Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.
Remedy:	- if you have saved the project data using the commissioning tool, download the project again. Save using the function "Copy RAM to ROM" or with p0977 $=1$. This means that the parameter files are again completely written to the non-volatile memory.
	- replace the memory card or Control Unit.
	For byte $2=255$:
	- correct the drive object type (see p0107).
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F01039 (A) ACX: Writing to the parameter back-up file was unsuccessful

Message value: $\% 1$
Message class: Hardware/software error (1)
Drive object: All objects
Component: Control Unit (CU) Propagation: LOCAL
Reaction:
NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.
	- in the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
	- there is not sufficient free memory space available.
	- the non-volatile memory is defective and cannot be written to.
	Fault value (r0949, interpret hexadecimal): dcba hex
	$\mathrm{a}=$ yyy in the file names PSxxxyyy.***
	$\mathrm{a}=000$--> consistency back-up file
	$\mathrm{a}=001 \ldots 062$--> drive object number
	$\mathrm{a}=070$--> FEPROM.BIN
	$\mathrm{a}=080$--> DEL4BOOT.TXT
	a $=099$--> PROFIBUS parameter back-up file
	$b=x x x$ in the file names PSxxxyyy.***
	$b=000-->$ data save started with $\mathrm{p} 0977=1$ or $\mathrm{p} 0971=1$
	$b=010-->$ data save started with p0977 = 10
	$b=011$--> data save started with p0977 = 11
	$b=012$--> data save started with p0977 = 12
	d, c:
	Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable".
	- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
	- replace the memory card or Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01040	Save parameter settings and carry out a POWER ON
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot.
Remedy:	- save parameters (p0971, p0977).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	Then:
	- upload the drive unit (commissioning tool).
F01041	Parameter save necessary
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	Defective or missing files were detected on the memory card when booting.
	Fault value (r0949, interpret decimal):
	1: Source file cannot be opened.
2: Source file cannot be read.	
	3: Target directory cannot be set up.
4. Target file cannot be set up/opened.	
	5. Target file cannot be written to.
	Additional values:
	Only for internal Siemens troubleshooting.

Cause: An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value). It is possible that the parameter limits are dependent on other parameters.
The detailed cause of the fault can be determined using the fault value.
Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
bb = Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently deactivated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset ($\mathrm{p} 0010=30$).
115: Write access only in the Safety Integrated commissioning state ($\mathrm{p} 0010=95$).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download ($p 0010=29$).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.

4.2 List of faults and alarms

201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy: - correct the parameterization in the commissioning tool and download the project again.

- enter the correct value in the specified parameter.
- identify the parameter that restricts the limits of the specified parameter.

F01043

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

Cause:

Fatal error at project download

Fault cause: \%1
Error in the parameterization / configuration / commissioning procedure (18) All objects
None Propagation: LOCAL

NONE (OFF1, OFF2, OFF3)
IMMEDIATELY
A fatal error was detected when downloading a project using the commissioning tool.
Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).
11: Error while generating a drive object (global component).
12: Error while generating a drive object (drive component).
13: Unknown drive object type.
14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
15: Drive status cannot be changed to drive download.
16: Device status cannot be changed to "ready for operation".
17: It is not possible to download the topology. The component wiring should be checked, taking into account the various messages/signals.
18: A new download is only possible if the factory settings are restored for the drive unit.
19: The slot for the option module has been configured several times (e.g. CAN and COMM BOARD)
20: The configuration is inconsistent (e.g. CAN for Control Unit, however no CAN configured for drive objects A_INF, SERVO or VECTOR).
21: Error when accepting the download parameters.
22: Software-internal download error.
23: download not possible when know-how protection is activated.
24: download not possible during a partial power up after inserting a component.
25: The configuration is inconsistent. Know-how protection is either not activated or only partially.
Additional values:
Only for internal Siemens troubleshooting.

- use the current version of the commissioning tool.
- modify the offline project and carry out a new download (e.g. compare the number of drive objects, motor, encoder, power unit in the offline project and at the drive).
- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other active messages/signals and remove their cause (e.g. correct any incorrectly set
parameters).
- automatically calculate the control parameters (p0340). Then set p0010 = 0 .
- boot from previously saved files (switch-off/switch-on or p0976).
- before a new download, restore the factory setting if the know-how protection was not activated on all drive objects.

F01044	CU: Descriptive data error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU)	
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.	
Remedy:	Replace the memory card or Control Unit.	

A01045	CU: Configuring data invalid
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the parameters displayed in r9406 up to r9408, and correct these if required.
	- Restore the factory setting using (p0976 = 1) and re-load the project into the drive unit.
	Then save the parameterization in STARTER using the function "Copy RAM to ROM" or with p0977 = 1. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.
	See also: r9406 (PS file parameter number parameter not transferred), r9407 (PS file parameter index parameter not transferred), r9408 (PS file fault code parameter not transferred)

A01049	CU: It is not possible to write to file
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal):
	Drive object number.
Remedy:	Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/DATA/...
	When required, remove write protection and save again (e.g. set p0977 to 1).

F01050	Memory card and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The memory card and the device type do not match (e.g. a memory card for SINAMICS S is inserted in SINAMICS
	G).
Remedy:	- insert the matching memory card.
	- use the matching Control Unit or power unit.

F01054	CU: System limit exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one system overload has been identified.
	Fault value (r0949, interpret decimal):
	1: Computing time load too high (r9976[1]).
	5: Peak load too high (r9976[5]).
	Note:
	As long as this fault is present, it is not possible to save the parameters (p0971, p0977).
	See also: r9976 (System utilization)
Remedy:	For fault value $=1,5$:
	- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100%.
	- check the sampling times and adjust if necessary (p0115, p0799, p4099).
	- deactivate function modules.
	- deactivate drive objects.
	- remove drive objects from the target topology.
	- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.
	When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies:
	- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or r20005 (FBLOCKS).
	- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001).
	- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
F01055	CU: Internal error (SYNO of port and application not identical)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	All applications that operate with slaves at one port must be derived from the same SYNO clock cycle.
	The first application whose registration (log-on) connects a slave to a port defines the SYNO clock cycle that will be used as basis for the port.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01056	CU: Internal error (clock cycle of parameter group already assigned differently)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Cause: Remedy:	The requested parameter group (IREG, NREG, ...) is already being used in a different clock cycle. Fault value (r0949, interpret hexadecimal): Method ID. Note: Only for internal Siemens troubleshooting. Contact Technical Support.
F01057	CU: Internal error (different DRIVE-CLiQ type for the slave)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested DRIVE-CLiQ type (hps_ps, hps_enc, ...) has been specified differently for the same slave component Fault value (r0949, interpret hexadecimal): Method ID. Note: Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01058	CU: Internal error (slave missing in topology)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested slave component does not exist in the topology.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01059	CU: Internal error (port does not exist)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The port object assigned according to the topology of the requested slave component does not exist.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01060	CU: Internal error (parameter group not available)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

A01069	Parameter backup and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON.
	- insert a memory card without parameter backup and carry out a POWER ON.
	- if required, withdraw the memory card and carry out POWER ON.
	- save the parameters (p0971 = 1).
A01069	Parameter backup and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON.
	- insert a memory card without parameter backup and carry out a POWER ON.
	- save the parameters (p0977 = 1).
F01072	Memory card restored from the backup copy
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective.
	After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.
A01073 (N)	POWER ON required for backup copy on memory card
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	The parameter assignment on the visible partition of the memory card has changed.
In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out	
a POWER ON or hardware reset (p0972) of the Control Unit.	
Note:	
It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).	

Cause: Parameterizing errors have been detected (e.g. incorrect parameter value). It is possible that the parameter limits are dependent on other parameters.

The detailed cause of the fault can be determined using the fault value.
Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
bb = Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently deactivated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 $=2$).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset ($\mathrm{p} 0010=30$).
115: Write access only in the Safety Integrated commissioning state ($\mathrm{p} 0010=95$).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download ($p 0010=29$).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.

4.2 List of faults and alarms

201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy:

- correct the parameterization in the commissioning tool and download the project again.
- enter the correct value in the specified parameter.
- identify the parameter that restricts the limits of the specified parameter.

A01099 (N)	UTC synchronization tolerance violated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The tolerance (p3109) set for UTC synchronization was violated.
	Note:
	UTC: Universal Time Coordinates
	See also: p3109 (UTC synchronization tolerance)
	Select the synchronization intervals shorter so that the deviation between the time of day master and drive system
	lies within the tolerance.
	Note:
	The deviation when synchronizing is shown in r3107.
	See also: r3107 (UTC synchronization time out of tolerance)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A01100	CU: Memory card withdrawn
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Control Unit (CU) Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card (non-volatile memory) was withdrawn during operation.
	Notice:
	It is not permissible for the memory card to be withdrawn or inserted under voltage. Remedy:
	- switch off the drive system.
	- re-insert the memory card that was withdrawn - this card must match the drive system again.

A01104

Message value:
Message class:

CU: Do not switch off. File system being optimized.

General drive fault (19)
Drive object:
All objects
Component: Control Unit (CU) Propagation: LOCAL

Reaction:
Acknowledge:
NONE
NONE
Cause: The file system is currently being optimized in the non-volatile device memory of the Control Unit. This process may take several minutes.

Notice:
The Control Unit must not be switched off during optimization, as this can lead to user data being lost.
Remedy: Leave the Control Unit switched on during optimization.

Note:
The alarm is automatically withdrawn once the file system has been optimized.

F01105 (A)	CU: Insufficient memory
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, Technology Extensions, blocks, etc).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, Technology Extensions, blocks, etc).
	- use an additional Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01106	CU: Insufficient memory
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	There is not sufficient free memory space available.
Remedy:	Not necessary.
F01107	CU: Save to memory card unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save in the non-volatile memory was not able to be successfully carried out.
	- non-volatile memory is defective.
	- insufficient space in the non-volatile memory.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- try to save again.
	- replace the memory card or Control Unit.
F01110	CU: More than one SINAMICS G on one Control Unit
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	More than one SINAMICS G type power unit is being operated from the Control Unit.
	Fault value (r0949, interpret decimal):
	Number of the second drive with a SINAMICS G type power unit.
Remedy:	Only one SINAMICS G drive type is permitted.

F01111	CU: Mixed operation of drive units illegal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Illegal operation of various drive units on one Control Unit:
	- SINAMICS S together with SINAMICS G
	- SINAMICS S together with SINAMICS S Value or Combi
	Fault value (r0949, interpret decimal):
	Number of the first drive object with a different power unit type.
Remedy:	Only power units of one particular drive type may be operated with one Control Unit.
F01112	CU: Power unit not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit.
	Fault value (r0949, interpret decimal):
	1: Power unit is not supported (e.g. PM240).
	2: DC/AC power unit connected to CU310 not permissible.
	3: Power unit (S120M) not permitted for vector control.
Remedy:	Replace the power unit that is not permissible by a component that is permissible.
F01120 (A)	Terminal initialization has failed
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01122 (A)	Frequency at the measuring probe input too high
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

F01150 CU: Number of instances of a drive object type exceeded

Message value: Drive object type: \%1, number permitted: \%2, actual number: \%3
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge:
Cause: The maximum permissible number of instances of a drive object type was exceeded.
Drive object type:
Drive object type (p0107), for which the maximum permissible number of instances was exceeded.
Number permitted:
Max. permissible number of instances for this drive object type.
Actual number:
Current number of instances for this drive object type.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
ddccbbaa hex: $a \mathrm{a}=$ drive object type, $\mathrm{bb}=$ number limited, $\mathrm{cc}=$ actual number, $\mathrm{dd}=$ no significance
Remedy: - switch off the unit.

- suitably restrict the number of instances of a drive object type by reducing the number of inserted components.
- re-commission the unit.

F01151

Message value:

CU: Number of drive objects of a category exceeded

Drive object category: \%1, number permitted: \%2, actual number: \%3

Drive object:
Component:
Reaction:
Acknowledge:
Error in the parameterization / configuration / commissioning procedure (18)
All objects

IMMEDIATELY
Cause: The maximum permissible number of drive objects of a category was exceeded.
Drive object category:
Drive object category, for which the maximum permissible number of drive objects was exceeded.
Number permitted:
Max. permissible number for this drive object category.
Actual number:
Actual number for this drive object category.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
ddccbbaa hex: $a \mathrm{a}=$ drive object category, $\mathrm{bb}=$ number limited, $\mathrm{cc}=$ actual number, $\mathrm{dd}=$ no significance

4.2 List of faults and alarms

Remedy: | - switch off the unit. |
| :--- |
| - suitably restrict the number of drive objects of the specified category by reducing the number of inserted |
| components. |
| - re-commission the unit. |

F01152	CU: Invalid constellation of drive object types
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: POWER ON Cause: It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA. A maximum of 2 of these drive object types can be operated on a Control Unit. Remedy: - switch off the unit. - restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2. - re-commission the unit.	

F01200	CU: Time slice management internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object: All objects Component: Control Unit (CU) Reaction: OFF2 Acknowledge: IMMEDIATELY (POWER ON) Cause: A time slice management error has occurred. It is possible that the sampling times have been inadmissibly set. Fault value (r0949, interpret hexadecimal): $998:$ Too many time slices occupied by technology functions (e.g. DCC). $999:$ Too many time slices occupied by the basic system. Too many different sampling times may have been set. Additional values: Only for internal Siemens troubleshooting. - check the sampling time setting (p0112, p0115, p4099, p9500, p9511). - contact Technical Support.	

F01205

Message value: $\%$
Message class: Hardware/software error (1)
Drive object:
Component: All objects

Reaction:
Acknowledge: OFF2
POWER ON
Cause: Insufficient processing time is available for the existing topology. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy: - reduce the number of drives.

- increase the sampling times.

F01221	CU: Basic clock cycle too low
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
	The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time remaining in the system is not sufficient for the closed-loop control/monitoring.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Increase the basic clock cycle of DRIVE-CLiQ communication.
	See also: p0112 (Sampling times pre-setting p0115)
F01222	CU: Basic clock cycle too low (computing time for communication not available)
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A time slice has not been defined that fulfills the requirements.
	The port cannot be correctly operated as the alternating cyclic clock cycle cannot be maintained.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
A01223	CU: Sampling time inconsistent
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE

Cause: | When changing a sampling time (p0115[0], p0799 or p4099), inconsistency between the clock cycles has been |
| :--- |
| identified. |
| Alarm value (r2124, interpret decimal): |
| 1: Value lower than minimum value. |
| 2: Value higher than maximum value. |
| 3: Value not a multiple of $1.25 \mu \mathrm{~s}$. |
| 4: Value does not match isochronous PROFIBUS operation. |
| 5: Value not a multiple of $125 \mu \mathrm{~s}$. |
| 6: Value not a multiple of $250 \mu \mathrm{~s}$. |
| 7: Value not a multiple of $375 \mu \mathrm{~s}$. |
| 8: Value not a multiple of $400 \mu \mathrm{~s}$. |
| 10: Special restriction of the drive object violated. |
| 20: On a SERVO with a sampling time of $62.5 \mu \mathrm{~s}$, more than two drive objects or one drive object of a type other than |
| SERVO have been detected on the same DRIVE-CLiQ line (a maximum of two SERVO type drive objects are |
| permitted). |

21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for TB30, the values of all of the indices should be taken into account).
30: Value less than $31.25 \mu \mathrm{~s}$.
31: Value less than $62.5 \mu \mathrm{~s}$ ($31.25 \mu \mathrm{~s}$ is not supported for SMC10, SMC30, SMI10 and Double Motor Modules).
32: Value less than $125 \mu \mathrm{~s}$.
33: Value less than $250 \mu \mathrm{~s}$.
40: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$. Further, none of the nodes has a sampling time of less than $125 \mu \mathrm{~s}$.
41: A chassis unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $250 \mu \mathrm{~s}$.
42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $125 \mu \mathrm{~s}$.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
45: A chassis parallel unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $162.5 \mu \mathrm{~s}$ or $187.5 \mu \mathrm{~s}$ (for a 2 x or $3 x$ parallel connection).
46: A node has been identified on the DRIVE-CLiQ line whose sampling time is not a multiple of the lowest sampling time on this line.
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $31.25 \mu \mathrm{~s}$.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $62.5 \mu \mathrm{~s}$.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $250 \mu \mathrm{~s}$.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
General note:
The topology rules should be noted when connecting up DRIVE-CLiQ (refer to the appropriate product documentation).
The parameters of the sampling times can also be changed with automatic calculations.
Example for highest common denominator: $125 \mathrm{~s}, 125 \mu \mathrm{~s}, 62.5 \mu \mathrm{~s}$--> $62.5 \mu \mathrm{~s}$
Remedy: - check the DRIVE-CLiQ cables.

- set a valid sampling time.

See also: p0115, p4099

A01224	CU: Pulse frequency inconsistent
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When changing the minimum pulse frequency (p0113) inconsistency between the pulse frequencies was identified. Alarm value (r2124, interpret decimal): 1: Value lower than minimum value. 2: Value higher than maximum value. 3: Resulting sampling time is not a multiple of $1.25 \mu \mathrm{~s}$. 4: Value does not match isochronous PROFIBUS operation. 10: Special restriction of the drive object violated. 99: Inconsistency of cross drive objects detected. 116: Recommended clock cycle in r0116[0...1].
Remedy:	Set a valid pulse frequency.
F01250	CU: CU-EEPROM incorrect read-only data
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on). - replace the Control Unit.
A01251	CU: CU-EEPROM incorrect read-write data
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	For alarm value $2124<256$, the following applies: - carry out a POWER ON (switch-off/switch-on). - replace the Control Unit. For alarm value r2124 >= 256, the following applies: - for the drive object with this alarm, clear the fault memory (p0952 = 0). - as an alternative, clear the fault memory of all drive objects (p2147 = 1). - replace the Control Unit.

F01255	CU: Option Board EEPROM read-only data error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Option Board. Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the Control Unit.

A01256	CU: Option Board EEPROM read-write data error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Option Board. Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on). - replace the Control Unit.

F01303	Component does not support the required function
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
	Fault value (r0949, interpret decimal):
	1: The component does not support the deactivation.
	101: The Motor Module does not support an internal armature short-circuit.
	102: The Motor Module does not support the deactivation.
	201: The Sensor Module does not support actual value inversion (p0410.0 = 1) when using a Hall sensor (p0404.6 = 1) for the commutation.
	202: The Sensor Module does not support parking/unparking.
	203: The Sensor Module does not support the deactivation.
	204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
	205: The Sensor Module does not support the selected temperature evaluation (r0458, r0459).
	206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently necessary to upgrade the firmware to ensure disturbance-free operation.
	207: The power unit with this hardware version does not support operation with device supply voltages of less than 380 V .
	208: The Sensor Module does not support de-selection of commutation with zero mark (via p0430.23).
	211: The Sensor Module does not support single-track encoders (r0459.10).
	212: The Sensor Module does not support LVDT sensors (p4677.0).
	213: The Sensor Module does not support the characteristic type (p4662).
	214: The power unit does not support the temperature evaluation via PT1000 (r0193).
	215: The Terminal Module does not support the temperature evaluation via PT1000
	216: The Voltage Sensing Module (VSM) does not support operation with a PT1000 temperature sensor.

A01304 (F)	Firmware version of DRIVE-CLiQ component is not up-to-date
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile memory has a more recent firmware version than the one in the connected DRIVE-CLiQ
	component.
	Alarm value (r2124, interpret decimal):
	Component number of the DRIVE-CLiQ component involved.
Remedy:	Update the firmware (p7828, p7829 - or commissioning tool).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY

F01305 Topology: Component number missing
Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: GLOBAL
Acknowledge: IMMEDIATELY

Cause: The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161) Fault value (r0949, interpret decimal): Data set number.
Note:
The fault also occurs if encoders have been configured (p 0187 to p 0189) but no component numbers exist for them. In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. $3 x x$, if a component number was not entered in p0141 for encoder 3 (p0189)).
See also: p0121 (Power unit component number), p0141 (Encoder interface (Sensor Module) component number), p0142 (Encoder component number), p0151 (Terminal Module component number), p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number)
Remedy: - enter missing component number.

- if required, remove the component and restart commissioning.

See also: p0121 (Power unit component number), p0141 (Encoder interface (Sensor Module) component number), p0142 (Encoder component number), p0151 (Terminal Module component number), p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number)

A01306	Firmware of the DRIVE-CLiQ component being updated	
Message value:	$\% 1$	
Message class:	General drive fault (19)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

4.2 List of faults and alarms

Cause:	Firmware update is active for at least one DRIVE-CLiQ component.
	Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.	
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the firmware update has been completed.

A01314	Topology: Component must not be present
Message value:	\%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a component, "deactivate and not present" is set but this component is still in the topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{aa}=$ component number
	$\mathrm{bb}=$ component class of the component
	cc = connection number
	Note:
	Component class and connection number are described in F01375.
Remedy:	- remove the corresponding component.
	- change the setting "deactivate and not present".
	Note:
	Under "Topology --> Topology view", the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
	See also: p0105 (Activate/deactivate drive object), p0125 (Activate/deactivate power unit components), p0145 (Activate/deactivate encoder interface)

A01317 (N)	Deactivated component again present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "deactivate" (p0125, p0145, p0155, p0165).
	Note:
	This is the only message that is displayed for a deactivated component.
Remedy:	The alarm is automatically withdrawn for the following actions:
	- activate the components involved (p0125 = 1, p0145 = 1, p0155 = 1, p0165 = 1).
	- again withdraw the component involved.
	See also: p0125 (Activate/deactivate power unit components), p0145 (Activate/deactivate encoder interface)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A01318	BICO: Deactivated interconnections present	
Message value:	$\% 1$	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE		

Cause:	This alarm is used in the following cases:
	- if an inactive/non-operational drive object is active again/ready for operation
	- if there are items in the list of $\mathrm{BI} / \mathrm{CI}$ parameters (r9498[0...29], r9499[0...29])
- if the BICO interconnections saved in the list of $\mathrm{BI} / \mathrm{CI}$ parameters (r9498[0...29], r9499[0...29]) have actually been	
changed	
Remedy:	Reset alarm:
	- set p9496 to 1 or 2
	or
	- deactivate the drive object again.

A01319	Inserted component not initialized
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	Initialization is required for at least one inserted component.
	This is only possible if the pulses are inhibited for all the drive objects.
Remedy:	Activate pulse inhibit for all drive objects.

A01320	Topology: Drive object number does not exist in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is missing in p0978
	Alarm value (r2124, interpret decimal):
	Index of p0101 under which the missing drive object number can be determined.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0, the drive objects with PZD are separated from those without PZD.
	- only 2 partial lists are permitted. After the second 0, all values must be 0.
	- dummy drive object numbers (255) are only permitted in the first partial list.

A01321	Topology: Drive object number does not exist in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	p0978 contains a drive object number that does not exist.
	Alarm value (r2124, interpret decimal):
	Index of p0978 under which the drive object number can be determined.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0, the drive objects with PZD are separated from those without PZD.
	- only 2 partial lists are permitted. After the second 0, all values must be 0.
	- dummy drive object numbers (255) are only permitted in the first partial list.

A01322	Topology: Drive object number present twice in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is present more than once in p0978.
	Alarm value (r2124, interpret decimal):
	Index of p0978 under which the involved drive object number is located.
Remedy:	Set parameter p0009 = 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.

A01323	Topology: More than two partial lists created
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Partial lists are available more than twice in p0978. After the second 0 , all must be 0 . Alarm value (r2124, interpret decimal): Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.

A01324	Topology: Dummy drive object number incorrectly created
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In p0978, dummy drive object numbers (255) are only permitted in the first partial list Alarm value (r 2124 , interpret decimal): Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.

4.2 List of faults and alarms

F01325	Topology: Component number not present in target topology
Message value:	Component number: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None \quad Propagation: \quad
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The component configured in a parameter (e.g. p0121, p0131, etc.) is not present in the target topology.
	Fault value (r0949, interpret decimal):
	Configured component number that is not present in target topology.
Remedy:	Establish topology and DO configuration consistency.

A01330	Topology: Quick commissioning not possible	
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary component number: \%3	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

Cause: Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements.
Alarm value (r2124, interpret hexadecimal):
ccccbbaa hex: $\operatorname{cccc}=$ preliminary component number, $b b=$ supplementary information, $a \mathrm{a}=$ fault cause
aa $=01$ hex $=1 \mathrm{dec}$:
On one component illegal connections were detected.

- $\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
$-\mathrm{bb}=02$ hex $=2$ dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module.
aa $=02$ hex $=2$ dec:
The topology contains too many components of a particular type.
- $\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: There is more than one master Control Unit.
- $\mathrm{bb}=02$ hex $=2$ dec: There is more than 1 infeed (8 for a parallel circuit configuration).
$-\mathrm{bb}=03 \mathrm{hex}=3 \mathrm{dec}$: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
$-\mathrm{bb}=04$ hex $=4 \mathrm{dec}$: There are more than 9 encoders.
- bb = 05 hex $=5$ dec: There are more than 8 Terminal Modules.
- bb = 07 hex $=7$ dec: Unknown component type
- bb = 08 hex = 8 dec: There are more than 6 drive slaves.
- bb = 09 hex $=9$ dec: Connection of a drive slave not permitted.
$-\mathrm{bb}=0 \mathrm{a}$ hex $=10 \mathrm{dec}$: There is no drive master.
$-\mathrm{bb}=0 \mathrm{~b}$ hex $=11 \mathrm{dec}$: There is more than one motor with DRIVE-CLiQ for a parallel circuit.
$-b b=0 c$ hex $=12 \mathrm{dec}$: Different power units are being used in a parallel connection.
- cccc: Not used.
aa $=03 \mathrm{hex}=3 \mathrm{dec}$:
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
$-\mathrm{bb}=0,1,2,3$ means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.
aa $=04$ hex $=4 \mathrm{dec}$:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc $=$ preliminary component number of the first component and component that resulted in the fault.
aa $=05$ hex $=5 \mathrm{dec}$:
The component is not permissible for SERVO.
- bb $=01$ hex $=1$ dec: SINAMICS G available.
$-\mathrm{bb}=02$ hex $=2$ dec: Chassis available.
- cccc $=$ preliminary component number of the first component and component that resulted in the fault. aa $=06$ hex $=6$ dec:
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
$-\mathrm{bb}=01$ hex $=1 \mathrm{dec}$: The Article No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc = preliminary component number of the component with illegal EEPROM data.
aa $=07$ hex $=7 \mathrm{dec}$:
The actual topology contains an illegal combination of components.
$-\mathrm{bb}=01$ hex $=1$ dec: Active Line Module (ALM) and Basic Line Module (BLM).
- bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM).
- bb = 03 hex $=3$ dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
- bb = 04 hex = 4 dec: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.
aa $=08$ hex $=8 \mathrm{dec}$:
The motor is not completely connected.
- bb: Not used.
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

```
Remedy: - adapt the output topology to the permissible requirements.
    - commission the device using the commissioning tool.
    - for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor
    Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor }1\mathrm{ (X1) to X202, from motor 2 (X2) to
    X203).
    For aa = 06 hex = 6 dec and bb = 01 hex = 1 dec:
    Correct the Article No. when commissioning using the commissioning tool.
    See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)
```

A01331	Topology: At least one component not assigned to a drive object
Message value:	Component number: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None \quad Propagation: \quad LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one component is not assigned to a drive object.
	- when commissioning, a component was not able to be automatically assigned to a drive object.
	- the parameters for the data sets are not correctly set.
	Alarm value (r2124, interpret decimal):
	Component number of the unassigned component.
	This component is assigned to a drive object.
	Check the parameters for the data sets.
	Examples:
	- power unit (p0121).
	- motor (p0131, p0186).
	- encoder interface (p0140, p0141, p0187 ... p0189).
	- encoder (p0140, p0142, p0187 ... p0189).
	- Terminal Module (p0151).
	- option board (p0161).

F01340

Message value:

Message class:

Drive object:

Component:

Reaction:

Acknowledge:

Topology: Too many components on one line
Component number or connection number: \%1, fault cause: \%2
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None
NONE
IMMEDIATELY

4.2 List of faults and alarms

Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: x = fault cause, yy = component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	2yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	3yy:
	Cyclic communication is fully utilized.
	4yy:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ have not been maintained.
	5 yy :
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	6 yy :
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7 yy :
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8yy:
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.
Remedy:	- check the DRIVE-CLiQ wiring.
	- reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the Control Unit. This means that communication is uniformly distributed over several lines.
	For fault value $=1 \mathrm{yy}-4 \mathrm{yy}$ in addition:
	- increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the run-time group (p 21000 , p 20000) so that the sampling time ($\mathrm{r} 21001, \mathrm{r} 20001$) is increased.
	- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
	- reduce the function modules (r0108).
	- establish the conditions for operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ (at the DRIVE-CLiQ line, only operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, this means a 3 at the last position of the Article No.)).
	- For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a free DRIVE-CLiQ socket of the NX.
	For fault value $=8 \mathrm{yy}$ in addition:
	- check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved.
	For fault value = 9yy in addition:
	- check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles.

F01341

Topology: Maximum number of DRIVE-CLiQ components exceeded

Message value:
Message class:
Drive object:
Component:
Error in the parameterization / configuration / commissioning procedure (18)
All objects

Reaction:
None
NONE
Acknowledge: IMMEDIATELY

Cause:	Too many DRIVE-CLiQ components were defined in the actual topology.
	Note:
Remedy:	Pulse enable is withdrawn and prevented.
	- reduce the number components on the DRIVE-CLiQ line involved in order to maintain the maximum quantity structure.
F01354	Topology: Actual topology indicates an illegal component
Message value:	Fault cause: \%1, component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one illegal component.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ cause .
	$x x=1$: Component at this Control Unit not permissible.
	$x \mathrm{x}=2$: Component in combination with another component not permissible.
	Note:
	Pulse enable is prevented.
Remedy:	Remove the illegal components and restart the system.
F01355	Topology: Actual topology changed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The device target topology (p0099) does not correspond to the device actual topology (r0098).
	The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning tool.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: r0098 (Actual device topology), p0099 (Device target topology)

4.2 List of faults and alarms

Remedy:	One of the following counter-measures can be selected if no faults have occurred in the topology detection itself: If commissioning is still not completed: - carry out a self-commissioning routine (starting from p0009 = 1). In general: Set p0099 $=$ r0098, set p0009 $=0$; for existing Motor Modules, this results in servo drives being automatically generated (p0107). Generating servo drives: Set p0097 to 1, set p0009 to 0. Generating vector drives: Set p0097 to 2, set p0009 to 0 . Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0 . In order to set configurations in p0108, before setting p0009 to 0 , it is possible to first set p0009 to 2 and modify p0108. The index corresponds to the drive object (p0107). If commissioning has already been completed: - re-establish the original connections and re-connect power to the Control Unit. - restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again. - change the device parameterization to match the connections (this is only possible using the commissioning tool). Notice: Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning tool and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting. See also: r0098 (Actual device topology)
F01356	Topology: There is a defective DRIVE-CLiQ component
Message value:	Fault cause: \%1, Component number: \%2, Connection number: \%3
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one defective DRIVE-CLiQ component. Fault value (r0949, interpret hexadecimal): zzyyxx hex: $z z=$ connection number of the component at which the defective component is connected $\mathrm{yy}=$ component number of the component at which the defective component is connected $x x=$ fault cause $x x=1$: Component at this Control Unit not permissible. $x x=2$: component with communication defect. Note: Pulse enable is withdrawn and prevented.
Remedy:	Replace the defective component and restart the system.
F01357	Topology: Two Control Units identified on the DRIVE-CLiQ line
Message value:	component number: \%1, connection number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY

Cause:	In the actual topology, 2 Control Units are connected with one another through DRIVE-CLiQ.
	As standard, this is not permitted.
	This is only permitted if the Technology Extension OALINK has already been installed on the two Control Units and has been commissioned online.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex:
	yy = connection number of the Control Unit at which the second Control Unit is connected
	$\mathrm{xx}=$ component number of the Control Unit at which the second Control Unit is connected
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	In general:
	- remove the connection to the second Control Unit and restart.
	- for the S120M component DRIVE-CLiQ extension, interchange the hybrid cable (IN/OUT).
	When using OALINK:
	- remove the DRIVE-CLiQ connection and restart the systems.
	- install OALINK on both Control Units and activate.
	- Check the configuration of the DRIVE-CLiQ sockets in OALINK.
A01358	Topology: Line termination not available
Message value:	CU connection number: \%1, component number: \%2, connection number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one line with distributed drives is not terminated. The last participant on the line must be terminated with a line termination connector.
	This therefore ensures the degree of protection of the distributed drives.
	Alarm value (r2124, interpret hexadecimal):
	zzyyxx hex:
	$z z=$ connection number of the distributed drive with missing termination connector
	yy = component number
	$x \mathrm{x}=\mathrm{CU}$ connection number
Remedy:	Install the line terminating connector for the last distributed drive.
F01359	Topology: DRIVE-CLiQ performance not sufficient
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ performance is not sufficient at one line in order to identify an inserted component.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- Distribute components across several DRIVE-CLiQ lines.
	Note:
	For this topology, do not withdraw and insert components in operation.

F01360	Topology: Actual topology not permissible
Message value:	Fault cause: \%1, preliminary component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The detected actual topology is not permissible.
	Fault value (r0949, interpret hexadecimal): ccccbbaa hex:
	$\mathrm{cccc}=$ preliminary component number, $\mathrm{bb}=$ no significance, $\mathrm{aa}=$ fault cause
	$\mathrm{aa}=01 \mathrm{hex}=1 \mathrm{dec}$:
	Too many components were detected at the Control Unit. A maximum of 199 components is permissible. aa $=02$ hex $=2$ dec:
	The component type of a component is not known. $\mathrm{aa}=03 \mathrm{hex}=3 \mathrm{dec}$:
	It is illegal to combine ALM and BLM.
	$\mathrm{aa}=04 \mathrm{hex}=4 \mathrm{dec}$:
	It is illegal to combine ALM and SLM.
	$\mathrm{aa}=05 \mathrm{hex}=5 \mathrm{dec}$:
	It is illegal to combine BLM and SLM.
	$\mathrm{aa}=06 \mathrm{hex}=6 \mathrm{dec}$:
	A CX32 was not directly connected to a permitted Control Unit.
	$\mathrm{aa}=07 \mathrm{hex}=7 \mathrm{dec}$:
	An NX10 or NX15 was not directly connected to a permitted Control Unit.
	$\mathrm{aa}=08 \mathrm{hex}=8 \mathrm{dec}$:
	A component was connected to a Control Unit that is not permitted for this purpose.
	A component was connected to a Control Unit with out-of-date firmware.
	aa $=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$:
	Too many components of a particular type detected.
	aa $=0 \mathrm{~B}$ hex $=11 \mathrm{dec}$:
	Too many components of a particular type detected on a single line.
	Note:
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	For fault cause = 1:
	Change the configuration. Connect less than 199 components to the Control Unit.
	For fault cause $=2$:
	Remove the component with unknown component type.
	For fault cause $=3,4,5$:
	Establish a valid combination.
	For fault cause $=6,7$:
	Connect the expansion module directly to a permitted Control Unit.
	For fault cause = 8:
	Remove component or use a permissible component.
	For fault cause = 9:
	Upgrade the firmware of the Control Unit to a later version.
	For fault cause $=10,11$:
	Reduce the number of components.

A01361	Topology: Actual topology contains SINUMERIK and SIMOTION components
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The detected actual topology contains SINUMERIK and SIMOTION components.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled. Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex: $c c=$ fault cause, $b b=$ component class of the actual topology, $a \mathrm{a}=$ component number of the component $c c=01$ hex $=1 \mathrm{dec}$:
	An NX10 or NX15 was connected to a SIMOTION control.
	$\mathrm{cc}=02 \mathrm{hex}=2 \mathrm{dec}$:
	A CX32 was connected to a SINUMERIK control.
Remedy:	For alarm value $=1$:
	Replace all NX10 or NX15 by a CX32.
	For alarm value $=2$:
	Replace all CX32 by an NX10 or NX15.

A01362

Message value:

Topology: Topology rule(s) broken

\%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component: All objects

Reaction:
Acknowledge:
None
NONE
NONE
Cause: At least one topology rule for the SINAMICS S120 Combi has been broken. In the event of a fault, the ramping up of the drive system is aborted and closed-loop drive control is not enabled Alarm value (r2124, interpret decimal):
The alarm value indicates which rule has been violated.
1: The S120 Combi may only be wired via DRIVE-CLiQ socket X200 to X100 on the NCU.
2: Only one Single Motor Module (SMM) or one Double Motor Module (DMM) may be connected via X200 to the DRIVE-CLiQ socket X101 on the NCU.
3: Only one Terminal Module 54F (TM54F) or one DRIVE-CLiQ Hub Module (Hub) may be connected via X500 to the DRIVE-CLiQ socket X102 on the NCU.

4: Only Sensor Modules may be connected to DRIVE-CLiQ sockets X201 up to X203 (3-axis) or X204 (4-axis) on the S120 Combi.

5: Only one Sensor Module, type SMC20 or SME20 may be connected to DRIVE-CLiQ socket X205 (X204 is not available for 3-axis)
6: If a Single Motor Module is being used as the first expansion axis, only one more Single Motor Module may be connected (via X200 to X201 on the first Single Motor Module).

7: Only Sensor Modules may be connected to the corresponding DRIVE-CLiQ socket X202 on any Single Motor Modules which may be present.
8: For a second Single Motor Module or for a Double Motor Module, it is not permissible to connect anything at X201
9: If a Double Motor Module is used as an expansion axis, only Sensor Modules may be connected to X202 and X203.
10: If a Terminal Module 54F (TM54F) is configured, only one DRIVE-CLiQ Hub Module (DMC20, DME20) may be connected to X501 of the TM54F module via DRIVE-CLiQ socket X500
11: On the DRIVE-CLiQ Hub Module, only Sensor Modules Cabinet (SMC) and Sensor Modules External (SME) may be connected to X501 through X505
12: Only certain Motor Modules may be used for expansion axes.
13: For an S120 Combi with 3 axes, nothing must be connected at the DRIVE-CLiQ Hub Module at X503.
Remedy: Evaluate the alarm value and ensure compliance with the corresponding topology rule(s).

F01375	Topology: Connection duplicated between two components
Message value:	Component: \%1, \%2, connection: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When checking the actual topology, a ring-type connection was detected.
	The fault value describes a component contained in the ring.
	Fault value (r0949, interpret hexadecimal): ccbbaaaa hex:
	$\mathrm{cc}=$ connection number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aaaa = preliminary component number (\%1)
	Component class:
	0: Component unknown.
	1: Control Unit
	2: Motor Module
	3: Line Module
	4: Sensor Module
	5: Voltage Sensing Module
	6: Terminal Module
	7: DRIVE-CLiQ Hub Module
	8: Controller Extension
	9: Filter Module
	10: Hydraulic Module.
	49: DRIVE-CLiQ component
	50: Option slot
	60: Encoder
	70: DRIVE-CLiQ motor
	71: Hydraulic cylinder
	72: Hydraulic valve
	80: Motor
	Connection number:
	0: Port 0, 1: Port 1, 2: Port 2, 3: Port 3, 4: Port 4, 5: Port 5
	10: X100, 11: X101, 12: X102, 13: X103, 14: X104, 15: X105
	20: X200, 21: X201, 22: X202, 23: X203
	50: X500, 51: X501, 52: X502, 53: X503, 54: X504, 55: X505
Remedy:	Output the fault value and remove the specified connection.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

F01380	Topology: Actual topology EEPROM defective
Message value:	Preliminary component number: \%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	When detecting the actual topology, a component with a defective EEPROM was detected. Fault value (r0949, interpret hexadecimal): bbbbaaaa hex: $\mathrm{bbbb}=$ reserved aaaa $=$ preliminary component number of the defective components

Remedy: Output the fault value and remove the defected component.

A01381	Topology: power unit incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a power unit in the actual topology that has been incorrectly inserted. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: $\mathrm{dd}=$ connection number (\%4) cc = component number (\%3) bb = component class (\% 2) aa = component number of the incorrectly inserted component (\% 1) Note: The component is described in dd, cc and bb, where the component involved is incorrectly inserted. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies: - insert the components involved at the right connection (correct the actual topology). - adapt the project/parameterizing in the commissioning tool (correct the target topology). - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01381	Topology: Motor Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Motor Module in the actual topology that has been incorrectly inserted with respect to the target technology. Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: $\mathrm{dd}=$ connection number (\%4) cc = component number (\%3) bb = component class (\% 2) $\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1) Note: The component is described in dd, cc and bb, where the component involved is incorrectly inserted. Component class and connection number are described in F01375. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies: - insert the components involved at the right connection (correct the actual topology). - adapt the project/parameterizing in the commissioning tool (correct the target topology). - automatically remove the topology error (p9904). Note: Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01382	Topology: Sensor Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Sensor Module in the actual topology that has been incorrectly inserted with respect to the target technology.
	Alarm value (r 2124 , interpret hexadecimal): ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd , cc and bb , where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01383	Topology: Terminal Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module in the actual topology that has been incorrectly inserted with respect to the target technology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01384	Topology: DRIVE-CLiQ Hub Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been incorrectly inserted with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01385	Topology: Controller Extension incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been incorrectly inserted with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01386	Topology: DRIVE-CLiQ component incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been incorrectly
inserted with respect to the target topology.	
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	aa = component number of the incorrectly inserted component (\% 1)

A01416	Topology: Component additionally inserted
Message value:	\%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has found a component in the actual topology which is not specified in the target topology.
	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex:
	dd = component class (\% 2)
	cc = connection number (\%4)
	$\mathrm{bb}=$ component class of the additional component (\%1)
	$\mathrm{aa}=$ component number (\%3)
	Note:
	The component class of the additional component is contained in bb .
	The component is described in dd, cc and aa, where the additional component is inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- remove the additional component (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01420	Topology: Component different
Message value:	Component: \%1, target: \%2, actual: \%3, difference: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual topology and target topologies in the electronic rating plate.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex: aa = component number (\% $\%$), bb = component class of the target topology ($\% 2$), cc = component class of the actual topology (\%3), dd = difference (\%4)
	$\mathrm{dd}=01$ hex $=1 \mathrm{dec}$:
	Different component type.
	$\mathrm{dd}=02 \mathrm{hex}=2 \mathrm{dec}$:
	Different article number.
	$\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}$:
	Different manufacturer.
	For a multi-component slave, the incorrect subcomponent (index) is connected (e.g. Double Motor Module X201 instead of X 200) - or only a part of a multi-component slave is set to "deactivate and not available". $\mathrm{dd}=05 \mathrm{hex}=5 \mathrm{dec}:$
	NX10 or NX15 used instead of CX32.
	dd = 06 hex = 6 dec:
	NX10 or NX15 used instead of CX32.
	$\mathrm{dd}=07 \mathrm{hex}=7 \mathrm{dec}$:
	Different number of connections.
	Note:
	The component class is described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

4.2 List of faults and alarms

Remedy: \quad Adapting topologies: \begin{tabular}{l}

- connect the expected component (correct the actual topology).

- adapt the project/parameterizing in the commissioning tool (correct the target topology).

Topology comparison - if required, adapt the comparison level:

- parameterize the topology comparison of all components (p9906).

- parameterize the topology comparison of one components (p9907, p9908).

Note:

Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability

(e.g. setpoint/actual value comparison).
\end{tabular}

A01425

Message value: Component: \%1, \%2, differences: \%3
Topology: Serial number different

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
All objects
Component: None Propagation: LOCAL

Reaction:

Acknowledge:

NONE
NONE
Cause:

Remedy:

Note:

The topology comparison has detected differences in the actual and target topologies in relation to one component The serial number is different.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd $=$ reserved
$\mathrm{cc}=$ number of differences (\%3)
bb = component class (\% 2)
$\mathrm{aa}=$ component number (\%1)

The component class is described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Adapting topologies:

- change over the actual topology to match the target topology
- load the target topology that matches the actual topology (commissioning tool).

For byte cc:
cc = 1 --> can be acknowledged using p9904 or p9905.
cc > 1 --> can be acknowledged using p9905 and can be deactivated using p9906 or p9907/p9908.
Note:
Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

See also: p9904 (Topology comparison acknowledge differences), p9905 (Device specialization), p9906 (Topology comparison all components comparison level), p9907 (Topology comparison component number), p9908 (Topology comparison of a component comparison level)

A01428	Topology: Incorrect connection used		
Message value:	Component: \%1, \%2, connection (actual): \%3, connection (target): \%4		
Message class:	Error in the parameterization / configuration / commissioning procedure (18)		
Drive object:	All objects		
Component:	None		
Reaction:	NONE		
Acknowledge:	NONE		

4.2 List of faults and alarms

Cause:
The topology comparison has detected differences in the actual and target topologies in relation to one component.
For a component, another connection was used.
The different connections of a component are described in the alarm value.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number of the target topology (\%4)
cc = connection number of the actual topology (\%3)
bb = component class (\% 2)

aa = component number (\%1)

Note:
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: \quad Adapting topologies:

- reinsert the DRIVE-CLiQ cable to the component (correct the actual topology).
- adapt the project/parameterizing in the commissioning tool (correct the target topology).
- automatically remove the topology error (p9904).
Note:
Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability
(e.g. setpoint/actual value comparison).
See also: p9904 (Topology comparison acknowledge differences)

F01451

Message value:
Topology: Target topology is invalid

Message class:

\%1

Drive object:
Component:
Reaction:
Acknowledge:
Error in the parameterization / configuration / commissioning procedure (18)
All objects

NONE

Cause: An error was detected in the target topology.
The target topology is invalid.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex: $\operatorname{cccc}=$ index error, $\mathrm{bb}=$ component number, $\mathrm{aa}=$ fault cause
aa $=1 \mathrm{~B}$ hex $=27$ dec: Error not specified.
aa $=1 \mathrm{C}$ hex $=28$ dec: Value illegal.
aa $=1 \mathrm{D}$ hex $=29 \mathrm{dec}$: Incorrect ID.
$a a=1 E$ hex $=30$ dec: Incorrect ID length.
aa $=1 \mathrm{~F}$ hex $=31 \mathrm{dec}$: Too few indices left.
aa $=20$ hex $=32$ dec: component not connected to Control Unit.
Remedy: Download the target topology again using the commissioning tool.

A01481 (N)	Topology: power unit not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	The topology comparison has detected a power unit that is missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01481 (N)	Topology: Motor Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Motor Module that is missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A01482	Topology: Sensor Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Sensor Module that is missing in the actual topology with respect to the
target topology.	
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)

4.2 List of faults and alarms

Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01484	Topology: DRIVE-CLiQ Hub Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01485

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

Topology: Controller Extension not connected
Component: \%1, to \%2, \%3, connection: \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None Propagation: LOCAL
NONE
NONE

Cause:	The topology comparison has detected a Control Extension (CX32) missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01486	Topology: DRIVE-CLiQ component not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01487	Topology: Option slot component not inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an option slot component missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01489	Topology: motor with DRIVE-CLiQ not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a motor with DRIVE-CLiQ missing in the actual topology with respect to the
	target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.

Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01507 (F, N)	BICO: Interconnections to inactive objects present
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	There are BICO interconnections to an inactive/inoperable drive object.
	The BI/CI parameters involved are listed in r9498.
	The associated BO/CO parameters are listed in r9499.
	The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the deactivated drive
	object.
	Note:
	r9498 and r9499 are only written to, if p9495 is not set to 0.
	Alarm value (r2124, interpret decimal):
	Number of BICO interconnections found to inactive drive objects.
Remedy:	- set all open BICO interconnections centrally to the factory setting with p9495 = 2.
	- make the non-operational drive object active/operational again (re-insert or activate components).
Reaction upon $\mathrm{F}:$	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A01508
 Message value:

BICO: Interconnections to inactive objects exceeded

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: BICO

Reaction:

Cause: The maximum number of BICO interconnections (signal sinks) when deactivating a drive object was exceeded. When deactivating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters:

- r9498[0...29]: List of the BI/Cl parameters involved.
- r9499[0...29]: List of the associated BO/CO parameters.

Remedy:

Not necessary.
This alarm is automatically withdrawn as soon as no BICO interconnection is entered in r9498[29] and r9499[29] (value = 0).
Notice
When re-activating the drive object, all BICO interconnections should be checked and if required, re-established.

F01510	BICO: Signal source is not float type
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established. Fault value (r0949, interpret decimal):
	Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.
F01511 (A)	BICO: Interconnection with different scalings
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	- the BICO output has different normalized units than the BICO input.
	- message only for interconnections within a drive object.
	Example:
	The BICO output has, as normalized unit, voltage and the BICO input has current.
	This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01512	BICO: No scaling available
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist.
	Fault value (r0949, interpret decimal):
	Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.
F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different. Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input.
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
A01514 (F)	BICO: Error when writing during a reconnect
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.
Remedy:	If required, return the master control and repeat the operation.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A01590 (F)	Drive: Motor maintenance interval expired
Message value:	Fault cause: \%1 bin
Message class:	General drive fault (19)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal):
	Motor data set number.
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01800	DRIVE-CLiQ: Hardware/configuration error
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A DRIVE-CLiQ connection fault has occurred.
	Fault value (r0949, interpret decimal):
	$100 . . .107:$
	Communication via DRIVE-CLiQ socket X100 ... X107 has not been switched to cyclic operation. The cause may be an incorrect structure or a configuration that results in an impossible bus timing. 10:
	Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication. 11:
	Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication. 12:
	A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication.
Remedy:	For fault value = $100 \ldots$ 107:
	- ensure that the DRIVE-CLiQ components have the same firmware versions.
	- avoid longer topologies for short current controller sampling times.
	For fault value = 10:
	- check the DRIVE-CLiQ cables at the Control Unit.
	- remove any short-circuit for motors with DRIVE-CLiQ.
	- carry out a POWER ON.
	For fault value = 11:
	- check the electrical cabinet design and cable routing for EMC compliance
	For fault value = 12:
	- replace the component involved.

A01839

Message value: Component number: \%1
Message class: General drive fault (19)
Drive object: All objects
Component: Control Unit (CU) Propagation: GLOBAL
Reaction:
NONE
Acknowledge: NONE

4.2 List of faults and alarms

Cause:	The fault counter (r9936[0..199]) to monitor the DRIVE-CLiQ connections/cables has been incremented.
Alarm value (r2124, interpret decimal):	
Component number.	
Note:	
The component number specifies the component whose feeder cable from the direction of the Control Unit is faulted.	
The alarm automatically disappears after 5 seconds, assuming that no other data transfer error has occurred.	
See also: r9936 (DRIVE-CLiQ diagnostic error counter connection)	
Remedy:	- check the corresponding DRIVE-CLiQ cables.
- check the electrical cabinet design and cable routing for EMC compliance	

A01900 (F)	PB/PN: Configuration telegram error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	1:
	Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2 :
	Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.
	3:
	Uneven number of bytes for input or output.
	4:
	Setting data for synchronization not accepted. For more information, see A01902.
	211:
	Unknown parameterizing block.
	223:
	Clock synchronization for the PZD interface set in p8815[0] is not permissible.
	More than one PZD interface is operated in clock synchronism.
	253:
	PN Shared Device: lllegal mixed configuration of PROFIsafe and PZD.
	254:
	PN Shared Device: Illegal double assignment of a slot/subslot.
	255:
	PN: Configured drive object and existing drive object do not match.
	256:
	PN: configured telegram cannot be set.
	500:
	Illegal PROFIsafe configuration for the interface set in p8815[1].
	More than one PZD interface is operated with PROFIsafe.
	501:
	PROFIsafe parameter error (e.g. F_dest).
	502:
	PROFIsafe telegram does not match.
	503:
	PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).
	Additional values:
	Only for internal Siemens troubleshooting.

4.2 List of faults and alarms

Remedy:	Check the bus configuration on the master and the slave sides.
	For alarm value $=1,2$:
	- check the list of the drive objects with process data exchange (p0978).
	Note:
	With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	For alarm value $=2$:
	- check the number of data words for output and input to a drive object.
	For alarm value $=211$:
	- Ensure offline version <= online version.
	For alarm value $=223,500$:
	- check the setting in p8839 and p8815.
	- check for inserted but not configured CBE20.
	- ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe.
	For alarm value $=255$:
	- check configured drive objects.
	For alarm value = 256:
	- check the configured telegram.
	For alarm value $=501$:
	- check the set PROFIsafe address (p9610).
	For alarm value $=502$:
	- check the set PROFIsafe telegram (p60022, p9611).
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A01902	PB/PN: clock cycle synchronous operation parameterization not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Parameterization for isochronous operation is not permissible.
	Alarm value (r2124, interpret decimal):
	0 : Bus cycle time Tdp $<0.5 \mathrm{~ms}$.
	1: Bus cycle time Tdp > 32 ms .
	2: Bus cycle time Tdp is not an integer multiple of the current controller sampling time.
	3: Instant of the actual value sensing $\mathrm{Ti}>$ Bus cycle time Tdp or $\mathrm{Ti}=0$.
	4: Instant of the actual value sensing Ti is not an integer multiple of the current controller sampling time.
	5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To = 0 .
	6: Instant of the setpoint acceptance To is not an integer multiple of the current controller sampling time.
	7: Master application cycle time Tmapc is not an integer multiple of the speed controller sampling time.
	8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller sampling times.
	10: Instant of the setpoint acceptance To <= data exchange time Tdx + current controller sampling time
	11: Master application cycle time Tmapc $>14 \times$ Tdp or Tmapc $=0$.
	12: PLL tolerance window Tpll_w > Tpll_w_max.
	13: Bus cycle time Tdp is not a multiple of all basic clock cycles p0110[x].
	16: For COMM BOARD, the instant in time for the actual value sensing Ti is less than two current controller sampling times.
Remedy:	- Adapt the bus parameterization Tdp, Ti, To.
	- adapt the sampling time for the current controller or speed controller.
	For alarm value = 10:
	- reduce Tdx by using fewer bus participants or shorter telegrams.
	Note:
	PB: PROFIBUS
	PN: PROFINET

F01910 (N, A)	Fieldbus: setpoint timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface (onboard, PROFIBUS/PROFINET/USS) has been interrupted.
	- bus connection interrupted.
	- controller switched off.

Reaction upon A : Acknowl. upon A :	NONE NONE
A01920 (F)	PROFIBUS: Interruption cyclic connection
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode. Note:
	If there is no communication to a higher-level control system, then p2030 should be set $=0$ to suppress this message.
	See also: p2030 (Field bus interface protocol selection)
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A01921 (F)	PROFIBUS: Receive setpoints after To
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle. Remedy: - check bus configuration. - check parameters for clock cycle synchronization (ensure To > Tdx). Note: To: Time of setpoint acceptance Tdx: Data exchange time Reaction upon F: NONE (OFF1) Acknowl. upon F: IMMEDIATELY	

A01925 (F)	Modbus TCP: connection interrupted
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Ethernet connection to the Modbus controller is interrupted.
Remedy:	- establish an Ethernet connection.
	- activate the Modbus controller.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY

A01930	PB/PN: current controller sampling time clock cycle synch. not equal	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE		

4.2 List of faults and alarms

Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received. Remedy: Check the master application and bus configuration. Note: PB: PROFIBUS PN: PROFINET
A01943	PB/PN: clock cycle signal error when establishing bus communication
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing
telegram.	
The global control telegram for synchronization is being irregularly received.	
-.the master is sending an irregular global control telegram.	
- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the	

A01945

Message value:

PROFIBUS: Connection to the Publisher failed

Message class:

Fault cause: \%1 bin

Drive object: Communication error to the higher-level control system (9)

Component: All objects

Reaction:
Acknowledge:
None Propagation: LOCAL

NONE

Cause: \quad For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed. Alarm value (r2124, interpret binary): Bit $0=1$: Publisher with address in r 2077 [0], connection failed.

Bit $15=1$: Publisher with address in r 2077 [15], connection failed.

Remedy:

- check the PROFIBUS cables.
- carry out a first commissioning of the Publisher that has the failed connection.

See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
F01946 (A) PROFIBUS: Connection to the Publisher aborted

Message value: Fault cause: \%1 bin
Message class: Communication error to the higher-level control system (9)
Drive object:
Component: All objects

Reaction:
None
Propagation: LOCAL

Acknowledge:

Cause:
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY (POWER ON)
At this drive object, the connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
Fault value (r0949, interpret binary):
Bit $0=1$: Publisher with address in r2077[0], connection aborted.

Bit $15=1$: Publisher with address in r2077[15], connection aborted.

Remedy:	- check the PROFIBUS cables. - check the state of the Publisher that has the aborted connection. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01950 (N, A)	PB/PN: clock cycle synchronous operation synchronization unsuccessful
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	OFF1 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.
Remedy:	Only for internal Siemens troubleshooting.
	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01951	CU SYNC: Synchronization application clock cycle missing
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	If DRIVE-CLiQ components with different application clock cycle are operated on a DRIVE-CLiQ port, this requires synchronization with the Control Unit. This synchronization routine was unsuccessful.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade the software of the DRIVE-CLiQ components.
	- upgrade the Control Unit software.
	Note:
	If a Controller Extension is being used (e.g. CX32, NX10), then the following applies:
	Check whether the Controller Extension is issuing error messages, and if required, remove these.
F01952	CU DRIVE-CLiQ: Synchronization of component not supported
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: DRIVE
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle.
	However, not all DRIVE-CLiQ components have this functionality.
	Fault value (r0949, interpret decimal):
	Component number of the first faulty DRIVE-CLiQ component.

Remedy:
Upgrade the firmware of the component specified in the fault value.
Note:
If required, also upgrade additional components in the DRIVE-CLiQ line.

A01953	CU SYNC: Synchronization not completed
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is switched on, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
	Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. Remedy:
	Carry out a POWER ON (switch-off/switch-on) for all components. If the error occurs after the drive sampling times were changed, and if a Terminal Module 31 (TM31) is being used, the sampling times (p0115, p4099) should be set as integer multiples to the drive clock cycles (p0115).

F01954

Message value:

Message class:

Drive object:

Component:
Reaction:
Acknowledge:
Cause:

Remedy:

```
CU DRIVE-CLiQ: Synchronization unsuccessful
%1
Internal (DRIVE-CLiQ) communication error (12)
All objects
None Propagation: LOCAL
                OFF2
                IMMEDIATELY (POWER ON)
                Synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and
                was not able to be successfully completed (e.g. after switch-on).
                Fault value (r0949, interpret decimal):
                Only for internal Siemens troubleshooting.
                    1. Remove the cause of a possible DRIVE-CLiQ fault.
                    2. Initiate a new synchronization, e.g. as follows:
                            - remove the PROFIBUS master and re-insert again.
                            - restart the PROFIBUS master.
                            - switch off the Control Unit and switch on again.
                            - carry out a Control Unit hardware reset (RESET button, p0972).
                            - carry out a parameter reset and download the saved parameters (p0009 = 30, p0976 = 2, 3).
```

A01955
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

CU DRIVE-CLiQ: Synchronization DO not completed

\%1

Internal (DRIVE-CLiQ) communication error (12)
All objects
None Propagation: LOCAL

NONE
NONE
After the drive system is switched on, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Carry out a POWER ON (switch-off/switch-on) for all components of the DO.

A01970	CBE25: cyclic connection interrupted
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFINET controller is interrupted.
Remedy:	Establish the PROFINET connection and activate the PROFINET controller in the cyclic mode.
A01971	CBE2x: maximum number of controllers exceeded
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection to the drive, and as a consequence exceeds the permitted number of PROFINET connections.
	The alarm disappears automatically after approx. 30 seconds.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info $1=0$: number of RT connections exceeded
	Info $1>0$: number of IRT connections exceeded
	Info 2: permitted number of connections
Remedy:	Check the configuration of the PROFINET controllers.
A01979	CBE2x: internal error for cyclic data transfer
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual values and/or setpoints were not transferred within the specified times.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Correctly set T_io_input or T_io_output.
A01990 (F)	USS: PZD configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the process data (PZD) for the USS protocol is incorrect.
	Alarm value (r2124, interpret decimal):
	2: PZD amount (p2022) too great for the first drive object (p978[0]).
	The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.
Remedy:	For alarm value $=2$:
	Check the amount of USS PZD (p2022) and the maximum PZD amount (r2050/p2051) for the first drive object (p0978[0]).
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A02000	Function generator: Start not possible	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The function generator has already been started.	
Remedy:	Stop the function generator and restart again if necessary.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4800 (Function generator control)	

A02005	Function generator: Drive does not exist	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The drive object specified for connection does not exist.	
Remedy:	Use the existing drive object with the corresponding number.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	

| A02006 | Function generator: No drive specified for connection | |
| :--- | :--- | :--- | :--- |
| Message value: | - | |
| Message class: | Error in the parameterization / configuration / commissioning procedure (18) | |
| Drive object: | All objects | |
| Component: | None | |
| Reaction: | NONE | |
| Acknowledge: | NONE | |
| Cause: | No drive specified for connection in p4815. | |
| Remedy: | At least one drive to be connected must be specified in p4815. | |
| | Note: | |
| | The alarm is reset as follows: | |
| | - remove the cause of this alarm. | |
| | - restart the function generator. | |

A02007	Function generator: Drive not SERVO / VECTOR / DC_CTRL	
Message value:	$\% 1$	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: NONE\quad Propagation:		
Acknowledge:	NONE	
Cause:	The drive object specified for connection is not a SERVO / VECTOR or DC_CTRL.	

Remedy:	Use a SERVO / VECTOR / DC_CTRL drive object with the corresponding number.
Note:	
The alarm is reset as follows:	
- remove the cause of this alarm.	
- restart the function generator.	

A02008	Function generator: Drive specified a multiple number of times
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is already specified.
	Alarm value (r2124, interpret decimal):
	Drive object number of the drive object that is specified a multiple number of times.
Remedy:	Specify a different drive object.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.

A02009	Function generator: Illegal mode
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The set operating mode (p1300) of the drive object is not permissible when using the function generator.
	Alarm value (r2124, interpret decimal):
	Number of the drive object involved.
Remedy:	Change the operating mode for this drive object to p1300 $=20$ (encoderless speed control) or p1300 $=21$ (speed control with encoder).
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.

A02010	Function generator: Speed setpoint from the drive is not zero
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226. Remedy: For all of the drives specified for connection, set the speed setpoints to zero. Note: The alarm is reset as follows: - remove the cause of this alarm. - restart the function generator.	

A02011	Function generator: The actual drive speed is not zero
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Remedy:	Set the relevant drives to zero speed before starting the function generator.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.

A02015	Function generator: Drive enable signals missing	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The master control and/or enable signals are missing to connect to the specified drive.	
Remedy:	Fetch the master control to the specified drive object and set all enable signals.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	

A02016	Function generator: Magnetizing running	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Magnetizing has not yet been completed on a drive object specified for connection.	
	Alarm value (r2124, interpret decimal):	
	Number of the drive object involved.	
	Wait for magnetizing of the motor (r0056.4).	
	Note:	
	The alarm is reset as follows:	
	- restart the function generator.	
	See also: r0056 (Status word, closed-loop control)	

A02020	Function generator: Parameter cannot be changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	This parameter setting cannot be changed when the function generator is active ($\mathrm{p} 4800=1$) .
	See also: p4810, p4812, p4813, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829

Remedy: \quad - stop the function generator before parameterizing $(p 4800=0)$.

A02025	Function generator: Period too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE Propagation:
Acknowledge:	NONE
Cause:	The value for the period is too short.
	See also: p4821 (Function generator period)
Remedy:	Check and adapt the value for the period.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4821 (Function generator period)

A02026	Function generator: Pulse width too high
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pulse width is too high.
	The pulse width must be less than the period duration.
	See also: p4822 (Function generator pulse width)
	Reduce pulse width.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4821 (Function generator period), p4822 (Function generator pulse width)

A02030	Function generator: Physical address equals zero	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The specified physical address is zero. See also: p4812 (Function generator physical address).		

4.2 List of faults and alarms

Remedy: \quad Set a physical address with a value other than zero. \quad Note: \quad The alarm is reset as follows: \quad - remove the cause of this alarm. \quad - restart the function generator. \quad See also: p4812 (Function generator physical address)

A02040	Function generator: Illegal value for offset
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit.
	See also: p4826 (Function generator offset)
Remedy:	Adjust the offset value accordingly.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator
upper limit)	

A02041

Function generator: Illegal value for bandwidth

Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: BICO

Reaction:
Acknowledge:
Cause:

Remedy: Check the value for the bandwidth and adapt accordingly
Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator.

A02047	Function generator: Time slice clock cycle invalid		
Message value:	-		
Message class:	Error in the parameterization / configuration / commissioning procedure (18)		
Drive object:	All objects		
Component:	None	Propagation:	BICO
Reaction:	NONE		
Acknowledge:	NONE		

Cause:	The time slice clock cycle selected does not match any of the existing time slices.
Remedy:	See also: p4830 (Function generator time slice cycle)
	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
	Note:
The alarm is reset as follows:	
	- remove the cause of this alarm.
- restart the function generator.	
See also: r7901 (Sampling times)	

A02050	Trace: Start not possible	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The trace has already been started. See also: p4700 (Trace control) Remedy: Stop the trace and, if necessary, start again.		

A02051	Trace: recording not possible as a result of know-how protection
Message value:	initiating recorder: \%1, parameter \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection. Brer	

 Alarm value (r2124, interpret hexadecimal):
 bbbbaaaa hex:
 aaaa \(=1\) : recorder 0
 aaaa \(=2\) : recorder 1
 aaaa \(=3\) : recorders 0 and 1
 \(\mathrm{bbbb}=\) parameter number (hexadecimal), that was not able to be written to.
 See also: p4700, p4711, p4730, p4731, p4732, p4733, p4734, p4735, p4736, p4737
 Remedy: - Temporarily activate or deactivate know-how protection (p7766).
- include the signal in the OEM exception list (p7763, p7764).
- Where relevant do not record the signal.
See also: p7763 (KHP OEM exception list number of indices for p7764), p7764 (KHP OEM exception list)

A02055	Trace: Recording time too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The trace duration is too short. The minimum is twice the value of the trace clock cycle. See also: p4721 (Trace recording time) Remedy: Check the selected recording time and, if necessary, adjust.	

A02056	Trace: Recording cycle too short	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The selected recording cycle is shorter than the selected basic clock cycle 0 (p0110[0]).	
	See also: p4720 (Trace recording cycle) Remedy:	Increase the value for the trace cycle.

A02057	Trace: Time slice clock cycle invalid	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The time slice clock cycle selected does not match any of the existing time slices.	
	See also: p4723 (Trace time slice cycle)	
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.	
	See also: r7901 (Sampling times)	

A02058	Trace: Time slice clock cycle for endless trace not valid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
	See also: p4723 (Trace time slice cycle)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02059	Trace: Time slice clock cycle for 2×8 recording channels not valid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels. See also: p4723 (Trace time slice cycle)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels to 4 per trace. The existing time slices can be read out via p7901. See also: r7901 (Sampling times)

A02060	Trace: Signal to be traced missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a signal to be traced was not specified.
	- the specified signals are not valid.
	See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy:	- specify the signal to be traced.
	- check whether the relevant signal can be traced.

A02061	Trace: Invalid signal
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150, TM15DI_DO, TM31 \quad Propagation: BICO
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist.
	- the specified signal can no longer be traced (recorded).
	See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3) - - specify the signal to be traced. - check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	- a trigger signal was not specified.	
	- the specified signal does not exist.	
	- the specified signal is not a fixed-point signal.	
	- the specified signal cannot be used as a trigger signal for the trace.	
	See also: p4711 (Trace trigger signal) Specify a valid trigger signal.	
Remedy:		

A02063	Trace: Invalid data type	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The specified data type to select a signal using a physical address is invalid. See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)	
Remedy:	Use a valid data type.	

A02070	Trace: Parameter cannot be changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.
	See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, p4733, p4780, p4781, p4782, p4783, p4789, p4795
Remedy:	- stop the trace before parameterization.
	- if required, start the trace.

A02075	Trace: Pretrigger time too long		
Message value:	-		
Message class:	Error in the parameterization / configuration / commissioning procedure (18)		
Drive object:	All objects	Propagation:	
Component:	None		
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	The selected pretrigger time must be shorter than the trace time.		
	See also: p4721 (Trace recording time), p4722 (Trace trigger delay)		
Remedy:	Check the pretrigger time setting and change if necessary.		

F02080 Trace: Parameterization deleted due to unit changeover

Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: LOCAL
Reaction: NONE

Acknowledge: IMMEDIATELY

Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference
Remedy:	perameters.

A02095	MTrace 0: multiple trace cannot be activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None \quad Propagation: \quad LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[0] = 0).
	- deactivate function or setting that is not permissible
	See also: p4840 (MTrace cycle number setting)

A02096	MTrace 0: cannot be saved
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge: NONE Cause: It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0). A multiple trace is not started or is canceled. Alarm value (r2124, interpret decimal): 1: Memory card cannot be accessed. - card is not inserted or is blocked by a mounted USB drive. 3: data save operation to slow. - a second trace has been completed before the measurement results of the first trace were able to be saved. - writing the measurement result files to the card is blocked by the parameter save. 4: Data save operation canceled. - for instance, the file required for the data save operation was not able to be found. See also: p4840 (MTrace cycle number setting) - insert or remove the memory card. - use a larger memory card. - configure a longer trace time or use an endless trace. - avoid saving parameters while a multiple trace is running. - check whether other functions are presently accessing measurement result files.	

A02097	MTrace 1: multiple trace cannot be activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1): - measuring function - long-time trace - trigger condition "immediate recording start" (IMMEDIATE) - trigger condition "start with function generator" (FG_START) - if required, deactivate the multiple trace (p4840[1] = 0). Remedy: - deactivate function or setting that is not permissible See also: p4840 (MTrace cycle number setting)	

A02098

Message value: $\%$
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: LOCAL
Reaction: NONE
Acknowledge: NONE

4.2 List of faults and alarms

Cause:
It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
A multiple trace is not started or is canceled.
Alarm value (r2124, interpret decimal):
1: Memory card cannot be accessed.

- card is not inserted or is blocked by a mounted USB drive.
3: data save operation to slow.
- a second trace has been completed before the measurement results of the first trace were able to be saved.
- writing the measurement result files to the card is blocked by the parameter save.
4: Data save operation canceled.
- for instance, the file required for the data save operation was not able to be found.

Semedy: \quad\begin{tabular}{l}

- insert or remove the memory card.

- use a larger memory card.

- configure a longer trace time or use an endless trace.

- avoid saving parameters while a multiple trace is running.

- check whether other functions are presently accessing measurement result files.
\end{tabular}

A02099	Trace: Insufficient Control Unit memory
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The memory space still available on the Control Unit is no longer sufficient for the trace function. Remedy: Reduce the memory required, e.g. as follows: - reduce the trace time. - increase the trace clock cycle. - reduce the number of signals to be traced. See also: r4708 (Trace memory space required), r4799 (Trace memory location free)	

A02100	Drive: Computing dead time current controller too short
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability.
	Possible causes:
	- a parameter backup with a version higher than 4.3 was loaded to a version less than or equal to 4.3.
	- the system properties after replacing a component no longer match the parameter assignment.
	Alarm value (r2134, floating point):
	Minimum value for p0118 where dead time no longer occurs.
	- set p0118 to zero.
Remedy:	- set p0118 to a value greater than or equal to the alarm value (for p1810.11 = 1)
	- set p0117 (from the device) to an automatic setting (p0117 = 1).
	- check the firmware versions of the components involved.

$\overline{\text { A02150 }}$	TEC: Technology Extension cannot be loaded
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load a Technology Extension.
	Alarm value (r2124, interpret hexadecimal):
	10 hex (16 dec):
	The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded. 12 hex (18 dec):
	A technology package was not able to be downloaded to a Control Unit because the warm restart necessary was not able to be performed.
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a warm restart (p0009 = 30, p0976 = 2, 3).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	For alarm value = 10 hex (16 dec):
	Load a compatible DCB user library (compatible to the interface of the DCC standard library).
	For alarm value $=12$ hex (18 dec):
	Carry out a POWER ON (switch-off/switch-on) for all components.
	Note:
	DCB: Drive Control Block
	DCC: Drive Control Chart
	TEC: Technology Extension
	See also: r4950, r4955, p4956, r4957
F02151 (A)	TEC: internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within a Technology Extension.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
	Note:
	TEC: Technology Extension
	See also: r4950, r4955, p4956, r4957
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F02152 (A)	TEC: insufficient memory
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, Technology Extensions, blocks, etc).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, Technology Extensions, blocks, etc).
	- use an additional Control Unit.
	Note:
	TEC: Technology Extension
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F02153	TEC: technology function does not exist
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A technology function (e.g. Technology Extension, DCB library) does not exist on the drive device.
	When configuring, a technology function is activated, which does not exist on the drive device. This can occur when downloading a project or when powering up.
Remedy:	- load the required technology function to the drive device.
	- if required, deactivate the technology function not required in the configuration.
	Note:
	DCB: Drive Control Block
	TEC: Technology Extension
F03000	NVRAM fault on action
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault occurred during execution of action p7770 $=1$ or 2 for the NVRAM data.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: yy = fault cause, $\mathrm{xx}=$ application ID
	yy = 1:
	The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
	$y \mathrm{y}=2$:
	The data length of the specified application is not the same in the NVRAM and the backup.
	The data checksum in p7774 is not correct.
	yy $=4$:
	No data available to load.
	See also: p7770 (NVRAM action)

Remedy:	- Perform the remedy according to the results of the troubleshooting.
	- if necessary, start the action again.
F03001	NVRAM checksum incorrect
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object: All objects Component: Control Unit (CU) Reaction: NONE Acknowledge: IMMEDIATELY Cause: A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit. The NVRAM data affected was deleted. Remedy: Carry out a POWER ON (switch-off/switch-on) for all components.	

F03500 (A)	TM: Initialization
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred.
	Fault value (r0949, interpret decimal):
	yxxx dex
	$y=$ Only for internal Siemens troubleshooting
	xxx = component number (p0151)
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ connection.
	- if required, replace the Terminal Module.
	The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit.
	If the fault occurs again, replace the Terminal Module.
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A03501	TM: Sampling time change
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The sampling times of the inputs/outputs were changed.
	This change only becomes valid after the next boot.
Remedy:	Carry out a POWER ON.

F03505 (N, A) Analog input wire breakage
Message value: \%1

Message class: External measured value / signal state outside the permissible range (16)
Drive object: CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, TM150
Component: Terminal Module (TM) Propagation: BICO
Reaction:
Acknowledge:
NONE
IMMEDIATELY (POWER ON)

4.2 List of faults and alarms

Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
	Index $x=0$: Analog input 0 (X521.1/X521.2)
	Index $x=1$: Analog input 1 (X521.3/X521.4)
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=$ analog input (0 = analog input 0 (AI 0), 1 = analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored (+4 ... +20 mA)
Remedy:	- check the wiring for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ($+4 \ldots+20 \mathrm{~mA}$)) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F03505 (N, A) Analog input wire breakage

Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Terminal Module (TM) Propagation: BICO
Reaction:
Acknowledge: OFF1 (NONE, OFF2)
IMMEDIATELY (POWER ON)
Cause:
Remedy:
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F03505 (N, A)	TM: Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$. Index $\mathrm{x}=0$: Analog input 0 (X521.1/X521.2)
	Index $x=1$: Analog input 1 (X521.3/X521.4)
	Fault value (r0949, interpret decimal):
	$y \times x \times$ dec $y=$ analog input ($0=$ analog input 0 (AI 0$), 1=$ analog input 1 (Al 1))
	$\mathrm{xxx}=$ component number (p 0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active: $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ($+4 \ldots+20 \mathrm{~mA}$)

Remedy:	- check the wiring for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ($+4 \ldots+20 \mathrm{~mA}$)) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A03510 (F, N)	Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S, DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A03510 (F, N)	TM: Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.

4.2 List of faults and alarms

Remedy:	- switch-off/switch-on the power supply for the Control Unit. - check the DRIVE-CLiQ wiring. Note: If it reoccurs, then replace the module. In principle, operation could continue. The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A03550	TM: Speed setpoint filter natural frequency > Shannon frequency
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The natural filter frequency of the speed setpoint filter (p1417) is greater than or equal to the Shannon frequency. The Shannon frequency is calculated according to the following formula: $0.5 \text { / p4099[3] }$
Remedy:	Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).
F03590 (N, A)	TM: Module not ready
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Terminal Module involved does not send a ready signal and no valid cyclic data.
	Fault value (r0949, interpret decimal):
	Drive object number of the Terminal Module involved.
Remedy:	- check the 24 V power supply. - check the DRIVE-CLiQ wiring. - check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07082	Macro: Execution not possible
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary parameter number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex:
	$\operatorname{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p0700, p1000 (Macro Connector Inputs (CI) for speed setpoints), p1500 (Macro Connector Inputs (CI) for torque setpoints)
F07083	Macro: ACX file not found
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started.
	See also: p0015, p0700, p1000 (Macro Connector Inputs (Cl) for speed setpoints), p1500 (Macro Connector Inputs (CI) for torque setpoints)
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
	Example:
	If p0015 is set to 1501, then the selected ACX file must be located in the following directory: ... /PMACROS/DEVICE/P15/PM001501.ACX

F07084	Macro: Condition for WaitUntil not fulfilled
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.
F07085	Drive: Open-loop/closed-loop control parameters changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Open-loop/closed-loop control parameters have had to be changed.
	Possible causes:
	1. As a result of other parameters, they have exceeded the dynamic limits.
	2. They cannot be used due to the fact that the hardware detected not having certain features.
	3. The value is estimated as the thermal time constant is missing.
	4. Motor temperature model 1 is activated as thermal motor protection is missing.
	Fault value (r0949, interpret decimal):
	Changed parameter number.
	340:
	The motor and control parameters were automatically calculated ($\mathrm{p} 0340=1$), because the vector control was subsequently activated as configuration (r0108.2).
	611:
	The time constant for thermal motor model 1 was estimated.
	612:
	Thermal motor model 1 was activated ($00612.0=1$).
Remedy:	Not necessary.
	It is not necessary to change the parameters as they have already been correctly limited.

F07086	Units changeover: Parameter limit violation due to reference value change
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0596 (Technological unit reference quantity), p2000 (Reference speed), p2001 (Reference voltage), p2002 (Reference current), p2003 (Reference torque), r2004 (Reference power)

Remedy:	Check the adapted parameter value and if required correct. See also: r9450 (Reference value change parameter with unsuccessful calculation)
F07088	Units changeover: Parameter limit violation due to units changeover
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
	Fault value (r0949, interpret decimal):
	Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
	See also: p0595 (Technological unit selection)
Remedy:	Check the adapted parameter values and if required correct.
	See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over.
Remedy:	Restore units that have been changed over to the factory setting.
A07094	General parameter limit violation
Message value:	Parameter: \%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	As a result of the violation of a parameter limit, the parameter value was automatically corrected.
	Minimum limit violated --> parameter is set to the minimum value.
	Maximum limit violated --> parameter is set to the maximum value.
	Alarm value (r2124, interpret decimal):
	Parameter number, whose value had to be adapted.
Remedy:	Check the adapted parameter values and if required correct.
F07110	Drive: Sampling times and basic clock cycle do not match
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	The parameterized sampling times do not match the basic clock cycle.
Fault value (r0949, interpret decimal):	
The fault value specifies the parameter involved.	
See also: r0110, r0111, p0115	
Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112.	
Note which basic clock cycle is selected in p0111.	
The sampling times in p0115 can only be changed manually in the sampling times pre-setting "Expert" (p0112).	
See also: r0110, r0111, p0112, p0115	

A07200

Drive: Master control ON command present
Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: None Propagation: GLOBAL
Reaction:
NONE
Acknowledge: NONE
Cause: \quad The ON/OFF1 command is present (no 0 signal).
The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy: \quad Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0.

F07220 (N, A) Drive: Master control by PLC missing

Message value: -
Message class: \quad Communication error to the higher-level control system (9)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: None Propagation: GLOBAL
Reaction:

Acknowledge:

OFF1 (NONE, OFF2, OFF3, STOP2)
IMMEDIATELY
Cause:

Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be	
parameterized to NONE or the message type should be parameterized as alarm.	

A07350 (F)	Drive: Measuring probe parameterized to a digital output
Message value:	$\% 1$
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE

F07426 (A)	Technology controller actual value limited
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit. Fault value (r0949, interpret decimal): 1: upper limit reached. 2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268). - check the actual value normalization (p0595, p0596). - Deactivate evaluation of the limits (p2252.3) See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A07428 (N)	Technology controller parameterizing error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
	For alarm value =1:
Remedy:	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F07447	Load gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the load gear is configured, the drive/encoder (motor encoder) identifies a maximum possible absolute position actual value (r2723) that can no longer be represented within 32 bits.
	Maximum value: p0408 * p2721 * 2^p0419
	Fault value (r0949, interpret hexadecimal): ccbbaa hex
	aa = encoder data set
	$\mathrm{bb}=$ component number
	cc = drive data set
	See also: p0408 (Rotary encoder pulse number), p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear rotary absolute encoder revolutions virtual)
Remedy:	- reduce the fine resolution (p0419).
	- reduce the multiturn resolution (p2721).
	See also: p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear rotary absolute encoder revolutions virtual)
F07448 (A)	Load gear: Position tracking, linear axis has exceeded the maximum range
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1) has exceeded the maximum possible traversing range.
	For the configured linear axis, the maximum traversing range is defined to be $64 x(+/-32 x)$ of p0421. It should be read in p2721 and interpreted as the number of load revolutions.
	Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07449 (A)	Load gear: Position tracking actual position outside tolerance window
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

Cause:	When switched off, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r2724.
	See also: p2722 (Load gear position tracking tolerance window), r2724 (Load gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07500	Drive: Power unit data set PDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	TM150, TM15DI_DO, TM31
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Only for controlled line supply infeed/regenerative feedback units:
	The power unit data set was not configured - this means that a data set number was not entered into the drive data set.
	Fault value (r0949, interpret decimal):
	Drive data set number of p0185.
Remedy:	The index of the power unit data set associated with the drive data set should be entered into p0185.

F07501	Drive: Motor Data Set MDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects Component: None Reaction: OFF2 Acknowledge: IMMEDIATELY Cause: Only for power units: The motor data set was not configured - this means that a data set number was not entered into the associated drive data set. Fault value (r0949, interpret decimal): The fault value includes the drive data set number of p0186. Remedy: The index of the motor data set associated with the drive data set should be entered into p0186.	

F07502	Drive: Encoder Data Set EDS not configured	
Message value:	Drive data set: \%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object: All objects Component: None Reaction: OFF2 Acknowledge: IMMEDIATELY		

4.2 List of faults and alarms

Cause:	Only for power units:
	The encoder data set was not configured - this means that a data set number was not entered into the associated
drive data set.	
	Fault value (r0949, interpret decimal):
	The fault value includes the drive data set number of p0187, p0188 and p0189.
The fault value is increased by 100 * encoder number (e.g. for p0189: Fault value $3 x x$ with $x x=$ data set number).	
Remedy:	The index of the encoder data set associated with the drive data set should be entered into p0187 (1st encoder),
p0188 (2nd encoder) and p0189 (3rd encoder).	

A07504	Drive: Motor data set is not assigned to a drive data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A motor data set is not assigned to a drive object.
	All of the existing motor data sets in the drive data sets must be assigned using the MDS number (p0186[0...n]). There must be at least as many drive data sets as motor data sets. Alarm value (r2124, interpret decimal):
	Number of the motor data set that has not been assigned.
Remedy:	In the drive data sets, assign the non-assigned motor data set using the MDS number (p0186[0...n]). - check whether all of the motor data sets are assigned to drive data sets. - if required, delete superfluous motor data sets. - if required, set up new drive data sets and assign to the corresponding motor data sets.

F07509

Message value:
Message class:
Drive object:
Component: None Propagation: GLOBAL

Reaction:
Acknowledge:
Cause:

Drive: Component assignment missing
\%1
Error in the parameterization / configuration / commissioning procedure (18)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
None Propagation: GLOBAL
OFF2
IMMEDIATELY
A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number.
Fault value (r0949, interpret decimal):
nnmmmxxyyy
$n n$: Number of the MDS/EDS.
mmm: Parameter number of the missing component number.
xx: Number of the DDS that is assigned to the MDS/EDS.
yyy: Parameter number that references the MDS/EDS.
Example:
p0186[7] = 5: DDS 7 is assigned MDS 5.
$\mathrm{p} 0131[5]=0$: There is no component number set in MDS 5.
Alarm value $=0513107186$
Remedy: In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number.

See also: p0141 (Encoder interface (Sensor Module) component number), p0142 (Encoder component number), p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number)

F07510	Drive: Identical encoder in the drive data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together.
	Fault value (r0949, interpret decimal):
	1000 * first identical encoder + 100 * second identical encoder + drive data set.
	Example:
	Fault value $=1203$ means:
	In drive data set 3, the first (p0187[3]) and second encoder (p0188[3]) are identical.
Remedy:	Assign the drive data set to different encoders.
	See also: p0141 (Encoder interface (Sensor Module) component number), p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number)
F07511	Drive: Encoder used a multiple number of times
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3. This unique assignment has been violated.
	Fault value (r0949, interpret decimal):
	The two parameters in coded form, that refer to the same component number.
	First parameter:
	Index: First and second decimal place (99 for EDS, not assigned DDS)
	Parameter number: Third decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS not assigned DDS)
	Drive number: Fourth and fifth decimal place
	Second parameter:
	Index: Sixth and seventh decimal place (99 for EDS, not assigned DDS)
	Parameter number: Eighth decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS, not assigned DDS)
	Drive number: Ninth and tenth decimal place
	See also: p0141 (Encoder interface (Sensor Module) component number)
Remedy:	Correct the double use of a component number using the two parameters coded in the fault value.
F07512	Drive: Encoder data set changeover cannot be parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder data set changeover is only permitted for the components in the actual topology.
	Fault value (r0949, interpret decimal):
	Incorrect EDS data set number.
	See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number)
Remedy:	Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces (p0141) must have different values within a drive object.
	The following must apply:
	$\mathrm{p} 0141[0]$ not equal to p 0141 [1] not equal to ... not equal to p 0141 [n]

F07515	Drive: Power unit and motor incorrectly connected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A power unit (via PDSS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology. It is possible that a motor has not been assigned to the power unit (p0131).
	Fault value (r0949, interpret decimal): Number of the incorrectly parameterized drive data set.
	- assign the drive data set to a combination of motor and power unit permitted by the target topology.
	- adapt the target topology. - if required, for a missing motor, recreate the component (drive Wizard). See also: p0121 (Power unit component number)

F07516	Drive: Re-commission the data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The assignment between the drive data set and motor data set (p0186) or between the drive data set and the encoder data set was modified (p0187). This is the reason that the drive data set must re-commissioned.
	Fault value (r0949, interpret decimal):
	Drive data set to be re-commissioned. Remedy:
	Commission the drive data set specified in the fault value (r0949).

F07517	Drive: Encoder data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	In at least two drive data sets (DDS), the same motor data set (MDS) is assigned different encoder data sets (EDS)
	for the motor encoder. In various DDSs, it is not permissible for an MDS to have different motor encoders.
	The following parameterization therefore results results in an error:
	DDS0: p0186[0] = 0, p0187[0] = 0
	DDS1: p0186[1] = 0, p0187[1] = 1
	Fault value (r0949, interpret decimal):
Remedy:	The lower 16 bits indicate the first DDS. The upper 16 bits indicate the second DDS.
	Create two MDS with the same motor data in order to operate one motor with different motor encoders.
	Example:
	DDS0: $00186[0]=0, p 0187[0]=0$

F07518	Drive: Motor data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Cause:	The system has identified that two motor data sets were incorrectly parameterized.
Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the	
motor data sets are assigned different motors. p0827 is used to assign the motors and/contactors.	
It is not possible to toggle between motor data sets.	
Fault value (r0949, interpret hexadecimal):	
xxxxyyyy:	
xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS	
Remedy:	Correct the parameterization of the motor data sets.

A07530	Drive: Drive Data Set DDS not present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Component: None Reaction: NONE Acknowledge: NONE Cause: The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180 (Number of Drive Data Sets (DDS)), p0820 (Drive Data Set selection DDS bit 0), p0821 (Drive Data Set selection DDS bit 1), r0837 (Drive Data Set DDS selected) - select the existing drive data set. - set up additional drive data sets.	

A07531	Drive: Command Data Set CDS not present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available (p0836 > p0170). The command data set was not changed over. See also: p0810 (Command data set selection CDS bit 0), r0836 (Command Data Set CDS selected)
Remedy:	- select the existing command data set.
	- set up additional command data sets.

A07541	Drive: Data set changeover not possible
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set changeover and the assigned motor changeover are not possible and are not carried out.
	For synchronous motors, the motor contactor may only be switched for actual speeds less than the speed at the start of field weakening (r0063 < p0348).
	See also: r0063 (Speed actual value)
Remedy:	Reduce the speed to below the speed at the start of field weakening (r0063 < p0348).

A07550 (F,N)	Drive: Not possible to reset encoder parameters		
Message value:	$\% 1$		
Message class:	Hardware/software error (1)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	PLOBAL	
Component:	None		
Reaction:	NONE	NONE	

4.2 List of faults and alarms

Cause:	When carrying out a factory setting (e.g. using p0970 = 1), it was not possible to reset the encoder parameters. The encoder parameters are directly read out of the encoder via DRIVE-CLiQ. Alarm value (r2124, interpret decimal): Component number of the encoder involved.
Remedy:	- repeat the operation.
- check the DRIVE-CLiQ connection.	
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

F07551
 Drive encoder: No commutation angle information

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:
Fault cause: \%1, drive data set: \%2
Error in the parameterization / configuration / commissioning procedure (18)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Encoder 1 Propagation: GLOBAL OFF2 (IASC/DCBRK)
IMMEDIATELY (POWER ON)
The commutation angle information is missing. This means that synchronous motors cannot be controlled (closedloop control)
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = fault cause, xxxx = drive data set
yyyy = 1 dec:
The motor encoder used does not supply an absolute commutation angle.
yyyy $=2$ dec:
The selected ratio of the measuring gear does not match the motor pole pair number.
For fault cause $=1$:

- check the encoder parameterization (p0404).
- use an encoder with track C/D, EnDat interface of Hall sensors.
- use an encoder with sinusoidal A / B track for which the motor pole pair number (r0313) multiplied by the gear ratio ($\mathrm{p} 0432 / \mathrm{p} 0433$) is less than the encoder pulse number (p 0408) - or is an integer multiple of the encoder pulse number (p0408).
- activate the pole position identification routine (p1982 = 1).

For fault cause $=2$:

- the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 * p0433) / p0432.
Note:
For operation with track C/D, this quotient must be less than 8 .
See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor encoder revolutions), p0433 (Gearbox factor motor/load revolutions)

F07552 (A)	Drive encoder: Encoder configuration not supported
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456.
	Fault value (r0949, interpret decimal):
	ccccbbaa hex: cccc = fault cause, $\mathrm{bb}=$ component number, $\mathrm{aa}=$ encoder data set
	cccc = 1: encoder sin/cos with absolute track (is supported by SME25).
	cccc $=3$: Squarewave encoder (this is supported by SMC30).
	$\operatorname{cccc}=4: \sin$ /cos encoder (this is supported by SMC20, SMI20, SME20, SME25).
	cccc = 10: DRIVE-CLiQ encoder (is supported by DQI).
	$\operatorname{cccc}=12$: \sin / \cos encoder with reference mark (this is supported by SME20).
	cccc $=15$: Commutation with zero mark for separately excited synchronous motors with VECTORMV.
	cccc $=23$: Resolver (this is supported by SMC10, SMI10).
	cccc $=65535$: Other function (compare r0456 and p0404).
	See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization (p0400, p0404).
	- use the matching encoder evaluation (r0456).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07553 (A)	Drive encoder: Sensor Module configuration not supported
Message value:	Encoder data set: \%1, first incorrect bit: \%2, incorrect parameter: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Sensor Module does not support the requested configuration.
	For incorrect p0430 (cc=0), the following applies:
	- in p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: Bit 19, 28, 29, 30, 31).
	- p1982 > 0 (pole position identification requested), but r0458.16 $=0$ (pole position identification not supported).
	For incorrect p0437 (cc = 1), the following applies:
	- in p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions).
	Fault value (r0949, interpret hexadecimal):
	ddccbbaa hex
	aa: encoder data set number
	bb: first incorrect bit
	cc: incorrect parameter
	cc = 0: incorrect parameter is p0430
	$\mathrm{cc}=1$: incorrect parameter is p0437
	$\mathrm{cc}=2$: incorrect parameter is r0459
	dd: reserved (always 0)
Remedy:	- check the encoder parameterization (p0430, p0437).
	- check the pole position identification routine (p1982).
	- use the matching encoder evaluation (r0458, r0459).
	See also: p0430 (Sensor Module configuration), p0437 (Sensor Module configuration extended), r0458 (Sensor Module properties), r0459 (Sensor Module properties extended), p1982 (PolID selection)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07555 (A)	Drive encoder: Configuration position tracking
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3, fault cause: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)

4.2 List of faults and alarms

Cause:	For position tracking, the configuration is not supported.
	Position tracking can only be activated for absolute encoders.
	For linear axes, it is not possible to simultaneously activate the position tracking for load and measuring gears.
	Fault value (r0949, interpret hexadecimal):
	ddccbbaa hex
	$\mathrm{aa}=$ encoder data set
	$\mathrm{bb}=$ component number
	cc = drive data set
	dd = fault cause
	$d d=00$ hex $=0 \mathrm{dec}$
	An absolute encoder is not being used.
	$\mathrm{dd}=01$ hex $=1 \mathrm{dec}$
	Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
	$\mathrm{dd}=02 \mathrm{hex}=2 \mathrm{dec}$
	For a linear axis, the position tracking was activated for the load and measuring gear.
	$\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}$
	Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set.
	$\mathrm{dd}=04 \mathrm{hex}=4 \mathrm{dec}$
	A linear encoder is being used.
	See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration)
Remedy:	For fault value 0:
	- use an absolute encoder.
	For fault value 1:
	- use a Control Unit with sufficient NVRAM.
	For fault value $=2,4$:
	- if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear).
	For fault value 3:
	- Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p 2720.1) and tolerance window (p2722) are also the same. These parameters must be the same in all drive data sets, which use the same motor encoder (p187).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07556	Measuring gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits.
	Maximum value: p 0408 * p0412 * ${ }^{\wedge} \mathrm{p} 0419$
	Fault value (r0949, interpret decimal):
	aaaayyxx hex: yy = component number, $x x=$ encoder data set
	See also: p0408 (Rotary encoder pulse number), p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
Remedy:	- reduce the fine resolution (p0419).
	- reduce the multiturn resolution (p0412).
	See also: p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))

F07560	Drive encoder: Number of pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For rotary absolute encoders, the pulse number in p0408 must be to the power of two.
	Fault value (r0949, interpret decimal):
	The fault value includes the encoder data set number involved.
Remedy:	- check the parameterization (p0408, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary
F07561	Drive encoder: Number of multiturn pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The multiturn resolution in p0421 must be to the power of two.
	Fault value (r0949, interpret decimal):
	The fault value includes the encoder data set number involved.
Remedy:	- check the parameterization (p0421, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary
F07562 (A)	Drive, encoder: Position tracking, incremental encoder not possible
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The requested position tracking for incremental encoders is not supported.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex
	aa = encoder data set
	$\mathrm{bb}=$ component number
	cccc $=$ fault cause
	$\operatorname{cccc}=00 \mathrm{hex}=0 \mathrm{dec}$
	The encoder type does not support the "Position tracking incremental encoder" function. cccc $=01 \mathrm{hex}=1 \mathrm{dec}$
	Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
	$\mathrm{cccc}=04 \mathrm{hex}=4 \mathrm{dec}$
	A linear encoder is used that does not support the "position tracking" function.
	See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization (p0400, p0404).
	- use a Control Unit with sufficient NVRAM.
	- if required, de-select position tracking for the incremental encoder (p0411.3 $=0$).
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F07563 (A)	Drive encoder: XIST1_ERW configuration incorrect
Message value:	Fault cause: \%1, encoder data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An incorrect configuration was identified for the "Absolute position for incremental encoder" function. Fault value (r0949, interpret decimal): Fault cause: 1 (= 01 hex): The "Absolute value for incremental encoder" function is not supported (r0459.13 = 0). Note regarding the message value: The individual information is coded as follows in the message value (r0949/r2124): yyxx dec: $y \mathrm{y}=$ fault cause, $\mathrm{xx}=$ encoder data set See also: r0459 (Sensor Module properties extended), p4652 (XIST1_ERW reset mode)
Remedy:	For fault value =1: - upgrade the Sensor Module firmware version. - check the mode ($\mathrm{p} 4652=1,3$ requires the property r0459.13 $=1$).
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A07565 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 1
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 1 via the PROFldrive encoder interface (G1_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G1_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if $\mathrm{p} 0480[0]$ is not equal to zero.
	Encoder control word Gn_STW signal source (p0480[0...2], $\mathrm{n}=$ e encoder 1, 2, 3)
	Encoder status word Gn_ZSW (r0481[0...2], $\mathrm{n}=$ encoder 1, 2, 3)
Remedy:	Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A07566 (F, N) Drive: Encoder error in PROFIdrive encoder interface 2
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

NONE
Acknowledge: NONE

Cause:	An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G2_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[1] is not equal to zero.
	Encoder control word Gn_STW signal source (p0480[0...2], n = encoder 1, 2, 3)
	Encoder status word Gn_ZSW (r0481[0...2], $\mathrm{n}=$ encoder 1, 2, 3)
Remedy:	Acknowledge the encoder error using the encoder control word (G2_STW.15 = 1).
Reaction upon $\mathrm{F}:$	NONE (OFF1, OFF2, OFF3)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A07567 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 3
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G3_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[2] is not equal to zero.
	Encoder control word Gn_STW signal source (p0480[0...2], n = encoder 1, 2, 3)
Remedy:	Encoder status word Gn_ZSW (r0481[0...2], n = encoder 1, 2, 3)
Reaction upon F:	Acknowledge the encoder error using the encoder control word (G3_STW.15 = 1).
AONE (OFF1, OFF2, OFF3)	
Reanowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A07569 (F)	Enc identification active
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	During encoder identification (waiting) with p0400 = 10100, the encoder could still not be identified.
	Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been
	connected or no encoder cable has been connected to the Sensor Module, or the DRIVE-CLiQ component has not
	been connected.
	Note:
	Encoder identification must be supported by the encoder and is possible in the following cases:
	- Encoder with EnDat interface.
	- Encoder with SSI interface.
	- Motor with DRIVE-CLiQ.
Remedy:	- check and, if necessary, connect the encoder / encoder cable.
	- check and, if necessary, establish the DRIVE-CLiQ connection.
	- for SSI encoders, carry out the required operator actions (see the Function Manual).
- in the case of encoders that cannot be identified (e.g. encoders without EnDat interface), enter the correct encoder	
Reaction upon F:	type in p0400. NONE (OFF1, OFF2, OFF3) IMMEDIATELY

N07570 (F)	Encoder identification data transfer running
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The encoder type was automatically determined using p0400 $=10100$.
	Note:
	This fault causes the pulses to be suppressed - this is necessary to transfer the encoder parameterization to p0400 and the following.
	See also: p0400 (Encoder type selection)
Remedy:	Acknowledge the fault without taking additional measures.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY
F07575	Drive: Motor encoder not ready
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	OFF2 (ENCODER)
Acknowledge:	IMMEDIATELY
Cause:	The motor encoder signals that it is not ready.
	- initialization of encoder 1 (motor encoder) was unsuccessful.
	- the function "parking encoder" is active (encoder control word G1_STW. $14=1$).
	- the encoder interface (Sensor Module) is deactivated (p0145).
	- the Sensor Module is defective.
Remedy:	Evaluate other queued faults via encoder 1.

A07580 (F, N)	Drive: No Sensor Module with matching component number
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module with the component number specified in p0141 was not found.
	Alarm value (r2124, interpret decimal):
	Encoder data set involved (index of p0141).
Remedy:	Correct parameter p0141.
Reaction upon F:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A07850 (F)	External alarm 1	
Message value:	-	
Message class:	External measured value / signal state outside the permissible range (16)	
Drive object: All objects Component: None Reaction: NONE\quad Propagation: GLOBAL		
Acknowledge:	NONE	

Cause:	The condition for "External alarm 1" is satisfied.
	Note:
	The "External alarm 1" is initiated by a $1 / 0$ edge via binector input p2112.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A07851 (F)	External alarm 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 2" is satisfied.
	Note:
	The "External alarm 2" is initiated by a 1/0 edge via binector input p2116.
	See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A07852 (F)	External alarm 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The condition for "External alarm 3" is satisfied. Note: The "External alarm 3" is initiated by a 1/0 edge via binector input p2117. See also: p2117 (External alarm 3) Remedy: Eliminate the causes of this alarm. Reaction upon F: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2) Acknowl. upon F: IMMEDIATELY (POWER ON)	

F07860 (A)	External fault 1
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object: All objects Component: None Reaction: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2) Acknowledge: IMMEDIATELY (POWER ON) Cause: The condition for "External fault 1" is satisfied. Note: The "External fault 1" is initiated by a 1/0 edge via binector input p2106. See also: p2106 (External fault 1) - eliminate the causes of this fault. Remedy: - acknowledge fault. NONE Reaction upon A: NONE	

F07861 (A)	External fault 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 2" is satisfied.
	Note:
	The "External fault 2 " is initiated by a $1 / 0$ edge via binector input p2107.
	See also: p2107 (External fault 2)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07862 (A)	External fault 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 3 " is satisfied.
	Note:
	The "External fault 3 " is initiated by a $1 / 0$ edge via the following parameters.
	- AND logic operation, binector input p2108, p3111, p3112.
	- switch-on delay p3110.
	See also: p2108, p3110, p3111, p3112
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F08000 (N, A)	TB: +/-15 V power supply faulted
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Controller Extension (CX) Propagation: LOCAL NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Reaction:	
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Terminal Board 30 detects an incorrect internal power supply voltage.
	Fault value (r0949, interpret decimal):
	0 : Error when testing the monitoring circuit.
	1: Fault in normal operation.
Remedy:	- replace Terminal Board 30.
	- replace Control Unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F08010 (N, A)	TB: Analog-digital converter
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Controller Extension (CX) Propagation: LOCAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The analog/digital converter on Terminal Board 30 has not supplied any converted data.
Remedy:	- check the power supply.
	- replace Terminal Board 30.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F08500 (A)	COMM BOARD: Monitoring time configuration expired
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the configuration has expired.
	Fault value (r0949, interpret decimal):
	0 : The transfer time of the send configuration data has been exceeded.
	1: The transfer time of the receive configuration data has been exceeded.
Remedy:	Check communications link.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F08501 (N, A)	PN/COMM BOARD: Setpoint timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the COMM BOARD has been interrupted.
	- bus connection interrupted.
	- controller switched off.
	- controller set into the STOP state.
	- COMM BOARD defective.
Remedy:	- Restore the bus connection and set the controller to RUN.
	- if the error is repeated, check the update time set in the bus configuration (HW Config).
	See also: p8840 (COMM BOARD monitoring time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F08502 (A)	PN/COMM BOARD: Monitoring time sign-of-life expired	
Message value:	-	
Message class:	Communication error to the higher-level control system (9)	
Drive object:	All objects	
Component:	None	
Reaction:	OFF1 (OFF2, OFF3)	
Acknowledge:	IMMEDIATELY	
Cause:	The monitoring time for the sign-of-life counter has expired.	
	The connection to the COMM BOARD was interrupted.	
Remedy:	- check communications link.	
	- check COMM BOARD.	
Reaction upon A:	NONE	
Acknowl. upon A:	NONE	

A08504 (F)	PN/COMM BOARD: Internal cyclic data transfer error	
Message value:	\%1	
Message class:	Communication error to the higher-level control system (9)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The cyclic actual and/or setpoint values were not transferred within the specified times.	
	Alarm value (r2124, interpret decimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	Check the parameterizing telegram (Ti, To, Tdp, etc.).	
Reaction upon F:	NONE (OFF1, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY	

F08510 (A)	PN/COMM BOARD: Send configuration data invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	COMM BOARD did not accept the send-configuration data.
	Fault value (r0949, interpret decimal):
	Return value of the send-configuration data check.
Remedy:	Check the send configuration data.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A08511 (F)	PN/COMM BOARD: Receive configuration data invalid	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

4.2 List of faults and alarms

Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051 for PZD IF1, and in r8850/p8851 for PZD IF2.
	3: Uneven number of bytes for input or output.
	4: Setting data for synchronization not accepted. For more information, see A01902.
	5: Cyclic operation not active.
	17: CBE20 Shared Device: Configuration of the F-CPU has been changed.
	223: Illegal clock synchronization for the PZD interface set in p8815[0].
	500: Illegal PROFIsafe configuration for the interface set in p8815[1].
	501: PROFIsafe parameter error (e.g. F_dest).
	503: PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the receive configuration data.
	For alarm value $=1,2$:
	- check the list of the drive objects with process data exchange (p 0978). With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	For alarm value $=2$:
	- check the number of data words for output and input to a drive object.
	For alarm value = 17:
	- CBE20 Shared Device: Unplug/plug A-CPU.
	For alarm value $=223,500$:
	- check the setting in p8839 and p8815.
	- ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe.
	For alarm value = 501:
	- check the set PROFIsafe address (p9610).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A08520 (F)	PN/COMM BOARD: Non-cyclic channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the non-cyclic channel has an error.
	Alarm value (r2124, interpret decimal):
	0 : Error in the buffer status.
	1: Error in the memory.
Remedy:	Check communications link.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A08526 (F)	PN/COMM BOARD: No cyclic connection
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no cyclic connection to the control.

4.2 List of faults and alarms

Remedy:	Establish the cyclic connection and activate the control with cyclic operation.
	For PROFINET, check the parameters "Name of Station" and "IP of Station" (r61000, r61001).
	If a CBE20 is inserted and PROFIBUS is to communicate via PZD Interface 1, then this must be parameterized using the STARTER commissioning tool or directly using p8839.
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY

A08530 (F)	PN/COMM BOARD: Message channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: The memory or the buffer status of the message channel has an error. Alarm value (r2124, interpret decimal): 0: Error in the buffer status. 1: Error in the memory. Remedy: Check communications link. Reaction upon F: NONE (OFF1, OFF2, OFF3) Acknowl. upon F: IMMEDIATELY	

A08531 (F)	CBE20 POWER ON required	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	Control Unit (CU)	
Reaction:	NONE	
Acknowledge:	NONE	

Cause: At least one parameter of the CBE20 (e.g. a parameter associated with SINAMICS Link) was changed as a result of a project download. A POWER ON is required to activate the values. Note: CBE20: Communication Board Ethernet 20
See also: p8811 (SINAMICS Link project selection), p8812 (SINAMICS Link clock cycle settings), p8835 (CBE20 firmware selection), p8836 (SINAMICS link node address)
Remedy: Back up the parameters and carry out a POWER ON (switch-off/switch-on).
Reaction upon F: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY

A08550	PZD Interface Hardware assignment error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The assignment of the hardware to the PZD interface has been incorrectly parameterized.
	Alarm value (r2124, interpret decimal):
	1: Only one of the two indices is not equal to 99 (automatic).
	2: Both PZD interfaces are assigned to the same hardware.
	3: Assigned COMM BOARD missing.
	See also: p8839 (PZD interface hardware assignment)
Chemedy:	Check the parameterization and if required, correct (p8839).

A08550	PZD Interface Hardware assignment error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The assignment of the hardware to the PZD interface has been incorrectly parameterized. Alarm value (r2124, interpret decimal):
	1: Only one of the two indices is not equal to 99 (automatic).
	2: Both PZD interfaces are assigned to the same hardware.
	3: Assigned COMM BOARD missing.
	4: CBC10 is assigned to interface 1.
	See also: p8839 (PZD interface hardware assignment)
Remedy:	Check the parameterization and if required, correct (p8839).
A08555	Modbus TCP: commissioning error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_DC, CU_DC_R, CU_DC_R_S, CU_DC_S
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A setting for the "Modbus TCP" protocol is incorrect.
	Alarm value (r2124, interpret decimal):
	2: A drive object supported by Modbus is not available under p0978[0]. Modbus is not activated. See also: p0978 (List of drive objects), p8835 (CBE20 firmware selection)
Remedy:	For alarm value $=2$:
	Appropriately resort the list of drive objects in p0978.
	Modbus supports the following drive object: DC_CTRL

A08564	PN/COMM BOARD: syntax error in the configuration file
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet 20/25 (CBE20/CBE25). The saved configuration file has not been loaded.
Remedy:	- check the CBE2x configuration (p8940 and following), correct if necessary, and activate (p8945 = 2). - reinitialize the CBE2x (e.g. using the STARTER commissioning tool)
	Note:
	The configuration is not applied until the next POWER ON!
	See also: p8945 (CBE2x activate interface configuration)

A08565
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

PNCOMM BOARD: Consistency error affecting adjustable parameters \%1

Error in the parameterization / configuration / commissioning procedure (18) All objects
None Propagation: LOCAL NONE NONE

4.2 List of faults and alarms

Cause:
A consistency error was detected when activating the configuration (p8945) for the Communication Board Ethernet
20/25 (CBE20/CBE25).
Alarm value (r2124, interpret decimal):
0: general consistency error
1: error in the IP configuration (IP address, subnet mask or standard gateway).
2: Error in the station names.
3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
4: a cyclic PROFINET connection is not possible as DHCP is activated.
Note:
For all alarm values, the following applies: currently set configuration has not been activated.
DHCP: Dynamic Host Configuration Protocol
See also: p8940 (CBE2x Name of Station), p8941 (CBE2x IP address), p8942 (CBE2x Default Gateway), p8943
(CBE2x Subnet Mask), p8944 (CBE2x DHCP Mode)

- check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945).
or
- reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool).
See also: p8945 (CBE2x activate interface configuration)

F13000	License not adequate
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- for the drive unit, the options that require a license are being used but the licenses are not sufficient.
	- an error occurred when checking the existing licenses.
	Fault value (r0949, decimal interpretation):
	0 :
	The existing license is not sufficient.
	1:
	An adequate license was not able to be determined as the memory card with the required licensing data was withdrawn in operation.
	2 :
	An adequate license was not able to be determined as there is no licensing data available on the memory card.
	An adequate license was not able to be determined as there is a checksum error in the license key.
	4:
	An internal error occurred when checking the license.
Remedy:	For fault value $=0$:
	Additional licenses are required and these must be activated (p9920, p9921).
	For fault value $=1$:
	With the system powered down, re-insert the memory card that matches the system.
	For fault value $=2$:
	Enter and activate the license key (p9920, p9921).
	For fault value = 3:
	Compare the license key (p9920) entered with the license key on the certificate of license.
	Re-enter the license key and activate (p9920, p9921).
	For fault value $=4$:
	- carry out a POWER ON.
	- upgrade firmware to later version.
	- contact Technical Support.
	Note:
	An overview of the drive device functions requiring a license can be displayed using a commissioning tool in the online mode. Depending on the commissioning tool, you can obtain the necessary licenses (serial number, license Key, Trial License Mode).

A13001	Error in license checksum
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: \quad LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When checking the checksum of the license key, an error was detected.
Remedy:	Compare the license key (p9920) entered with the license key on the certificate of license.
	Re-enter the license key and activate (p9920, p9921).

F13009	Licensing Technology Extension not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None \quad Propagation: \quad LOCAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one Technology Extension that requires a license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed Technology Extensions.
	- enter and activate the license key for Technology Extensions that require a license (p9920, p9921).
Remedy:	- if necessary, deactivate Technology Extensions that are not licensed (p4956).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)

F13010	Licensing function module not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one function module requiring a license is not licensed.
	Fault value (r0949, interpret hexadecimal):
	Bit $x=1:$ The corresponding function module does not have a license.
	Note:
	Assigning bit number to function module, see p0108 or r0108.
	- enter and activate the license key for function modules that require a license license (p9920, p9921).
	- if necessary, deactivate unlicensed function modules (p0108, r0108).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)

A13021	License for 600 Hz is not sufficient
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	You have parameterized speeds that result in output frequencies $>550 \mathrm{~Hz}$. For SINAMICS drives, output frequencies $>550 \mathrm{~Hz}$ are only possible after enabling the corresponding high output frequency license. Without license, the SINAMICS output frequencies are limited to 550 Hz (independent of any other parameterization).
Remedy:	- enter and activate the license key for 600 Hz .
	- if required deactivate use of 600 Hz

A13030	Trial License activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: \quad LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Trial License" function was activated. One of the available periods is expiring.
	See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the periods have expired.

A13031	Trial License period expired
Message value:	-
Message class: Error in the parameterization / configuration / commissioning procedure (18) Drive object: All objects Component: Control Unit (CU) Propagation: Reaction: NONE Acknowledge: NONE Cause: One of the available periods of the "Trial License" function has expired. See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status) Remedy: - if required, start an additional period (p9918 = 1). - deactivate functions requiring a license. - appropriately license the drive unit. Note: A license that is not adequate will only become evident after the next time the system runs up.	

A13032	Trial License last period activated	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	Control Unit (CU) Propagation: \quad LOCAL	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The "Trial License" function was activated. The last of the available periods is expiring.	
	See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)	
Remedy:	Not necessary.	
	The alarm is automatically withdrawn after the last period has expired.	

F13100	Know-how protection: Copy protection error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	2: An invalid memory card is inserted.
	3: The memory card is being used in another Control Unit.
	12: An invalid memory card is inserted (OEM input incorrect, p7769).
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
	See also: p7765 (KHP configuration)
Remedy:	For fault value $=0$:
	- insert the correct memory card and carry out POWER ON.
	For fault value $=2,3,12,13$:
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated. KHP: Know-How Protection
	See also: p3981 (Acknowledge drive object faults), p7765 (KHP configuration)
F13101	Know-how protection: Copy protection cannot be activated
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	Note:
	KHP: Know-How Protection
Remedy:	- insert the memory card and carry out POWER ON.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP configuration)
F13102	Know-how protection: Consistency error of the protected data
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, xxxx = fault cause
	$x x x x=1$:
	A file has a checksum error.
	xxxx $=2$:
	The files are not consistent with one another.
	$x x x x=3$:
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
	Note:
	KHP: Know-How Protection
Remedy:	- Replace the project on the memory card or replace project files for download from the memory card.
	- Restore the factory setting and download again.
F30001	Power unit: Overcurrent
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: Rated motor current is significantly greater than that of the Motor Module.
	- infeed: High discharge and post-charging currents for line voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at switch-on as there is no commutating reactor.
	- power cables are not correctly connected.
	- the power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Additional causes for a parallel switching device (r0108.15 = 1):
	- a power unit has tripped (switched off) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized (e.g. for blocksize device).

Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star/delta). - U/f operation: Increase up ramp. - U/f operation: Check the assignment of the rated currents of the motor and Motor Module. - infeed: Check the line supply quality. - infeed: Reduce the motor load. - infeed: Check the correct connection of the line filter and the line commutating reactor. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit. - check the line supply phases. For a parallel switching device (r0108.15 = 1) the following additionally applies: - check the ground fault monitoring thresholds (p0287). - check the setting of the closed-loop circulating current control (p7036, p7037).
F30002	Power unit: DC link voltage overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link. - motor regenerates too much energy. - device supply voltage too high. - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit. - line phase interrupted. Fault value (r0949, interpret decimal): DC link voltage at the time of trip [0.1 V].
Remedy:	- increase the ramp-down time - activate the DC link voltage controller (p 1240) - use a brake resistor or Active Line Module - increase the current limit of the infeed or use a larger module (for the Active Line Module) - check the device supply voltage - check and correct the phase assignment at the VSM and at the power unit - check the line supply phases.
F30003	Power unit: DC link voltage undervoltage
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link. - line supply failure - line supply voltage below the permissible value. - line supply infeed failed or interrupted. - line phase interrupted. Note: The monitoring threshold for undervoltage in the DC link is indicated in r0296.

4.2 List of faults and alarms

Remedy:	- check the line supply voltage - check the line supply infeed and observe the fault messages relating to it (if there are any) - check the line supply phases. - check the line supply voltage setting (p0210). - booksize units: check the setting of p0278. Note: The ready signal for the infeed (r0863) must be interconnected to the associated drive inputs (p0864).
F30004	Power unit: Overtemperature heat sink AC inverter
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature [$0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot.
F30005	Power unit: Overload 12t
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100%). - the permissible rated power unit current was exceeded for an inadmissibly long time. - the permissible load duty cycle was not maintained. Fault value (r0949, interpret decimal): I2t [100 \% = 16384].
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the motor and power unit rated currents.
F30006	Power unit: Thyristor Control Board
Message value:	- Power unit Thyristor Control Board
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause:	The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.
- there is no line supply voltage.	
- the line contactor is not closed.	
- the line supply voltage is too low.	
- line supply frequency outside the permissible range ($45 \ldots 66 \mathrm{~Hz}$).	
- there is a DC link short-circuit.	
- there is a DC link short-circuit (during the precharging phase).	
- the motor either has a short-circuit or insulation fault (from an inverter connected to the DC link).	
- voltage supply for the Thyristor Control Board outside the nominal range (5 ... 18 V) and line voltage >30 V.	
- there is an internal fault in the Thyristor Control Board.	
Remedy: \quad The faults must be saved in the Thyristor Control Board and must be acknowledged. To do this, the supply voltage of	
the Thyristor Control Board must be switched out for at least $10 \mathrm{~s}!$	
	- check the line supply voltage
- check or energize the line contactor.	
- check the monitoring time and, if required, increase (p0857).	
- if required, observe additional power unit messages/signals.	
- check the DC link regarding short-circuit or ground fault.	
- check the motor regarding short-circuit or ground fault.	
- evaluate diagnostic LEDs for the Thyristor Control Board.	

F30008

Power unit: Sign-of-life error cyclic data

Message value:
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Control Unit (CU) Propagation: LOCAL
NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
The Control Unit has not punctually updated the cyclic setpoint telegram to the power unit. The number of consecutive tolerated sign of life errors has exceeded the fault threshold (p7789) set in the power unit.
Remedy: - for projects with the VECTOR drive object, check whether p0117 = 6 has been set on the Control Unit.

- increase the fault threshold (p7789).
- check the Motor Module, and if required replace.

A30010 (F)	Power unit: Sign-of-life error cyclic data
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the power unit involved. The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock cycle.
Remedy:	Check the Motor Module and if required, replace.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30011	Power unit: Line phase failure in main circuit
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:
At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
Possible causes:

- a line phase has failed.
- the 3 line phases are inadmissibly asymmetrical.
- the capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor
integrated in the power unit.
- the fuse of a phase of a main circuit has ruptured.
- a motor phase has failed.
- for power units operated on a single phase, the permissible active power was exceeded.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: \quad - check the main circuit fuses.
- check whether a single-phase load is distorting the line voltages.
- Detune the resonant frequency with the line inductance by using an upstream line reactor.
- Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the
software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the
torque ripple at the motor output.
- check the motor feeder cables.

F30012	Power unit: Temperature sensor wire breakage
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a temperature sensor in the power unit is interrupted.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
	Bit14: capacitor air discharge
	Bit15: liquid intake
Contact Technical Support.	

F30013	Power unit: Temperature sensor short circuit	
Message value:	$\% 1$	
Message class:	Power electronics faulted (5)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	Propagation:
Component:	Power Module	
Reaction:	OFF1 (OFF2)	
Acknowledge:	IMMEDIATELY	

4.2 List of faults and alarms

Remedy: \quad For infeed units, the following applies: \begin{tabular}{l}

- check the controller settings and reset and identify the controller if necessary $(\mathrm{p} 0340=2, \mathrm{p} 3410=5)$

- reduce the load and increase the DC link capacitance or use a higher-rating infeed if necessary

- check the connection of the optional Voltage Sensing Module

- check the connection and technical data of the line reactor

- check the power cables for short-circuit or ground fault.

- replace power unit.

The following applies to Motor Modules:

- check the motor data and if required, recalculate the controller parameters (p0340 = 3). As an alternative, run a

motor data identification (p1910 =1, p1960 = 1).

- check the motor circuit configuration (star-delta).

- check the motor load.

- check the power cable connections.

- check the power cables for short-circuit or ground fault.

- check the length of the power cables.

- replace power unit.
\end{tabular}

F30021

Message value:

Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Power unit: Ground fault

\%1
Ground fault / inter-phase short-circuit detected (7)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2
IMMEDIATELY
The power has detected a ground fault.
Possible causes:

- ground fault in the power cables.
- ground fault at the motor.
- CT defective.
- when the brake closes, this causes the hardware DC current monitoring to respond.
- short-circuit at the braking resistor.
- the closed-loop circulating current control for devices connected in parallel (r0108.15 = 1) is either too slow or has been set too fast.
Note:
For power units, a ground fault is also emulated in r3113.5.
Fault value (r0949, interpret decimal):
0 :
- the hardware DC current monitoring has responded.
- short-circuit at the braking resistor.
>0 :
Absolute value, total current amplitude [20479 = r0209 * 1.4142].
- check the power cable connections.
- check the motor.
- check the CT.
- check the cables and contacts of the brake connection (a wire is possibly broken).
- check the braking resistor.

For parallel switching devices $(\mathrm{r} 0108.15=1)$ the following additionally applies:

- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).

F30022	Power unit: Monitoring U_ce
Message value:	Fault cause: \%1 bin
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U _ce) of the semiconductor has responded. Possible causes: - fiber-optic cable interrupted. - power supply of the IGBT gating module missing. - short-circuit at the power unit output. - defective semiconductor in the power unit. Fault value (r0949, interpret binary): Bit 0: Short-circuit in phase U Bit 1: Short circuit in phase V Bit 2: Short-circuit in phase W Bit 3: Light transmitter enable defective Bit 4: U_ce group fault signal interrupted See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace. - check the power supply of the IGBT gating module (24 V). - check the power cable connections. - select the defective semiconductor and replace.
F30025	Power unit: Chip overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature difference between the heat sink and chip [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after the alarm threshold for alarm A05001 has been undershot.

F30027	Power unit: Precharging DC link time monitoring
Message value:	Enable signals: \%1, Status: \%2
Message class:	Infeed faulted (13)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit DC link was not able to be precharged within the expected time.
	1) There is no line supply voltage connected.
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The precharging resistors are overheated as there were too many precharging operations per time unit.
	6) The precharging resistors are overheated as the DC link capacitance is too high.
	7) The precharging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
	8) The precharging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
	9) The DC link has either a ground fault or a short-circuit.
	10) The precharging circuit is possibly defective (only for chassis units).
	11) Infeed is defective and/or fuse has ruptured in the Motor Module (only Booksize units).
	Fault value (r0949, interpret binary):
	yyyyxxxx hex:
	yyyy = power unit state
	0: Fault status (wait for OFF and fault acknowledgment).
	1: Restart inhibit (wait for OFF).
	2: Overvoltage condition detected -> change into the fault state.
	3: Undervoltage condition detected -> change into the fault state.
	4: Wait for bridging contactor to open -> change into the fault state.
	5: Wait for bridging contactor to open -> change into restart inhibit.
	6: Wait for bypass contactor to open
	7: Commissioning.
	8: Ready for precharging.
	9: Precharging started, DC link voltage lower than the minimum switch-on voltage
	10: Precharging, DC link voltage end of precharging still not detected
	11: Wait for the end of the de-bounce time of the main contactor after precharging has been completed.
	12: Precharging completed, ready for pulse enable.
	13: It was detected that the STO terminal was energized at the power unit
	xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
	Bit 0: Power supply of the IGBT gating shut down.
	Bit 1: Ground fault detected.
	Bit 2: Peak current intervention.
	Bit 3: 12t exceeded.
	Bit 4. Thermal model overtemperature calculated.
	Bit 5: (heat sink, gating module, power unit) overtemperature measured.
	Bit 6: Reserved.
	Bit 7: Overvoltage detected.
	Bit 8: Power unit has completed precharging, ready for pulse enable.
	Bit 9: STO terminal missing.
	Bit 10: Overcurrent detected.
	Bit 11: Armature short-circuit active.
	Bit 12: DRIVE-CLiQ fault active.
	Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
	Bit 14: Undervoltage detected.

```
Remedy: In general:
    - check the line supply voltage at the input terminals.
    - check the line supply voltage setting (p0210).
    For booksize drive units, the following applies:
    - wait (approx. 8 minutes) until the precharging resistors have cooled down. For this purpose, preferably disconnect
    the infeed unit from the line supply.
    For 5):
    - carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual).
    For 6):
    - check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC link
    capacitance if necessary (refer to the appropriate Equipment Manual)
    For 7):
    - interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected
    to this DC link
    For 8):
    - check the connections of the external line contactor. The line contactor must be open during DC link fast discharge.
    For 9):
    - check the DC link for ground faults or short circuits.
For 11):
- check the DC link voltage of the infeed (r0070) and Motor Modules (r0070).
If the DC link voltage generated by the infeed (or external) is not displayed for the Motor Modules (r0070), then a fuse
has ruptured in the Motor Module.
```


A30030

Message value:
Power unit: Internal overtemperature alarm

Message class:

Drive object:
Component:
Reaction:
Acknowledge: \%1
Power electronics faulted (5)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
NONE

Cause: The temperature inside the drive converter has exceeded the permissible temperature limit.

- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.

Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:

- possibly use an additional fan.
- check whether the ambient temperature is in the permissible range.

Notice:
This alarm is automatically withdrawn once the permissible temperature limit value has been fallen below minus 5 K .

A30031

Power unit: Hardware current limiting in phase U

Message value:
Message class:
Power electronics faulted (5)
Drive object:
Component:
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Componen:
Power Module Propagation: GLOBAL
Reaction:
NONE
Acknowledge: NONE
Cause: Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period.

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note:
Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.

4.2 List of faults and alarms

Remedy: \quad - check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification ($\mathrm{p} 1910=1, \mathrm{p} 1960=1$).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30032	Power unit: Hardware current limiting in phase V
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	Check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification $(p 1910=1, p 1960=1)$.
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.

A30033

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause: Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note:
Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: - check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification ($\mathrm{p} 1910=1, \mathrm{p} 1960=1$).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

4.2 List of faults and alarms

Cause:	The undervoltage threshold of the 24 V power supply for the power unit was fallen below for longer than 3 ms .
	Note:
	- for booksize power units, the undervoltage threshold is 15 V .
	- for CU310-2, CUA31 and CUA32 the undervoltage threshold is 16 V .
	- for all other power units (e.g. S120M), the undervoltage threshold depends on the power unit, and is not displayed.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ channel, $\mathrm{xxxx}=$ voltage [0.1 V]
	yy = 0: 24 V power supply
	yy $=1: 48 \mathrm{~V}$ power supply
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.

A30041 (F)	Power unit: Undervolt 24/48 V alarm
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the lower threshold has been violated.
	Alarm value (r2124, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ channel, $\mathrm{xxxx}=$ voltage [0.1 V]
	yy = 0: 24 V power supply
	yy = 1: 48 V power supply
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

A30042	Power unit: Fan has reached the maximum operating hours
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Alarm value (r2124, interpret binary):
	Bit $0=1$:
	The operating hours counter of the heat sink fan will reach the maximum operating time in 500 hours. After 500 hours has elapsed, bit 0 is cleared and bit 2 is set in the alarm value.
	Bit $1=1$:
	The wear counter of the heat sink fan has reached 99%. The remaining service life is 1%. After this 1% has elapsed, bit 1 is cleared and bit 2 is set in the alarm value.
	Bit $2=1$:
	The operating hours counter of the heat sink fan has exceeded the maximum operating time - and/or the wear counter has exceeded 100\%.
	Bit $8=1$:
	The operating hours counter of the fan inside the device will reach the maximum operating time in 500 hours. After 500 hours has elapsed, bit 8 is cleared and bit 10 is set in the alarm value.
	Bit $10=1$:
	The operating hours counter of the fan inside the device has exceeded the maximum operating time.
Remedy:	For the fan involved, carry out the following:
	- replace the fan.
	- reset the operating hours counter (p0251, p0254).

F30043	Power unit: Overvolt 24/48 V
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	For the power unit power supply, the upper threshold has been violated.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ channel, $\mathrm{xxxx}=$ voltage [0.1 V]
	yy $=0$: 24 V power supply
	yy $=1: 48 \mathrm{~V}$ power supply
Remedy:	Check the power supply of the power unit.

A30044 (F)	Power unit: Overvolt 24/48 V alarm
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the upper threshold has been violated.
	Alarm value (r2124, interpret hexadecimal):
	yyxxxx hex: yy = channel, xxxx = voltage [0.1 V]
	yy $=0: 24 \mathrm{~V}$ power supply
	yy $=1: 48 \mathrm{~V}$ power supply
Cemedy:	Check the power supply of the power unit.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

F30045	Power unit: Supply undervoltage
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Power supply fault in the power unit.
	- the voltage monitor signals an undervoltage fault on the module.
	The following applies for CU31x:
	- the voltage monitoring on the DAC board signals an undervoltage fault on the module.
	For S120M, the following applies: - this message is displayed for undervoltage or overvoltage.
	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
	- replace the module if necessary.

A30046 (F)	Power unit: Undervoltage alarm		
Message value:	\%1		
Message class:	Power electronics faulted (5)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S		
Component:	Power Module	Propagation:	LOCAL
Reaction:	NONE		
Acknowledge:	NONE		

4.2 List of faults and alarms

Cause:	Before the last restart, a problem occurred at the power unit power supply. The voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module. Alarm value (r2124, interpret decimal): Register value of the voltage fault register.
Remedy:	- check the 24 V DC voltage supply to power unit.
- carry out a POWER ON (switch-off/switch-on) for the component.	
- replace the module if necessary.	

F30050 Power unit: 24 V supply overvoltage

Message value:
Message class: Supply voltage fault (overvoltage) (3)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Power Module Propagation: LOCAL
Reaction: OFF2
Acknowledge: POWER ON
Cause: \quad The voltage monitor signals an overvoltage fault on the module.
Remedy: - check the 24 V power supply

- replace the module if necessary.

F30051	Power unit: Motor holding brake short circuit detected	
Message value:	\%1	
Message class:	External measured value / signal state outside the permissible range (16)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	Propagation:
Component:	Power Module	GLOBAL
Reaction:	OFF2	
Acknowledge:	IMMEDIATELY	
Cause:	A short-circuit at the motor holding brake terminals has been detected.	
	Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.	
Remedy:	- check the motor holding brake for a short-circuit. - check the connection and cable for the motor holding brake.	

F30052	EEPROM data error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (r0949, interpret decimal):
	$0,2,3,4:$
	The EEPROM data read in from the power unit module are incorrect.
	1:
	EEPROM data is not compatible to the firmware of the power unit application.
	Additional values:
	Only for internal Siemens troubleshooting.
	For fault value $=0,2,3,4:$
	Replace the power unit module or update the EEPROM data.
	For fault value $=1:$
	The following applies for CU31x and CUA31:
	Update the firmware ISIEMENSISINAMICSICODEISACIcu31xi.ufiw (cua31.ufw)

F30053	FPGA data faulty
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The FPGA data of the power unit are faulty. This can be caused, for example, if a firmware update is interrupted.
Remedy:	Replace the power unit or update of the FPGA data by updating the firmware.
	Note:
	If this fault occurs after a firmware update, then update the firmware again.
F30070	Cycle requested by the power unit module not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle is requested that is not supported by the power unit.
	Fault value (r0949, interpret hexadecimal):
	0 : The current control cycle is not supported.
	1: The DRIVE-CLiQ cycle is not supported.
	2: Internal timing problem (clearance between RX and TX instants too low).
	3: Internal timing problem (TX instant too early).
Remedy:	The power unit only supports the following cycles:
	$62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$
	For fault value $=0$:
	Set a permitted current control cycle.
	For fault value = 1:
	Set a permitted DRIVE-CLiQ cycle.
	For fault value = 2, 3 :
	Contact the manufacturer (you may have an incompatible firmware version).
F30071	No new actual values received from the power unit
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The number of actual value telegrams from the power unit module that have failed has exceeded the permissible number.
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30072	Setpoints can no longer be transferred to the power unit
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The following applies for CU31x and CUA31:
	More than one setpoint telegram was not able to be transferred to the power unit module.

4.2 List of faults and alarms

Remedy:	The following applies for CU31x and CUA31:
Check the interface (adjustment and locking) to the power unit module.	

A30073 (N)	Actual value/setpoint preprocessing no longer synchronous
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	Communication with the power unit module is no longer in synchronism with the current control cycle.
Remedy:	Wait until synchronization is re-established.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

F30074 (A) Communication error between the Control Unit and Power Module

Message value: \%1
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component:
Reaction:
Acknowledge: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Cause: Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
Fault value (r0949, interpret hexadecimal):
0 hex:

- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
- with the Power Module switched off, the external 24 V supply for the Control Unit was interrupted for some time. 1 hex:
The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
20A hex:
The Control Unit was inserted on a Power Module, which has another code number.
20B hex:
The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number
601 hex:
The Control Unit was inserted on a Power Module, whose power/performance class (chassis unit) is not supported.
Remedy: Reinsert the Control Unit (CU) or the Control Unit Adapter (CUAxx) onto the original Power Module and continue operation. If required, carry out a POWER ON for the CU and/or the CUA.
Reaction upon A: NONE
Acknowl. upon A: NONE

F30081	Power unit: Switching operations too frequent		
Message value:	Fault cause: \%1 bin		
Message class:	Power electronics faulted (5)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S		
Component:	Power Module	Propagation:	LOCAL
Reaction:	OFF2		
Acknowledge:	IMMEDIATELY		

Cause:
The power unit has executed too many switching operations for current limitation.

- closed-loop control is incorrectly parameterized.
- motor has a short-circuit or fault to ground (frame).
- U/f operation: Up ramp set too low.
- U/f operation: rated current of motor much greater than that of power unit.
- infeed: High discharge and post-charging currents for line voltage dip.
- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
- infeed: Short-circuit currents at switch-on as there is no commutating reactor.
- power cables are not correctly connected.
- power cables exceed the maximum permissible length.
- power unit defective.
Additional causes for a parallel switching device (r0108.15 = 1):
- a power unit has tripped (switched off) due to a ground fault.
- the closed-loop circulating current control is either too slow or has been set too fast.
Fault value (r0949, interpret bitwise binary):
Bit 0: Phase U.
Bit $1:$ Phase V.
Bit 2: Phase W.
- check the motor data - if required, carry out commissioning.
- check the motor circuit configuration (star-delta)
- U/f operation: Increase up ramp.
- U/f operation: Check assignment of rated currents of motor and power unit.
- infeed: Check the line supply quality.
- infeed: Reduce the motor load.
- infeed: Correct connection of the line reactor.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.
For a parallel switching device (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).
-

F30105	PU: Actual value sensing fault
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters. If the actual value channel is incorrect, check the components and if required, replace.

N30800 (F)	Power unit: Group signal	
Message value:	-	Propagation:
Message class:	Power electronics faulted (5) LOCAL	
Drive object: All objects Component: None Reaction: OFF2 Acknowledge: NONE Cause: The power unit has detected at least one fault. Remedy: Evaluate the other messages that are presently available.		

Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY

F30801	Power unit DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
	The computing time load might be too high.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- deselect functions that are not required.
	- if required, increase the sampling times (p0112, p0115).
	- replace the component involved (power unit, Control Unit).

F30802	Power unit: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
	Fault value (r0949, interpret decimal):
	xx: time slice number
- carry out a POWER ON (switch-off/switch-on) for all components.	
Remedy:	- upgrade firmware to later version.

F30804 (N, A)	Power unit: CRC
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error (CRC error) has occurred for the power unit.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

4.2 List of faults and alarms

Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. |
| :--- |
| Fault cause: |
| 1 (= 01 hex): |
| Checksum error (CRC error). |
| 2 (= 02 hex): |
| Telegram is shorter than specified in the length byte or in the receive list. |
| 3 (= 03 hex): |
| Telegram is longer than specified in the length byte or in the receive list. |
| 4 (= 04 hex): |
| The length of the receive telegram does not match the receive list. |
| 5 (= 05 hex): |
| The type of the receive telegram does not match the receive list. |
| 6 (= 06 hex): |
| The address of the component in the telegram and in the receive list do not match. |
| 7 (= 07 hex): |
| A SYNC telegram is expected - but the received telegram is not a SYNC telegram. |
| 8 (= 08 hex): |
| No SYNC telegram is expected - but the received telegram is one. |
| 9 (= 09 hex): |
| The error bit in the receive telegram is set. |
| 16 (= 10 hex): |
| The receive telegram is too early. |
| Note regarding the message value: |
| The individual information is coded as follows in the message value (r0949/r2124): |
| $0000 y y x$ hex: yy = component number, xx = error cause |
| - carry out a POWER ON (switch-off/switch-on). |
| - check the electrical cabinet design and cable routing for EMC compliance |
| - check the DRIVE-CLiQ wiring (interrupted cable, contacts, \ldots.). |

F30835
 Power unit DRIVE-CLiQ: Cyclic data transfer error

Message value:
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component:
Reaction:
Acknowledge: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2
IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The nodes do not send and receive in synchronism.
Fault cause:
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:

- carry out a POWER ON.
- replace the component involved (power unit, Control Unit).

F30836	Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F30837	Power unit DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F30845	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
Fault cause:	
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).

F30850	Power unit: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace power unit.
	- if required, upgrade the firmware in the power unit.
	- contact Technical Support.

F30851

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Power unit DRIVE-CLiQ (CU): Sign-of-life missing

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault cause:
10 (= OA hex):
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:

- deselect functions that are not required.
- if required, increase the sampling times (p0112, p0115).
- replace the component involved (power unit, Control Unit).

F30860	Power unit DRIVE-CLiQ (CU): Telegram error		
Message value:	Component number: \%1, fault cause: \%2		
Message class:	Internal (DRIVE-CLiQ) communication error (12)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S		
Component:	Power Module	Propagation:	LOCAL
Reaction:	OFF2		
Acknowledge:	IMMEDIATELY		

Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex):
	20 (= 14 hex): \quad \%
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F30875

Message value:

Message class:

Drive object:
Component:
Reaction:
Acknowledge:

Power unit: power supply voltage failed
Component number: \%1, fault cause: \%2
Supply voltage fault (undervoltage) (3)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL OFF2
IMMEDIATELY

4.2 List of faults and alarms

Cause: \quad\begin{tabular}{l}
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the

supply voltage has failed.

Fault cause:

9 (= 09 hex):

The power supply voltage for the components has failed.

Note regarding the message value:

The individual information is coded as follows in the message value (r0949/r2124):

0000yyxx hex: yy = component number, xx = error cause

Remedy:

- carry out a POWER ON (switch-off/switch-on).

- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).

- check the dimensioning of the power supply for the DRIVE-CLiQ component.
\end{tabular}

F30885

Message value: CU DRIVE-CLiQ (CU): Cyclic data transfer error

Message class:
Component number: \%1, fault cause: \%2

Drive object:
Component:
Reaction:
Acknowledge:
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2
IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: - check the power supply voltage of the component involved.

- carry out a POWER ON.
- replace the component involved.

F30886

Message value:
PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message class:
Component number: \%1, fault cause: \%2

Drive object:
Component:
Reaction:
Acknowledge:
IMMEDIATELY
Cause:
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2

A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
Data were not able to be sent.
Fault cause:
65 (= 41 hex):
Telegram type does not match send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:

F30887	Power unit DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F30895	PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
F30896	Power unit DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an
incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or	
DRIVE-CLiQ component has been replaced.	
Fault value (r0949, interpret decimal):	
Component number.	

F30899 (N, A) Power unit: Unknown fault

Message value: New message: \%1
Message class: Power electronics faulted (5)

| Drive object: | DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S |
| :--- | :--- | :--- |
| Component: | Power Moduler Propagation: LOCAL |

Reaction:
Acknowledge:
Cause:

NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
IMMEDIATELY (POWER ON)
A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the power unit by an older firmware version (r0128).

- upgrade the firmware on the Control Unit (r0018).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F30903	Power unit: I2C bus error occurred	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Power Module Propagation:	LOCAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowledge:	IMMEDIATELY	
Cause:	Communications error with an EEPROM or an analog/digital converter.	
	Fault value (r0949, interpret hexadecimal):	
	80000000 hex:	
	- internal software error.	
	00000001 hex ... 0000FFFF hex:	
	- module fault.	
Remedy:	For fault value $=80000000$ hex:	
	- upgrade firmware to later version.	
	For fault value $=00000001$ hex $\ldots 0000$ FFFF hex:	

F30907

Message value:
Message class: Hardware/software error (1)
Drive object:
Component:
Reaction:
Acknowledge:

Power unit: FPGA configuration unsuccessful

DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Power Module Propagation: LOCAL
OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
IMMEDIATELY

Cause:	During initialization within the power unit, an internal software error has occurred.
Remedy:	- if required, upgrade the firmware in the power unit.
- replace power unit.	
	- contact Technical Support.

A30920 (F)	Power unit: Temperature sensor fault
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT100: R > 375 Ohm, PT1000: R > 1720 Ohm
	2: Measured resistance too low.
	PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT100: R < 30 Ohm, PT1000: R < 603 Ohm
	Note:
	A temperature sensor is connected to the following terminals:
	- "Booksize" format: X21.1/.2 or X22.1/.2
	- "Chassis" format: X41.4/.3
	Information on temperature sensors is provided in the following literature for example:
	SINAMICS S120 Function Manual Drive Functions
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY

A30999 (F, N)	Power unit: Unknown alarm
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
lf required, the significance of this new alarm can be read about in a more recent description of the Control Unit.	
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (rO018).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F31100 (N, A)	Encoder 1: Zero mark distance error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31101 (N, A)	Encoder 1: Zero mark failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31103 (N, A)	Encoder 1: Signal level zero mark (track R) outside tolerance
Message value:	R track: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The zero mark signal level (track R) does not lie within the tolerance bandwidth for encoder 1.
	The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy $=0, \mathrm{xxxx}=$ Signal level, track R (16 bits with sign)
	The response thresholds of the unipolar signal levels of the encoder are between < 1400 mV and> 3500 mV .
	The response threshold for the differential signal level of the encoder is <-1600 mV.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
	The fault value can only be represented between -32768 .. 32767 dec (-770 ... 770 mV) .
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- check the encoder type (encoder with zero marks).
	- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly (not connected with the incorrect polarity).
	- replace the encoder cable.
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31110 (N, A)	Encoder 1: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	There is an error in the transfer of the serial communication protocol between the encoder and internal or external evaluation module.
	Fault value (r0949, interpret binary):
	For an EnDat 2.1 encoder, the significance of the fault value is as follows:
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.
Remedy:	For fault value, bit $0=1$:
	- Enc defect F31111 may provide additional details.
	For fault value, bit $1=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $2=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $3=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable.
	For fault value, bit $4=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $5=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $6=1$:
	- Update Sensor Module firmware.
	For fault value, bit $7=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $8=1$:
	- check parameterization (p0429.2).
	For fault value, bit $9=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $10=1$:
	- check parameterization (p0429.2, p0449).
	For fault value, bit 11 = 1 :
	- check parameterization (p0436).
	For fault value, bit $12=1$:
	- check parameterization (p0429.6).
	For fault value, bit $13=1$:
	- check data line.
	For fault value, bit $14=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

Reaction upon A: Acknowl. upon A:	NONE NONE
F31111 (N, A)	Encoder 1: Encoder signals an internal error (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder error word provides detailed information (error bit).
	For p0404.8 = 0, the following applies:
	Fault value for internal Siemens troubleshooting.
	For p0404.8 = 1, the following applies:
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy = 0:
	Bit 0: Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
Remedy:	For yyyy = 0:
	For fault value, bit $0=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $1=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $2=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $3=1$:
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	For fault value, bit $4=1$:
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	For fault value, bit $5=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $6=1$:
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1:
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31112 (N, A)	Encoder 1: Encoder signals an internal error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder signals an internal error via serial protocol.
	Fault value (r0949, interpret binary):
	Bit 0 : Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$:
	In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31115 (N, A)	Encoder 1: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) of the encoder falls below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is < 170 mV (input frequency < $=256 \mathrm{kHz}$) or < 120 mV (input frequency > 256 kHz).
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is < 1070 mV .
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $A:$	NONE
Acknowl. upon A:	NONE

F31118 (N, A)	Encoder 1: Speed change not plausible
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Encoder 1 is used as motor encoder and can be effective has fault response to change over to encoderless
	operation.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492 (Square-wave encoder maximum speed difference per sampling cycle)
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
Reaction upon $\mathrm{N}:$	- if required, increase the maximum speed difference per sampling cycle (p0492).
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F31120 (N, A) Encoder 1: Encoder power supply fault

Message value: Fault cause: \%1 bin

Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:
Acknowledge:
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Encoder 1 Propagation: LOCAL
ENCODER (IASC/DCBRK, NONE)
PULSE INHIBIT
Cause: An encoder power supply fault was detected.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
Bit 5: Overcurrent at the EnDat connection of the converter.
Bit 6: Overvoltage at the EnDat connection of the converter.
Bit 7: Hardware fault at the EnDat connection of the converter.
Note:
If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.

Remedy:	For fault value, bit $0=1$: - correct encoder cable connected? - check the plug connections of the encoder cable. - SMC30: Check the parameterization (p0404.22). For fault value, bit $1=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $2=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $3=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $5=1$: - Measuring unit correctly connected at the converter? - Replace the measuring unit or the cable to the measuring unit. For fault value, bit 6, $7=1$: - Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31121 (N, A)	Encoder 1: Determined commutation position incorrect
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	A commutation position actual value sensing error was detected.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31122	Encoder 1: Sensor Module hardware fault
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	ENCODER
Acknowledge:	IMMEDIATELY
Cause:	An internal Sensor Module hardware fault was detected. Fault value (r0949, interpret decimal): 1: Reference voltage error. 2: Internal undervoltage. 3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

F31123 (N, A)	Encoder 1: Signal level A/B outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$: Either AP or AN outside the tolerance.
	Bit $16=1$: Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
	- check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31125 (N, A)	Encoder 1: Signal level track A or B too high
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$.
	The response threshold is > 3582 mV .
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31126 (N, A)	Encoder 1: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level ($\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold for ($\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31129 (N, A)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track C / D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to 360° mechanical.
	One period of the Hall signal corresponds to 360° electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429.
	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31130 (N, A)	Encoder 1: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors (p0404) or pole position identification (p 1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
Remedy:	- check p0431 and, if necessary, correct (trigger via p1990 $=1$ if necessary).
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- if the Hall sensor is used as an equivalent for track C/D, check the connection.
	- check the connection of track C or D.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31131 (N, A) Message value: Message class: Drive object: Component: Reaction: Acknowledge: Cause:	Encoder 1: Position deviation incremental/absolute too high
	\%1
	Actual position/speed value incorrect or not available (11)
	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
	Encoder 1 Propagation: LOCAL
	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	PULSE INHIBIT
	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses = 60 quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).

Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check whether the coding disk is dirty or there are strong ambient magnetic fields. - adapt the parameter for the clearance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31135	Encoder 1: Fault when determining the position (single turn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The encoder has identified a position determination fault (singleturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $\mathrm{x}=1,2,3$).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, $x=1,2,3$).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $x=1,2,3$.
	Bit 11: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 12: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$).
	Bit 16: Lighting (--> F3x135, $\mathrm{x}=1,2,3$).
	Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$).
	Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$).
	Bit 19: Overvoltage (--> F3x135, $\mathrm{x}=1,2,3$).
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$).
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
	Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3)$.
	Bit 27: Multiturn position 2 (--> F3x136, $\mathrm{x}=1,2,3$).
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$).
	Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.

F31136

Message value: Fault cause: \%1 bin

Drive object:
Component:
Reaction
Acknowledge:

Message class: Actual position/speed value incorrect or not available (11)
Encoder 1: Fault when determining the position (multiturn) DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Encoder 1 Propagation: GLOBAL ENCODER (IASC/DCBRK, NONE) PULSE INHIBIT

```
Cause: The encoder has identified a position determination fault (multiturn) and supplies status information bit by bit in an internal status/fault word
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting)
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x=1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, \(x=1,2,3\) ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x=1, 2, 3).
Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, \(x=1,2,3\) ).
Bit 11: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 12: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 13: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 14: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 15: Internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 16: Lighting (--> F3x135, \(x=1,2,3\) ).
Bit 17: Signal amplitude (--> F3x135, \(x=1,2,3\) ).
Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3).
Bit 19: Overvoltage (--> F3x135, \(x=1,2,3\) ).
Bit 20: Undervoltage (--> F3x135, \(x=1,2,3\) ).
Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3).
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
Bit 25: Singleturn power down (--> F3x135, \(x=1,2,3\) )
Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3).
Bit 27: Multiturn position 2 (--> F3x136, \(x=1,2,3\) ).
Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3).
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
Bit 30: Multiturn overflow/underflow (--> F3x136, \(x=1,2,3\) ).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.
- replace the encoder if necessary.
Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.
```

F31137	Encoder 1: Fault when determining the position (single turn)	
Message value:	Fault cause: \%1 bin	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 1	Propagation:
Reaction:	ENCODER (IASC/DCBRK, NONE)	
Acknowledge:	PULSE INHIBIT	

Cause: \quad| A position determination fault has occurred in the DRIVE-CLiQ encoder. |
| :--- |
| |
| Fault value (r0949, interpret binary): |
| |
| |

For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.

For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For yy = 12 (0000 1100 bin), the following applies:
Bit 8: encoder fault.
Bit 10: error in the internal position data transport.

For yy = 14 (0000 1110 bin), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).

Bit 23: Position word 2 internal error (self-test/software).

Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F31138	Encoder 1: Fault when determining the position (multiturn)	
Message value:	Fault cause: \%1 bin	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 1	Propagation:
Reaction:	ENCODER (IASC/DCBRK, NONE)	
Acknowledge:	PULSE INHIBIT	

Cause: \quad| A position determination fault has occurred in the DRIVE-CLiQ encoder. |
| :--- |
| |
| Fault value (r0949, interpret binary): |
| |
| |

For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring ($\mathrm{sin} / \mathrm{cos}$).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.

For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For $y y=14$ (0000 1110 bin), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed

Remedy:	information on the bit coding. - determine the detailed cause of the fault using the fault value. - if required, replace the DRIVE-CLiQ encoder.
F31142 (N, A)	Encoder 1: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31150 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
	See also: p0404 (Encoder configuration effective)
Remedy:	- check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31151 (N, A)	Encoder 1: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, deactivate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31152 (N, A)	Encoder 1: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual signal frequency in Hz .
	See also: p0408 (Rotary encoder pulse number)
Remedy:	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31153 (N, A)	Encoder 1: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) $\mathrm{p} 0400=10100$.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect.
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31160 (N, A)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For fault value $=1$:
	- check the output voltage of the analog sensor.
	For fault value $=2$:
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$:
	- check the range limit setting and increase it if necessary (p4676).

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31161 (N, A)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits. Fault value (r0949, interpret decimal): 1: Input voltage outside detectable measuring range. 2: Input voltage outside the selected measuring range (p 4675). 3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For fault value $=1$: - check the output voltage of the analog sensor. For fault value $=2$: - check the voltage setting for each encoder period (p4675). For fault value $=3$: - check the range limit setting and increase it if necessary (p 4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31163 (N, A)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal): 1: Position value from the LVDT sensor. 2: Position value from the encoder characteristic.
Remedy:	For fault value $=1$: - check the LVDT ratio (p4678). - check the reference signal connection at track B. For fault value $=2$: - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A31400 (F, N)	Encoder 1: Zero mark distance error (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31401 (F, N)	Encoder 1: Zero mark failed (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded without a zero mark being detected.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31405 (N, A)	Encoder 1: Temperature in the encoder evaluation exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	An inadmissibly high temperature was detected in the encoder electronics or the encoder evaluation.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: yy = temperature sensor number, $x x x x=$ measured module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A31407 (F, N)	Encoder 1: Function limit reached
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder has reached one of its function limits. A service is recommended.
	Alarm value (r2124, interpret decimal):
	1: Incremental signals
	3: Absolute track
	4: Code connection
Remedy:	Perform service. Replace the encoder if necessary.
	Note:
	The actual functional reserve of an encoder can be displayed via r4651.
	See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31410 (F, N)	Encoder 1: Communication error (encoder and Sensor Module)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace encoder.

4.2 List of faults and alarms

Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon N:	NONE

A31411 (F, N)	Encoder 1: Encoder signals an internal alarm (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$:
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR_converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	Replace encoder.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31412 (F,N)	Encoder 1: Encoder signals an internal alarm
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder signals an internal alarm via serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
Reaction upon F:	- replace encoder.
NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A31414 (F, N)	Encoder 1: Signal level track C or D out of tolerance
Message value:	C track: \%1, D track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level $\left(C^{\wedge} 2+D^{\wedge} 2\right)$ of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	xxxx = Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response thresholds are < 230 mV (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
N31415 (F, A)	Encoder 1: Signal level track A or B outside tolerance (alarm)
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level (root from $A^{\wedge} 2+B^{\wedge} 2$) of the encoder is outside the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is < 230 mV (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

4.2 List of faults and alarms

Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not
sufficient for the speed range.	
- check that the encoder cables and shielding are routed in compliance with EMC.	
- check the plug connections.	
- replace the encoder or encoder cable.	
- check the Sensor Module (e.g. contacts).	
- if the coding disk is soiled or the lighting aged, replace the encoder.	
Reaction upon F: \quad NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F: \quad IMMEDIATELY	
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A31418 (F, N)	Encoder 1: Speed change not plausible (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492 (Square-wave encoder maximum speed difference per sampling cycle)
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31419 (F, N)	Encoder 1: Track A or B outside tolerance	
Message value:	\%1	
Message class:	Actual position/speed value incorrect or not available (11)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 1 Propagation:	LOCAL
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The amplitude/phase/offset correction for track A or B is at the limit.	
	Amplitude error correction: Amplitude B / Amplitude A $=0.78$... 1.27	
	Phase: <84 degrees or >96 degrees	
	SMC20: Offset correction: +/-140 mV	
	SMC10: Offset correction: +/-650 mV	
	Alarm value (r2124, interpret hexadecimal):	
	xxxx1: Minimum of the offset correction, track B	
	xxxx2: Maximum of the offset correction, track B	
	xxx1x: Minimum of the offset correction, track A	
	$x \times x 2 x$: Maximum of the offset correction, track A	
	$x x 1 x x$: Minimum of the amplitude correction, track B/A	
	xx2xx: Maximum of the amplitude correction, track B/A	
	$x 1 \mathrm{xxx}$: Minimum of the phase error correction	
	x2xxx: Maximum of the phase error correction	
	1 xxxx : Minimum of the cubic correction	
	2 xxxx : Maximum of the cubic correction	

Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). - check the plug connections (also the transition resistance). - check the encoder signals. - replace the encoder or encoder cable.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31421 (F, N)	Encoder 1: Determined commutation position incorrect (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A commutation position actual value sensing error was detected.
	Alarm value (r2124, interpret decimal):
	3: The absolute position of the serial protocol and track A / B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	For alarm value $=3:$
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A^{*} and B with B^{*}) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31422 (F, N)	Encoder 1: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.
	The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
	Alarm value (r2124, interpret decimal):
	accumulated differential pulses in encoder pulses.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31429 (F, N)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track C / D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to 360° mechanical.
	One period of the Hall signal corresponds to 360° electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	Alarm value (r2124, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31431 (F, N)	Encoder 1: Position deviation incremental/absolute too high (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r 2124 , interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F :	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31432 (F, N)	Encoder 1: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On track A / B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal): Last measured deviation of zero mark in increments (4 increments $=1$ encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check encoder limit frequency. - adapt the parameter for the distance between zero marks (p0424, p0425).
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31442 (F, N)	Encoder 1: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31443 (F, N) Encoder 1: Signal level track C/D outside tolerance (alarm)

Message value: Fault cause: \%1 bin
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction: Encoder 1 Propagation: LOCAL

Cause: \quad The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit $0=1$: Either $C P$ or $C N$ outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
Note:
The signal level is not evaluated unless the following conditions are satisfied:

- Sensor Module properties available (r0459.31 = 1).
- monitoring active (p0437.31 = 1).

4.2 List of faults and alarms

Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal cables CP and CN or DP and DN been interchanged)?
	- replace the encoder cable.

A31460 (N)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For alarm value $=1$:
	- check the output voltage of the analog sensor.
	For alarm value $=2$:
	- check the voltage setting for each encoder period (p4673).
	For alarm value $=3$:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31461 (N)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits. Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For alarm value $=1$:
	- check the output voltage of the analog sensor.
	For alarm value $=2$:
	- check the voltage setting for each encoder period (p4675).
	For alarm value $=3$:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31462 (N)	Encoder 1: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31463 (N)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For alarm value $=1$:
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For alarm value $=2$:
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31470 (F, N)	Encoder 1: Encoder signals an internal error (X521.7)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the Sensor Module Cabinet 30 (SMC30), a dirty encoder is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	-replace the encoder or encoder cable.
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F31500 (N, A) Encoder 1: Position tracking traversing range exceeded
Message value:
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

4.2 List of faults and alarms

Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions.
	For $0411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of 0421 .
	For p0411.3 = 1, the maximum traversing range for the configured linear axis is preset (default value) to the highest possible value and is $+/$-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31501 (N, A)	Encoder 1: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning ($\mathrm{p} 0010=0$).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31502 (N, A) Encoder 1: Encoder with measuring gear without valid signals
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge: -

Actual position/speed value incorrect or not available (11)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Sensor Module Encoder 1 Propagation: GLOBAL

Cause:
OFF1 (OFF2, OFF3)
IMMEDIATELY

Remedy:
Reaction upon N :
Acknowl. upon N :
It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

Reaction upon A: NONE
Acknowl. upon A: NONE

F31503 (N, A)	Encoder 1: Position tracking cannot be reset
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
Reaction upon N:	The fault should then be acknowledged and the absolute encoder adjusted.
NONE	
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

A31700	Encoder 1: Functional safety monitoring initiated
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	Functional safety was activated. Self-test of the DRIVE-CLiQ encoder has detected a fault.
	Alarm value (r2124, interpret binary):
	Bit $x=1:$ Effectivity test x unsuccessful.
Remedy:	Replace encoder.

N31800 (F)	Encoder 1: Group signal
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	ENCODER (IASC/DCBRK, NONE)
Acknowl. upon F:	IMMEDIATELY

F31801 (N, A) Encoder 1 DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Control Unit (CU) Propagation: LOCAL
Reaction: ENCODER (IASC/DCBRK, NONE)
Acknowledge: IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyx hex: yy = component number, xx = error cause
- check the electrical cabinet design and cable routing for EMC compliance	
Remedy:	- replace the component involved.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F31802 (N, A)	Encoder 1: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 1.
	Fault value (r0949, interpret hexadecimal): $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$:
	Time slice overflow of the fast (current controller clock cycle) time slice. $x=A$:
	Time slice overflow of the average time slice. $\mathrm{x}=\mathrm{C}$:
	Time slice overflow of the slow time slice. $y x=3 E 7$:
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with Article No. 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31804 (N, A) Encoder 1: Sensor Module checksum error
Message value: $\% 1$
Message class: Hardware/software error (1)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction:
Acknowledge:
Sensor Module Encoder 1 Propagation: LOCAL
ENCODER (IASC/DCBRK, NONE)
POWER ON (IMMEDIATELY)
A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the actual checksum.

Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Sensor Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31805 (N, A)	Encoder 1: EEPROM checksum error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 1	
Reaction:	ENCODER (IASC/DCBRK, NONE)	
Acknowledge:	IMMEDIATELY	
Cause:	Data in the EEPROM corrupted .	
	Fault value (r0949, interpret hexadecimal):	
	01: EEPROM access error.	
	02: Too many blocks in the EEPROM.	
Remedy:	Replace the module.	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	
Reaction upon A:	NONE	
Acknowl. upon A:	NONE	

F31806 (N, A) Encoder 1: Initialization error
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: LOCAL
Reaction: ENCODER (IASC/DCBRK, NONE)
Acknowledge: PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between A and B is too great ($>0.5 \mathrm{~V}$)
	Bit 11: The difference in mid-voltages between C and D is too great ($>0.5 \mathrm{~V}$)
	Bit 12: The difference in mid-voltages between safety A and safety B is too great ($>0.5 \mathrm{~V}$)
	Bit 13: The difference in mid-voltages between A and safety B is too great ($>0.5 \mathrm{~V}$)
	Bit 14: The difference in mid-voltages between B and safety A is too great (>0.5 V)
	Bit 15: The standard deviation of the calculated mid-voltages is too great (>0.3 V)
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.
	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits $2 \ldots$ 20: 6SL3055-0AA00-5*A1 and higher
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits $2 . . .9$: Check encoder power supply.
	Bits $2 \ldots$ 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit $29 . .3$ 31: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A31811 (F, N)	Encoder 1: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE

Cause:	The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$) or third-party motors (p0300 = 2).
	Cause 1:
	- the encoder was replaced.
	Cause 2:
	- a third-party, built-in or linear motor was re-commissioned.
	Cause 3:
	- the motor with integrated and adjusted encoder was replaced.
	Cause 4:
	- the firmware was updated to a version that checks the encoder serial number.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441 $=$ FF, p0442 $=0$, p0443 $=0$, p0444 $=0, \mathrm{p} 0445=0$.
	- parameterize F07414 as message type N (p2118, p2119).
Remedy:	For causes 1, 2:
	Carry out an automatic adjustment using the pole position identification routine. Acknowledge fault. Initiate the pole position identification routine with p1990 $=1$. Then check that the pole position identification routine is correctly executed.
	SERVO:
	If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated. or
	Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
	or
	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
	For causes 3, 4:
	Accept the new serial number with p0440 $=1$.
Reaction upon F:	NONE (ENCODER, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31812 (N, A)	Encoder 1: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0 : Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.
	2: Distance between RX and TX instants in time too low.
	3: TX instant in time too early.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31813	Encoder 1: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The logic unit of the DRIVE-CLiQ encoder has failed.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit $1:$ ALU has detected a sign-of-life error.
	When the error reoccurs, replace the encoder.

F31835 (N, A)	Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31836 (N, A)	Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31837 (N, A)	Encoder 1 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31845 (N, A) Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: LOCAL
Reaction:
Acknowledge: ENCODER (IASC/DCBRK, NONE) IMMEDIATELY
Cause:

Remedy:
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F31850 (N, A)	Encoder 1: Encoder evaluation internal software error		
Message value:	\%1		
Message class:	Hardware/software error (1)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S		
Component:	Sensor Module Encoder 1	Propagation:	LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)		
Acknowledge:	POWER ON		

Cause:	An internal software error has occurred in the Sensor Module of encoder 1.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: communication with analog/digital converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31851 (N, A) Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: LOCAL
Reaction:
Acknowledge:
ENCODER (IASC/DCBRK, NONE) IMMEDIATELY

Cause:

Remedy:

A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.

Fault cause:
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

	- carry out a POWER ON (switch-off/switch-on) for the component involved.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31860 (N, A) Encoder 1 DRIVE-CLiQ (CU): Telegram error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: LOCAL
Reaction: ENCODER (IASC/DCBRK, NONE)
Acknowledge: IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31875 (N, A) Encoder 1: power supply voltage failed
Message value: Component number: \%1, fault cause: \%2
Message class: \quad Supply voltage fault (undervoltage) (3)
Drive object:
Component DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction:
Acknowledge:
Sensor Module Encoder 1 Propagation: LOCAL

ENCODER (IASC/DCBRK, NONE)
IMMEDIATELY

Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $x x=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31885 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31886 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Data were not able to be sent.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON.
	- check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31887 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

$\overline{\mathrm{F} 31895 \text { (}}$, A)	Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31896 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	OFF2 (ENCODER, IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F31899 (N, A) Encoder 1: Unknown fault

Message value: New message: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:
Acknowledge:
ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)

Cause: A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.

4.2 List of faults and alarms

Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
Reaction upon N:	- upgrade the firmware on the Control Unit (r0018).
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A31902 (F, N)	Encoder 1: SPI-BUS error occurred	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 1 Propagation:	GLOBAL
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Error when operating the internal SPI bus.	
	Alarm value (r2124, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- replace the Sensor Module.	
	- if required, upgrade the firmware in the Sensor Module.	
	- contact Technical Support.	
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	

A31903 (F, N)	Encoder 1: I2C-BUS error occurred	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 1 Propagation:	GLOBAL
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Error when operating the internal I2C bus.	
	Alarm value (r2124, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- replace the Sensor Module.	
	- if required, upgrade the firmware in the Sensor Module.	
	- contact Technical Support.	
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	

F31905 (N, A) Encoder 1: Encoder parameterization error
Message value: Parameter: \%1, supplementary information: \%2
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: GLOBAL
Reaction
ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2) IMMEDIATELY

Cause:	An error was identified in the encoder parameterization.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
	xxxx = 421:
	For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
	yyyy = 0:
	No additional information available.
	yyyy = 1:
	The component does not support HTL level ($\mathrm{p} 0405.1=0$) combined with track monitoring $A / B<>-A / B(p 0405.2=1)$.
	yyyy = 2:
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
	yyyy = 3:
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
	yyyy = 4:
	This component does not support SSI encoders (p0404.9 = 1) without track A/B.
	yyyy = 5:
	For SQW encoder, value in p4686 greater than in p0425.
	yyyy = 6:
	DRIVE-CLiQ encoder cannot be used with this firmware version.
	yyyy = 7 :
	For an SQW encoder, the XIST1 correction (p0437.2) is only permitted for equidistant zero marks.
	yyyy = 8:
	The motor pole pair width is not supported by the linear scale being used.
	yyyy = 9:
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy = 10:
	The connected encoder is not supported.
	yyyy = 11:
	The hardware does not support track monitoring.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$:
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31912	Encoder 1: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration of the EnDat transfer ($31.25 \mu \mathrm{~s}$) was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=$ p0422 * ${ }^{\wedge} 20$
Remedy:	For fault value $=1003,1005,1006$:
	- Use a measuring unit that is permissible.
	For fault value $=2001$:
	- set a permissible cycle combination (if required, use standard settings).
	For fault value = 2002:
	- Use a measuring unit with a lower resolution (p0422).

A31915 (F, N)	Encoder 1: Encoder configuration error
Message value:	$\% 1$

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge: NONE
Cause: The configuration for encoder 1 is incorrect.
Alarm value (r2124, interpret decimal):
1:
Re-parameterization between fault/alarm is not permissible.
419:
When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual
value (r0483) that can no longer be represented within 32 bits.

Remedy:
For alarm value $=1$:
No re-parameterization between fault/alarm.
For alarm value $=419$:
Reduce the fine resolution (p 0419) or deactivate the monitoring (p 0437.25), if the complete multiturn range is not required.
Reaction upon F: NONE (ENCODER, IASC/DCBRK)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

F31916 (N, A) Encoder 1: Encoder parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:
ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY

Cause:	An encoder parameter was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows: - determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187). Fault value (r0949, interpret decimal): Parameter number. - check whether the connected encoder type matches the encoder that has been parameterized.
Remedy:	- correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}: ~$	NONE

A31920 (F, N)	Encoder 1: Temperature sensor fault (motor)
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor detected a fault when evaluating the temperature sensor.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
	2 (= 02 hex):
	Measured resistance too low.
	PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 603 Ohm
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ channel number, $x x=$ error cause
Remedy:	- check that the encoder cable is the correct type and is correctly connected. - check the temperature sensor selection in p0600 to p0603. - replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31930 (N)	Encoder 1: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	For the activated function "Data logger" ($\mathrm{p} 0437.0=1$) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:
	/USER/SINAMICS/DATA/SMTRC00.BIN
	...
	/USER/SINAMICS/DATA/SMTRC07.BIN
	/USER/SINAMICS/DATA/SMTRCIDX.TXT
	The following information is contained in the TXT file:
	- Display of the last written BIN file.
	- Number of write operations that are still possible (from 10000 downwards).
	Note:
	Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.
	This alarm is automatically withdrawn.
	The data logger is ready to record the next fault case.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A31940 (F, N)	Encoder 1: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 1 Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Alarm value (r2124, interpret decimal):
	Signal level from sensor S1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec.
Remedy:	- check the clamped tool.
	- check the tolerance and if required, adapt (p5040).
	- check the thresholds and if required, adapt (p5041).
Reaction upon F:	- check analog sensor S1 and connections. NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2) Acknowl. upon F: IMMEDIATELY Reaction upon N:
NONE	
Acknowl. upon N:	NONE

F31950	Encoder 1: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1
Reaction:	ENCODER (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	The fault value contains information regarding the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the Sensor Module to a later version.
	- contact Technical Support.

A31999 (F, N)	Encoder 1: Unknown alarm
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32100 (N, A)	Encoder 2: Zero mark distance error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - if message output above speed threshold, reduce filter time if necessary (p0438). - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32101 \text { (N, A) }}$	Encoder 2: Zero mark failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32103 (N, A) Encoder 2: Signal level zero track (track R) outside tolerance

Message value: $\quad \mathrm{R}$ track: \%1

Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

	- monitoring active (p0437.31 = 1).
Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- check the encoder type (encoder with zero marks).
	- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly (not connected with the incorrect polarity).
	- replace the encoder cable.
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32110 (N, A)	Encoder 2: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	There is an error in the transfer of the serial communication protocol between the encoder and internal or external
	evaluation module.
	Fault value (r0949, interpret binary):
	For an EnDat 2.1 encoder, the significance of the fault value is as follows:
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for F3x135 (x $=1,2,3$) is described.

4.2 List of faults and alarms

Remedy:	For fault value, bit $0=1$:
	- Enc defect F31111 may provide additional details.
	For fault value, bit $1=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $2=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $3=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable.
	For fault value, bit $4=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $5=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $6=1$:
	- Update Sensor Module firmware.
	For fault value, bit $7=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $8=1$:
	- check parameterization (p0429.2).
	For fault value, bit $9=1$:
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $10=1$:
	- check parameterization (p0429.2, p0449).
	For fault value, bit 11 = 1:
	- check parameterization (p0436).
	For fault value, bit $12=1$:
	- check parameterization (p0429.6).
	For fault value, bit $13=1$:
	- check data line.
	For fault value, bit $14=1$:
	- incorrect encoder type / replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32111 \text { (N, A) }}$	Encoder 2: Encoder signals an internal error (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT

Cause:	The encoder error word provides detailed information (error bit).
	For p0404.8 = 0, the following applies:
	Fault value for internal Siemens troubleshooting.
	For p0404.8 = 1, the following applies:
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$:
	Bit 0: Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
Remedy:	For yyyy = 0:
	For fault value, bit $0=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $1=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $2=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $3=1$:
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	For fault value, bit $4=1$:
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	For fault value, bit $5=1$:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $6=1$:
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1:
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32112 \text { (N, A) }}$	Encoder 2: Encoder signals an internal error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder signals a set error bit via the serial protocol.
	Fault value (r0949, interpret binary):
	Bit 0: Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$:
	In the case of an EnDat encoder, F31111 may provide further details.

4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32115 \text { (N, A) }}$	Encoder 2: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) of the encoder falls below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $<170 \mathrm{mV}$ (input frequency $<=256 \mathrm{kHz}$) or $<120 \mathrm{mV}$ (input frequency $>256 \mathrm{kHz}$).
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is $<1070 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32116 (N, A) Encoder 2: Signal level track A or B too low

Message value: A track: \%1, B-track: \%2

Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:
Acknowledge: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Encoder 2 Propagation: LOCAL OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) IMMEDIATELY

Cause:	The signal level of the rectified encoder signals A and B of the encoder fall below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $<130 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32117 (N, A)	Encoder 2: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals A^{*}, B^{*} and R^{*} are not inverted with respect to signals A, B and R.
	Fault value (r0949, interpret binary):
	Bits $0 . .15$: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (only Article No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated.
Remedy:	- check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (only Article Number 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32118 (N, A)	Encoder 2: Speed change not plausible
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492 (Square-wave encoder maximum speed difference per sampling cycle)
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the maximum speed difference per sampling cycle (p0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32120 (N, A)	Encoder 2: Encoder power supply fault
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	An encoder power supply fault was detected.
	Fault value (r0949, interpret binary):
	Bit 0: Undervoltage condition on the sense line.
	Bit 1: Overcurrent condition for the encoder power supply.
	Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
	Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
	Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
	Bit 5: Overcurrent at the EnDat connection of the converter.
	Bit 6: Overvoltage at the EnDat connection of the converter.
	Bit 7: Hardware fault at the EnDat connection of the converter.
	Note:
	If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.

Remedy:	For fault value, bit $0=1$: - correct encoder cable connected? - check the plug connections of the encoder cable. - SMC30: Check the parameterization (p0404.22). For fault value, bit $1=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $2=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $3=1$: - correct encoder cable connected? - replace the encoder or encoder cable. For fault value, bit $5=1$: - Measuring unit correctly connected at the converter? - Replace the measuring unit or the cable to the measuring unit. For fault value, bit 6, $7=1$: - Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32121 (N, A)	Encoder 2: Determined commutation position incorrect
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	A commutation position actual value sensing error was detected.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32122	Encoder 2: Sensor Module hardware fault
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An internal Sensor Module hardware fault was detected. Fault value (r0949, interpret decimal): 1: Reference voltage error. 2: Internal undervoltage. 3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

F32123 (N, A)	Encoder 2: Signal level A/B outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$: Either AP or AN outside the tolerance.
	Bit $16=1$: Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are < 1700 mV and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
	- check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32125 (N, A)	Encoder 2: Signal level track A or B too high
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	$x x x x=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$.
	The response threshold is > 3582 mV .
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32126 (N, A)	Encoder 2: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level ($\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32129 (N, A)	Encoder 2: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track C / D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to 360° mechanical.
	One period of the Hall signal corresponds to 360° electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429.
	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32130 (N, A)	Encoder 2: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C / D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track $C / D(p 0404)$ then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors (p0404) or pole position identification (p 1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- if the Hall sensor is used as an equivalent for track C/D, check the connection.
	- check the connection of track C or D.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32131 (N, A)	Encoder 2: Position deviation incremental/absolute too high
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses $=60$ quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).

Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check whether the coding disk is dirty or there are strong ambient magnetic fields. - adapt the parameter for the clearance between zero marks (p0425). - if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32135	Encoder 2: Fault when determining the position (single turn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The encoder has identified a position determination fault (singleturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $\mathrm{x}=1,2,3$).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, $x=1,2,3$).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $x=1,2,3$.
	Bit 11: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 12: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$).
	Bit 16: Lighting (--> F3x135, $\mathrm{x}=1,2,3$).
	Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$).
	Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$).
	Bit 19: Overvoltage (--> F3x135, $\mathrm{x}=1,2,3$).
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$).
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
	Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3)$.
	Bit 27: Multiturn position 2 (--> F3x136, $\mathrm{x}=1,2,3$).
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$).
	Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.

```
Cause: The encoder has identified a position determination fault (multiturn) and supplies status information bit by bit in an internal status/fault word
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting)
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x=1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, \(x=1,2,3\) ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x=1, 2, 3).
Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, \(x=1,2,3\) ).
Bit 11: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 12: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 13: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 14: Reserved/internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 15: Internal communication error (--> F3x110, \(x=1,2,3\) ).
Bit 16: Lighting (--> F3x135, \(x=1,2,3\) ).
Bit 17: Signal amplitude (--> F3x135, \(x=1,2,3\) ).
Bit 18: Singleturn position 1 (--> F3x135, \(x=1,2,3\) ).
Bit 19: Overvoltage (--> F3x135, \(x=1,2,3\) ).
Bit 20: Undervoltage (--> F3x135, \(x=1,2,3\) ).
Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3).
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
Bit 25: Singleturn power down (--> F3x135, \(x=1,2,3\) )
Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3).
Bit 27: Multiturn position 2 (--> F3x136, \(x=1,2,3\) ).
Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3).
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
Bit 30: Multiturn overflow/underflow (--> F3x136, \(x=1,2,3\) ).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.
- replace the encoder if necessary.
Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.
```


F32137

Message value: Fault cause: \%1 bin
Message class: Hardware/software error (1)
Drive object:
Component:
Reaction:
Acknowledge:

Encoder 2: Fault when determining the position (single turn)

DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Encoder 2 Propagation: GLOBAL OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) PULSE INHIBIT

Cause: \quad| A position determination fault has occurred in the DRIVE-CLiQ encoder. |
| :--- |
| |
| Fault value (r0949, interpret binary): |
| |
| |

For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.

For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For yy = 12 (0000 1100 bin), the following applies:
Bit 8: encoder fault.
Bit 10: error in the internal position data transport.

For yy = 14 (0000 1110 bin), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).

Bit 23: Position word 2 internal error (self-test/software).

Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F32138	Encoder 2: Fault when determining the position (multiturn)	
Message value:	Fault cause: \%1 bin	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 2	Propagation:
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)	
Acknowledge:	PULSE INHIBIT	

Cause: \quad| A position determination fault has occurred in the DRIVE-CLiQ encoder. |
| :--- |
| |
| Fault value (r0949, interpret binary): |
| |
| |

For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring ($\mathrm{sin} / \mathrm{cos}$).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.

For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For $y y=14$ (0000 1110 bin), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed

Remedy:	information on the bit coding. - determine the detailed cause of the fault using the fault value. - if required, replace the DRIVE-CLiQ encoder.
F32142 (N, A)	Encoder 2: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32150 (N, A)	Encoder 2: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- check that p0404 is correctly set. - check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable. - if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32151 (N, A)	Encoder 2: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, deactivate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE

F32152 (N, A)	Encoder 2: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded. Fault value (r0949, interpret decimal): Actual input frequency in Hz . See also: p0408 (Rotary encoder pulse number)
Remedy:	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32153 (N, A)	Encoder 2: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) p0400 $=10100$.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect.
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32160 (N, A)	Encoder 2: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value = 1 :
	- check the output voltage of the analog sensor.
	For fault value $=2$:
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$:
	- check the range limit setting and increase it if necessary (p4676).

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32161 (N, A)	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits. Fault value (r0949, interpret decimal): 1: Input voltage outside detectable measuring range. 2: Input voltage outside the selected measuring range (p 4675). 3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For fault value $=1$: - check the output voltage of the analog sensor. For fault value $=2$: - check the voltage setting for each encoder period (p4675). For fault value $=3$: - check the range limit setting and increase it if necessary (p 4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32163 (N, A)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal): 1: Position value from the LVDT sensor. 2: Position value from the encoder characteristic.
Remedy:	For fault value $=1$: - check the LVDT ratio (p4678). - check the reference signal connection at track B. For fault value $=2$: - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A32400 (F, N)	Encoder 2: Zero mark distance error (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32401 (F, N)	Encoder 2: Zero mark failed (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 1.5 x parameterized zero mark distance was exceeded without a zero mark being detected.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F32405 (N, A) Encoder 2: Temperature in the encoder evaluation exceeded
Message value: $\% 1$
Message class: Overtemperature of the electronic components (6)
Drive object:
Component: Reaction:

DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Sensor Module Encoder 2 Propagation: LOCAL OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause:	An inadmissibly high temperature was detected in the encoder electronics or the encoder evaluation.
	Fault value (r0949, interpret hexadecimal):
yyxxxx hex: yy = temperature sensor number, $x x x x=$ measured module temperature in $0.1^{\circ} \mathrm{C}$.	
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

A32407 (F, N)	Encoder 2: Function limit reached
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder has reached one of its function limits. A service is recommended.
	Alarm value (r2124, interpret decimal):
	1: Incremental signals
	3: Absolute track
	4: Code connection
	Perform service. Replace the encoder if necessary.
Remedy:	Note:
	The actual functional reserve of an encoder can be displayed via r4651.
	See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A32410 (F,N)	Encoder 2: Communication error (encoder and Sensor Module)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.	
	- replace encoder.

4.2 List of faults and alarms

Reaction upon F: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N : NONE

Acknowl. upon N :
NONE

A32411 (F, N)	Encoder 2: Encoder signals an internal alarm (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, $\mathrm{xxxx}=$ fault cause
	yyyy $=0$:
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy $=1$.
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (n Err).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	Replace encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32412 (F, N)	Encoder 2: Encoder signals an internal alarm	
Message value:	\%1	
Message class:	Actual position/speed value incorrect or not available (11)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 2 Propagation:	LOCAL
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The encoder signals an internal alarm via serial protocol.	
	Alarm value (r2124, interpret binary):	
	Bit 0: Fault bit in the position protocol.	
	Bit 1: Alarm bit in the position protocol.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	
	- check that the encoder cables are routed in compliance with EMC.	
	- check the plug connections.	
	- replace encoder.	
Reaction upon F :	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	

A32414 (F, N)	Encoder 2: Signal level track C or D out of tolerance
Message value:	C track: \%1, D track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level $\left(C^{\wedge} 2+D^{\wedge} 2\right)$ of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	xxxx = Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
N32415 (F, A)	Encoder 2: Signal level track A or B outside tolerance (alarm)
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$) of the encoder is outside the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is < 230 mV (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

4.2 List of faults and alarms

Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not
sufficient for the speed range.	
- check that the encoder cables and shielding are routed in compliance with EMC.	
- check the plug connections.	
- replace the encoder or encoder cable.	
- check the Sensor Module (e.g. contacts).	

A32418 (F, N)	Encoder 2: Speed change not plausible (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492 (Square-wave encoder maximum speed difference per sampling cycle)
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32419 (F, N) Encoder 2: Track A or B outside tolerance
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:
Reaction:
Acknowledge:
Encoder
Acknowledge: NONE
Cause: \quad The amplitude/phase/offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude $\mathrm{B} /$ Amplitude $\mathrm{A}=0.78$... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: +/-140 mV
SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
$x x x x 2$: Maximum of the offset correction, track B
$x x x 1 x$: Minimum of the offset correction, track A
xxx2x: Maximum of the offset correction, track A
xx1xx: Minimum of the amplitude correction, track B/A
xx2xx: Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
$1 \times x x x$: Minimum of the cubic correction
$2 x x x x$: Maximum of the cubic correction

Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders). - check the plug connections (also the transition resistance). - check the encoder signals. - replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32421 (F, N)	Encoder 2: Determined commutation position incorrect (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A commutation position actual value sensing error was detected.
	Alarm value (r2124, interpret decimal):
	3: The absolute position of the serial protocol and track A / B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	For alarm value $=3:$
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A^{*} and B with B^{*}) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32422 (F, N)	Encoder 2: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.
	The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
	Alarm value (r2124, interpret decimal): accumulated differential pulses in encoder pulses.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32429 (F, N)	Encoder 2: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track C / D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C / D corresponds to 360° mechanical.
	One period of the Hall signal corresponds to 360° electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	Alarm value (r2124, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F :	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32431 (F, N)	Encoder 2: Position deviation incremental/absolute too high (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32432 (F, N)	Encoder 2: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On track A / B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal): Last measured deviation of zero mark in increments (4 increments $=1$ encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC. - check the plug connections. - replace the encoder or encoder cable. - check encoder limit frequency. - adapt the parameter for the distance between zero marks (p0424, p0425).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32442 (F, N)	Encoder 2: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32443 (F, N)	Encoder 2: Signal level track C/D outside tolerance (alarm)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance.
	Alarm value (r2124, interpret binary):
	Bit $0=1:$ Either CP or CN outside the tolerance.
	Bit $16=1:$ Either DP or DN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are < 1700 mV and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).

4.2 List of faults and alarms

Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal cables CP and CN or DP and DN been interchanged)?
	- replace the encoder cable.

A32460 (N)	Encoder 2: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For alarm value $=1$:
	- check the output voltage of the analog sensor.
	For alarm value $=2$:
	- check the voltage setting for each encoder period (p4673).
	For alarm value $=3$:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32461 (N)	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For alarm value $=1$:
	- check the output voltage of the analog sensor.
	For alarm value $=2$:
	- check the voltage setting for each encoder period (p4675).
	For alarm value $=3$:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32462 (N)	Encoder 2: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32463 (N)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For alarm value = 1:
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For alarm value $=2$:
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32470 (F, N)	Encoder 2: Encoder signals an internal error (X521.7)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the Sensor Module Cabinet 30 (SMC30), a dirty encoder is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	-replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F32500 (N, A) Encoder 2: Position tracking traversing range exceeded
Message value:
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

4.2 List of faults and alarms

Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions.
	For $00411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of p0421.
	For p0411.3 = 1, the maximum traversing range for the configured linear axis is preset (default value) to the highest possible value and is $+/$-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32501 (N, A)	Encoder 2: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32502 (N, A) Encoder 2: Encoder with measuring gear without valid signals
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Actual position/speed value incorrect or not available (11)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Sensor Module Encoder 2 Propagation: GLOBAL

Cause:
OFF1 (OFF2, OFF3)
IMMEDIATELY

Remedy:
Reaction upon N :
Acknowl. upon N :
It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

Reaction upon A: NONE
Acknowl. upon A: NONE

F32503 (N, A)	Encoder 2: Position tracking cannot be reset
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning ($\mathrm{p} 0010=0$).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A32700	Encoder 2: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Alarm value (r2124, interpret binary):
	Bit $x=1$: Effectivity test x unsuccessful.
Remedy:	Replace encoder.
N32800 (F)	Encoder 2: Group signal
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	None Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F32801 (N, A)	Encoder 2 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyx hex: yy = component number, xx = error cause
- check the electrical cabinet design and cable routing for EMC compliance	

F32802 (N, A)	Encoder 2: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 2.
	Fault value (r0949, interpret hexadecimal): $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$:
	Time slice overflow of the fast (current controller clock cycle) time slice. $\mathrm{x}=\mathrm{A}$:
	Time slice overflow of the average time slice. $\mathrm{x}=\mathrm{C}$:
	Time slice overflow of the slow time slice. $y x=3 E 7$:
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with Article No. 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32804 (N, A) Encoder 2: Sensor Module checksum error

Message value: \%1

Message class: Hardware/software error (1)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction:
Acknowledge:
Sensor Module Encoder 2
Propagation: LOCAL OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
POWER ON (IMMEDIATELY)
A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the actual checksum.

Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Sensor Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32805 (N, A)	Encoder 2: EEPROM checksum error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 2 Propagation:	LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)	
Acknowledge:	IMMEDIATELY	
Cause:	Data in the EEPROM corrupted.	
	Fault value (r0949, interpret hexadecimal):	
	01: EEPROM access error.	
	02: Too many blocks in the EEPROM.	
Remedy:	Replace the module.	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	
Reaction upon A:	NONE	
Acknowl. upon A:	NONE	

F32806 (N, A) Encoder 2: Initialization error
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: DC_CTRL, DC_CTRL_R,DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 2 Propagation: LOCAL
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between A and B is too great ($>0.5 \mathrm{~V}$)
	Bit 11: The difference in mid-voltages between C and D is too great ($>0.5 \mathrm{~V}$)
	Bit 12: The difference in mid-voltages between safety A and safety B is too great ($>0.5 \mathrm{~V}$)
	Bit 13: The difference in mid-voltages between A and safety B is too great ($>0.5 \mathrm{~V}$)
	Bit 14: The difference in mid-voltages between B and safety A is too great (>0.5 V)
	Bit 15: The standard deviation of the calculated mid-voltages is too great (>0.3 V)
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.
	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits $2 \ldots$ 20: 6SL3055-0AA00-5*A1 and higher
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits $2 \ldots .9$: Check encoder power supply.
	Bits $2 \ldots$ 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit $29 . .31$: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A32811 (F, N)	Encoder 2: Encoder serial number changed	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Encoder 2	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	

Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
	- the encoder was replaced.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1) .
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441=FF, p0442 = 0, p0443 = 0, p0444 $=0, p 0445=0$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
$\overline{\mathrm{F} 32812 \text { (N, A) }}$	Encoder 2: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0 : Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.
	2: Distance between RX and TX instants in time too low.
	3: TX instant in time too early.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32813	Encoder 2: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The logic unit of the DRIVE-CLiQ encoder has failed.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit 1: ALU has detected a sign-of-life error.
Remedy:	When the error reoccurs, replace the encoder.
F32820 (N, A)	Encoder 2 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= $03 \mathrm{hex):}$
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32835 (N, A) Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component:
Reaction:
Acknowledge: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
Fault cause:
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: - carry out a POWER ON.

- replace the component involved.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32836 (N, A)	Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32837 (N, A)	Encoder 2 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

$\overline{\text { F32845 (N, A) }}$	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32850 (N, A) Encoder 2: Encoder evaluation internal software error
Message value: \%1

Message class: Hardware/software error (1)
Drive object:
Component: Reaction:

Acknowledge:

 DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Sensor Module Encoder 2 Propagation: GLOBAL
Cause:

OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
POWER ON
An internal software error has occurred in the Sensor Module of encoder 2.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
11000 ... 11499: Descriptive data from EEPROM incorrect.
11500 ... 11899: Calibration data from EEPROM incorrect.
11900 ... 11999: Configuration data from EEPROM incorrect.
12000 ... 12008: communication with analog/digital converter faulted.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.
Remedy:

- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact Technical Support.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F32851 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (switch-off/switch-on) for the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32860 \text { (}}$, A)	Encoder 2 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
	20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32875 (N, A) Encoder 2: power supply voltage failed
Message value: Component number: \%1, fault cause: \%2
Message class: \quad Supply voltage fault (undervoltage) (3)
Drive object:
Component DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S

Reaction:
Acknowledge:
Sensor Module Encoder 2 Propagation: LOCAL

OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
IMMEDIATELY

Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $x x=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32885 \text { (} \mathrm{N}, \mathrm{A})}$	Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32886 \text { (N, A) }}$	Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32887 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32895 (N, A) Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component: Sensor Module Encoder 2 Propagation: LOCAL
Reaction:
Acknowledge:
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
IMMEDIATELY

Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. Fault cause: $11 \text { (= 0B hex): }$ Synchronization error during alternating cyclic data transfer. Note regarding the message value: The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32896 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal): Component number.
Remedy:	- carry out a POWER ON. - when a component is replaced, the same component type and if possible the same firmware version should be used. - when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32899 \text { (N, A) }}$	Encoder 2: Unknown fault
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal): Fault number. Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A32902 (F, N)	Encoder 2: SPI-BUS error occurred	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 2	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Error when operating the internal SPI bus.	
	Alarm value (r2124, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- replace the Sensor Module.	
	- if required, upgrade the firmware in the Sensor Module.	
	- contact Technical Support.	
Reaction upon $\mathrm{F}:$	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	

A32903 (F, N)	Encoder 2: I2C-BUS error occurred	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S	
Component:	Sensor Module Encoder 2	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Error when operating the internal I2C bus.	
	Alarm value (r2124, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
	- replace the Sensor Module.	
Remedy:	- if required, upgrade the firmware in the Sensor Module.	
	- contact Technical Support.	
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	

F32905 (N, A) Encoder 2: Encoder parameterization error
Message value: Parameter: \%1, supplementary information: \%2
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 2 Propagation: LOCAL
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY

Cause:	An error was identified in the encoder parameterization.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
	xxxx = 421:
	For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
	yyyy = 0:
	No additional information available.
	yyyy = 1:
	The component does not support HTL level ($\mathrm{p} 0405.1=0$) combined with track monitoring $A / B<>-A / B(p 0405.2=1)$.
	yyyy $=2$:
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
	yyyy = 3:
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
	yyyy = 4:
	This component does not support SSI encoders (p0404.9 = 1) without track A/B.
	yyyy = 5:
	For SQW encoder, value in p4686 greater than in p0425.
	yyyy = 6:
	DRIVE-CLiQ encoder cannot be used with this firmware version.
	yyyy = 7 :
	For an SQW encoder, the XIST1 correction (p0437.2) is only permitted for equidistant zero marks.
	yyyy = 8:
	The motor pole pair width is not supported by the linear scale being used.
	yyyy = 9:
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy = 10:
	The connected encoder is not supported.
	yyyy = 11:
	The hardware does not support track monitoring.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$:
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32912	Encoder 2: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT

4.2 List of faults and alarms

Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration of the EnDat transfer (31.25 $\mu \mathrm{s}$) was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=\mathrm{p} 0422$ * $2^{\wedge} 20$
Remedy:	For fault value $=1003,1005,1006$:
	- Use a measuring unit that is permissible.
	For fault value = 2001:
	- set a permissible cycle combination (if required, use standard settings).
	For fault value $=2002$:
	- Use a measuring unit with a lower resolution (p0422).

A32915 (F, N)	Encoder 2: Encoder configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 2 is incorrect.
	Alarm value (r2124, interpret decimal):
	$1:$
	Re-parameterization between fault/alarm is not permissible.
	$419:$

Remedy: \quad For alarm value $=1$ value (r0483) that can no longer be represented within 32 bits.

No re-parameterization between fault/alarm.
For alarm value $=419$:
Reduce the fine resolution (p 0419) or deactivate the monitoring (p 0437.25), if the complete multiturn range is not required.
Reaction upon F: NONE (IASC/DCBRK)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

F32916 (N, A) Encoder 2: Encoder parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component: Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY

Cause:	An encoder parameter was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows: - determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187). Fault value (r0949, interpret decimal): Parameter number. - check whether the connected encoder type matches the encoder that has been parameterized.
Remedy:	- correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}: ~$	NONE

A32920 (F, N)	Encoder 2: Temperature sensor fault (motor)
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor detected a fault when evaluating the temperature sensor.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
	2 (= 02 hex):
	Measured resistance too low.
	PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 603 Ohm
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ channel number, $x x=$ error cause
Remedy:	- check that the encoder cable is the correct type and is correctly connected. - check the temperature sensor selection in p0600 to p0603. - replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32930 (N)	Encoder 2: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:
	/USER/SINAMICS/DATA/SMTRC00.BIN
	...
	/USER/SINAMICS/DATA/SMTRC07.BIN
	/USER/SINAMICS/DATA/SMTRCIDX.TXT
	The following information is contained in the TXT file:
	- Display of the last written BIN file.
	- Number of write operations that are still possible (from 10000 downwards).
	Note:
	Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.
	This alarm is automatically withdrawn.
	The data logger is ready to record the next fault case.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32940 (F, N)	Encoder 2: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Alarm value (r2124, interpret decimal):
	Signal level from sensor S1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec.
Remedy:	- check the clamped tool.
	- check the tolerance and if required, adapt (p5040).
	- check the thresholds and if required, adapt (p5041).
Reaction upon F:	- check analog sensor S1 and connections. NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2) Acknowl. upon F: IMMEDIATELY Reaction upon N:
NONE	
Acknowl. upon N:	NONE

F32950	Encoder 2: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2
Reaction:	OFF1 (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source. Only for internal Siemens troubleshooting. Remedy:
	- if necessary, upgrade the firmware in the Sensor Module to a later version.
	- contact Technical Support.

A32999 (F, N)	Encoder 2: Unknown alarm
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148). - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F33125 (N, A)	Encoder 3: Signal level track A or B too high
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 3 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $A^{\wedge} 2+B^{\wedge} 2$) of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign). xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold is $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms).
	The response threshold is $>3582 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC. - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33126 (N, A)	Encoder 3: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 3 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level ($\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ($500 \mathrm{mV}-25 /+20 \%$).
	The response threshold for ($\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33142 (N, A) Encoder 3: Battery voltage fault

Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge:
Cause: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S Encoder 3 Propagation: LOCAL OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
IMMEDIATELY
When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy: Replace battery.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F33152 (N, A)	Encoder 3: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 3
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz. Remedy:
	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

A33442 (F, N)	Encoder 3: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no
	longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon $\mathrm{F}:$	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A33700 Encoder 3: Effectivity test does not supply the expected value

Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Alarm value (r2124, interpret binary):
	Bit $x=1:$ Effectivity test x unsuccessful.
Remedy:	Replace encoder.

F33875 (N, A)	Encoder 3: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33912	Encoder 3: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal): 1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration of the EnDat transfer ($31.25 \mu \mathrm{~s}$) was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=$ p 0422 * $2^{\wedge} 20$
Remedy:	For fault value $=1003,1005,1006$:
	- Use a measuring unit that is permissible.
	For fault value $=2001$:
	- set a permissible cycle combination (if required, use standard settings).
	For fault value $=2002$:
	- Use a measuring unit with a lower resolution (p0422).
F34851	VSM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F34860	VSM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY

Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
	20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F34875

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

VSM: power supply voltage failed
Component number: \%1, fault cause: \%2
Supply voltage fault (undervoltage) (3)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Voltage Sensing Module (VSM) Propagation: LOCAL
OFF2
IMMEDIATELY

Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
F34885	VSM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.

F34886	VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):

Remedy:	Carry out a POWER ON.
F34887	VSM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.

F34895

Message value:

Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Voltage Sensing Module (VSM) Propagation: LOCAL
NONE (OFF1, OFF2)
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
Fault cause:
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: Carry out a POWER ON.
F34896
Message value:
VSM DRIVE-CLiQ (CU): Inconsistent component properties
Component number: \%1
Internal (DRIVE-CLiQ) communication error (12) DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31 Voltage Sensing Module (VSM) Propagation: LOCAL Component: Reaction:
Acknowledge:

OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2) IMMEDIATELY

4.2 List of faults and alarms

Cause:	The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

A35200 (F, N)	TM: Calibration data
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected in the calibration data of the Terminal Module.
	Alarm value (r2124, interpret decimal):
	ddcbaa dec: dd = component number, c = AI/AO, b = fault type, aa = number
	$\mathrm{c}=0$: analog input (AI)
	$c=1$: analog output (AO)
	$b=0$: No calibration data available.
	$\mathrm{b}=1$: Offset too high (> 100 mV).
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- replace the component if necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F35207 (N, A) TM: Temperature fault/alarm threshold channel 0 exceeded
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:
Reaction:
Acknowledge:
OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY (POWER ON)
Cause: For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this
fault is fulfilled:
- alarm threshold has been exceeded longer than that set in the timer (p4102[0], p4103[0]).
or
- fault threshold exceeded (p4102[1]).
Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0] = 1, 4), the following applies:
- if $\mathrm{r} 4101[0]>1650$ ohms, the temperature $\mathrm{r} 4105[0]=250^{\circ} \mathrm{C}$
- if r4101[0] <= 1650 ohms, the temperature r4105[0] =-50 ${ }^{\circ} \mathrm{C}$
The temperature actual value is displayed via connector output $\mathrm{r} 4105[0]$ and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the
Terminal Module.
Fault value (r0949, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.

Remedy:	- allow the temperature sensor to cool down to below p4102[1] - hysteresis (5 K, for TM150, can be set using p4118[0]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35208 (N, A)	TM: Temperature fault/alarm threshold channel 1 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[2], p4103[1]).
	or
	- fault threshold exceeded (p4102[3]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies: - if r 4101 [1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250^{\circ} \mathrm{C}$
	- if r4101[1] <= 1650 ohms, the temperature r4105[1] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[1] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	- allow the temperature sensor to cool down to below p4102[3] - hysteresis (5 K, for TM150, can be set using p4118[1]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35209 (N, A)	TM: Temperature fault/alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)

4.2 List of faults and alarms

Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[4], p4103[2]).
	or
	- fault threshold exceeded (p4102[5]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies:
	- if r4101[2] > 1650 ohms, the temperature r4105[2] $=250^{\circ} \mathrm{C}$
	- if r4101[2] <= 1650 ohms, the temperature r4105[2] $=-50{ }^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[2] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	- allow the temperature sensor to cool down to below p4102[5] - hysteresis (5 K, for TM150, can be set using p4118[2]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F35210 (N, A) TM: Temperature fault/alarm threshold channel 3 exceeded
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object:
Component:
Reaction:
Acknowledge:
Cause: \quad For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this
fault is fulfilled:

- alarm threshold has been exceeded longer than that set in the timer (p4102[6], p4103[3]).
or
- fault threshold exceeded (p4102[7]).
Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies:
- if r 4101 [3] > 1650 ohms, the temperature $\mathrm{r} 4105[3]=250^{\circ} \mathrm{C}$
- if $\mathrm{r} 4101[3]<=1650$ ohms, the temperature $\mathrm{r} 4105[3]=-50^{\circ} \mathrm{C}$
The temperature actual value is displayed via connector output r4105[3] and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the
Terminal Module.
Fault value (r0949, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy: - allow the temperature sensor to cool down to below p4102[7] - hysteresis (5 K, for TM150, can be set using
p4118[3]).
- if required, set the fault response to NONE (p2100, p2101).
See also: p4102
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35211 (F, N)	TM: Temperature alarm threshold channel 0 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[0]) has exceeded the threshold value to initiate this alarm (p4102[0]). Note: For sensor type "PTC thermistor" and "Bimetallic NC contact" ($\mathrm{p} 4100[0]=1,4$), the following applies: - if r 4101 [0] > 1650 ohms, the temperature $\mathrm{r} 4105[0]=250^{\circ} \mathrm{C}$ - if $\mathrm{r} 4101[0]<=1650$ ohms, the temperature $\mathrm{r} 4105[0]=-50^{\circ} \mathrm{C}$ Alarm value (r2124, interpret decimal): Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[0] - hysteresis (5 K , for TM150, can be set using p4118[0]). See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35212 (F, N)	TM: Temperature alarm threshold channel 1 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[1]) has exceeded the threshold value to initiate this alarm (p4102[2]). Note: For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies: - if r 4101 [1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250{ }^{\circ} \mathrm{C}$ - if $\mathrm{r} 4101[1]<=1650$ ohms, the temperature $\mathrm{r} 4105[1]=-50^{\circ} \mathrm{C}$ Alarm value (r2124, interpret decimal): Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K , for TM150, can be set using p4118[1]). See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35213 (F, N)	TM: Temperature alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[2]) has exceeded the threshold value to initiate this alarm (p4102[4]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies: - if r4101[2] > 1650 ohms, the temperature r4105[2] $=250^{\circ} \mathrm{C}$
	- if r4101[2] <= 1650 ohms, the temperature $\mathrm{r} 4105[2]=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K , for TM150, can be set using p4118[2]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35214 (F, N)	TM: Temperature alarm threshold channel 3 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[3]) has exceeded the threshold value to initiate this alarm (p4102[6]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies:
	- if r4101[3] > 1650 ohms, the temperature r4105[3] $=250{ }^{\circ} \mathrm{C}$
	- if r4101[3] <= 1650 ohms, the temperature r4105[3] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[6] - hysteresis (5 K , for TM150, can be set using p4118[3]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F35220 (N, A) TM: Frequency limit reached for signal output

Message value:

Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Application/technological function faulted (17)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO, TM31
Terminal Module (TM) Propagation: BICO
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY (POWER ON)
The signals output from the Terminal Module 41 (TM41) for tracks A / B have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint.
SIMOTION (p4400 = 0) operating mode:

- if the TM41 has been configured as the technology project, this fault is also output in response to short-circuited A / B signals in X520.
SINAMICS (p4400 = 1) operating mode:
- the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at p4420
- the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed
- the output signals correspond to a speed, which is greater than the maximum speed (r1082 of TM41).

Remedy:	SIMOTION $(p 4400=0)$ operating mode:
	- enter a lower speed setpoint $(\mathrm{p} 1155)$.
	- reduce the encoder pulse number $(\mathrm{p} 0408)$.
	- check track A/B for short-circuits.
	SINAMICS (p4400 = 1) operating mode:
	- enter a lower speed setpoint (p1155).
	- reduce the encoder pulse number (p0408).
	Notice:
The output signal is no longer monitored after changing the message type to "Alarm" (A).	
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F35221 (N, A) TM: Setpoint - actual value deviation outside the tolerance range

Message value:

Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Application/technological function faulted (17)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO, TM31
Terminal Module (TM) Propagation: BICO
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY (POWER ON)
The deviation between the setpoint and the output signals (track A/B) exceeds the tolerance of $+/-3 \%$. The deviation between the internal and external measured value is too high (> 1000 pulses).
Remedy: - reduce the basic clock cycle (p0110, p0111).

- if required, replace the component (e.g. internal short-circuit).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35222 (F, N)	TM: Encoder pulse number not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO, TM31
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder pulse number entered does not match the permissible pulse number from a hardware perspective. Alarm value (r2124, interpret decimal): 1: Encoder pulse number is too high. 2: Encoder pulse number is too low. 4: Encoder pulse number is less than the zero mark offset (p 4426).
Remedy:	- enter the encoder pulse number in the permissible range (p 0408). - if necessary, replace TM41 SAC with TM41 DAC. Note: TM41 SAC: Article No. $=6$ SL3055-0AA00-3PA0 TM41 DAC: Article No. $=6$ SL3055-0AA00-3PA1 The following applies for TM41 SAC: - minimum/maximum value for p0408: 1000/8192 The following applies for TM41 DAC: - minimum/maximum value for p0408: 1000/16384 See also: p0408 (Rotary encoder pulse number)
Reaction upon F:	OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35223 (F, N)	TM: Zero mark offset not permissible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The entered zero mark offset is not permissible.
	Alarm value (r2124, interpret decimal):
	1: Zero mark offset is too high.
Remedy:	Enter the zero mark offset in the permissible range (p4426).
Reaction upon F:	OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE
F35230	TM: Hardware fault
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The Terminal Module (TM) used has signaled internal errors.
Remedy:	Signals from this module may not be evaluated because they are very likely to be incorrect.
If required, replace the Terminal Module.	

F35233 DRIVE-CLiQ component function not supported

Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM31

Reaction:
Terminal Module (TM) Propagation: BICO
OFF2
Acknowledge: IMMEDIATELY
Cause: A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
Fault value (r0949, interpret decimal):
1: Terminal Module 31 does not support the function "Timer for temperature evaluation" (X522.7/8, p4103>0.000).
4: The improved actual value resolution is not supported (p 4401.4).
5: The improved setpoint resolution is not supported ($p 4401.5$).
6: The residual value handling in the setpoint channel cannot be deactivated (p 4401.6).
7: Output frequencies greater than 750 kHz cannot be activated (p4401.7).
Remedy:
For fault value $=1$:

- Deactivate timer for temperature evaluation (X522.7/8) (p4103 = 0.000).
- use Terminal Module 31 and the relevant firmware version to enable the "Timer for temperature evaluation" function (Article No. 6SL3055-0AA00-3AA1, firmware version 2.6 and higher).

See also: p4103

F35400 (N, A)	TM: Temperature fault/alarm threshold channel 4 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[8], p4103[4]).
	or
	- fault threshold exceeded (p4102[9]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ($\mathrm{p} 4100[4]=1,4$), the following applies: - if r 4101 [4] > 1650 ohms, the temperature $\mathrm{r} 4105[4]=250^{\circ} \mathrm{C}$ - if $\mathrm{r} 4101[4]<=1650$ ohms, the temperature $\mathrm{r} 4105[4]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[4] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	- allow the temperature sensor to cool down to below p4102[9] - hysteresis (p4118[4]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35401 (N, A)	TM: Temperature fault/alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[10], p4103[5]).
	or
	- fault threshold exceeded (p4102[11]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies: - if $\mathrm{r} 4101[5]>1650$ ohms, the temperature $\mathrm{r} 4105[5]=250^{\circ} \mathrm{C}$
	- if r4101[5] <= 1650 ohms, the temperature r4105[5] = -50 ${ }^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[5] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	- allow the temperature sensor to cool down to below p4102[11] - hysteresis (p4118[5]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

$\overline{\text { F35402 (N, A) }}$	TM: Temperature fault/alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[12], p4103[6]).
	or
	- fault threshold exceeded (p4102[13]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies: - if r 4101 [6] > 1650 ohms, the temperature r4105[6] $=250^{\circ} \mathrm{C}$
	- if r 4101 [6] <= 1650 ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[6] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	- allow the temperature sensor to cool down to below p4102[13] - hysteresis (p4118[6]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F35403 (N, A) TM: Temperature fault/alarm threshold channel 7 exceeded
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component: Terminal Module (TM) Propagation: BICO
Reaction:
OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)

Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to
	initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[14], p4103[7]).
	or
	- fault threshold exceeded (p4102[15]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies:
	- if r4101[7] > 1650 ohms, the temperature r4105[7] = $250{ }^{\circ} \mathrm{C}$

F35405 (N, A)	TM: Temperature fault/alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to
initiate this fault is fulfilled:	

A35410 (F, N)	TM: Temperature alarm threshold channel 4 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[4]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[8]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies: - if r 4101 [4] > 1650 ohms, the temperature $\mathrm{r} 4105[4]=250^{\circ} \mathrm{C}$
	- if r4101[4] <= 1650 ohms, the temperature r4105[4] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[8] - hysteresis (p4118[4]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35411 (F, N)	TM: Temperature alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[5]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[10]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies:
	- if r4101[5] > 1650 ohms, the temperature r4105[5] $=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[5]<=1650$ ohms, the temperature $\mathrm{r} 4105[5]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[10] - hysteresis (p4118[5]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35412 (F, N)	TM: Temperature alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[6]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[12]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies: - if r 4101 [6] > 1650 ohms, the temperature $\mathrm{r} 4105[6]=250^{\circ} \mathrm{C}$
	- if r4101[6] <= 1650 ohms, the temperature r4105[6] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[12] - hysteresis (p4118[6]).
	See also: p4102
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35413 (F, N) TM: Temperature alarm threshold channel 7 exceeded
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component: Terminal Module (TM) Propagation: BICO
Reaction: NONE
Acknowledge: NONE

Cause:	The temperature (r4105[7]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[14]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies:
	- if r4101[7] > 1650 ohms, the temperature r4105[7] $=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[7]$ < $=1650$ ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[14] - hysteresis (p4118[7]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35414 (F, N)	TM: Temperature alarm threshold channel 8 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[8]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[16]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies: - if r 4101 [8] > 1650 ohms, the temperature $\mathrm{r} 4105[8]=250^{\circ} \mathrm{C}$
	- if r4101[8] <= 1650 ohms, the temperature r4105[8] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[16] - hysteresis (p4118[8]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35415 (F, N)	TM: Temperature alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[9]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[18]). Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies: - if r 4101 [9] > 1650 ohms, the temperature $\mathrm{r} 4105[9]=250^{\circ} \mathrm{C}$ - if $\mathrm{r} 4101[9]<=1650$ ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[18] - hysteresis (p4118[9]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)

4.2 List of faults and alarms

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35416 (F, N)	TM: Temperature alarm threshold channel 10 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[10]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[20]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ($\mathrm{p} 4100[10]=1,4$), the following applies: - if r 4101 [10] > 1650 ohms, the temperature $\mathrm{r} 4105[10]=250^{\circ} \mathrm{C}$
	- if r4101[10] <= 1650 ohms, the temperature r4105[10] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[20] - hysteresis (p4118[10]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35417 (F, N)	TM: Temperature alarm threshold channel 11 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[11]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[22]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[11] = 1, 4), the following applies: - if r4101[11] > 1650 ohms, the temperature $\mathrm{r} 4105[11]=250^{\circ} \mathrm{C}$
	- if r4101[11] <= 1650 ohms, the temperature r4105[11] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$].
Remedy:	Allow the temperature sensor to cool down to below p4102[22] - hysteresis (p4118[11]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

N35800 (F)	TM: Group signal
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	NONE
Cause:	The Terminal Module has detected at least one fault.
Remedy:	Evaluates other actual messages.

```
Reaction upon F: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowl. upon F: IMMEDIATELY
```

F35801 (N, A)	TM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Control Unit (CU) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A35802 (F, N)	TM: Time slice overflow	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31	
Component:	Terminal Module (TM)	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	A time slice overflow has occurred on the Terminal Module.	
Remedy:	Replace the Terminal Module.	
Reaction upon $\mathrm{F}:$	NONE	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)	
Reaction upon N:	NONE	
Acknowl. upon $\mathrm{N}:$	NONE	

A35803 (F, N)	TM: Memory test
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO
Component:	Terminal Module (TM) BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the memory test on the Terminal Module.
Remedy:	- check whether the permissible ambient temperature for the Terminal Module is being maintained.
	- replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon N:	NONE

F35804 (N, A)	TM: CRC
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A checksum error has occurred when reading-out the program memory on the Terminal Module. Fault value (r0949, interpret hexadecimal):
	Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained. - replace the Terminal Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F35805 (N, A) TM: EEPROM checksum error
Message value: \%1
Message class: Hardware/software error (1)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31

Component: Terminal Module (TM) Propagation: BICO
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Internal parameter data is corrupted.
Alarm value (r2124, interpret hexadecimal):
01: EEPROM access error
02: Too many blocks in the EEPROM.
Remedy: - check whether the permissible ambient temperature for the component is maintained. - replace the Terminal Module 31 (TM31).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35807 (F, N)	TM: Sequence control time monitoring	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM15DI_DO	
Component:	Terminal Module (TM)	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Error, timeout, sequence control on the Terminal Module.	
Remedy:	Replace the Terminal Module.	
Reaction upon F:	NONE	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	

F35820	TM DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F35835	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: y = component number, $\mathrm{xx}=$ error cause

Remedy:	- carry out a POWER ON. - replace the component involved.
F35836	TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
F35837	PTM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F35845	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module (TM) involved Fault cause: $11 \text { (= 0B hex): }$ Synchronization error during alternating cyclic data transfer. Note regarding the message value: The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, $x x=$ error cause
F35850	TM: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the Terminal Module (TM) has occurred. Fault value (r0949, interpret decimal): 1: Background time slice is blocked. 2: Checksum over the code memory is not OK.
Remedy:	- replace the Terminal Module (TM). - if required, upgrade the firmware in the Terminal Module. - contact Technical Support.
F35851	TM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault cause: $10 \text { (= 0A hex): }$ The sign-of-life bit in the receive telegram is not set. Note regarding the message value: The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F35860	TM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
	20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F35875

Message value:

Message class:
Drive object:
Component:
Reaction:
Acknowledge:

TM: power supply voltage failed
Component number: \%1, fault cause: \%2
Supply voltage fault (undervoltage) (3)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Terminal Module (TM) Propagation: LOCAL
OFF1 (OFF2)
IMMEDIATELY

Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
F35885	TM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, x = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
F35886	TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.

F35887	TM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F35895	TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35896	TM DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an
incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or	
	DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):	
Remedy:	Component number.
- carry out a POWER ON.	
- when a component is replaced, the same component type and if possible the same firmware version should be	
used.	
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the	
original cables should be used (ensure compliance with the maximum cable length).	

F35899 (N, A)	TM: Unknown fault
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM)
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
Remedy:	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
	- replace the firmware on the Terminal Module by an older firmware version (r0158).
Reaction upon $\mathrm{N}:$	- upgrade the firmware on the Control Unit (r0018).
NONE	
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

A35903 (F, N)	TM: I2C bus error occurred
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35904 (F, N)	TM: EEPROM
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35905 (F, N)	TM: Parameter access
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Bropagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy:	- check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit
	(r0018).
	- if required, replace the Terminal Module.
	Note:
Reaction upon $\mathrm{F}:$	The firmware versions that match each other are in the readme.txt file on the memory card.
NONE	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35906 (F, N)	TM: 24 V power supply missing
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs is missing.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 24 V power supply for DI/DO $0 \ldots 7$ missing.
	02: TM17 24 V power supply for DI/DO $8 \ldots 15$ missing.
	04: TM15 24 V power supply for DI/DO $0 \ldots 7$ (X520) missing.
	08: TM15 24 V power supply for DI/DO $8 \ldots 15$ (X521) missing.
	10: TM15 24 V power supply for DI/DO $16 \ldots 23$ (X522) missing.
	20: TM41 24 V power supply for DI/DO 0 ... 3 missing.
Remedy:	Check the terminals for the power supply voltage (L1+, L2+, L3+, M or +24 V_1 for TM41).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35907 (F, N)	TM: Hardware initialization error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Terminal Module was not successfully initialized.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 or TM41 - incorrect configuration request.
	02: TM17 or TM41 - programming not successful.
	04: TM17 or TM41 - invalid time stamp
Remedy:	Carry out a POWER ON.

Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35910 (F, N)	TM: Module overtemperature
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature in the module has exceeded the highest permissible limit.
Remedy:	- reduce the ambient temperature.
	- replace the Terminal Module.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A35911 (F, N)	TM: Clock synchronous operation sign-of-life missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
Remedy:	When the alarm is output, the module outputs are reset up to the next synchronization. - check the physical bus configuration (terminating resistor, shielding, etc.). - check the interconnection of the master sign-of-life (r4201 via p0915). - check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9). - check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35920 (F, N)	TM: Error temperature sensor channel 0
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: $R>194$ Ohm, PT1000: $R>1720$ Ohm (TM150: $R>1944$ Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm

4.2 List of faults and alarms

Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35921 (F, N)	TM: Error temperature sensor channel 1
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1720 Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35922 (F, N)	TM: Error temperature sensor channel 2
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: R > 194 Ohm, PT1000: R > 1720 Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35923 (F, N)	TM: Error temperature sensor channel 3
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: $R>194$ Ohm, PT1000: $R>1720$ Ohm (TM150: $R>1944$ Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35924 (F, N)	TM: Error temperature sensor channel 4
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35925 (F, N)	TM: Error temperature sensor channel 5
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm

4.2 List of faults and alarms

Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35926 (F, N)	TM: Error temperature sensor channel 6
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35927 (F, N)	TM: Error temperature sensor channel 7
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35928 (F, N)	TM: Error temperature sensor channel 8		
Message value:	\%1		
Message class:	External measured value / signal state outside the permissible range (16)		
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150		
Component:	Terminal Module (TM)	Propagation:	BICO
Reaction:	NONE		
Acknowledge:	NONE		

Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>2170$ Ohm, PT100: $\mathrm{R}>194$ Ohm, PT1000: $\mathrm{R}>1944$ Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
- replace the sensor.	
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

A35929 (F, N)	TM: Error temperature sensor channel 9
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35930 (F, N)	TM: Error temperature sensor channel 10
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35931 (F, N)	TM: Error temperature sensor channel 11
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35999 (F, N)	TM: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F36851

Message value: Hub DRIVE-CLiQ (CU): Sign-of-life missing

Message class:
Component number: \%1, fault cause: \%2

Drive object:
Component:
Reaction:
Acknowledge:
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Terminal Board (TB) Propagation: LOCAL
NONE
IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault cause:
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: Upgrade the firmware of the component involved.

F36860

Message value:

Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

Hub DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Terminal Board (TB) Propagation: LOCAL
NONE
IMMEDIATELY
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

- carry out a POWER ON (switch-off/switch-on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F36875	HUB: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...). - check the dimensioning of the power supply for the DRIVE-CLiQ component.

F36885	Hub DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to the Control Unit. The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.

F36886	Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data	
Message value:	Component number: \%1, fault cause: \%2	
Message class:	Internal (DRIVE-CLiQ) communication error (12)	
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31	
Component:	Terminal Board (TB)	Propagation:
Reaction:	NONE	
Acknowledge:	IMMEDIATELY	

Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F36887	Hub DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F36895	Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.

F36896	Hub DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
F40000	Fault at DRIVE-CLiQ socket X100
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X100.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40001	Fault at DRIVE-CLiQ socket X101
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X101.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40002	Fault at DRIVE-CLiQ socket X102
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X102.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.

F40003	Fault at DRIVE-CLiQ socket X103
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X103.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40004	Fault at DRIVE-CLiQ socket X104
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X104.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40005	Fault at DRIVE-CLiQ socket X105
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X105.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
A40100	Alarm at DRIVE-CLiQ socket X100
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40101	Alarm at DRIVE-CLiQ socket X101
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE

Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40102	Alarm at DRIVE-CLiQ socket X102
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40103	Alarm at DRIVE-CLiQ socket X103
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40104	Alarm at DRIVE-CLiQ socket X104
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40105	Alarm at DRIVE-CLiQ socket X105
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

F40799

CX32: Configured transfer end time exceeded

Message value:

Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	None
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The configured transfer end time when transferring the cyclic actual values was exceeded.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- contact Technical Support.

F40801	CX32 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the component involved.

F40820

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

CX32 DRIVE-CLiQ: Telegram error
Component number: \%1, fault cause: \%2 Internal (DRIVE-CLiQ) communication error (12) DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31 DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL OFF2 IMMEDIATELY

4.2 List of faults and alarms

Cause: | A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. |
| :--- |
| Fault cause: |
| 1 (= 01 hex): |
| Checksum error (CRC error). |
| 2 (= 02 hex): |
| Telegram is shorter than specified in the length byte or in the receive list. |
| 3 (= 03 hex): |
| Telegram is longer than specified in the length byte or in the receive list. |
| 4 (= 04 hex): |
| The length of the receive telegram does not match the receive list. |
| 5 (= 05 hex): |
| The type of the receive telegram does not match the receive list. |
| 6 (= 06 hex): |
| The address of the component in the telegram and in the receive list do not match. |
| 7 (= 07 hex): |
| A SYNC telegram is expected - but the received telegram is not a SYNC telegram. |
| 8 (= 08 hex): |
| No SYNC telegram is expected - but the received telegram is one. |
| 9 (= 09 hex): |
| The error bit in the receive telegram is set. |
| 16 (= 10 hex): |
| The receive telegram is too early. |
| Note regarding the message value: |
| The individual information is coded as follows in the message value (r0949/r2124): |
| $0000 y x x$ hex: yy = component number, xx = error cause |
| - carry out a POWER ON (switch-off/switch-on). |
| - check the electrical cabinet design and cable routing for EMC compliance |
| - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |

F40825

Message value:
Message class: \quad Supply voltage fault (undervoltage) (3)
Drive object: All objects
Component
Reaction:

Acknowledge:

Cause:

CX32 DRIVE-CLiQ: Supply voltage failed

Component number: \%1, fault cause: \%2

OFF1 (OFF2)
IMMEDIATELY

DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL

The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
Fault cause:
9 (= 09 hex):
The power supply voltage for the components has failed.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause
Remedy: - carry out a POWER ON (switch-off/switch-on).

- check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).
- check the dimensioning of the DRIVE-CLiQ component power supply.

F40835

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

CX32 DRIVE-CLiQ: Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
OFF2
IMMEDIATELY

Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the component involved.
F40836	CX32 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F40837	CX32 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.

F40845	CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F40851	CX32 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F40860	CX32 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Remedy:	- carry out a POWER ON (switch-off/switch-on).
- check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).	
- check the dimensioning of the DRIVE-CLiQ component power supply.	

F40885	CX32 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON (switch-off/switch-on).
	- replace the component involved.

F40886

Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component: DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Data were not able to be sent.
Fault cause:
65 (= 41 hex):
Telegram type does not match send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: Carry out a POWER ON (switch-off/switch-on).

F40887

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

CX32 DRIVE-CLiQ (CU): Component fault

Component number: \%1, fault cause: \%2 Internal (DRIVE-CLiQ) communication error (12)
DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
OFF2
IMMEDIATELY
Cause:
Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
32 (= 20 hex):
Error in the telegram header.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.

96 (= 60 hex):
Response received too late during runtime measurement.
97 (= 61 hex):
Time taken to exchange characteristic data too long.

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):

0000yyx hex: yy = component number, xx = error cause

- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance

F40895

CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL, DC_CTRL_R, DC_CTRL_R_S, DC_CTRL_S, TM150, TM15DI_DO, TM31
Component: DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Fault cause:
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, xx = error cause
Remedy: Carry out a POWER ON (switch-off/switch-on).

A50002 (F)	COMM BOARD: Alarm 2
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (send) is being used twice.
	Alarm value (r2124, interpret decimal):
	Telegram word used twice
	See also: p8871 (SINAMICS Link PZD send word)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	See also: p8871 (SINAMICS Link PZD send word)
Acknowl. upon F:	IMMEDIATELY

A50003 (F)	COMM BOARD: Alarm 3
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (receive) is being used twice.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Address of sender
	Info. 2 (decimal) = Receive telegram word
	See also: p8870 (SINAMICS Link PZD receive word), p8872 (SINAMICS Link PZD receive address)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A50004 (F)	COMM BOARD: Alarm 4
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	- telegram word (receive) and address of sender inconsistent. Both values have to be either equal to zero or not equal to zero.
	- address of the sender > maximum project address.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8870, p8872
	Info. 2 (decimal) $=$ Index from p8870, p8872
	See also: p8811, p8870, p8872
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A50005 (F)	COMM BOARD: Alarm 5	
Message value:	\%1	
Message class:	Communication error to the higher-level control system (9)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	CBE20 SINAMICS Link:	
	Sender not found on SINAMICS Link.	
	Alarm value (r2124, interpret decimal):	
	0: synchronization to the bus clock cycle unsuccessful.	
	1... 64: address of the sender that was not found.	
	See also: p8872 (SINAMICS Link PZD receive address)	

Remedy:	CBE20 SINAMICS Link:
	Check the connection to the sender.
	Set parameters p8811, p8812[1] to identical values for all participants/nodes.
	Check parameter p8836 for all participants.
	See also: p8811 (SINAMICS Link project selection), p8812 (SINAMICS Link clock cycle settings), p8836 (SINAMICS
link node address)	

A50006 (F)	COMM BOARD: Alarm 6
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	The parameter assignment indicates that the sender and the receiver are one and the same. This is not permitted.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8872
	Info. 2 (decimal) = Index from p8872
	See also: p8836 (SINAMICS link node address), p8872 (SINAMICS Link PZD receive address)
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment. All p8872[index] must be set to a value not equal to p8836.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A50007 (F)	COMM BOARD: Alarm 7
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A send telegram word is greater than possible in the project.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = drive object number from p8871
	Info. 2 (decimal) = index from p8871
	See also: p8811 (SINAMICS Link project selection), p8871 (SINAMICS Link PZD send word)
	In the case of CBE20 SINAMICS Link:
Remedy:	Correct the parameter assignment.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

A50008 (F)	COMM BOARD: Alarm 8	
Message value:	Info 1: \%1, Info 2: \%2	
Message class:	Communication error to the higher-level control system (9)	
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE\quad		

4.2 List of faults and alarms

Cause:	CBE20 SINAMICS Link:
	A receive telegram word is greater than possible in the project.
	Alarm value (r2124, interpret hexadecimal):
yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2	
Info. 1 (decimal) = drive object number from p8870	
Info. 2 (decimal) = index from p8870	
See also: p8811 (SINAMICS Link project selection), p8870 (SINAMICS Link PZD receive word)	
In the case of CBE20 SINAMICS Link:	
Remedy:	Correct the parameter assignment.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F: \quad IMMEDIATELY	

A50011 (F)	EtherNetIP/COMM BOARD: configuration error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object: All objects Component: None Reaction: NONE Acknowledge: NONE Cause: CBE20 EtherNet/IP:\quad.	

Cause:	CBE20 EtherNet/IP:
	An EtherNet/IP controller attempts to establish a connection using an incorrect configuring telegram.
Remedy:	The telegram length set in the controller does not match the parameterization in the drive device.
	Check the set telegram length.
	Note:
	PZD interface 1:
	For p0922 not equal to 999, then the length of the selected telegram applies.
	For p0922 = 999, the maximum interconnected PZD (r2067) applies.
	PZD interface 2:
	The maximum interconnected PZD (r8867) applies.
Reaction upon F:	See also: p0922 (IF1 PROFIdrive PZD telegram selection), r2067 (IF1 PZD maximum interconnected), r8867 (IF2
Acknowl. upon F:	NOD maximum interconnected)
	IMMEDIATELY

Product: SINAMICS DC MASTER OA, Version: 1503000, Language: eng Objects: DC_CTRL

A60003 (F, N)	Line monitoring automatic restart active
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An automatic restart does not take place.
	An automatic restart is initiated by a line undervoltage condition.
Remedy:	Check the line voltages.
	See also: p50078 (Supply voltage rated value), p50086 (Sequence control line voltage failure duration permissible),
	p50351 (Line undervoltage threshold), p50361 (Line monitoring undervoltage delay time)
Reaction upon $\mathrm{F}:$	NONE (OFF1, OFF2, OFF3)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F60004 (N, A)	Armature circuit phase failure detected
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Phase failure in armature infeed.
	The line voltage rms value calculated from the area of each line half-wave (rectifier average value * harmonic factor) is less than the response value for phase failure monitoring or the distance between two line zero crossings in the same phase is more than 270 degrees or the distance between two line zero crossings in different phases is not between 30 and 90 degrees.
	- Phase failure threshold set incorrectly (p50353)
	- Armature phase failed
	- Line contactor opened in operation
	- Fuse blown on three-phase side of armature circuit
	- Fuse blown in power unit
	Fault value (r0949, interpret decimal):
	1:
	Power failure has occurred in armature infeed (UV, VW, WU)
	r50047[1] = 0: First power failure in armature phase UV
	$\mathrm{r} 50047[1]=1$: First power failure in armature phase VW
	$\mathrm{r} 50047[1]=2$: First power failure in armature phase WU
	r50047[2]: Incorrect voltage value as a \% of p50078[0]
	2 :
	Wait time for new zero crossing has expired in one armature phase (UV, VW, WU)
	$\mathrm{r} 50047[1]=0$: No zero crossing in armature phase UV in excess of 270°
	$\mathrm{r} 50047[1]=1$: No zero crossing in armature phase VW in excess of 270°
	r 50047 [1] $=2$: No zero crossing in armature phase WU in excess of 270°
	r50047[2]: Time without zero crossing ($=$ duration 270°) of armature phase r50047[1] in ms
	3:
	Line asymmetry in armature infeed (UV, VW, WU)
	r50047[1]: Phase number of phase of last zero crossing ($0=\mathrm{UV}, 1=\mathrm{VW}, 2=\mathrm{WU}$)
	r50047[2]: Phase number of phase of last-but-one zero crossing ($0=\mathrm{UV}, 1=\mathrm{VW}, 2=\mathrm{WU}$)
	r50047[3]: Time of last raw zero crossing in ms
	r50047[4]: Time of last-but-one raw zero crossing in ms
	r50047[5]: Time of last positive refined zero crossing in phase UV in ms
	r50047[6]: Time of last negative refined zero crossing in phase UV in ms
	r50047[7]: Time of last positive refined zero crossing in phase VW in ms
	r50047[8]: Time of last negative refined zero crossing in phase VW in ms
	r50047[9]: Time of last positive refined zero crossing in phase WU in ms
	r50047[10]: Time of last negative refined zero crossing in phase WU in ms
	r50047[11]: Last good 60° period in ms
	See also: p50089 (Sequence control voltage at power unit wait time), p50095 (Sequence control DC circuit contactor wait time), p50691 (Sequence control line contactor feedback)
Remedy:	- Check threshold for phase failure (p 50353).
	- Check the field supply voltage.
	- Check the fuses and line contactor.
	See also: p50089 (Sequence control voltage at power unit wait time), p50353 (Line monitoring phase failure threshold)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60005 (N, A)	Field circuit phase failure detected
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure has been detected in the field circuit.
	The line voltage rms value calculated from the area of each line half-wave (rectifier average value * harmonic factor) is less than the response value for phase failure monitoring or the distance between two line zero crossings of the voltage for the field converter is more than 270 degrees.
	- Phase failure threshold set incorrectly (p50353)
	- Field phase failed
	- Line contactor opened in operation
	- Fuse blown in field circuit
	Fault value (r0949, interpret decimal):
	1: Power failure in field infeed
	Note:
	r50047[1]: Incorrect voltage value in \% referred to p50078[1]
	2: Wait time for new zero crossing has expired in the field phase.
	Note:
	r50047[1]: Time without zero crossing (= duration 270°) of armature phase r50047[1] in ms
	See also: p50089 (Sequence control voltage at power unit wait time)
Remedy:	- Check threshold for phase failure (p50353).
	- Check the field supply voltage.
	- Check the fuses and line contactor.
	See also: p50089 (Sequence control voltage at power unit wait time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60006 (N, A)	Line monitoring undervoltage
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The line voltage has undershot the permissible undervoltage limit for longer than the setting in p50361.
	Fault value (r0949, interpret decimal):
	1: Armature undervoltage occurred
	2: Field undervoltage occurred
	Note:
	r50047[1] = 0: Undervoltage in armature phase UV
	r50047[1] = 1: Undervoltage in armature phase VW
	r50047[1] = 2: Undervoltage in armature phase WU
	r50047[1] = 3: Undervoltage in field phase
	r50047[2] = Incorrect voltage value as a \% of p50078[0] or p50078[1]
Remedy:	- Check monitoring limit for armature (p50078[0] * ($1+\mathrm{p} 50351 / 100 \%$)).
	- Check monitoring limit for field (p50078[1] * ($1+\mathrm{p} 50351 / 100 \%$)).
	- Check monitoring time (p50361).
	See also: p50078 (Supply voltage rated value), p50351 (Line undervoltage threshold), p50361 (Line monitoring undervoltage delay time)

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60007 (N, A)	Line monitoring overvoltage
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The line voltage has overshot the permissible overvoltage limit for longer than the setting in p50362.
	Fault value (r0949, interpret decimal):
	1: Armature overvoltage occurred
	2: Field overvoltage occurred
	Note:
	r50047[1] = 0: Overvoltage in armature phase UV
	r50047[1] = 1: Overvoltage in armature phase VW
	r50047[1] = 2: Overvoltage in armature phase WU
	r50047[1] = 3: Overvoltage in field phase
	r50047[2] = Incorrect voltage value as a \% of p50078[0] or p50078[1]
Remedy:	- Check monitoring limit for armature (p50078[0] * ($1+\mathrm{p} 50352 / 100 \%$)).
	- Check monitoring limit for field (p50078[1] * (1 + p50352/100\%)).
	- Check monitoring time (p50362).
	See also: p50078 (Supply voltage rated value), p50352 (Line overvoltage threshold), p50362 (Line monitoring overvoltage delay time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60008 (N, A)	Line frequency less than minimum line frequency
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The line frequency has undershot the set threshold for monitoring of the minimum line frequency for more than 40 ms.
	Fault value (r0949, interpret decimal):
	1: Armature supply frequency less than minimum line frequency
	2. Field supply frequency less than minimum line frequency
	Note:
	r50047[1]: Incorrect frequency value in Hz
Remedy:	Check the threshold for monitoring the minimum line frequency (p50363).
	See also: p50363 (Line frequency minimum threshold)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60009 (N, A)	Line frequency greater than maximum line frequency
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The line frequency has overshot the set threshold for monitoring of the maximum line frequency for more than 40 ms .
	Fault value (r0949, interpret decimal):
	1: Armature supply frequency greater than maximum line frequency
	2: Field supply frequency greater than maximum line frequency
	Note:
	r50047[1]: Incorrect frequency value in Hz
Remedy:	Check the threshold for monitoring the maximum line frequency (p 50364).
	See also: p50364 (Line frequency maximum threshold)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60010 (N, A)	Armature circuit uneven current distribution
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	An uneven current distribution through the thyristors has been identified in the armature circuit.
	Significantly less current flows in one thyristor than in the others.
	Remarks:
	- This monitoring is only effective if the average current value across all thyristors is greater than 20% of r50072[1].
	- The current in a thyristor is significantly lower, if, for a period of one second, the average value is less than 35% of the average value across all thyristors.
	Possible causes:
	- A fuse has blown.
	- A thyristor is not fired (defective thyristor, defective pulse transformer, defective firing electronics).
	Fault value (r0949, interpret decimal):
	Number of the thyristor that is conducting the significantly lower current.
	Note:
	r50047[1]: Average current value through all armature thyristors.
	r50047[2]: Average current value through the thyristor with the excessively low current, in torque direction I.
	r50047[3]: Average current value through the thyristor with the excessively low current, in torque direction II.
	The current values as a \% are referred to r50072[1].
	Note:
	Even though the response to this fault message is set to "NO" when using p2100/p2101, or the message type set to "Alarm" or "No message" when using p2118/p2119, in the case of a fault, the drive still exits the OPERATION (RUN) state and goes into state 04.1 (wait for the fuse monitoring OK message.)
Remedy:	- Check the fuses in the power unit.
	- If required, perform a thyristor diagnostics routine (p50830).
	See also: p50830 (Thyristor diagnostics mode)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60012 (N, A)	P2P IF: Telegram monitoring time expired
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The telegram monitoring time for communication via the peer-to-peer interface (P2P IF) has expired.
	No further valid telegrams were received during the monitoring time (p50797).
	Possible causes:
	- Break in connecting cable
	- Electromagnetic interference on the connecting cable
	- Telegram monitoring time set too short (p50797)
Remedy:	- Check connecting cable and cable connection.
	- Check that the connecting cable has been routed in compliance with EMC.
	- Increase the telegram monitoring time if necessary (p50797).
	See also: p50089 (Sequence control voltage at power unit wait time), p50790 (P2P IF operating mode), p50797 (P2P IF telegram monitoring time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60014 (N, A)	Parallel interface telegram monitoring time expired
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The telegram monitoring time for communication via the parallel interface (Par-IF) has expired.
	No valid telegram was received during the active monitoring time (p51807).
	Possible causes:
	- Break in connecting cable
	- Electromagnetic interference on the connecting cable
	- Telegram monitoring time set too short (p51807)
Remedy:	- Check connecting cable and cable connection.
	- Check that the connecting cable has been routed in compliance with EMC.
	- Increase the telegram monitoring time if necessary (p51807).
	See also: p51807 (Parallel interface telegram monitoring failure time), p51808 (Parallel interface signal source for F60014)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A60018 (F, N)	Digital output overloaded
Message value:	Fault cause: \%1 bin
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE

4.2 List of faults and alarms

Cause:	At least one digital output is overloaded or has short-circuited.
	Alarm value (r2124, interpret binary):
	Bit $0=1$: CUD digital output 0 (X 177.19) is overloaded
	Bit $1=1$: CUD digital output 1 (X177.20) is overloaded
	Bit $2=1$: CUD digital output 2 (X 177.21) is overloaded
	Bit $3=1$: CUD digital output 3 (X 177.22) is overloaded
	Bit $4=1$: CUD digital output 4 (X177.15) is overloaded
	Bit $5=1$: CUD digital output 5 (X177.16) is overloaded
	Bit $6=1$: CUD digital output 6 (X 177.17) is overloaded
	Bit $7=1$: CUD digital output $7(\mathrm{X} 177.18)$ is overloaded
	Note:
	The fault value is equal to the inverted value of parameter r53021. Information about short-circuit monitoring for the individual digital outputs for further interconnection is available here.
Remedy:	Check the overloaded digital outputs and rectify the overload or short circuit.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F60025 (N, A)	Brush length too short
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A motor brush length which is too short has been reported via a binector input (p50486) for a period exceeding a permanently set delay time.
	Note:
	This message is also reported via binector output r53120.0.
Remedy:	- Check binector input p50486 and trace the generation of the signal back to the sensor.
	- Check and if necessary update the motor's brush length.
	See also: p50486 (Motor interface signal source for brush length)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60026 (N, A)	Poor bearing condition
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A defective motor bearing has been reported via a binector input (p 50487) for a period exceeding a permanently set delay time.
	Note:
	This message is also reported via binector output r53120.1.
Remedy:	- Check binector input p50487 and trace the generation of the signal back to the sensor.
	- Check and if necessary restore the motor's bearing condition.
	See also: p50487 (Motor interface signal source for bearing condition)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60027 (N, A)	Motor fan fault
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A defective motor fan has been reported via a binector input ($p 50488$) for a period exceeding a permanently set delay time.
	Note:
	This message is also reported via binector output r53120.2.
Remedy:	- Check binector input p50488 and trace the generation of the signal back to the sensor.
	- Check and if necessary replace the motor's fan.
	See also: p50488 (Motor interface signal source for motor fan)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60028 (N, A)	Motor temperature too high
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A motor temperature which is too high has been reported via a binector input (p 50489) for a period exceeding a permanently set delay time.
	The motor temperature is too high.
	Possible causes:
	- motor is overloaded.
	- Ambient temperature of the motor is too high
	- wire breakage or sensor not connected.
	Note:
	This message is also reported via binector output r53120.3.
Remedy:	- Check binector input p50489 and trace the generation of the signal back to the sensor.
	- Reduce the motor load if necessary.
	- check the ambient temperature and reduce if necessary.
	- Check the wiring and the sensor connection.
	See also: p50489 (Motor interface signal source for motor temperature)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60029 (N, A)	Motor temperature fault
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	The motor temperature is higher than the threshold set in p50491 to trigger this fault.
	Possible causes:
	- motor is overloaded.
	- Ambient temperature is too high
	Note:
	r50047[1]: Motor temperature (in ${ }^{\circ} \mathrm{C}$) for temperature sensor with continuous characteristic.
	KTY84 (p50490 = 1) or
	PT100 (p50490 = 6) or
	NTC thermistor K227 (p50490 = 7) or
	PT1000 (p50490 = 8)
	Otherwise the value $=0$.
	See also: p50492 (Motor interface fault threshold for temperature monitoring)
Remedy:	- Check the threshold for triggering the fault (p50492).
	- Reduce the motor load if necessary.
	- check the ambient temperature and reduce if necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60031 (N, A) Excessive setpoint/actual value deviation
Message value: -

Message class:	Motor overload (8)	
Drive object:	DC_CTRL	
Component:	None	Propagation: GLOBAL

Component:

Acknowledge:

Cause: The absolute value of the set/act deviation of the speed controller has exceeded the set threshold. Note: r50047[1]: n_set (connector input p50590) r50047[2]: n_act (connector input p50591)
See also: p50388 (Messages for setpoint-actual value deviation 1 threshold), p50590 (Messages for set/act val dev 1 signal source for speed setpoint), p50591 (Messages for set/act val dev 1 signal source for speed act val)
Remedy: - Optimize the speed controller (p50051).

- Check torque limiting (p50169).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A60032 (F, N)	Motor temperature alarm		
Message value:	-		
Message class:	Motor overload (8)		
Drive object:	DC_CTRL	Propagation:	GLOBAL
Component:	None		
Reaction:	NONE		
Acknowledge:	NONE		

$\overline{\mathrm{F} 60035}$ (N, A)	Motor blocked
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The fault is triggered if the following conditions prevail for longer than the time set in p50355:
	- The positive or negative armature current or torque limit has been reached
	- Armature current r52109 > 1.0\%
	- The speed actual value r52166 < p50356 filtered using parameter p50358.
	Note:
	r50047[1]: Stall protection monitoring time p50355
	r50047[2]: Speed threshold p50356
	r50047[3]: Armature current r52109
	r50047[4]: Speed actual value r52166
	r50047[5]: Torque limit r53150
	r50047[6]: Armature current limits r53151
	See also: p50355 (Stall protection monitoring time)
Remedy:	- Reduce the motor load.
	- Increase the current or torque limit.
	- Check and if necessary increase the monitoring threshold.
	See also: r52109 (Armature current actual value averaged over 6 cycles), r52166 (Speed controller actual value selection absolute value), r53150 (Speed limiting controller/torque limiting state), r53151 (Current limitation state)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60036 (N, A)	Armature circuit/field circuit interrupted
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The firing angle is at the rectifier stability limit for more than 500 ms and the current is less than 1% of the rated DC current.
	Fault value (r0949, interpret decimal):
	1: Armature circuit
	2: Field circuit
Remedy:	- Armature circuit or field circuit interrupted.
	- Rectifier stability limit Alpha-G incorrectly set (p50150, p50250).
	- Drive operates at the Alpha-G limit (e.g. due to a line undervoltage condition).
	- EMF too high, because the maximum speed has been set too high.
	- EMF too high, because field weakening was not activated.
	- EMF too high, because the field current was set too high.
	- EMF too high, because the CEMF crossover voltage was set too high (transition between normal and field weakening operation).
	- replace the ribbon cable from the Allocation Board to the power interface (connector X108).
	See also: r52116 (Armature current actual value internal absolute value), r52266 (Field current actual value internal absolute value), r53190 (Armature auto-reversing stage state), r53191 (Field auto-reversing stage state)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A60037 (F, N)	I2t monitoring alarm excessive motor temperature rise
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The I2t calculation shows that the motor's temperature rise is excessive.
	The alarm is triggered if the calculated motor temperature rise in r52309 > 100\%.
	Note:
	r50047[1]: Temperature rise r52309
	r50047[2]: Motor rated armature current p50100
	r50047[3]: Continuous current factor r50113
	r50047[4]: Device rated current r50072[1]
	r50047[5]: Current armature current r52109
	r50047[6]: Motor thermal time constant p50114
	See also: p50114 (Motor thermal time constant), r52309 (Calculated motor temperature rise)
Remedy:	- check the ambient temperature and reduce if necessary.
	- reduce the motor load.
	See also: r52109 (Armature current actual value averaged over 6 cycles)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F60038 (N, A)	Overspeed threshold overshot
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The speed actual value has overshot the threshold for the positive or negative maximum speed.
	Note:
	Possible cause of the fault, if p50083 = 3 (EMF as speed actual value):
	- Interrupted armature circuit (fuse blown, contactor in the DC link has not closed)
	In this particular case, the converter output voltage is not equal to the motor armature voltage, which is the reason why an incorrect speed actual value is determined.
	Note:
	r50047[1]: Maximum speed for positive direction of rotation (p50380)
	r50047[2]: Maximum speed for negative direction of rotation (p50381)
	r50047[3]: n_act (connector input p50595)
Remedy:	- reduce the speed.
	- Check the threshold for positive or negative direction of rotation and adjust if necessary (p50380, p50381).
	See also: p50380 (Messages for overspeed threshold positive direction of rotation), p50381 (Messages for overspeed threshold negative direction of rotation)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A60039 (F, N)	12t monitoring alarm excessive power unit temperature rise
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature rise of the thyristors is more than 102% of the maximum permissible value.
Remedy:	- Check the ambient temperature and reduce if necessary.
	- Check the motor load and reduce if necessary.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F60041 (N, A)	Ramp-function generator parameter set cannot be selected
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Ramp-function generator parameter sets 2 and 3 were selected simultaneously for more than 0.5 s via binector input p50637/p50638.
	The ramp-function generator parameter set is not changed over. The most recently selected ramp-function generator parameter set is retained.
Remedy:	- Check the selection of ramp-function generator parameter sets 2 and 3 and bar simultaneous selection.
	- Select the required ramp-function generator parameter set (p50637, p50638).
	See also: p50637 (RFG parameter set 2 selection signal source), p50638 (Ramp-function generator parameter set 3 select signal source)

4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60042 (N, A)	Defective tachometer monitoring error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The ratio "Speed actual value/EMF actual value" (r52179/r52287) was less than +0.1 for more than approx. 40 ms .
	This ratio is then only checked if the EMF actual value is > p50357.
	- Cable break affecting tachometer or incremental encoder TTL/HTL
	- Tachometer or incremental encoder TTL/HTL cable connected incorrectly
	- Incremental encoder TTL/HTL power supply has failed
	- Tachometer or incremental encoder TTL/HTL faulty
	- Parameters for incremental encoder TTL/HTL set incorrectly (p0400).
	- During operation with field reversal, the field polarity is not being reversed by the external hardware
	- Polarity for speed actual value set incorrectly (p50743)
	- Data for armature circuit set incorrectly (p50110 and p50111)
	- If p50083 = 3 (EMF as speed actual value): Interrupted armature circuit (e.g. fuse blown).
	- Device operates as slave connected in parallel.
	Fault value (r0949, interpret decimal):
	1: Cable break affecting tachometer or incremental encoder TTL/HTL
	2: Tachometer or incremental encoder TTL/HTL polarity incorrect
	Note:
	r50047[1]: Speed actual value (r52179)
	r50047[2]: EMF actual value (r52287)
	See also: p50357 (Tachometer interruption monitoring threshold)
Remedy:	- Check the incremental encoder TTL/HTL's wiring, connections, and function.
	- Check the power supply for the incremental encoder TTL/HTL.
	- Check the parameters for the incremental encoder TTL/HTL.
	- Check the polarity for the speed actual value (p50743).
	- Perform an optimization run for the current controller in the armature circuit (p50051 = 25).
	- Check the fuses in the armature circuit.
	- If the device operates as slave connected in parallel: set p50357 = 100\% (tachometer breakage not active).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60043 (N, A) EMF for braking operation too high
Message value:
Message class: Motor overload (8)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
OFF2 (NONE)
Acknowledge: IMMEDIATELY

Cause:	The EMF actual value is too high for braking operation.
	This fault is triggered if a firing angle greater than 165° would be required in the new torque direction immediately after a torque direction change (precisely because the EMF is so high).
	What this actually means is that the fault is triggered if the following 5 conditions are met for a requested torque direction change (MI or MII is to be selected):
	- p50272 = 0 (fault parameterized and not alarm + field weakening)
	- An additional torque-free interval which might have been parameterized (p50160 > 0) has expired.
	- The parallel drive is ready for the new torque direction to be selected.
	- The absolute value of the armature current requested in the new torque direction (r52118, filtered with p 50190) is > 1% of r50072[1].
	- The calculated firing angle (r52101) for the armature current requested in the new torque direction is $>165^{\circ}$ or $>$ p50151 if p50192 = 1 .
	Possible fault causes:
	- "Speed-dependent field weakening" (p50081 = 0) has not been parameterized, although field weakening operation would be necessary for the required maximum speed.
	Note:
	With a firing angle Alpha $\mathrm{G}=30^{\circ}$ (rectifier stability limit p50150) and low armature currents, EMF values up to the peak value of the phase-to-phase line voltage can be reached when motoring.
	- Setpoint EMF for field weakening operation too high (parameter p50101 set too high)
	- Line voltage dip
	- EMF controller or field current controller not optimized; this can lead to excessive EMF when the drive accelerates.
	Note:
	r50047[1]: Calculated firing angle (armature) prior to limiting (r52101)
	r50047[2]: EMF actual value currently measured (r52287)
	r50047[3]: Armature current controller setpoint (r52118)
Remedy:	- Reduce the speed.
	- Activate the "Speed-dependent field weakening" function (p50081 = 1).
	- p50272=1 and p50081=1, and then execute an optimization run p50051=27 (not for hoisting/crane applications).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60044 (N, A)	Parallel interface node failure
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A fault involving the parallel connection of power units has occurred.
	Fault value (r0949, interpret decimal):
	1: There is a fault on one of the slaves.
	2: One of the slaves is not in the Operation state (e.g. because its enable signal is at "0")
	3: There are fewer power units connected in parallel that are active than set using p51802.
	4: There are fewer devices that are active than set using p51815.
	50: The switchover to power unit topology 2 is not possible, as this SINAMICS DCM is not equipped with option S50.
	51: The switchover to power unit topology 2 is not permissible for " $\mathrm{n}+\mathrm{m}$ " operation.
	52: The parallel switching master in power unit topology 2 is not the same as in power unit topology 1.
	53: The feedback indicating the active power unit topology does not match the selected power unit topology.
Remedy:	- Check the slave with fault.
	- Check the enable signal of the slaves
	- Check the setting for the minimum number of devices (p51802, p51815).
	- Check the parameterization of the switchover of the power unit topology.
	See also: p51802 (Parallel interface number of power units)

4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60045 (N, A)	Standstill field not permitted in operation
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The standstill field was activated while the drive was operational.
	The binector input p50692 to activate the standstill field must not have a 1 signal in operation.
	See also: p50692 (Cl-loop field curr ctrl sig source for inject of standst field)
Remedy:	If required, set binary input p50692-used to activate the standstill field - to a 0 signal.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60046 (N, A) Wire break at "Main setpoint" analog input

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

General drive fault (19)
DC_CTRL
None Propagation: GLOBAL
OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY
A wire break has been detected at the CUD's "Main setpoint" analog input (X177.25/26).
This fault is triggered if p50700 $=2$ (unipolar monitoring of current input (+4 mA to +20 mA)) is set and an input current of less than 2 mA is flowing.
Possible fault causes:

- Wire break or contact problem on supply line
- Parameter p50700 set incorrectly

Note:
This fault is also indicated via binector input r53030.0.
See also: p50700 (CUD analog input 0 type)
Remedy: - Check the wiring of the input terminals (X177.25/26) (cable break, contacts, etc).

- Check the parameter assignment for the "Main setpoint" analog input (p50700).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

Message value:

Message class: \quad General drive fault (19)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
Acknowledge: IMMEDIATELY

Cause:	A wire break has been detected at the CUD's analog input 1 (X177.27/28).
	This fault is triggered if p50700 $=2$ (unipolar monitoring of current input (+4 mA to +20 mA)) is set and an input current of less than 2 mA is flowing.
	Possible fault causes:
	- Wire break or contact problem on supply line
	- Parameter p50710 set incorrectly
	Note:
	This fault is also indicated via binector output r53030.1.
	See also: p50710 (CUD analog input 1 type)
Remedy:	- Check the wiring of the input terminals (X177.27/28) (cable break, contacts, etc).
	- Check the parameter assignment for analog input 1 (p50710).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60050 Optimization run aborted due to internal cause

Message value: \%1
Message class: Hardware/software error (1)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY

Cause: An optimization run which had been started has been interrupted due to an internal cause.
Fault value (r0949, interpret decimal):
General, not assigned to a specific optimization run:
100: Internal software error.
Field current controller optimization run:
101: Alpha G limit reached when determining the Rf
102: Field current fluctuation $>20 \%$ when determining the Rf.
103: Calculated field circuit resistance too high (> 4000 ohms)
104: Unable to ascertain field circuit inductance
105: Calculated field circuit inductance too high (> 1000 H)
106: Field current > 100\% at start of optimization
107: Rf determination failed ($\mathrm{Rf}<=0$)
108: Internal software error.
Armature current controller optimization run:
201: Alpha G limit reached when determining the Ra
202: Armature current fluctuation > 20\% when determining the Ra.
203: Calculated armature circuit resistance too high (> 4000 ohms)
205: Unable to determine armature circuit inductance.
206: Calculated armature circuit inductance too high (> 1000 H)
207: Armature current increased to > 120 \% of r50072[1], although the firing angle was not able to be shifted any further.
Speed controller optimization run:
301: Unable to ascertain moment of inertia due to it being very small
302: Measurement of speed increase was not possible.
303: No change in speed when armature current is increased.
304: Speed remains at zero, although armature current is flowing.
EMF controller/Field characteristics optimization run:
401: Maximum permissible EMF setpoint is too small
402: Motor nominal field current is not being reached within 30 seconds
403: EMF (80 \%) is not reached within set acceleration time (r50315[0]).
404: Incorrect direction of rotation
405: Negative field current setpoint limiting active
406: Field characteristic not falling uniformly
407: Torque limiting active
408: Armature current limiting active
409: Speed during measurement dropped by more than 12.5%
Field current controller friction compensation:
501: Speed not within the required tolerance bandwidth.
Optimization run for mechanical systems that can oscillate (torsional optimization):
601: speed according to p50565 is not reached within a specific time.
602: speed actual value is negative, although a positive setpoint is being input.
Converter Commutation Protector (CCP) optimization run:
701: p50790 (P2P/CCP operating mode) not set to communication with SIMOREG CCP.
702: Communication not established between SINAMICS DCM and SIMOREG CCP.
703: p51570 article number (MLFB) of the SIMOREG CCP is unknown.
704: Supply voltage of SINAMICS DCM and SIMOREG CCP do not match (p50078[0] and r51571).
705: This SINAMICS DCM is not intended for operation with SIMOREG CCP.
706: Armature circuit inductance is zero (p50111 = 0).
707: Calculated precharging voltage greater than the maximum achievable value for p 51578 .
708: Calculated chopper energy too high.
Note for fault value $=102$:

- r50047[1]: Field current actual value ($1=100 \%$)
- r50047[2]: Field current lower limit ($1=100 \%$)
- r50047[3]: Field current upper limit ($1=100 \%$)

Note for fault value $=103$:

```
- r50047[1]: Calculated field circuit resistance in Ohm
Note for fault value = 104:
- r50047[1]: Number of valid measuring cycles
- r50047[2]: Number of required measuring cycles
Note for fault value = 105:
- r50047[1]: Calculated field circuit inductance in H
Note for fault value = 106:
- r50047[1]: Field current actual value (1 = 100 %)
Note for fault value = 107:
- r50047[1]: Calculated field circuit resistance in Ohm
Note for fault value = 202:
- r50047[1]: Armature current actual value (1 = 100 %)
- r50047[2]: Armature current lower limit (1 = 100 %)
- r50047[3]: Armature current upper limit (1 = 100 %)
Note for fault value = 203:
- r50047[1]: Calculated armature circuit resistance in Ohm
Note for fault value = 205:
- r50047[1]: Number of required measuring cycles
- r50047[2]: Number of valid measuring cycles
- r50047[3]: Measurement run
Note for fault value = 206:
- r50047[1]: Calculate armature circuit inductance in H
Note for fault value = 301:
- r50047[1]: Number of measuring points (0 to 4 are possible, at least 2 are required)
Note for fault value = 401:
- r50047[1]: Nominal EMF (max. permissible EMF setpoint) (1 = 100 %)
- r50047[1]: Ideal nominal rectifier no-load output voltage (1 = 100 %)
Note for fault value = 402:
- r50047[1]: 1 = Timeout determining nominal speed, 2 = Timeout recording field characteristic
Note for fault value = 403:
- r50047[1]: EMF setpoint (1 = 100 %)
- r50047[2]: EMF actual value (1 = 100 %)
- r50047[3]: Ramp-up monitoring time in s
Note for fault value = 404:
- r50047[1]: Speed actual value (1 = 100 %)
Note for fault value = 405:
- r50047[1]: Index in meas. table
- r50047[2]: Field current setpoint (1 = 100 %)
Note for fault value = 406:
- r50047[1]: Field current setpoint (1 = 100 %)
- r50047[2]: Flux previous measuring point (1 = 100 %)
- r50047[3]: Flux actual measuring point (1 = 100 %)
Note for fault value = 407:
- r50047[1]: Index in meas. table
- r50047[2]: Field current setpoint (1 = 100 %)
Note for fault value = 408:
- r50047[1]: Index in meas. table
- r50047[2]: Field current setpoint (1 = 100 %)
Note for fault value = 409:
- r50047[1]: Index in meas. table
- r50047[2]: Field current setpoint (1 = 100 %)
Note for fault value = 501:
- r50047[1]: Speed setpoint (1 = 100 %)
- r50047[2]: Speed actual value (1 = 100 %)
- r50047[3]: Speed, lower limit (1 = 100 %)
```

- r50047[4]: Speed, upper limit ($1=100 \%$)
- r50047[5]: $0=$ No limit active, $1=$ Current limit active, $2=$ Torque limit active

Note for fault value $=601$:

- r50047[1]: speed setpoint ($1=100 \%$) according to p50565
- r50047[2]: Speed actual value (1 = 100%)
- r50047[3]: permissible time in s, until the speed setpoint is reached

Note for fault value $=602$:

- r50047[1]: Speed actual value ($1=100 \%$)

Note for fault value $=701$:

- r50047[1]: P2P/CCP operating mode

Note for fault value $=703$:

- r50047[1]: index determined for article number (MLFB)

Note for fault value $=704$:

- r50047[1]: Rated supply voltage [V]
- r50047[2]: CCP rated supply voltage [V]
- r50047[3]: Line voltage tolerance DCM (1 = 100%)
- r50047[4]: Line voltage tolerance CCP (1 = 100%)

Note for fault value $=707$:

- r50047[1]: Calculated precharging voltage [V]
- r50047[2]: Possible maximum value of the precharging voltage [V]

Note for fault value $=708$:

- r50047[1]: Calculated chopper energy in the armature circuit [J]
- r50047[2]: CCP chopper energy [J]

Remedy:
For fault value = 101:
Check field circuit for interruption (e.g. due to blown fuse).
For fault value $=201$:
Check armature circuit for interruption (e.g. due to blown fuse).
For fault value $=207$:
Temporarily reduce the rated motor current (p 50100) so that the rated motor current is significantly less than the device rated current (e.g. p50100 = 50% of r50072[1]).
For fault value $=401$:
Check the setting of p50078[0], p50100, p50101 and p50110.
For fault value $=402$:
Check the optimization of the field circuit.
For fault value = 403:
Check the optimization of the speed controller.
Check the setting of the acceleration times.
Check the setting of the current and torque limits.
For fault value $=404$:
Check the polarity of speed actual value sensing (incremental encoder TTL/HTL, analog tachometer).
For fault value $=405$:
Check the minimum motor excitation current (p50103).
For fault value $=407$:
Check the torque limiting settings.
For fault value $=408$:
Check the armature current limiting settings.
For fault value $=409$:
Reduce the mechanical load.
For fault value $=701$:
Check the setting of p 50790 (value $=6$).
For fault value $=704$:
Check the setting of $\mathrm{p} 50078[0]$.
For fault value $=706$:
Check the optimization of the armature circuit.

4.2 List of faults and alarms

F60051 (N, A)	Optimization run limit value violated
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL
Component:	None
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	During the optimization run, an attempt was made to set a parameter to a value outside its valid range of values.
	The parameter value was set to the appropriate limit value.
	The optimization run was completed in full.
	Recommendation:
	Check the parameter values set!
	Fault value (r0949, interpret decimal):
	Parameter number of the parameter causing the error.
	Note:
	r50047[1]: Incorrect value
	r50047[2]: Limited value
	r50047[3]: Lower limit value
Remedy:	r50047[4]: Upper limit value
Reaction upon N:	You might have to set the parameter value manually.
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60052 (N, A) Optimization run aborted due to external cause
Message value: \%1
Message class: \quad General drive fault (19)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
OFF2 (NONE)
Acknowledge: IMMEDIATELY

Cause: An optimization run which had been started has been interrupted due to an external cause.
Fault value (r0949, interpret decimal):
101: ON command not set within 30 seconds
102: Following the ON command, operating state $00 . x$ or o1.5 was not achieved within 1 minute.
103: Impermissible parameter setting for this optimization run
104: Internal software error.
105: Internal software error.
106: Internal software error.
108: Operating state $00 . x$ or o1.5 exited during the optimization run
109: The operating system does not allow the optimization run to access a parameter.
110: Internal software error.
111: Internal software error.
112: Data set changeover (DDS) during an optimization run
113: Data set changeover (CDS) during an optimization run
114: Enable for the positive direction of rotation missing.
Note for fault value $=103$:

- r50047[1]: 1 = Sequence control optimization run, 2 = Field optimization run, 3 = EMF optimization run
- If r50047[1] = 1, r50047[2 to 3] are not relevant
- r50047[2]: Parameter number
- r50047[3]: Parameter value

Note for fault value $=104$:

- r50047[1]: Parameter number (parameter number $=0$ indicates a general fault is pending)

Note for fault value $=105$:

- r50047[1]: 1 = General fault, 2 = Read parameter, 3 = Write parameter
- If r50047[1] = 1, r50047[2 to 3] are not relevant
- If r50047[1] = 2, r50047[2]: Parameter number
- If r50047[1] = 3, r50047[2]: Parameter number, r50047[3]: Parameter value

Note for fault value $=106$:

- r50047[1]: 1 = Sequence control optimization run, 2 = Optimization run
- r50047[2]: OA return status word

Note for fault value $=107$:

- r50047[1]: Parameter number
- r50047[2]: OA return status word

Note for fault value $=108$:

- r50047[1]: New operating state

Note regarding fault value = 109: - r50047[1]: $1=$ General fault, $2=$ Read parameter, $3=$ Write parameter, $4=$ Set optimization parameter

- If r50047[1] = 1, r50047[2 to 3] are not relevant
- If r50047[1] = 2, r50047[2] is: Parameter number, r50047[2]: OA return status word, r50047[3]: List index
- If r50047[1] = 3, r50047[2]: Parameter number, r50047[3]: Parameter value, r50047[4]: OA return status word
- If r50047[1] = 4, r50047[2]: Parameter number, r50047[3]: OA return status word

Note for fault value $=110$:

- r50047[1]: Parameter number
- r50047[2]: OA return status word

Note for fault value $=111$:

- r50047[1]: Parameter number
- r50047[2]: OA return status word

Note for fault value $=112$:

- r50047[1]: Parameter number
- r50047[2]: Old DDS (0 to 3)
- r50047[3]: New DDS (0 to 3)

Note for fault value $=113$:

- r50047[1]: Parameter number
- r50047[2]: Old CDS (0 to 1)
- r50047[3]: New CDS (0 to 1)

	Note for fault value = 114:
	- r50047[1]: Operating state
	- r50047[2]: Value of the signal selected with p50672
Remedy:	Interpret the fault value and rectify the fault correspondingly.
	For fault value = 103:
	Check the parameter entered in r50047[2].
	For fault value = 109:
	Possible causes for this:
	- Write protection and/or know-how protection are active, see r7760
	- A PROFIDRIVE telegram p922 $=3,4$ or 220 is set
	Remedy:
	- Temporarily withdraw write protection and/or know-how protection
	- Temporarily set p922 to 999
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60055	Field characteristic not valid
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Field weakening in conjunction with the optimization run for field weakening has not yet been performed.
	Fault value (r0949, interpret decimal):
	1: Closed-loop torque control selected (p50170 = 1) but valid field characteristic not yet recorded
	2: Speed-dependent field weakening selected $(\mathrm{p} 50081=1)$ but valid field characteristic not yet recorded $(\mathrm{p} 50117=$ 0)
Remedy:	Record field characteristic.
	See also: p50081 (Field weakening activation), p50117 (Field characteristic status), p50170 (Selection of control type for closed-loop current/torque control)
F60056	Important parameter not set
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

Cause:	Settings required for operation have not yet been made or connected components have not yet been commissioned
	Fault value (r0949, interpret decimal):
	1: Actual value channel for speed controller not selected (p50083)
	2: Rated armature current of the motor not set (p50100).
	3: Rated field current of the motor not set (p50102).
	Note:
	Only necessary if p50082 > 0 .
	4: Rated DC current for the external field device not set (p51838).
	Note:
	Only necessary if p50082 >= 21.
	5: Device commissioning not performed/completed (p0009 not equal to 0).
	6: Drive commissioning not performed/completed (p0010 not equal to 0).
	7: An internal field ($\mathrm{p} 50082=1$ to 4) has been selected for a device without a field power unit (option L10)
	8: Field characteristic (p50120 ... p50139) not rising uniformly.
	9: Reference speed (p2000) not set (factory setting value must be modified)!
	10: Control Module: Connection of measurement cables for line voltage not set (p 51821)
	11: Control Module: Rated armature DC current not set (p51822).
Remedy:	Make the setting as appropriate for the fault value displayed.

F60057 (N, A)	Armature current sensing fault
Message value:	- Arma
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The message is triggered if there are opposing current and torque directions.
	The monitoring is active as soon as the current values exceed the device rated current by 20%.
	Note:
	r50047[1]: Torque direction
	r50047[2]: Current scan value
	r50047[3]: Selected current sensing
	r50047[3] = 1: Current transformer phase UV
	r50047[3] = 2: Current transformer phase UW
	r50047[3] = 3: Current transformer phase VW
	r50047[3] $=4$: External V-circuit
	r50047[3] = 5: External current sensing (shunt)
	r50047[3] = 6: Current sensing via analog input
	See also: p51824 (Current transformer configuration), p51852 (Current actual value sensing analog input configuration)
Remedy:	Check current transformer/shunt.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60058	Parameter settings not consistent
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause:	Inconsistent values have been set in parameters depending on each other.
	Fault value (r0949, interpret decimal):
	0: Field weakening active (p50081 = 1) is not permissible when the EMF is used as speed actual value (p50083 = 3).
	1: Thyristor blocking voltage calculation active ($\mathrm{p} 50166=1$) for line frequencies $>65 \mathrm{~Hz}(\mathrm{p} 50364)$ is not permissible.
	2: Setting of p51799 does not match the setting of p51800, p51802 and p51803.
	3: For a line frequency > $65 \mathrm{~Hz}, \mathrm{p} 51800$ must be < 10.
	4: Setting of p50075 does not match the setting of p51799 (dynamic overload capability not permissible for singlephase operation).
	5: Single-phase operation (p51799 = 1) not permissible for this device type.
	6: Thyristor blocking voltage calculation (p50166 = 1) not possible for this device.
	7: If $\mathrm{p} 50083[\mathrm{D}]=2, \mathrm{p} 0400[0]=0$ is not permissible and if $\mathrm{p} 50083[\mathrm{D}]=5, \mathrm{p} 0400[1]=0$ is not permissible.
	8: For p50830 > 0, p51800 > 1 is not permissible, except 11 and 21 (thyristor diagnostics is only permissible for a single drive and for a parallel master).
	9: For p50075 = 0, p50067>1 is not permissible.
	10: Line frequency > 120 Hz is not permissible for this power unit (p50364).
	11: For a 12-pulse parallel connection ($\mathrm{p} 51800=21 . .24$) p50153 $=2$ is only permissible, if p51799 = 22.
	12: Parameter p51801 (number of send data) has not been set high enough.
	p51801 must be set high enough at all devices so that all BICOs selected with p51804 or p51814 (i.e. with parameter value <> 0) are transferred.
	The configuration of all connected devices is checked. The device that outputs the fault signal is not necessarily the device with the incorrect parameterization.
	14: p51401 = 2 is only permissible for DCM Control Modules or for devices with option L30.
	21: If, at a device, p51800 is set > 10, then for all other devices it is not permissible that p51800 is set $=0$ or 1 .
	22: If, at a device, p51800 is set > 10, then one device must be parameterized as master (p51800 = $11,13,21,23,31,33,35,41,43$ or 45).
	23: It is only permissible to set p51800 = 11 at one device. At all other devices, it is only permissible that p51800 is set $=0,1,12$ or 13. p51800 must be set $=12$ or 13 at least one device.
	24: p51800 must be set $=21$ and 23 at each device. At all other devices, it is only permissible that p 51800 is set $=0$, 1,22 or 24.
	25: p51800 must be set $=31$ and 33 at each device. At all other devices, it is only permissible that p 51800 is set $=0$, 1,32 or 34 .
	26: It is only permissible to set p51800 = 35 at one device. At all other devices, it is only permissible that p51800 is set $=0$ or 1 .
	27: p51800 must be set $=41$ and 43 at each device. At all other devices, it is only permissible that p 51800 is set $=0$, 1,42 or 44 .
	28: It is only permissible to set p51800 $=45$ at one device. At all other devices, it is only permissible that p51800 is set $=0$ or 1 .
Remedy:	Make the setting as appropriate for the fault value displayed.

F60061
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

Thyristor test unsuccessful
\%1
Power electronics faulted (5)
DC_CTRL

None

OFF2
IMMEDIATELY

Cause: \quad With the thyristor test activated (p50830), a fault was detected for at least one thyristor.
Fault value (r0949, interpret decimal):
1: Thyristor defective (V11 and/or V24)
2: Thyristor defective (V12 and/or V25)
3: Thyristor defective (V13 and/or V26)
4: Thyristor defective (V14 and/or V21)
5: Thyristor defective (V15 and/or V22)
6: Thyristor defective (V16 and/or V23)
8: Ground fault in the armature circuit
11: Thyristor cannot be fired (V11)
12: Thyristor cannot be fired (V12)
13: Thyristor cannot be fired (V13)
14: Thyristor cannot be fired (V14)
15: Thyristor cannot be fired (V15)
16: Thyristor cannot be fired (V16)
17: Two or more thyristors from V11 ... V16 cannot be fired
21: Thyristor cannot be fired (V21)
22: Thyristor cannot be fired (V22)
23: Thyristor cannot be fired (V23)
24: Thyristor cannot be fired (V24)
25: Thyristor cannot be fired (V25)
26: Thyristor cannot be fired (V26)
27: Two or more thyristors from V21 ... V26 cannot be fired
28: Two or more thyristors from V11 ... V26 cannot be fired (different firing pulse path)
29: Two or more thyristors from V11 ... V26 cannot be fired (same firing pulse path)
31: Thyristor cannot block (V11 or V21)
32: Thyristor cannot block (V12 or V22)
33: Thyristor cannot block (V13 or V23)
34: Thyristor cannot block (V14 or V24)
35: Thyristor cannot block (V15 or V25)
36: Thyristor cannot block (V16 or V26)
41: Thyristor cannot be fired (V11 or V16)
42: Thyristor cannot be fired (V13 or V14)
45: Thyristor cannot be fired (V21 or V26)
46: Thyristor cannot be fired (V23 or V24)
99: Defective thyristor cannot be identified
Note 1:
If "Thyristor defective" or "Thyristor cannot block" is signaled, then the corresponding thyristor module should be replaced.
Possible reasons why thyristors could be destroyed:

- Interrupted snubber circuit.
- Current controller and precontrol not optimized (excessively high current peaks).
- Cooling not guaranteed (e.g. a fan is not running, ambient temperature too high, incorrect fan direction of rotation (incorrect rotating field), air flow too low, very dirty heat sink).
- Excessively high voltage peaks in the line supply.
- External short-circuit or ground fault present (check the armature circuit).

Note 2:

If "Fault in the firing pulse cable" is signaled, then this is generally caused by a fault in the firing circuit.
Possible causes:

- Firing pulse cable to the thyristor involved interrupted.
- Connector X11 or X21 incorrectly inserted.
- Flat cable X108 either not correctly inserted or interrupted.
- Defective electronics module or gating module.

Note 3:
If "Thyristor cannot be fired" is signaled, then the gate conductor in the thyristor module is probably
broken/interrupted.
Note 4:
For a Control Module, this fault can also be initiated by other fault causes.

- Incorrect assignment of the firing pulses to the thyristors.
- Incorrect current actual value sensing connection.
- Incorrect parameterization of the current actual value sensing (p51822, p51823, p51824).
- Incorrect parameterization of the power unit type (p51825).

Note for fault value $=28$:
At least one thyristor of bridge 1 and at least one thyristor of bridge 2 cannot be fired.
The thyristors that cannot be fired are controlled via different firing pulse paths.
Note for fault value $=29$:
At least one thyristor of bridge 1 and at least one thyristor of bridge 2 cannot be fired.
The thyristors that cannot be fired are controlled via the same firing pulse path.
Therefore, it is possible that either the firing pulse cable or the gating module is defective.
Note 5:
The supplementary information on the fault messages supplies the following information: r50047[1] to r50047[4] provide data on the last event that was detected to be faulty by the short-circuit test: r50047[1]; thyristor code
Bit $0 . .5=1$ means: thyristor 1 .. 6 was fired
Bit $6=1$ means: thyristor in bridge I was fired
Bit $7=1$ means: thyristor in bridge II was fired
r50047[2]; firing angle
+1.00 .. 0°
0.00 .. 90°
-1.00 .. 180°
r50047[3]: current that flowed
+1.00 .. 100\% of r50072[1] (rated current)
r50047[4]; phases in which the current flowed
128 (= 80 hex): Phase UV
129 (= 81 hex) .. Phase UW
130 (= 82 hex) .. Phase VU
131 (= 83 hex) .. Phase WU
r50047[5] to r50047[8] provide data on the last event that was detected to be faulty by the short-circuit test: The significance of $r 50047$ [5] to r 50047 [8] is the same as for r 50047 [1] to r 50047 [4]
r50047[9] to r50047[20] provide data on the last event that was detected to be faulty by the conductivity test: r50047[9]: current that flowed in thyristor pair 1-6 in bridge I
r50047[10]: current that flowed in thyristor pair 2-1 in bridge I
r50047[11]: current that flowed in thyristor pair 3-2 in bridge I
r50047[12]: current that flowed in thyristor pair 4-3 in bridge I
r50047[13]: current that flowed in thyristor pair 5-4 in bridge I
r50047[14]: current that flowed in thyristor pair 6-5 in bridge I
r50047[15]: current that flowed in thyristor pair 1-6 in bridge II r50047[16]: current that flowed in thyristor pair 2-1 in bridge II r50047[17]: current that flowed in thyristor pair 3-2 in bridge II r50047[18]: current that flowed in thyristor pair 4-3 in bridge II r50047[19]: current that flowed in thyristor pair 5-4 in bridge II r50047[20]: current that flowed in thyristor pair 6-5 in bridge II +1.00 .. 100\% of r50072[1] (rated current)
r50047[21] and r50047[22] indicate how quickly the firing angle was changed during the test:
r50047[21]: firing angle change per firing pulse for the short circuit test (+1.00 .. $+90^{\circ}$) r50047[22]: firing angle change per firing pulse for the conductivity test (+1.00 .. $+90^{\circ}$)
Remedy: Interpret the fault value and information and replace the appropriate thyristor.

F60062 (N, A)	Communication error to the voltage sensing
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL
Component:	None
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Communication to one of the two voltage sensing devices is faulted or interrupted.
	Fault value (ro949, interpret decimal):
	1: Armature voltage sensing
	2: Field voltage sensing
	Note:
	r50047[1]: Counter CRC error, armature
	r50047[2]: Counter, communication error, armature
	r50047[3]: Counter, CRC error, field
	r50047[4]: Counter, communication error, field
	Carry out a POWER ON (switch-off/switch-on) for all components.
Remedy:	NONE
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60063 (N, A)	Incorrect calibration values for analog inputs/outputs		
Message value:	\%1		
Message class:	General drive fault (19)		
Drive object:	DC_CTRL	Propagation:	GLOBAL
Component:	None		
Reaction:	OFF2 (NONE)		
Acknowledge:	IMMEDIATELY		

Cause: The factory-set calibration values on the electronics module for the analog inputs/outputs are implausible. Fault value (r0949, interpret decimal):

Analog input 0 (X177.25/26), voltage input, offset incorrect value
Analog input 0 ($\mathrm{X} 177.25 / 26$), voltage input, +10 V incorrect value
Analog input 0 (X177.25/26), voltage input, -10 V incorrect value
4: Analog input 0 (X177.25/26), voltage input, reference value incorrect
5: Analog input 0 (X177.25/26), current input, offset incorrect value
6: Analog input 0 (X177.25/26), current input, +20 mA incorrect value
7: Analog input 0 (X177.25/26), current input, -20 mA incorrect value
: Analog input 0 (X177.25/26), current input, reference value incorrect
: Analog input 1 (X177.27/28), voltage input, offset incorrect value
0: Analog input 1 (X177.27/28), voltage input, +10 V incorrect value
1: Analog input 1 (X177.27/28), voltage input, -10 V incorrect value
: Analog input 1 (X177.27/28), voltage input, reference value incorrect
3: Analog input 1 (X177.27/28), current input, offset incorrect value
: Analog input 1 (X177.27/28), current input, +20 mA incorrect value
5: Analog input 1 (X177.27/28), current input, -20 mA incorrect value
6: Analog input 1 (X177.27/28), current input, reference value incorrect
7: Analog input 2 (X177.29/30), voltage input, offset incorrect value
8: Analog input 2 (X177.29/30), voltage input, +10 V incorrect value
: Analog input 2 (X177.29/30), voltage input, -10 V incorrect value
: Analog input 2 (X177.29/30), voltage input, reference value incorrect
: Analog input 3 (X177.1/2), voltage input, offset incorrect value
: Analog input 3 (X177.1/2), voltage input, +10 V incorrect value
: Analog input 3 ($\mathrm{X} 177.1 / 2$), voltage input, -10 V incorrect value
: Analog input 3 (X177.1/2), voltage input, reference value incorrect
: Analog input 4 (X177.3/4), voltage input, offset incorrect value
: Analog input 4 (X177.3/4), voltage input, +10 V incorrect value
: Analog input 4 (X177.3/4), voltage input, -10 V incorrect value
: Analog input 4 (X177.3/4), voltage input, reference value incorrect
: Analog input 5 (X177.5/6), voltage input, offset incorrect value
: Analog input 5 (X177.5/6), voltage input, +10 V incorrect value
: Analog input 5 (X177.5/6), voltage input, -10 V incorrect value
: Analog input 5 (X177.5/6), voltage input, reference value incorrect
: Analog input 6 (X177.7/8), voltage input, offset incorrect value
4: Analog input 6 (X177.7/8), voltage input, +10 V incorrect value
: Analog input 6 ($\mathrm{X} 177.7 / 8$), voltage input, -10 V incorrect value
: Analog input 6 (X177.7/8), voltage input, reference value incorrect
: Analog input XT1.103/104, voltage input, offset incorrect value
: Analog input XT1.103/104, voltage input, +25 V incorrect value
: Analog input XT1.103/104, voltage input, -+25 V incorrect value
: Analog input XT1.103/104, voltage input, reference value incorrect
: Analog input XT1.103/104, voltage input, offset incorrect value
: Analog input XT1.103/104, voltage input, +80 V incorrect value
: Analog input XT1.103/104, voltage input, -+80 V incorrect value
: Analog input XT1.103/104, voltage input, reference value incorrect
5: Analog input XT1.103/104, voltage input, offset incorrect value
: Analog input XT1.103/104, voltage input, +270 V incorrect value
: Analog input XT1.103/104, voltage input, -270 V incorrect value
8: Analog input XT1.103/104, voltage input, reference value incorrect
: Analog output 0 (X177.49/50), offset incorrect value
0: Analog output 0 (X177.49/50), -10 V incorrect value
51: Analog output 0 ($\mathrm{X} 177.49 / 50$), +10 V incorrect value
52: Analog output 0 (X177.49/50), reference value incorrect
53: Analog output 1 (X177.51/52), offset incorrect value

4.2 List of faults and alarms

	54: Analog output 1 (X177.51/52), -10 V incorrect value
	55: Analog output 1 (X177.51/52), +10 V incorrect value
	56: Analog output 1 (X177.51/52), reference value incorrect
	Note:
	r50047[1]: Incorrect calibration value
Remedy:	Replace the electronics module with the incorrect calibration values.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60064 (N, A)	Error communicating with second processor TMS320
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	DC_CTRL
Component:	None
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Communication with the second processor (TMS320) has failed.
	Note:
Remedy:	r50047[1]: Communication counter in send direction
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60065 (N, A) Software update on second processor (TMS320) failed

Message value: \%1

Message class: Hardware/software error (1)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
OFF2 (NONE)
Acknowledge: IMMEDIATELY

Cause:	The updating of the software for the second processor (TMS320) has failed.
	Fault value (r0949, interpret decimal):
	This value indicates the state in which the fault occurred.
	2: Wait for the TMS320 bootloader to be ready.
	3: Check the version of the TMS320 bootloader.
	4: Check the version of the TMS320 application software.
	5: Wait for the TMS320 to exit the bootloader.
	6: Wait for the TMS320 to load its Flash API.
	7: Wait for the TMS320 to delete its Flash EPROM.
	8: Send a section of code 8 KB in size to the TMS320.
	9: Wait for the TMS320 to request a new 8 KB section of code.
	10: Wait until the TMS320 application software has been started.
	11: Wait until the TMS320 is ready for a new command.
	100: Bootloader version not compatible.
	101: TMS version not compatible.
	Note:
	r50047[1]: Error bits. Indicate in which of the following states errors occurred.
	Bit $0=1$: Initialization
	Bit $1=1$: TMS320 status
	Bit $2=1$: Bootloader version
	Bit 3 = 1: TMS320 version
	Bit $4=1$: TMS320 start
	Bit $5=1$: Load Flash interface
	Bit $6=1$: Delete Flash
	Bit $7=1$: Write Flash
	Bit $8=1$ Request code
	Bit 9 = 1: TMS320 start
	Bit $10=1$: Read message
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F60066 (N, A) Error communicating with sensors
Message value: \%1
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
Acknowledge:
OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY
Cause: An error occurred when polling the fan speeds and temperature sensors.
Fault value (r0949, interpret decimal):
1: Data not received
2: Fan monitoring or temperature sensors not switched over
Remedy: Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F60067 (N, A)	Fault temperature too high
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The temperature at one of the temperature sensors has exceeded the highest permissible temperature to initiate this fault.
	Fault value (r0949, interpret decimal):
	1: Overtemperature at sensor 1 (sensor an XT5).
	- For SINAMICS DCM (with cooling method AN / AF): temperature above the threshold corresponding to device MLFB
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[0]
	- For SINAMICS DCM Cabinet / Thyristor stack solution (" single" topology): temperature above $52^{\circ} \mathrm{C}$
	- For SINAMICS DCM Cabinet / Thyristor stack solution ("parallel" topology): temperature above $52^{\circ} \mathrm{C}$
	2: Overtemperature at sensor 2 (sensor an XT6).
	- For SINAMICS DCM with option L15 / L99 und cooling method AN: temperature above $57^{\circ} \mathrm{C}$
	- For SINAMICS DCM with option L15 / L99 und cooling method AF: temperature above $52{ }^{\circ} \mathrm{C}$
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[1]
	- For SINAMICS DCM Cabinet / Thyristor stack solution ("parallel" topology): temperature above $52^{\circ} \mathrm{C}$
	3: Overtemperature at sensor 3 (sensor an XT7).
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[2]
	4: Overtemperature at the sensor control module (A7105, A7106, A7107, A7108, A7109).
	Note:
	r50047[1]: Temperature sensor 1
	r50047[2]: Temperature sensor 2
	r50047[3]: Temperature sensor 3
	r50047[4]: Gating module temperature
	r50047[5]: CUD module temperature
Remedy:	- Check the ambient temperature and reduce if necessary.
	- Reduce the load.
	- For SINAMICS DCM Control Module: increase threshold value according to p51829[0..2]
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60068 (N, A)	Incorrect calibration values for power unit
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The calibration values for the power unit are missing or incorrect.
	Fault value (r0949, interpret decimal):
	1x: Power unit for armature
	2x: Power unit for field
	$x=1$: Unable to read compensation data
	$x=2$: Unknown compensation data format
	x = 3: Incorrect compensation data CRC
	$x=4$: The measuring points contained in the compensation data do not rise uniformly.
	$x=5$: No compensation values can be calculated from the compensation data.
	$x=6$: The signal offset calculated from the compensation data is impermissibly high.

Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60069 (N, A)	Invalid article number (MLFB)
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The data read from the power unit (serial number, MLFB, accessory options) is invalid.
	Fault value (r0949, interpret decimal):
	1: The serial number is invalid or missing.
	2: The article number (MLFB) is invalid or missing.
	3: The accessory options are invalid.
	4: Incorrect serial number CRC
	5: Incorrect MLFB CRC
	6: Incorrect accessory options CRC
	7: The MLFB read out is not known to the software.
	8: Unable to read data.
	9: MLFB cannot be changed in current operating state.
	Note for fault value $=1,4$:
	r50047[1]: 1st digit of serial number
	r50047[2]: 2nd digit of serial number
	\cdots
	r50047[30]: 30th digit of serial number
	Note for fault value $=2,5,7$:
	r50047[1]: 1st digit of MLFB
	r50047[2]: 2nd digit of MLFB
	...
	r50047[30]: 30th digit of MLFB
	Note for fault value $=3,6$:
	r50047[1]: 1st digit of accessory options
	r50047[2]: 2nd digit of accessory options
	...
	r50047[30]: 30th digit of accessory options
	Note for fault value $=9$:
	r50047[1]: Operating state
Remedy:	Send your SINAMICS DC MASTER to the manufacturer's plant or an authorized repair center.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

A60080 (F, N)	Alarm temperature too high	
Message value:	\%1	
Message class:	Overtemperature of the electronic components (6)	
Drive object:	DC_CTRL	Propagation:
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

4.2 List of faults and alarms

Cause:	The temperature at one of the temperature sensors has exceeded the highest permissible temperature to initiate this alarm.
	Alarm value (r2124, interpret decimal):
	1: Overtemperature at sensor 1 (sensor an XT5).
	- For SINAMICS DCM (with cooling method AN / AF): temperature above the threshold minus $5^{\circ} \mathrm{C}$ corresponding to device MLFB
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[0] minus $5^{\circ} \mathrm{C}$
	- For SINAMICS DCM Cabinet / Thyristor stack solution (" single" topology): temperature above $47^{\circ} \mathrm{C}$
	- For SINAMICS DCM Cabinet / Thyristor stack solution ("parallel" topology): temperature above $47^{\circ} \mathrm{C}$
	2: Overtemperature at sensor 2 (sensor an XT6).
	- For SINAMICS DCM with option L15 / L99 und cooling method AN: temperature above $52{ }^{\circ} \mathrm{C}$
	- For SINAMICS DCM with option L15 / L99 und cooling method AF: temperature above $47{ }^{\circ} \mathrm{C}$
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[1] minus $5^{\circ} \mathrm{C}$
	- For SINAMICS DCM Cabinet / Thyristor stack solution ("parallel" topology): temperature above $47^{\circ} \mathrm{C}$
	3: Overtemperature at sensor 3 (sensor an XT7).
	- For SINAMICS DCM Control Module: temperature above threshold according to p51829[2] minus $5^{\circ} \mathrm{C}$
	4: Overtemperature at the sensor control module (A7105, A7106, A7107, A7108, A7109).
	Note:
	r50047[1]: Temperature sensor 1
	r50047[2]: Temperature sensor 2
	r50047[3]: Temperature sensor 3
	r50047[4]: Gating module temperature
	r50047[5]: CUD module temperature
Remedy:	- Check the ambient temperature and reduce if necessary.
	- Reduce the load.
	- For SINAMICS DCM Control Module: increase threshold value according to p51829[0..2]
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A60081 (F, N)	Alarm module temperature exceeded
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature on the Control Unit DC MASTER (CUD) has exceeded the alarm value (temperature above $90^{\circ} \mathrm{C}$).
	Note:
	r50047[1]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
	r50047[2]: Reference voltage -10 V (in volts)
	r50047[3]: Reference voltage +10 V (in volts)
	r50047[4]: Temperature sensor 1 (in ${ }^{\circ} \mathrm{C}$)
Remedy:	Check the ambient temperature and reduce if necessary.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A60082 (F, N)	Alarm derating factor K1 limit value fallen below
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a drive device equipped with option L99, derating (reduced power) is calculated depending on the air intake temperature.
	The calculated derating factor K1 has fallen below the set limit value (p50066).
	Note:
	r50047[1]: air intake temperature in ${ }^{\circ} \mathrm{C}$ (sensor at XT6)
	r50047[2]: derating factor K1
	See also: p50066 (Power unit I2t monitoring derating factor K1 limit value)
Remedy:	Check the air intake temperature and reduce if necessary.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F60090 (N, A)	Fault module temperature exceeded
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The temperature on the Control Unit DC MASTER (CUD) has exceeded the fault value (temperature above $95{ }^{\circ} \mathrm{C}$).
	Note:
	r50047[1]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
	r50047[2]: Supply voltage -10 V (in volts)
	r50047[3]: Supply voltage +10 V (in volts)
	r50047[4]: Temperature sensor 1 (in ${ }^{\circ} \mathrm{C}$)
Remedy:	Check the ambient temperature and reduce if necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60091 (N, A)	Reference voltage P10 outside tolerance
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The reference voltage P10 (+10 V) at terminal X177.31 lies outside the tolerance (deviation greater than +/-5\%).
	Note:
	r50047[1]: Reference voltage +10 V (in volts)
	r50047[2]: Reference voltage -10 V (in volts)
	r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
Remedy:	Check the power supply.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F60092 (N, A)	Reference voltage N10 outside tolerance
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The reference voltage $\mathrm{N} 10(-10 \mathrm{~V})$ at terminal X 177.32 lies outside the tolerance (deviation greater than $+/-5 \%$).
	Note:
	r50047[1]: Reference voltage -10 V (in Volt)
	r50047[2]: Reference voltage +10 V (in volts)
	r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
Remedy:	Check the power supply.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60093 (N, A) Power supply P5 overloaded

Message value:
Message class: \quad General drive fault (19)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: Power supply P5 (+5 V) at connector X179.1 is overloaded.
Note:
r50047[1]: Reference voltage +10 V (in volts)
r50047[2]: Reference voltage -10 V (in volts)
r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
Remedy: Identify the reason for the overload and rectify the situation.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

$\overline{\mathrm{F} 60094 \text { (N, A) }}$	Power supply P15 overloaded	
Message value:	-	
Message class:	General drive fault (19)	
Drive object:	DC_CTRL	
Component:	None Propagation:	GLOBAL
Reaction:	OFF2 (NONE)	
Acknowledge:	IMMEDIATELY	
Cause:	Power supply P15 (+15 V) at terminal X 177.41 is overloaded.	
	Note:	
	r50047[1]: Reference voltage +10 V (in volts)	
	r50047[2]: Reference voltage -10 V (in volts)	
	r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)	
Remedy:	Identify the reason for the overload and rectify the situation.	
Reaction upon N:	NONE	
Acknowl. upon N :	NONE	

Reaction upon A:	NONE
Acknowl. upon A:	NONE
F60095 (N, A)	Power supply P24 overloaded
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Power supply P24 (+24 V) at terminal X177.9 or X177.10 is overloaded.
	Note:
	r50047[1]: Reference voltage +10 V (in volts)
	r50047[2]: Reference voltage -10 V (in volts)
	r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
Remedy:	Identify the reason for the overload (e.g. digital outputs) and rectify the situation.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60096 (N, A) Temperature sensor faulty

Message value: \%1
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL

Reaction:

Acknowledge:

Cause:

OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY
A cable break or a short circuit has been detected on at least one temperature sensor. Fault value (r0949, interpret decimal):
1: A cable break has occurred.
2: A short circuit has occurred.
Note:
r50047[1] = 1: Temperature sensor 1
r50047[1] = 2: Temperature sensor 2
r50047[1] = 3: Temperature sensor 3
r50047[1] = 4: Temperature sensor gating module
r50047[1] = 5: Temperature sensor CUD module
r50047[1] = 6: Motor temperature sensor
r50047[2]: Value of the analog-to-digital converter

Note:
When using PTCs (PTC thermistors - p50490 $=2,3,4,5$) the cable is not monitored for interruption or short-circuit. In this case, a fault message is not output.

Remedy: Evaluate the fault and, if the temperature sensor is faulty, run a wiring and performance check.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

4.2 List of faults and alarms

F60097 (N, A)	Power supply faulty
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The power supply is not working correctly.
	Note 1:
	r50047[1]: Reference voltage +10 V (in volts)
	r50047[2]: Reference voltage -10 V (in volts)
	r50047[3]: Module temperature (in ${ }^{\circ} \mathrm{C}$)
	Note 2:
	For SINAMICS DCM with 2 CUD, the following applies:
	After carrying out a reset ($\mathrm{p} 0972>0$ or $\mathrm{p} 0976=200$) at a CUD, then this fault is output at the other. In this case, the fault has no significance and can be acknowledged.
Remedy:	Check the power supply.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A60098 (F, N)	System utilization high
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The average computing time utilization (r9976[1]) for the system is greater than 95%.
Remedy:	Reduce computing time utilization by.
	The following options are available to do this:
	- check the number of cyclically calculated blocks (DCC), and if required reduce.
	- assign DCC blocks to runtime groups with a longer sampling time.
	- check the number of cyclically calculated function blocks (FBLOCKS), and if required reduce.
	- assign function blocks to runtime groups with a longer sampling time.
	- remove DRIVE-CLiQ components that are not required.
	- deactivate control blocks that are not required (p50899). This must be especially taken into account for a CUD right.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F60099 (N, A)	System utilization too high
Message value:	-
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The average computing time utilization (r9976[1]) for the system is greater than 100%.
	Note:
	r50047[1]: Averaged computing time utilization (in \%)
	r50047[2]: Maximum computing time utilization (in \%)

Remedy:	Reduce computing time utilization by. The following options are available to do this: - check the number of cyclically calculated blocks (DCC), and if required reduce. - assign DCC blocks to runtime groups with a longer sampling time. - check the number of cyclically calculated function blocks (FBLOCKS), and if required reduce. - assign function blocks to runtime groups with a longer sampling time. - remove DRIVE-CLiQ components that are not required. - deactivate control blocks that are not required (p50899). This must be especially taken into account for a CUD right.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60104 (N, A)	Armature circuit line voltage not OK
Message value:	\%1
Message class:	Network fault (2)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	On power up, the time set in p50089 represents the maximum wait time for voltage at the power connections and for field current in operating states 05 and 04 combined.
	On power up, the time set in p50095 represents the maximum wait time for "Line contactor feedback" in operating state o3.3 (if activated, see p50691).
	This fault is triggered if the above times elapse in one of these operating states.
	- Thresholds for the line monitoring incorrectly set (p50078, p50351, p50352, p50353, p50363, p50364).
	- Armature voltage not OK (phase failure, undervoltage/overvoltage, underfrequency/overfrequency).
	- Line contactor not picking up
	- Fuse blown on three-phase side of armature circuit
	- Fuse blown in power unit
	- Interruption affecting thyristor firing pulse cable (auxiliary cathodes at connections $\mathrm{X} 12, \mathrm{X} 14, \mathrm{X} 16$ are used for voltage transmission).
	Fault value (r0949, interpret decimal):
	2: Wait time set in p50089 has expired in operating state 04.0.
	3: Fuse blown on three-phase side of armature circuit
	6: Wait time set in p50095 has expired in operating state o3.3.
	Note for fault value $=2$:
	- r50047[1]: line state (r53145)
	Bit $0=1$: Armature supply line, overvoltage
	Bit $1=1$: Armature supply line, undervoltage
	Bit $2=1$: Armature supply line, overfrequency
	Bit 3 = 1: Armature supply line, underfrequency
	Bit $4=1$: Armature supply line, phase failure
	Bit 5 = 1: Field supply line, overvoltage
	Bit $6=1$: Field supply line, undervoltage
	Bit 7 = 1: Field supply line, overfrequency
	Bit $8=1$: Field supply line, underfrequency
	Bit $9=1$: Field supply line, phase failure
	Bit $10=1$: Armature supply line OK
	Bit 11 = 1: Field supply line OK
	Bit $12=1$: clockwise phase sequence
	Bit $13=1$: Line symmetrical
	See also: p50089 (Sequence control voltage at power unit wait time), p50095 (Sequence control DC circuit contactor wait time), p50691 (Sequence control line contactor feedback)

4.2 List of faults and alarms

Remedy:	- Check the thresholds for the line monitoring (p50078, p50351, p50352, p50353, p50363, p50364).
	- Check line voltage and line contactor.
	- Check fuses for armature circuit.
	- Check thyristor firing pulse cable (X12, X14, X16).
See also: p50089 (Sequence control voltage at power unit wait time), p50353 (Line monitoring phase failure	
threshold)	

F60105 (N, A) Field current monitoring fault in field circuit

Message value: \%1

Message class: \quad Network fault (2)
Drive object: DC_CTRL

Component:
Reaction:
Acknowledge:
Cause:

Remedy:

Reaction upon N : None Propagation: GLOBAL OFF2 (NONE) IMMEDIATELY Field current monitoring has detected erroneous behavior.

- Field phase failed
- Line contactor not picking up
- Fuse blown in field circuit
- Field current controller and/or field current controller pre-control not optimized or optimization is very poor. Fault value (r0949, interpret decimal):
1: The field current actual value was smaller than the percentage of the field current setpoint set in p50396.
2: The field line voltage was not available within the time set in p 50089.
3: The field current was not available within the time set in p50089.
4: The external field current monitoring has responded (BI: p50265 $=1 / 0$ signal).
Note for fault value $=1$:
r50047[1]: Setpoint at field current controller input (r52268)
r50047[2]: Actual value at field current controller input (r52265)
r50047[3]: External monitoring (p50265)
r50047[4]: Operating mode (p50082)
r50047[5]: Threshold for monitoring (p50396)
Note for fault value $=2$:
- r50047[1]: line state (r53145).

See also: r50073 (Device rated direct current field), p50082 (Field power unit operating mode), p50396 (Field current monitoring setpoint factor), p50397 (Field current monitoring fault delay time), r52265 (Cl-loop field curr ctrl current controller actual value), r52268 (Closed-loop field current control current controller setpoint)

Remedy:	- Check field phases.
	- Check line contactor.
	- Check fuses in field current circuit.
	- Perform an optimization run for the field current controller $(p 50051=24)$.
	- Check the threshold and time for field current monitoring $(p 50396, p 50397)$.
Reaction upon N:	See also: p50051 (Optimization run selection)
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F60106 (N, A)	Short-circuit voltage Uk too high
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The per unit short-circuit voltage of the line supply is greater than 10%.
	Permissible values are between 2 and 10%.
	See also: r50073 (Device rated direct current field), p50082 (Field power unit operating mode), p50396 (Field current monitoring setpoint factor), p50397 (Field current monitoring fault delay time), r52265 (Cl-loop field curr ctrl current controller actual value), r52268 (Closed-loop field current control current controller setpoint)
Remedy:	Check the dimensioning of the commutating reactors or the line transformer.
	See also: p50051 (Optimization run selection)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60137 (N, A)	I2t monitoring fault excessive motor temperature rise
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The I2t calculation shows that the motor's temperature rise is excessive.
	The fault is triggered if the calculated motor temperature rise in r52309 > 110\%.
	Note:
	r50047[1]: Temperature rise r52309
	r50047[2]: Motor rated armature current p50100
	r50047[3]: Continuous current factor r50113
	r50047[4]: Device rated current r50072[1]
	r50047[5]: Current armature current r52109
	r50047[6]: Motor thermal time constant p50114
	See also: p50114 (Motor thermal time constant), r52309 (Calculated motor temperature rise)
Remedy:	- check the ambient temperature and reduce if necessary.
	- reduce the motor load.
	See also: r52109 (Armature current actual value averaged over 6 cycles)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60139 (N, A)	I2t monitoring fault excessive power unit temperature rise
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The temperature rise of the thyristors is more than 102% of the maximum permissible value.
Remedy:	- Check the ambient temperature and reduce if necessary.
	- Check the motor load and reduce if necessary.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { A60143 (F, N) }}$	Reduction of the field current setpoint for an excessively high EMF during braking active
Message value:	-
Message class:	Motor overload (8)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Reduction of the field current setpoint for an excessively high EMF during braking is active.
	See also: p50272 (Field current reduction activation)
Remedy:	Not necessary.
	The alarm automatically disappears after braking has expired.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A60144	Minimum field current setpoint limit reached	
Message value:	-	
Message class:	General drive fault (19)	
Drive object: DC_CTRL Component: None Reaction: NONE Acknowledge: NONE Cause: The minimum field current setpoint limit was reached. See also: r53193 (Field current setpoint limiting state) Remedy: - Check p50103 - Check the motor data		

A60165 (F, N)	Fan end of service life has been reached or exceeded
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one device fan has reached the end of its service life - or has exceeded it.
Remedy:	Replace the device fan and reset the operating hours. See also: r50960 (Device fan operating hours display), p50961 (Device fan service life), p50962 (Device fan reset Reaction upon F:\quadoperating hours) Acknowl. upon $\mathrm{F}:$
NONE (OFF1, OFF2, OFF3)	
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A60166 (F, N)	Alarm fan speed too slow
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The fan speed is too slow. The fan is probably blocked or faulty.
	Note:
	r50047[1]: Speed fan 1 (in revolutions/s)
	r50047[2]: Speed fan 2 (in revolutions/s)
	r50047[3]: Speed fan 3 (in revolutions/s)
Remedy:	r50047[4]: Speed fan 4 (in revolutions/s)
Reaction upon F:	Check the fan and replace if necessary.
Acknowl. upon F:	IMMEDIATELY (OFF1, OFF2, OFF3)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F60167 (N, A) Fault fan speed too slow

Message value:
Message class: Overtemperature of the electronic components (6)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL

Reaction:
Acknowledge:
Cause: \quad a) The fan speed is too slow. The fan is probably blocked or faulty.
b) The AC fan was switched off in operation or before the fan run on time p50096 expired by an external fan control. Note 1:
r50047[1]: Speed fan 1 (in revolutions/s)
r50047[2]: Speed fan 2 (in revolutions/s)
r50047[3]: Speed fan 3 (in revolutions/s)
r50047[4]: Speed fan 4 (in revolutions/s)
Note 2:
Fault message F60167 can only be acknowledged after the fan run on time p50096 has expired!
Remedy:
a) Check the fan and replace if necessary.
b) Use the fan control inside the device! See function block diagram 8047 or 8049.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A60168 (F, N)	Memory card not plugged in	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	DC_CTRL	Propagation:
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

4.2 List of faults and alarms

Cause:	The data recorded with the recorder function could not be saved on the memory card.
	Possible causes:
	- Memory card not plugged in
	- Memory card defective
	Note:
If the save function is performed without errors, the data is saved on the memory card under	
	"IUSERISINAMICSIDATAILOGITack.csv".
	Fault value (r0949, interpret decimal):
	1: Unable to create or open the file

F60203 (N, A) External fault triggered

Message value: $\%$

Message class: \quad General drive fault (19)
Drive object:
Componen
DC_CTRL

Reaction:
Acknowledge:

Cause:	An external fault has been triggered via terminal 124/125 on the Control Module.
	Fault value (r0949, interpret decimal):
	Input signal which triggered the fault.
	Note:
	r50047[1]: External fault mode (p51833)
	See also: p51833 (External fault mode)
Remedy:	Eliminate the causes of this fault.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F60204 (N, A) Fuse monitoring has responded

Message value: \%1
Message class: \quad General drive fault (19)
Drive object: DC_CTRL
Component: None Propagation: GLOBAL
Reaction:
OFF2 (NONE)
$\begin{array}{ll}\text { Acknowledge: } & \text { IMMEDIATELY } \\ \text { Cause: } & \text { Fuse monitoring on the Control Module has detected at least one blown fuse. }\end{array}$
Fault value (r0949, interpret decimal):
1: Monitoring of slot X23B ($\mathrm{p} 51831[0]$) has responded.
2: Monitoring of slot X23C (p51831[1]) has responded.
3: Monitoring of slot X23D (p51831[2]) has responded.
4: Monitoring of slot X23E (p51831[3]) has responded.
5: Monitoring of slot X23F (p51831[4]) has responded.
Note:
r50047[1]: Fuse number (XS1, XS2 to XS6)
See also: p51831 (Fuse monitoring activation)

Remedy:	- Analyze the blown fuse.
	- Replace or close fuses as necessary.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

A60266 (F, N)	Alarm fan not OK
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a Control Module without option Z01... Z15 the following applies:
	The signal at terminal 122/123 signals "Fan not OK".
	The fan might be blocked or faulty.
	Alarm value (r2124, interpret decimal):
	Alarm value 1: Signal at terminal 122/123 signals "Fan not OK".
	r50047[1]: Fan monitoring mode (p51832)
	For a Control Module with option Z01... Z15 the following applies:
	The alarm threshold for the differential pressure was fallen below.
	Alarm value 2: differential pressure at LT1 fallen below
	Alarm value 3: differential pressure at LT2 fallen below
	r50047[1]: Fan monitoring mode (p51832)
Remedy:	- Check wiring of "Fan OK" message via input terminal 122/123.
	- Check the setting of the mode for fan monitoring (p51832).
	- Check the fan and replace if necessary.
	See also: p51832 (Fan monitoring configuration), p51835 (Delay times for device fan monitoring)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F60267 (N, A) CM: Fan not OK

Message value: $\% 1$
Message class: Overtemperature of the electronic components (6)
Drive object:
Component DC_CTRL

Reaction:
None
OFF2 (NONE, OFF1, OFF3)
Acknowledge:
Cause: For a Control Module without option Z01... Z15 the following applies:
The signal at terminal 122/123 signals "Fan not OK".
The fan might be blocked or faulty.
Alarm value (r2124, interpret decimal):
Alarm value 1: Signal at terminal 122/123 signals "Fan not OK". r50047[1]: Fan monitoring mode (p51832)

For a Control Module with option Z01... Z15 the following applies:
The fault threshold for the differential pressure was fallen below.
Alarm value 2: differential pressure at LT1 fallen below
Alarm value 3: differential pressure at LT2 fallen below r50047[1]: Fan monitoring mode (p51832)

4 Faults and alarms

4.2 List of faults and alarms

Remedy:	- Check wiring of "Fan OK" message via input terminal 122/123. - Check the setting of the mode for fan monitoring (p51832). - Check the fan and replace if necessary. See also: p51832 (Fan monitoring configuration), p51835 (Delay times for device fan monitoring)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F60300	Commutation failure
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

4.2 List of faults and alarms

	r50047[1]: Actual voltage CD [in V]
	r50047[2]: Actual armature firing angle [in degrees]
	r50047[3]: Actual EMF [in V]
	r50047[4]: Actual la sample value [in A]
	r50047[5]: Actual torque direction (0, 1 or 2)
	See also: p51580 (Commutation monitoring control word)
Remedy:	Acknowledge the fault and switch off /switch on the drive
F60320 (N, A)	CCP not functional
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The SIMOREG CCP is not functional.
	Possible fault causes:
	- Hardware defect in the charge circuit of the turn-off capacitors.
	- Fuse failure in the armature circuit, line side or motor side.
	- Fuse failure in the precharging circuit for the chopper capacitors.
	- Chopper resistors still cooling down (this is necessary)
	Fault value (r0949, interpret decimal):
	1: No voltage at the U, V, W connections of the SIMOREG CCP.
	2: The voltage at C-D at the SIMOREG CCP does not match the voltage C-D at the SINAMICS DCM.
	3: The turn-off capacitors of the SIMOREG CCP have not reached the setpoint voltage.
	4: No connection between SINAMICS DCM (X165_2, fast pulse inhibit interface) and SIMOREG CCP (X165).
	5: No connection between SINAMICS DCM (X177) and SIMOREG CCP (X172) via the serial interface.
	6: No connection between several SIMOREG CCPs (X29_PAR or X30_PAR, turn-off pulse interface).
	7: SIMOREG CCP data invalid or not available (r51570, r51571, r51572).
	11: The I2t value (r51575) of the voltage limiting chopper 1 is too high (>100\%).
	12: The I2t value (r51576) of the voltage limiting chopper 2 is too high (>100\%).
	20: The chopper capacitors were not able to be precharged within the time set in p50089.
	Note:
	r50047[0]: Fault value
	r50047[1]: CCP state (extended status word + r51574)
	r50047[2]: Armature voltage
Remedy:	Interpret the fault value and rectify the fault correspondingly.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A60321 (F, N)	CCP not functional
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	DC_CTRL
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE

Cause:	The SIMOREG CCP is not functional.
	Possible fault causes:
	- Hardware defect in the charge circuit of the turn-off capacitors.
	- Fuse failure in the armature circuit, line side or motor side.
	- Fuse failure in the precharging circuit for the chopper capacitors.
	- Chopper resistors still cooling down (this is necessary)
	Alarm value (r2124, interpret decimal):
	1: No voltage at the U, V, W connections of the SIMOREG CCP.
	2: The voltage at C-D at the SIMOREG CCP does not match the voltage C-D at the SINAMICS DCM.
	3: The turn-off capacitors of the SIMOREG CCP have not reached the setpoint voltage.
	4: No connection between SINAMICS DCM (X165_2, fast pulse inhibit interface) and SIMOREG CCP (X165).
	5: No connection between SINAMICS DCM (X177) and SIMOREG CCP (X172) via the serial interface.
	6: No connection between several SIMOREG CCPs (X29_PAR or X30_PAR, turn-off pulse interface).
	7: SIMOREG CCP data invalid or not available (r51570, r51571, r51572).
	11: The I2t value (r51575) of the voltage limiting chopper 1 is too high (>100\%).
	12: The I2t value (r51576) of the voltage limiting chopper 2 is too high (>100\%).
	20: The chopper capacitors were not able to be precharged within the time set in p50089.
	Note:
	r50047[0]: Alarm value
	r50047[1]: CCP state (extended status word + r51574)
	r50047[2]: Armature voltage
Remedy:	Interpret the fault value and rectify the fault correspondingly.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

4 Faults and alarms
4.2 List of faults and alarms

Appendix

Content

A. 1 ASCII table (characters that can be displayed) 1272
A. 2 List of abbreviations 1275
A. 1 ASCII table (characters that can be displayed)

A. $1 \quad$ ASCII table (characters that can be displayed)

The following table includes the decimal and hexadecimal notation of ASCII characters that can be displayed (printable).

Table A-1 ASCII table (characters that can be displayed)

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2 C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2F	Slash, slant
0	48	30	Digit 0
1	49	31	Digit 1
2	50	32	Digit 2
3	51	33	Digit 3
4	52	34	Digit 4
5	53	35	Digit 5
6	54	36	Digit 6
7	55	37	Digit 7
8	56	38	Digit 8
9	57	39	Digit 9
:	58	3A	Colon
,	59	3B	Semicolon
<	60	3C	Less than
=	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
A	65	41	Capital letter A
B	66	42	Capital letter B
C	67	43	Capital letter C
D	68	44	Capital letter D
E	69	45	Capital letter E
F	70	46	Capital letter F
G	71	47	Capital letter G
H	72	48	Capital letter H
1	73	49	Capital letter I
J	74	4A	Capital letter J
K	75	4B	Capital letter K
L	76	4 C	Capital letter L
M	77	4D	Capital letter M
N	78	4E	Capital letter N
0	79	4F	Capital letter O
P	80	50	Capital letter P
Q	81	51	Capital letter Q
R	82	52	Capital letter R
S	83	53	Capital letter S
T	84	54	Capital letter T
U	85	55	Capital letter U
V	86	56	Capital letter V
W	87	57	Capital letter W
X	88	58	Capital letter X
Y	89	59	Capital letter Y
Z	90	5A	Capital letter Z
[91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
\wedge	94	5E	Circumflex
-	95	5F	Underline
-	96	60	Opening single quotation mark
a	97	61	Small letter a
b	98	62	Small letter b
C	99	63	Small letter c
d	100	64	Small letter d

A. 1 ASCII table (characters that can be displayed)

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
e	101	65	Small letter e
f	102	66	Small letter f
g	103	67	Small letter g
h	104	68	Small letter h
i	105	69	Small letter i
j	106	6 A	Small letter j
k	107	6B	Small letter k
I	108	6 C	Small letter I
m	109	6 D	Small letter m
n	110	6E	Small letter n
o	111	6 F	Small letter o
p	112	70	Small letter p
q	113	71	Small letter q
r	114	72	Small letter r
s	115	73	Small letter s
t	116	74	Small letter t
u	117	75	Small letter u
v	118	76	Small letter v
w	119	77	Small letter w
x	120	78	Small letter x
y	121	79	Small letter y
z	122	7A	Small letter z
\{	123	7B	Opening brace
I	124	7C	Vertical line
\}	125	7 D	Closing brace
\sim	126	7E	Tilde

A. 2 List of abbreviations

Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Abbreviation

A
A...

AC
ADC
AI
AIM
ALM
AO
AOP
APC
AR
ASC
ASCII

AS-i

ASM
AVS
B
BB
BERO
BI
BIA

BICO
BLM
BO
BOP
C
C
C...

CAN
CBC
CBE
CD
CDS
CF Card

Derivation of abbreviation

Alarm

Alternating Current
Analog Digital Converter
Analog Input
Active Interface Module
Active Line Module
Analog Output
Advanced Operator Panel
Advanced Positioning Control
Automatic Restart
Armature Short-Circuit
American Standard Code for Information Interchange
AS-Interface (Actuator Sensor Interface)

Asynchronmotor
Active Vibration Suppression

Betriebsbedingung

Binector Input
Berufsgenossenschaftliches Institut für Arbeitssicherheit

Binector Connector Technology
Basic Line Module
Binector Output
Basic Operator Panel

Capacitance

Controller Area Network
Communication Board CAN
Communication Board Ethernet
Compact Disc
Command Data Set
CompactFlash Card

Significance

Warning
Alternating current
Analog digital converter
Analog input
Active Interface Module
Active Line Module
Analog output
Advanced Operator Panel
Advanced Positioning Control
Automatic restart
Armature short-circuit
American coding standard for the exchange of information
AS-Interface (open bus system in automation technology)
Induction motor
Active load vibration damping

Operation condition
Contactless proximity switch
Binector input
BG-Institute for Occupational Safety and Health

Binector connector technology
Basic Line Module
Binector output
Basic Operator Panel

Capacitance

Safety message
Serial bus system
Communication Board CAN
PROFINET communication module (Ethernet)
Compact disc
Command data set
CompactFlash card

Abbreviation	Derivation of abbreviation	Significance
Cl	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computerized Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector output/Binector output
COB-ID	CAN Object-Identification	CAN object identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a change-over relay	Center contact of a changeover contact
COMM	Commissioning	Startup
CP	Communication Processor	Communication processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC	Control Unit DC
D		
DAC	Digital Analog Converter	Digital analog converter
DC	Direct Current	DC current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDC	Dynamic Drive Control	Dynamic Drive Control
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input/Digital Output	Digital input/output, bidirectional
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed I/O
DPRAM	Dual Ported Random Access Memory	Dual-Port Random Access Memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DSM	Doppelsubmodul	Double submodule
DTC	Digital Time Clock	Timer

Abbreviation	Derivation of abbreviation
E	
EASC	External Armature Short-Circuit
EDS	Encoder Data Set
EEPROM	Electrically Erasable Programmable Read-Only Memory
EGB	Elektrostatisch gefährdete Baugruppen
EIP	EtherNet/IP
ELCB	Earth Leakage Circuit Breaker
ELP	Earth Leakage Protection
EMC	Electromagnetic Compatibility
EMF	Electromotive Force
EMK	Elektromotorische Kraft
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
EnDat	Encoder-Data-Interface
EP	Enable Pulses
EPOS	Einfachpositionierer
ES	Engineering System
ESB	Ersatzschaltbild
ESD	Electrostatic Sensitive Devices
ESM	Essential Service Mode
ESR	Extended Stop and Retract
F	
F...	Fault
FAQ	Frequently Asked Questions
FBLOCKS	Free Blocks
FCC	Function Control Chart
FCC	Flux Current Control
FD	Function Diagram
F-DI	Failsafe Digital Input
F-DO	Failsafe Digital Output
FEPROM	Flash-EPROM
FG	Function Generator
FI	-
FOC	Fiber-Optic Cable
FP	Funktionsplan
FPGA	Field Programmable Gate Array
FW	Firmware
G	
GB	Gigabyte
GC	Global Control

Significance

External armature short-circuit
Encoder data set
Electrically Erasable Programmable Read-Only-Memory
Electrostatically sensitive devices
EtherNet Industrial Protocol (realtime Ethernet)
Residual current operated circuit breaker
Ground-fault monitoring
Electromagnetic compatibility
Electromotive force
Electromotive force
Electromagnetic compatibility
European standard
Encoder interface
Pulse enable
Basic positioner
Engineering system
Equivalent circuit diagram
Elektrostatisch gefährdete Baugruppen
Essential service mode
Extended stop and retract

Fault

Frequently asked questions
Free function blocks
Function Control Chart
Flux current control
Function diagram
Fail-safe digital input
Fail-safe digital output
Non-volatile write and read memory
Function generator
Fault current
Fiber-optic cable
Function diagram
Field Programmable Gate Array
Firmware

Gigabyte
Global control telegram (broadcast telegram)

Abbreviation	Derivation of abbreviation
GND	Ground
GSD	Gerätestammdatei
GSV	Gate Supply Voltage
GUID	Globally Unique Identifier
H	
HF	High frequency
HFD	Hochfrequenzdrossel
HLA	Hydraulic Linear Actuator
HLG	Hochlaufgeber
HM	Hydraulic Module
HMI	Human Machine Interface
HTL	High-Threshold Logic
HW	Hardware
I	
i. V.	In Vorbereitung
1/O	Input/Output
I2C	Inter-Integrated Circuit
IASC	Internal Armature Short-Circuit
IBN	Inbetriebnahme
ID	Identifier
IE	Industrial Ethernet
IEC	International Electrotechnical Commission
IF	Interface
IGBT	Insulated Gate Bipolar Transistor
IGCT	Integrated Gate-Controlled Thyristor
IL	Impulslöschung
IP	Internet Protocol
IPO	Interpolator
IT	Isolé Terre
IVP	Internal Voltage Protection
J	
JOG	Jogging
K	
KDV	Kreuzweiser Datenvergleich
KHP	Know-how protection
KIP	Kinetische Pufferung
Kp	-
KTY84	-

Significance

Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)

Generic Station Description: Describes the features of a PROFIBUS slave

Gate supply voltage
Globally Unique Identifier

High frequency
Radio frequency reactor
Hydraulic linear actuator
Ramp-function generator
Hydraulic Module
Human Machine Interface
Logic with high interference threshold
Hardware

Under development: This property is currently not available

Input/output
Internal serial data bus
Internal armature short-circuit
Startup
Identification
Industrial Ethernet
International Electrotechnical Commission
Interface
Insulated gate bipolar transistor
Semiconductor power switch with integrated control electrode
Pulse suppression
Internet protocol
Interpolator
Non-grounded three-phase line supply Internal voltage protection

Jogging

Data cross-check
Know-how protection
Kinetic buffering
Proportional gain
Temperature sensor

Abbreviation	Derivation of abbreviation	Significance
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light emitting diode
LIN	Linearmotor	Linear motor
LR	Lageregler	Position controller
LSB	Least Significant Bit	Least significant bit
LSC	Line-Side Converter	Line-side converter
LSS	Line-Side Switch	Line-side switch
LU	Length Unit	Length unit
LWL	Lichtwellenleiter	Fiber-optic cable
M		
M	-	Symbol for torque
M	Masse	Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDI	Manual Data Input	Manual data input
MDS	Motor Data Set	Motor data set
MLFB	Maschinenlesbare Fabrikatebezeichnung	Machine-readable product code
MM	Motor Module	Motor Module
MMC	Man-Machine Communication	Man-machine communication
MMC	Micro Memory Card	Micro memory card
MSB	Most Significant Bit	Most significant bit
MSC	Motor-Side Converter	Motor-side converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (class 1) and slave
MSR	Motorstromrichter	Motor-side converter
MT	Messtaster	Probe
N		
N. C.	Not Connected	Not connected
N...	No Report	No report or internal message
NAMUR	Interessengemeinschaft Automatisierungstechnik der Prozessindustrie	User Association of Automation Technology in Process Industries
NC	Normally Closed (contact)	NC contact
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Association	Standardization association in USA (United States of America)
NM	Nullmarke	Zero mark
NO	Normally Open (contact)	NO contact
NSR	Netzstromrichter	Line-side converter
NTP	Network Time Protocol	Standard for synchronization of the time of day
NVRAM	Non-Volatile Random Access Memory	Non-volatile read/write memory

Abbreviation	Derivation of abbreviation
0	
OA	Open Architecture
OAIF	Open Architecture Interface
OASP	Open Architecture Support Package
OC	Operating Condition
OCC	One Cable Connection
OEM	Original Equipment Manufacturer
OLP	Optical Link Plug
OMI	Option Module Interface
P	
p...	-
P1	Processor 1
P2	Processor 2
PB	PROFIBUS
PcCtrl	PC Control
PD	PROFIdrive
PDC	Precision Drive Control
PDS	Power unit Data Set
PDS	Power Drive System
PE	Protective Earth
PELV	Protective Extra Low Voltage
PFH	Probability of dangerous failure per hour
PG	Programmiergerät
PI	Proportional Integral
PID	Proportional Integral Differential
PLC	Programmable Logical Controller
PLL	Phase-Locked Loop
PM	Power Module
PMI	Power Module Interface
PMSM	Permanent-magnet synchronous motor
PN	PROFINET
PNO	PROFIBUS Nutzerorganisation
PPI	Point to Point Interface
PRBS	Pseudo Random Binary Signal
PROFIBUS	Process Field Bus
PS	Power Supply
PSA	Power Stack Adapter
PT1000	-
PTC	Positive Temperature Coefficient
PTP	Point To Point

Significance

Software component which provides additional functions for the SINAMICS drive system
Version of the SINAMICS firmware as of which the OA-application can be used
Extends the commissioning tool to include the corresponding OA-application
Operation condition
One-cable technology
Original equipment manufacturer
Bus connector for fiber-optic cable
Option Module Interface

Adjustable parameters
Processor 1
Processor 2
PROFIBUS
Master control
PROFIdrive
Precision Drive Control
Power unit data set
Drive system
Protective ground
Safety extra-low voltage
Probability of dangerous failure per hour
Programming device
Proportional integral
Proportional integral differential
Programmable logic controller
Phase-locked loop
Power Module
Power Module Interface
Permanent-magnet synchronous motor
PROFINET
PROFIBUS user organization
Point-to-point interface
White noise
Serial data bus
Power supply
Power Stack Adapter
Temperature sensor
Positive temperature coefficient
Point-to-point

Abbreviation	Derivation of abbreviation
PWM	Pulse Width Modulation
PZD	Prozessdaten
Q	
R	
r...	-
RAM	Random Access Memory
RCCB	Residual Current Circuit Breaker
RCD	Residual Current Device
RCM	Residual Current Monitor
REL	Reluctance motor textile
RESM	Reluctance synchronous motor
RFG	Ramp-Function Generator
RJ45	Registered Jack 45
RKA	Rückkühlanlage
RLM	Renewable Line Module
RO	Read Only
ROM	Read-Only Memory
RPDO	Receive Process Data Object
RS232	Recommended Standard 232
RS485	Recommended Standard 485
RTC	Real Time Clock
RZA	Raumzeigerapproximation
S	
S1	-
S3	-
SAM	Safe Acceleration Monitor
SBC	Safe Brake Control
SBH	Sicherer Betriebshalt
SBR	Safe Brake Ramp
SBT	Safe Brake Test
SCA	Safe Cam
SCC	Safety Control Channel
SCSE	Single Channel Safety Encoder
SD Card	SecureDigital Card
SDC	Standard Drive Control
SDI	Safe Direction
SE	Sicherer Software-Endschalter

Significance

Pulse width modulation
Process data

Display parameters (read only)
Memory for reading and writing Residual current operated circuit breaker
Residual current operated circuit breaker
Residual current monitor
Reluctance motor textile
Synchronous reluctance motor
Ramp-function generator
Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
Cooling unit
Renewable Line Module
Read only
Read-only memory
Receive Process Data Object
Interface standard for a cable-connected serial data transmission between a transmitter and receiver (also known as EIA232)
Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of transmitters and receivers, also known as EIA485)
Real-time clock
Space-vector approximation

Continuous duty
Intermittent duty
Safe acceleration monitoring
Safe brake control
Safe operating stop
Safe brake ramp monitoring
Safe brake test
Safe cam
Safety Control Channel
Single-channel safety encoder
Secure digital memory card
Standard Drive Control
Safe motion direction
Safe software limit switch

Abbreviation	Derivation of abbreviation
SESM	Separately-excited synchronous motor
SG	Sicher reduzierte Geschwindigkeit
SGA	Sicherheitsgerichteter Ausgang
SGE	Sicherheitsgerichteter Eingang
SH	Sicherer Halt
SI	Safety Integrated
SIC	Safety Info Channel
SIL	Safety Integrity Level
SITOP	-
SLA	Safely-Limited Acceleration
SLM	Smart Line Module
SLP	Safely-Limited Position
SLS	Safely-Limited Speed
SLVC	Sensorless Vector Control
SM	Sensor Module
SMC	Sensor Module Cabinet
SME	Sensor Module External
SMI	SINAMICS Sensor Module Integrated
SMM	Single Motor Module
SN	Sicherer Software-Nocken
SOS	Safe Operating Stop
SP	Service Pack
SP	Safe Position
SPC	Setpoint Channel
SPI	Serial Peripheral Interface
SPS	Speicherprogrammierbare Steuerung
SS1	Safe Stop 1
SS1E	Safe Stop 1 External
SS2	Safe Stop 2
SS2E	Safe Stop 2 External
SSI	Synchronous Serial Interface
SSL	Secure Sockets Layer
SSM	Safe Speed Monitor
SSP	SINAMICS Support Package
STO	Safe Torque Off
STW	Steuerwort
T	
TB	Terminal Board
TEC	Technology Extension

Significance

Separately excited synchronous motor
Safely-limited speed
Safety-related output
Safety-related input
Safe stop
Safety Integrated
Safety Info Channel
Safety integrity level
Siemens power supply system
Safety limited acceleration
Smart Line Module
Safely-limited position
Safely-limited speed
Sensorless vector control
Sensor Module
Sensor Module Cabinet
Sensor Module External
SINAMICS Sensor Module Integrated
Single Motor Module
Safe software cam
Safe operating stop
Service pack
Safe position
Setpoint channel
Serial peripheral interface
Programmable logic controller
Safe Stop 1
(time-monitored, ramp-monitored)
Safe Stop 1 with external stop
Safe Stop 2
Safe Stop 2 with external stop
Synchronous serial interface
Encryption protocol for secure data transfer (new TLS)
Safe feedback from speed monitor
SINAMICS support package
Safe torque off
Control word

Terminal Board

Software component which is installed as an additional technology package and which expands the functionality of SINAMICS (previously OA-application)

Abbreviation	Derivation of abbreviation	Significance
TIA	Totally Integrated Automation	Totally Integrated Automation
TLS	Transport Layer Security	Encryption protocol for secure data transfer (previously SSL)
TM	Terminal Module	Terminal Module
TN	Terre Neutre	Grounded three-phase line supply
Tn	-	Integral time
TPDO	Transmit Process Data Object	Transmit Process Data Object
TSN	Time-Sensitive Networking	Time-Sensitive Networking
TT	Terre Terre	Grounded three-phase line supply
TTL	Transistor-Transistor-Logic	Transistor-transistor logic
Tv	-	Rate time
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Uninterruptible power supply
USV	Unterbrechungsfreie Stromversorgung	Uninterruptible power supply
UTC	Universal Time Coordinated	Universal time coordinated
v		
VC	Vector Control	Vector control
Vdc	-	DC-link voltage
VdcN	-	Partial DC-link voltage negative
VdcP	-	Partial DC-link voltage positive
VDE	Verband Deutscher Elektrotechniker	Association of German Electrical Engineers
VDI	Verein Deutscher Ingenieure	Association of German Engineers
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module	Voltage Sensing Module
w		
WEA	Wiedereinschaltautomatik	Automatic restart
WZM	Werkzeugmaschine	Machine tool
X		
XML	Extensible Markup Language	Extensible markup language (standard language for Web publishing and document management)
Y		
Z		
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
ZSW	Zustandswort	Status word

A. 2 List of abbreviations

Siemens AG
Process Industries and Drives
Large Drives
Postbox 4743
90025 NUREMBERG
GERMANY

[^0]: 9°
 sue»Бе!р uо!əวun」 ε

[^1]: $K=\frac{\text { Number of power units }}{N}$
 Number of active power units
 <1> Value $=0$:
 Monitoring switched off, i.e. calculated motor temperature rise $=0$
 <2> Correction factor K for redundancy mode (p51803).

