

https://support.industry.siemens.com/cs/ww/en/view/20983558

Application Example 02/2016

Master-Slave Communication
via UDP Broadcast
SIMATIC S7-1200/S7-1500

https://support.industry.siemens.com/cs/ww/en/view/20983558

Warranty and Liability

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 2

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete with
regard to configuration, equipment or any contingencies. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for the correct
operation of the described products. These Application Examples do not relieve
you of the responsibility of safely and professionally using, installing, operating
and servicing equipment. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time and without prior notice. If there are any
deviations between the recommendations provided in this Application Example
and other Siemens publications – e.g. Catalogs – the contents of the other
documents shall have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of fundamental contractual obligations (“wesentliche
Vertragspflichten”). The compensation for damages due to a breach of a
fundamental contractual obligation is, however, limited to the foreseeable damage,
typical for the type of contract, except in the event of intent or gross negligence or
injury to life, body or health. The above provisions do not imply a change of the
burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens AG.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
https://support.industry.siemens.com.

http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/?lc=en-DE

1 Task

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 3

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Task ... 4

2 Solution... 5

2.1 Overview... 5
2.2 Description of the core functionality ... 6
2.3 Hardware and software components ... 9
2.3.1 Validity .. 9
2.3.2 Components used .. 9

3 Basics ... 10

3.1 Basic terms ... 10
3.2 UDP .. 11
3.3 Connections for SIMATIC controllers ... 11

4 Mode of Operation ... 14

4.1 General overview ... 14
4.2 User interface ... 17
4.3 Functionality as master .. 19
4.3.1 Adopting master function.. 19
4.3.2 Sending message frames... 20
4.3.3 Slave management .. 23
4.3.4 Time measurement .. 26
4.4 Functionality as slave ... 27
4.4.1 Receiving of frames .. 27
4.4.2 Acknowledging frames ... 27
4.4.3 Time measurement .. 27
4.5 Performance characteristics ... 28
4.5.1 Cycle time as the master .. 28
4.5.2 Reaction time of the slaves .. 28

5 Configuration and Settings... 29

5.1 Configuration of the station .. 29
5.2 Using the LBC library ... 30

6 Installation and Commissioning .. 34

6.1 Installing the hardware ... 34
6.2 Installing the software ... 34
6.2.1 Preparation ... 34
6.2.2 Loading the S7 project into the CPU .. 35

7 Operating the Application ... 37

7.1 Station as slave scenario ... 37
7.2 Station as master scenario ... 38
7.2.1 Adopting master function.. 38
7.2.2 Generating test data ... 39
7.2.3 Sending a send frame .. 40
7.2.4 Sending request frame ... 40
7.3 Diagnostics ... 41

8 Related literature ... 42

9 History... 42

1 Task

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 4

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Task

Introduction

A frequent requirement in many applications is sending a data record quickly and
simultaneously to several stations.

This could be the case in a conveyor and transport system, for example. In free-
moving transport units a quasi-synchronous reaction can be initiated with only one
frame. A frame could contain the information to turn all units to the left by 15°.

Figure 1-1

Führende Transporteinheit

(Master)

Variable Transporteinheit

(Slave)

Variable Transporteinheit

(Slave)

Variable Transporteinheit

(Slave)

A combination of transport units often consists of variably combined units. Hence, it
should be possible during runtime to disconnect a unit from the combination of
transport units and to connect another unit.

Requirements

 Transfer of user-specific data from one master to all slaves using a broadcast

 Acknowledging the received data from the slaves to the master

 Uniform software package for master and slaves

 Efficient transfer of the data

 Adding further stations has to be possible at any time without having to modify
already existing stations.

 Each station can become guiding station during operation (master-slave
switchover).

Guiding transport unit
(master)

Variable transport unit
(slave)

Variable transport unit
(slave)

Variable transport unit
(slave)

2 Solution

2.1 Overview

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 5

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Solution

2.1 Overview

Setup

The application example realizes the task with SIMATIC controllers S7-1200 and
S7-1500, interconnected via PROFINET:

Figure 2-1

Master

S7-1200

Slave 1

S7-1200

Slave 2

S7-1500

Slave 3

S7-1500

Any number of controllers can participate here.

The UDP protocol is used for communication. This way, the connections need not
be configured statically, but can be set up program-controlled (see also chapter 3.3
“Connections for SIMATIC controllers”). Hence, the participating stations need not
be known to each other during the configuration process, and the master-slave
switchover can be performed dynamically.

Advantages

 Already existing PROFINET/Ethernet infrastructures can be used

 No additional communication processors are required, since the PROFINET
ports of the controllers are used

 Flexible topologies

 Simple expandability

 Communication bocks (TUSEND or TURCV) contained in STEP 7 are used

Assumed knowledge

The following basic knowledge is assumed:

 Handling SIMATIC controllers

 Knowledge of STEP 7 programming

 Basics of industrial communication

2 Solution

2.2 Description of the core functionality

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 6

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Description of the core functionality

Introduction

A master sends data to slaves or requests data from slaves via a UDP broadcast.
The slaves acknowledge the received broadcast to the master.

The nodes need not be known during the configuration process and may change
during operation. The function of the master can also be transferred to any
controller during operation.

The master can send data to slaves or request data from slaves. The application
sends a maximum of 236 characters per send job.

If no send jobs are pending, the master periodically polls to ensure that all nodes
are available. These polls are referred to as keep-alive frames in the sections
below.

2 Solution

2.2 Description of the core functionality

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 7

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Graphic program flow

This section discusses the STEP 7 program flow.

Figure 2-2

Establishing

connections

Master or
slave?

Other
master active?

Sending
keep-alive

frame

Send
data?

Request
data?

Acknowledge-
ments received?

Sending
data frames

to slaves

Receiving
frames?

Sending
acknowledge-

ments

Slave

Master

Yes

No

Yes

Yes

Yes

No

No

No

enable

Error

1

2

3

4

5

6

7

2 Solution

2.2 Description of the core functionality

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 8

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Sequence as master

Table 2-1

 Action Note

1. Connections are established.

2. If the station shall adopt the function of
the master, it is checked whether
another node is already active as the
master.

If another master is detected in the
network, an error is triggered. This does
not affect the other master.

3. If no master is active, a keep-alive
frame is sent.

4. Data is sent to the slaves with a send
command.

5. Data is requested by the slaves using a
request command.

6. If send or request commands are
pending, keep-alive frames are sent
periodically.

Note If not all of the known slaves confirm the receiving of a frame, an error is output.
However, this does not disrupt the send operation.

Sequence as slave

Table 2-2

 Action Note

1. Connections are established.

2. If the station is not meant to take on the
function as the master, it automatically
takes on the function of a slave.

7. If the station receives a frame from the
master, this will be acknowledged by a
frame to the master.

2 Solution

2.3 Hardware and software components

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 9

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Hardware and software components

2.3.1 Validity

This application is valid for

 STEP 7 V13 SP1 or higher

 S7-1200 with firmware version 4.1 or higher, S7-1500

2.3.2 Components used

The application was created with the following components:

Hardware components

Table 2-3

Component Qty Article number Note

CPU 1214C 2 6ES7214-1AG40-0XB0 FW V4.1

CPU 1511 1 6ES7511-1AK00-0AB0

CPU 1516 1 6ES7516-1AN00-0AB0

SCALANCE XB008 1 6GK5008-0BA00-1AB2

Power supply 24V 1 6EP1332-4BA00 70 W 120/230 V AC

Hinweis The functionality was tested with the hardware components specified. Similar
products that are not included in the above list can also be used.

Software components

Table 2-4

Component Qty Article number Note

STEP 7 Professional 1 6ES7822-1AA03-0YA5 V13 SP 1

Example files and projects

The following list includes all files and projects that are used in this example.

Table 2-5

Component Note

20983558_UDP_Broadcast_DOC_V21_en.pdf This document

20983558_UDP_Broadcast_CODE_V21.zip The STEP 7 project

20983558_UDP_Broadcast_LIB_V11.zip The library created for the application example

3 Basics

3.1 Basic terms

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 10

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Basics

3.1 Basic terms

Broadcast

If in a computer network, a data package shall be transferred from one point to all
nodes in the network, then this is referred to as a broadcast. The receiver of the
broadcast package needs not be specified explicitly.

Directed broadcast

The broadcast is aimed at participants of a certain network. The address for a
directed broadcast to the network 192.168.0.0 with the subnet mask 255.255.255.0
is 192.168.0.255.

Port

A port is a part of a network address for assigning TCP connections, UDP
connections, and data packages to server and client programs by means of
operating systems. Each connection of both of these protocols includes two ports,
one each on client and server side.

Socket

Together with the IP address of the station, the port number forms a so-called
socket that is defined as a unique address of the user program in the overall
network.
Any service of a process on a station within a network can hence be addressed
with a socket.

Unicast

Unicast refers to the transmission of messages between a sender and a single
receiver.

3 Basics

3.2 UDP

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 11

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 UDP

Introduction

The UDP protocol (User Datagram Protocol) was implemented for performance
reasons. It offers multiple possibilities of use due to its slim frame header. In
addition, almost every component in Industrial Ethernet supports the UDP protocol.
The unacknowledged transfer of the data has unfavorable consequences.

Scope

Since it is required to transfer data quickly, UDP protocol only makes basic
functions available. That way, data can be exchanged between communicating
parties with minimum effort. UDP does not include security mechanisms as
available in TCP/IP.

Figure 3-1

IP adresse Data area of the UDP packageUDP header

In addition, the UDP protocol is connectionless and non-stream-oriented, i.e. data
packets are sent as a whole.

Disadvantages

Due to the lack of security mechanisms, the resulting disadvantages have to be
taken into consideration during usage and may require a respective practical
solution.

 There is no renewed sending of lost data packets.

 Data packets with incorrect checksum are rejected and not newly requested.

 Multiple deliveries of individual packets are possible due to the properties of
the IP protocol as subordinate protocol.

 The arrival sequence of the data at the receiver cannot be predicted.

3.3 Connections for SIMATIC controllers

Introduction

A connection defines a logic assignment of two communication partners for
executing communication services. A connection defines the following:

 Communication partners involved

 Type of connection (e.g. S7 connection)

 Special properties (e.g. whether a connection remains permanent or is
established and terminated dynamically in the user program, and whether
operating status messages shall be sent)

 Connection path

3 Basics

3.3 Connections for SIMATIC controllers

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 12

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Configuration of connections

Communication connections can be configured or, under certain circumstances,
also be generated program-controlled.

The addresses of the local and the remote connection partner are given when
networking the devices and assigned to the connections during configuration.

Exceptions here are the following connections:

 Free UDP connection: For the free UDP connection, the address is specified at
the communication interface in the user program.

 Programmed communication connection

Fully specified connections

Fully specified connections have the following properties:

 The addresses and the network parameters of the local and the remote
communication partner are defined.

 After loading the connection parameters, the communication connection is
ready for operation.

Unspecified (partly specified) connections

Unspecified connections have the following properties:

 Only the local communication partner is defined.

This may have the following reasons:

– the partner for the selected connection type is not networked

– the partner is located outside the project

– the partner is not meant to be defined due to a specific handling procedure

 After loading the connection parameters, the communication connection is only
partly ready for operation.

Application cases:

 The hardware configuration is still incomplete, so complete networking of the
devices is not yet possible.

 Ready to receive mode shall be established for any (unspecified)
communication partner.

3 Basics

3.3 Connections for SIMATIC controllers

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 13

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Programmed communication connection

Programmed communication connections are unspecified or partly specified
connections.

In certain application areas, it is an advantage not to establish the communication
connections statically via the configuration. Therefore, as an alternative, there is
the option of setting up certain connection types program-controlled via a specific
application, hence, dynamically on demand.

Instructions

The table lists the STEP 7 instructions for using open communication services
(Open User Communication) with UDP.

Table 3-1

Designation Short description

TCON Connection establishment

TDISCON Disconnecting the process

TUSEND Sending data; connectionless UDP protocol in compliance with
RFC 768

TURCV Receiving data; connectionless UDP protocol in compliance with
RFC 768

4 Mode of Operation

4.1 General overview

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 14

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Mode of Operation

4.1 General overview

Introduction

Figure 4-1

Master

S7-1200

Slave 1

S7-1200

Slave 2

S7-1500

Slave 3

S7-1500

Several controllers are interconnected via PROFINET. Each controller can
temporarily take on the function of the master, whereas only one master at a time
must be active.

The master sends data to the slaves or requests data from slaves via a UDP
broadcast. The slaves acknowledge the received broadcast with a message frame
to the master.

The data of the slaves is managed by the master and stored in a data block.

Communication

In this application example, the following programmed communication connections
are used. This has the advantage that the respective other controllers need not be
known during the configuration process, and any further controllers can be
supplemented.

For sending and receiving frames, the communication blocks TUSEND and
TURCV that are integrated in STEP 7 are used here.

Note This application example realizes a directed broadcast. Thus the communication
is limited to a subnet. All participants must use the same subnet.

Data

Per send job, 236 characters of user data are transferred between master and
slave. The number of characters to be transferred can be adjusted in data type
“LBC_typeUserData”. The size of the array is calculated by the respective function
blocks during initialization, and the parameters of the TUSEND and TURCV blocks
are set accordingly.

More information on the message frame structure is available in the chapters 4.3.2
“Sending message frames” and 4.4.2 “Acknowledging frames”.

4 Mode of Operation

4.1 General overview

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 15

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Program overview

For this application example, the “LBC” block library was created: Blocks that are
part of the library are labeled with prefix “LBC”. The library is not know-how
protected and can be downloaded separately (see \2\).

Figure 4-2

ParamDB

Main

LBC_
Receive
Manager

LBC_

Main

LBC_Est

Sockets

LBC_
Send

Manager

LBC_

TreatData

LBC_

ReadIP

LBC_
Slave

Manager

LBC_

ReadIP

LBC_

TimeStats

LBC_

MaxIndex

LBC_

MaxIndex

LBC_

MaxIndex

Table 4-1

Symbolic name Function

LBC_Main User interface, central block:

 Evaluating the user parameters

 Defining the master/slave status

 Calling the subordinate function blocks

 Coordination of keep-alive frames, send requests, or
requests

 Output of user parameters

LBC_EstSockets Establishes two connections for sending and receiving
frames.

The connections are then used as follows:

Connection 1:

 As master: sending a broadcast to all nodes in the
subnet

4 Mode of Operation

4.1 General overview

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 16

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Symbolic name Function

 As slave: receiving a broadcast frame

Connection 2:

 As master: receiving the acknowledgement of the
slaves

 As slave: sending the acknowledgement to the master

LBC_SendManager Realizing the sending of frames as the master:

 Creating the user data of the broadcast frame

 Sending the broadcast frame

 Calling LBC_SlaveManager

LBC_ReadIP Reads the IP address of the internal PROFINET interface
from the S7-CPU.

The own IP address is written to the broadcast frame, or to
the acknowledgement of the slaves respectively.

LBC_SlaveManager Manages the slaves array:

 Receiving the acknowledgement of the slaves

 Assignment of incoming frames to the elements of the
slaves array

LBC_ReceiveManager Realizes the slave functions and checks, whether another
master exists in the network:

 Receives broadcast frames from the master

 Calls LBC_TreatData

 Sends a response/acknowledgement frame to the
master

 Reports if a frame from a master has arrived

LBC_TreatData Evaluates the received frames from the master and
generates the acknowledgement.

LBC_TimeStats Performs time measurements:

 As master: time between sending a frame and receiving
all acknowledgements of the active slaves

 As slave: time between receiving two frames from a
master

LBC_MaxIndex Calculates the number of elements of an array

4 Mode of Operation

4.2 User interface

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 17

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 User interface

Function block “LBC_Main” is the central block of the program and us used as user
interface. With this block, the parameters for operating the parameter are
transferred, and any of the further contained blocks are called.

Interface

Figure 4-3

Table 4-2

Symbol Type Notes

enable Input

Bool

Activates the program. As long as #enable is
active, the master periodically sends keep-
alive frames, and the slaves acknowledge
these.

A falling edge at #enable resets the blocks as
well as the following parameters:

 Time measurement

 Counters of the received frames

 Content of the slave array (slave array
reinitialized with the next frame)

setMaster Input

Bool

For #setMaster = TRUE, the device becomes
the master if no other master is active.

sendData Input

Bool

A positive edge at #sendData sends data to
the slaves.

In slave mode, the input is irrelevant.

requestData Input

Bool

A positive edge at #requestData requests the
data of the slaves.

In slave mode, the input is irrelevant.

4 Mode of Operation

4.2 User interface

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 18

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Symbol Type Notes

KAInterval Input

Time

Specifies the interval in which the keep-alive
frames are sent to the slaves.

These parameters need to be identical for all
nodes to ensure that an active master is
detected in time, before a controller can
become the master.

In slave mode, the input is irrelevant.

Min.-value: 200 ms.

timeout Input

Time

Specifies after which time all
acknowledgements from the slaves need to
have arrived before an error is output.

In slave mode, the input is irrelevant.

Min.-value: 100 ms.

ports Input

“LBC_typePorts”

Specifies which ports shall be used for the
communication between master and slaves.

valid Output

Bool

Indicates, that the parameters are permitted
and the program can be executed.

done Output

Bool

As master: broadcast frame was sent
successfully.

The bit is only set for one cycle.

busy Output

Bool

The program is busy.

error Output

Bool

An error was detected.

The bit is active for as long as #enable
remains set.

statusID Output

UInt

Specifies the source of the status messages.

The output is active for as long as #enable
remains set.

status Output

Word

Outputs status messages and in an #error
event, it specifies the error.

The output is active for as long as #enable
remains set.

connEst Output

Bool

The connections have been established.

isMaster Output

Bool

#isMaster = TRUE; the device works as
master.

#isMaster = FALSE; the device works as
slave.

numActSlaves Output

Int

Specifies the number of active slaves.

ndr Output

Bool

New frame received from the master.

The bit is only set for one cycle.

In master mode, the output is irrelevant.

telegramType Output

Int

Displays the type of the received frame for
#ndr = TRUE.

1: sendData

2: requestData

3: KA frame

In master mode, the output is irrelevant.

timeStats Output

“LBC_typeTimeStats”

Outputs time measurements.

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 19

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Symbol Type Notes

data InOut

“LBC_ typeUserData”

Master: data to be sent.

Slave: data received.

slavesArray InOut

“LBC_typeSlavesArray”

Array with information and user data of the
slaves.

4.3 Functionality as master

4.3.1 Adopting master function

Any controller can become the master temporarily. However, only one master at a
time can be active.

If input #enable has been set, the application is started and the station establishes
the required connection. By setting the #setMaster input, it is checked whether a
master is already active in the network. The configured time #KAInterval is waited.
If within this time no frame is received by a master, then there is no active master
and the controller takes on the function of the master. The fact that the controller
has taken on the function of the master is indicated at output #isMaster.

NOTICE Parameter #KAInterval must be identical for all nodes to guarantee, that an active master
is detected in time, before a controller can become the master.

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 20

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following graphic shows how the master function is taken on and the keep-
alive frames are sent.

Figure 4-4

4.3.2 Sending message frames

General

With the user interface of the master, the user can send the following frames:

 sendData: sending data to the slaves

 requestData: requesting data from the slaves

If no job is pending, keep-alive frames are automatically sent in configured time
intervals in order to poll the status of the slaves.

Any frame from the master is always acknowledged by the slaves. The time of
receiving the acknowledgements is monitored by the master.

Figure 4-5

TUSEND TURCV TURCVTURCV

Station 1: Master Station 2: Slave Station 3: Slave Station x: Slave

...

TURCV

TUSEND TUSEND TUSEND...

sendData

requestData

keepAlive

UDP broadcast

Acknowledgement as

UDP unicast

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 21

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

If several send jobs are active at the same time, the program prioritizes the send
jobs as follows:

1. Send job

2. Request job

3. Keep-alive frame

As soon as a frame was sent successfully, the block is ready to send another
frame. This is signaled by output #done which is active for one respective cycle
(see Figure 4-4). The receiving of the acknowledgements is not waited for here.

Keep-alive

Keep-alive frames are periodically sent from the master and the reception
acknowledged by the slaves. This enables the master to ensure, even during a
send pause, that all slaves are still active; otherwise, it can also detect on short
notice, whether the connection to a slave was disrupted.

The interval for sending keep-alive frames is defined via the #KAInterval input.

These frames are only sent if currently no send or request frames shall be sent.

Figure 4-6

Send

A sent frame transfers data from the master to the slaves. This is triggered with a
positive edge at the #sendData input.

The user data to be transferred is supplied to InOut parameter #data as data type
“LBC_typeUserData”. This data type consists of an array of 236 character (Chars),
that can be transferred.

In addition to the user data, the following data is transferred in a frame:

 Source address of the master (so the slaves know which address to send the
acknowledgement to)

 Time stamp

 Frame type (keep-alive, send or request)

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 22

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 4-7

Source address Frame typeTime stamp User data

Figure 4-8

Request

The master uses a request frame to request data from the slaves. The received
data is stored in the slave management of the master.

Sending a request frame is triggered with a positive edge at the #requestData input
(see Figure 4-8).

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 23

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.3.3 Slave management

Due to the received acknowledgements, the master knows all the slaves and
stores them in an array. This is performed in function block “LBC_SlaveManager”.

Figure 4-9

TUSEND TURCV TURCVTURCV

slaves[0]

slaves[x]

slaves[3]

slaves[2]

slaves[1]
...

Station 1: Master Station 2: Slave Station 3: Slave Station x: Slave

...

TURCV

TUSEND TUSEND TUSEND...

sendData

requestData

keepAlive

This slave array is defined by data type “LBC_SlavesArray” and receives the
following data:

 IP address and port of the slave

 Status, whether the slave is active

 Status, whether the slave has acknowledged the receiving of the last frame

 Data received from the slave

 Number of received keep-alive frames of the slave

 Number of received request and send frames of the slave

Since the memory must not be allocated during the runtime of the controller, the
maximum number of slaves to be managed must be known during the
configuration process. This can be adjusted in data type “LBC_typeSlavesArray”. In
the delivery state of the application example, a maximum number of 20 slaves has
been configured.

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 24

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 4-10

Initialization

In order to make the number of slaves adjustable during runtime, a dynamic
structure of the slave array must be established. In an initialization process, the
slaves are addressed via a keep-alive frame, and the slave array is filled up in the
order of the incoming responses from the slaves.

Since the response order may vary, the slave array may be structured differently
for each initialization process.

After initializing the slave array, the responses from the slaves are compared with
the known IP addresses for each frame and hence assigned to the respective
slave.

Modules of a slave

The acknowledgements from the slaves are time monitored. The successful
sending of a frame starts a timer with the configured time #timeout. If, within this
time, all acknowledgements from the active slaves arrive, the timer is reset. When
sending a frame next time, the timer is started again.

The following graphics shows the receiving of all acknowledgements for three
active slaves within the configured time.

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 25

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 4-11

If a slave does not respond within the configured response time #timeout, the
following happens:

 A status message is output at output #status (see chapter 7.3).

 The #isActive bit is reset in the slave array of the respective slave.

 The number of active slaves #numActSlaves is reduced by 1.

 The element in the slave array remains.

The following graphic shows the receiving of only two acknowledgements for three
active slaves and the elapsed configured time #timeout.

Figure 4-12

Return of a slave

If an inactive slave responds to a frame again, the following happens:

 A status message is output at output #status (see chapter 7.3).

 The #isActive bit is set again in the slave array of the respective slave.

 The number of active slaves #numActSlaves is incremented by 1.

 The previously used element is further used in the slaves array.

4 Mode of Operation

4.3 Functionality as master

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 26

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Response of an unknown slave

If during operation, a previously unknown slave answers, the following happens:

 A status message is output at output #status (see chapter 7.3).

 The information of the slave is stored in a new element of the slave array.

 The #isActive bit is set in the slave array of the respective slave.

 The number of active slaves #numActSlaves is incremented by 1.

4.3.4 Time measurement

The program as the master measures the time between sending a frame and
receiving all acknowledgements from the known slaves. The result of the
measurement is output at output #timeStats in the format “LBC_typeTimeStats”.

This contains the current measured value, the last 20 measured values, and the
averaged measured value over the last 20 measured values.

The number of measured values to be stored can be adjusted in data type
“LBC_typeTimeStats”.

4 Mode of Operation

4.4 Functionality as slave

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 27

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.4 Functionality as slave

If input #enable has been set, the application is started and the station establishes
the required connection. If the station shall not be a master and therefore,
#setMaster is not set, the station takes on the function of a slave and responds to
all frames arriving at the configured port.

4.4.1 Receiving of frames

A station in slave mode cyclically calls function block “LBC_ReceiveManager” in
which frames are received and acknowledged. At output #ndr, the slave indicates
for one cycle that a new frame was received. Output #telegramType specifies the
type of the frame.

The received user data is provided at InOut parameter #data.

4.4.2 Acknowledging frames

All frames are always acknowledged by the slaves. The size of the
acknowledgement is always the same, irrespective of the type of the frame that is
acknowledged.

Acknowledgement consists of the following data:

 Target address of the master

 Time stamp

 Number of received frames

 User data to be transferred (the user data is only updated with the response to
request frames)

Figure 4-13

Target address Time stamp No of frames User data

4.4.3 Time measurement

The program as the slave measures the time between two received frames from
the master. The result of the measurement is output at output #timeStats in the
format “LBC_typeTimeStats”.

This contains the current measured value, the last 20 measured values, and the
averaged measured value over the last 20 measured values.

4 Mode of Operation

4.5 Performance characteristics

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 28

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.5 Performance characteristics

4.5.1 Cycle time as the master

CPU 1214C

Table 4-3

Type Cycle time in ms

shortest 2

average 3

longest 8

CPU 1516

Table 4-4

Type Cycle time in ms

shortest 0

average 1

longest 3

4.5.2 Reaction time of the slaves

The time between sending periodical keep-alive frames by the master, and
receiving all acknowledgements from the slaves with three slaves active is
measured.

Table 4-5

Type Reaction time in ms

shortest 19

average 44

longest 84

Note The mean value of the reaction times was determined from 100 measured
values, while every 500 ms a keep-alive frame was sent.

Figure 4-14

5 Configuration and Settings

5.1 Configuration of the station

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 29

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 Configuration and Settings
The enclosed project does not require any further configuration. If you want to
replicate the application example with other components, then the most important
settings are shown in this chapter.

5.1 Configuration of the station

1. Open TIA Portal and create a new project.

2. Open “Devices & network” in the project tree.

3. Drag the controllers used from the hardware catalog into the workspace.

4. Alternatively, you can also create a separate project for each controller. Please
ensure, that each controller has a unique IP address and the controllers are
located in the same subnet.

5. Connect the PROFINET interfaces of the created controllers with each other if
your project contains several controllers.
This step is mandatory. However, different IP addresses are then automatically
assigned to the controllers.

Figure 5-1

Note If further controllers should be added to the configuration, the configuration of the
already existing configuration needs not be adapted. Also, each controller can be
configured in a separate project without knowing the remaining controllers.

5 Configuration and Settings

5.2 Using the LBC library

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 30

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.2 Using the LBC library

Downloading the library

1. Download the LBC library and unzip the file. The download can be found under
\2\.

2. In TIA Portal V13, you open the “Libraries” area in the right window pane.

3. Expand the “Global libraries” tab.

4. Click on the “Open global library” icon and select the extracted library:

Figure 5-2

Instantiating the library blocks

1. Expand the folder of one of your controllers in the project tree.

2. Unfold the “LBC” library and the “Types” and “S7-1200_S7-1500” folder, and
drag its content to the “Program blocks” folder of the respective controller. The
program blocks and data types of the library are now instanced.

5 Configuration and Settings

5.2 Using the LBC library

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 31

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 5-3

3. In “Program blocks” you open organization block OB1.

4. From folder “Program blocks” you drag function block “LBC_Main” into a free
network and create an instance data block.

5. Assign actual parameters to the formal parameters of the function block.

For test purposes, you can use the actual parameters of data block
“LBC_ParamDB” from the “Master copies” folder of the library. Drag them from
the library onto the “Program blocks” folder.

5 Configuration and Settings

5.2 Using the LBC library

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 32

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Abbildung 5-4

6. Drag watch table “LBC_WatchMaster” and “LBC_WatchSlave” from the
“Master copies” folder of the library onto the “Watch and force tables” folder.

Figure 5-5

7. Repeat steps 5 to 9 for the other controllers in your project.

5 Configuration and Settings

5.2 Using the LBC library

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 33

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Generating test data

Execute the following steps, if the application shall generate some test data for test
purposes.

1. Open OB1 or create another organization block in whose cycle some test data
shall be generated.

2. Drag function block “LBC_DataGenerator” from folder “LBC_Lib” in “Program
blocks” into an empty network of the organization block.

3. Assign actual parameters of data block „LBC_ParamDB” to the formal
parameters of the function block.

Figure 5-6

6 Installation and Commissioning

6.1 Installing the hardware

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 34

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 Installation and Commissioning

6.1 Installing the hardware

Figure 6-1

S7-1200 S7-1200

S7-1500 S7-1500SCALANCE

Switch

PM 24 V

1. Mount the controllers, power supply unit, and switch onto DIN rails.

2. Connect the 24V DC supply voltage to controllers and switch.

3. Connect the PROFINET ports of the controllers with the SCALANCE switch.

6.2 Installing the software

6.2.1 Preparation

1. Download the file 20983558_MasterSlave_UDP-Broadcast_CODE_V21.zip.
The download can be found under \2\.

2. Save the zip files to any directory on your computer and extract them.

3. Set the IP address of the PG/PC so the PG/PC is located in the same subnet
as the CPUs.

4. Use an Ethernet cable to connect the PG/PC with the SCALANCE switch.

6 Installation and Commissioning

6.2 Installing the software

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 35

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

For this application example, the following IP addresses were used:

CPU 1214C (1)
IP address: 192.168.0.10
Subnet mask: 255.255.255.0

CPU 1214C (2)
IP address: 192.168.0.11
Subnet mask: 255.255.255.0

CPU 1511
IP address: 192.168.0.12
Subnet mask: 255.255.255.0

CPU 1516
IP address: 192.168.0.13
Subnet mask: 255.255.255.0

6.2.2 Loading the S7 project into the CPU

1. Open TIA Portal.

2. Go to the project view.

3. Click “Project > Open” in the menu bar in the TIA Portal.

4. Click “Browse” and open the respective project.

5. Set the respective CPU to STOP.

6. Right click on the respective CPU in the project tree and then on “Download to
device > Hardware and Software (only changes)”.

7. Select the respective interface and click “Start search”.

6 Installation and Commissioning

6.2 Installing the software

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 36

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 6-2

8. Select the CPU based on the address and then click on “Load”.

Note The IP address and the device name are automatically assigned when
downloading the project into the CPU.

9. Confirm the dialog by clicking “Load”.

10. Click “Finish” when the loading process is complete.

7 Operating the Application

7.1 Station as slave scenario

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 37

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7 Operating the Application

Operating the application for test purposes via watch tables is discussed below.
These are already contained as copy templates in the supplied library (see \2\).

Copy the watch tables “LBC_WatchMaster” and “LBC_WatchSlave” for any
participating controller in the respective project folders (see chapter 5.2).

7.1 Station as slave scenario

This chapter explains how the slave function is activated for a station.

Table 7-1

No. Action Notes

1. Open the watch table “LBC_WatchSlave” of
the respective controller.

The watch table is contained in the copy
templates of the supplied library (see chapter
5.2).

2. Control the „LBC_ParamDB”.enable tag to
TRUE.

This starts the application and the connection
is established. As soon as the connections are
established, the station receives frames and
acknowledges them.

The received data is represented in array
„LBC_ParamDB”.

The average time between receiving two
frames from a master is displayed in the
„LBC_ParamDB”.timeStats.meanTime tag.

7 Operating the Application

7.2 Station as master scenario

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 38

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 7-1

7.2 Station as master scenario

7.2.1 Adopting master function

This chapter explains how the master function is activated for a station.

Table 7-2

No. Action Notes

1. Open watch table “LBC_WatchMaster” of the
respective controller.

The watch table is contained in the copy
templates of the supplied library (see
chapter 5.2).

2. Control the „LBC_ParamDB”.enable tag to
TRUE.

This starts the application and the connection
is established.

3. Control the „LBC_ParamDB”.setMaster tag to
TRUE.

The station now waits for the configured
time #KAinterval to check whether a
master is already active. If within this time
no frame is received by a master, then
there is no active master, and the
controller takes on the function of the
master and the „LBC_ParamDB”.isMaster
tag is set.

From now on, keep-alive frames are
periodically sent by the master. With the
receiving of the acknowledgements, the
#isActive tags of the slave array are set,
and the number of active slaves are
displayed in
„LBC_ParamDB”.numActSlaves.

The average time between sending a

7 Operating the Application

7.2 Station as master scenario

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 39

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action Notes

frame and receiving all
acknowledgements from the active slaves
is displayed in the
„LBC_ParamDB”.timeStats.meanTime
tag.

Figure 7-2

7.2.2 Generating test data

Control the „LBC_ParamDB”.generateData tag to TRUE to have the
„LBC_ParamDB”.data array filled with characters from “a” to “z”. Depending on the
cycle time of the organization block in which “LBC_GenerateData” is called, the
elements are overwritten with new characters during each cycle.

7 Operating the Application

7.2 Station as master scenario

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 40

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7.2.3 Sending a send frame

Table 7-3

No. Action Notes

1. Make sure that the respective station is active
as the master and no error is pending.

„LBC_ParamDB”.isMaster and
„LBC_ParamDB”.valid are TRUE.

2. Control the tags
„LBC_ParamDB”.data.chars[0] and
data.chars[1] to any character, or have them
filled in automatically (see 7.2.2).

3. Control the „LBC_ParamDB”.sendData tag to
TRUE.

A send frame is now sent with the data from
the #data array. As soon as the frame was
sent, #done is set for one cycle. Receiving the
frame is acknowledged by the slaves and
indicated at the #hasSentAck tag until the next
send job.

7.2.4 Sending request frame

Table 7-4

No. Action Notes

1. Make sure that the respective station is active
as the master and no error is pending.

„LBC_ParamDB”.isMaster and
„LBC_ParamDB”.valid are TRUE.

2. Control the „LBC_ParamDB”.requestData tag
to TRUE.

A request frame is now sent and data
requested from the slaves. As soon as the
frame has been sent, „LBC_ParamDB”.done is
set for one cycle.

The slaves now reply to the receiving of the
frame by sending the data from their #data
array. If these were not changed since sending
the send frame, the slaves return the received
data.

The received data of the slaves are displayed
in the elements of the
„LBC_ParamDB”.slavesArray array.

7 Operating the Application

7.3 Diagnostics

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 41

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7.3 Diagnostics

Function block “LBC_Main” outputs status messages at the #status output. Any
detected error is specified in this way. In addition, the source of the error is
specified at the #statusID output.

Table 02/2016-5

Status ID Status Meaning Remedy

0 16#0000 No messages are pending.

1 16#7001 Main: no master is active in
the network

Enable the master function at
a station.

1 16#8001 Main: the station shall be the
master, however, a master is
already active.

Check the configuration of
your nodes, and ensure that
only one master exists in the
network.

1 16#8201 Main: value at input
#KAInterval is smaller than
200 ms.

Hand over a keep-alive
interval larger than 200 ms.

1 16#8202 Main: value at input #timeout
is smaller than 100 ms.

Hand over a timeout time
larger than 100 ms.

2 16#7400 SlavesManager: no slaves
accessible

2 16#7401 SlavesManager: new slave
accessible

2 16#7402 SlavesManager: timeout when
waiting for a response from at
least one slave.

Check the following settings, if
several slaves are accessible:

 Are all slaves physically
connected with the
network?

 Has the user program
been loaded in all slaves
and are these slaves in
RUN mode?

 Are all slaves accessible
via the network?

2 16#7403 SlavesManager: an inactive
slave can be accessed again.

2 16#7404 SlavesManager: the slave
array is filled. No further slaves
are managed.

Modify the maximum number
of slaves to be managed in
data type
“LBC_typeSlavesArray” and
download

3 16#xxxx Error in “LBC_EstSockets”:
status of TCON or TDISCON

Use the STEP 7 online help.

4 16#xxxx Error in
“LBC_ReceiveManager”:

status of TUSEND or TURCV.

Use the STEP 7 online help.

5 16#xxxx Error in “LBC_SendManager”:

status of TUSEND.

Use the STEP 7 online help.

6 16#xxxx Error in “LBC_SlaveManager”:

status of TURCV.

Use the STEP 7 online help.

8 Related literature

Master-Slave Communication via UDP Broadcast
Entry ID: 20983558, V2.1, 02/2016 42

 S

ie
m

e
n

s
 A

G
 2

0
1

6
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8 Related literature

Table 8-1

 Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Download page of this entry
https://support.industry.siemens.com/cs/ww/en/view/20983558

9 History

Table 9-1

Version Date Modifications

V1.0 05/2004 First version

V2.0 12/2015 Recreating the application example

V2.1 02/2016 Limit of the broadcast to the master’s subnet

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/20983558

	Master-Slave Communication via UDP Broadcast
	Warranty and Liability
	1 Task
	2 Solution
	2.1 Overview
	2.2 Description of the core functionality
	2.3 Hardware and software components
	2.3.1 Validity
	2.3.2 Components used

	3 Basics
	3.1 Basic terms
	3.2 UDP
	3.3 Connections for SIMATIC controllers

	4 Mode of Operation
	4.1 General overview
	4.2 User interface
	4.3 Functionality as master
	4.3.1 Adopting master function
	4.3.2 Sending message frames
	4.3.3 Slave management
	4.3.4 Time measurement

	4.4 Functionality as slave
	4.4.1 Receiving of frames
	4.4.2 Acknowledging frames
	4.4.3 Time measurement

	4.5 Performance characteristics
	4.5.1 Cycle time as the master
	4.5.2 Reaction time of the slaves

	5 Configuration and Settings
	5.1 Configuration of the station
	5.2 Using the LBC library

	6 Installation and Commissioning
	6.1 Installing the hardware
	6.2 Installing the software
	6.2.1 Preparation
	6.2.2 Loading the S7 project into the CPU

	7 Operating the Application
	7.1 Station as slave scenario
	7.2 Station as master scenario
	7.2.1 Adopting master function
	7.2.2 Generating test data
	7.2.3 Sending a send frame
	7.2.4 Sending request frame

	7.3 Diagnostics

	8 Related literature
	9 History

