SIEMENS

Einleitung	1
Bedienung des Programms	2
Häufig gestellte Fragen (FAQ)	3

SENTRON

Leistungsschalter 3WL 3WL Leistungsschalter Software

Bedienhandbuch

Bedienhandbuch für die Software zur Dokumentation des Ergebnisses von Prüfungen mit dem Funktionsprüfgerät

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

WARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

NORSICHT

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

ohne Warndreieck bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung **qualifiziertem Personal** gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Siemens AG Industry Sector Postfach 48 48 90026 NÜRNBERG DEUTSCHLAND Dokumentbestellnummer: 3ZX1812-0WL93-0AN0 (P) 11/2011 Änderungen vorbehalten

Inhaltsverzeichnis

1	Einleit	ung	5		
2	Bedier	Bedienung des Programms			
	2.1	Start des Programms	7		
	2.2	Auswahl des Schalters und der ETU	9		
	2.3	Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"	10		
	2.4	Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll"	13		
	2.5	Einstellungen im Arbeitsblatt "ETU"	14		
	2.6	Elektronische Auslöseeinheit ETU15B	15		
	2.7	Elektronische Auslöseeinheit ETU25B	16		
	2.8	Elektronische Auslöseeinheit ETU27B	18		
	2.9	Elektronische Auslöseeinheit ETU45B	19		
	2.10	Elektronische Auslöseeinheit ETU55B/ETU76B	22		
	2.11	Ablauf einer Prüffolge	23		
	2.12	Prüfung des einstellbaren Überlastauslösers (L)	24		
	2.13	Prüfung des verzögerten Kurzschlussauslösers (S)	27		
	2.14	Prüfung des unverzögerten Kurzschlussauslösers (I)	29		
	2.15	Prüfung des Erdschlussauslösers (G)	30		
	2.16	Sicherung der Ergebnisse und Beenden des Programms	32		
3	Häufig	gestellte Fragen (FAQ)	33		

Bilder

Bild 2-1	Sicherheitswarnung - Makros aktivieren	7
Bild 2-2	Arbeitsblatt "Hilfe" - Test starten	8
Bild 2-3	Geräteauswahl	9
Bild 2-4	Arbeitsblatt "Protokoll" mit kundenspezifischen Informationen	11
Bild 2-5	Eingabe der Bestellnummer des 3WL-Schalters	11
Bild 2-6	Eingabe der Bestellnummer (MLFB) bestätigen	11
Bild 2-7	Bemessungsstrommodul auswählen	12
Bild 2-8	Eingabe des Bemessungsstroms (Referenzwert für die Schutzeinstellungen)	12
Bild 2-9	Weiter zum Arbeitsblatt "Protokoll"	13
Bild 2-10	ETU15B-Auswahlmenü	15

Bild 2-11	ETU15B-Einstellungen ändern	15
Bild 2-12	ETU25B-Auswahlmenü	16
Bild 2-13	ETU25B: Prüfstrom für die Überlastkennlinie I $_{\rm P}$	17
Bild 2-14	ETU25B: Eingabe des Prüfstroms	17
Bild 2-15	ETU27B: N-Leiter-Schutz	18
Bild 2-16	ETU27B: Erdschlussschutz-Funktion	18
Bild 2-17	ETU45B: Umschaltmöglichkeit für die Kennliniencharakteristik (L-Bereich)	20
Bild 2-18	ETU45B: Umschaltmöglichkeit für die Kennliniencharakteristik (S-Bereich)	20
Bild 2-19	ETU45B: Umschaltmöglichkeit für die Kennliniencharakteristik (G-Bereich)	20
Bild 2-20	ETU45B: N-Leiter-Schutz - Ansprechwerte	21
Bild 2-21	ETU45B: Ansprechwert des unverzögerten Kurzschlussschutzes	21
Bild 2-22	ETU55B/ETU76B: Zeitverzögerung	22
Bild 2-23	Unterschiedliche Methoden der Zeitmessung	23
Bild 2-24	Prüfen des Grenzstroms	24
Bild 2-25	Prüfen der Überlast-Kennlinie	25
Bild 2-26	Prüfung des Trägheitsgrades	26
Bild 2-27	Prüfung des thermischen Gedächtnisses	26
Bild 2-28	Prüfung des Ansprechstroms (ab ETU25B)	27
Bild 2-29	Prüfung der Verzögerungszeit	28
Bild 2-30	Prüfung des Ansprechstroms (alle ETUs)	29
Bild 2-31	Prüfung der Auslösezeit	29
Bild 2-32	Prüfung des Erdschlussauslösers (G)	30
Bild 2-33	Prüfung des Ansprechstroms (ab ETU27B)	30
Bild 2-34	Prüfung der Verzögerungszeit (ab ETU27B)	31
Bild 2-35	Abschluss des Arbeitsblatts "Protokoll"	32
Bild 3-1	Fehlermeldung "Typen unverträglich"	33

Einleitung

Einleitung

Hinweis

Informationen, Rechte und Verpflichtungen

Die Software dient zur Dokumentation der Ergebnisse von Prüfungen mit dem Funktionsprüfgerät. Die Daten des ausgewählten Leistungsschalters und die Schutzeinstellungen der ETU sind einzugeben und werden übersichtlich dokumentiert. Das Programm prüft die Plausibilität der Eingaben und gibt Prüfwerte zum Test der Auslösewerte des Leistungsschalters und der Toleranzgrenzen vor.

Weitere Informationen und Auskünfte erhalten Sie bei der örtlichen Siemens-Niederlassung.

Wir weisen darauf hin, dass der Inhalt dieser Bedienungsanleitung nicht Teil einer früheren oder bestehenden Vereinbarung, Zusage oder eines Rechtsverhältnisses ist oder dieses abändern soll. Sämtliche Verpflichtungen von Siemens ergeben sich aus dem jeweiligen Kaufvertrag, der auch die vollständige und alleingültige Gewährleistungsregelung enthält. Diese vertraglichen Gewährleistungsbestimmungen werden durch die Ausführung dieser Bedienungsanleitung weder erweitert noch beschränkt.

SENTRON ® ist eine eingetragene Marke der Siemens AG. Die übrigen Bezeichnungen in dieser Dokumentation können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzt.

Der offene Leistungsschalter (ACB) 3WL ist ein Gerät zum Schützen und Schalten wichtiger Schaltanlagen, Kabel, Stromschienen und Verbraucher.

Branchenspezifisch besteht die Forderung, die Auslösekennlinie der elektronischen Auslöseeinheiten (ETU) dieses Leistungsschalters quantitativ zu überprüfen. Dabei müssen die Toleranzgrenzen der Ansprechwerte der einzelnen Auslösefunktionen und die Toleranzgrenzen der Verzögerungszeiten getestet werden.

Zu diesem Zweck bietet Siemens ein Funktionsprüfgerät an:

• Bestellnummer: 3WL9111-0AT44-0AA0.

Dieses Messgerät kann käuflich erworben oder gemietet werden.

Den Lieferumfang, die technischen Daten, die Verkabelung, Bedienung und die detaillierte Beschreibung der Prüfungen findet man in der Bedienungsanleitung des Funktionsprüfgeräts (Bestellnummer 3ZX1812-0WL93-0AN0).

Zur Dokumentation der Funktionsprüfung stellt Siemens zusätzlich ein Software-Tool zur Verfügung. Dieses ermöglicht es, wichtige Daten des zu prüfenden Leistungsschalters und die Schutzeinstellungen der entsprechenden ETU einfach zu erfassen und übersichtlich zu dokumentieren.

In Anlehnung an die in der Bedienungsanleitung des Funktionsprüfgerätes beschriebenen Prüfungen gibt das Software-Tool im Arbeitsblatt "Protokoll" eine der ausgewählten ETU (15B, 25B, 27B, 45B, 55B oder 76B) und den aktuellen Schutzeinstellungen angepasste Prüffolge für alle relevanten Schutzbereiche vor.

Die Prüfströme sind dem Arbeitsblatt "Protokoll" zu entnehmen. Die Einstellung dieser Werte am Gerät erfolgt gemäß Bedienungsanleitung des Funktionsprüfgerätes. Die ermittelten Auslösezeiten sind in die entsprechenden Zellen einzutragen und mit den Soll-Werten zu vergleichen.

Das Programm bietet die Möglichkeit, diese Ergebnisse zu speichern und danach auszudrucken.

Diese Software überprüft die Plausibilität der Eingaben, insbesondere die Werte von Prüfströmen und Ansprechwerten nachfolgender Schutzbereiche und meldet Überschneidungen.

Wichtige Eigenschaften der ETUs sind in den 3WL-Dokumentationen beschrieben (z. B. im Projektierungshandbuch "SENTRON Offene Leistungsschalter (<u>http://support.automation.siemens.com/WW/view/de/35681108</u>)", Bedienungsanleitung 3WL, Industry-Mall).

Bedienung des Programms

2.1 Start des Programms

Start des Programms

Das Programm wird mit der Ausführung der entsprechenden *.XLS-Datei gestartet. Beim Start im Dialogfenster "Sicherheitswarnung" muss die Schaltfläche "Makros aktivieren" betätigt werden.

Sicherheitswarnung	×
"D:\Working\Skalskyy_3WL_ETU_Testversion+.xls" enthält Makros.	
Makros können Viren enthalten. Es ist gewöhnlich sicherer, Makros zu deaktivieren; legitime Makros können jedoch eventuell Funktionalität verlieren	1.
Makros deaktivieren Makros aktivieren Weitere Informationen	1

Bild 2-1 Sicherheitswarnung - Makros aktivieren

Dabei sollten die Sicherheitseinstellungen von Excel für die Makroausführung entsprechend auf das zulässige Niveau eingestellt werden (im Excel-Hauptmenü über Extras \rightarrow Optionen \rightarrow Sicherheit \rightarrow Makrosicherheit \rightarrow Mittel).

Danach gelangt man in das Hauptmenü des Programms, Arbeitsblatt "Hilfe". In diesem Programmschritt kann die Ausführung des Programms abgebrochen werden und das Programm wird verlassen - Schaltfläche "Programm beenden".

Im Regelfall wird zur Auswahl der zu testenden ETU fortgefahren - über die Schaltfläche "Test starten →"

2.1 Start des Programms

SIEMENS	Dieses Tool unterstützt die Arbeit mit dem Funktionsprüfgerät für den Leistungsschalter 3WL zur Überprüfung der Auslösekennlin für die Überstromauslöser ETU15B bis ETU76B (3WL9 111-0AT44-0A und dokumentiert die erhaltenen Ergebnisse.	nien AO)
	 Handling: 1. Bestellnummer des Schalters in das Blatt "Protokoll" eintragen - damit wird der Nennstr Schalters, das Kurzschlussausschaltvermögen und die ETU erkannt. 2. Im Blatt "ETU" die eingestellten Schutzparameter der ETU des Schalters eingeben. 3. Die Sollwerte aus dem Blatt "Protokoll" mit den gemessenen Werten des Prüfgerätes v 	om des ergleichen.
	Haftungsausschluss: Die mit diesem SW-Tool erzeugten Ergebnisse sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit hinsichtlich Konfiguration, Ausstattung und Einhaltung der lokalen Vorschriften, sowie jeglicher Eventualitäten. Sie sind für die sachgemäße Verwendung dieser Dokumentation selbst verantwor Die Dokumentation mittels dieses Tools enthebt Sie nicht der Verpflichtung die erzeugte rgebnisse hinsichtlich Richtigkeit und Einhaltung der lokalen Vorschriften zu überprüfer	i tlich. 1.
	Version 1.0 © Siemens AG 2011	→

Bild 2-2 Arbeitsblatt "Hilfe" - Test starten

Nach Betätigung der Schaltfläche "Test starten →" gelangt man zum nächsten Auswahlmenü, wo 6 ETUs (ETU15B bis ETU76B) zur Auswahl vorgeschlagen werden. Für die gewählte ETU werden die Vorgaben für den Funktionstest übernommen und der Eingabealgorithmus gestartet.

Bedienung des Programms

2.2 Auswahl des Schalters und der ETU

Bild 2-3 Geräteauswahl

Es besteht die Möglichkeit, die Ausführung des Programms an dieser Stelle zu unterbrechen und das Programm zu verlassen, indem man zum Arbeitsblatt "Hilfe" wechselt und die Schaltfläche "Programm beenden" betätigt (wie oben im Arbeitsblatt "Hilfe" - Test starten verdeutlicht).

2.2 Auswahl des Schalters und der ETU

Auswahl des Schalters und der ETU

Es stehen 6 ETUs zum Testen zur Auswahl: ETU15B, ETU25B, ETU27B, ETU45B, ETU55B und ETU76B. Die für den Funktionstest relevanten Unterschiede der jeweiligen ETUs werden in der unten stehenden Tabelle verdeutlicht.

	Testmöglichkeiten der jeweiligen Schutzfunktionen				
ETU	L Überlastschutz	N Neutralleiterschutz	rschutz Kurzzeitverzögerter Unverzögerter Kurzschlussschutz Kurzschlussschutz		G Erdschlussschutz
ETU15B	ja	nein	nein	ja	nein
ETU25B	ja	nein	ja	ja	nein
ETU27B	ja	ja	ja	ја	ја
ETU45B	ja *	ja	ja *	ja	ja * (optional)

Bedienung des Programms

2.3 Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"

	Testmöglichkeiten der jeweiligen Schutzfunktionen				
ETU55B	ja *	ja	ja *	ja	ja * (optional)
ETU76B	ja *	ja	ja *	ja	ja * (optional)

(* Umschaltbarkeit zwischen Standard und Alternativfunktion:

- Für L-Bereich: I²t_R = const / I⁴t_R = const;
- Für S-Bereich: t_{sd} = const / I²t_{sd} = const;
- Für G-Bereich: t_g = const / I²t_g = const;).

Eine detaillierte Beschreibung der Funktionalitäten der jeweiligen ETUs findet man im Projektierungshandbuch "SENTRON Offene Leistungsschalter (http://support.automation.siemens.com/WW/view/de/35681108)".

2.3 Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"

Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"

Nach der Auswahl der zu testenden ETU wird zunächst das Arbeitsblatt "Protokoll" aufgerufen. Die Struktur dieses Arbeitsblatts ist bei allen ETUs prinzipiell gleich.

Hinweis

Regeln zum Eingeben

Grundsätzlich gilt für das gesamte Programm folgende Regel:

- Zur Dateneingabe dienen nur die weiß hinterlegten Felder.
- Die grau eingefärbten Felder dürfen nicht geändert werden.
- Die mit einem Stern (*) gekennzeichneten Felder sind Pflichtfelder d. h. diese Felder dürfen nicht leer bleiben.

Das Arbeitsblatt "Protokoll" ist in 3 Schritten auszufüllen:

2.3 Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"

- Kunde (*)

 Auftragsnummer

 Prüfer

 Ort / Datun der Prüfung

 Einbau-Ort

 Anlage

 Schalter-Kennung / Bezeichnung

 weitere Bemerkungen
- 1. Im Schritt 1 sind sämtliche kundenspezifische Informationen sowie Angaben zum Prüfer, Ort, Datum etc. anzugeben:

Bild 2-4 Arbeitsblatt "Protokoll" mit kundenspezifischen Informationen

2. Im Schritt 2 gibt man die Bestellnummer des 3WL-Schalters ein. Die Eingabe der Ziffer bzw. des Buchstabens muss jeweils per "ENTER"-Taste abgeschlossen werden. Um weiter zum Schritt 3 zu gelangen, muss nach Eingabe der Bestellnummer die Schaltfläche "Eingabe bestätigen" betätigt werden. (Die einzugebende Bestellnummer ist vom Ausstattungsschild des zu prüfenden Leistungsschalters zu übernehmen):

Prüfing: 3WL-Leistungsschalter: Bestell-Nr. (*)				
Nach Eingabe von MLFB drucken Sie bitte"Eingabe bestätigen" Taste !				

Bild 2-5 Eingabe der Bestellnummer des 3WL-Schalters

Somit werden die Angaben auf technische Richtigkeit überprüft. Bei unzulässigen Angaben in der Bestellnummer des Schalters werden die Zellen mit den falschen Werten rot eingefärbt, eine Meldung "Falsche Werte für diese Baugröße !" erscheint und der Bediener wird über das Programm solange nicht weiter geleitet, bis gültige Werte eingegeben werden. (Die technische Plausibilität der eingegebenen Bestellnummer kann auch mit Hilfe des aktuellen Siemens-Katalogs überprüft werden).

Bild 2-6 Eingabe der Bestellnummer (MLFB) bestätigen

3. Im Schritt 3 ist die Stromstärke des Bemessungsstrommoduls mit Hilfe des Auswahlmenüs einzugeben, deren Wert ist von der zu prüfenden ETU zu übernehmen:

Bedienung des Programms

2.3 Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU"

Bild 2-7 Bemessungsstrommodul auswählen

Dabei wird der Wert automatisch auf technische Richtigkeit überprüft. Im Fall einer falschen Eingabe erscheint die Meldung "Eingabe inkorrekt !".

Hinweis

Zulässige Wertangabe für Bemessungsstrommodul

Nur nach Eingabe eines zulässigen Wertes des Bemessungsstrommoduls ist der Wechsel zum Arbeitsblatt "ETU" möglich.

Bild 2-8 Eingabe des Bemessungsstroms (Referenzwert für die Schutzeinstellungen)

Hinweis

Schutzeinstellung

Die ETU15B beinhaltet kein Bemessungsstrommodul. Der Wechsel zum Arbeitsblatt "ETU" erfolgt automatisch nach Betätigung der Schaltfläche "Eingabe bestätigen" (siehe Schritt 2)! Der Referenzwert für die Schutzeinstellungen ist in diesem Fall der maximale Schalterbemessungsstrom ($I_n = I_n max$).

2.4 Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll"

2.4 Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll"

Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll"

Um in das Arbeitsblatt "Protokoll" zu gelangen, muss nach der Eingabe der Schutzparameter im Arbeitsblatt "ETU" die Schaltfläche "Weiter zum Protokollblatt →" betätigt werden.

Um zum Protokollblatt zu gelangen, müssen Sie die nebenstehende Schaltfläche drücken:	Weiter zum Protokollblatt
	` <u> </u>

Bild 2-9 Weiter zum Arbeitsblatt "Protokoll"

Damit werden alle im Arbeitsblatt "ETU" eingetragenen Schutzeinstellungen ins Arbeitsblatt "Protokoll" übertragen sowie für die einzelnen Schutzfunktionen die am 3WL-Funktionsprüfgerät einzustellenden Prüfströme und die zu messenden Auslösezeiten berechnet. Der Benutzer kann nun die vorgeschlagenen Prüfungen (Prüffolge) mit dem Funktionsprüfgerät durchführen. Die Vorgehensweise ist in der Bedienungsanleitung des Funktionsprüfgerätes detailliert beschrieben. Die so ermittelten Auslösezeiten können zum Vergleich in das Arbeitsblatt "Protokoll" in die Spalte "Ergebnis" der jeweiligen Prüfung eingetragen werden.

(Um die Schutzparameter zwischenzeitlich zu verändern, kann zurück ins Arbeitsblatt "ETU" gewechselt werden, indem im Arbeitsblatt "Protokoll" die Schaltfläche "ETU-Einstellungen" aktiviert wird).

2.5 Einstellungen im Arbeitsblatt "ETU"

2.5 Einstellungen im Arbeitsblatt "ETU"

Einstellungen im Arbeitsblatt "ETU"

Die Struktur des Arbeitsblatts "ETU" beinhaltet die spezifischen Einstellungen der jeweiligen ETU und ist von Typ zu Typ unterschiedlich. Dabei erfolgt für die ETUs 15B bis 45B die Einstellung der Ansprechströme über das Auswahlmenü (mit dem ein Faktor aus einem zulässigen Bereich gewählt wird) und für die ETUs 55B und 76B erfolgt eine Direkteingabe des absoluten Wertes der Ansprechströme.

Hinweis

Zum Protokollblatt wechseln

Wenn man sich im Arbeitsblatt "ETU" befindet, kann nur über die Schaltfläche "Weiter zum Protokollblatt →" zurück zum Arbeitsblatt "Protokoll" gewechselt werden! Diese Schaltfläche befindet sich in jedem spezifischen Arbeitsblatt "ETU" rechts unten nach den für die Eingabe relevanten Zeilen (siehe Bild: ETU15B-Auswahlmenü).

Die Betätigung der Schaltfläche "Weiter zum Protokollblatt →" darf erst nach den vollständigen Eingaben sämtlicher Schutzparameter in das Arbeitsblatt "ETU" erfolgen!

In allen spezifischen Arbeitsblättern "ETU", wie auch in sämtlichen Arbeitsblättern "Protokoll" sind nur die weiß eingefärbten Zellen zur Eintragung der Parameter bestimmt! Die grauen Zellen dienen lediglich als Informationsfenster und dürfen nicht geändert werden!

Siehe auch

Projektierungshandbuch "SENTRON Offene Leistungsschalter" (http://support.automation.siemens.com/WW/view/de/35681108)

2.6 Elektronische Auslöseeinheit ETU15B

ETU15B

Das Arbeitsblatt "ETU15B" beinhaltet zwei Einstellparameter, die jeweils über die Auswahlmenüs geändert werden können (mit kleinen roten Kreisen gekennzeichnet):

Grundfunktion		3WL 11063BB34-AAAA-Z ETU15B: Schutzfunktionen Ll max. Schalterbemessungsstrom: 630 A	Werte Eingestellt / Opt. Vorhanden BG I I _g = 630 A
I _R ← →	Uberlastschutz Funktion ein-/ausschaitbar Einstellbereich $I_R = I_n \times$	✓ 	
IR .	Einstellbereich Trägheitsgrad t_{R} bei $l^{2}t$	10 s fixed	<i>t_c</i> bei <i>l² t</i> = 10 s
	Unverzögerter Kurzschlussschutz Einstellbereich $I_i = I_n \times$	2;3;4;5;6;7;8	3 ▼
<u>Um zum Protokol</u>	Iblatt zu gelangen, müssen Sie die neb	enstehende Schaltfläche drücken: (Weiter zum Protokollblatt →
Anzeige durch LED	Überstromauslöser aktiv Alarm ETU-Fehler		

Bild 2-10 ETU15B-Auswahlmenü

Nach der Eingabe der Schutzparameter und Betätigen der Schaltfläche "Weiter zum Protokollblatt →", wird in das Arbeitsblatt "Protokoll" zurückgesprungen. (Die Vorgehensweise bei Nutzung des Arbeitsblatts "Protokoll" wird im nächsten Kapitel erläutert).

Das Programm ermöglicht es, vom Arbeitsblatt "Protokoll" zum Arbeitsblatt "ETU" beliebig oft zu wechseln, in dem im Arbeitsblatt "Protokoll" die Schaltfläche "ETU-Einstellungen ändern" betätigt wird:

Dies gilt für alle ETU-Typen!

5.1.7oitmossung	Zeitmessung ((a)	C Zeitmessung
(a) Messung der Öffnungszeit des Leistungssol (b) Messung der Auslösezeit des Überstromau	halters slösers		(a)
6 Prüfung des einstellbaren Überlastauslösers (L)	+	ETU - Einstellun ändern	gen Wert
6.1 Prüfung des Grenzstromes 6.1.1 Unterer Grenzwert (1.05 x IR) Prüfstrom I _p = 1,05 * I _R		L1	I _R = 630 A
		L2	I _R = 630 A
		L3	I _R = 630 A

Bild 2-11 ETU15B-Einstellungen ändern

Dabei wird bei der Auswahl des Ansprechstromes I_i automatisch eine Überprüfung auf der Programmebene durchgeführt, bei der der Ansprechstrom des unverzögerten Kurzschlussauslösers (I) mit dem Überlastbereich (L) verglichen wird. 2.7 Elektronische Auslöseeinheit ETU25B

Es werden 2 Möglichkeiten berücksichtigt:

Um die Fehlermeldung zu beseitigen, wird analog wie für die ETU25B für die Korrektur des S-Bereichs beschrieben vorgegangen (analog zu Bild ETU25B: Prüfstrom für die Überlastkennlinie I_p und ETU25B: Prüfstromeingabe). Die Verfahrensweise wird im nächsten Abschnitt beschrieben.

2.7 Elektronische Auslöseeinheit ETU25B

ETU25B

Das Arbeitsblatt "ETU25B" unterscheidet sich vom Arbeitsblatt "ETU15B" lediglich in 2 Punkten:

- Die Werte des Einstellstroms der unverzögerten Schutzfunktion (I) können nicht mehr über das Auswahlmenü ausgewählt werden, sondern sind abhängig vom Schalterbemessungsstrom der 3WL-Leistungsschalter automatisch festgelegt.
- Zusätzlich beinhaltet das ETU25B-Modul den Bereich der verzögerten Kurzschlussauslösung, dessen Einstellungen über die Auswahlmenüs vorgenommen werden können:

		Kurzverzögerter Kurzschlussschutz Funktion ein-/ausschaltbar	√		
Isd -	S	Einstellbereich $I_{se} = I_n \times$ Einstellbereich Verzögerungszeit I_{se}		1,25;1,5;2;2,5;3;4;6;8;10;12 0;M(20ms);100;200;300;400ms	
t _{sd}					

Bild 2-12 ETU25B-Auswahlmenü

Dabei wird bei der Auswahl des Ansprechstromes I_{sd} automatisch eine Überprüfung auf der Programmebene durchgeführt, bei der der Ansprechstrom des verzögerten Kurzschlussauslösers (S) mit dem Überlastbereich (L) verglichen wird. Dabei sind 2 Möglichkeiten zu berücksichtigen:

- Falls aber der vorgesehene Pr
 üfstrom des
 Überlastausl
 ösers (I_p) nicht kleiner als der eingestellte Ansprechstrom des verz
 ögerten Kurzschlussausl
 ösers (I_{sd}) ist (in diesem Fall w
 ürde der Pr
 üfstrom bereits im S-Bereich liegen), werden die zu korrigierenden Zellen rot eingef
 ärbt und die Fehlermeldung "
 Ändern bzw. Anleitung lesen!" erscheint.

1				3WL11063CB34-1AA1-Z	Werte Eingestellt	/ Opt. Vorhanden	
2		*	Prüfpunkt L-Kennlinie beträg 😑 🙎	x Ir		BG I	
3	Grundfunktion		(Einstellung auf Blatt "Protokoll")	max. Schalterbemessungsstrom: 630	A <u>Rating Plug =</u> 500 A	/a = 500 Å	
4 5 6 7 8 9 10 11 12 13 14 15 16		Uberlastschutz Funktion ein-Ausschaltt Einstellbereich I _R = I _R * Einstellbereich Trägheit Phasenausfallempfindli	sgrad f _R bei /² t chkeit	0,4 ; 0,45 ; 0,5 ; 0,55 ; 0,6 ; 0,85 + 0 ,7 ; 0,8 ; 0,9 10 s fixed opt. wenn f _{se} eingestellt ist auf M	Phas	dem bzw. Anleitung lesen $I_{r} = 500 \text{ A}$ t_{r} bei $l^{2} t = 10 \text{ s}$ senausfallempf. AUS	>
17 18 19 20 21 22 23 24 25	Iad + +	S Einstellbereich Verzöge Einstellbereich Verzöge	chlussschutz oar < ungszeit t _{se}		Ar 15 V Ar	idem bzw. Anleitung lesen t $t_{sd} = \frac{750 \text{ A}}{100 \text{ ms}}$	>

Bild 2-13 ETU25B: Prüfstrom für die Überlastkennlinie Ip

Der Wert des Prüfstromes für die Überlastkennlinie (I_p) kann direkt geändert werden (siehe blaue Strich-Punkt-Linie in Bild ETU25B: Prüfstrom für die Überlastkennlinie I_p und Bild ETU25B: Prüfstromeingabe, Wertebereich 2 bis 8 x I_R). Dabei gilt:

I_p = (Prüfpunkt L-Kennlinie) * (I_R)

Bild 2-14 ETU25B: Eingabe des Prüfstroms

Der Wert des "Prüfpunktes L-Kennlinie" ist im Arbeitsblatt "Protokoll" im Abschnitt 6.2 "Überprüfung der Überlast-Kennlinie (L)" einzustellen (siehe Bild ETU25B: Eingabe des Prüfstroms).

Eine weitere Möglichkeit, den Wert des Prüfstromes zu reduzieren besteht darin, den Ansprechwert des Überlastauslösers (I_R) selbst zu verringern:

2.8 Elektronische Auslöseeinheit ETU27B

I_p = (Prüfpunkt L-Kennlinie) * X * (I_n), X = [0,4 ... 1].

Eine zusätzliche Möglichkeit, den Prüfstrom innerhalb des L-Bereichs zu legen (und die Fehlermeldung zu beseitigen), ist den Ansprechwert I_{sd} des verzögerten Kurzschlussauslösers soweit zu erhöhen, bis gilt: I_p < I_{sd}.

Die genauere Beschreibung sämtlicher Meldungen bzw. weiteren Einstellungen des Arbeitsblatts "Protokoll" erfolgt in den folgenden Kapiteln.

2.8 Elektronische Auslöseeinheit ETU27B

ETU27B

Die Struktur des Arbeitsblatts "ETU27B" ist ähnlich der des Arbeitsblatts "ETU25B", zusätzlich sind aber zwei weitere Schutzfunktionen beinhaltet:

 N-Leiterschutz-Funktion (siehe nächstes Bild): mit den weiß gekennzeichneten Schaltflächen kann die zusätzliche Neutralleiterschutz-Funktion ausgeschaltet werden (OFF-Einstellung) oder eingeschaltet werden (ON-Einstellung), wobei der Ansprechstrom des Schutzes (I_N) dem Nennstrom (I_n) entspricht.

Grundfunktion		3WL11063DG34-AAAA-Z ETU27B: Schutzfunktionen LSING max. Schalterbemessungsstrom: 630 A	Werte Eingestellt / Opt. Vorhanden BG I <u>Rating Plug=</u> 500 A I _n = 500 Å
Ĩ _R ← →	Uberlastschutz Funktion ein/Ausschaftbar Einstellbereich $I_R = I_n \times$ Einstellbereich Trägheitsgrad t_R bei $I^2 t$	✓	$I_R = 500 \text{ A}$ $t_r \text{ bei } l^2 t = 10 \text{ s}$
↓ IR	Phasenaustallemptindlichkeit N-Leiterschutz Funktion ein-/ausschaltbar N-Leiter Einstellbereich I _N = I _n ×	opt. wenn f _{ae} eingestellt ist auf M	$\begin{array}{c c} \hline Phasenaustallempt. & AUS\\ \hline OFF & ON & O & N-Schutz & AUS\\ \hline & & & & & \\ I_N = & AUS \end{array}$

Bild 2-15 ETU27B: N-Leiter-Schutz

2. Erdschlussschutz-Funktion (siehe nächstes Bild): dabei sind die Werte des Ansprechstromes I_g nicht wie gewohnt durch Faktoren einzugeben,

	Erdschlussschutz	4	Modul ist fest eingebaut	3WL9111-0AT51-0AA0 GFM A
	Auslöse- und Alarmfunktion			
	Auslösefunktion ein-/ausschaltbar	∢	per Drehkodierschalter	
	Alarmfunktion ein-/ausschaltbar			"Erdschlussschutz-Modul ist "
Ig	Erfassung des Erdschlussstromes über Summenstrom-			vorhanden !"
	bildung mit internem oder externem N-Leiter-Wandler	∢		
	Erfassung des Erdschlussstromes über externen			
	Wandler Vandler			
	Einstellbereich des Ansprechstromes I g für Auslösung		A;B;C;D;E;OFF	B ▼ I₀ für Auslösung 300 A
				· · · · · · · · · · · · · · · · · · ·
	Einstellbereich der Verzögerungszeit t.,		100 ; 200 ; 300 ; 400 ; 500 ms	100 ms V to = 100 ms

Bild 2-16 ETU27B: Erdschlussschutz-Funktion

sondern sind durch Buchstaben kodiert und werden abhängig von der jeweiligen Baugröße aus der folgenden Tabelle entnommen

2.9 Elektronische Auslöseeinheit ETU45B

Einstellwerte für Ig *										
	Baug	jröße								
	1711	Ш								
А	100 A	400 A								
В	300 A	600 A								
С	600 A	800 A								
D	900 A	1000 A								
E	1200 A	1200 A								
OFF	OFF	OFF								

* für ETU45B bis ETU76B - die Werte A bis E des Ansprechstromes Ig können nur dann eingestellt werden, wenn das Erdschlussschutz-Modul bei der jeweiligen ETU tatsächlich eingebaut ist. Das ist durch die Bestellnummer erkennbar. Dabei erscheint im Arbeitsblatt "ETU" eine blau eingefärbte Information, ob das Erdschlussschutz-Modul vorhanden ist – siehe Bild ETU27B: Erdschlussschutz-Funktion (blauer Kreis rechts oben). Wenn das Erdschlussschutz-Modul nicht vorhanden ist, bewirkt die Auswahl der Werte A bis E keine Veränderungen des Ansprechwertes für den Erdschlussschutz-Bereich und dieser Bereich bleibt weiterhin ausgeschaltet.

Hinweis

Erdschlussschutzmodul

Diese Anmerkung ist nur für die ETU45B, ETU55B und ETU76B relevant, da die ETU15B und ETU25B kein Erdschlussschutz-Modul beinhalten können und die ETU27B nur mit fest eingebautem Erdschlussschutz-Modul geliefert wird.

2.9 Elektronische Auslöseeinheit ETU45B

ETU45B

Ab der ETU45B beinhalten der Überlastbereich (L), der Bereich der verzögerten Kurzschlussauslösung (S) sowie der Erdschlussschutz-Bereich (G) eine Umschaltmöglichkeit für die Kennliniencharakteristik zwischen Standard- und Alternativfunktion, und zwar:

für den L-Bereich: $I^{2}t_{R}$ = const / $I^{4}t_{R}$ = const: für den S-Bereich: t_{sd} = const / $I^{2}t_{sd}$ = const:

2.9 Elektronische Auslöseeinheit ETU45B

- 0,4 ; 0,45 ; (✔ per S	0,5;0,55;0,6;0,65;0,7; 0,8;0,9;1 chiebeschalter		$1 \checkmark \\ 1^2 t \bigcirc $	l ⁴ t	0	<i>I_R</i> =[500 A
2 ; 3, 1 ; 2 ein-/a	5 ; 5,5 ; 8 ; 10 ; 14 ; 17 ; 21 ; 25 ; 30 s ; 3 ; 4 ; 5 s ausschaltbar per Schiebeschalter	2 (1) s 3,5 (2) 5,5 (3) 8 (4) s	5,5 (3) s s		0	t_r bei $l^2 t =$ t_r bei $l^4 t =$ MEMORY	5,5 s AUS
opt. wenn ✓ ✓ per S	r _{se} engestell ist auf m	10 (5) 14 (1) 17 (1) 21 (1) 25 (1)	s s s s		O	N-Schutz	AUS
0,5 ;	1 per Schiebeschalter	30 (1)	s 	1	0	I _N =	AUS

Bild 2-18 ETU45B: Umschaltmöglichkeit für die Kennliniencharakteristik (S-Bereich)

für den G-Bereich: t_g = const / I^2t_g = const:

Bild 2-19 ETU45B: Umschaltmöglichkeit für die Kennliniencharakteristik (G-Bereich)

Ähnlich wie bei der Einstellung der ETU über Drehkodier- und Schiebeschalter, wird im L-Bereich die Umschaltung separat vorgenommen (ETU-Schiebeschalter, Software-Schaltflächen), hingegen wird im S- und G-Bereich die Umschaltung gleichzeitig mit der Zeitauswahl realisiert (ETU-Doppelfunktion des Drehkodierschalters, Software-Zeiteinstellung über das Scroll-Menü).

Zusätzlich unterscheidet sich die ETU45B von den vorher beschriebenen ETUs in drei Punkten:

2.9 Elektronische Auslöseeinheit ETU45B

- Im L-Bereich kann das thermische Gedächtnis ein- bzw. ausgeschaltet werden (wenn das thermische Gedächtnis eingeschaltet ist, wird die Verzögerungszeit bei der zweiten Auslösung um 5 % reduziert);
- 2. Im N-Leiterschutzbereich kann zwischen den Ansprechwerten 0,5 x I_n bzw. 1 x I_n ausgewählt werden:

T		Überlastschutz	1						
		Funktion ein-/ausschaltbar	•						
		Einstellbereich I _R = I _n ×	0,4;	0,45;0,5;0,55;0,6;0,65;0,7;0,8;0,9;1	1	•		I _R = 500	0 A 0
		Umschaltbarer Überlastschutz	*	per Schiebeschalter	$I^2 t$	0	$I^4 t = 0$		
		(/²t- oder / ⁴ t-abhängige Funktion)							
	-	Einstellbereich Trägheitsgrad t_R bei $I^2 t$		2;3,5;5,5;8;10;14;17;21;25;30s	5,5 (3)	-		tr bei l ² t = 5,5	5 s
		Einstellbereich Trägheitsgrad t _R bei I ⁴ t		1;2;3;4;5s			-	t, hei l ⁴ t =	
		Thermisches Gedächtnis (MEMORY)	*	ein-/ausschaltbar per Schiebeschalter	OFF	0	ON O	MEMORY AU	JS
		Phasenausfallempfindlichkeit	opt.	wenn t _{sd} eingestellt ist auf M			Phasena	austallempt. Au	JS
		N-Leiterschutz	*			_			
	NI	Funktion ein-/ausschaltbar	¥	per Schiebeschalter	OFF	0	ON O	N-Schutz AU	JS
IN	N-Leiter Einstellbereich $I_N = I_n \times$		0,5 ; 1 per Schiebeschalter 🤇	0,5	0	1 0		JS	

3. Der Ansprechwert des unverzögerten Kurzschlussschutzes ist nicht mehr fest eingestellt, sondern kann über das Auswahlmenü geändert werden.

Bild 2-21 ETU45B: Ansprechwert des unverzögerten Kurzschlussschutzes

Der I-Auslöser und der S-Auslöser sind ausschaltbar, im ausgeschalteten Zustand kann daher keine Überprüfung des jeweiligen Bereiches erfolgen.

Dabei dürfen der verzögerte und unverzögerte Kurzschlussschutz **nicht** gleichzeitig auf "OFF" gestellt werden – mindestens einer von beiden muss eingeschaltet sein. Dies wird vom Programm überprüft und eine entsprechende Meldung ("Ändern bzw. Anleitung lesen") erscheint. Erst wenn eine Korrektur erfolgt ist, wird auf das Arbeitsblatt "Protokoll" weitergeführt.

Die genaue Bedeutung und Auswirkung der Einstellungen "OFF" und "MAX" des unverzögerten Kurzschlussauslösers (I-Bereich) kann der Bedienungsanleitung (Seite 9-27) entnommen werden. 2.10 Elektronische Auslöseeinheit ETU55B/ETU76B

2.10 Elektronische Auslöseeinheit ETU55B/ETU76B

ETU55B / ETU76B

Die ETU55B und ETU76B beinhalten die gleichen Funktionen wie die ETU45B, unterscheiden sich aber in folgenden Details:

- Die Einstellung aller Werte erfolgt nicht mehr über das Auswahlmenü, sondern durch eine direkte Eingabe von Zahlen (Absolutwerte der Ansprechströme und Verzögerungszeiten) in die entsprechenden (weiß eingefärbten) Zellen. Damit wird die Parametrierung dieser ETUs über Menü lokal oder über Kommunikation nachgebildet.
- 2. Im N-Leiterschutzbereich kann der Ansprechstrom nun im Wertebereich 0,2 x I_n bis 2 x I_n ausgewählt werden.
- Bei beiden ETU55B und ETU76B kann zusätzlich zum S-, I-, G- und N-Bereich auch die L-Schutzfunktion abgeschaltet werden. In diesem Fall ist f
 ür beide keine Pr
 üfung im Überlastbereich vorgegeben.
- 4. Der Unterschied zwischen der ETU55B und der ETU76B liegt nur im Interface-Bereich der jeweiligen ETU. Die ETU55B kann nur über Schnittstelle mit kommunikativen Komponenten (BDA, Software Switch ES Power) parametriert werden. Die ETU76B bietet die Möglichkeit, auch lokal über Drucktasten / ETU-Display die Schutzeinstellungen vorzunehmen. Das Ausfüllen des jeweiligen Arbeitsblatts "ETU" bzw. die Vorgehensweise bei der Eingabe der Schutzparameter im Programm ist für beiden ETU55B und ETU76B absolut gleich.
- 5. Mit den ETUs 55B und 76B kann im verzögerten Kurzschlussbereich eine Zeitverzögerung t_{sd} bis 4 s eingestellt werden. Für Einstellwerte t_{sd} > 4 s erfolgt in der ETU eine Reduzierung des maximal möglichen Einstellwertes I_{sd} in Abhängigkeit von der Baugröße (siehe Bedienungsanleitung, Seite 9-26, Fußnote ²⁾). Bei der Werteeingabe in das Programm wird diese Funktion ebenfalls automatisiert ausgeführt und ein Hinweis erscheint.

OFF	ON V		15.000 A	-
1 14 8	11 1 C	1.4	500 ms	
		/ const.=	OFF	1
	۲) / = 12z	1.	
3VL8111-0AT	21-0AA0			

Bild 2-22 ETU55B/ETU76B: Zeitverzögerung

Hinweis

Eingabe aller Werte mit ENTER-Taste bestätigen

Für die ETU55B und ETU76B muss die Eingabe aller Werte (ausgenommen OFF/ON-Einstellungen) in jeder Zelle jedes Mal per "ENTER"-Taste abgeschlossen werden. Damit leitet das Programm den Benutzer automatisch zur nächsten Zelle, die ausgefüllt werden soll. Bei einer inkorrekten Eingabe des Wertes (außerhalb des Einstellbereiches) wird der Benutzer aufgefordert, Werte innerhalb der Einstellbereiche der einzelnen Schutzfunktionen einzugeben und die Fehlermeldung "Nicht im Einstellbereich!" erscheint. Die Zelle mit dem falschen Wert wird jeweils rot eingefärbt.

Gleichzeitig werden die Werte auch auf die zulässige Schrittweite überprüft und bei einer inkorrekten Schrittweite erscheint die Meldung "Falsche Schrittweite!"

(Die zulässigen Schrittweiten sind im Projektierungshandbuch "SENTRON Offene Leistungsschalter (http://support.automation.siemens.com/WW/view/de/35681108)").

2.11 Ablauf einer Prüffolge

Ablauf einer Prüffolge

Hinweis

Messmethoden

Grundsätzlich bieten das Funktionsprüfgerät und somit auch das Programm zwei Messmethoden zur Auswahl:

- a) die Messung der Schutzauslösung des Leistungsschalters (komplette mechanische Wirkungskette), Auslösesignal kommt vom Hilfsschalter der Hauptkontakte;
- b) die Messung des Auslösesignals direkt an der ETU (Buchse X22).

Je nach Messmethode werden für den S-, I- und G-Bereich unterschiedliche Auslösezeiten ermittelt. Die Tabellen und Berechnungsformeln sind in der Bedienungsanleitung des Funktionsprüfgeräts zu finden.

Die entsprechende Einstellung wird im Kapitel 5.1 des Arbeitsblatts "Protokoll" vorgenommen:

•	Zeitmessung (a)	C	Zeitmessung (b)
5.1 Zeitmessung			_
(a) Messung der Öffnungszeit des Leistungssc	(0)		
(b) Messung der Auslösezeit des Überstromaus	slösers	(a)	

Das Arbeitsblatt "Protokoll" besteht aus den folgenden Teilen (abhängig von der jeweiligen ETU) und wird automatisch angepasst.

2.12 Prüfung des einstellbaren Überlastauslösers (L)

2.12 Prüfung des einstellbaren Überlastauslösers (L)

Prüfung des einstellbaren Überlastauslösers (L)

1.	Prüfung des Grenzstroms	(vorhanden bei allen ETUs):
----	-------------------------	-----------------------------

6 Prüfung des einstellbaren Überlastauslösers (L)	ETU - Einstellunger ändern	7 Eingestellter Wert	Prüfstrom	Soll	Ergebnis	Fazit bestanden: (√)
6.1 Prüfung des Grenzstromes 6.1.1 Unterer Grenzwert (1.05 ± In) Prijfetrom I = 1.05 1.	L1 / _F	₂ = 500 A	I _p = 525 A	t > 2 h	Auslösung nach	
n naradon ng mga ng	L2 I _F	_R = 500 A	Ip = 525 A	t > 2 h	mir	
	L3 I _F	_R = 500 A	Ip = 525 A	t > 2 h	mir	
	N I _b	v = AUS	Ip = N ist AUS	t > 2 h	mir	
6.1.2 Oberer Grenzwert (1.3 ± IR) Prijetrom I 12.1	L1 /;	a = 500 A	Ip = 650 A	t =< 2 h	mir	
r fuisdonn, - 1,5 ig	L2 /#	_R = 500 A	Ip = 650 A	t =< 2 h	mir	
	L3 1,	_R = 500 A	Ip = 650 A	t =< 2 h	mir	
	N I _N	V = AUS	Ip = N ist AUS	t =< 2 h	mir	

Bild 2-24 Prüfen des Grenzstroms

Vor der Prüfung wird empfohlen bei vorhandener vektorieller Erdschlussschutzfunktion diese abzuschalten, da sonst bei unsymmetrischer Stromeinspeisung mit dem Funktionsprüfgerät häufig der Erdschlussschutzauslöser empfindlicher reagiert als der Überlastauslöser. Es würde in diesem Fall also eine G-Auslösung statt der erwarteten L-Auslösung erfolgen.

In dieser Prüfsequenz werden der kleine Prüfstrom (+ 5 %) und der große Prüfstrom (+ 30 %) nach IEC für die jeweilige Phase L1, L2 und L3 vorgegeben. Die Überprüfung des N-Leiterschutzes kann unabhängig von der Phasen L1 bis L3 erfolgen (ist aber erst ab der ETU27B möglich).

Diese Prüfung ist sehr zeitaufwändig, da für jede Teilprüfung ca. 4 Stunden erforderlich sind. Deshalb schlägt das Programm weitere Prüfungen im L-Bereich vor, die wesentlich weniger Zeit erfordern (wird in den folgenden Kapiteln beschrieben).

2. Prüfung der Überlast-Kennlinie mit einstellbarem Prüfpunkt auf der Kennlinie (vorhanden bei allen ETUs):

Bedienung des Programms

2.12 Prüfung des einstellbaren Überlastauslösers (L)

Bild 2-25 Prüfen der Überlast-Kennlinie

Prinzipiell besteht die Möglichkeit, mit dem Programm, zwei Punkte auf der L-Kurve im eingestellten L-Auslösebereich zu testen:

- Ein Pr
 üfpunkt ist frei einstellbar 2 … 8 x I_R. Die Einstellung erfolgt
 über das Auswahlmen
 ü im Arbeitsblatt "Protokoll" (siehe Bild oben, roter Kreis).

Für den gewählten Prüfstrom I_p = N x I_R ermittelt das Programm die zugehörige Auslösezeit (Toleranzband t_a min, t_a max). Die Prüfung (Vorgabe der Werte der Prüfströme und der Auslösezeiten) wird nur für die gewählte Kennliniencharakteristik vorgeschlagen. Die Werte für die jeweils nicht aktive Funktion werden nicht angegeben (Zellen werden durch " - / - / - " gesperrt). Ebenfalls wird die Funktion I²t_R = const oder I⁴t_R = const , die aktuell eingeschaltet ist, blau eingefärbt.

Falls der Wert des wählbaren Prüfpunktes über dem unteren Grenzwert der verzögerten (S) bzw. der unverzögerten (I) Kurzschlussauslösung liegt, wird der Benutzer über die Meldungen "S/I-Auslösung" und "kein L-Bereich" informiert. Außerdem wird die Spalte "Ergebnis" zum Eintragen der Werte frei gewählt. Diese Teilprüfung ist somit nicht möglich.

Hinweis

Funktion I²t_R und I⁴t_R

Bei den ETUs 15B bis 27B ist nur die Funktion I²t_R = const vorhanden (t_R ist intern fest auf 10 s eingestellt); bei den ETUs 45B bis 76B kann zwischen I²t_R = const und I⁴t_R = const frei gewählt werden. Ebenfalls können bei beiden Einstellungen die Verzögerungszeiten entsprechend Spezifikation gewählt werden. 2.12 Prüfung des einstellbaren Überlastauslösers (L)

 Prüfung des Trägheitsgrades mit festem Prüfpunkt (Referenzpunkt) auf der Kennlinie (vorhanden bei allen ETUs):

grades

 grades
 ETUs Eingestellter
 Prüfstrom
 Soll
 Ergebnis
 Fazit

	ETU - Einstellungen	Wert				besta	nden: (1)
	andern				nich	t bestande	n: (—)
				t, max			
6.3.1 für die I [°] t-Kennlinie	L1 I _B	= 500 A		S/I-Auslösung	kein L-Bereich	sek	kein L-Bereich
Prüfstrom I, = 6 ° Ie	t _s	= 5,5 s	I n = Einstellung ändern	t, min		·	
"Pt = const" ist EMgeschaltet			·	S/I-Auslösung			
				t, max			
	L2 I _B	= 500 A		S/I-Auslösung	kein L-Bereich	sek	kein L-Bereich
	t _s	= 5,5 s	I n = Einstellung ändern	t, min			
			r	S/I-Auslösung			
				t, max	1		
	L3 1 _B	= 500 A		S/I-Auslösung	kein L-Bereich	sek	kein L-Bereich
	t _a	= 5,5 s	I n = Einstellung ändern	t, min			
			r	S/I-Auslösung]		
				t, max	1		
		= AUS		N ist AUS	N ist AUS	sek	N ist AUS
	t ₁₁	. =	In = Nist AUS	t, min			
			P	N ist AUS]		
and the second		E00 A		t, max		1	
6.3.2 fur die l't-Kennlinie		,= 500 A	Figure 1 - Human Verstame	Sil-Ausiosung		јзек	
Prüfstrom I, = 6 ° Ie	t _R	2 =	Ip = Einstellung andern	t, min	1		
"#t = const" ist AUSgeschaftet				S/I-Ausiosung			
		E00 A		t, max		1	
		2 = 500 A		SJI-Auslosung		јзек	
	t _R	2 =	I _p = Einstellung andern	t, min	1		
				S/I-Auslösung			
		E00 A		t, max		1	
		2 500 A		SJI-Ausiosung		јзек	
	t _R	2 =	Ip = Einstellung andern	t, min	1		
				S/I-Auslösung			
		AUG		τ _a max		1	
		= AUS		N IST AUS		јзек	
	t _N	=	I _p = Nist AUS	t, min	1		
				N ist AUS			

Bild 2-26 Prüfung des Trägheitsgrades

Dabei wird der Referenzpunkt (ein fester Punkt auf der L-Kurve) in Höhe von 6 x I_R vorgegeben. Für diesen Punkt erhält man als oberen Toleranzwert der Auslösezeit den Einstellwert von t_R .

Falls der Wert des Referenzpunktes über dem unteren Grenzwert der verzögerten (S) bzw. der unverzögerten (I) Kurzschlussauslösung liegt, wird der Benutzer über die Meldungen "S/I-Auslösung" und "kein L-Bereich" informiert. Außerdem wird die Spalte "Ergebnis" zum Eintragen der Werte blockiert. Diese Teilprüfung ist somit nicht möglich.

4. Prüfung des thermischen Gedächtnisses (vorhanden ab ETU45B):

6.4 Prüfung des thermischen Gedächtnisses 6.4.1 für die l ⁴ t-Kennlinie Prüstrom, = N 'le <i>"Pt = const" ist ElNgeschaltet</i> thermisches Gedächtnis ist: AUSgeschaltet	Erste Auslösung bei $3,0 \times IR$ L $I_R =$ 500 A $I_\rho =$ 1.500 A $t_R =$ $5,5 \text{ s}$ $I_\rho =$ 1.500 A Zweite Auslösung $I_R =$ 500 A bei $3,0 \times IR$ L $I_R =$ 500 A bei $3,0 \times IR$ $t_R =$ $5,5 \text{ s}$ $I_\rho =$ 1.500 A	t, max 22.0 s sek t, max 22.0 s sek	
6.4.2 für die 1 ¹ -Kennlinie Prüfstrom I, s N ¹ k <i>"Ht = const" ist AUSgeschaltet</i> thermisches Gedächtnis ist: AUSgeschaltet	Erste Auslösung bei $3.0 \times IR$ L $I_R =$ 500 A $I_\rho =$ Zweite Auslösung I $I_R =$ L $I_R =$ 500 A bei L $I_R =$ 500 A $I_e =$	t, max t.i. sek t, max t.i. sek	-1-1- -1-1-

Bild 2-27 Prüfung des thermischen Gedächtnisses

Bei eingeschaltetem thermischem Gedächtnis ist die Messzeit der zeitnah erfolgenden zweiten Auslösung um 5 % geringer als die Messzeit der ersten Auslösung.

2.13 Prüfung des verzögerten Kurzschlussauslösers (S)

Wenn das thermische Gedächtnis ausgeschaltet ist, sind die Messzeiten sowohl der ersten bzw. zweiten Auslösung gleich.

2.13 Prüfung des verzögerten Kurzschlussauslösers (S)

Prüfung des verzögerten Kurzschlussauslösers (S)

1. Prüfung des Ansprechstromes (vorhanden ab ETU25B):

7 Prüfung des kurzzeitverzögerten Kurzschlussauslösers (S)	ETU - Einstellunge ändern	n Eingestellter Wert	Prüfstrom	Soll	Ergebnis best nicht bestand	Fazit tanden: (√) den: (—)
7.1 Prüfung des Ansprechstromes 7.1.1 Unterer Grenzwert Prüfstrom I,= 0.8°1,	L1 /	I _{sd} = 3.000 A	<i>I_p</i> = 2.400 A	keine S-Auslösung		
	L2	I _{sd} = 3.000 A	<i>I</i> _D = 2.400 A	keine S-Auslösung		
	L3	I _{sd} = 3.000 A	<i>I</i> _D = 2.400 A	keine S-Auslösung		
7.1.2 Oberer Grenzwert Prüfstrom I, = 1,2 ° L ₄	L1 /	I _{sd} = 3.000 A	<i>I_p</i> = 3.600 A	S-Auslösung		
	L2 1	I _{sd} = 3.000 A	<i>I</i> _p = 3.600 A	S-Auslösung		
	L3	I _{sd} = 3.000 A	I _p = 3.600 A	S-Auslösung		

Bild 2-28 Prüfung des Ansprechstroms (ab ETU25B)

Hier werden der untere Grenzwert / unteres Toleranzband (- 20 %) bzw. der obere Grenzwert / oberes Toleranzband (+ 20 %) des Ansprechstromes für die jeweilige Phase L1, L2 und L3 errechnet. Diese Prüfung erfolgt nach IEC-Vorgaben.

Bei eingestelltem unterem Grenzwert darf keine Auslösung im S-Bereich erfolgen (d.h. die Auslösung erfolgt im L-Bereich). Ist der Prüfstrom auf den oberen Grenzwert eingestellt, muss in jedem Fall eine S-Auslösung erfolgen (gemessen wird die Verzögerungszeit t_{sd} gemäß Tabelle oder Formeln).

Eine sichere und leichte Feststellung, ob die ETU im L-Bereich (0,8 x I_{sd}) oder im S-Bereich (1,2 x I_{sd}) ausgelöst hat, ist mit der QUERY-Taste der ETU (Taste "Abfrage der Auslöseursache") möglich (siehe Bedienungsanleitung 3WL, Seite 9-24). Zusätzlich wird empfohlen, bei diesem Test die Kurvencharakteristik auf t_{sd} = const zu stellen, dann erhält man bei 0,8 x I_{sd} eine Auslösezeit >> t_{sd} und bei 1,2 x I_{sd} löst der Schalter bzw. der ETU im Toleranzband bis t_{sd} + 50 ms aus.

2. Prüfung der Verzögerungszeit

(ETU15B beinhaltet diese Funktion nicht; für die ETUs 25B und 27B ist nur die Funktion t_{sd} = const vorhanden; für die ETUs 45B bis 76B ist die Kurvencharakteristik frei wählbar zwischen t_{sd} = const und I²t_{sd} = const):

Bedienung des Programms

2.13 Prüfung des verzögerten Kurzschlussauslösers (S)

Bild 2-29 Prüfung der Verzögerungszeit

Dabei werden entweder die stromunabhängige Verzögerung oder die l²tsd - abhängige Verzögerung errechnet. Die Werte der stromunabhängigen (konstanten) Verzögerung werden nach einer fest definierten Tabelle ermittelt (siehe Bedienungsanleitung Funktionsprüfgerät, Seite 7-2). Bei diesen Werten wird zwischen beiden Messmethoden unterschieden, wobei davon ausgegangen wird, dass die ETU erst mit dem Start der Messung aktiviert wird.

Bei den ETUs 45B bis 76B kann auch vor der Messung eine Versorgungsspannung angeschlossen werden. In diesem Fall ergeben sich maximal um 15 ms geringere Zeitmesswerte (beide Messmethoden). Diesen Fall berücksichtigt das Programm nicht.

Die Zeiten bei der l²t_{sd} - abhängigen Verzögerung werden nach einer Formel ermittelt (siehe Bedienungsanleitung Funktionsprüfgerät, Seite 7-2), oberhalb des Referenzpunktes 12 x In entnimmt das Programm die Auslösezeiten wiederum der Tabelle (da die Auslösekurve ab diesem Punkt in ihren konstanten Teil übergeht).

Die Prüfung der Auslösezeit erfolgt für einen repräsentativen Prüfstrom 1,5 x Isd.

Ist I_{sd} so groß, dass der Prüfstrom oberhalb von I_{cw} liegen würde, wird der vom Programm vorgeschlagene Prüfstrom automatisch auf diese Grenze reduziert.

Falls der Wert dieses Prüfstromes (Prüfpunktes) über dem unteren Grenzwert der unverzögerten Kurzschlussauslösung (I) liegt, wird der Benutzer über die Meldungen "I-Auslösung" und "kein S-Bereich" darauf hingewiesen. Außerdem wird die Spalte "Ergebnis" zum Eintragen der Werte blockiert.

2.14 Prüfung des unverzögerten Kurzschlussauslösers (I)

2.14 Prüfung des unverzögerten Kurzschlussauslösers (I)

Prüfung des unverzögerten Kurzschlussauslösers (I)

1. Prüfung des Ansprechstroms (vorhanden bei allen ETUs):

8 Priifung des unverzögerten Kurzschlussauslösers (1)	ETU - Einstellungen ändern Wert	Prüfstrom	Soll	Ergebnis bestan nicht bestanden.	Fazit : (√) (−)
8.1 Prüfung des Ansprechstromes 8.1.1 Unterer Grenzwert Prüfstroml,= 0.8° l,	L1 <i>I</i> ; = 5.000 A	I _p = 4.000 A	keine I-Auslösung		
	L2 I, = 5.000 A	I _p = 4.000 A	keine I-Auslösung		
	L3 <i>I_i</i> = 5.000 A	I _p = 4.000 A	keine I-Auslösung		
8.1.2 Oberer Grenzwert Prüfstrom I,= 1.2 * I;	L1 <i>I_i</i> = 5.000 A	I _p = 6.000 A	l-Auslösung		
	L2 /, = 5.000 A	I _p = 6.000 A	l-Auslösung		
	L3 <i>I</i> _i = 5.000 A	I _p = 6.000 A	l-Auslösung		

Bild 2-30 Prüfung des Ansprechstroms (alle ETUs)

Hier werden der untere Grenzwert / unteres Toleranzband (- 20 %) bzw. der obere Grenzwert / oberes Toleranzband (+ 20 %) des Ansprechstromes für die jeweilige Phase L1, L2 und L3 errechnet. Diese Prüfung erfolgt nach IEC-Vorgaben.

Bei eingestelltem unterem Grenzwert darf keine Auslösung im I-Bereich erfolgen (d. h. die Auslösung erfolgt im S-Bereich und es werden Zeiten größer 85 ms gemessen, außer wenn t_{sd} auf 20 ms eingestellt ist – Spezialfunktion "Motorschutz"). Ist der Prüfstrom auf den oberen Grenzwert eingestellt, muss in jedem Fall eine I-Auslösung erfolgen und man misst die Auslösezeiten gemäß Tabelle in der Bedienungsanleitung. Diese Zeiten werden auch im folgenden Kapitel angegeben.

Ebenfalls ist hier eine Überprüfung der Auslöseursache mit der "QUERY"-Taste der ETU, wie oben im Kapitel Prüfung des verzögerten Kurzschlussauslösers (S) beschrieben, möglich.

2. Prüfung der Auslösezeit (vorhanden bei allen ETUs):

Bild 2-31 Prüfung der Auslösezeit

Wie im S-Bereich wird auch hier ein Referenzprüfpunkt in Höhe von $I_p = 1,5 x I_i$ berechnet und für die Prüfung vorgegeben.

Ist der eingestellte Wert I_i so groß, dass der so errechnete Prüfstrom oberhalb von I_{cs} liegen würde, wird der Prüfstrom automatisch auf diese Grenze reduziert.

2.15 Prüfung des Erdschlussauslösers (G)

2.15 Prüfung des Erdschlussauslösers (G)

Prüfung des Erdschlussauslösers (G)

Hinweis

Prüfung des Erdschlussauslösers

Zur Prüfung des Erdschlussauslösers bietet das Programm zwei Messmethoden zur Auswahl an (ab ETU45B):

- Strommessung vektoriell
- Strommessung mit externem Wandler

Bild 2-32 Prüfung des Erdschlussauslösers (G)

Die versuchstechnische Durchführung dieser beiden Messmethoden, ist im entsprechenden Kapitel der Bedienungsanleitung des Funktionsprüfgerätes beschrieben.

Die Messmethode (s. o.) wird bei der ETU45B über einen Schiebeschalter am Erdschlussmodul geändert, bei der ETU55B und ETU76B erfolgt die Änderung im entsprechenden Menü.

Bei der Simulation des Sekundärstromes des externen Wandlers mit einem Übersetzungsverhältnis 1200 A / 1 A ist zu berücksichtigen, dass diese Einstellung mit der Schaltfläche "external GF CT Current" erfolgt (siehe Bedienungsanleitung Funktionsprüfgerät, Seite 4-1).

Der bei der Messung mit externem Wandler einzustellende Wandlersekundärstrom wird vom Programm automatisch aus dem primären Prüfstrom errechnet und zusätzlich angegeben.

1. Prüfung des Ansprechstromes (vorhanden ab ETU27B):

9. Prüfung der Erdschlußauslösung (G)	ETU - Einstellungen ändern Wert		Prüfstrom	Soll	Ergebnis bes nicht bestan	Fazit tanden: (√) den: (—)
	L1	/ <u>g</u> = 600 A	Ip = 480 A	keine G- Auslösung		
	L2	l_g = 600 A	I _p = 480 A	keine G- Auslösung		
	L3	lg = 600 A	Ip = 480 A	keine G- Auslösung		
9.1.2 Oberer Grenzwert Prüfstrom I, = 1.2 ° Ig	L1	lg = 600 A	I _p = 720 A	G-Auslösung		
	L2	lg = 600 A	I _p = 720 A	G-Auslösung		
	L3	<i>I_g</i> = 600 A	I _p = 720 A	G-Auslösung		

2.15 Prüfung des Erdschlussauslösers (G)

Hier werden der untere Grenzwert / unteres Toleranzband (- 20 %) bzw. der obere Grenzwert / oberes Toleranzband (+ 20 %) des Ansprechstromes für die jeweilige Phase L1, L2 und L3 errechnet. Diese Prüfung erfolgt nach IEC-Vorgaben. Wird der untere Grenzwert eingestellt, darf keine Auslösung erfolgen, stellt man den oberen Grenzwert ein, muss in jedem Fall eine Erdschlussauslösung eintreten.

Ebenfalls ist hier eine Überprüfung der Auslöseursache wie oben im Kapitel "Prüfung des verzögerten Kurzschlussauslösers (S)" beschrieben, möglich

2. Prüfung der Verzögerungszeit

(vorhanden ab ETU27B; für die ETU27B ist nur die Funktion t_g = const verfügbar; für die ETUs 45B bis 76B Kurvencharakteristik frei wählbar zwischen t_g = const und l²t_g = const):

Bild 2-34 Prüfung der Verzögerungszeit (ab ETU27B)

Dabei wird entweder die stromunabhängige Verzögerung oder die l²t_{sd} - abhängige Verzögerung errechnet. Die Werte der stromunabhängigen (konstanten) Verzögerung werden nach einer fest definierten Tabelle ermittelt (siehe Bedienungsanleitung Funktionsprüfgerät, Seite 7-2). Bei diesen Werten wird zwischen beiden grundsätzlichen Meßmethoden des Funktionsprüfgeräts (Buchse X22 der ETU oder Komplettmessung über Hilfsschalter an den Hauptkontakten) unterschieden, wobei davon ausgegangen wird, dass die ETU erst mit dem Start der Messung aktiviert wird.

Die Werte bei der I²t_{sd} - abhängigen Verzögerung werden nach einer Formel ermittelt (siehe Bedienungsanleitung Funktionsprüfgerät, Seite 9-4).

Genau wie für den S-Bereich wird auch hier ein Referenzprüfpunkt in Höhe von $I_p = 1,5 \times I_g$ festgelegt, der am Funktionsprüfgerät einzustellen ist.

2.16 Sicherung der Ergebnisse und Beenden des Programms

2.16 Sicherung der Ergebnisse und Beenden des Programms

Sicherung der Ergebnisse und das Beenden des Programms

Im unteren Teil (zum Abschluss) des Arbeitsblattes "Protokoll" wird die Auswahl von zwei Schaltflächen angeboten:

Bild 2-35 Abschluss des Arbeitsblatts "Protokoll"

- Speichern und beenden
 - nach der Betätigung dieser Schaltfläche wird der Benutzer aufgefordert, in einem separaten Fenster einen Dateinamen einzugeben, um das Testergebnis zu speichern.

Hinweis

Eingabe eines gültigen Dateinamens

Dieses separate Fenster bleibt so lange zur Eingabe des Dateinamens geöffnet, bis ein Name eingegeben wird. Das Verlassen des Fensters ohne Eingabe eines gültigen Dateinamens ist nicht möglich.

Nach der Speicherung des Ergebnisses wird das Programm automatisch geschlossen.

- Abbrechen
 - nach der Betätigung dieser Schaltfläche wird das Programm geschlossen, ohne das Ergebnis zu speichern. Alle Einstellungen in den Arbeitsblättern "ETU" und "Protokoll" gehen somit verloren!

Häufig gestellte Fragen (FAQ)

Häufig gestellte Fragen (FAQ)

- Wie kann die Ausführung des Programms abgebrochen werden, wenn es sich im Arbeitsblatt "ETU" befindet?
 - Sie müssen zunächst zum Arbeitsblatt "Protokoll" wechseln (Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll" (Seite 13), Bild 2-9 Weiter zum Arbeitsblatt "Protokoll" (Seite 13) und dann auf die Schaltfläche "Abbrechen" drücken (Sicherung der Ergebnisse und Beenden des Programms (Seite 32), Bild 2-35 Abschluss des Arbeitsblatts "Protokoll" (Seite 32)).
- Wie kann das Ergebnis des Testes ausgedruckt werden?
 - Sie müssen zunächst Ihr Ergebnis speichern (Sicherung der Ergebnisse und Beenden des Programms (Seite 32), Bild 2-35 Abschluss des Arbeitsblatts "Protokoll" (Seite 32)), danach die gespeicherte Datei neu öffnen und in Excel über das Hauptmenü Datei → Drucken das Ergebnis ausdrucken lassen.
- Es erscheint eine Fehlermeldung "Typen unverträglich":
 - Es wurden nicht alle Werte in das Arbeitsblatt "Protokoll" eingegeben! Drücken Sie auf "Beenden", schließen sie die komplette Excel-Anwendung und starten Sie das Programm erneut.

Danach füllen Sie alle Felder vollständig aus, wie es in den Kapiteln Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU" (Seite 10) bis Übertragung der ETU-Einstellungen in das Arbeitsblatt "Protokoll" (Seite 13) beschrieben ist.

Microsoft Visual Basic			
Laufzeitfehler '13':			
Typen unverträglich			
Fortfahren	Beenden	Debuggen	Hilfe

Bild 3-1 Fehlermeldung "Typen unverträglich"

- Was bedeutet die Meldung "Falsche Werte f
 ür diese Baugr
 ö
 ße!" im Arbeitsblatt "Protokoll"?
 - Es wurde eine falsche Bestellnummer des Schalters eingegeben (siehe Kapitel Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU" (Seite 10), Bild 2-6 Eingabe der Bestellnummer (MLFB) bestätigen (Seite 11)).

- Warum erscheint die Meldung "Eingabe inkorrekt" bei der Auswahl des Wertes des Bemessungsstrommoduls im Arbeitsblatt "Protokoll"?
 - Der Wert des Bemessungsstrommoduls liegt außerhalb des zulässigen Bereiches für die eingegebene Baugröße, insbesondere darf der Wert des Bemessungsstrommoduls nicht über dem maximalen Schalternennstrom liegen (siehe Kapitel Übertragung der Schutzeinstellungen in das Arbeitsblatt "ETU" (Seite 10), Bild 2-7 Bemessungsstrommodul auswählen (Seite 12) und Bild 2-8 Eingabe des Bemessungsstroms (Referenzwert für die Schutzeinstellungen) (Seite 12)).
- Wie kann ein weiterer Test für eine neue ETU durchgeführt werden?
 - Zunächst muss der aktuelle Testlauf beendet werden. Dann starten Sie das Programm neu und wählen anschließend eine neue ETU aus.
- Warum färben sich die Zellen von I_R und I_{sd} bzw. I_i rot ein und die Meldung "Ändern bzw. Anleitung lesen" erscheint?
 - Wenn Sie einen Bereich mit einem Pr
 üfstrom testen m
 öchten, der gr
 ößer als der gew
 ählte Ansprechwert eines nachfolgenden Bereiches (S-Bereich oder I-Bereich) ist, dann werden Sie mit der Meldung "
 Ändern bzw. Anleitung lesen" dar
 über informiert. Ebenfalls erhalten Sie diese Meldung wenn der Ansprechwert des I-Ausl
 ösers kleiner als der Ansprechwert des S-Ausl
 ösers ist. In diesem Fall
 überschneidet der I-Bereich den S-Bereich.

Die rot eingefärbten Zellen, zeigen Bereiche die nicht plausibel sind.

- Warum erscheint bei den ETUs 55B und 76B die Meldung "Falsche Schrittweite!" und was bedeutet das?
 - Bei den Eingaben von den Werten im Arbeitsblatt "ETU" für ETU55B und ETU76B ist der Benutzer aufgefordert, die Schrittweite für die Ansprechströme und Verzögerungszeiten aus einer Tabellenvorgabe zu übernehmen. Diese ist im Projektierungshandbuch "SENTRON Offene Leistungsschalter (http://support.automation.siemens.com/WW/view/de/35681108)" angegeben. Diese Schrittweiten sind mit den wirklich parametrierbaren Schrittweiten für die jeweilige ETU, die der Benutzer prüft, identisch. Zum Beispiel: wenn Sie den Wert des Parameters zwischen 100 und 500 eingeben möchten, beträgt die zulässige Schrittweite dabei "5". Das heißt in diesem Fall: Die Werte 105, 110, 115, 120, ..., 275, 280, 285, ..., 495, 500 sind zulässig; Die Werte 101, 106, 117, ..., 220.5, 221.3, ..., 499 sind nicht zulässig. (Siehe auch Kapitel Einstellungen im Arbeitsblatt "ETU" (Seite 14), ETU55B / ETU76B).

Hinweis

Fehlermeldungen

Um solche Fehlermeldungen zu vermeiden, übertragen Sie bitte die genauen Werte, die Sie auch an der ETU programmiert haben!