

SIMATIC

Loadable Driver for CP 341
Modbus ASCII Master with 32-Bit Extensions
 Manual

SIMATIC

Loadable Driver for CP341
Modbus Protocol
ASCII Format
with 32-Bit Extensions
S7 is Master
Manual

Edition 1.0

Preface, Contents

Product Description 1

Installation 2

Commissioning Driver 3

Transmission Protocol 4

Interface CPU - CP 5

Diagnostics Driver 6

Application Example 7

Appendices

Wiring Diagrams Multipoint A

Literature List B

Glossary

Safety Precautions and
Warnings

!

!

!

This manual contains warnings, which you should note for your own safety as well as for the
prevention of damage to property. These warnings are indicated by means of a triangle and
displayed as follows in accordance with the level of danger:

Danger

indicates that death, severe personal injury or substantial damage will result if proper
precautions are not taken.

Warning

indicates that death, severe personal injury or substantial damage can result if proper
precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not
taken.

Notice

draws your attention to particularly important information on the product, handling the product, or
to a particular part of the documentation.

Qualified
Personnel

The equipment may be commissioned and put into operation by qualified personnel only. For
the purpose of safety relevant warnings of this manual a qualified person is one who is
authorized to commission, ground and tag devices, systems and circuits.

Correct Usage

!

Trademarks

Please note the following:

__

Warning

This device and its components may only be used for the applications described in the catalog or
the technical description, and only in connection with devices or components from other
manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and
installed correctly, and operated and maintained as recommended.

SIMATIC® and SINEC® are registered trademarks of SIEMENS AG.

The other brand names in this manual may be trademarks use of which by third parties for their
purposes may infringe the proprietors’ rights.

Copyright © Siemens AG 2006 All Rights Reserved

The reproduction, transmission, or use of this document or its contents is
not permitted without express written authority. Offenders will be liable
for damages. All rights reserved, including rights created by patent grant
or registration of a utility model or design, are reserved.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included
in subsequent editions. Suggestions for improvement are welcome.

© Siemens AG 2006
Subject to change without prior notice.

 Preface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

i

Preface

Purpose of this
Manual

The information in this manual will enable you to establish and commission a
data link between a CP 341 and a “Modbus capable” control system.

Required Basic
Knowledge

You require a general knowledge in the field of automation engineering to be
able to understand this manual.
In addition, you should know how to use computers or devices with similar
functions (e.g. programming devices) under Windows 95/98/2000/NT or XP
operating systems. Since loadable driver are based on the STEP 7 software,
you should also know how to operate it. This is provided in the manual
"Programming with STEP 7 V5.2".

Contents of the
Manual

This manual describes the loadable driver functions and how to create a link to
the hardware and software of communication processor CP 341.

The manual contains the following subjects:
• Product Description / Installation
• Commissioning the Driver / Installation / Parameterization
• Interface CPU-CP
• Transmission Protocol
• Diagnostics Driver
• Application Example

Validity of the
Manual

This manual Issue is valid for the following software package:

Product Identification No. from Version

Loadable Driver for CP 341
Modbus ASCII Master

6ES7870-1CA00-0YA0 1.0

Note

This manual contains the driver description as is valid at the time of publication.

How to access the
information in this
manual

To enable you to access the information in this manual more easily, we would
like to draw your attention to the following:

• The next few pages contain a complete list of contents.

 Preface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

ii

Further sources of
information

Any further information regarding CP 341 (installation, commissioning etc.) can
be found in the following manual:

SIEMENS
SIMATIC
CP341 Point to Point Communication
Installation and Parameter Assignment
Manual
C79000-G7076-C341-..

Further information regarding STEP7 can be found in the following manuals:

SIEMENS
SIMATIC Software
Standard Software for S7 and M7
STEP7 User Manual
C79000-G7000-C502-..

SIEMENS
SIMATIC Software
System Software for S7-300/400
System- and Standard Functions
Reference Manual
C79000-G7000-C503-..

Queries Should you have any queries regarding the use of the driver described in this
manual, which are not answered in this documentation please contact the
relevant person at Siemens who supplied you with this driver.

Terminology This documentation uses the terms CP or CP341.

Scope of
Application

The driver described in this manual serves as a loadable protocol for CP341,
which may be used instead of Standard Protocols 3964R, RK512, and ASCII.

Note

With this driver, modifications or expansions to the sequences between CP and
CPU are possible.

These modifications and expansions may apply in particular to event classes or
event numbers available for diagnostic purposes.

Furthermore please note that this manual only describes the modifications and
expansions as against the standard functions. Basic information may be found in
the manuals mentioned in chapter “Further Sources of Information“.

In order to ensure safe use of the driver, detailed knowledge of the functionality
of CP341 is a pre-requisite.

Contents

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

iii

Contents

1 Product Description... 1-1

1.1 Usage Possibilities.. 1-1

1.2 Hardware and Software Prerequisites.. 1-2

1.3 Summary of the Modbus Protocol .. 1-2

2 Installation .. 2-1

2.1 Use of the Dongle ... 2-1

2.2 Interface Connection... 2-1

3 Commissioning the Driver .. 3-1

3.1 Installation of the Driver on the STEP7-PG/-PC... 3-1

3.2 Uninstalling the Driver... 3-2

3.3 Configuring a Data Link CP in Step7.. 3-2

3.4 Assigning Parameters to the CP .. 3-3

3.5 Loading the Driver to the CP .. 3-4

3.6 Assigning Parameters to the Loadable Driver .. 3-4
3.6.1 Modbus ASCII Protocol .. 3-5
3.6.2 RS422/485 (X27) Interface... 3-7
3.6.3 RS232 Secondary Signals.. 3-8

3.7 Loading the Configuration and Parameter Assignment Data 3-9

3.8 Start-up Characteristics of CP341 .. 3-9

4 Transmission Protocol .. 4-1

4.1 Message Structure.. 4-1

4.2 Exception Responses ... 4-5

4.3 RS 232C Secondary Signals .. 4-6

Contents

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

iv

5 Function Codes .. 5-1

5.1 Function Code 01 – Read Coils.. 5-2

5.2 Function Code 02 – Read Discrete Input ... 5-3

5.3 Function Code 03 – Read Holding Registers ... 5-5

5.4 Function Code 03 – Read 32-Bit Holding Registers... 5-6

5.5 Function Code 04 – Read Input Registers ... 5-7

5.6 Function Code 05 – Write Single Coil... 5-8

5.7 Function Code 06 – Write Single Register ... 5-9

5.8 Function Code 06 – Write Single 32-Bit Register... 5-10

5.9 Function Code 07 - Read Exception Status .. 5-11

5.10 Function Code 08 – Diagnostics (Loop Back Test) 5-12

5.11 Function Code 11 – Get Comm Event Counter.. 5-13

5.12 Function Code 12– Get Comm Event Log.. 5-14

5.13 Function Code 15 – Write Multiple Coils .. 5-15

5.14 Function Code 16 – Write Multiple Registers ... 5-16

5.15 Function Code 16 – Write Multiple 32-Bit Registers....................................... 5-17

6 CPU – CP Interface... 6-1
6.1.1 Data Transfer from CPU to CP with P_SND_RK ... 6-1
6.1.2 Data Transfer from CPU to CP with P_RCV_RK ... 6-4

7 Diagnostics of the Driver... 7-1

7.1 Diagnostics via Display Elements (LEDs) .. 7-1

7.2 Diagnostic Messages of the Function Blocks... 7-2

7.3 Table of Errors / Events .. 7-3
7.3.1 Error Codes for “CPU Job Errors” .. 7-3
7.3.2 Error Codes for “Receive Errors”.. 7-4
7.3.3 Error Codes for “General Processing Errors” ... 7-6

Contents

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

v

8 Application Example.. 8-1

8.1 Used Blocks.. 8-1
8.1.1 Program Description ... 8-3
8.1.2 Programming Example ... 8-4

A Wiring Diagrams Multipoint ... 1

B Literature List .. 1

Glossary ... 1

Product Description

1 Product Description

1.1 Usage Possibilities

Position in the
System

The driver described here is a software product for communication processor
CP341.

Environment CP341 can be used in automation systems S7-300 and can establish serial
communication links to partner systems.

Function of the
Driver

This driver enables you to establish a communication link between
communication module CP341 and “Modbus capable” slaves.

The transmission protocol used is the Modbus Protocol in ASCII Format. In
addition, de-facto standard 32-bit extensions are supported for accessing floating
point and double-word registers in compatible slaves. Data transmission is carried
out in accordance with the Master-Slave principle. The Master (SIMATIC S7) has
the initiative during the transmission.

Function codes 01, 02, 03, 04, 05, 06, 07, 08, 11, 12, 15, and 16 can be used for
communication between the CP and the slaves.

Usable Interfaces
and Protocols

You can use this driver on a CP341 having a RS232, TTY, or RS422/485
(X27) interface.

With this driver, it is possible to use the RS422/485 (X27) interface submodule
in both 2-wire operation and 4-wire operation. In 2-wire operation. It is
possible to connect up to 32 slaves to one master in half-duplex operation,
thus creating a multipoint connection (network).

Possible System
Configuration

Please find below an illustration of system configuration schematics.

S7-300

CP341

Interfac e
S b d lRS232C/ TTY/ X27

PSU CPU

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-1

Product Description

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-2

1.2 Hardware and Software Prerequisites

Useable Module The Driver runs on CP341 with part number 6ES7 341-1AH01-0AE0 as well as -
1BH01 and -1CH01. Also the previous modules -1AH00, -1BH00 and -1CH00 can
be used with this driver.

Dongle In order to use the CP with loadable drivers, you require a dongle. The dongle
with identification number 6ES7870-1CA00 is supplied with the driver.

Loading Memory
of the CPU
(Memory Card)

Every CP interface, for which this loadable driver has been assigned parameters,
requires a CPU loading memory amount of about 25 Kbytes.

With CP 341 the loadable drivers are downloaded directly to the CP 341.
Therefore you do not require a loading memory on the S7-300 CPU. You should
note, however, that this means that you cannot change a module without a
programming device.

Software Issue
Levels

Loading of drivers is possible with STEP 7 from issue level 4.04.

An installed version of the Parameter Assignment Tool CP: Point-to-Point
Communication, Parameter Assignment V4.1 or higher is required.

We recommend to use STEP 7 V5.1 or higher and Parameter Assignment Tool
V5.1 or higher.

Data Structures Prior to project configuration of your S7 data structures, you should ensure that
they are compatible with the user programs of the Modbus Slave systems (clarify
which function codes and which Modbus addresses will be used).

1.3 Summary of the Modbus Protocol

Function Codes The type of data exchange between Modbus systems is controlled by Function
Codes (FCs).

Data Exchange The following FCs can be used to carry out data exchange bit-by-bit:
FC 01 Read Coils,
FC 02 Read Discrete Inputs,
FC 05 Force Single Coil,
FC 15 Force Multiple Coils.

The following FCs can be used to carry out data exchange register-by-register:
FC 03 Read Holding registers,
FC 04 Read Input registers,
FC 06 Write Single Register,
FC 16 Write Multiple Registers.

Product Description

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

1-3

Data Areas As a rule, the individual FCs operates in accordance with the table below:

Function
Code

Data Type of Data Access

01, 05, 15 Coil (output)
status

Bit Output read/write

02 Input Status Bit Input read only
03, 06, 16 Holding Register Register

16 or 32 bit
Output
Register

read/write

04 Input Register Register
16 or 32 bit

Input
Register

read only

Address
Representation

Analogous to the partitioning into read/write and read-only areas, data at user
level can be represented as shown in the table below:

Function
Code

Type of Data Example:
Address Representation
at User Level (Decimal)

01, 05, 15 Output bit 0xxxx
02 Input bit 1xxxx
04 Input register 3xxxx
03, 06, 16 Holding register 4xxxx

In the transmission messages on the serial transmission line, the addresses
used in the Modbus user system are referenced to 0.
In the Modbus user system itself, these addresses are counted beginning with
1.

Example:
If the first holding register in the user system is represented as register 40001, in
the transmission message the value 0000 Hex is transmitted as the register
address when FC 03, 06, or 16 is used to access register 40001
If the 127th coil is represented as coil 00127 in the user system, it is assigned the
coil address 007E Hex in the transmission message.

Note:
The CP341 driver only deals with the transmitted or received zero-based PDU
addresses. Any translation from the user level address must be handled in the
application program in the S7 PLC or the associated HMI.

Installation

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

2-1

2 Installation

2.1 Use of the Dongle

Introduction In order to run the CP with loadable drivers, you require a dongle. When the
dongle is plugged in, drivers can be loaded.

How to Plug In the
Dongle

Before you can plug in the dongle, you must take the CP out of the rack. At the
back of the CP, above the plugs for the backplane bus, there is a slot into which
the dongle can be inserted.

2.2 Interface Connection

TTY A point-to-point connection to one slave can be realized.

Further notes to the interface connection please find in the manual “CP341 Point
to Point Communication“.

RS232C A point-to-point connection to one slave can be realized. It is possible to use
RS232 auxiliary signals for, e.g., modem control.

Further notes to the interface connection please find in the manual “CP341 Point
to Point Communication“.

Installation

X27 (2-wire) A multipoint connection (network) connecting up to 32 slaves to one Master can
be created directly.

The driver of the CP performs the switchover of the receive-2-wire line between
transmit and receive.

Schematic connection: 1 Master system, 1 slave at the bus

S IM AT IC C P341
M O D BU S M aster

T/R (A)

T/R (B)

G N D

C hassis sh ie ld

R (A) 4

R (B) 11

G N D 8

 C hassis sh ie ld

M O D BU S S lave

Further notes to the interface connection please find in the manual “CP341 Point
to Point Communication“.

X27 (4-wire) A Point-to-Point connection to one slave can be created.

The direct construction of a multipoint connection (network) connecting more than
one slave is not possible.

Schematic connection: 1 Master system, 1 Slave

S IM A T IC C P 341
M O D B U S M aste r

R (A)

R (B)

G N D

C hass is sh ie ld

T (B) 9

R (A) 4

G N D 8

 C hass is sh ie ld

M O D B U S S lave

T(A) 2

R (B) 11

R (B)

T (A) T (A)

T (B)

Further notes to interface connection please find in the manual “Point-to-Point
Data Link CP341“.

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

2-2

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-1

3 Commissioning the Driver

General
Information

All statements in the following sections referring to STEP7 or configuring or
setting parameters for CP-PtP, CP341 or the Driver are related to the STEP7-
Version 5.3 SP3.

Operation flows, names and directory names might be different in other STEP7
versions.

3.1 Installation of the Driver on the STEP7-PG/-PC

Prerequisites To make the driver installation possible, a STEP7-Package and the Parameter
Assignment Tool CP: Point-to-Point Communication, Parameter Assignment
must have been installed before.

Installation Installation of the driver consisting of driver code and driver specific configuration
screens for STEP7. Insert your Modbus ASCII Driver CD into the CD-ROM drive
and follow step-by-step the instructions that are automatically displayed by the
installation program. If the installation program fails to automatically run, perform
these steps:

1. Using Windows Explore, navigate to the CD-ROM drive and go to the
directory MODBUS_ASCII_MASTER and double-click Setup.EXE file to start
the installation procedure.

2. Follow step-by-step the instructions that are displayed by the installation
program.

Result: The driver and the parameterization masks are installed in the following
directory: [c:\Program Files\]Step7\S7fptp\S7Driver where the contents of [] are
selectable during the installation procedures

The directory includes the following files:
• S7wfpmab.dll
• S7wfpmax.cod
• S7wfpmbx.cod

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-2

3.2 Uninstalling the Driver

 The driver can be uninstalled from the STEP 7 package by selecting “Control
Panel”, “Add / Remove Software” Find the driver in the list and follow the
instruction for uninstalling it.

The user can check if all the files S7wfpma?.*, S7wfpmb?.*, S7wfpmc?.* have
been deleted successfully in the [c:\Program Files\]Step7\S7fptp\S7Driver
directory.

Note:
Before uninstalling the package “Parameter Assignment Tool CP: Point-to-Point
Communication, Parameter Assignment“ all the loadable drivers must first be
uninstalled.

3.3 Configuring a Data Link CP in Step7

Introduction The configuration of a data link comprises the hardware allocation in the
configuration table using HW config. The configuration can be carried out using
the STEP 7 software.

S7-Project Before you can carry out the configuration, you must have created a S7
Project with STEP 7.

Project
Components

Insert the required project components into the opened project using the SIMATIC
Manager. You must have a “SIMATIC 300 Station” in your project.

Before an insertion, you must select the target project name by clicking it. To
insert the 300 Station, from the Insert menu of Simatic Manager do:

Insert Station SIMATIC 300 Station

Hardware
Configuration

The configuration of the hardware comprises defining the hardware components
themselves, and also their properties.

To start the hardware configuration, select the SIMATIC 300 Station and double-
click “Hardware” (or select the menu command Edit Open Object). Use the
menu command Insert Hardware Components to insert a RACK- 300, a PS-
300, a CPU-300 from SIMATIC 300, and the CP PtP from CP-300 with the
appropriate part number.

A detailed description of how to configure S7-300 modules can be found in the
User Manual for STEP 7.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-3

3.4 Assigning Parameters to the CP

Assigning
Parameters to the
CP

After you have arranged the modules in your rack using “Hardware
Configuration,” you must assign parameters to them.

To start the parameter assignment tool, double-click the CP in “Hardware
Configuration” or click the CP and select the menu command Edit Object
Properties.

1) Properties - CP341 Basic Parameters Tab

Clicking the “Parameter…” button along the bottom opens the protocol
selection interface “Parameter Assignment of Point-to-Point Connection”.
Here you can select the required driver protocol, Modbus ASCII Master, from
the drop-down menu.

After selecting the Protocol, you can carry out the Parameter Assignment
of the Driver (start by double-clicking the envelope symbol labeled
“Protocol”).

A detailed description of how to select the protocol and assign parameters to
the dialog boxes for the loadable driver can be found in the section “Assigning
Parameters to the Loadable Driver.”

After parameter assignment is complete, you return to the “Properties - CP”
dialog box.

2) Properties - CP341 Addresses

No settings are required in the “Addresses” tab (Properties - CP dialog box).

3) Properties - CP341 General

No settings are required in the “General” tab (Properties - CP dialog box).

You can complete the parameter assignment of the CP by clicking “OK” in the
“Properties - CP” dialog box. You then return to the “Hardware Configuration”
dialog box.

Save the parameter assignment and close the “Hardware Configuration”
dialog box. You return to the basic menu of the STEP 7 project“.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-4

3.5 Loading the Driver to the CP

Loading the Driver After selection of a loadable driver in the selection box “Protocol”, you can load
the driver to the CP. Double clicking on to the icon “Load Drivers” gets you to
the dialogue where the driver is loaded.

• You need an online connection to the CPU to load drivers.

• The tab “Load Drivers” shows you, which driver is already loaded on the CP
and which driver was selected by you.

• Once again click “Load Drivers” and confirm with “yes”. The transfer of the
driver to the CP is carried out.

• After the transfer the information “Driver version online on the module” is
updated.

• If the driver in the current version already exists on the CP, the transfer in
cancelled with the message “Driver already exists”.

• Click “Close” to return to the main tab.

The error “Module rejected driver download” may occur, when the driver files are
destroyed. In that case a re-installation of the driver is necessary.

3.6 Assigning Parameters to the Loadable Driver

Opening the
Parameter
Assignment Tool
CP-PtP

Select the SIMATIC station and double-click “Hardware” (or select the menu
command Edit Open Object) to start the “Hardware Configuration.”
Click the CP and select the menu command Edit Object Properties. Click the
“Parameter…” button along the bottom to open the protocol selection
dialog box.

Protocol Selection In addition to the standard protocols the selection box also displays all installed
loadable drivers. Choose “Modbus ASCII Master“ for this loadable driver. Double
clicking on to the symbol for the transmission protocol (an envelope icon) gets
you to the dialogue where the protocol specific parameters are set.

Driver-Specific
Parameters

The parameters described below can be set for this driver in the individual dialog
boxes.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-5

3.6.1 Modbus ASCII Protocol

Overview of
Transmission
Parameters

Transmission Parameters

Parameter Description Value range Default
value

Baud rate Data transmission speed in bits /
second

300
600

1200
2400
4800
9600
19200
38400
76800

9600

Data bits Bit per character 7 7

Stop bits Amount of stop bits 1
2

1

Parity amount of data bits is completed to an
even number
amount of data bits is completed to an
odd number
no parity bit transferred

even

odd

none

even

Transmission Rate The transmission rate is the speed of data transmission in bits per second
(bps).

Data Bits The amount of data bits describes how many bits represent a character to be
transmitted. With Modbus ASCII 7 data bits are mandatory.

Stop Bits The amount of stop bits defines the smallest possible distance between two
characters to be transferred. With even or odd parity 1 stop bit is pre-defined.
None parity effects two stop bits.

Parity The parity bit is for data safety; depending on parameter assignment, it completes
the amount of transmitted data bits to either an even or an odd number.

If “no” parity is selected, no parity bit is transmitted. This reduces the safety of
data transmission.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-6

Overview of
Protocol
Parameters

Protocol Parameters

Parameter Description Value range Default
value

Character
delay time

Time period used to monitor
the incoming characters within
a message

1 to 6500
milliseconds in
1ms intervals

1000ms

Response
time-out

Time to monitor the start of the
reply from the slave

5 to 65500
milliseconds in
1ms intervals

2000

Turnaround
delay

Waiting time after sending a
broadcast message

Operating
mode

“Normal Operation”
“Interference Suppression”

Normal
Interference
Suppression

Normal

32-Bit mode Registers can also imply
32-bit values

not selected
selected

not
selected

Character Delay
Time

When receiving a message the quiet time between characters is measured. If the
quiet time exceed the the character delay time, the message is ignored and an
error is reported.

Response Time-
out

The reply monitoring time is the time the master spends waiting for a reply
message from the slave after output of a request message. If the start character
is not received within the response timeout, the message is ignored and an error
is reported.

Turnaround Delay When a broadcast request is sent, no response is returned from the slaves.
Nevertheless a delay is respected by the Master in order to allow any slave to process
the current request before sending a new one. This delay is called turnaround delay. The
turnaround delay should be shorter than the response timeout.

After the CP has sent the last character of a broadcast message it waits the
turnaround delay before the send job is completed. If the turnaround delay is set
to 0, the CP completes the send job immediately after sending the last character
of the request.

Reply Monitoring
Time

The reply monitoring time is the time the master spends waiting for a reply
message from the slave after output of a request message.

If the slave doesn’t send a start character during the reply monitoring time the
send job is finished with error.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-7

Normal Operation In this operating mode, all recognized transmission errors and/or BREAK before
and after receive messages from the slave result in an appropriate error
message.

Interference
Suppression

If “BREAK” is recognized on the receiving line at the start of the receive message,
or if the CP interface block notices transmission errors before the message, no
error is reported.

The start of the receive message from the slave is recognized by means of the
correctly-received start character. Transmission errors and/or BREAK are also
ignored when they occur after the end of the receive message.

32-Bit Mode Normally registers are 16-bit values. When choosing 32-bit mode, registers can
also imply 32-bit values when supported in the addressed slave.

3.6.2 RS422/485 (X27) Interface

Overview

X27 (RS 422/485) - Interface Sub-module

Parameter Description Value range Default value

Presetting of
the receiving
line

No presets
Preset “Break“
Preset “High“

none
R(A)5V,R(B)0V
R(A)0V,R(B)5V

R(A)5V,
R(B)0V

X27-Operation
mode

Via the transmission line T(A),
T(B) data are sent,
via the receiving line R(A),
R(B) data are received.
The receiving line R(A),R(B) is
changed-over from send to
receive operation.

Full-duplex /
four-wire-
operation

Half-duplex /

two-wire-
operation

Full-duplex /
four-wire-
operation

"Full-duplex / four-
wire-operation“

In this operating mode, data are sent via the transmission line T(A),T(B) and
received via the receiving line R(A),R(B). Error handling is carried out in
accordance with the function set at the “Driver Operating Mode” parameter
(Normal or Interference Suppression).

"Halfduplex / two-
wire-operation“

In this operating mode, the driver switches the 2-wire receiving line R(A),R(B) of
the interface from send to receive operation. In this operating mode, all
recognized transmission errors and/or BREAK before and after receive messages
are ignored. BREAK level during message pauses is also ignored. The beginning
of the receive message from the slave is recognized by means of the correctly-
received colon character.

The setting R(A) 0V, R(B) 5V (High) is recommended as the preset for the
receiving line.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-8

Presetting of the
Receiving Line

“None“ (Float)

The two-wire-line R(A),R(B) is not preset.
In this instance the link partner should carry out assignment.

Presetting “R(A) 5V, R(B) 0V“ (BREAK)

The two-wire-line R(A),R(B) is preset by the CP as follows:
R(A) --> +5V, R(B) --> 0V (VA - VB ≥ +0,3V).
This means that BREAK level occurs on the CP in the event of a line break.

Presetting “R(A) 0V, R(B) 5V“ (High)

The two-wire-line R(A),R(B) is preset by the CP as follows:
R(A) --> 0V, R(B) --> +5V (VA - VB ≤ -0,3V).
This means that HIGH level occurs on the CP in the event of a line break (and / or
when it is running idle, i.e. no slave is transmitting).
Line status BREAK cannot be recognized.

3.6.3 RS232 Secondary Signals

Overview

Data Transmission

Parameter Description Value range Default
value

Automatic use
of RS232
signals

RS232 secondary signals are
enabled

yes
no

no

Time to RTS
OFF

Time to elapse after the
transmission before the CP sets
the RTS line to OFF

0 to 655350 ms
in 10 ms steps

1s

Data output
waiting time

Delay before the CP starts
sending of a telegram

0 to 655350 ms
in 10 ms steps

1s

Automatic Use of
RS232 Signals

With this parameter you can choose whether RS 232 C secondary signals are
used or not. If no secondary signals are parameterized, the CP neither sets nor
checks these signals.

The description of the used secondary signal please find in Chapter 4 of this
manual.

Time to RTS OFF After output of a request the CP waits the defined time to set the RTS line to OFF.

Data Output
Waiting Time

The data output waiting time is the time that the CP 341 is to wait for the
communication partner to set CTS to ON after setting the RTS line to ON and before
starting the transmission.

Selecting
Parameters

Select the parameters required for your data link and exit the individual dialog
boxes by clicking “OK“.

Commissioning Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

3-9

3.7 Loading the Configuration and Parameter Assignment Data

Data Management On closing the “Hardware Configuration“ the data is automatically saved into your
Step7-project.

Loading of
Configuration and
Parameters

The configuration- and parameterization data can now be downloaded online from
the programming unit to the CPU. Use menu commands PLC Download to
transfer the data to the CPU.

During CPU startup and each time you switch between STOP mode and RUN
mode, the module parameters of the CP are automatically transferred to the CP
as soon as it can be reached via the S7-300 backplane bus.

The driver code is not saved in the CPU, but directly with the parameter
assignment tool in the retentive memory of the CP 341. You should note,
however, that this means you cannot change a module without a programming
device.

Further
Information

Please refer to the User Manual for STEP7 for detailed description on:

• how to save the configuration and the parameters.

• how to load the configuration and the parameters into the CPU.

• how to read, change, copy and print the configuration and the parameters.

3.8 Start-up Characteristics of CP341

Introduction The startup of the CP is divided into two phases:
−−> Initialization (mains-on of CP)
−−> Parameter assignment

Initialization As soon as voltage is applied to the CP, and after completion of a hardware test
program, the firmware on the CP is prepared for operation.

Parameter
Assignment

During parameter assignment, the CP receives the module parameters allocated
to the current slot. The CP is now ready to run.

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-1

4 Transmission Protocol

General
Information

The procedure in use is asynchronous and half-duplex. Data transmission is
carried out without handshake.

Master-Slave
Relationship

The CP initiates the transmission (= Master), and after outputting a request
message it waits for a reply message from the slave for the duration of the
parameter “reply monitoring time” .

ASCII-Mode When devices are setup to communicate on a Modbus serial line using ASCII
mode, each 8–bit byte in a message is sent as two ASCII characters.

The allowable characters transmitted for all fields except the start character and
end characters are hexadecimal 0–9, A–F (ASCII coded).

Example: The byte 0X5B is encoded as two characters: 0x35 and 0x42 (0x35
="5", and 0x42 ="B" in ASCII).

4.1 Message Structure

Message Structure The data exchange “Master-Slave” and/or “Slave-Master” begins with the
Start Character, followed by Slave Address and Function Code. Then the
data are transferred. The structure of the data field depends on the function
code used. The LRC check is transmitted at the end of the message,
followed by the End Characters.

START ADDRESS FUNCTION DATA LRC END

1 char
colon

2 chars 2 chars 0 up to 2x252
char(s)

2 chars 2 chars
CR, LF

START Start Character :
ADDRESS Modbus Slave Address
FUNCTION Modbus Function Code
DATA Message Data: Byte_Count, Coil_Number, Data
LRC Message Checksum
END End Characters CR, LF

Start Character The start character is a colon (0x3A). The devices monitor the bus continuously
for the ‘colon’ character. When this character is received, each device decodes
the next character until it detects the End Characters (CR,LF).

Slave Address The slave address can be within the range 1 to 255. The address is used to
address a defined slave on the bus.

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-2

Broadcast
Message

The master uses slave address zero to address all slaves on the bus. Broadcast
Messages are only permitted in conjunction with writing Function Codes 05, 06,
15, and 16. A Broadcast Message is not followed by a reply message from the
slave.

After a broadcast message the CP waits for a time determined by the
“turnaround delay” parameter before the send job is finished.

Function Code The function code defines the meaning as well as the structure of a message.
The following function codes are supported by the driver:

Function
Code

Function in Accordance with
Modbus Specification

01 Read Coils

02 Read Discrete Inputs

03 Read Holding Registers

04 Read Input Registers

05 Write Single Coil

06 Preset Single Register

07 Read Exception Status

08 Loop Back Diagnostic Test

11 Fetch Communications Event Counter

12 Fetch Communications Event Log

15 Write Multiple Coils

16 Write Multiple Registers

Data Field DATA The data field DATA is used to transfer the function code-specific data such as:
Bytecount, Coil_Start Address, Register_Start Address; Number_of_Coils,
Number_of_Registers, See also Chapter “Function Codes”.

The data field contains up to 2x252 ASCII characters.

LRC The Longitudinal Redundancy Checking (LRC) field is one byte, containing an 8–
bit binary value. The LRC value is calculated by the transmitting device, which
appends the LRC to the message. The device that receives recalculates an LRC
during receipt of the message, and compares the calculated value to the actual
value it received in the LRC field. If the two values are not equal, an error results.

The LRC is calculated by adding together successive 8–bit bytes in the message,
discarding any carries, and then two’s complementing the result. The LRC is an
8–bit field, therefore each new addition of a character that would result in a value
higher than 255 decimal simply ‘rolls over’ the fields value through zero. Because
there is no ninth bit, the carry is discarded automatically.

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-3

A procedure for generating an LRC is:

1. Add all bytes in the message, excluding the starting ‘colon’ and ending CRLF.
Add them into an 8–bit field, so that carries will be discarded.

2. Build the two’s–complement.

3. Convert the LRC to ASCII.

Placing the LRC into the Message

When the 8–bit LRC (2 ASCII characters) is transmitted in the message, the
high–order character will be transmitted first, followed by the low–order character.
For example, if the LRC value is 61 hex (0110 0001):
LRC high 0x36
LRC low 0x31

Message End The end of the message is defined by the characters CR and LF.

Telegram Example The Modbus serial line PDU is describes as follows:

05H Slave Address
08H Function Code
00H Diagnostic Code “High”
00H Diagnostic Code “Low”
A5H Test Value “High”
C3H Test Value “Low”
xxH LRC

In ASCII transmission mode the following data is transferred on the line:

3AH Start Character
30H Slave Address
35H
30H Function Code
38H
30H Diagnostic Code “High”
30H
30H Diagnostic Code “Low”
30H
41H Test Value “High”
35H
43H Test Value “Low”
33J
xxH LRC Code High
xxH LRC Code Low
0DH CR
0AH LF

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-4

Error Handling If BREAK is recognized on the receiving line by the CP during output of a
message, the triggered P_SND_RK job is completed with error. Reception during
transmission is ignored.

If any of the errors listed below is recognized by the CP during reception of the
reply message, the received data string is rejected, an error is reported and the
triggered Send job is completed with error.

• reply monitoring time elapsed

• wrong start character

• received character is no ASCII character

• overrun of the receive buffer

• received LRC incorrect

• transmission error in a character (parity, framing or overrun error)

• character delay time elapsed

• BREAK (line break or DSR or CTS not asserted)

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-5

4.2 Exception Responses

Exception
Responses

On recognition of an error in the request message from the master (for example,
register address illegal), the slave sets the highest value bit in the function code of
the reply message. This is followed by transmission of one byte of error code
(Exception Code), which describes the reason for the error.

A detailed description of the meaning of the above-mentioned parameters can be
found in the “Modbus Application Protocol Specification.”

Exception Code
Message

The error code reply message from the slave has the following structure:
for example, slave address 5, function code 5, exception code 2

Reply Message from Slave EXCEPTION_CODE_xx:

05H Slave Address
85H Function Code
02H Exception Code (1 to 7)
xxH LRC

On receipt of an error code reply message by the driver, the current job is
completed with error. An error number corresponding to the received error code
(Exception Code 1-7) is also entered in the STATUS area. No entry is made in a
P_RCV_RK destination data block.

The following error codes are defined in accordance with the Modbus
Specification:

Exception
Code

Meaning in accordance with
Modbus Specification

Cause – Short Description *

01 Illegal Function Illegal function code

02 Illegal Data Address Slave has illegal data address

03 Illegal Data Value Slave has illegal data value

04 Failure in Associated Device Slave has internal error

05 Acknowledge Function is carried out

06 Busy, Rejected Message Slave is not ready to receive

07 Negative Acknowledgement Function cannot be carried out

* Check slave for further details.Not all are supported by driver. See Modbus spec
for detailed descriptions.

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-6

4.3 RS 232C Secondary Signals

Available Signals

The following RS 232C secondary signals exist on the CP when the RS232C
interface submodule is used:

• DCD (input) Data carrier detect;
 Data carrier detected

• DTR (output) Data terminal ready;
 CP ready for operation

• DSR (input) Data set ready;
 Communication partner ready for operation

• RTS (output) Request to send;
 CP ready to send

• CTS (input) Clear to send;
 Communication partner can receive data from
 the CP (response to RTS = ON of the CP)

• RI (input) Ring indicator;
 Indication of an incoming call

When the CP is switched on, the output signals are in the OFF state
(inactive).

You can parameterize the way in which the DTR/DSR and RTS/CTS control
signals are used with the CP 341: Point-to-Point Communication,
Parameter Assignment parameterization interface or control them by
means of function calls (FBs) in the user program.

Using the RS 232C
Secondary Signals

The RS 232C secondary signals can be used as follows:

• When the automatic use of all RS 232C secondary signals is parameterized

• By means of the V24_STAT and V24_SET functions (FBs)

Note
When automatic use of the RS 232C secondary signals is parameterized, neither
RTS/CTS data flow control nor RTS and DTR control by means of the V24_SET
FB are possible. On the other hand, it is always possible to read all RS 232C
secondary signals by means of the V24_STAT FB.

The sections that follow describe how the control and evaluation of the RS 232C
secondary signals is handled.

Transmission Protocol

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-7

Automatic Use of
the Secondary
Signals

The automatic use of the RS 232C secondary signals on the CP is implemented
as follows:

• As soon as the CP is switched by means of parameterization to an operating
mode with automatic use of the RS 232C secondary signals, it switches the
RTS line to OFF and the DTR line to ON (CP ready for use).

• Message frames cannot be sent and received until the DTR line is set to ON.
As long as DTR remains set to OFF, no data is received via the RS 232C
interface. If a send request is made, it is aborted with an error message.

• When a send request is made, RTS is set to ON and the parameterized data
output waiting time starts. When the data output time elapses and CTS = ON,
the data is sent via the RS 232C interface.

• If the CTS line is not set to ON within the data output time so that data can be
sent, or if CTS changes to OFF during transmission, the send request is
aborted and an error message generated.

• After the data is sent, the RTS line is set to OFF after the parameterized time
to RTS OFF has elapsed. The CP does not wait for CTS to change to OFF.

• Data can be received via the RS 232C interface as soon as the DSR line is
set to ON. If the receive buffer of the CP threatens to overflow, the CP does
not respond.

• A send request or data receipt is aborted with an error message if DSR
changes from ON to OFF. The message "DSR = OFF (automatic use of V24
signals)" is entered in the diagnostics buffer of the CP.

Note
When automatic use of the RS 232C secondary signals is parameterized, neither
RTS/CTS data flow control nor RTS and DTR control by means of the V24_SET
FB are not possible.

Note
The "time to RTS OFF" must be set in the parameterization interface so that the
communication partner can receive the last characters of the message frame in their
entirety before RTS, and thus the send request, is taken away. The "data out put
waiting time" must be set so that the communication partner can be ready to
receive before the time elapses.

Transmission Protocol

Time Diagram The following Figure illustrates the chronological sequence of a send request.

Figure 4-1 Time Diagram for Automatic Use of the RS 232C Secondary Signals

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

4-8

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-1

5 Function Codes

General All telegram examples for the different function codes refer to Modbus serial line
PDU format.

32-Bit Registers The register oriented function codes 3, 6, 16 can also handle 32-bit registers. If
Protocol Parameter for Modbus-Master “With 32-bit Registers” is set the driver is
prepared to handle registers with the length of 4 byte.

The decision whether the send job refers to 16-bit or 32-bit registers is done via
the second byte of the send data block. The second byte of the send data block
determines the Modbus Function Code sent in the message. If bit 26 (the bit to the
right of the most significant bit) is set, the send job refers to 32-bit registers. Bit 26
doesn’t affect the function code actually sent, it is just information for the master
CP for what to expect in the response from the slave when reading or what to
send when writing.

The register(s) accessed in the slave when bit 26 is set must be within a 32-bit
register address range defined in the slave such that 4 bytes per register is
returned in the read response or 4 bytes per register are expected in a write
request.

If bit 26 is set and a normal 2 bytes per register range is read in the slave, 2 bytes
per register is returned by the slave. As the master expects more data, the
activated send job is finished with error. Likewise, bit 26 is not set and a 4 bytes
per register range is read in the slave, 4 bytes per register is returned by the
slave. The master receives more data than expected and the activated send job is
finished with error.

If bit 26 is set and a normal 2 bytes per register range is written to the slave, 4
bytes per register are sent by the master and the slave should returned an
exception response to the master. Likewise, if bit 26 is not set and a 4 bytes per
register range is written to the slave, 2 bytes per register are sent by the master
and the slave should returned an exception response to the master.

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-2

5.1 Function Code 01 – Read Coils

Function This function serves to read individual output bits (coils) from the slave.

Start Address The parameter bit start address is not checked by the driver and is sent
unchanged.

Amount of Bits
Any value between 1 and 2008 is permitted as the amount of bits (number of
coils).

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#1 Function Code
+2.0 bit_startadr WORD W#16#0040 Bit Start Address
+4.0 bit_count INT 15 Amount of Bits

Example Request Message FUNCTION 01:

05H Slave Address
01H Function Code
00H Bit Start Address “High”
40H Bit Start Address “Low”
00H Amount of Bits “High”
0FH Amount of Bits “Low”
xxH LRC

Reply Message from Slave FUNCTION 01:

05H Slave Address
01H Function Code
02H Byte Counter
01H <Data> Coil 47H..40H
F7H <Data> Coil 4EH..48H
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-3

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#7701 Data

The driver enters the data of the reply message into the destination DB word-
by-word. The 1st received byte is entered as the Low Byte of the 1st word
“data[1],” the 2nd received byte is entered as the High Byte of the 1st word
“data[1],” and the 3rd received byte as the Low Byte of the 2nd word “data[2],”
etc.

If an odd number of bytes are returned, the value 00H is entered into the High
Byte of the last word. Any unaccessed bits in the last received byte are
masked to zero in the destination byte regardless of the received value.

5.2 Function Code 02 – Read Discrete Input

Function This function serves to read individual input bits from the slave.
Start Address

The parameter bit start address is not checked by the driver and is sent
unchanged.

Amount of Bits Any value between 1 and 2008 is permitted as the amount of bits (number of
DIs)

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#2 Function Code
+2.0 bit_startadr WORD W#16#0120 Bit Start Address
+4.0 bit_count INT 24 Amount of Bits

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-4

Example Request Message FUNCTION 02:

05H Slave Address
02H Function Code
01H Bit Start Address “High”
20H Bit Start Address “Low”
00H Amount of Bits “High”
18H Amount of Bits “Low”
xxH LRC

Reply Message from Slave FUNCTION 02:

05H Slave Address
02H Function Code
03H Byte Counter
04H <Data> DI 127H..120H
26H <Data> DI 12FH..128H
C8H <Data> DI 137H..130H
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#2604 Data
+2.0 data[2] WORD W#16#00C8 Data

The driver enters the data of the reply message into the destination DB word-by-
word. The 1st received byte is entered as the Low Byte of the 1st word “data[1],”
the 2nd received byte is entered as the High Byte of the 1st word “data[1],” and the
3rd received byte as the Low Byte of the 2nd word “data[2],” etc.

If an odd number of bytes are returned, the value 00H is entered into the High Byte
of the last word. Any unaccessed bits in the last received byte are masked to zero
in the destination byte regardless of the received value

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-5

5.3 Function Code 03 – Read Holding Registers

Function This function serves to read individual registers from the slave.

Start Address The parameter Register start address is not checked by the driver and is sent
unchanged.

Amount of
Register

A maximum of 125 registers (1 register = two bytes) can be read.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#3 Function Code
+2.0 reg_startadr WORD W#16#0040 Register Start Address
+4.0 reg_count INT 2 Amount of Registers

Example Request Message FUNCTION 03:

05H Slave Address
03H Function Code
00H Register Start Address “High”
40H Register Start Address “Low”
00H Amount of Register “High”
02H Amount of Register “Low”
xxH LRC

Reply Message from Slave FUNCTION 03:

05H Slave Address
03H Function Code
04H Byte Counter
21H Register Address 40H Data “High”
23H Register Address 40H Data “Low”
25H Register Address 41H Data “High”
27H Register Address 41H Data “Low”
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#2123 Data
+2.0 data[2] WORD W#16#2527 Data

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-6

5.4 Function Code 03 – Read 32-Bit Holding Registers

Function This function serves to read individual 32-bit registers from the slave.

Start Address The parameter Register start address is not checked by the driver and is sent
unchanged.

Amount of
Register

A maximum of 62 registers (1 register = four bytes) can be read.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#43 Function Code
+2.0 reg_startadr WORD W#16#0040 Register Start Address
+4.0 reg_count INT 2 Amount of Registers

Example

Request Message FUNCTION 03:

05H Slave Address
03H Function Code
00H Register Start Address “High”
40H Register Start Address “Low”
00H Amount of Register “High”
02H Amount of Register “Low”
xxH LRC

Reply Message from Slave FUNCTION 03:

05H Slave Address
03H Function Code
08H Byte Counter
21H Register Address 40H Data “Byte 1”
22H Register Address 40H Data “Byte 2”
23H Register Address 40H Data “Byte 3”
24H Register Address 40H Data “Byte 4”
25H Register Address 41H Data “Byte 1”
26H Register Address 41H Data “Byte 2”
27H Register Address 41H Data “Byte 3”
28H Register Address 41H Data “Byte 4”
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] DWORD W#16#21222324 Data
+4.0 data[2] DWORD W#16#25262728 Data

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-7

5.5 Function Code 04 – Read Input Registers

Function This function serves to read individual registers from the slave.

Start Address The parameter Register start address is not checked by the driver and is sent
unchanged.

Amount of
Register

A maximum of 125 registers (1 register = two bytes) can be read.

SEND Source DB

Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#4 Function Code
+2.0 reg_startadr WORD W#16#0050 Register Start Address
+4.0 reg_count INT 3 Amount of Registers

Example Request Message FUNCTION 04:

05H Slave Address
04H Function Code
00H Register Start Address “High”
50H Register Start Address “Low”
00H Amount of Register “High”
03H Amount of Register “Low”
xxH LRC

Reply Message from Slave FUNCTION 04:

05H Slave Address
04H Function Code
04H Byte Counter
31H Register Address 50H Data “High”
32H Register Address 50H Data “Low”
33H Register Address 51H Data “High”
34H Register Address 51H Data “Low”
35H Register Address 52H Data “High”
36H Register Address 52H Data “Low”
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#3132 Data
+2.0 data[2] WORD W#16#3334 Data
+4.0 data[3] WORD W#16#3536 Data

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-8

5.6 Function Code 05 – Write Single Coil

Function This function serves to set or delete individual bits in the slave.
Bit Address

The parameter Bit Address is not checked by the driver and is sent unchanged.

Bit Status The following two values are valid as the Bit Status:
FF00H set bit to logical 1
0000H reset bit to logical 0.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#5 Function Code
+2.0 bit_address WORD W#16#0019 Bit Address
+4.0 bit_state WORD W#16#FF00 Bit Status

Example Request Message FUNCTION 05:

05H Slave Address
05H Function Code
00H Bit Address “High”
19H Bit Address “Low”
FFH Set Bit
00H
xxH LRC

Reply Message from Slave FUNCTION 05:

05H Slave Address
05H Function Code
00H Bit Address “High”
19H Bit Address “Low”
FFH Bit Status “High”
00H Bit Status “Low”
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-9

5.7 Function Code 06 – Write Single Register

Function This command serves to overwrite a slave register with a new value.

Register Address The parameter Register Address is not checked by the driver and is sent
unchanged.

Register Value Any value can be used as the Register Value

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#6 Function Code
+2.0 Reg_address WORD W#16#0180 Register Address
+4.0 Reg_count WORD W#16#3E7F Registers Value

Example Request Message FUNCTION 06:

05H Slave Address
06H Function Code
01H Register Address “High”
80H Register Address “Low”
3EH Register Value “High”
7FH Register Value “Low”
xxH LRC

Reply Message from Slave FUNCTION 06:

05H Slave Address
06H Function Code
01H Register Address “High”
80H Register Address “Low”
3EH Register Value “High”
7FH Register Value “Low”
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-10

5.8 Function Code 06 – Write Single 32-Bit Register

Function This command serves to overwrite a slave 32-bit register with a new value.

Register Address The parameter Register Address is not checked by the driver and is sent
unchanged.

Register Value Any value can be used as the Register Value

SEND Source DB

Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#46 Function Code
+2.0 reg_address WORD W#16#0180 Register Address
+4.0 reg_count DWORD W#16#11223344 Registers Value

Example Request Message FUNCTION 06:

05H Slave Address
06H Function Code
01H Register Address “High”
80H Register Address “Low”
11H Register Value “Byte 1”
22H Register Value “Byte 2”
33H Register Value “Byte 3”
44H Register Value “Byte 4”
xxH LRC

Reply Message from Slave FUNCTION 06:

05H Slave Address
06H Function Code
01H Register Address “High”
80H Register Address “Low”
11H Register Value “Byte 1”
22H Register Value “Byte 2”
33H Register Value “Byte 3”
44H Register Value “Byte 4”
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-11

5.9 Function Code 07 - Read Exception Status

Function This function code serves to read 8 event bits of the connected slave.

The start bit number of the event bit is determined by the connected device.
Therefore it has not to be specified by the SIMATIC user program.

SEND Source DB

Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#7 Function Code

Example Request Message FUNCTION 07:

05H Slave Address
07H Function Code
xxH LRC

Reply Message from Slave FUNCTION 07:

05H Slave Address
07H Function Code
3EH <Data>
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#3Exx Data

The driver enters the individual bits of the reply message into the High Byte in
the destination DB data[1]. The Low Byte of data[1] remains unchanged. Value 1 is
displayed as the length in parameter LEN of P_RCV_RK.

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-12

5.10 Function Code 08 – Diagnostics (Loop Back Test)

Function
This function serves to check the communications connection. Only Diagnostic
Code 0000 is supported with this function code.

Diagnostic Code The only permissible value for the parameter Diagnostic Code is 0000.

Test Value Any value can be used as the Test Value.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#8 Function Code
+2.0 diag_code WORD W#16#0000 Diagnostic Code
+4.0 test_value WORD W#16#A5C3 Test Value

Example

Request Message FUNCTION 08:

05H Slave Address
08H Function Code
00H Diagnostic Code “High”
00H Diagnostic Code “Low”
A5H Test Value “High”
C3H Test Value “Low”
xxH LRC

Reply Message from Slave FUNCTION 08:

05H Slave Address
08H Function Code
00H Diagnostic Code “High”
00H Diagnostic Code “Low”
A5H Test Value “High”
C3H Test Value “Low”
xxH LRC

The slave must return the request message to the master unchanged (echo). The
reply message is not entered into an RCV DB.

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-13

5.11 Function Code 11 – Get Comm Event Counter

Function This function code serves to read a “Status Word” (2 bytes long) and an
“Event Counter” (2 bytes long) from the slave.

SEND Source DB

Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 Address BYTE B#16#5 Slave Address
+1.0 Function BYTE B#16#0B Function Code

Example

Request Message FUNCTION 11:

05H Slave Address
0BH Function Code
xxH LRC

Reply Message from Slave FUNCTION 11:

05H Slave Address
0BH Function Code
FEH Status Word “High”
DCH Status Word “Low”
01H Event Counter “High”
08H Event Counter “Low”
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#FEDC Status Word
+2.0 data[2] WORD W#16#0108 Event Counter

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-14

5.12 Function Code 12– Get Comm Event Log

Function This function code serves to read a:
• 2 Byte “Status Word”
• 2 Byte “Event Counter”
• 2 Byte “Message Counter” and
• 64 Byte “Event Bytes”

from the slave.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#0C Function Code

Example

Request Message FUNCTION 12:

05H Slave Address
0CH Function Code
xxH LRC

Reply Message from Slave FUNCTION 12:

05H Slave Address
0CH Function Code
46H Byte Counter
87H Status Word “High”
65H Status Word “Low”
01H Event Counter “High”
08H Event Counter “Low”
02H Message Counter “High”
20H Message Counter “Low”
01H Event Byte 1
12H Event Byte 2
C2H Event Byte 63
D2H Event Byte 64
xxH LRC

RCV Destination
DB

Contents of RCV Destination Area:

Address Name Type Actual value Comment

+0.0 data[1] WORD W#16#8765 Status Word
+2.0 data[2] WORD W#16#0108 Event Counter
+4.0 data[3] WORD W#16#0220 Message Counter
+6.0 bytedata[1] BYTE B#16#01 Event Byte 1
+7.0 bytedata[2] BYTE B#16#02 Event Byte 2
: : :

+68.0 bytedata[63] BYTE B#16#C2 Event Byte 63
+68.0 bytedata[64] BYTE B#16#C3 Event Byte 64

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-15

5.13 Function Code 15 – Write Multiple Coils

Function This function code serves to change up to 1976 bits in the slave.

Start Address The parameter Bit Start Address is not checked by the driver and is sent
unchanged.

Amount of Bits Any value between 1 and 1976 is permitted as the amount of bits (number of
coils). This indicates how many bits in the slave should be overwritten.

The parameter “byte counter” in the request message is generated by the driver
based on the transferred parameter “amount of bits.” It is not included in the
SEND Source DB.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 Address BYTE B#16#5 Slave Address
+1.0 Function BYTE B#16#0F Function Code
+2.0 bit_startadr WORD W#16#0050 Bit Start Address
+4.0 bit_count INT 10 Amount of Bits
+6.0 coil_state[1] WORD W#16# EFCD Status

Coil 5FH..58H/57H..50H

Example Request Message FUNCTION 15:

05H Slave Address
0FH Function Code
00H Bit Address “High”
50H Bit Address “Low”
00H Amount of Bits “High”
0AH Amount of Bits” Low”
02H Byte Counter
CDH Status Coil 57H ..50H
EFH Status Coil 59H ..58H
xxH LRC

Reply Message from Slave FUNCTION 15:

05H Slave Address
0FH Function Code
00H Bit Address “High”
50H Bit Address “Low”
00H Amount of Bits “High”
0AH Amount of Bits “Low”
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-16

5.14 Function Code 16 – Write Multiple Registers

Function Function code 16 serves to overwrite up to 123 registers in the slave with one
request message.

Start Address The parameter Register Start Address is not checked by the driver and is sent
unchanged.

Amount of
Registers

A maximum of 123 registers (1 register = two bytes) can be written.

The parameter “byte counter” in the request message is generated by the driver
based on the transferred parameter “amount of registers.” It is not included in the
SEND Source DB.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#10 Function Code
+2.0 reg_startadr WORD W#16#0060 Register Start Address
+4.0 reg_count INT 3 Amount of Registers
+6.0 reg_data[1] WORD w#16#41A1 Register Data
+8.0 reg_data[2] WORD w#16#42A2 Register Data

+10.0 reg_data[3] WORD w#16#43A3 Register Data

Example Request Message FUNCTION 16:

05H Slave Address
10H Function Code
00H Register Address “High”
60H Register Address “Low”
00H Amount of Registers “High”
03H Amount of Registers” Low”
06H Byte Counter
41H <reg_data[1]> “High”
A1H <reg_data[1]> “Low”
42H <reg_data[2]> “High”
A2H <reg_data[2]> “Low”
43H <reg_data[3]> “High”
A3H <reg_data[3]> “Low”
xxH LRC

Reply Message from Slave FUNCTION 16:

05H Slave Address
10H Function Code
00H Register Address “High”
60H Register Address “Low”
00H Amount of Registers “High”
03H Amount of Registers “Low”
xxH LRC

Function Codes

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

5-17

5.15 Function Code 16 – Write Multiple 32-Bit Registers

Function Function code 16 serves to overwrite up to 61 registers in the slave with one
request message.

Start Address The parameter Register Start Address is not checked by the driver and is sent
unchanged.

Amount of
Registers

A maximum of 61 registers (1 register = four bytes) can be written.
The parameter “byte counter” in the request message is generated by the driver
based on the transferred parameter “amount of registers.” It is not included in the
SEND Source DB.

SEND Source DB Structure of SEND Source Area:

Address Name Type Start value Comment

+0.0 address BYTE B#16#5 Slave Address
+1.0 function BYTE B#16#50 Function Code
+2.0 reg_startadr WORD W#16#0120 Register Start Address
+4.0 reg_count INT 2 Amount of Registers
+6.0 reg_data[1] DWORD w#16#51A152A2 Register Data

+10.0 reg_data[2] DWORD w#16#53A354A4 Register Data

Example Request Message FUNCTION 16:

05H Slave Address
10H Function Code
01H Register Address “High”
20H Register Address “Low”
00H Amount of Registers “High”
02H Amount of Registers” Low”
08H Byte Counter
51H <reg_data[1]> “Byte 1”
A1H <reg_data[1]> “Byte 2”
52H <reg_data[1]> “Byte 3”
A2H <reg_data[1]> “Byte 4”
53H <reg_data[2]> “Byte 1”
A3H <reg_data[2]> “Byte 2”
54H <reg_data[2]> “Byte 3”
A4H <reg_data[2]> “Byte 4”
xxH LRC

Reply Message from Slave FUNCTION 16:

05H Slave Address
10H Function Code
01H Register Address “High”
20H Register Address “Low”
00H Amount of Registers “High”
02H Amount of Registers “Low”
xxH LRC

CPU – CP Interface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-1

6 CPU – CP Interface

Used SFBs
Data transfer between CP and CPU is carried out by means of FBs P_SND_RK
(FB8) and P_RCV_RK (FB7).

FB P_SND_RK is activated by an edge at input REQ, when data output is
required. FB P_RCV_RK is made ready to receive by EN_R=1.

A P_RCV_RK is required for all reading function codes.

Parallel
Processing of
Requests

At a given time, only one FB P_SND_RK and one FB P_RCV_RK can be called
for each CP 341 in the user program.

6.1.1 Data Transfer from CPU to CP with P_SND_RK

Activation Execution of a Modbus function code is activated by means of an SFB
P_SND_RK with an edge at input REQ.

Enter ‘S’ for SEND at the SF parameter. The logical module address is entered at
LADDR. You must enter ‘X’ for expanded data block as the area type of the
partner CPU. No values must be specified for the other parameters of the partner
CPU (R_...).

This ensures transfer to the driver of the function codes required for the
execution.

Data Source When P_SND_RK is activated, the source data area specified with the
parameters DB_NO and DBB_NO is transferred to the CP with the length LEN.

CPU – CP Interface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-2

Length Indication The length LEN depends on the function code used.

Function Code Length LEN in Byte

01 6

02 6

03 6

04 6

05 6

06
16-Bit Register

6

06
32-Bit Register

8

07 2

08 6

11 2

12 2

15 >=8

16
16-Bit Register

>=8

16
32-Bit Register

>=10

If the transferred data quantities differ from those listed above for the
individual function codes, the job is not carried out and P_SND_RK rejects it
with an edge at output ERROR.

The data length LEN may exceed the required amount of data for the
activated function. The driver checks the data length according to function
code and amount of bits/registers. If less data than necessary are transferred
to the CP, the send job is finished with error.
So it is not necessary to calculate LEN for each send job, when the maximum
length is used. But it takes some more time for data transfer CPU CP
because more data than needed are transferred.

SEND Source DB The parameters required for the execution of a function code must be entered as
user data in the source data area. A detailed description of each P_SND_RK
source DB can be found in the chapter “Function Codes.”

CPU – CP Interface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-3

Generation of
Messages

The request messages to the slave are generated in accordance with the
transferred P_SND_RK source data and sent by the CP.

First of all the driver checks if the length LEN specified at P_SND_RK
corresponds to the length for this function code. If it does not, the job is not
carried out and it is completed with an edge at output ERROR of the P_SND_RK.

When using function codes other than those listed, the activated job is not carried
out either and is completed with ERROR at P_SND_RK.

The elements “byte counter” and “LRC” in the request message are generated by
the CP; an entry in the P_SND_RK source DB is not required.

Job Completion
for Writing
Functions

For writing function codes, the activated P_SND_RK is completed after a
reply message is received without error. This is communicated to the
SIMATIC user program by means of an edge at output DONE of the
P_SND_RK.

If errors were recognized during the message exchange, or if the slave sends
an error code reply message, this is reported by an edge at output ERROR.

Job Completion
for Reading
Functions

For reading functions, the activated P_SND_RK is completed after the reply
message is received without error and complete transfer of the received data to
the CPU. This is communicated to the SIMATIC user program by means of an
edge at output DONE of the P_SND_RK.

This means that the received data are already available on the CPU.

If errors were recognized during the message exchange, or if the slave sends an
error code reply message, this is reported by an edge at output ERROR. In this
case no receive data are transferred to the CPU.

STATUS Entry on
Job Completion

For those instances when a job is completed with ERROR at P_SND_RK, an
additional error code is entered in the STATUS parameter. The exact cause for
the error can be determined with this error code.

CPU – CP Interface

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

6-4

6.1.2 Data Transfer from CPU to CP with P_RCV_RK

Data Destination
All reading function codes require a P_RCV_RK. When FB P_RCV_RK is ready
to receive, it accepts the received data from the CP and enters them into the data
destination specified in the parameters DB_N0 and DBB_N0.

How Data
Reception is
Displayed

The user is informed of data reception in the CPU by means of an edge at output
NDR.

At this point the length of the received data block is displayed in the parameter
LEN.

As mentioned above, completion of the entire Modbus job can be recognized at
output DONE of FB P_SND_RK.

How to Handle an
Error

In the event of receive or transfer errors, there is no data transfer to the CPU.
In this instance P_SND_RK is completed with an edge at the output ERROR.

P_RCV_RK
Destination DB The user data received with a reading function code are entered into the

P_RCV_RK destination area.

A detailed description of each P_RCV_RK destination DB can be found in the
chapter “Function Codes.”

The length of data entered is displayed on the parameter LEN of P_RCV_RK.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-1

7 Diagnostics of the Driver

Diagnostics
Functions

The diagnostics functions of the CP enable you to easily know when an error has
occurred and quickly determine the cause of the problem. The following
diagnostic facilities are available:

• Diagnostics via display elements of the CP

• Diagnostics via the STATUS output of the function blocks

• Diagnostic buffer of the CP

Display Elements
(LED)

The display elements provide information on the operating status and/or a
possible error status of the CP. The display elements give a first overview of
internal or external errors, as well as interface-specific errors.

STATUS Output of
FBs

Each function block has a STATUS output for error diagnostics purposes.
Reading this STATUS output enables the user to obtain information on errors
which occurred during communication. The STATUS parameter can be evaluated
in the user program.

Diagnostic Buffer
of the CP

All errors / events described in Section 7.3 are also entered in the diagnostic
buffer of the CP. The manual for the CP describes how you can read the
diagnostic buffer.

7.1 Diagnostics via Display Elements (LEDs)

Introduction The display LEDs of the CP 341 provide general operational information. The
following different display functions are available:

• Group Error Displays

 - SF (red) Error occurred or new parameters assigned

• Special Displays

 - TXD (green) Send active; lights up when the CP 341 sends user

 data via the interface
 - RXD (green) Receive active; lights up when the CP 341 receives
 user data via the interface

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-2

Group Error
Display SF

The group error display SF always lights up after power-on and goes out after
initialization is complete. If parameter assignment data were created for the
CP 341, the SF LED lights up again briefly when new parameters are loaded.

The group error display SF lights up, when the following errors have occurred:

• Hardware error

• Firmware error

• Parameter assignment error

• BREAK (Receiving line between CP 341 and communication partner is
interrupted or CTS or DSR signals not asserted at the connector.)

7.2 Diagnostic Messages of the Function Blocks

Introduction Each function block has a STATUS parameter for error diagnostics purposes.
Each STATUS message number has the same meaning, independent of the
system function block used.

Event Class /
Event Number
Numbering
Scheme

The following figure shows the structure of the STATUS parameter.

Bit-No. 15 13 12 8 7 0

 Reserve Event Class Event Number
(Error Number)

The individual errors / events are listed in Section 7.3

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-3

7.3 Table of Errors / Events

Event Classes The following event classes are defined:

Event
Class

Description Described in

1 Hardware error on CP CP Manual

2 Error during initialization CP Manual

3 Error during parameter assignment of PBK CP Manual

4 Errors in CP – CPU data traffic recognized
by CP

CP Manual

5 Error during processing of a CPU job CP Manual, Driver Manual

6 Error during processing of a partner job CP Manual

7 Send error CP Manual

8 Receive error Driver Manual

9 Error code message received from link
partner

Not used

10 Errors recognized by CP in reaction
message from partner

Not used

14 General processing errors of the loadable
driver

Driver Manual

7.3.1 Error Codes for “CPU Job Errors”

Event Class 5 (05H)
“CPU Job Errors“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

05 18H 24 Transmission length during transmission is too
large (> 4 Kbytes), or
transmission length for SEND is too small.

Check the parameter LEN for
SEND.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-4

7.3.2 Error Codes for “Receive Errors”

Event Class 8 (08H)
“CPU Receive Errors“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

08 06H 6 Character delay time exceeded. Eliminate error in partner device or
interference on the transmission line or
increase the value of the “Character
Delay Time” parameter.

08 0CH 6 Transmission error (parity error,
overflow error, stop bit error (frame))
recognized in a character.

Check for interference which could
influence the transmission line. If
required, change system structure and/or
cable laying. Check whether the protocol
parameters transmission rate, amount of
data bits, parity, and amount of stop bits
have the same settings for the CP and
the link partner.

08 0DH 6 BREAK
Receiving line to partner device is
interrupted.

Establish connection between the
devices or switch on partner device.
Make sure CTS and DSR are asserted at
the CP connector.
For use with TTY operation, check line
current at idle state.
For use with an RS422/485 (X27)
connection, check and, if required,
change the connector pin assignment of
the 2-wire receiving line R(A), R(B).

08 18H 24 DSR = OFF or CTS = OFF The partner has switched the DSR or
CTS signal to ”OFF” before or during a
transmission.
Check the partner’s control of the
RS 232C secondary signals.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-5

Event Class 8 (08H)
“CPU Receive Errors“

08 30H 48 A request message has been sent and
the reply monitoring time has elapsed
without the start of a reply message
being recognized.

Check if transmission line is interrupted
(interface analyzer may be required).
Check if the protocol parameters
transmission rate, amount of data bits,
parity, and amount of stop bits have the
same settings in CP and the link partner.
Check if the value for the “Response
Time-out” parameter is big enough.
Check if the specified slave address
exists.

08 32H 50 Overflow of receive buffer in CP during
reception of the reply message.

Check protocol settings for the slave.

08 33H 51 A wrong start character was received.
The start character was not a colon
(3AH).

Check protocol settings for the slave.

08 34H 52 A start character was received within a
telegram.
The first part of the telegram is
discarded and reception starts again
with the second start character.

Check if transmission line is interrupted
(interface analyzer may be required). This
does not in itself fail the send job. The
error only appears in the CP diagnostic
buffer.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-6

7.3.3 Error Codes for “General Processing Errors”

Event Class E (0EH)
“General Processing Errors“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 01H 1 Error during initialization of the driver-specific
SCC process

Reassign parameters of driver
and reload.

0E 02H 2 Error during initialization of the driver-specific
SCC process

Reassign parameters of driver
and reload.

0E 03H 3 Error during startup of driver: Wrong data
transfer process active (interface to SFBs).
The driver cannot function with this data transfer
process.

Reassign parameters of driver
and reload.

0E 04H 4 Error during startup of driver:
Illegal interface submodule.
The driver cannot run with the parameterized
interface submodule.

Check and correct parameter
assignment.

0E 05H 5 Error with driver dongle:
No dongle plugged in, or inserted dongle is
faulty.
The driver is not ready to run.

Check if a driver dongle is
plugged into the CP.
If the inserted dongle is faulty,
replace it with a correct dongle.

0E 06H 6 Error with driver dongle:
The dongle has no valid contents.
The driver is not ready to run.

Obtain a correct dongle from the
Siemens office which supplied
you with the driver.

0E 10H 16 Internal error procedure:

default branch in procedure automatic device.
Restart CP (Mains_ON)

0E 11H 17 Internal error procedure:
default branch for procedure status Send /
Receive.

Restart CP (Mains_ON)

0E 12H 18 Internal error active automatic device:
default branch.

Restart CP (Mains_ON)

0E 13H 19 Internal error passive automatic device:
default branch.

Restart CP (Mains_ON)

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-7

Event Class E (0EH)
“Loadable Driver – General Processing Errors <Parameter Assignment>“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 20H 32 For this data link, the amount of data bits must
be set to 7.
The driver is not ready to run.

Correct parameter assignment of
the driver.
Load driver parameters.

0E 21H 33 The Character Delay Time parameter is not
within the range of 1 to 6500 milliseconds.
The driver is operating with a default value of
1000 milliseconds

Correct parameter assignment of
the driver.
Load driver parameters

0E 22H 34 The operating mode set for the driver is illegal.
“Normal operation” or “Interference
Suppression” must be specified.
The driver is not ready to run.

Correct parameter assignment of
the driver.
Load driver parameters.

0E 23H 35 An illegal value for parameter Response Time-
out has been set: Valid values are 5 to
65500ms.
The driver is operating with a default value of
2000 milliseconds.

Correct parameter assignment of
the driver.
Load driver parameters.

0E 2EH 46 An error occurred when reading the interface

parameter file.
The driver is not ready to run.

Restart CP (Mains_ON)

Event Class 5 (05H)
“Loadable Driver – General Processing Errors <CPU - CP>“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 30H 48 Internal error during data transfer to CPU:
Unexpected acknowledgment Passive.

Can be ignored if it happens
intermittently.

0E 31H 49 Timeout during data transfer to CPU. Check CP-CPU interface.
0E 32H 50 Error occurred during data transfer to CPU with

RCV:
Exact failure reason (detailed error) is in
diagnostic buffer before this entry.

Check CP-CPU interface.

0E 33H 51 Internal error during data transfer to CPU: Illegal
status of automatic device.

Check CP-CPU interface.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-8

Event Class 5 (05H)
“Loadable Driver – General Processing Errors <Processing of a Send Job>“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 40H 64 Value specified for parameter LEN at SFB SEND
too small.

Minimum length is 2 bytes.

0E 41H 65 Value specified for parameter LEN at SFB SEND
too small. A greater length is required for the
transferred function code.

The minimum length for this
function code is 6 bytes.

0E 42H 66 Transferred function code is illegal. The only function codes which
are permitted are those listed in
the chapter “Function Codes.”

0E 43H 67 Slave Address 0 (= Broadcast) not permitted with
this function code.

Only use Slave Address 0 for
the suitable function codes.

0E 44H 68 The value of the transferred parameter “Amount
of Bits” is not within the range 1 to 2008.

Correct your source DB

0E 45H 69 The value of the transferred parameter “Amount
of Registers” is not within the range 1 to 125 or,
for 32-bit registers, 1 to 62.

Correct your source DB

0E 46H 70 Function codes 15 or 16:
The values of the transferred parameters
“Amount of Bits” and/or “Amount of Registers” are
not within the range 1 to 1976 and/or 1 to 123
and/or, for 32-bit registers, 1 to 61.

Correct your source DB.

0E 47H 71 Function codes 15 or 16:
The parameter LEN for SFB SEND does not
correspond to the transferred parameters
“Amount of Bits” and/or “Amount of Registers.”
Parameter LEN is too small.

Increase parameter LEN for
SEND until a sufficient amount
of user data is transferred to
the CP. A larger amount of user
data must be transferred to the
CP because of the “Amount of
Bits” and/or “Amount of
Registers.”

0E 48H 72 Function code 5:
The code specified in SEND source DB for “Set
Bit” (FF00H) or “Delete Bit” (0000H) is wrong.

Correct your source DB. Only
the value FF00H or 0000H are
allowed for writing a coil.

0E 49H 73 Function code 8:
The code specified in SEND source DB for
“Diagnostic Code” is wrong.

The only permitted code is
“Diagnostic Code” 0000H.

0E 4AH 74 Access to 32-bit registers is only allowed with
function code 03, 06, 16.
(Bit 26 of function code in source DB is set.)

Correct your source DB.

0E 4FH 79 The R_TYP specified for SFB SEND RK is illegal

with this driver.
‘X’ has to be entered for R_TYP
in P_SND_RK.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-9

Event Class E (0EH)
“Loadable Driver – General Processing Errors <Receive Evaluation>“

Event
Class/

No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 50H 80 Slave address incorrect:
The received slave address is different from the
sent slave address.

The wrong slave has replied.
Check if the transmission line
is interrupted (interface
analyzer may be required).

0E 51H 81 Function code incorrect:
The function code received in the reply message is
different from the sent function code.

Check slave device.

0E 52H 82 Byte Underflow:
Amount of characters received is less than should
have resulted from the byte counter of the reply
message, or is less than expected with this
function code.

Check slave device.
If working with 32-bit registers,
check accessed address of
the slave whether it belongs to
the expected memory area
(16/32-bit).

0E 53H 83 Byte Overflow:
Amount of characters received is more than should
have resulted from the byte counter of the reply
message, or is more than expected with this
function code.

Check slave device.
If working with 32-bit registers,
check accessed address of
the slave whether it belongs to
the expected memory area
(16/32-bit).

0E 54H 84 Byte counter wrong:
The byte counter received in the reply message is
too small.

Check slave device.

0E 55H 85 Byte counter wrong:
The byte counter received in the reply message is
wrong.

Check slave device.

0E 56H 86 Echo wrong:
The data of the reply message (amount of bits, ...)
echoed from the slave are different from the data
sent in the request message.

Check slave device.

0E 57H 87 LRC incorrect:
An error has occurred on checking the LRC of the
reply message from the slave.

Check slave device.

0E 58H 88 A received character within the reply message is
not an ASCII character (0-9, A-F)

Check slave device.
Make sure it is in ASCII mode
and not RTU.

Diagnostics of the Driver

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

7-10

Event Class 5 (05H)
“CPU Job Errors“

Event
Class/
No. (Hex)

Event
Number
(Decimal)

Event Text Remedy

0E 61H 97 Reply message with Modbus Exception Code
01: Illegal Function

See manual for slave device or
Modbus Protocol Specification

0E 62H 98 Reply message with Modbus Exception Code
02: Illegal Data Address

See manual for slave device or
Modbus Protocol Specification

0E 63H 99 Reply message with Modbus Exception Code
03: Illegal Data Value

See manual for slave device or
Modbus Protocol Specification

0E 64H 100 Reply message with Modbus Exception Code
04: Failure in associated device

See manual for slave device or
Modbus Protocol Specification

0E 65H 101 Reply message with Modbus Exception Code
05: Acknowledge

See manual for slave device or
Modbus Protocol Specification

0E 66H 102 Reply message with Modbus Exception Code
06: Busy, Rejected message

See manual for slave device or
Modbus Protocol Specification

0E 67H 103 Reply message with Modbus Exception Code
07: Negative Acknowledgment

See manual for slave device or
Modbus Protocol Specification

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-1

8 Application Example

General
Information

The following simple programming example illustrates the use of FBs P_SND_RK
and P_RCV_RK.

When the Modbus master is installed, the application example is stored in the
STEP 7 directory EXAMPLES under the name MB_ASCII.

The S7 program is for information purposes only and is not to be
understood as a solution for a customer-specific installation configuration.

In order to illustrate the basic structure, we intentionally kept it simple and avoided
symbolic display.

8.1 Used Blocks

Used Blocks The following blocks are used in the programming example.

Block Symbol Comment

OB 1 Cycle Execution Cyclic program processing
OB 100 Complete Restart Startup OB for Restart

FC 10 Initiation FC for Startup OB
FC 21 Execute Send Jobs FC Calling P_SND_RK
FC 22 Execute Receive Jobs FC Calling FB P_RCV_RK

DB50 IDB_P_SND_RK Instance DB for P_SND_RK
DB70 I_DB_P_RCV_RK Instance DB for P_RCV_RK
DB40 Work DB Send Work DB for FC21 and P_SND_RK
DB41 Work DB Receive Work DB for FC23 and P_RCV_RK
DB42 SOURCE_DB P_SND_RK Source DB with send data
DB43 DESTINATION_DB P_RCV_RK Destination DB for receive

data

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-2

Used Data The following operands (memory bits, data bits, or data words) are used in the
programming example.

Operand Symbol Comment

M 120.7 Trigger bit for the execution of a P_SND_RK
job

DB40.DBX.0.0 Control parameter REQuest:
for activating a P_SND_RK

DB40.DBX.0.1 Control parameter Reset:
for aborting current P_SND_RK

DB40.DBX.0.4 Status parameter DONE:
Indicates that current P_SND_RK was
completed without error

DB40.DBX.0.5 Status parameter ERROR:
Indicates that current P_SND_RK was
completed with error

DB40.DBW.2 Success counter for P_SND_RK

DB40.DBW.6 Success counter for P_SND_RK

DB40.DBW.8 Error counter for P_SND_RK

DB40.DBW.10 Length LEN of P_SND_RK source data area to
be transferred to the CP in bytes

DB40.DBW.12 STATUS display in P_SND_RK

DB40.DBW.14 Stored P_SND_RK STATUS display

DB41.DBX.0.0 Control parameter EN_R:
P_RCV_RK ready to receive

DB41.DBX.0.4 Status parameter NDR:
Indicates that current P_RCV_RK has
received new data from the CP

DB41.DBX.0.5 Status parameter ERROR:
Indicates that current P_RCV_RK has been
completed with error

DB41.DBW.4 Stored length LEN of P_RCV_RK

DB41.DBW.6 Success counter for P_RCV_RK

DB41.DBW.8 Error counter for P_RCV_RK

DB41.DBW.10 Length LEN of P_RCV_RK destination data
area received by the CP in bytes

DB41.DBW.12 STATUS display in P_RCV_RK

DB41.DBW.14 Stored P_RCV_RK STATUS display

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-3

8.1.1 Program Description

General
Information

The programming example consists of:

• Startup block OB100, FC10
• Cyclic part OB1 calling
• Function block FC21 for data transfer CPU to CP (Send)
• FC23 to receive data CP to CPU

The parameters for the programmed system function blocks P_SND_RK,
P_RCV_RK are stored in the work DBs DB40 and DB41.

The send data (SEND source area) are contained in DB42.
Data received from the link partner are entered into DB43 (RCV destination area).

P_SND_RK Job A P_SND_RK job can be activated in the cyclic part of the program by setting
memory bit M 120.7 (for example, by CONTROL VARIABLE).
The data with length LEN contained in the P_SND_RK source area DB42 are
transferred to the CP.
Memory bit M 120.7 is reset immediately.

After completion of the P_SND_RK job without error, a success counter is
incremented; after completion with error, an error counter is incremented.

P_RCV_RK Job An SFB P_RCV_RK is programmed in FC23, where the Receive Enable is
always “1,” in order to receive data from the link partner.
The receive data are entered into the P_RCV_RK destination area, the amount
of entered data is displayed in parameter LEN.

On taking on data without error, the success counter is incremented; on
completion with error, the error counter is incremented.

For the P_SND_RK and P_RCV_RK jobs, the output parameter STATUS is
stored when a value other than 0 is reported.

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-4

8.1.2 Programming Example

Programming
Example

The blocks are listed as follows:

Block Comment

OB 100 Startup OB for Restart
FC 10 FC for Startup OB
OB 1 Cyclic program processing
FC 21 FC Calling P_SND_RK
FC 22 FC Calling FB P_RCV_RK

Program Startup

OB100 Start-Up-OB

 L 272 //logical address
 T DB40.DBW 16 //for SEND
 T DB41.DBW 16 /and RCV
 UC FC 10 //Call of FC for Initiation

FC10 Initiation

//--
 Reset Control Bits
//--
 L B#16#0
 T DB40.DBB 0 //SEND- Work-DB
 T DB41.DBB 0 //RCV- Work-DB
//--
 Reset counters/STATUS
//--
 L W#16#0
 T DB40DBW 6 //SEND- Work-DB
 T DB40DBW 8
 T DB40DBW 12
 T DB40DBW 14
 T DB41DBW 6 //RCV- Work-DB
 T DB41DBW 8
 T DB41DBW 12
 T DB41DBW 14

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-5

Cyclic Program
Sequence

OB1 Cyclic-OB

 UC FC 21 //Call of SEND
 UC FC 23 //Call of RCV

FC21 Execute SEND-Jobs

// --
// Interlockings for SEND
// --
 U M 120.7 //Trigger SEND

U N DB40.DBX 0.0 //SEND_REQ
U N DB40.DBX 0.4 //SEND_DONE
U N DB40.DBX 0.5 //SEND_ERROR
R M 120.7 //Reset Trigger SEND
S DB40.DBX 0.0 //Set SEND_REQ

// ------------------------
// Generate edge SEND_REQ
// ------------------------

U(
O DB40.DBX 0.4 //SEND_DONE
O DB40.DBX 0.5 //SEND_ERROR
)
U DB40.DBX 0.0 //SEND_REQ
R DB40.DBX 0.0 //SEND with REQ=0

// ------------------------
// Supply LEN
// ------------------------

L W#16#20 //Length SEND-Data
T DB40.DBW 10 //SEND-LEN

// ------------------------
// SEND with Instance-DB
// ------------------------

CALL FB 8 , DB50
SF:=
REQ :=DB40.DBX0.0
R :=DB40.DBX0.1
LADDR :=DB40.DBW16
DB_NO :=42
DBB_NO:=10
LEN :=DB40.DBW10
R_CPU_NO:=
R_TYP:='x'
R_NO:=
R_OFFSET:=
R_CF_BYT:=
R_CF_BIT:=
DONE :=DB40.DBX0.4
ERROR :=DB40.DBX0.5
STATUS:=DB40.DBW12

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-6

// --
// Check “Complete without error“
// --

U DB40.DBX 0.4 //DONE ?
SPBN CON1 //if NO
L DB40.DBW 6 //“Complete without

 //error“
+1 //increment counter
T DB40.DBW 6
: // :
: //further user
: // functions
: // :
SPA LEAV

// --
// Check “Complete with error“
// --
CON1: U DB40.DBX 0.5 //ERROR ?

SPBN CON2 //if NO
L DB40.DBW 8 //“Complete with error“
+1 // increment counter
T DB40.DBW 8
: // :
: //Error-Handling
: // :
L 0
L DB40.DBW 12 //if STATUS <>0
==I
SPB LEAV
T DB40.DBW 14 //save STATUS
SPA LEAV

// --
// Check “Error in STATUS“
// --
CON2: L 0

L DB40.DBW 12 //if STATUS <>0
==I
SPB LEAV
T DB40.DBW 14 //save STATUS
: // :
: //Error-Handling
: // :

LEAV: CLR

Application Example

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

8-7

 FC23 Carry out RCV-Receive
// ---
// Enable Receive Data
// ---

SET
= DB41.DBX 0.0 //RCV with EN_R=1

// ---
// RCV with Instance-DB
// ---

CALL FB 7 , DB70
EN_R :=DB41.DBX0.0
R:=
LADDR:=DB41.DBW16
DB_NO:=43
DBB_NO:=0
L_TYP:=
L_NO:=
L_OFFSET:=
L_CF_BYT:=
L_CF_BIT:=
NDR :=DB41.DBX0.4
ERROR :=DB41.DBX0.5
LEN :=DB41.DBW10
STATUS :=DB41.DBW12

// ---
// Check “Receive without error“
// ---

U DB41.DBX 0.4 //NDR ?
SPBN CON1 //if NO
L DB41.DBW 6 //“Receive without

 //error“
+1 //increment counter
T DB41.DBW 6
L DB41.DBW 10 //save
T DB41.DBW 4 //Receive-Length LEN
SPA LEAV

// ---
// Check “Receive with error“
// ---
CON1: U DB41.DBX 0.5 //ERROR ?

SPBN CON2 //if NO
L DB41.DBW 8 //“Receive with error“
+1 //increment counter
T DB41.DBW 8
L 0
L DB41.DBW 12 //if STATUS <>0
==I
SPB LEAV
T DB41.DBW 14 //save STATUS
SPA LEAV

// ---
// Check “Error in STATUS“
// ---
CON2: L 0

L DB41.DBW 12 //if STATUS <>0
==I
SPB LEAV
T DB41.DBW 14 //save STATUS
LEAV: CLR

Wiring Diagrams Multipoint

A Wiring Diagrams Multipoint

Wiring diagram RS422 multipoint (Modbus Multipoint)

Caution
In the RS422 mode CP341 can only be used as a Master because the transmitter (Sender) always drives
the line and never goes to the high-impedance “Tri State“ mode!

Wiring diagram RS485 multipoint (Modbus Multipoint)

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

A - 1

Wiring Diagrams Multipoint

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

A - 2

The following applies:

• GND (PIN 8 must always be connected on both sides

• The casing shield must be installed everywhere

• A terminating resistor of approx. 330 Ω is to be soldered into the connector on the last receiver of
a node sequence

• Recommended cable type: LIYCY 3 x 2 x 0,14 R(A)/R(B) and T(A)/T(B) twisted pairs. For

additional information see the “Cables” section of the “Modbus over Serial Line Specification and
Implementation Guide” available at www.modbus.org.

• A wiring with “Stub“ is not allowed

Wiring diagram RS232 Point to Point (Modbus RS232)

Please refer to Section B.1 of the CP 341 Point – to – Point Communication Manual.

Literature List

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

B - 1

B Literature List

Modbus Protocol Modbus over Serial Line
Specification & Implementation Guide
V1.0
12/02/02

Modbus Application Protocol Specification
V1.1a
6/4/04

http://www.modbus.org

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 1

Glossary

A

Address The address identifies a physical storage location and enables the user
to directly access the operand store there.

B

Block Blocks are elements of the user program which are defined by their
function, structure, or purpose. With STEP 7 there are
_ Code blocks (FB, FC, OB, SFB, SFC)
_ Data blocks (DB, SDB)
_ User-defined data types (UDT)

Block Call A block call occurs when program processing branches to the called
block

Block Parameter Block parameters are wildcards within multiple-use blocks, which are
replaced with current values when the relevant block is called.

C

Communications
Processor

Communications processors are modules for point-to-point connections
and bus connections.

Configuration The configuration is the setup of individual modules of the PLC in the
configuration table.

CPU Central processing unit of the S7 programmable controller with control
and arithmetic unit, memory, operating system, and interfaces to I/O
modules.

CRC Cyclic Redundancy-Check = Checksum which guaranteed accuracy of
error recognition.

Cycle Time The cycle time is the time the CPU needs to scan the user program
once.

Cyclic Program
Processing

In cyclic program processing, the user program is executed in a
constantly-repeating program loop, called a cycle.

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 2

D

Data Block (DB) These are blocks containing data and parameters with which the user
program works. Unlike all other blocks, data blocks do not contain
instructions. They are subdivided into global data blocks and instance
data blocks. The data held in the data blocks can be accessed
absolutely or symbolically. Complex data can be stored in structured
form.

Data Type Data types allow users to define how the value of a variable or constant
is to be used in the user program. They are subdivided into elementary
and structured data types.

Default Setting The default setting is a practical basic setting, which is always used if no
other value is specified.

Diagnostic Buffer

Every CPU has a diagnostic buffer, in which detailed information on
diagnostic events is stored in the order in which they occur.

Diagnostic Event

Diagnostic events are, for example, errors on a module or system errors
in the CPU, which may be caused by a program error or by operating?
mode transitions.

Diagnostics Functions The diagnostics functions cover the entire system diagnosis and include
detection, analysis and reporting of errors within the PLC.

Download Downloading means loading load objects (e.g. code blocks) from the
programming device into the load memory of the CPU.

F

Function Block (FB) Function blocks are components of the user program and, in
accordance with the IEC standard, are ”blocks with memory”. The
memory for the function block is an assigned data block of the ”instance
data block”. Function blocks can be assigned parameters, or they can
be used without parameters.

H

Hardware Hardware is the term given to all the physical and technical equipment
of a PLC.

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 3

I

Instance Data Block

An instance data block is a block assigned to a function block and
contains data for this particular function block.

Interface Submodule

Interrupt

The CP 441-2 interface submodule is responsible for the physical
conversion of signals. By changing the interface submodule, you can
make the communications processor compatible with the
communications partner.

An interrupt occurs when program processing in the processor of a PLC
is interrupted by an external alarm.

M

Module Modules are pluggable printed circuit boards for programmable
controllers.

Module Parameter Module parameters are used to set the module reactions. A distinction is
made between static and dynamic module parameters.

O

Online/Offline Online means that a data circuit exists between PLC and programming
device. Offline means that no such data circuit exists.

Online Help STEP 7 allows you to display contextual help texts on the screen while
you are working with the programming software.

Operand An operand is part of a STEP 7 instruction and states with what the
processor is to do something. It can be both absolutely and symbolically
addressed.

Operating Mode The SIMATIC S7 programmable controllers have three different
operating modes: STOP, RESTART and RUN. The functionality of the
CPUs varies in the individual operating modes.

Operating System of
the CPU

The operating system of the CPU organizes all functions and operations
of the CPU which are not connected to a specific control task.

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 4

P

Parameter Parameters are values that can be assigned. A distinction is made
between block parameters and module parameters.

Parameter Assignment Parameter assignment means setting the behavior of a module.

Parameter Assignment
Tool CP:
Point-to-Point
Communication,
Parameter Assignment

The CP Point-to-Point Communication, Parameter Assignment Tool is
used to assign parameters to the interface submodule of the
communications processor and to set the driver-specific parameters.
The standard range is expanded for each loadable driver.

Point-to-Point
Connection

In a point-to-point connection the communications processor forms the
interface between a PLC and a communications partner.

Procedure The execution of a data interchange operation according to a specific
protocol is called a procedure.

Process Image

The process image is a special memory area in the PLC. At the
beginning of the cyclic program, the signal states of the input modules
are transferred to the process image input table. At the end of the cyclic
program, the process image output table is transferred to the output
modules as signal state.

Programmable
Controller

Programmable controllers (PLCs) are electronic control devices
consisting of at least one central processing unit, various input/output
modules, and operator control and monitoring devices.

Project Configuration
of Data Link

Protocol

Project configuration of data link is the term given to the allocation of a
Connection ID in the system function block. The Connection ID enables
the system function blocks to communicate between two communication
terminal points.

The communications partners involved in a data interchange must abide
by fixed rules for handling and implementing the data traffic. These rules
are called protocols.

R

Rack A rack is the rail containing slots for mounting modules.

RESTART On transition from the STOP to the RUN mode, the PLC goes through
the RESTART mode.

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 5

S

Software Software is the term given to all programs used on a computer system.
These include the operating system and the user programs.

Standard Mode The standard mode of Modbus ASCII slave driver means, that the
parameter “with 32-Bit registers” is not set. In this mode all registers
imply 16-bit values.

STEP 7 This is the programming software for SIMATIC S7 programmable
controllers.

System Block System blocks differ from the other blocks in that they are already
integrated into the S7-300/400 system and are available for already
defined system functions. They are subdivided into system data blocks,
system functions, and system function blocks.

System Function (SFC) System functions are modules without memory which are already
integrated into the operating system of the CPU and can be called up by
the user as required.

System Function
Block (SFB)

System function blocks are modules with memory which are already
integrated into the operating system of the CPU and can be called up by
the user as required.

U

Upload Uploading means loading load objects (e.g. code blocks) from the load
memory of the CPU into the programming device.

User Program The user program contains all instructions and declarations for signal
processing, by means of which a system or a process can be controlled.
The user program for SIMATIC S7 is structured and is divided into
smaller units called blocks.

V

Variable A variable is an operand (e.g. E 1.0), which can have a symbolic name
and can therefore also be addressed symbolically.

Glossary

Loadable Driver CP341: Modbus ASCII Master with 32-Bit Extensions
6ES7870-1CA00-0YA0; Manual Edition 1.0

Glossary - 6

W

With 32-Bit Registers When choosing “with 32-Bit Register” mode, holding registers can imply
32-bit values (integer and floating point) as well as 16-bit values when
accessed by a master.

Work Memory The work memory is a RAM on the CPU, which the processor accesses
while processing the user program.

	1 Product Description
	1.1 Usage Possibilities
	1.2 Hardware and Software Prerequisites
	1.3 Summary of the Modbus Protocol

	2 Installation
	2.1 Use of the Dongle
	2.2 Interface Connection

	3 Commissioning the Driver
	3.1 Installation of the Driver on the STEP7-PG/-PC
	3.2 Uninstalling the Driver
	3.3 Configuring a Data Link CP in Step7
	3.4 Assigning Parameters to the CP
	3.5 Loading the Driver to the CP
	3.6 Assigning Parameters to the Loadable Driver
	3.6.1 Modbus ASCII Protocol
	3.6.2 RS422/485 (X27) Interface
	3.6.3 RS232 Secondary Signals

	3.7 Loading the Configuration and Parameter Assignment Data
	3.8 Start-up Characteristics of CP341

	4 Transmission Protocol
	4.1 Message Structure
	4.2 Exception Responses
	4.3 RS 232C Secondary Signals

	5 Function Codes
	5.1 Function Code 01 – Read Coils
	5.2 Function Code 02 – Read Discrete Input
	5.3 Function Code 03 – Read Holding Registers
	5.4 Function Code 03 – Read 32-Bit Holding Registers
	5.5 Function Code 04 – Read Input Registers
	5.6 Function Code 05 – Write Single Coil
	5.7 Function Code 06 – Write Single Register
	5.8 Function Code 06 – Write Single 32-Bit Register
	5.9 Function Code 07 - Read Exception Status
	5.10 Function Code 08 – Diagnostics (Loop Back Test)
	5.11 Function Code 11 – Get Comm Event Counter
	5.12 Function Code 12– Get Comm Event Log
	5.13 Function Code 15 – Write Multiple Coils
	5.14 Function Code 16 – Write Multiple Registers
	5.15 Function Code 16 – Write Multiple 32-Bit Registers

	6 CPU – CP Interface
	6.1.1 Data Transfer from CPU to CP with P_SND_RK
	6.1.2 Data Transfer from CPU to CP with P_RCV_RK

	7 Diagnostics of the Driver
	7.1 Diagnostics via Display Elements (LEDs)
	7.2 Diagnostic Messages of the Function Blocks
	7.3 Table of Errors / Events
	7.3.1 Error Codes for “CPU Job Errors”
	7.3.2 Error Codes for “Receive Errors”
	7.3.3 Error Codes for “General Processing Errors”

	8 Application Example
	8.1 Used Blocks
	8.1.1 Program Description
	8.1.2 Programming Example

	A Wiring Diagrams Multipoint
	 B Literature List
	 Glossary

