

DebugLineNumber

FAQ DebugLineNumber

General Notes

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 2/25

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

We reserve the right to make technical changes to this product.

Copyright
Reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
or a utility model or design, are reserved.

General Notes

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 3/25

General Notes

Note The Application Examples are not binding and do not claim to be
complete regarding the circuits shown, equipping and any
eventuality. The Application Examples do not represent customer-
specific solutions. They are only intended to pro-vide support for
typical applications. You are responsible in ensuring that the de-
scribed products are correctly used. These Application Examples
do not relieve you of the responsibility in safely and professionally
using, installing, operating and servicing equipment. When using
these Application Examples, you recognize that Siemens cannot be
made liable for any damage/claims beyond the liability clause
described. We reserve the right to make changes to these
Application Examples at any time without prior notice. If there are
any deviations between the recommendations provided in these
Application Examples and other Siemens publications - e.g.
Catalogs - then the contents of the other documents have priority.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Warranty, liability and support
We do not accept any liability for the information contained in this
document.

Any claims against us - based on whatever legal reason - resulting from the
use of the examples, information, programs, engineering and performance
data etc., described in this Application Examples shall be excluded. Such
an exclusion shall not apply in the case of mandatory liability, e.g. under
the German Product Liability Act (“Produkthaftungsgesetz”), in case of
intent, gross negligence, or injury of life, body or health, guarantee for the
quality of a product, fraudulent concealment of a deficiency or breach of a
condition which goes to the root of the contract (“wesentliche
Vertragspflichten”). However, claims arising from a breach of a condition
which goes to the root of the contract shall be limited to the foreseeable
damage which is intrinsic to the contract, unless caused by intent or gross
negligence or based on mandatory liability for injury of life, body or health
The above provisions does not imply a change in the burden of proof to
your detriment.

Copyright© 2007 Siemens A&D. It is not permissible to transfer or copy
these standard applications or excerpts of them without first having prior
authorization from Siemens A&D in writing.
For questions regarding this application please contact us at the following
e-mail address:

mailto:applications.erlf@siemens.com

mailto:applications.erlf@siemens.com

General Notes

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 4/25

Qualified personnel
In the sense of this documentation qualified personnel are those who are
knowledgeable and qualified to mount/install, commission, operate and
service/maintain the products which are to be used. He or she must have
the appropriate qualifications to carry-out these activities

e.g.:

• Trained and authorized to energize and de-energize, ground and tag
circuits and equipment according to applicable safety standards.

• Trained or instructed according to the latest safety standards in the care
and use of the appropriate safety equipment.

• Trained in rendering first aid.

There is no explicit warning information in this documentation. However,
reference is made to warning information and instructions in the Operating
Instructions for the particular product.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Reference regarding export codes
AL: N

ECCN: N

General Notes

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 5/25

Table of Contents
1 Question .. 6

2 Description of the function .. 6

3 Basic information ... 7
3.1 Preconditions .. 7
3.1.1 Target group ... 7
3.1.2 Technical environment.. 7
3.2 Goal and purpose of this application .. 8
3.2.1 Task definition... 8
3.2.2 Problemlösung mit Hilfe der Standard Applikation ... 8
3.2.3 Vorteile der Standard Applikation ... 8
3.3 In der Standard Applikation enthaltene Komponenten 8

4 Programmumgebung and Schnittstellen ... 9

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

4.1 Aufrufumgebung ... 9
4.2 Schnittstellen .. 12
4.3 Parameter description _FB_DebugTraceLinenumber 15
4.3.1 Input parameters... 15
4.3.2 Output parameters.. 15
4.4 Parameter description _FC_DebugTraceLinenumberCopyInFokusArray 16
4.4.1 Input parameters... 16

Sample application as demonstration system... 17

5 Installation of the application software .. 17

6 Bedienung of the sample application ... 18
6.1 Kurzanleitung zum Vorführen ... 18
6.2 BedienungsanleitungFehler! Textmarke nicht definiert.
6.2.1 Entry in the debug array ... 19
6.2.2 Entry in the debug array all ... 20
6.2.3 Function _FC_DebugTraceLinenumberCopyInFokusArray............................ 21

Appendix ... 23

7 Scope of delivery .. 24

8 Revision... 24

9 Contact partners ... 25

Question

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 6/25

1 Question

Goal of the application
The function block _FB_DebugTraceLinenumber gives support when
debugging while the ST programs are running. The function block is called
in the source code after branching or queries. This makes it possible to
trace back exactly which program parts have already been executed or
where a program has not been run as desired.

The FB writes a comment into an array with every call (per unit):

• The code line in which it has been called

• A free selectable information number

• The system time

Thus, the sequence of large program sections can be traced back. This
helps to save a lot of time when debugging, especially for complex
programs.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Main content of this application
The following essential points are treated in this application:

• Debug-FB

• Array with entries of the function block

• Trigger function

• Abort function

• Search for line numbers in the array

Demarcation
This application does not contain / does not give a description of

• Structured text (ST) programming

• SIMOTION Scout

Fundamental knowledge in these subjects is required.

2 Description of the function

Content
Here, you can get an overview of the function block
_FB_DebugTraceLinenumber. You learn about the used components

Basic information

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 7/25

(standard hardware and software components as well as the specially
created user software).

The described key data show the performance of the present application.

3 Basic information

3.1 Preconditions

3.1.1 Target group

The standard function block is meant for all programmers who intend to
debug simply and quickly a created Structured Text (ST) source code by
means of SIMOTION.

3.1.2 Technical environment

The present sample application can only be applied without changes in
connection with the SIMOTION D and the SINAMICS demonstration case.
The contained function block can be applied to every ST code under
SIMOTION.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Basic information

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 8/25

3.2 Goal and purpose of this application

3.2.1 Task definition

With SIMOTION SCOUT only small program sections of ST-Units can be
observed online. This makes it difficult to trace the process of an ST-
program after several function calls. Thus, the search for errors is very
difficult and time-consuming. For a better tracing of the program sequence,
a function block that can be called at strategic points shall be made
available to document the process.

3.2.2 Solving problems with the help of the standard application

The function block _FB_DebugTraceLinenumber is made available by the
unit aSqDebug. In the Unit aSqDebug, a separate constant is defined for all
ST units that are used in the program. During the compilation, a debug
array of all defined units of the user program is created in the aSqDebug.
Now, the user defines an instance of the _FB_DebugTraceLinenumber in
every unit and integrates it in certain positions in his program. With every
call, the instance of the Debug-FBs enters in this debug array the unit
constant, the line number in which the FB has been called and the system
time. By this, the program sequence can be traced in the symbol browser of
the aSqDebug via the debug array.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

3.2.3 Advantages of the standard application

By a specific application, the function block can make it considerably easier
to find errors. The user can install a call for the Debug-FBs and define how
many entries shall be made in the debug array. The call for the FB can be
controlled via a Boolean variable or, via a compiler switch, be integrated in
the program only with the compilation. Doing so, the functionality can be
connected, if necessary, and does not stress the program operation time.

3.3 Components in the standard application

Apart from the documentation of the call positions in the debug array, the
FB still offers further functions:

• Trigger function

By means of a variable in the symbol browser of the aSqDebug, you can
define a code line of a unit, where the recording in the array is to start. With
another variable you can define how many calls are to be entered in the
array after the trigger point.

• Abort function

With an indication of a code line, you can abort the recording of the FB calls
at a certain position in the program. Here, it is also possible to increase the
number of array entries by means of a variable.

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 9/25

• Search for line numbers in the array

With input parameters of the Debug-FBs, you can search for a line number
in the array. Then, the FB returns the index of the array elements as output
parameters. This makes it easier to find certain entries in the debug array.

• ST function to focus on parts of debug array

With the function _FC_DebugTraceLinenumberCopyInFokusArray, you can
cut a certain part of the debug array and insert it in a different array. For
example, this function can be used to search within a debug array by
means of an HMI so that it is not necessary to indicate all entries.

• Array with entries in all units

When calling the FB DebugLinenumber, you can determine with a Boolean
variable if the line number is entered in the single arrays of the units or if all
entries are filed in one big array. With the big array, you can observe the
whole process of the program. The constant of the unit is entered in the
array and thus shows when the program changes from one unit to the next
one.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Note Due to parallel processes of the multitasking systems, some entries may
originate from other tasks and therefore have not necessarily been
realized by the currently running code of a unit. However, this makes it
possible to observe effects caused by parallel processes (e.g. common
access of different tasks to one resource) and to detect possible
problems.

4 Program environment and interfaces

4.1 Call environment

The function block _FB_DebugTraceLinenumber can be called in the
motion tasks and the background task of the sequence system. The
function block can also be used in the Ipo synchronous task. However, this
might cause problems if two different tasks start the FB at the same time. In
the motion tasks and the background task this is avoided by the system
functions _disableScheduler() and _enableScheduler().

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 10/25

Note The function block _FB_DebugTraceLinenumber uses the functions
_disableScheduler() and _enableScheduler(). These functions have an
effect on the sequence of the motion tasks and increase the IPO running
times. Therefore, calls of the FB DebugLinenumber should be avoided
during a standard operation of the user program. This can be controlled
via If-queries or software switches (see figure 1).

Figure 1: Example call after IF-query of software switch (Unit 2)

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

The call is done via an instance of the function block. An instance should
be created for each unit so that it can be called at any position desired of
the unit. Reasonable positions for the calls are:

• After If-queries

• In case instructions

• After While-, Repeat- or For-loops

• After function calls

If the sequence of the user program is disturbed too much by the system
function _disableScheduler() and _enableScheduler(), the user can remove
both system functions even from the FB DebugLinenumber. For this, the
user has to consider that he calls every single instance of the function block
in only one ST program. This ensures that always only one task wants to
have access to the array for the instance of the FB DebugLinenumber.

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 11/25

Note If an instance is called three times in succession in a code line, the FB
terminates the recordings in the array. This avoids that the whole array is
filled with the same line number. Therefore, a single call in one program
loop does not make sense.

During the compilation, the pre-processor instruction unit#line is replaced
by the line number where the instruction is written. The instruction can be
used for the input parameters. Doing so, the call for the Debug-FBs stays
the same for every line in a unit.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 12/25

4.2 Interfaces

The function block _FB_DebugTraceLinenumber can be influenced by
several parameters and interfaces, which are classified according to the
following areas:

• Function block interfaces

• User interface in the range of global data

Via the module interface, the function block gets changing tasks. This is
done by input and output parameters of the module. The call for the module
is installed by the user during the programming of the SIMOTION software
and remains in the program afterwards. The real control of the Debug-
functions is done via the global data of the unit aSqDebug. Exception is
made for the search of a line number in the debug array. For this, it is
necessary to install an instance of the debug array in the cyclic part of the
user program, which the user can initiate manually for each search function

Via the user interface in the global data area of the unit aSqDebug, the
function block mainly gets trigger and abort data of the controlled unit.
Furthermore, you can activate or deactivate the recording for each unit in
the debug array by means of the Boolean variable „boWithDebugArray“.

Description of the global data area:

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

 The user has to adapt the values

 The user must not change the values

 The user is allowed to change the value during the running
time

Table 4-1: user interface in the global data area of unit aSqDebug

Parameter Data type Initial
value

Description

Limits of the debug arrays
g_iCONST_PLI_MIN_TRA
CE_NUMBER_OF_LINE

INT (freely
selectable)
1

Defines the lower limit of
the debug array

g_iCONST_PLI_MAX_TR
ACE_NUMBER_OF_LINE

INT (freely
selectable)
50

Defines the upper limit of
the debug array

g_iCONST_PLI_MAX_NU
MBER_OF_LINE_ALL_AR
RAY

INT (freely
selectable)
200

Defines the upper limit of
the debug all-array.
(array via all units

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 13/25

Definition of the unit
g_iCONST_PLI_MIN_DEB
UG_UNITS

INT (freely
selectable)
1

Defines the lower limit of
the array via the units

g_iCONST_PLI_MAX_DE
BUG_UNITS

INT (freely
selectable)
2

Defines the upper limit of
the array via the units

Definition of the unit constant
g_iCONST_PLI_DEBUG_
UNIT_NUMBER_...

INT Defines
the index
of the
UNIT-array

For each unit of the user
program, a constant
should be defined that
contains the index of the
unit array. When calling
the debug-FBs, this
constant is transmitted
and defined in which the
array the entry will be
made.

Matrix of the applied arrays
Structure sTraceLineNumber
iLinenumber DINT 0 Entry of the line number

when calling the FB
iInfo DINT 0 Information can be

transmitted when the FB
is called and is available
for individual additional
information such as
variable value.

dtSystemtime DT DT#0001-
01-01-
0:0:0.0

Time stamp for calling
FB

Structure sDebugLineNumber
boInitDebugarray BOOL FALSE TRUE: with the next call

for FB, the DebugArray
is initialized once and
then set to FALSE

iNextCounter DINT 1 Pointer for next entry in
the FB

iTriggerLineNumber INT 0 With >0, the unit is
triggered on this line
number. (Supposing that
the Debug-FB is called
in this line)

iCountDebugAfterTrigger INT 0 Number of entries being
allowed after triggering.

boWithDebugArray BOOL FALSE TRUE: FB makes entries
in debug array (is set

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 14/25

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

automatically by
triggering)

aElement ARRAY Elements of the debug
array (structure
sTraceLineNumber)

iLineAbort DINT 0 With >0 in this line
number,
boWithDebugArray is set
to FALSE and the
recording is terminated

iCountDebugAfterAbort DINT 0 Increases the number of
entries by this value after
an abort

iAbortCounter DINT 0 When
iCountDebugAfterAbort
>0 and value =
iNextCounter, the abort
is triggered

boWaitForAbort BOOL FALSE TRUE: FB is waiting for
abort line

boTriggerFoundActive BOOL FALSE TRUE: Trigger line found
boTriggerFoundReady BOOL FALSE TRUE: Trigger line found

and number achieved in
iCountDebugAfterTrigger

boOnlyInit BOOL FALSE TRUE: when
boInitDebugArray =
TRUE, the FB is only
initialized

Structure sDebugLineNumber
g_rtcActTime RTC
DebugArray ARRAY Unit array (structure

sDebugLineNumber)
iDebugArrayAllIndexFocus INT 0 Transmission value for

Focus-array
iDebugArrayAllCopyStart INT 0 Beginning of the focus

range (Index of the
debug array selected via
iDebugArrayAllIndexFoc
us)

iDebugArrayAllCopyEnd INT 0 End of the focus range
(index of the debug array
selected via
iDebugArrayAllIndexFoc
us)

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 15/25

4.3 Parameter description _FB_DebugTraceLinenumber

4.3.1 Input parameters

Table 4-2: Input parameters of the function block _FB_DebugTraceLinenumber

Input parameters Data type Initial
value

Description

iLinenumber DINT 0 Line number where the
FB has been called
(being realized by
unit#line)

iInfo DINT 0 Free selectable
information

iUnitNumber INT 0 Number (constant) of the
unit where the FB has
been called

iIndexToLineNumber DINT 0 After this line number,
the FB searches in the
debug array at the next
call. With every new call
for the FBs with the
same line number, the
next entry in the debug
array is searched

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

4.3.2 Output parameters

Table 4-3: Output parameters of the function block _FB_DebugTraceLinenumber

Output parameters Data type Initial
Value

Description

iIndexNumber INT 0 Element (Index) of the
debug arrays with the
line number where the
iIndexToLineNumber
was entered.
0: line was not found or
array was run through
one time

Program environment and interfaces

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 16/25

4.4 Parameter description
_FC_DebugTraceLinenumberCopyInFocusArray

4.4.1 Input parameters

Table 4-4: Input parameters of the function block _FB_DebugTraceLinenumber

Input parameters Data type Initial
Value

Description

DebugArrayIndexFocus DINT 0 Number (index) of the
debug array to be
focused

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Installation of the application software

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 17/25

Sample application as demonstration system

Content
This part explains all necessary steps for the start-up of the standard
function block _FB_DebugTraceLinenumber as demonstration system.

Conditions:

• SIMOTION Scout ≥4.0

• Demonstration case SIMOTION D435 with SINAMICS double motor
module

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

5 Installation of the application software

The project for the sample application exists as an archived SIMOTION
project. The files DebugDemo.zip has to be dearchived with the
configuration software Scout first.

The demonstration application consists of the units aSqDebug, Unit_1 and
Unit_2. ASqDebug has been adapted to the application. Unit_1 and Unit_2
show an example of how to apply the Debug-FB.

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 18/25

6 Operation of the example application

6.1 Brief instruction for demonstration

With the watch table Watchtable_1, you can control and observe the entire
functionality of the example application. With the values 1-6, the variable for
the global device step controls several steps in Unit_1. Via step = 5, the
Motiontask_1 is started and thus Unit_2.

After setting DebugArray[1].boWithDebugArray and
DebugArray[2].boWithDebugArray to TRUE, the recording of the program
sequences starts in both debug arrays.

6.2 Operating instructions

In the example application, an instance of the
_FB_DebugTraceLinenumber has already been called at different places in
the program. Table 4-1 shows how to operate the global variables to start
processes in the program and how to trigger calls for the
_FB_DebugTraceLinenumber.

Table 6-1: Operation of the parameters via watchtable

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Parameter Data type Initial
value

Description

Watch table_1
step INT 0 Step controls a case

instruction in Unit_1
0: no action
1: enable axis_blue
2: _move axis_blue
3: _stop axis_blue
4: _disable axis_blue
5: start Motiontask_1
6: search for line number in
debug array

indextolinenumber DINT 0 Return value with step = 6.
(searching for a line number)

linenumber DINT 0 line number which shall be
searched for with step = 6

unitnumber INT 0 Unit number which shall be
searched for with step = 6

sequence INT 1 Step counter of Unit_2. Has
to be set to 1 for a restart

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 19/25

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Parameter Data type Initial
value

Description

debugarray[1] array See table 2-1 structure
sDebugLineNumber

debugarray[2] array See table 2-1 structure
sDebugLineNumber

6.2.1 Entry in the debug array

Table 4-2 gives an example of how to work with the tool. This way, all calls
of the instance of the function block _FB_DebugTraceLinenumber are
documented.

Table 6-2: Process example: Entry in the debug array of the Unit 1

No. Action Remark
1. In Unit_1, the instance

Inst_FB_Debug_Unit_1 is
called in line 35. During the
compilation, by using
unit#line, the preprocessor
transmits the line number 35
to the FB.

2.

Watchtable_1: in
DebugArray[1],
boWithDebugArray has to
be set to TRUE. Only then
entries are made in the
debug array.

3. Watchtable_1: Set Step to
value 1 and then realize the
control. By this, the first
case instruction is executed
in Unit_1.

4. Watchtable_1: In element 1
of the debug arrays, line
number 35 has been
entered with the time stamp
of the call. So, the source
code has been run through
at this point.

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 20/25

6.2.2 Entry in the DebugArrayAll

After having set the variable boWriteOnlyInBigArray to TRUE, all entries
are saved in a big array (DebugArrayAll) by calls for the FB
DebugTraceLinenumber. The example in table 4-3 shows the process of
entries in DebugArrayAll.

Table 6-3: Sample process: debug array-All

No. Action Remark
5.

Watchtable_1: to make all
entries in DebugArrayAll,
the variable
boWriteOnlyInBigArray has
to be set to TRUE first and
only then the variable
boWithDebugArray has also
to be set to TRUE.

6. Watchtable_1: By
controlling „step“to 5, the
function FC_Sequence1 of
the Unit 2 is called in Unit 1.
Now, iNextCounter of
DebugArrayAll is set to 4.
The last line number that
has been run through is
number 104.

7. Watchtable_1: by observing
the elements of
DebugArrayAll, you can
trace the sequence of the
program, now.
1. entry line 100 in unit 1
2. entry line 40 in unit 2
3. entry line 104 in unit 1

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Line

Unit 2

Line

Unit 1

Operation

Line

Unit 1

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 21/25

6.2.3 Function _FC_DebugTraceLinenumberCopyInFokusArray

The function _FC_DebugTraceLinenumberCopyInFokusArray is mainly
interesting for indicating the entries on an HMI. Here, the display list
becomes quickly confusing as soon as all entries of all debug arrays are
indicated. To avoid this, you can use this function.

For instance, it is possible to indicate on the HMI the variables
iNextCounter and iActLinenumber of every single unit. With a switch, you
can control the Boolean variable boWithDebugArray and, by this, switch on
the FB_DebugTraceLinenumber. If the user wants to see further details of a
DebugArray, he starts from a selection list the function
_FC_DebugTraceLinenumberCopyInFokusArray for exactly this unit.
Before that, the user can determine which area he wants to focus on,
depending on the variable iNextCounter (current entry = iNextCounter-1).
The area is defined by the variables iDebugArrayAllCopyStart and
iDebugArrayAllCopyEnd. Figure 4-2 shows an example with ProTool.

Figure 4-1 shows how to integrate the function in the cyclic part of the
program, depending on the variable iDebugArrayAllIndexFocus. If a unit is
selected via Combo-Box in figure 4-2 , the adjusted focus area is indicated
in this unit.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Figure 2

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 22/25

Figure 3: Sample screen _FC_DebugTraceLinenumberCopyInFokusArray

Selection of unit to
monitor

Focus area
iNextCounter

boWithDebugArray

iActLinenumber

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

DebugArrayFocus

Operation of the example application

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 23/25

Appendix

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Scope of delivery

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 24/25

7 Scope of delivery

The FAQ DebugLinenumber consists of:

• ST-source

• Documentation

• Sample application

8 Revision
Table 8-1: Revision/Authors

Version Date/Revision

1.0 08/18/2007

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

Contact partners

DebugLineNumber

FAQ_DebugLineNumber_EN.
doc
Version 1.0

 Edition 01/2007 25/25

9 Contact partners

Application center

SIEMENS
 Siemens AG
 Automation & Drives
 A&D MC PM APC
 Frauenauracher Str. 80
 Erlangen
 Fax: 09131-98-1297
 mailto: applications.erlf@siemens.com

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

mailto:applications.erlf@siemens.com

	Question
	Description of the function
	Basic information
	Preconditions
	Target group
	Technical environment

	Goal and purpose of this application
	Task definition
	Solving problems with the help of the standard application
	Advantages of the standard application

	Components in the standard application

	Program environment and interfaces
	Call environment
	Interfaces
	Parameter description _FB_DebugTraceLinenumber
	Input parameters
	Output parameters

	Parameter description _FC_DebugTraceLinenumberCopyInFocusArr
	Input parameters

	Installation of the application software
	Operation of the example application
	Brief instruction for demonstration
	Operating instructions
	Entry in the debug array
	Entry in the DebugArrayAll
	Function _FC_DebugTraceLinenumberCopyInFokusArray

	Scope of delivery
	Revision
	Contact partners

