

Data exchange via OPC XML

Description and example for the data exchange
via OPC XML interface

General Notes

Data exchange via OPC XML

Sub

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

We reserve the right to make technical changes to this product.

Copyright
Reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for
damages. All rights, including rights generated by patent grant or
registration or a utility model or design, are reserved.

ject to technical changes.
Version 1.0 Version of July, 2007 2/33

General Notes

Data exchange via OPC XML

Sub

General Notes

Note The Application Examples are not binding and do not claim to be
complete regarding the circuits shown, equipping and any
eventuality. The Application Examples do not represent customer-
specific solutions. They are only intended to pro-vide support for
typical applications. You are responsible in ensuring that the de-
scribed products are correctly used. These Application Examples
do not relieve you of the responsibility in safely and professionally
using, installing, operating and servicing equipment. When using
these Application Examples, you recognize that Siemens cannot be
made liable for any damage/claims beyond the liability clause
described. We reserve the right to make changes to these
Application Examples at any time without prior notice. If there are
any deviations between the recommendations provided in these
Application Examples and other Siemens publications - e.g.
Catalogs - then the contents of the other documents have priority.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Warranty, liability and support
We do not accept any liability for the information contained in this
document.

Any claims against us - based on whatever legal reason - resulting from the
use of the examples, information, programs, engineering and performance
data etc., described in this Application Examples shall be excluded. Such
an exclusion shall not apply in the case of mandatory liability, e.g. under
the German Product Liability Act (“Produkthaftungsgesetz”), in case of
intent, gross negligence, or injury of life, body or health, guarantee for the
quality of a product, fraudulent concealment of a deficiency or breach of a
condition which goes to the root of the contract (“wesentliche
Vertragspflichten”). However, claims arising from a breach of a condition
which goes to the root of the contract shall be limited to the foreseeable
damage which is intrinsic to the contract, unless caused by intent or gross
negligence or based on mandatory liability for injury of life, body or health
The above provisions does not imply a change in the burden of proof to
your detriment.

Copyright© 2007 Siemens A&D. It is not permissible to transfer or copy
these standard applications or excerpts of them without first having prior
authorization from Siemens A&D in writing.
For questions regarding this application please contact us at the following
e-mail address:

applications.erlf.aud@siemens.com

ject to technical changes.
Version 1.0 Version of July, 2007 3/33

mailto:applications.erlf.aud@siemens.com

General Notes

Data exchange via OPC XML

Sub

Qualified personnel
In the sense of this documentation qualified personnel are those who are
knowledgeable and qualified to mount/install, commission, operate and
service/maintain the products which are to be used. He or she must have
the appropriate qualifications to carry-out these activities

e.g.:

• Trained and authorized to energize and de-energize, ground and tag
circuits and equipment according to applicable safety standards.

• Trained or instructed according to the latest safety standards in the care
and use of the appropriate safety equipment.

• Trained in rendering first aid.

There is no explicit warning information in this documentation. However,
reference is made to warning information and instructions in the Operating
Instructions for the particular product.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Reference regarding export codes
AL: N

ECCN: N

ject to technical changes.
Version 1.0 Version of July, 2007 4/33

Table of Contents

Data exchange via OPC XML

Sub

Table of Contents
1 How can you use the OPC XML-DA interface? .. 6

2 Voraussetzungen and targets of these FAQs .. 7
2.1 What is OPC about? Why OPC XML-DA? ... 7
2.2 Besondere Eigenschaften der OPC XML-DA communication.......................... 8

3 OPC-Client Software in Java ... 10
3.1 Grafische Benutzeroberfläche des Java-Programms 10
3.2 Erstellung der Klassen zur OPC communication.. 12
3.3 Klassenbeschreibung der OPC Browser application 14
3.3.1 Klasse MainWindow (MainApplet) .. 15
3.3.2 Klasse PWDWindow... 20
3.3.3 Klasse CyclicRead.. 20

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

3.3.4 Klasse Subscription .. 20
3.4 Ausführen des Beispiel-Programms ... 23
3.5 Import des Beispiel-Projektes in Eclipse... 24

4 Aufzeichnen von SOAP-Telegrammen zu Diagnosezwecken 29
4.1 Einstellungen des Trace Tools MSSoapT3 .. 29
4.2 Beispiele der Telegrammaufzeichnungen .. 30

5 Appendix ... 33
5.1 Quelltexte and Softwaredokumentation.. 33
5.2 Weiterführende Informationen .. 33
5.3 Literatur- and Quellenverzeichnis ... 33

ject to technical changes.
Version 1.0 Version of July, 2007 5/33

How can you use the OPC XML-DA interface?

Data exchange via OPC XML

Sub

1 How can you use the OPC XML-DA interface?

The present document describes the use of the OPC XML-DA (Open
Process Control XML-DataAccess) server functionality of the SIMOTION
control. The interfaces to the OPC communication between an OPC-Client
and the control are presented with a sample program being realized in
Java. Figure 1-1 shows the schematic structure of the OPC XML-DA client-
server system.

Figure 1-1: Schematic structure of the client-server system

SIMOTION RT V4.1

OPC-client-
application

OPC XML-DA Server

MiniWeb Server

SOAP-documents
Standard-Ethernet

For example:

From the firmware version 4.1 on, the OPC XML-DA server is integrated in
the SIMOTION runtime. By means of standard Ethernet or PROFINET
connection, it is possible to realize a data exchange between this OPC
server and a client application. This makes it possible to access to certain
program variables as well as to system functions of the control without
additional engineering tools such as SIMOTION Scout. The available data
are made available by the so-called „variable provider“ (see chapter 5 -
„variable provider“ of the SIMOTION documentation: SIMOTION IT -
Ethernet based HMI- and diagnostics function „product information
SIMOTION DIAG.pdf“).

The following sections of this document describe the basics of the applied
technologies. With the sample program „OPC-XML-Browser“, the variables
- provided by the SIMOTION control per OPC - can be searched. With the
aid of the source codes, the OPC functions for access and communication
are explained in detail.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 6/33

Prerequisites and targets of these FAQs

Data exchange via OPC XML

Sub

2 Prerequisites and targets of these FAQs

This document explains how to deal with OPC XML-DA by giving an
example with OPC client software in Java. The target is to offer a simple
pattern for a Java application, with which the customer can develop his own
application according to his special requirements. For this, the source text
of this Java application is made available for free.

For an optimal comprehension of this document as well as for using the
example source texts, programming skills in Java are necessary.
Furthermore, it is absolutely essential to familiarize yourself with the OPC
XML-DA 1.0 specification.

To change the existing projects, we recommend using the Java
development environment Eclipse, which is free of charge. You can find a
detailed description for its use in chapter 3.4 in this document.

2.1 What is OPC about? Why OPC XML-DA?

OPC describes a standardized and special possibility of communication
between different terminals that is independent of the manufacturer. The
maintenance and the further development of the standard are subject to the
OPC foundation (http://opcfoundation.org).

The communication by means of OPC-DA (OPC Data Access, not to be
confused with OPC XML-DA), is based on Microsoft COM/DCOM
technology (Component Object Model, Distributed COM, see
http://www.microsoft.com/com/ for further information) and assumes a
Microsoft-based operating system for the application of this technology.

However, with OPC XML-DA you come off from the COM technology and,
with the XML document format, you will use an open standard that can be
used by many operating systems. The real communication between the
terminals is realized via the SOAP (Simple Object Access Protocol, a
permanently defined XML data structure). SOAP again is based upon the
http protocol. This already shows that, from the hardware side, a data
exchange via OPC XML-DA is based upon an Ethernet connection.

As a principle, the communication with OPC-DA and OPC XML as well is a
client-server system. An OPC server makes certain data available, and an
according OPC client is in the position to call data from the server or to
change them on the server. To do so, a server has to offer certain
determined methods and data interfaces according to OPC specification,
which can be accessed to by the client. For example, each server has to
offer a read function, which permits the client to read out an existing
variable or data set (precisely: OPC item(s)) of the server. For example, a
further function ‚write’ that realizes a writing, thus a change of a variable
made available by the server. In Table 2-1 you can find a comparison in
note form between OPC XML-DA and OPC-DA.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 7/33

Prerequisites and targets of these FAQs

Data exchange via OPC XML

Sub

 Table 2-1: Comparison of OPC XML-DA and OPC-DA

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

2.2 Particular properties of the OPC XML-DA communication

As explained in Table 2-1, the utilization of the OPC XML-DA standard has
especially the advantage to be independent of the operating system. Only
this permits the realization of the OPC server functionality on a Simotion
control, as SIMOTION RT is not a Windows-based system and thus, OPC-
DA is not available, here. With the utilization of the open SOAP protocol
standards, it is also possible to access to these server functionalities,
independent of the operating system. This way, any client system being
able to process SOAP can be applied as OPC client.

Due to the communication structure being based on http, a mutual, thus
server and client side initialization of the connection is not possible. A
communication between OPC client and OPC server has always be
initiated by the client side so that the call back mechanism of the server
with OPC XML-DA cannot be realized easily. With OPC-DA, the server
itself is able to establish the connection to the client in order to send a
message, for example, that certain data have changed. To come to know
about a changed value in the OPC server within a certain time interval, an
OPC XML-DA client ought to request this value continuously at least one
time within the desired time interval (so-called polling) If the value to be
requested does not change within a series of cycles, it will still be requested
each time and transmitted to the client. In case of very short time intervals,
this leads to a high network communication and, depending on the system,
to a high system load.

ject to technical changes.
Version 1.0 Version of July, 2007 8/33

Prerequisites and targets of these FAQs

Data exchange via OPC XML

Sub

To reduce this system load, OPC XML-DA offers the function ‘subscription’.
Please refer to chapter 3.3.4. in this document to find detailed information
about the mode of functioning of the subscription.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 9/33

OPC client software in Java

Data exchange via OPC XML

Sub

3 OPC client software in Java

The following section describes in detail the Java sample program with
regard to the functionalities of the OPC and its application. On the basis of
this description it is possible to expand the source text. Furthermore, there
is a description of how to create a project within the development
environment Eclipse.

3.1 Graphical user interface of the Java program

Figure 3-1: User interface of the Java program

Figure 3-1 shows the graphical user interface (GUI). The following OPC
functionalities are supported:

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

• Read: By clicking on a new page in the browse tree (causes an implicit
change of ItemPath and ItemName), the current value of the selected
variable is read from the OPC server. The value of the variable is
indicated in the output field (here “STOP” as an example). In addition to
this ItemPath and ItemName can be entered to these fields manually.
Pressing “Enter” will result in reading the specified item from the OPC
server. In case the item does not exist, a corresponding message is
displayed in the status area.

• Write: Writing of the Simotion variables being specified in the input fields
ItemPath and ItemName. The writing process is triggered by changing

ject to technical changes.
Version 1.0 Version of July, 2007 10/33

OPC client software in Java

Data exchange via OPC XML

Sub

the value in the input field ‚Var’ and by a final click on the „Write“ button
or completion of the input by „Return“.

• Browse: Browsing the tag management in the Simotion control; the
functionality is similar to the Windows Explorer. With every opening of
the node, the belonging information is detected by the Simotion control.
As long as the Browse response is not available, yet, or there are no
variables (corresponds to the pages of the tree), a dummy variable is
visible as a page.

• Connect: By changing the URL (input by clicking on the button
„Connect“ or complete with „Return“) a connection to a new Simotion
device can be established. Doing so, the existing variable tree is
renewed.
An established connection is visualized by a green colored background
and a missing connection is indicated by an orange background.

• In the PWD window, login name and password can be changed, default
settings are the standard settings of the Simotion control (user name:
simotion; password: simotion).

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

• Subscribe: By clicking onto „Subscribe“, the OPC function Subscription
can be initialized. After the input of the required values (or acceptance of
the preset standard values) in the following input dialog (Figure 3-2), the
variable being indicated in the field ItemPath and ItemName is
registered for a Subscription. For a detailed description of this
functionality being available in OPC XML-DA, please refer to chapter
3.3.4.

 Figure 3-2: configuration mask ‚subscription’

• ReadCyclic: By pushing ReadCyclic you can start a cyclic reading
(„Polling“) with the adjusted interval of Simotion variables being specified
in the input fields ItemPath and. You can stop the cyclic reading by
pushing the button ‘stop’ which is visible then. The number of the
realized reading calls is indicated in the output field ‚Read Count:’

Note Depending on the version and configuration of the Java Virtual
Machine, the design of the graphical user interface being indicated in
Figure 3-1 may be different. However, this does not influence the
functionality of the program.

ject to technical changes.
Version 1.0 Version of July, 2007 11/33

OPC client software in Java

Data exchange via OPC XML

Sub

3.2 Creation of the classes for the OPC communication

The classes permitting the communication with the OPC server are
contained in the following two packages

„org.opcfoundation.webservices.XMLDA._1_0“ as well as
„org.opcfoundation.webservices.XMLDA._1_0.holders“

They are available as source text files as well as compiled Java classes
(*.class) and have been generated by means of the tool „WSDL2Java“ (see
Apache Axis). This tool permits to generate Java source code from a
WSDL1 - file, which realizes the conversion from SOAP telegrams into
Java. The file OpcXmlDa_R1_0.wsdl, indicated in parts in Figure 3-3, is the
basis for the generated Java classes and is made available as a standard
for the OPC XML-DA-communication by the OPC foundation
(http://opcfoundation.org/webservices/XMLDA/1.0/). It is a description of the,
generated in XML format, which are required for the communication of
client application and OPC server. In Figure 3-3, the element „Write“ is
indicated among others.

Figure 3-3: Extract from the WSDL file OpcXmlDA_R1_0.wsdl

From the element described here, the tool „WSDL2Java“ creates, for
example, the class Write, with the three variables „Options“ of type

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

1 WSDL – Web Service Description Language, for further information please refer to
http://www.w3.org/TR/wsdl

ject to technical changes.
Version 1.0 Version of July, 2007 12/33

http://opcfoundation.org/webservices/XMLDA/1.0/

OPC client software in Java

Data exchange via OPC XML

Sub

RequestOptions, „ItemList“ of type WriteRequestItemList and
„ReturnValuesOnReply“ of type Boolean. Figure 3-4 indicates an extract
from the class generated from that.

Figure 3-4: Extract of the class Write

In the constructor (line 21-29), the variables are initialized. In the further
process of this class, there are methods with which new values can be set
(e.g. setOptions(options), or with which the actually stored can be read out
(e.g. getOptions()).

However, when dealing with these classes generated by WSDL2Java, it is
recommended to use the classes supplied with application (Java package
„org.opcfoundation.webservices.XMLDA._1_0“), as within different versions
of Apache Axis, there often version conflicts.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 13/33

OPC client software in Java

Data exchange via OPC XML

Sub

Note During the creation of the communication class by WSDL2Java, the
creation of the two classes service.java and serviceStub.java were
incorrect. The result was that for the utilization of the read function it
became necessary to make corrections within the above mentioned
classes. Furthermore, this lead to a slightly changed call of the read
functions within the client application. For further information, please refer
to chapter 3.3.1. In the software version that is made available here,
however, this error has been eliminated, and the read function can be
applied without faults.

3.3 Class description of the OPC browser application

In the following, the single classes of the Java program and its function
mode are explained. The real application, i.e. the OPC browser, consists of
four basic classes. Table 3-1 contains an overview as well as a short
description of each class. In the following section of this document you can
find a detailed description of the methods contained in the single classes.

Table 3-1: Class overview of the applications

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Java example application
MainWindow Class for the initialization of all initial values of the

program. Contains, among others, the GUI, some OPC
communication functions as well as the main()
function

PWDWindow Class for the creation of the window to enter the
password

CyclicRead Class for the creation and update of the window to
enter the parameters of the program function Cyclic
Read

Subscription Class for the creation and update of the window to
enter the parameters of the program function
Subscription

In the following the OPC XML-DA access functions getStatus,
browse, read, write and subscription are described. getStatus,
browse, read and write are realized within the class MainWindow, the
function subscription accordingly in the class of the same name
Subscription. The class CyclicRead is an extension of the read
function and permits a cyclic reading of a certain variable. This corresponds
to the polling of a variable being already mentioned in chapter 3.1.

ject to technical changes.
Version 1.0 Version of July, 2007 14/33

OPC client software in Java

Data exchange via OPC XML

Sub

For each of theses functions there is a Java class within the package
„org.opcfoundation.webservices.XMLDA._1_0“ (e.g.
Read.class, Write.class. etc.), which was automatically generated
from the WSDL file. There are further classes existing in addition, for the
function write e.g. WriteResponse.class or
WriteRequestItemList.class. Depending on the OPC function, these
classes have certain tasks, e.g. the class WriteResponse.class is the
data type for the data of a write call being returned by the server.

Basically, the access to the OPC XML-DA server of the Simotion control is
realized as follows (this is an example with the function write):

1. First, a global instance of the class ServiceStub named
mySimotionWebService is generated. The class ServiceStub
results from the WSDL file and was generated automatically. It is the
basic class for the web services being usable by means of Apache
Axis. You can find further information on this in the documentation of
the Apache Axis software.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

2. Creation of an instance and the following initialization of the class
Write. When calling the write function it gets the parameters to be
transmitted to the OPC server. For the parameterization of this instance
of Write there are instances of further classes required as according
data types, for example WriteRequestItemList, which contains
the list of the items to be written to the OPC server.

3. Creation of an instance of the belonging response class (here
WriteResponse, this class exists for all OPC functions, e.g.
ReadResponse, etc.). After calling the OPC function write, this
instance will contain the data returned by the OPC server, in this
example a status message if write was successful

4. After the OPC function has been executed, the data transmitted by the
OPC server are evaluated, thus the data contained in the instance of
the class WriteResponse. These data are now available for further
processing within the Java program.

3.3.1 Class MainWindow (MainApplet)

The class MainWindow contains the fundamental functions for the creation
of a graphical user interface (GUI) of the program, which is not elaborated
any further in this place.

Furthermore, it contains the implementations of the OPC functions
getStatus, browse, read and write, which will be explained in
detailed in the following. The method getStatus is a very good entry as
the belonging OPC call is based upon a rather simple data structure.
However, the method mySimotionWebService_SetUp should be

ject to technical changes.
Version 1.0 Version of July, 2007 15/33

OPC client software in Java

Data exchange via OPC XML

Sub

regarded first: This method does not realize an OPC function, but initializes
an instance of the class ServiceStub, on which the OPC communication
is based upon.

private void mySimotionWebService_SetUp()

As described in chapter 3.3 - 1., the variable mySimotionWebService is
generated as global variable within the Java program by the call

org.opcfoundation.webservices.XMLDA._1_0.ServiceStub
mySimotionWebService;

This way it is available within all other methods. The initialization of
mySimotionWebService is realized in the method regarded here:

mySimotionWebService =

new org.opcfoundation.webservices.XMLDA._1_0.ServiceStub

(new java.net.URL(jTextFieldURL.getText()), null);

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

mySimotionWebService.setUsername(sUName); //credentials

mySimotionWebService.setPassword(sPWD);

An instance of the class ServiceStub is generated.

The URL entered in the URL text field of the Java program is transmitted to
the constructor of the class, which corresponds to the URL under which
Simotion control (and thus the OPC server) is accessed to. The second
transmitted variable (zero) is not regarded any further. Finally, user name
and password are set.

private void getStatus()
org.opcfoundation.webservices.XMLDA._1_0.GetStatus parameters =

new org.opcfoundation.webservices.XMLDA._1_0.GetStatus();

The variable parameters is an instance of the class GetStatus. In the
following, this variable is initialized, in this case only with the assignment

parameters.setLocaleID("en");

Until here, this corresponds to the summary in chapter 3.3 under 2. With
this rather simple call getStatus, the initialization of the parameters
consists only of this single assignment. Further parameterizations as
described in chapter 3.3- 2. are not required here. It is sufficient to initialize
the variable parameter directly.

Now the response class is instantiated to GetStatus (see chapter 3.3- 3.):
org.opcfoundation.webservices.XMLDA._1_0.GetStatusResponse

getStatusResp = null;

ject to technical changes.
Version 1.0 Version of July, 2007 16/33

OPC client software in Java

Data exchange via OPC XML

Sub

The variable getStatusResp of type GetStatusResponse will receive the
data returned by the OPC server after calling the getStatus method. This
assignment is realized with the real call of the OPC function (see chapter
3.3- 4.):

getStatusResp = mySimotionWebService.getStatus(parameters);

Here, the actual call of the function getStatus is sent to the OPC server.
The data transmitted by the server, are stored in the variable
getStatusResp of data type GetStatusResponse. An evaluation of
these data sent by the server, thus a conversion into a Java program
variable, is realized in the following two instructions

ServerStatus serverStatus = getStatusResp.getStatus();

String simotionServerStatus = serverStatus.getStatusInfo();

The data type ServerStatus is also a class being generated from the
WSDL file. The variable simotionServerStatus of type String can be
used within the Java program and output, for example, as a status
message.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

private void browse()

The communication to the OPC server with the function browse is very
similar to the above described function getStatus. First, a variable
parameters is generated again, in this case as an instance of the class
Browse instead of instance of class getStatus. Then, in addition to the
call

parameters.setLocaleID("en");

which is also executed above, there are still two member variables
itemPath and itemName being initialized by parameters:

parameters.setItemPath(itemPath);

parameters.setItemName(itemName);

A particularity in this place is that after the first establishment of the
connection of the client to Simotion control, the method browse is called
without any currently existing variables itemPath and itemName. In this
case, empty strings are transmitted to the OPC server with the request to
return the root node of its internal variable structure.

During the following process of this method, the data received from the
OPC server are processed further, analogous to getStatus.

In this place, the received OPC items of the internal server variables are
definitely represented as a tree structure within the GUI.

private void write()

A write call is based upon a more complex data structure:

ject to technical changes.
Version 1.0 Version of July, 2007 17/33

OPC client software in Java

Data exchange via OPC XML

Sub

(1) org.opcfoundation.webservices.XMLDA._1_0.Write
parameters = new (…)Write();

(2) org.opcfoundation.webservices.XMLDA._1_0.RequestOptions
options = new (…)RequestOptions();

(3) org.opcfoundation.webservices.XMLDA._1_0.WriteRequestItemList

itemList = new (…)WriteRequestItemList();

(4) org.opcfoundation.webservices.XMLDA._1_0.ItemValue[] items =

new ItemValue[1];

(5) org.opcfoundation.webservices.XMLDA._1_0.ItemValue

item = new ItemValue();

Like getStatus and browse, an instance of the class Write is generated
automatically (here again a variable named parameters(1). This variable
parameters is, as already seen before, transmitted to the OPC server on
calling the write function. However, in this case a different initialization of
the function is necessary. For this, the variable options is declared (2)
and then assigned again to the variable parameters after being initialized
itself (options.setLocaleID("en")):

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

parameters.setOptions(options);

The variable itemList follows as an instance of the class
WriteRequestItemList (3) as well as the variables items (4) and
item (5) as an instance of ItemValue. This structure seems to be
redundant at first sight, but it is necessary to maintain the data structure
being defined by the OPC XML-DA specification. Thus, itemList is a list
of items, and this list of items needs again a list of corresponding values
(i.e. ItemValues (4)). As, in this case, only one item is transmitted to
the server, items is initialized as content as array with only one element
(also (4)). Finally, the variable item (5) represents the actually item to
be transmitted. The whole structure becomes more clearly if you look at the
following assignments:
(1) item.setItemPath(itemPath);

(2) item.setItemName(itemName);

(3) item.setValue(str); //String str is the entered value of the
//according items to be written into the GUI

(4) items[0] = item;

(5) itemList.setItems(items);

(6) parameters.setItemList(itemList);

First, the variable item is assigned with the current values, i.e. itemPath
(1), itemName (2) and str (3) as the value to be written to the OPC
server. Then, this item is written to position 0, thus the first (and in this
case the only) position of the Array items (4). By means of the method

ject to technical changes.
Version 1.0 Version of July, 2007 18/33

OPC client software in Java

Data exchange via OPC XML

Sub

setItems, the Array items is now assigned to the variable itemList
(5), which again is assigned to the variable parameters by means of
setItemList (6). By this, the variable parameters is initialized for the
write function of the OPC server. Analogous to the previous functions, only
the WriteResponse type is declared:

org.opcfoundation.webservices.XMLDA._1_0.WriteResponse
writeResponse = null;

The actual write access to the OPC server is realized analogous to the
already described functions.

writeResponse = mySimotionWebService.write(parameters);

In this example, the only evaluation of writeResponse is to check if it is
zero or not. If not, the current value (which has been written right now) of
the OPC items is requested when calling the read function (see next
section). A further possibility to return the value of the currently written
variable by the server in the writeResponse would be, for example, by
means of the following instruction

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

parameters.setReturnValuesOnReply(true);

Any other possible options and settings of the parameters to be transmitted
to the OPC server can be found in the OPC XML-DA specification 1.0.

private String read()

The data structure of the parameters of method read, which reads an OPC
item of the server, is very similar to that one of the write call. The
difference to write is that the read function or the class Read was
generated from the WSDL file with errors (see chapter 3.2).This means that
when doing the call after the error correction not only one variable
(parameters) is transmitted as described above, but the parameter
options and itemList, which, however, have been initialized
analogous to the above mentioned. This means that the two assignments

parameters.setOptions(options);

parameters.setItemList(itemList);

are dropped, which (in the above cases) initialize the variable parameters
to be transmitted to the OPC server. Instead of that, in this case, the two
parameters options and itemList are directly transmitted:

readResponse = mySimotionWebService.read(options,itemList);

Of course, these two parameters are initialized before with name, path etc.,
analogous to the write function.

A further difference to the previous methods is that the method read is of
type String, i.e. transmits a String as return value. This return value is
that value of the item that was just read by the OPC server, which is

ject to technical changes.
Version 1.0 Version of July, 2007 19/33

OPC client software in Java

Data exchange via OPC XML

Sub

determined from the variable readResponse during the process of the
method and then assigned to the return value of the read method.

3.3.2 Class PWDWindow

The task of class PWDWindow is only to create and indicate a new window
with a user name password request. The entered data are written in the
variables String sUName and String sPWD and then transmitted to the
string of the same name in MainWindow, which was declared as global
variable there.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

3.3.3 Class CyclicRead

The class CyclicRead realizes a cyclic reading of a variable in the OPC
server. For this, in the main program of the class MainWindow an instance
of the class CyclicRead is generated. To do so, the currently selected
item in the variable tree is transmitted to CyclicRead. CyclicRead now
generates a new window, where the further parameters of the cyclic
reading can be entered.

The basic functionality, i.e. the declaration and initializations of the required
variables and parameters correspond to those of the standard-Read
function as described in chapter 2.2.1. The cyclic reading of the variables,
i.e. the cyclically repeated call of the read method is realized by the
standard Java class Timer and the belonging function of a TimerTask. For
further information on this subject, please refer to the standard Java API2
(for Java 1.4.2 e.g. under http://java.sun.com/j2se/1.4.2/docs/api/).

3.3.4 Class Subscription

Basically, you could interpret the function Subscription as „intelligent
polling“. The client registers one or more variables for the
Subscription in the server. Then, by means of the function
SubscriptionPolledRefresh this intelligent polling is started.
From the technical side, the client establishes a connection to
the server, which the server maintains for a certain period of
time by delaying the response. If the values in the server that
are registered for the subscription change within this period of
time, the server sends a response directly after this change to
the client, including the new values. If none of the values
change within this period of time, an empty response is returned
to the client, which can then be evaluated accordingly by the
client. This makes it possible to achieve a reduction of the data
transfer as well as of the system load caused by high frequent
polling (see cyclic reading). With the call of the method
SubscriptionCancel a running Subscription is terminated. Within
a Subscription, i.e. the registration by means of the method

2 application programming interface

ject to technical changes.
Version 1.0 Version of July, 2007 20/33

OPC client software in Java

Data exchange via OPC XML

Sub

subscribe, one or more variables can be monitored. The
identification of the variables registered for the subscription is
realized via serverHandles. These serverHandles are
returned by the OPC server when calling the method
subscribe. The client uses these handles to identify the
variable(s) to be responded when calling the methods
SubscriptionPolledRefresh as well as
SubscriptionCancel.

Figure 3-5 shows the entire process of the subscription function, which will
be explained in detail after the figure. As it is already visible by now, there
are some additional indications necessary for the subscription compared to
the OPC functions we have seen, yet. In the following you can find a
description of the entire function subscription.

Figure 3-5: Flow chart of a Subscription

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

1. First, just like it is the case for any other OPC function – a global
instance of the class ServiceStub named
mySimotionWebService is generated.

2. Then follows the declaration and initialization one instance each of the
classes Subscribe, SubscriptionPolledRefresh and
SubscriptionCancel. Just like it is the case for any other OPC
functions, these instances are responsible for the transmission of the
parameters to the OPC function.

3. The instances from 2. are initialized with the required values. To do so,
further variables have to be generated, e.g. an instance of the class
SubscribeRequestItem, which, in this case, only contains an item to
be registered for the subscription.

ject to technical changes.
Version 1.0 Version of July, 2007 21/33

OPC client software in Java

Data exchange via OPC XML

Sub

4. The method subscribe is called, the previously assigned item is
registered for the subscription in the OPC server.

5. By means of the method SubscriptionPolledRefresh the value of
a variable is checked. This method has to be called cyclically, the
responses of the server can be delayed by the two parameters
holdtime and waitTime according to the required relevance to the
time. This is the actual advantage of a subscription over a simple
polling. waitTime is the period of time that the server shall wait for the
change of a variable. The holdtime, however, describes a period of
time that the server has to wait in any case before returning a variable
value, no matter if there is a change of value or not. Thus, the real
monitoring of a variable starts after the holdtime, after that, i.e. within
the waitTime, the server transmits any change of variable directly to
the client.

6. Figure 3-6 makes this functionality clear. By adapting these two
parameters and depending on the requirements of the application with
regard to the time, a compromise between period of time for notifying
after change of value and network transfer can be found. It has to be
considered here, that the OPC server as holdtime expects an
absolute time in form of a java.util.Calendar. The inputs of the
GUI in milliseconds are converted in the Java program into a variable of
type Calendar. The basic time value is the moment of the server’s
response to the registration, i.e. the parameter ReplyTime which is
returned with the method subscribe. However, the OPC server
expects milliseconds as time indication for waitTime so that this can
be taken directly from the GUI and transferred to the according
parameter.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Note The time indicated in the subscription dialog is based upon the
SIMOTION-internal time settings. Please consider the setting of the time
zone with regard to the GMT. During the summer time, the standard
setting of GMT is to set from +60min to GMT +120min.

ject to technical changes.
Version 1.0 Version of July, 2007 22/33

OPC client software in Java

Data exchange via OPC XML

Sub

Figure 3-6: Comparison of holdTime and waitTime

Wait TimeHold Time

Maximum time for
service to respond

Minimum time for
service to respond

Changes occurring before or during
this time will result in a return at the

end of Holdtime

Changes occurring during this time
will result in an immediate return

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

7. If the monitoring of the variable shall be terminated, this is done by
calling the method SubscriptionCancel. By transmission of the
serverHandle or the array of serverHandles with several
variables to the OPC server, this one terminates the according
subscription, i.e. the monitoring of the variables concerning changes of
value.

To avoid affecting the functionality of the remaining program during the
cyclic call of SubscriptionPolledRefresh, the class
SubscriptionPolledRefreshThread is used as an extension of the Java
class Thread. The implementation of the function
SubscriptionPolledRefresh within this class makes it possible that this
one is executed in a separate thread and the ‘while’ loop containing the
cyclic call of SubscriptionPolledRefresh, and thus does not affect the
execution of the other program.

We do without a detailed description of the whole source text of the class
Subscription as the basic mechanisms for the initialization of the required
parameters etc. are identical to those OPC functions that have already
been described. For the Subscription only some additional variables for
parameterization are used (e.g. holdTime or waitTime). For more detailed
information on the mode of functioning of a subscription, please refer to the
OPC XML-DA 1.0 specification.

3.4 Execution of the example program

For the execution of the Java example program, the following prerequisites
have to be met:

• Installation of Java Runtime Environment JRE V1.4.2 (or higher) -
(http://java.sun.com/j2se/1.4.2/download.html)

ject to technical changes.
Version 1.0 Version of July, 2007 23/33

http://java.sun.com/j2se/1.4.2/download.html

OPC client software in Java

Data exchange via OPC XML

Sub

• Extracting of the zip archive OPC-Xml-Browser.zip. There is a directory
with the same name OPC-Xml-Browser. The script run.cmd has to be
located in the exactly subordinated path.

If these prerequisites are met, you can start the example application by
executing the script „run.cmd“.

3.5 Import of the example project in Eclipse

To change or to extend the example program, we recommend using the
Java programming environment Eclipse. This one is available for free and
can be downloaded under http://www.eclipse.org/downloads/ . The
example project has been created and tested with version SDK 3.2.2 of the
Eclipse programming environment. The project export and import is
described on the basis of this version, too. We cannot exclude eventual
changes of the dialogs or a restricted/faulty functionality of the project
import as well as the runnability of the example project in general for other
versions of the Eclipse SDK.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Note Under http://www.eclipse.org/documentation/ there is an English
documentation of the Eclipse SDK which can help you to start working
with Eclipse.

The following steps are necessary to open the project in Eclipse:

Via the menu „File“ „Import“ (Figure 3-4) the following dialog opens
(Figure 3-5). Here, please select the option „Existing Projects into
Workspace“ and confirm with „Next“.

ject to technical changes.
Version 1.0 Version of July, 2007 24/33

http://www.eclipse.org/downloads/

OPC client software in Java

Data exchange via OPC XML

Sub

Figure 3-4: Import of an Eclipse project 1

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Figure 3-5: Import of an Eclipse project 2

ject to technical changes.
Version 1.0 Version of July, 2007 25/33

OPC client software in Java

Data exchange via OPC XML

Sub

In the dialog „Import“ (Figure 3-6), please click on „Select archive file“ and
select the zip-File „OPC-Xml-Browser.zip“ being supplied together with this
FAQ.

Figure 3-6: Import of an Eclipse project 3

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

Now, the existing project is imported into the Eclipse Workspace and then
compiled automatically. However, it will not be fault-free after this
compilation as the necessary external libraries have not been integrated,
yet, although they already exist in the project-zip-file, but they are not
integrated automatically into the imported project. You can do this
afterwards as follows:

Open the context menu by a right click on the imported project and select
„properties“(Figure 3-7).

ject to technical changes.
Version 1.0 Version of July, 2007 26/33

OPC client software in Java

Data exchange via OPC XML

Sub

Figure 3-7: Add external JAR files 1

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

The ‚properties’ dialog (Figure 3-8) appears. Now, please activate
„Libraries“ under „Java Build Path“. By means of the button „Add external
JARs“ you can add the missing external libraries.
Figure 3-8: Add external JAR files 2

These libraries are stored in the new generated project During the import of
the projects, these libraries are located in the new created project folder
„OPC-Xml-Browser“ and there in the sub-folder “lib”. You can find the
project folder in “Workspace” of Eclipse which has been created during the
initial start of the Eclipse software.

After pushing the button „Add external JARs“ a file selection dialog appears
(Figure 3-9). All libraries (*.jar files) contained in the „lib“ directory have to
be selected and added to the project.

ject to technical changes.
Version 1.0 Version of July, 2007 27/33

OPC client software in Java

Data exchange via OPC XML

Sub

Figure 3-9: Add external JAR files 3

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

After confirmation of these settings, Eclipse compiles the project again; now
the source code is compiled without faults.

By opening the directory tree „OPC-Xml-Browser src
simotion_opc_xml“ created in the „Package Explorer“, the Java class
„MainWindows.java“ can be selected. As described in chapter 3.3, this is
the main class of the Java program. A click on this class with the right
mouse key opens the belonging context menu and with „Run as Java
Application“ the program is executed (Figure 3-10).

Note After the initial execution of the program, you can start it by a click on the
red “start” button as shown in Figure 3-10.

ject to technical changes.
Version 1.0 Version of July, 2007 28/33

Recording of SOAP telegrams for diagnostics purposes

Data exchange via OPC XML

Sub

Figure 3-10: Execute program

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

After having terminated the import of the project, you can change the OPC-
browser application.

Note After storing a changed source text file, Eclipse compiles automatically
the changed file(s). To make changes, you only need to store the sources
as Eclipse creates automatically the belonging *.class files.

4 Recording of SOAP telegrams for diagnostics
purposes

4.1 Settings of the Trace Tools MSSoapT3

The sent and received SOAP telegrams can be indicated for diagnostics
purposes in XML format by means of the Trace-Tools MsSoapT3.exe.

ject to technical changes.
Version 1.0 Version of July, 2007 29/33

Recording of SOAP telegrams for diagnostics purposes

Data exchange via OPC XML

Sub

To do so, the following settings have to be selected in MsSoapT3 (
Figure 4-1):

Figure 4-1: Setting Trace-Tool

The IP address of the Simotion control has to be entered as „Destination
host“. Then the OPC XML browser does not address directly to the control,
but uses the following URL instead:http://localhost:8080/soap/opcxml
(Figure 4-2). This way, the Trace Tool acts as a gateway and passes all
local requests to Port 8080 on the OPC.

Figure 4-2: Addressing in the OPC browser

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

4.2 Examples of the telegram recordings

In Figure 4-3 and Figure 4-4 the recordings of the SOAP telegrams are
represented as an example.

Figure 4-3 contains the representation of a browse request to the OPC
server and its response.

ject to technical changes.
Version 1.0 Version of July, 2007 30/33

http://localhost:8080/soap/opcxml

Recording of SOAP telegrams for diagnostics purposes

Data exchange via OPC XML

Sub

Figure 4-3: Browse request (above) and response (below)

Figure 4-4 represents a read request to the server.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 31/33

Recording of SOAP telegrams for diagnostics purposes

Data exchange via OPC XML

Sub

Figure 4-4: Read request of the variable var/servoControlClock including result 1000:

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

ject to technical changes.
Version 1.0 Version of July, 2007 32/33

Appendix

Data exchange via OPC XML

Sub

5 Appendix

5.1 Source texts and software documentation

You can find the Java source texts as well as a standard software
documentation (JavaDoc, see http://java.sun.com/j2se/javadoc/) on the
„Tools and Applications“ CD, which contains further additional applications /
FAQ’s on the subject SIMOTION.

5.2 Further information

For any further information on the subject OPC in general, we can
recommend the website of the OPC foundation
(http://www.opcfoundation.org/). This organization develops and maintains
the OPC standard specifications.

For the subject of Eclipse, we recommend the internet page
http://www.eclipse.org/. Here, you can find detailed information on the
project Eclipse itself as well as on further projects concerning the Eclipse
development environment.

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 C

op
yr

ig
ht

 2
00

7
A

ll
rig

ht
s

re
se

rv
ed

5.3 List of literature and sources

Table 2-1: SIMOTION IT - Ethernet based HMI- and diagnostics

functions, Siemens AG

Figure 3-5: „OPC XMLDA 1.01 Specification.pdf“, OPC Foundation

ject to technical changes.
Version 1.0 Version of July, 2007 33/33

http://java.sun.com/j2se/javadoc/
http://www.opcfoundation.org/
http://www.eclipse.org/

	How can you use the OPC XML-DA interface?
	Prerequisites and targets of these FAQs
	What is OPC about? Why OPC XML-DA?
	Particular properties of the OPC XML-DA communication

	OPC client software in Java
	Graphical user interface of the Java program
	Creation of the classes for the OPC communication
	Class description of the OPC browser application
	Class MainWindow (MainApplet)
	Class PWDWindow
	Class CyclicRead
	Class Subscription

	Execution of the example program
	Import of the example project in Eclipse

	Recording of SOAP telegrams for diagnostics purposes
	Settings of the Trace Tools MSSoapT3
	Examples of the telegram recordings

	Appendix
	Source texts and software documentation
	Further information
	List of literature and sources

