

Applications & Tools

Answers for industry.

Cover

Sample Blocks for STEP 7 and WinCC
flexible - Supplements

WinCC flexible

Application description September 2010

2
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Industry Automation and Drives Technologies Service & Support Portal

This article is taken from the Service Portal of Siemens AG, Industry Automation
and Drives Technologies. The following link takes you directly to the download
page of this document.

http://support.automation.siemens.com/WW/view/en/36435784

http://support.automation.siemens.com/WW/view/en/36435784�

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 3

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

s

SIMATIC
WCF_BLOCKS_Supplements

Application

Automation Task

1

Automation Solution

2

Functional Mechanisms

3

Literature

4

History

5

Warranty and Liability

4
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Warranty and Liability
Note The application examples are not binding and do not claim to be complete

regarding configuration, equipment and any contingencies. The application
examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These application examples do not
relieve you of the responsibility to use sound practices in application, installation,
operation and maintenance. When using these application examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
application examples at any time without prior notice. If there are any deviations
between the recommendations provided in this application example and other
Siemens publications – e.g. Catalogs – the contents of the other documents
have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.

It is not permissible to transfer or copy these application examples or excerpts of
them without having prior authorization from Siemens Industry Sector in writing.

For questions about this document please use the following e-mail address:

online-support.automation@siemens.com

mailto:online-support.automation@siemens.com�

 Table of Contents

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 5

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Table of Contents
Warranty and Liability ... 4

1 Automation Task.. 6

2 Automation Solution ... 7

2.1 Hardware and software components used... 8

3 Functional Mechanisms.. 9

3.1 Dynamic positioning at runtime .. 10
3.1.1 Modification of faceplate window ... 11
3.1.2 Creating and connecting positioning tags .. 13
3.1.3 Creating and connecting scripts... 14
3.2 Multiple use through address multiplexing... 16
3.2.1 Editing tags... 17
3.2.2 Editing messages ... 19
3.2.3 Modification of the faceplate icon... 20
3.2.4 Using the faceplate icon... 23
3.2.5 “VISIBILITY” - status in the controller (optional) 25

4 Literature .. 27

5 History... 28

Automation Task

6
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Automation Task 1
Introduction

The sample blocks for STEP 7 and WinCC flexible are to offer the user various
automation functions or the use of these blocks as templates for the configuration
of individual blocks.

Description of the automation task

The task of this supplement documentation is to show the project engineers ways
in which to use existing sample blocks in a real life situation.

This is to be achieved by:

 dynamic positioning of the faceplates at runtime.

 multiple use of a faceplate and therefore:

– an economical way of using controller tags (“power tags”) and the resulting
cost savings.

– and a careful use of resources regarding the number of the objects used in
the picture whilst considering the system limits.

Automation Solution

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 7

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Automation Solution 2
Introduction

An individual faceplate icon will be placed for each motor in the project. Via
address multiplexing of the data block used, the faceplate icons address only one
single faceplate window (See chapter 3.2 – Multiple use through address
multiplexing).

Alternatively, the faceplate can assume an alternative position via mouse click on
its header (See chapter 3.1 – Dynamic positioning at runtime).

Description of the automation solution

This document shows an example of the necessary configuration by means of the
“MOTOR” faceplate to be able to expand a faceplate of this application by the
following characteristics.

 Dynamic positioning at runtime

Via mouse click in the header of the faceplate, it assumes an alternative
position. Another mouse click shifts the faceplate to its original position.

This makes it possible to operate and monitor the remaining picture, covered
by an open faceplate, without having to close it and having to do without the
provided information.

 Multiple use through address multiplexing

By using address multiplexing, one single faceplate addresses several
assigned objects without having to configure individual faceplates and tags for
these objects.

ATTENTION Before using the block in your own projects, check the proper
functioning of the block and adjust it to your individual requirements
where necessary. The block described in this application is only intended
as a template for creating your own blocks.

Automation Solution

8
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

2.1 Hardware and software components used

The application was generated with the following components:

Hardware components

Table 2-1

Component Number Note

Development system 1 PC to configure the controller and
WinCC flexible. The hardware requirements for
STEP 7 and WinCC flexible apply.

S7-300 CPU
or
S7-400 CPU

1 Alternatively, the controller can also be
simulated with PLCSIM.

Software components

Table 2-2

Component Number MLFB / Order number Note

STEP 7 V5.4 SP5 1 6ES7810-4CC08-0YA7

WinCC flexible 2008 SP2 1 6AV6613-0AA51-3CA5 Incl. Update 1

S7-PLCSIM V5.4 1 6ES7841-0CC05-0YA5 [As an option]

Sample files and projects

The following list contains all files and projects that are used in this example.

Table 2-3

Component Note

36435784_S7_WCF_Blocks_SUPPLEMENTS.zip The zip file contains the STEP 7
project with the integrated
WinCC flexible project.

36435784_S7_WCF_Blocks_DOCUMENTS_d.zip All documents for this application.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 9

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Functional Mechanisms 3
Introduction

The functional mechanisms described in this chapter are intended as additional
information to the “Sample Blocks for STEP 7 and WinCC “ flexible application.

This is why the two functional mechanisms are described separately from each
other and can be used independently.

When using the dynamic positioning, for example, it is not necessary to also use
address multiplexing.

Functional Mechanisms

10
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.1 Dynamic positioning at runtime

Introduction

It is frequently necessary to move the faceplate on the user interface to get to
displays which are positioned behind it. The faceplate window which is still opened
provides additional information or is necessary for the operation.

It is not possible to move the faceplate window within WinCC flexible as usual for
the graphical user interface of an operating system.

Via mouse click, the faceplate assumes an alternative position on its header.
Another mouse click shifts the faceplate to its original position.

Figure 3-1

The following steps are necessary for implementation:

 modification of faceplate window

 creating and connecting of positioning tags

 creating and connecting of scripts to toggle the position

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 11

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.1.1 Modification of faceplate window

To reposition the faceplate window on its header via mouse click, it is necessary to
place a button in this area.

Table 3-4

Step Description

1. Edit faceplate

 Right-click on an existing instance of a faceplate or the corresponding
template in the library.

 Click “Edit faceplate”.

Functional Mechanisms

12
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

2. Creating button
Place a button in “Level 0” of the faceplate editor in the header area of the
faceplate window with the following characteristics:

 General – Button mode: invisible

 Properties – Appearance – Width focus:0

 Properties – Layout – Position X, position Y: 10, 10

 Properties – Layout – Size X, Size Y: 325, 29

 Properties – Misc – Name: Positioning

 Properties – Misc – Layer: 0

 Animations – Visibility: Enabled, tags: Visibility, hidden

3. Add click event in the interface

 Select the “Event interface” of the faceplate in “Faceplate configuration“.

 Select the “Positioning” object in “Inner objects”.

 Drag the “Click” event via Drag&Drop to the interface of the faceplate.

 Close the faceplate editor.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 13

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.1.2 Creating and connecting positioning tags

To position the faceplate window, two positioning tags are connected via its
property dialog.

Table 3-5

Step Description

1. Creating positioning tags
Create two tags each for every instance of your faceplate window:
Name: X_Offset, connection: Internal tag, data type: Int
Name: Y_Offset, connection: Internal tag, data type: Int

2. Connecting positioning tags

 Right click on an existing instance of faceplate in a picture.

 Select “Properties”.

 Connect the previously created tags to the faceplate:
Animations – Direct Movement – enabled
Animations – Direct Movement – X position - Offset: X_Offset
Animations – Direct Movement – y position - Offset: Y_Offset

Functional Mechanisms

14
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.1.3 Creating and connecting scripts

Two scripts are created as interface for the click event of the faceplate and its
positioning tags.

Through the parameter dialog, the scripts can be used as often as desired.

Table 3-6

Step Description

1. Creating scripts
Create a script each with the following properties for both positioning tags (as an
example explained for “X_Offset”):
 General – Settings – Name: X_Offset

 General – Settings – Type: Function

 General – Parameter: Offset_Value, Input_value

 Code:
If Input_value = 0 Then
 X_Offset = Offset_Value
Else
 X_Offset = 0
End If

2. Connecting scripts

 Right click on an existing instance of faceplate in a picture.

 Select “Properties”.

 Connect the previously created scripts to the faceplate:
Events – Click – Function: X_Offset
Events – Click – Function: Y_Offset

 Connect the following tags to the parameter interface (as an example
explained for “X_Offset”):
Output value: X_Offset
Offset_Value: <offset value> (may be a constant or a variable)
Input_value: X_Offset

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 15

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

Note:
To be able to reuse the scripts, the same tag has to be connected for the
“Output value” and “Input_value” parameters.

Functional Mechanisms

16
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2 Multiple use through address multiplexing

Introduction

By using address multiplexing, one single faceplate addresses several assigned
objects without having to configure individual faceplates and tags for each of these
objects. In doing so, the value of a pointer is changed for the DB address of the
faceplate tag.

The necessary pointer for the corresponding memory area is solely created in
WinCC flexible and is set via mouse click on the faceplate icon – support by the
controller is not necessary.

Figure 3-2

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 17

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2.1 Editing tags

For reasons of clarity, this documentation describes the necessary configuration
steps as an example by means of the “Motor” faceplate and three areas of use
(“Motor_001”, “Motor_002” and “Motor_003”).

The concept can naturally also be transferred to other faceplates of this application
and several locations.

Table 3-7

Step Description

1. Creating a folder
Create an additional folder for each faceplate instance (location), e.g.
“Motor_001”.

2. Deleting of existing tags

Delete the “QwAlarm” tag in the “Motor” main folder.

3. Creating new tags

 For each instance create the tags “QdwState” and “QwAlarm” in the
respective instance folder, e.g. “Motor_001”.

 Create an internal “Pointer” tag for each faceplate type of the “UInt” data
type in the “Motor” main folder (see figure in step 5).

Note:
The “QdwState” tag is used to display the faceplate icons, the “QwAlarm” tag is
used to display messages. Both tags always have to be updated, irrelevant of
the respective pointer value.
This is why they have to be connected by symbol and must not be addressed
via address multiplexing.

Functional Mechanisms

18
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

4. Multiplexing of existing tags

 Open the “Addressing” event dialog of the all the remaining tags in the
“Motor” main folder.

 Now right click the “123” button next to the DB number and change it from
620 to “Multiplex”.

 Open the tag selection dialog on the DB field and select the “Pointer” tag.

 Proceed like this with all tags of the “Service_FlowMonitoring”,
“Service_Monitoring” and “Service_Simulation” sub folders.

5. Result

Make sure that all tags of the “Motor” main folder (with the exception of the
“Pointer” tag) and its three sub folders were changed to the DB address
“[Pointer]”.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 19

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2.2 Editing messages

Because the “QwAlarm” tag was deleted in the “Motor” main folder, the messages
have lost their trigger tag. Since it is important to always receive the messages of
all faceplates, it could not be changed to address multiplexing and was therefore
superfluous.

Instead, the newly created message tags are now linked to the instance folders.

Table 3-8

Step Description

1. Open the bit message editor under “Messages” > “Bit messages”.

2. Open the tag selection dialog and select the “QwAlarm” tag corresponding to the
messages from one of the instance folders.

3. Copy the tag to all 16 messages of the same faceplate instance.

 For this purpose, select the “Trigger Tag” field of the first message of a
faceplate instance with bit number “0”, so that it is highlighted in blue.

 Holding the mouse button down, on the right base point of the field, drag the
trigger tag to all 16 messages of the same faceplate instance. The bit
number is automatically incremented.

4. Repeat the first three steps for all faceplate instances.

Functional Mechanisms

20
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2.3 Modification of the faceplate icon

To be able to handle the pointer via faceplate icon and therefore the addressing of
the faceplate icon, it is necessary to process several value assignments
consecutively and in the correct sequence.

For this purpose, the “Click” event of the faceplate icon is moved outward to be
able to connect the “SetValue” functions.

Table 3-9

Step Description

1. Editing faceplate

 Right-click on an existing instance of a faceplate or the corresponding
template in the library.

 Click “Edit faceplate”.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 21

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

2. Deleting the “SetValue” function

 In the event dialog in the properties of the faceplate configuration, open the
“Button” button.

 Select the “Click” event and delete the “SetValue” function.

3. Deleting the “Visibility” property

 In the property interface of the faceplate configuration in the “Process”
category, open the “Visibility” property of the property dialog with the right
mouse button.

 Delete the “Visibility” property.

Functional Mechanisms

22
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

4. Add click event in the interface

 Select the “Event interface” of the faceplate in “Faceplate configuration“.

 Select the “Button” object in “Inner objects”.

 Drag the “Click” event via Drag&Drop to the interface of the faceplate.

 Close the faceplate editor.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 23

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2.4 Using the faceplate icon

Since the faceplate icons always have to display the status of the corresponding
motor, irrespective of the pointer (just like the messages), it is necessary to link the
status tags of the instance folders.

Furthermore, the faceplate icon has to handle the pointer value and therefore also
has to readdress the faceplate instances. It is therefore necessary to configure an
individual faceplate icon for each instance.

Note It is always possible to change between the individual faceplate instances. When
the faceplate window of “Motor_001” is open, the value of “Motor_002” can be
instantly displayed when clicking on its faceplate icon.

Table 3-10

Step Description

1. Selecting faceplate icon
Open the “Dynamic Interface” in the property dialog of the relevant faceplate
icon.

2. Exchanging the status tags
Open the tag selection dialog in the field of the “State” property and select the
“QdwState” tag relevant for the instance from one of the instance folders.

Functional Mechanisms

24
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

3. Creating the “SetValue” functions
In the “Click” event, assign the “SetValue” function for the following tags in the
“Motor” main folder:

 “OP_VISIBILITY” with the value “0”
This marks the value of the previous instance of the faceplate window as
“closed”.

 “Pointer” with the value “1”
This addresses the new faceplate instance correctly.
The value depends on the respective instance or DB address!

 “OP_VISIBILITY” with the value “1”
This opens the new faceplate instance with the first tab.

Functional Mechanisms

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 25

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

3.2.5 “VISIBILITY” - status in the controller (optional)

Since only one faceplate window is opened when address multiplexing, the
“VISIBILITY” value always only refers to the respective instance.

This is why it is important to find out the pointer value before reading and/or writing
the “VISIBILITY” value in the controller and to address the respective DB.

For reading, it is sufficient in WinCC flexible to declare the internal “Pointer” tag of
the “UInt” data type in the “Motor” main folder as controller tag of the “Int” data
type.

The value of the pointer indicates the data block number from which the
“VISIBILITY” value can be read. However, if you would like to influence the
faceplate window and its tab from the controller, additional steps are necessary.

Table 3-11

Step Description

1. Declaring “Pointer” tag as controller tag

 Open the “Addressing” event dialog of the “Pointer” tag in the “Motor” main
folder.

 Assign a fixed address or select a symbol via the tag selection dialog.

2. Declaring “PointerSet” tag as controller tag

 Create a new “PointerSet” tag in the “Motor” main folder.

 Assign a fixed address or select a symbol via the tag selection dialog.

3. Configuring value transfer
To confirm the value transfer of the operator panel when changing the pointer
value, the changed value has to be written back to the controller from the
operator panel.

 Open the “Addressing” event dialog of the “Pointer” tag in the “Motor” main
folder.

 Configure the “SetValue” function on the “Change value” event.
Tag: “PointerSet”
Value: “Pointer” (the tag)

Functional Mechanisms

26
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Step Description

4. Value diagnostics in the controller
When the value of the “Pointer” tag and the value of the “PointerSet” tag are
identical, then the pointer was accepted by the operator panel.
Now the display of the faceplate window can be influenced (described) via the
“VISIBILITY” block input of the respective data block.

Literature

WCF_BLOCKS_Supplements
V 1.00, Entry ID: 36435784 27

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

Literature 4

This list is by no means complete and only presents a selection of suitable
literature.

Table 4-12

 Subject Title

\1\ Reference to the entry http://support.automation.siemens.com/WW/view/en/364357
84

\2\ Siemens I IA/DT Customer
Support

http://support.automation.siemens.com

\3\ FAQ regarding address
multiplexing

http://support.automation.siemens.com/WW/view/en/218083
20

http://support.automation.siemens.com/WW/view/en/36435784�
http://support.automation.siemens.com/WW/view/en/36435784�
http://support.automation.siemens.com/�
http://support.automation.siemens.com/WW/view/en/21808320�
http://support.automation.siemens.com/WW/view/en/21808320�

History

28
WCF_BLOCKS_Supplements

V 1.00, Entry ID: 36435784

C
o

p
yr

ig
h

t

 S
ie

m
e

n
s

A
G

 2
0

1
0

A
ll

rig
h

ts
 r

e
se

rv
e

d

History 5

Table 5-13 History

Version Date Modification

V1.0 01.09.2010 First issue

	Cover
	Warranty and Liability
	Table of Contents
	1 Automation Task
	2 Automation Solution
	2.1 Hardware and software components used

	3 Functional Mechanisms
	3.1 Dynamic positioning at runtime
	3.1.1 Modification of faceplate window
	3.1.2 Creating and connecting positioning tags
	3.1.3 Creating and connecting scripts

	3.2 Multiple use through address multiplexing
	3.2.1 Editing tags
	3.2.2 Editing messages
	3.2.3 Modification of the faceplate icon
	3.2.4 Using the faceplate icon
	3.2.5 “VISIBILITY” - status in the controller (optional)

	4 Literature
	5 History

