
http://support.automation.siemens.com/WW/view/de/42014088

Application Description 08/2014

Programming an OPC UA .NET
Client with C# for the SIMATIC
NET OPC UA Server
SIMATIC NET OPC UA Server

http://support.automation.siemens.com/WW/view/de/42014088

Warranty and Liability

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 2

Si
em

en
s

AG
20

14
Al

lr
ig

ht
s

re
se

rv
ed

Warranty and Liability
Note The Application Examples are not binding and do not claim to be complete with

regard to configuration, equipment or any contingencies. The Application
Examples do not represent customer-specific solutions; they are only intended to
provide support for typical applications. You are responsible for ensuring that the
described products are used correctly. These Application Examples do not
relieve you of the responsibility of safely and professionally using, installing,
operating and servicing equipment. When using these application examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time and without prior notice. If there are any
deviations between the recommendations provided in this Application Example
and other Siemens publications – e.g. catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this application example will be excluded. Such an exclusion will not
apply in the case of mandatory liability, e.g. under the German Product Liability Act
(“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body
or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The compensation for damages due to a breach
of a fundamental contractual obligation is, however, limited to the foreseeable
damage, typical for the type of contract, except in the event of intent or gross
negligence or injury to life, body or health. The above provisions do not imply a
change in the burden of proof to your disadvantage.
Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

http://www.siemens.com/industrialsecurity
http://support.automation.siemens.com/

Table of Contents

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 3

Si
em

en
s

AG
20

14
Al

lr
ig

ht
s

re
se

rv
ed

Table of Contents
Warranty and Liability ... 2

1 Automation Task .. 4

1.1 Overview... 5
1.2 Requirements ... 6

2 Automation Solution ... 8

2.1 Solution overview ... 8
2.2 Description of the core functionality ... 9

Delimitation ... 13
2.3 Hardware and software components used... 13
2.4 Alternative solutions ... 14

3 Basics ... 15

3.1 Basics on OPC ... 15
3.2 Basics on OPC Unified Architecture .. 17
3.2.1 OPC UA specifications ... 17
3.2.2 Structure of the OPC UA Server address space 19
3.2.3 Interface for access to the OPC UA Server address space 23
3.2.4 Protocols and security mechanisms ... 25
3.2.5 Delimitation and comparison with OPC data access 30
3.3 Basics on S7 communication ... 31
3.3.1 General ... 31
3.3.2 Optimized S7 communication .. 34

4 Functional Mechanisms of this Application ... 35

4.1 OPC UA Client API ... 38
4.2 Simple OPC UA Client ... 40
4.3 Comfortable OPC UA Client ... 43
4.3.1 User interface ... 43
4.3.2 Class diagram .. 44
4.3.3 Sequence diagrams ... 46
4.4 S7 program ... 52

5 Configuration and Settings... 56

5.1 Configuring the SIMATIC S7 stations .. 56
5.2 Configuration of the OPC server station .. 58
5.3 Configuration of the OPC UA Security ... 62
5.3.1 OPC UA remote communication .. 62
5.3.2 Certificate storage .. 63
5.3.3 Authentication, SecurityPolicy and MessageSecurityMode 68

6 Installation .. 70

7 Commissioning the Application ... 72

8 Operating the Application ... 76

8.1 Operating the Simple Client ... 76
8.2 Operating the convenient OPC UA client ... 78

9 Further Notes, Tips & Tricks, etc. .. 84

10 Links & Literature .. 85

10.1 Bibliographic references ... 85
10.2 Internet link specifications .. 85

11 History... 86

1 Automation Task
1.1 Overview

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 4

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

1 Automation Task
Purpose

With OPC Unified Architecture (UA), an additional, convenient and performant
option of process coupling for PC systems with SIMATIC S7 now exists in
SIMATIC NET OPC Server, which will successively replace the existing OPC Data
Access (DA) and Alarms & Events (A&E) functions.
The main advantages of OPC UA over conventional OPC interfaces are:
 communication via the internet and across firewalls.
 optimized, robust and fault-tolerant protocol with integrated security

mechanisms.
 OPC UA can be directly integrated in applications on different operating

systems with different programming languages.
 all OPC information, such as data or alarms, is integrated in a namespace.
 information can be described with object-oriented means.

Target audience
This application is designed for end users who need a comprehensive introduction
to this technology and who want to acquire experience with the professional
creation of OPC UA clients in C# under .NET

Content
This is where you get an overview of the use of the OPC UA communication
interface which offers the data, alarms and diagnostic information from the
SIMATIC S7 controllers. You will learn about the components used, standard
hardware and software components and the specially created user software.
The user software offers examples for the creation of OPC UA clients with C#
under .NET. Included are a simplified, reusable API, a simple example and a
complex example with a convenient user interface. The example also provides
notes on the optimization and expansion of the application.

1 Automation Task
1.1 Overview

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 5

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

1.1 Overview

Introduction
To realize a data link, it is nowadays preferred to use standardized mechanisms in
order to ensure that such a data exchange remains independent of the used bus
system or protocol or even manufacturer. For the exchange of event and alarm
messages, a standardized mechanism for connecting different subsystems will also
be used. OPC UA combines this functionality and additionally offers authentication
and encrypted data transmission and advanced diagnostic information.

Overview of the automation problem
The following figure provides an overview of the automation task.

Figure 1-1

PC Station
Visualization

Data Acquisition
Diagnosis
Reporting
Control

Internet

Information server
OPC unified architecture

Process / production plant

Information server
OPC unified architecture

Process / production plant

Description of the automation task
In the automation system the OPC UA server shall be considered the information
server, which can display and describe individual components but also the entire
system. Due to the encrypted access, which is checked and secured with
certificates, a link to other locations is also possible.
The core task of this example is access to process data with the OPC UA interface.
This is explained by creating a simple, individually created visualization on the
basis of the new OPC UA standard which is nevertheless suitable for real-life
situations.

1 Automation Task
1.2 Requirements

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 6

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

The application is to contain the following functionalities:
 server selection including security settings.
 navigation through the OPC UA namespace of the server and selection of

process tags.
 reading of attributes including the values of the selected process tags.
 monitoring of the value of the selected process tags.
 writing the value of the selected process tags.
 use of block services via OPC UA.

Further data processing (e.g. saving in database or similar) is not discussed here.

1.2 Requirements

Requirements of the automation task
The sample application has been created in C# and uses the interfaces of .NET
API of the OPC Foundation.
The user is explained the handling of the OPC UA interface under .NET in a real
life situation. The basis interface is the .NET Client SDK of the OPC Foundation
included in delivery on the SIMATIC NET installation.
This interface offers the full functional scope of OPC UA. To simplify the interface,
a reduction to the functionality required for this example is performed. An efficient
instruction which is suitable for real-life situations for the OPC UA services is
developed.
The design of a simple GUI interface demonstrates the basic functionality of OPC
UA. This shows the entire functional chain between S7 tag(s), OPC UA namespace
and access from the client in C#:
 login, logout and authentication on the server
 searching the namespace for tags
 Reading, writing and monitoring tags
 simple error handling

The example describes the symbolic and absolute addressing and the use of the
tag services “read, write and monitor” for the S7 basic types as well as the use of
the block-oriented services (receiving and sending of large data blocks).
The different diagnostics options and the processing of error scenarios by the
program are explained. The errors can also be triggered by simulating
disconnections between the different components.

1 Automation Task
1.2 Requirements

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 7

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Requirement for data storage
The controller is to be able to offer the necessary data structures and data volumes
and simulate value changes. There is no concrete control task, only the access to
the data is to be illustrated. The data areas and the interaction with other
components are displayed in the figure below.
Figure 1-2

PLC

Production
data

OPC
Server

OPC Client

Receipt

Tags

BSEND

BRECV
PR

PUT
GET

Display
OPC
Read
Write

Subscribe
Memory

The STEP7 program in the S7-CPU simulates the individual values which are to be
received and displayed by the client (tag services). Different data types are used as
individual tags.
The PLC program simulates and generates the necessary structures and values for
the bi-directional transmission of larger data volumes and calls the block-oriented
services accordingly (BSEND, BRECV). This is used for STRUCT or ARRAY tags
with a total of several 100 bytes (recipe data, production data blocks or similar.).
To send data, PLC actively triggers the transmission of a block-oriented production
data record to the OPC UA server. The PLC receives a block-oriented data set
(e.g. recipe) sent by an OPC UA client and stores it in the respective structure in a
data block.
The necessary tag tables are furthermore provided in STEP 7 for test purposes.

Requirement for the PC station
The PC station must have the necessary physical connection to the respective
hardware and software for the communication with the controller. The application
for the visualization and control should only use the OPC UA interface to be able to
use any OPC UA servers.
The application example is to show what has to be generally projected on the
server/client PC station and the S7 controllers in order to solve the communication
task.
In STEP 7 the SIMATIC NET OPC server is configured for the task (protocol,
security settings, certificates, etc.) in the configuration console for the PC station
and in the respective configuration files.
The underlying S7 protocol and the necessary connections to the controllers are
configured, including all corresponding steps which are to be projected and
configured on the server PC for the OPC UA operation.
Under Windows a secure communication between client PC and server PC is
created by OPC UA means.

2 Automation Solution
2.1 Solution overview

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 8

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

2 Automation Solution
2.1 Solution overview

Overview
The figure below shows a schematic overview of the most important components of
the solution:

Figure 2-1

S7-1500 station
CPU 1516-2 PN/DP

S7-300 station
CPU 315-2 PN/DP

OPC UA Client
-simple
-advanced

SIMATIC PC station

Std. Ethernet Card
SIMATIC NET CD V12
SOFTNET S7 IE/Lean
STEP 7 V13
Visual Studio 2010(C#)

S7-400 station
CPU 416-3 PN/DP
CP443-1Adv.

Structure
A PC station is connected to a CPU 315-2 PN and a CPU 414-2 via Ethernet.
A standard Ethernet card is used in the PC.

OPC-UA Client software
The OPC-UA client in the PC station is realized at two levels of complexity. A very
simply designed client (Simple OPC UA Client) shows you all basic functions for
getting started in OPC UA. A more complex client (OPC UA .NET Client) with a
convenient interface will demonstrate professional handling with reusable classes.
The functionality of these sample clients will be explained in the next section.

2 Automation Solution
2.2 Description of the core functionality

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 9

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

2.2 Description of the core functionality

Overview
SIMATIC NET OPC UA Server forms the main functionality part of this example. It
simplifies the functions and information of the classic OPC server for Data Access
and Alarm & Events in one single namespace and permits access to information
via a service-oriented architecture. Communication via the Internet and across
firewalls is secure and performant.
This figure below shows the functional chain for a data access:
Figure 2-2

S7 connection

S7 protocol

C
P

U
414-2

D
P

C
P

443-1

In
/O

ut

UA TCP

OPC UA server

Internet

OPC UA Client
Display

OPC UA Client
Display

BSEND

BRECV

Memory

1

2

3

S7 tags
Data blocks

ind. Ethernet

ind. Ethernet

Get

Put

Table 2-1

No. Component Description

1. S7 station The S7 CPU provides S7 tags for data areas such as flags or
data blocks.
Via the block-oriented services BSEND and BRECV, larger
data blocks can also be actively sent and received from the
user program.

2. OPC UA server The OPC UA server transposes the S7 tags and the block
services to the OPC UA tags and provides OPC services such
as browse, read, write and data monitoring.

3. OPC UA client The OPC UA Client can establish a secure connection to the
server, navigate through the namespace of the server and
read, write and monitor selected tags.

2 Automation Solution
2.2 Description of the core functionality

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 10

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Software components of the application (OPC UA .NET client)
The figure below shows the software components used for the more complex
application (OPC UA .NET client). The OPC UA server and the basic libraries for
the OPC UA communication on the client side are from the SIMATIC NET CD.
The software components created in C# for the application can be divided in
reusable modules and sample code.

Figure 2-3

OPC UA
Client

Example
Client
API Session Subscription

OPC UA .NET Client SDK (OPC Foundation)

OPC UA .NET Stack (OPC Foundation)

Discovery

Simple
Client

UA
Client

Browse Control

Attribute List Control

Monitored Items Control

ReusabilityExample SIMATIC NET CD

OPC UA
ServerSIMATIC NET S7 OPC UA server

Table 2-2

Module Description

OPC UA .NET Stack The .NET OPC UA stack from the OPC Foundation for the realization of the
network communication.

.NET Client SDK The .NET OPC UA client SDK of the OPC foundation. The two DLLs of the
OPC foundation are part of the delivery of the SIMATIC NET CD.

Client API Reusable, simplified and tailored to this .NET Client API task. It offers reusable
C# classes for discovery, session and subscription handling.

Simple Client Simple user interface for the use of the Client API with the functions Connect,
Disconnect, Read, Write and Data Monitoring. This example also shows direct
addressing and the handling of namespaces.

UA Client Convenient OPC UA client with the functions: discovery, connect, disconnect,
browse, read of all attributes, write and data monitoring.
General functions such as browse, listing attributes and monitoring of data
tags are encapsulated in reusable controls.
In this example the symbolic tags can be browsed and can be used directly
from the browser.

S7 OPC UA server The SIMATIC NET OPC UA server implements the necessary server logic for
sessions and subscriptions and the data connection to the S7 stations.

2 Automation Solution
2.2 Description of the core functionality

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 11

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

User interface of the simple example (Simple OPC UA Client)
The user interface of the Simple OPC UA Client is operated via buttons for the
individual functions. The simple example shows the use of the direct addressing of
S7 tags.

Figure 2-4

Table 2-3

No. Description

1. The server URL can be specified in the text box for the Server URL. For the SIMATIC NET OPC
Server this is composed of opc.tcp://<computername>:4845.
In the Namespace URI text box the namespace used is indicated. This is S7: for direct
addressing, S7COM: for direct addressing via the OPC DA compatible Syntax and SYM: for
symbolic addressing.

2. In the text boxes for the Tag Identifier the identification code of the NodeID is indicated. For
namespace S7: this is composed of <S7connection>.<dataarea>.<offset>,<datatype>
The NodeID for reading and writing is made up of identification and namespace.

3. Via the Connect and Disconnect buttons, the connection to the OPC server can be established
or disconnected. The connection is only established without security. Secure connection
establishment is explained in the next example.

4. A subscription is created via the Monitor button and two Monitored Items are created in the
Subscription with both NodeIDs. The data changes are displayed in the text boxes next to the
button. Errors are displayed instead of the values.

5. The Read button reads the values (Attribute value) of both tags with the specified NodeIDs and
displays them in the text boxes next to the button.

6. The Write button writes the value from the text box next to the button onto the tag identified by
the NodeID.
In order to write, “read” has to be called first since the text from the text box has to be converted
in the data type suitable for the tag. The conversion is on the basis of the data type which is
supplied at “read”.

7. In the “Block Read” group, data can be received which is actively sent by the S7 with the
BSEND block service. This can be, for example, used for the sending of result data from the S7
to a PC application.

8. In the “Block Write” group, data blocks can be sent to the S7 which are there received by the
BRECV block service. Two blocks with different contents can be sent. This can be used, for
example, for the download of recipe data for the S7.

13

42 5 6

7

8

2 Automation Solution
2.2 Description of the core functionality

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 12

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Overview and description of the comfortable user interface (OPC UA .NET Client)
The figure and table below describe the interface of the generic OPC UA client
example with which the information of the namespace of an OPC UA server can be
conveniently accessed.
The interface also permits browsing the symbolic S7 tags.

Figure 2-5

Table 2-4

No. Description

1. The server can be selected via the Endpoints selection list. For this purpose the list of the
available OPC UA servers from the corresponding network node is determined. The computer,
from which the list is to be prompted, can be entered in the Node text field. If the field is empty,
the list will be determined on the local computer.
The URL of the OPC UA server can also be entered manually. For the SIMATIC NET OPC UA
Server the URL is composed of opc.tcp://<computername>:4845.

2. The connection to the server can be established or terminated via the Connect button.

3. In Browse Control the entire address space of the connected server is shown in a hierarchical
tree view. Only hierarchical references are displayed.

4. For the selected nodes the attributes are read in Browse Control and they are displayed in this
control.

5. With drag&drop the tags can be dragged from Browse Control to the monitoring window. For the
tag, the NodeID, the sampling interval, the value, the time stamp and the status code is
displayed.

6. The properties of the subscription and monitored items can be changed via the context menu in
the monitoring window or via the application menu. This is how e.g. the sampling interval can be
changed.
The dialog for writing can also be opened. Doing this, accepts the tags marked in the monitoring
window in the dialog.

1

3

4

2

5

6

2 Automation Solution
2.3 Hardware and software components used

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 13

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Advantages of this solution
The solution presented here offers you the following advantages:
 easy introduction to OPC UA technology
 programming in C# for .NET
 easy expandability of the example
 reusable program components
 access possible via internet and across firewalls
 access rights can be assigned individually for users
 handling with certificates, encryption and authentication
 demonstration of S7 communication

Delimitation
This application does not contain a description for processing or saving data in the
OPC UA client e.g. in databases.

Assumed knowledge
Basic knowledge of the handling of the SIMATIC configuration and programming
tool STEP7 as well as of the Microsoft Visual Studio 2008 development
environment and the programming language C# and object-orientated
programming is assumed.

2.3 Hardware and software components used

The application was created with the following components:

Hardware components
Table 2-5

Component No. Article number Note

S7-400 CPU 416-3
PN/DP

1 6ES7416-3XR05-0AB0 Any other S7-400 CPU
can also be used.

CP 443 -1 Advanced 1 6GK7443-1GX20-0XE0 Alternatively, any other
S7-capable Ethernet CP
can also be used.

S7-300 CPU 315-2
PN/DP

1 6ES7315-2EH14-0AB0 Alternatively, any other
S7-300 with PNIO
interface can also be
used.

S7-1500 CPU 1516-3
PN/DP

1 6ES7 516-3AN00-0AB0 Alternatively, any other
S7-1500 can be used.

SIMATIC PC station
as OPC UA server

1 6AG4104-1AA22-0BB0 Standard PC (e.g. PGs)
under Windows Vista or
Windows XP.

Standard PC as OPC
UA client

1 6AG4104-1AA22-0BB0 Alternatively, the client can
also be operated locally on
the SIMATIC PC station.

2 Automation Solution
2.4 Alternative solutions

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 14

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Software components
Table 2-6

Component No. Article number Note

SIMATIC NET DVD
V8.2
SOFTNET IE S7

1 6GK1704-1LW08-2AA0
6GK1704-1CW08-2AA0

LW=8 S7 connections
(Lean), CW=64 S7
connections

STEP 7 Professional
V13

1 6ES7822-4AA03-0YA5 For the configuration of
bilateral S7 connections
on
S7-CPUs

Microsoft Visual
Studio 2010

1 Express Edition
Standard Edition
Professional Edition

Obtainable in the
Microsoft store
(http://emea.microsoft
store.com)

.NET Framework 3.5 1 Free download at
http://www.microsoft.com/

Installed by SIMATIC
NET

Sample files and projects
The following list includes all files and projects that are used in this example.
Table 2-7

Component Note

OPC_UA_DOKU_v1_1_e.pdf This document.
OPC_UA_CODE_v1_1.zip This zip-file contains the OPC UA Client and the sources.
OPC_UA_STEP7_v1_1.zip This zip file contains the STEP 7 V13 project.

2.4 Alternative solutions

OPC Data Access on the basis of COM
Today, this automation task is typically solved with the COM based classic OPC
data access interface.

Advantages of the solution with COM OPC Data Access:
 Wide distribution of the interface.
 Many applications for different tasks support the interface.
 Easy access for local applications.

Disadvantages of the solution with COM OPC data access:
 Complicated DCOM configuration for remote access.
 No communication possible across firewall or internet boundaries.
 OPC clients can only be operated on Windows PC systems.
 Restricted security mechanisms and user authentication only within the

framework of the DCOM configuration.
 No user-defined access rights possible.

http://www.microsoft.com/

3 Basics
3.1 Basics on OPC

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 15

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3 Basics

3.1 Basics on OPC

Overview
In recent years, the OPC Foundation (an interest grouping of well-known
manufacturers for the definition of standard interfaces) has defined a large number
of software interfaces to standardize the information flow from the process level to
the management level. According to the different requirements within an industrial
application, different OPC specifications were developed in the past: Data Access
(DA), Alarm & Events (A&E), Historical Data Access (HDA) and Data eXchange
(DX). Access to process data is described in the DA specification, A&E describes
an interface for event-based information, including acknowledgement, HDA
describes functions for archived data and DX defines a lateral server to server
communication.
Based on the experience with this classic OPC interface, the OPC Foundation
defined a new platform, called OPC Unified Architecture (UA). The aim of this new
standard is the generic description and uniform access to all information which is to
be exchanged between systems or applications. This includes the functionality of
all previous OPC interfaces. Furthermore, it is to generate the possibility of natively
integrating the interface in the respective system, irrespective of which operating
system the system is operated on and irrespective of the programming language in
which the system was created.
This example discusses the OPC Unified Architecture interface. A detailed
documentation is available on the SIMATIC NET CD. For more information, please
go to www.opcfoundation.org.

What is OPC?
In the past, OPC was a collection of software interfaces for data exchange between
PC applications and process devices. These software interfaces have been defined
according to the rules of Microsoft COM (Component Object Model) and can
therefore be easily integrated into Microsoft operating systems. COM or DCOM
(Distributed COM) provides the functionality of inter process communication and
organizes the information exchange between applications, even across network
boundaries (DCOM). Using mechanisms of the Microsoft operating system, an
OPC client (COM client) can use it to exchange information with an OPC server
(COM server).
The OPC server provides process information of a device at its interface. The OPC
client connects itself with the OPC server and can access the offered data.
The use of COM or DCOM causes OPC servers and clients to run only on a
Windows PC or in the local network and that the communication to the respective
automation system has to be realized mainly via proprietary protocols. Additional
tunneling tools have to be used for the network communication between client and
server in order to get through firewalls or to avoid the complicated DCOM
configuration. The interface can furthermore only be accessed natively with C++
applications; .NET or JAVA applications can only gain access via a wrapper layer.
In practice, these restrictions lead to additional communication and software layers
which increase the configuration workload and complexity.
Due to the widespread use OPC, the standard is increasingly used for the general
connection of automation systems and no longer only for the original application as
driver interface in HMI and SCADA systems to access process information.

http://www.opcfoundation.org/

3 Basics
3.1 Basics on OPC

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 16

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

To solve the mentioned restrictions in real-life situations and to fulfill the additional
requirements, the OPC Foundation has defined a new platform in the last five
years, called OPC Unified Architecture, which offers a uniform basis for the
exchange of information between components and systems. OPC UA will also be
available as an IEC 62541 standard and therefore forms the basis for other
international standards.
OPC UA offers the following features:

 Summary of all previous OPC features and information such as DA, A&E
and HDA in a generic interface.

 Use of open and platform-independent protocols for inter-process or
network communication.

 Internet access and communication by means of firewalls.
 Integrated access control and security mechanisms on protocol and

application level.
 Extensive representation options for object-oriented models; objects can

have tags and methods and can trigger events.
 Expandable type system for objects and complex data types.
 Transport mechanisms and modeling rules form the basis for other

standards.
 Scalability of small embedded systems up to business applications and

from simple DA address spaces up to complex, object-oriented models.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 17

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3.2 Basics on OPC Unified Architecture

This chapter explains the basis of the OPC Unified Architecture necessary for the
example.

3.2.1 OPC UA specifications

Overview
The OPC UA specifications are divided in different parts due to the IEC 62541
standardization. Figure 3-1 gives an overview of the various parts.
Figure 3-1

Part 1 to 7 form the basis of the technology and the realization of OPC UA
applications. It is mainly parts 3 to 5 which form the core of the standard.
Parts 8 to 11 define OPC specific information models for the provision of classic
OPC information such as current process data or alarms.
Additional tools are defined in part 12 and 13.
Moreover, so called companion specifications are generated which define
additional information models, together with other standardization organizations,
based on OPC UA. The models and information in other standards form the basis
and the companion specification defines how this information is described and
transported with OPC UA.

Note For this application the parts three to five and part eight are relevant. The
description of the other parts is included to provide a comprehensive overview of
the OPC Unified Architecture.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 18

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

List of specifications
Table 3-1 explains the list of specifications and their contents. The currently
relevant specifications for the SIMATIC NET server are highlighted here

Table 3-1

Specification Description

Part 1 – Concepts This non-normative part gives an overview of the standard.
Part 2 – Security The requirements to security and an introduction to the basics are described

in the second part which is also non-normative.
Part 3 – Address Space
Model

This part defines the basic rules and elements for the set-up of the address
space of an OPC UA server. These rules form the basis for the information
models in part 5, 8 to 11 and the companion specifications.

Part 4 – Services This document is the only part which defines the interface for the access to
all OPC UA information. It specifies a list of methods, the so called services.
These services are generic and form the basis for all information models.

Part 5 – Information Model The basis information model defines the access points in the address space
and basic types such as, e.g. data types or object types. This part, together
with part 3 and 4 forms the core of OPC UA.

Part 6 – Service Mapping The services in part 4 are independent of the defined transport mechanism
used. This part specifies the realization of the services in different ways of
serialization, security and transport protocols for messages between OPC
UA client and server. This part forms the basis for the implementation of
communication stacks and is not relevant for the users of the technology.

Part 7 – Profiles A profile specifies subset of OPC functionalities for different applications
which are offered by an OPC UA server or which can be used by an OPC
UA client. This part defines the list of profiles for OPC UA.

Part 8 – Data Access This part defines the tag types, properties and quality status codes for
process data. All other necessary concepts are already contained in the
parts 3 to 5.

Part 9 – Alarms and
Conditions

This part defines the model for the description of condition monitoring and
process alarms and the signaling of status changes via events. All other
necessary concepts for events are already contained in the parts 3 to 5.

Part 10 – Programs This part defines how actions which are running over a longer period of time
can be started and monitored. This is performed on the basis of state
machines whose handling is defined in part 5 in OPC UA.

Part 11 – Historical Access Here, the access to historical data and events is defined.
Part 12 – Discovery Defines how the OPC UA server can be found in the network.
Part 13 – Aggregates This part defines aggregate functions for data compression such as average

or maximum value over a time range. The aggregates can be used for
current or historical data.

Devices (DI) This companion specification defines a generic model for the configuration
and diagnostics of devices.

IEC 61131-3 (PLC) This companion specification defines a mapping of the IEC 61131-3
software model and of the standardized control programming languages on
an OPC UA server address space.

Analyzer Device Integration
(ADI)

This companion specification defines a model for the configuration and data
linking for complex devices for process analysis based on DI

Field Device Integration
(FDI)

This companion specification defines a model for the complete engineering
of field devices on the basis of Electronic Device Description Language
(EDDL) and Field Device Tool (FDT).

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 19

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3.2.2 Structure of the OPC UA Server address space

Node in the address space
A node in the OPC UA address space is of a certain type such as e.g. object, tag
or method and is described by a list of attributes. All nodes have joint attributes
such as name or description and specific attributes such as, e.g. the value of a tag.
The list of attributes cannot be extended. Additional information on the node can be
added as property. Properties are a special type of tag.
The nodes are interconnected with references. The references are typified. There
are two main groups, hierarchical references such as, e.g. HasComponent for the
components of an object or non-hierarchical references such as, e.g.
HasTypeDefinition for a connection of an object instance to an object type.
Figure 3-2 offers an example for a node and the connection references.
Figure 3-2

Tag

Object
Attributes
- Name
- Description

References
- HasComponent
- HasComponent
- HasComponent

Attributes
- Name
- Data type
- Value

References

Method
Attributes
- Name
- Description

References

Tag
Attributes
- Name
- Data type
- Value

References

Available types of nodes in the address space
The defined node types are listed in Table 3-2. The list of types cannot be
extended.

Table 3-2

Node type Description Example

Object An object is used as typified container for tags,
methods and events.

The objects which represent a S7
connection always have the same
structure.

Tag Tags represent the data of objects or as
property, the properties of a node.

S7 tag in a data block.

Method Methods are components of objects and can
have a list of input or output parameters. The
parameters are described via defined properties.

BlockRead() method on a S7
connection object with which a block
can be read out from the S7.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 20

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Node type Description Example

View Views represent a part of the address space.
The node is used as access point and as filter
when browsing.

Views are not available in the
SIMATIC NET server.

Object
type

Object types supply information on the structure
or the components of an object.

S7ConnectionType describes the
components which are present in a S7
connection object.

Tag type Tag types typically describe which properties or
data types can be found in an instance of the
type (tag).

The AnalogItemType defines that a
tag of this types provides the
EngineeringUnits properties and the
EURange.

Reference
type

Reference types define the possible types of
references between nodes.

A method is referenced by an object
with HasComponent.

Data type Data types describe the content of the value in a
tag.

The value of a tag can have the
Double data type.

Structure of the address space
The basic structure of the OPC UA address space is defined in part 5. Figure 3-3
shows one part of this structure and SIMATIC NET shows specific parts. The
different areas are described in Table 3-3.

Figure 3-3

1

2

3

4

5

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 21

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Table 3-3

No. Description

1. In the Objects directory, instances such as objects and tags can be found. In this directory a data
access client can find the tags for data access Apart from the specific SIMATIC NET directories
you can also find the server object here which was defined by OPC UA. It contains information on
the range of function and the status of the server.

2. The two directories S7: and SYM: under Objects, are specific for the SIMATIC NET OPC UA
server. Under S7: the configured S7 connections are listed as objects. SYM: contains the
symbols from the STEP 7 project.

3. In the Types directory are the different type nodes for DataTypes, ObjectTypes, ReferenceTypes
and TagTypes.

4. An S7 connection object provides various status information and methods. You can, e.g. process
or read out blocks in the S7 via methods. Apart from the methods, the properties supply
information on the configuration of the S7 connection.

5. The S7ConnectionType belonging to the S7 connection object, can be found in the ObjectTypes
directory. It describes the minimum of methods and tags, present at the instance.
The rules for the type system are described in detail in /2/.

Namespaces and NodeID
Each node in the OPC UA address space is uniquely identified by a NodeID. This
NodeID is made up of a namespace to distinguish codes from different subsystems
and a code which can either be a numerical value, a string or a GUID.
Strings are typically used for the code. This is analog to OPC Data Access, where
the itemID as code is also a string. Numerical values are used for statistical
namespaces such as, e.g. type system.
OPC UA defines a namespace for the nodes defined by OPC. The OPC UA
servers additionally define one or several namespaces. Table 3-6 lists the relevant
namespaces for the SIMATIC NET OPC UA Server.

Table 3-4

Namespace Description

http://opcfoundation.org/UA/ Used for nodes which are defined in the OPC UA part 5. These are
nodes which form the basic structure of the address space and nodes
which represent types defined by OPC UA.

S7: Namespace for direct addressing of S7 tags with an optimized syntax.
S7COM: Namespace for direct addressing of S7 tags with syntax compatible to

the OPC Data Access Server.
SYM: Namespace for symbolic addressing of S7 tags. The symbol

information is exported from the STEP 7 project.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 22

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Attributes of the nodes
The most important attributes of nodes are listed as an example in the table below.
The main emphasis is on the tag node type.

Table 3-5

Attributes Node type Description

NodeID All Unique node address.
DisplayName All Localized display name for the node. The language depends on

the language requested by the client for the connection and on the
languages supported by the server.

BrowseName All Non-localized name for the node. The name contains a
namespace and is mainly relevant for the use of types.

NodeClass All Type of node such as, e.g. object, tag or method.
Description All (optional) Optional localized description of the node.
Value Tag Value of the tag. Just like for all other attributes, time stamp and

status of the value are delivered together with the value of the
attribute when reading them.

DataType Tag Data type of the Tag or the Value attribute. Data types are, e.g.
OPC UA defined data types such as Int32, Double or String or also
structured data types.

ValueRank Tag Indicates whether the value (value attribute) is a scalable value, an
array or a multi-dimensional array.

AccessLevel Tag Indicates whether the tag can be read or written.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 23

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3.2.3 Interface for access to the OPC UA Server address space

Communication channel and application objects
Figure 3-4 shows the different objects which can be created during data exchange
between OPC client and server. The objects are described in Table 3-6.
Figure 3-4

UA ServerUA Stack

Session

Subscription

Subscription

Monitored Item

Monitored Item

Secure Channel

Table 3-6

Object Description

Secure Channel The secure communication channel is realized in the OPC UA stack. The
objects on application level are independently viable. However, they can only
be created, used or changed within the context of a secure channel. If a new
secure channel is established after an interrupted connection, it has to be
assigned to the session on application level.

Session The session in the server is the logic connection between OPC UA client and
server. It contains user information and language settings for the connection.
The session is deleted from the server if no calls are received by the client
within the timeout. The timeout is specified by the client. The session is linked
to a secure channel but can be assigned a new secure channel if the
communication was interrupted.

Subscription A subscription object can be created by the client to group monitored items.
Monitored items are used to monitor value changes or to receive event
messages. The subscription is deleted by the server if no data or KeepAlive
messages could be sent to the client within the timeout. The timeout is
specified by the client.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 24

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Methods for establishing the connection
Table 3-7 explains the most important methods of the OPC UA interface for
establishing a connection.

Table 3-7

Method Description

OpenSecureChannel Opens a secure communication channel between client and server. To open the
connection, the server URL, the application certificates and the security settings
are necessary.

CreateSession Creating an application session within the context of a secure channel.
ActivateSession Activating the session by transferring the user authentication and language

settings. This method is also used to assign an existing session to a new secure
channel or to change the user.

CloseSession Closes the application sessions.

Methods of the session object
Table 3-8 explains the most important methods of the OPC UA interface regarding
the session.

Table 3-8

Method Description

Browse Supplies the list of nodes which can be obtained from a start node via a
reference. The quantity of nodes can be restricted by filters. For each node,
information is delivered which is, e.g. necessary for the display in a tree view.

Read Reads a list of node attributes. With this method, values of tags (value attribute)
and also meta data such as, e.g. the data type of a tag (DataType attribute) can
be read.

Write Writes a list of node attributes. This is a typical method for writing values of tags.
If the server permits it, other attributes can also be written.

CreateSubscription Creating a subscription for the receipt of data changes or event messages. The
subscription is used for the grouping of information which is to be monitored. All
new data or events are delivered as a package in adjustable time intervals for a
subscription.

DeleteSubscription Deletes a subscription.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 25

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Methods of the subscription object
Table 3-9 explains the most important methods of the OPC UA interface regarding
the subscription.

Table 3-9

Method Description

ModifySubscription Changes the settings of a subscription, such as e.g. the publish interval in
which new data for the client is collected and jointly sent.

CreateMonitoredItems Creating a list of monitored items in a subscription. A monitored item is either
used to monitor a value of a tag or to monitor event messages. Both types of
monitored items can be combined to this method in one call. In this
application, only data changes are monitored.

ModifyMonitoredItems Changes the settings of a list of MonitoredItems, such as e.g. the sampling
interval for the monitoring of value changes.

DeleteMonitoredItems Deletes a list of monitored items in a subscription.
Publish Method for transferring data packages for a subscription with value changes

and event messages in the publish interval. This method is not visible in the
Client API. The functionality there is realized as callback to the client
application.

3.2.4 Protocols and security mechanisms

OPC UA communication architecture
The services for the access to the information in an OPC UA server address space
such as browse, read and write are abstract and specified independent from the
transport protocol in part 4.
The different bindings for the transmission of service messages between OPC UA
client and server are defined in part 6. A binding is made up of protocol, security
mechanisms and serialization type for the data.
The bindings are implemented in communication stacks. At the moment there are
three implementations from the OPC Foundation, namely in ANSI C, C# / .NET and
JAVA. In this application, C# / .NET Stack is used.
The methods on the API of the stacks for the application correspond to the services
in part 4 with concrete data types from the respective programming language. This
is how in application development a native API can be accessed in the respective
programming language. The application can also be implemented independent
from the binding used. New bindings can be expanded by exchanging the OPC UA
stacks.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 26

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Synchronous and asynchronous calls
Figure 3-5

Stack

DA Client DA ServerCOMCOM

Synchron

Asynchron

Read

Read
Callback

UA Client

Synchron

Asynchron

UA ServerStack

Read

Read

Request

Request

Response

Response

Timeout up
to 6 minutes

Configurable
wait time

Call completed

For COM all calls to the server are synchronous. This is why additional
asynchronous functions were defined for few actions such as read and write. A
synchronous call starts the action in the server. After completing the action, the
server sends a synchronous callback to the client. Due to the synchronous call to
start the action, asynchronous calls may also block when the network connection is
interrupted.
In the case of OPC UA all calls to the server are asynchronous. There is no
differentiation between synchronous and asynchronous methods in the
specification. Once the request message was written on the network, the
asynchronous call is returned to the client application.
This is why an asynchronous call cannot be blocked. Since an asynchronous call
can always be made synchronous, the stacks offer all OPC UA methods also as
synchronous calls. For this purpose, the call is held in the stack until the response
message has arrived from the server or until the timeout has expired. The timeouts
can be adjusted individually per call. For the server there is no difference between
synchronous and asynchronous calls

Safety layers
The different security layers of OPC UA are described in Figure 3-6 and Table 3-10.
Figure 3-6

UA Client UA Server

Transport layer

UA Stack

Application

Transport layer

UA Stack

ApplicationSession

Secure Channel

Socket

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 27

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Table 3-10

Layer Description

Socket On the socket level, a connection-oriented security of the socket connection via
Secure Socket Layer (SSL) or via Virtual Private Network (VPN) can be used in
addition or as an alternative to the secure channel.

SecureChannel On the SecureChannel level, mutual authentication of the applications and a
message-based security of the communication are performed. Each message is
signed and encrypted to ensure the integrity and secrecy of the messages.
Basis of these mechanisms are certificates which uniquely identify the applications
based on a Public Key Infrastructure (PKI) system. A detailed description of this
mechanism is located in /2/.
Exchanging these certificates as an important step in the security configuration is
described in the next section.

Session On the session level a user authentication is performed.

Configuration options for Security
Table 3-11 describes the different configuration options for the security
mechanisms.

Table 3-11

Option Description

Security Policy None – In the secure channel no security is used.
Basic128Rsa15 – Set of algorithms for the security.
Basic256 – Set of algorithms for the security with longer keys.

Message Security
Mode

None – The messages are not secured.
Sign – The messages are signed.
Sign&Encrypt – The messages are signed and encrypted.

User
Authentication

Anonymous – User authentication is not necessary.
User Password – The user authentication is performed using user names and
password.
Certificate – The user authentication is performed using a certificate.

Exchange of certificates
The exchange of certificates between client and server and the accepting of the
certificates is explained in Figure 3-7 and Table 3-12.
When all applications involved implement the guidelines of the OPC UA regarding
the security configuration, then only one manual step at the server is necessary for
the exchange of certificates, since the certificates are automatically exchanged
between the applications and the certificates only have to be accepted by an
administrator.
The manual exchange of certificates is explained in chapter 5.3.2 since not all
applications implement the automatic steps yet.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 28

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-7

Client Certificate Store

OPC UA ServerOPC UA Client

Client.der

GetEndpoints

Server Certificate Store

Server.der

OpenSecureChannel

SecureChannel

Server.der

Copy
Rejected Client.der

Accept

4

1

2

3

Table 3-12

Step Description

1. Before the client can connect itself with the server, it needs the necessary
information such as the security mechanisms, protocols and the address for
connection demanded by the server. This information indicates a so called
endpoint. The available endpoints of a server are delivered with the
GetEndpoints call. With the description of the endpoints the server also
delivers its certificate.

2. Once the endpoints have been selected with the security settings, the user
is asked whether he/she wants to accept the certificate. If yes, this is stored
in the certificate storage of the client.

3. When calling the OpenSecureChannel the client certificate is transferred to
the server. If the certificate is not known in the server, it will be stored in a
Rejected directory.

4. With a configuration tool of the server, certificates from the Rejected
directory can be accepted. They are moved to the certificate storage of the
server.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 29

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Server discovery
So far, a Local Discovery Service (LDS) has been defined for OPC UA Discovery
which from its basics functionality is comparable with the OPC Enum with the
classic OPC.
Figure 3-8

Device1

UA Client

UA Server
opc.tcp://device1:4840
- Basic128Rsa15
- Sign

PC1
Discovery Server

opc.tcp://pc1:4840

SIMATIC NET
opc.tcp://pc1:4845
- Basic128Rsa15
- Sign
opc.tcp://localhost:4845
- None / None

UA Server
opc.tcp://pc1:27271
- Basic128Rsa15
- Sign&Encrypt

FindServers

GetEndpoints

CreateSession

FindServers
GetEndpoints
CreateSession

Register
server

A LDS supplies a list of the local network nodes available on OPC UA servers. By
default, the LDS is registered on port 4840 of the OPC UA. Therefore the LDS is
always addressable as URL via opc.tcp://<Node>:4840. The servers on a PC are
registered with the LDS.
A client can select a server and establish a connection with the following steps:
 Establishing a connection without security with port 4840 and calling

FindServers. This call supplies a list of available servers and their discovery
URL.

 Establishing a connection without security to the discovery URL of the desired
server and calling the GetEndpoints. This call supplies the list of endpoints
with the endpoint URLs and the security settings of the endpoints.

 Establishing a connection with the endpoint URL and the demanded security
settings. Subsequently an application session can be opened with
CreateSession.

If only one OPC UA server is available on a system, it can run on the standard port
4840, since all servers also have to implement FindServers and as a result only
supply themselves. In this case, the endpoints also use port 4840.

3 Basics
3.2 Basics on OPC Unified Architecture

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 30

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3.2.5 Delimitation and comparison with OPC data access

Overview
The OPC Unified Architecture draws on all the features of the classic OPC
interfaces and simply implements them in a joint approach for different classic OPC
interfaces.
This application deals with the data access functionality in OPC UA. This is why the
implementation of the OPC data access on an OPC UA is explained in this chapter.

Structure of the address space
Table 3-13 explains the implementation of the OPC DA address space on the
concepts of OPC UA.

Table 3-13

OPC Data Access OPC unified architecture

Node in the address space
Directories are used to hierarchically structure the
address space.

Directories can be realized with Object folders. The
hierarchy is set up with Organizes references.

OPC Items represents data points in the address
space. They are the sheets of the directories.

Tag nodes are used to depict OPC items.

Properties and attributes
ItemID for OPC items NodeID for all nodes in the address space
Property Item Canonical Data Type Attribute DataType, ValueRank and ArrayDimension
Properties Item Value, Quality and Timestamp The value attribute supplies value, status and

timestamp.
Property Item Access Rights Attribute AccessLevel and UserAccessLevel

Access to data
Table 3-14 explains the implementation of the OPC DA access to data on the
concepts of OPC UA.

Table 3-14

OPC Data Access OPC unified architecture

Context
COM object OPCServer OPC UA Session
COM object OPCGroup OPC UA Subscription
OPCItem in a group Data Monitored Item in a subscription

Creating a context
CoInitializeEx
CoInitializeSecurity
CoCreateInstanceEx creates OPCServer

OpenSecureChannel
CreateSession
ActivateSession

AddGroup
RemoveGroup
IOPCGroupStateMgt::SetState

CreateSubscription
DeleteSubscriptions
ModifySubscription

AddItems
RemoveItems

CreateMonitoredItems
DeleteMonitoredItems

3 Basics
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 31

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

OPC Data Access OPC unified architecture

Access to information
ChangeBrowsePosition / BrowseOPCItemIDs
GetItemID / QueryAvailableProperties

Browse

IOPCItemIO::Read
IOPCSyncIO::Read
IOPCSyncIO2::ReadMaxAge
IOPCAsyncIO2::Read
IOPCAsyncIO3::ReadMaxAge
IOPCItemProperties::GetItemProperties

Read

IOPCItemIO::WriteVQT
IOPCSyncIO::Write
IOPCSyncIO2::WriteVQT
IOPCAsyncIO2::Write
IOPCAsyncIO3::WriteVQT

Write

OnDataChange Publish
GetStatus
ShutdownEvent

Reading or monitoring the ServerState
and ServerStatus tags

3.3 Basics on S7 communication

3.3.1 General

This section describes how to access S7 controllers via UA server using the
SIMATIC S7 protocol.

Functional chain of the communication
The S7 communication is divided into two very different communication services,
into tag services and block services. On the level of the OPC UA server they are
almost completely covered. The communication service used for the controller can
only be detected on the basis of the NodeID. The “S7:” name space specifies that it
is a new addressing type based on the syntax of anypointers. Especially in the
case of a large number of tags it offers a clearly more performant access. To
achieve compatibility with the earlier syntax of ItemIDs for the classic OPC Data
Access, the old structure of the identifier under the “S7COM:” namespace remains
present.
Internally, the OPC UA server separates the NodeID into its components and,
based on its structure, detects via which communication service communication to
the S7 controller is to take place. Here, the connection name identifies the
communication partner (this name represents an IP address for example) and the
key word “BRCV” or “BSEND” causes the use of the block services instead of the
tag services. The S7 type-identifier and the offset address indicate the position of
the data within the controller, and the data type specifies the interpretation of this
data.

3 Basics
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 32

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-9

OPC UA Client
The syntax of the NodeIDs used decides on the service

actually used for the communication via S7 protocol

S7 protocol

S7 block services

SendBuffer<RID> RcvBuffer<RID>

Data
(max. 64 kBytes)

Data
(max. 64 kBytes)

BSEND
BRCV

S7 tag services

PUT
GET

List of
addresses

to be written

List of
addresses
to be read

OPC UA server

Read or write optimization summarizes
individual addresses if possible

Write (“S7connection1.DB20.0,W,2048”) Write (“S7connection1.BSEND1.4096.0,B4096”)
Read (“S7connection1.BRCV1.4096.0,B4096”)Read (“S7connection1.DB30.100,DW,1024”)

S7-300S7-400

A bilaterally configured
connection must exist for
BSEND/BRCV and the
controller needs to call the
SFB12/13 blocks and supply
their parameters.

S7-1200/
S7-1500* * with restrictions see

chapter 3.3.2

Tag services
An S7 controller replies to requests via tag services; for this purpose only a
unilaterally configured connection is necessary. Each S7 controller is a so called
“S7 server” and answers PUT/GET requests without the need of any
implementation in the control program of the PLC. All data areas of the controller
can be directly accessed (I, Q, M, DB, etc.). This communication service is very
flexible and, above all, easy to use.

NodeIDs for tag services
Syntax in namespace S7:
<connectionname>.<S7object>.<address>{,{<S7type>}{,<quantity>}}
Example: S7-connection_3.DB10.20,W
A tag of the word type (16bit no signs), which is located in data block 10 and which
starts at the byte offset address 20 (meaning it consists of bytes 20 and 21). This
tag is retrieved with PUT/GET via the connection called “S7connection_3”,
meaning by the S7 controller which is hidden behind this connection.

3 Basics
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 33

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Symbolic NodeID
Apart from direct addressing via the new syntax (“S7:”Namespace) as well as the
old compatible address (S7COM:-Namespace), there is the option of symbolic
addressing. For this purpose, the address space is generated from STEP 7. For all
symbolic identifiers of the data points in the S7 controllers which are connected
with an OPC server via a S7 connection, a symbol export can be triggered. The
thus generated symbols file with the ending ATI is introduced to the OPC UA
server via download from STEP 7 or via XDB import. The ATI file (Advanced Tag
Information) contains an image of the symbolic name for the direct addresses.

Note Symbolic addressing in the fast, highly optimized ATI variant is only available for
the tag services of the S7 protocol. In different words: all symbols are eventually
retrieved from the controllers via PUT/GET. Symbols which represent a BSEND
or BRCV tag are not possible.

Block services
For the exchange of large data volumes, the more effective block service is
available. On a bilaterally configured connection, large data volumes (up to
64kbytes) can be exchanged. Communication is based on the exchange of data
buffers. However, the respective system function blocks (BSEND/BRECV) have to
be called in the control program for this purpose. The OPC UA server provides the
respective counterparts on the PC when the corresponding NodeIDs (former OPC
items) are created.

Structure of the NodeIDs for block services
Syntax BRCV in namespace S7:
<connectionname>.brcv<rid>.<address>{,{<S7type>}{,<quantity>}}
Example: S7-connection_5.brcv3
The complete receive buffer for the BSEND/BRECV pair with ID 3, which is
connected via the connection named “S7connection_5”, is represented in a
ByteString for OPC UA. This ByteString always contains the data last sent from the
communication partner with BSEND (on the other side of “S7connection_5”). On a
S7 connection, several BSEND/BRECV pairs belonging together and connected
via their RID can exist. Here, it is the BRECV which belongs to BSEND with ID 3.
Syntax BSEND in namespace S7:
<connectionname>.bsend<rid>.<bufferlength>.<address>{,{<S7type>}{,<quantity>}}
Example: S7-connection_2.bsend1.1024.100,W,20
When writing on this NodeID, an array of words (unsigned integer 16 bit) with 20
elements from the byte offset address 100 is written to the send buffer of 1024 byte
length. The range of 100 to 140 is overwritten in the 1024 byte size buffer. The
entire block is sent with ID 1 to the communication partner who has to provide a
BRECV with ID 1 and a minimum length of 1024 bytes to be able to receive the
data.

Note To be able to use the BSEND/BRCV block services, a bilaterally configured
connection has to exist and the controller has to independently call the SFB12/13
blocks and supply their parameters.

Also read the notes in the SIMATIC NET manual “Industrial Communication –
Volume 2 – Interfaces” regarding the subject of block-oriented services.

3 Basics
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 34

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3.3.2 Optimized S7 communication

Background
With an S7 connection, access to optimized data blocks in the S7-1200/S7-1500
CPUs is no longer possible. In order to fetch data from an S7-1200/S7-1500 via an
S7 connection using an OPC server, the data blocks to be read from must not be
optimized.

Figure 3-10 Properties of a data block

Disadvantage: the performance of the innovated S7-1200/S7-1500 controllers is
affected by using non-access-optimized data blocks.

Remedy
In order to avoid performance loss in the S7-1200/S7-1500 controllers due to non-
access-optimized data blocks, the so-called “optimized S7 communication” applies
as of SIMATIC NET OPC V12.

Figure 3-11

This connection type is created automatically when using SIMATIC NET OPC
Server V12 and an innovated controller. Access to access-optimized data blocks is
then also possible using the optimized S7 connection.

Access with OPC Client
The point of access to the optimized S7 connections is realized via the
SimaticNET.S7OPT server on port 4850.

4 Functional Mechanisms of this Application
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 35

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4 Functional Mechanisms of this Application
General overview

Figure 4-1

OPC UA
Client

Example
Client
API Session Subscription

OPC UA .NET Client SDK

OPC UA .NET Stack

Discovery

Simple
Client

UA
Client

Browse Control

Attribute List Control

Monitored Items Control

SIMATIC
NET

OPC UA
Server

OPC UA ANSI C Stack

OPC UA TCP protocol

S7 OPC UA server

SIMATIC
S7

SIMATIC
S7

S7 protocol

Table 4-1

Module Description

OPC UA .NET Stack The .NET based OPC UA communication stack of the OPC foundation.
.NET Client SDK The .NET based OPC UA client SDK of the OPC foundation.
Client API Reusable, simplified and tailored to this .NET Client API task. It offers reusable

C# classes for discovery, session and subscription handling.
Simple Client Simple user interface for the use of the Client API with the functions Connect,

Disconnect, Read, Write and Data Monitoring. This example also shows direct
addressing and the handling of namespaces.

UA Client Convenient OPC UA client with the functions: discovery, connect, disconnect,
browse, read of all attributes, write and data monitoring.
General functions such as browse, listing attributes and monitoring of data
tags are encapsulated in reusable controls.
In this example the symbolic tags can be browsed and can be used directly
from the browser.

ANSI C UA Stack The SIMATIC NET OPC UA server uses the optimized and portable OPC UA
ANSI C stack of the OPC foundation.

S7 OPC UA server The SIMATIC NET OPC UA server implements the necessary server logic for
sessions and subscriptions and the data connection to the S7 stations.

4 Functional Mechanisms of this Application
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 36

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

.Net Client SDK
The used SDK of the OPC foundation is not anymore maintained or supported.
That does not affect the functionality of the application example.
It is recommended to use for own applications the SDKs of commercial supplier
like the SDKs from Unified Automation (refer to \7\).

Program overview
The figure below shows the function blocks in the OPC UA Client and the
interaction with the OPC UA Server.
Figure 4-2

Protocol layer / driver

OPC UA server

OPC UA Interface

.N
et

O
P

C
U

A
C

lie
nt

pr
oc

es
s

O
PC

U
A

se
rv

er
pr

oc
es

s Session Subscription2 5

Client Application

Server
Connection

Subscription
Management

Callback
object

4
31

6

Browse
Read
Write

4 Functional Mechanisms of this Application
3.3 Basics on S7 communication

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 37

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Table 4-2

No. Description

1 When establishing the connection between user interface and the OPC UA
server, a client API object is generated on the client side. This object manages
the connection with the server (2). It furthermore provides all OPC UA services
with the exception of services that are related to a subscription.

2 The session object is generated in the server via the OPC UA interface.
3 When establishing a connection between user interface and the OPC UA server,

the first level of the address space of the OPC UA servers is also represented.
In the process, the browse service of the OPC UA interface is used. If a node is
selected in the tree view of the browse control in the client, the attribute values
of the node are displayed in another window via read services.

4 When registering tags to monitor value changes, a subscription object is created
which supplies all OPC UA services which relating to a subscription.

5 A subscription object which manages all subscription relevant settings is
generated in the server via the OPC UA interface.

6 To be able to receive value changes from the server, a callback connection is
established. A SubscriptionCallback object is created in the client and
connected to the subscription in the server. If changes are sent from the server
to the client, it enters the changes into the monitoring window.

4 Functional Mechanisms of this Application
4.1 OPC UA Client API

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 38

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4.1 OPC UA Client API
The class diagram in Figure 4-3 shows the classes of the OPC UA ClientAPI.
These classes encapsulate the accesses to the OPC UA server in a simple and
reusable .NET API.
The classes are summarized in the .NET assembly Siemens.OpcUA.dll. It has
dependencies to the .NET Client SDK Assembly Opc.Ua.Client.dll and to the .NET
Stack Assembly Opc.Ua.Core.dll.
Figure 4-3

Class discovery
The Discovery wrapper class described in the table below encapsulates the
required methods for the server discovery.
The class is implemented in the ClientDiscovery.cs file in the ClientApi project.

Table 4-3

Method Functionality

FindServers Detects the OPC UA servers on a computer.
GetEndpoints Detects the available endpoints for one or several servers.

4 Functional Mechanisms of this Application
4.1 OPC UA Client API

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 39

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Server class
The Server wrapper class described in the table below encapsulates the
functionality for the access to the OPC UA server. Moreover, it simplifies the use of
those OPC UA services which are required by the client application, with the
exception of the services for the subscription.
The class is implemented in the ClientAPI.cs file in the ClientApi project.

Table 4-4

Method Functionality

Connect Creates a secure channel as communication channel and a session in the
OPC UA server.

Disconnect Deletes the session in the server and disconnects the secure channel
connection.

Browse Supplies the list of nodes which are obtainable from a transferred start node
via a reference. The list of results can be influenced via filter settings.

Read Supplies the values to a list of attributes of a node.
ReadValues Supplies the values of the attribute value of a list of nodes.
WriteValues Writes the value of the attribute value of one or several tags.
AddSubscription Creates a subscription and links it to the session.
ModifySubscription Changes the settings of a subscription.
RemoveSubscription Removes an existing subscription.
Session_KeepAlive Keep-alive Callback.
Session_Notification Called when the OPC UA server sends a reply (publish message).
CertificateValidator_
CertificateValidation

Called when the certificate of the servers is considered untrusted.

Subscription class
The Subscription wrapper class described in the table below, encapsulates the
use of a subscription for the value exchange between server and client.
The class is implemented in the ClientSubscription.cs file in the ClientApi project.

Table 4-5

Method Functionality

AddDataMonitoredItem Creates a monitored item to monitor value changes and link them with the
subscription.

ModifyMonitoredItem Changes the settings of the monitored item.
RemoveMonitoredItem Removes a monitored item from the subscription.

4 Functional Mechanisms of this Application
4.2 Simple OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 40

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4.2 Simple OPC UA Client

The simple client provides a simple example for the use of the Client API. The most
important function such as connect, disconnect, read, write and monitoring of data
is displayed in a file or class with a dialog. The code for the example can be found
in the SimpleClient project in the MainForm.cs file.

User interface of the simple example
The user interface is operated via buttons for the individual functions.

Figure 4-4

Table 4-6

No. Description

1. The server URL can be specified in the text box for the Server URL. For the SIMATIC NET OPC
Server this is composed of opc.tcp://<computername>:4845.
In the Namespace URI text box the namespace used is indicated. This is S7: for direct
addressing, S7COM: for direct addressing via the OPC DA compatible Syntax and SYM: for
symbolic addressing.

2. In the text boxes for the Tag Identifier the identification code of the NodeID is indicated. For
namespace S7:, for example, it is composed
of<S7connection>.<dataarea>.<offset>,<datatype>
The NodeID for reading and writing is made up of identification and namespace index. The
namespace index results from the position of the namespaces in the namespace table of the
server. This table can be read with Read from the server.

3. The connection to the OPC UA server can be established or terminated via the Connect and
Disconnect buttons. The connection is only established without security. Secure connection
establishment is explained in the next example.

4. A subscription is created via the Monitor button and two Monitored Items are created in the
Subscription with both NodeIDs. The data changes are displayed in the text boxes next to the
button. Errors are each shown instead of values.

5. The Read button reads the values (Attribute value) of both tags with the specified NodeIDs and
displays them in the text boxes next to the button.

6. The Write button writes the value from the text box next to the button onto the tag identified by
the NodeID.
In order to write, “read” has to be called first since the text from the text box has to be converted
in the data type suitable for the tag. The conversion is on the basis of the data type which is
supplied at “read”.

13

42 5 6

7

8

4 Functional Mechanisms of this Application
4.2 Simple OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 41

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Description

7. In the “Block Read” group, data can be received which is actively sent by the S7 with the BSEND
block service. This can be, for example, used for the sending of result data from the S7 to a PC
application.

8. In the “Block Write” group, data blocks can be sent to the S7 which are there received by the
BRECV block service. Two blocks with different contents can be sent. This can be used, for
example, for the download of recipe data for the S7.

Functions of the simple example
The functions can be found in the MainForm class in the MainForm.cs file. Simple
error handling is implemented in the functions. If an exception occurs for OPC UA
calls, a dialog with the error message will appear. If an error occurs for one or
several tags with the tag related calls, the error is displayed in the respective text
boxes.

Table 4-7

Function Description

btnConnect_Click In this function the connection to the OPC UA server is established via
the Server::Connect() function of the Client API. The URL string from
the corresponding text box is transferred.
If the connection has been successfully established, the namespace
table will be read via the Server::ReadValues() function. In the returned
table the namespace from the Namespace URI text box is searched.
The index in the table is stored in a class tag.

btnDisconnect_Click In this function the connection to the OPC UA server is established via
the Server::Disconnect() function of the Client API.

btnRead_Click In this function, first of all, the two NodeIDs from the namespace index
and the identifier texts are formed. Subsequently, both values are read
via the Server::ReadValues() function. The result is written into the
respective text box. The result can either be the written value or an
error code.

btnMonitor_Click If no subscription has been created, the subscription will be created
first in this function with Server::AddSubscription(). Subsequently, the
two NodeIDs from the namespace index and the identifier texts are
formed. Afterwards, both monitored items are created with
Subscription::AddDataMonitoredItem(). The respective text box for the
display of the values is transferred to Client Handle.
If a subscription has already been created it is deleted by
Server::RemoveSubscription().

ClientApi_ValueChanged The function is indicated as callback function at
Subscription::AddDataMonitoredItem().
In the function it is first of all checked whether the call arrives in the
main thread of the dialog. If this is not the case, the call is transferred to
the main thread of the dialog via BeginInvoke. Otherwise access to the
dialog is not possible.
Afterwards it is checked whether the Client Handle is a text box. If not,
this is a callback for the Read block.
If it is the value of a normal tag, the client handle is cast back to the text
box and after checking the status, either the value or an error code is
entered in the text box.
However, if it is the value of a block tag, the byte array is extracted and
displayed as a sequence of HEX values for the individual elements of
the byte arrays.

btnWrite1_Click The function composes the NodeID for tag 1 and calls the
writeNewValue function with the NodeID, the new value as text from
the text box and with the value last read.

4 Functional Mechanisms of this Application
4.2 Simple OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 42

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Function Description

btnWrite2_Click The function composes the NodeID for tag 2 and calls the
writeNewValue function by means of the NodeID, the new value as text
from the text box and with the value last read.

writeNewValue In this function the new value from a text is first of all converted to the
data type which was delivered during the last read performed.
Afterwards the value is written via the Server::WriteValues() function
and the result is checked.

btnMonitorBlock_Click If no block subscription has been created, the subscription is created
first in this function with Server::AddSubscription(). Subsequently, the
NodeID is formed from the namespace index and the identifier text.
Afterwards the monitored item is created with
Subscription::AddDataMonitoredItem().
If a subscription has already been created it is deleted by
Server::RemoveSubscription().

btnWriteBlock1_Click The function composes the NodeID for the block tag and simulates
data record 1. The simulation creates a byte array with the length
indicated in the user interface and fills the values with a tag value which
starts at 0 and is incremented after each assignment.
Afterwards the writeNewBlockValue function is called with the NodeID
and the new value.

btnWriteBlock2_Click The function is identical to btnWriteBlock1_Click; however, the tag
value assigned here starts with 255 and is decremented after each
assignment.

writeNewBlockValue In this function the value is written via the Server::WriteValues()
function and then the result is checked.

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 43

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4.3 Comfortable OPC UA Client

4.3.1 User interface

The figure and table below describe the user interface of the generic OPC UA
client example with which the information of the namespace of an OPC UA server
can be conveniently accessed.

Figure 4-5

Table 4-8

No. Description

1. The server can be selected via the endpoints selection list. For this purpose, the list of servers
and the endpoints are detected by the discovery server. The computer, from which the discovery
server is to be prompted, can be entered in the node text field. If the field is empty, the local
discovery server is addressed.

2. The connection to the server can be established or terminated via the Connect button.
3. In Browse Control the entire address space of the connected server is shown in a hierarchical

tree view. Only hierarchical references are displayed.

4. For the selected nodes the attributes are read in Browse Control and they are displayed in this
control.

5. With drag&drop the tags can be dragged from Browse Control to the monitoring window. For the
tag, the NodeID, the sampling interval, the value, the time stamp and the status code is
displayed.

6. The properties of the subscription and monitored items can be changed via the context menu in
the monitoring window or via the application menu. This is how e.g. the sampling interval can be
changed.
The dialog for writing can also be opened. Doing this, accepts those tags in the dialog which
have been marked in the monitoring window.

1

3

4

2

5

6

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 44

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4.3.2 Class diagram

The following class diagram shows the classes of the OPC UA sample client.
These classes realize the functionality of the user interface and use the classes of
the UA client API. The individual classes are explained in detail on the following
pages.

Figure 4-6

MainForm class
The MainForum class described in the following table, implements the functionality
of the main dialog of the client application.
The class name corresponds to the file name in the UAClient project.

Table 4-9

Method Functionality

MainForm Constructor of the class.
Connect Implements the functionality to establish a connection with the server

and initializes the Browse Control.
Disconnect Terminates the connection to the server.

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 45

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

BrowseControl class
The BrowseControl class described in the table below, implements the
functionality for displaying the address space of the server.
The class name corresponds to the file name in the UAClient project.

Table 4-10

Method Functionality

BrowseControl Constructor of the class.
Browse Navigates through the tree view, starting from the selected node.

AttributeListControl class
The AttributeListControl class described in the table below, implements the value
display of all attributes of a node in the address space.
The class name corresponds to the file name in the UAClient project.

Table 4-11

Method Functionality

AttributeListControl Constructor of the class.
ReadAttributes Reads the attribute values of a node and displays them in a list.

MonitoredItemsControl class
The MonitoredItemsControl class described in the table below implements the
creation of a subscription and of MonitoredItems and the display of values or the
status of the Monitored Items.
The class name corresponds to the file name in the UAClient project.

Table 4-12

Method Functionality

MonitoredItemsControl Constructor of the class.
ClientApi_ValueChanged Callback function for the Data Change Events of the client API. The new

value, time stamp and status are entered in the respective line. For this
purpose the Client Handle is casted on the object which represents the
line.

MonitoredItems_DragDrop In this function a NodeID which is dragged to the control via drag&drop,
is created as Data Monitored Item. If no subscription exists yet, a
subscription is created first.

WriteValuesDialog class
The WriteValuesDialog class described in the table below implements the display
and the change of the current values of one or of several tags.
The class name corresponds to the file name in the UAClient project.

Table 4-13

Method Functionality

WriteValuesDialog Constructor of the class.
WriteValues Writes the value of one or several tags.
UpdateCurrentValues Updates the values in the dialog by calling Read.

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 46

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Using the client API in the example
The table below lists the files and functions in which the client API is used.

Table 4-10

Client API Used in

Class discovery
FindServers MainForm.cs in the UrlCB_DropDown function
GetEndpoints MainForm.cs in the UrlCB_DropDown function
Server class
Connect MainForm.cs in the Connect function
Disconnect MainForm.cs in the Disconnect function
Browse BrowseControl.cs in the Browse function
Read AttributeListControl.cs in the ReadAttributes function
ReadValues WriteValuesDialog.cs in the UpdateCurrentValues function
WriteValues WriteValuesDialog.cs in the WriteValues function
AddSubscription MonitoredItemsControl.cs in the MonitoredItems_DragDrop function
ModifySubscription MonitoredItemsControl.cs in the MonitoringMenu_PublishingInterval_Click

function
RemoveSubscription MonitoredItemsControl.cs in the RemoveSubscription function
Subscription class
AddDataMonitoredItem MonitoredItemsControl.cs in the MonitoredItems_DragDrop function
ModifyMonitoredItem MonitoredItemsControl.cs in the MonitoringMenu_SamplingInterval_Click

function
RemoveMonitoredItem MonitoredItemsControl.cs in the MonitoringMenu_RemoveItems_Click

function

4.3.3 Sequence diagrams

Establishing and terminating the connection to the OPC UA server - User interface
The following sequence diagram shows the procedures which are necessary to
establish the connection to the OPC UA server. By clicking Combobox Endpoints
the user selects an available endpoint first.
Establishing a connection can be started via the Connect button in the user
interface or via the Server menu. Once the connection was successfully
established the label Disconnect appears on the Connect button. The sequence
diagram also shows the processes which are triggered through the “Disconnect
Server” action via the Disconnect button.

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 47

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Figure 4-7

Table 4-14

No. Description

1 When opening the selection list a ClientAPI::Discovery object is created and the methods
FindServers and GetEndpoints are called.

2 The ConnectDisconnect_Click method is called at the MainForm object via the “Connect” user
action. With this method, the actions to establish a connection to the server are performed.
In the first step, the ClientAPI::Server object and there, the Connect method is called (2a). This
ensures that the connection to the OPC server, defined by the URL, is established.
If a certificate is considered untrusted, the user can still accept it and establishing the connection is
continued (2b).
In case of an existing connection, the Browse method is called in a second step on the
ClientAPI::Server object (2c). This displays the first level of the address space of the OPC UA
servers in BrowseControl.

3 Through the “Disconnect Server” user action, the ConnectDisconnect_Click method is called on
the MainForm object. In the case of an already existing connection, this method calls the
Disconnect method at the ClientAPI::Server object. This terminates the connection with the OPC
UA server.

2a

2b

2c

3

1

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 48

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Establishing a connection to the OPC server and closing it – Client API
The sequence diagram below shows the processes during establishing a
connection to an OPC UA server in the context of the client API and when closing
it.
Figure 4-8

Table 4-15

No. Description

1 The Connect action creates an SDK::SessionChannel object for the establishment of a secure
connection to the server.

2 Subsequently a ClientAPI::Session object is generated which encapsulates the channel to the
server.

3 In the next step the ClientAPI::Session object registers a KeepAlive Callback at the OPC UA
server.

4 Finally, the Open call establishes the actual connection between client and server.

5 Within the framework of the Disconnect action, Close is called on the ClientAPI::Session object.

1

2

3

4

5

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 49

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Reading attributes
The sequence diagram below shows the processes during the reading of attribute
values.

Figure 4-9

Table 4-16

No. Description

1 If a node is selected in the BrowseControls tree, an OnSelectionChanged Event is triggered.
2 The event is passed on to the MainForm.
3 The ReadAttributes method of the AttributeListControl is called by the event.

4 There, Read on the ClientAPI::Server object is called and the values are displayed.

1

2

3 4

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 50

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Writing of values
The sequence diagram below shows the processes during the writing of tag values.

Figure 4-10

Table 4-17

No. Description

1+2 When clicking the “WriteValues” entry in the MonitoredItemsControl (1) context menu, the “Write
Values” dialog is opened (2). This is where the current values of the tags previously selected in
MonitoredItemsControl will appear.

3+4 If the user clicks the Ok button (buttonOk_Click action) after entering the new values,
WriteValues is called on the WriteValuesDialog object.

5 In turn WriteValues is called on the ClientAPI::Server object.

6 The dialog is eventually closed by calling Close on the WriteValuesDialog object.

7 Alternatively, the user can click the Apply button (buttonApply_Click action).

8 The UpdateCurrentValues is then called and the dialog is not closed.

1 2
3

8

4

5

6

7

4 Functional Mechanisms of this Application
4.3 Comfortable OPC UA Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 51

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Registering tags for monitoring
The sequence diagram below shows the processes when registering tags for the
monitoring of value changes.

Figure 4-11

Table 4-18

No. Description

1 First of all, a drag&drop action with the MonitoredItemsControl as target checks whether a
subscription exists. If this is not the case, AddSubscription is called on the client API.

2 In the process, a subscription object is generated and subsequently the AddSubscription is called
on the ClientAPI::Session object.

3 In the next step AddDataMonitoredItem is called on the subscription object.

4 This is where a ClientMonitoredItemData object is generated.
5 From now on, value changes are received by the server and passed on to MonitoredItemsControl,

to be displayed there.

1
2

3

4

5

4 Functional Mechanisms of this Application
4.4 S7 program

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 52

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

4.4 S7 program

Overview
The S7 program is essentially divided in two parts. First of all, the dynamic data for
the tag services is simulated; afterwards the send data is simulated and the block
services are called in FB 100.

Figure 4-12

FB 13

FB 12

OB 1 FC 10
FC 11

FC 13

FC 14

DB 10
DB 50

DB 51SFC 21

FB 100
DB 112

DB 113

SFB 12

SFB 13

SFC 21

Program blocks for Tags - Services

Program blocks for Block - Services

(only S7-300)

(only S7-300)

NOTICE The S7 program cannot be used together with optimized blocks due to the
used absolute address!

4 Functional Mechanisms of this Application
4.4 S7 program

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 53

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Simulation of dynamic data
The table below gives a brief overview of program parts and their function for data
simulation. Details were deliberately excluded here; further comments are
contained in the STL code.
Table 4-19

Block Remarks

OB1 Cyclic Main
initially, a variable timer is set here whose interval is used to call the
other program functions. The rate of change of data can be set via
DB10 byte 0.

FC10 ChangeDateAndTime
increments a date value as well as the time in DB51.

FC11 ChangeSimpleTypes
increments the data of DB51. 8bit types are incremented with +1,
16bit types with +100 and 32bit types with +1000.

FC13 ChangeString
increments a string of length 10 in DB51.

DB10 SimulationConfiguration
contains global tags for the configuration of data simulation.

DB50 StaticDataTypes
contains simple data types which were given symbolic names. The
values are pre-initialized with maximum end value range.

DB51 DynamicDataTypes
contains simple data types which were given symbolic names. The
values are incremented with the functions FC10 to FC13 according
to their value ranges.

SFC21 FILL
auxiliary function to fill data areas with values, storage initialization.

4 Functional Mechanisms of this Application
4.4 S7 program

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 54

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Block-oriented data
The S7 communication for the S7-300 is realized via FBs (loadable function blocks)
and not via SFBs (integrated system function blocks) as is the case for the S7-400.
However, if you call a SFB instead of an FB in the S7 program of the S7-300, the
block delivers an "ERROR" and displays "STATUS = 27". This status indicates that
the function block for the S7 communication does not exist on the S7-300. The
communication FBs for S7-300 are located in the Instructions tab of the Task Card
at Communication > S7 communication.
The table below gives a brief overview of the program parts and their function
regarding BSEND/BRCV. Details were deliberately excluded here; further
comments are contained in the STL code.
Table 4-20

Block Remarks

OB1 Cyclic Main
Call of the send block (SFB12) for BSEND and of the receive
block (SFB13) for BRCV via function block 100.
For S7-300, FB12 and FB13 from the library are used since S7-
300 communicates via loadable FBs and not via system
functions.

FC14 ChangeSendData
Increments a byte which will then be copied to the entire send
buffer

FB100
+ DB100 (Instance
DB)

InvokeBSENDandBRCV
Calls the real communication blocks and supplies its parameters.

DB112 SendData
Data block with 4096 bytes length which will be transferred to the
send block.

DB113 ReceiveData
Data block with 4096 bytes length which will be transferred to the
receive block.

SFB12
+ DB12 (Instance
DB)

BSEND
The send block transfers the send buffer to the communication
processor (CP), which will then send it according to RID and
connectionID to the communication partner.

FB12 BSEND (only S7-300)
SFB13
+ DB13 (Instance
DB)

BRCV
The receive block picks up the data package last received from
the communication processor (CP) according to RID and
connectionID and files it in the receive buffer.

FB13 BRCV (only S7-300)
SFC21 FILL

Auxiliary function to fill data areas with values, storage
initialization.

The program logic sends or receives data blocks and supplies the respective
parameters via the FB100. When larger data packages are sent, a multiple call of
the BSEND or BRCV block is necessary. This multiple call is performed by FB100.

4 Functional Mechanisms of this Application
4.4 S7 program

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 55

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Note If the send and receive block is called cyclically, a high communication load may
be generated and there is furthermore the danger that the data buffers are
overwritten before they are processed by the counterpart. This is why the
program logic should contain a flow control to ensure data consistency. For this
purpose the parameters DONE (ready) and NDR (new data received) are to be
used.

In order to be able to exchange data between two S7-300 stations via a configured
S7 connection, communication functions need to be called in the S7 program. The
FB12 "BSEND" block is used for sending data and the FB13 "BRCV" block for
receiving data.
Here, the S7 connection has to be bilaterally configured since the S7
communication via FB12 "BSEND" and FB13 "BRCV" is based on the client-client
principle.

5 Configuration and Settings
5.1 Configuring the SIMATIC S7 stations

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 56

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

5 Configuration and Settings
5.1 Configuring the SIMATIC S7 stations

General
It is assumed that all hardware and software components have been successfully
installed and cabled.
Here, you will find an overview of the IP addresses used in the sample project:

Table 5-1

Address Station Remarks

192.168.172.1 PC OPC Server station
192.168.172.2 S7-300, CP 343-1 optional
192.168.172.3 S7-400, CP 443-1 EX/GX 20
192.168.172.4 S7-1500, CPU 1516-3 PN/DP optional
192.168.172.5 Laptop OPC Client station

Specific characteristic of S7-1200 as of FW V4.0 and S7-1500
When using optimized data blocks in an S7-1200 station as of FW V4.0 or an S7-
1500 station, you need to use OPC Server V12 in order to access the data blocks
of the controller.
STEP 7 then automatically creates “optimized S7 connections”, since the standard
access to optimized data blocks is not possible via OPC.
The OPC client must then access the SimaticNET.S7OPT server via port 4850.

If you do not wish to use optimized S7 connections, then the following conditions
must be fulfilled:

1. Using the OPC server in version 8.2 at the most.
2. Using non-optimized data blocks.

Instruction
The following configuration steps of the SIMATIC S7 stations exemplify the
procedure. Adjust the configuration independently, as required for your hardware.

Note After saving and compiling, all configuration information is overwritten.

The following table shows the configuration and settings of the SIMATIC S7
stations.

5 Configuration and Settings
5.1 Configuring the SIMATIC S7 stations

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 57

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Table 5-2

No. Action Remarks

1. Open STEP 7 V13 and create a
new project.

Here, the name “UA-Sample” was used.

2. Insert a SIMATIC 400 station
and assign a name (here
“S7-400”).
Insert a SIMATIC 300 station
and assign a name (here
“S7-300”).
Insert a SIMATIC 1500 station
and assign a name (here
“S7-1500”).

1

2

3. Open SIMATIC stations in the
device view and insert possibly
used CPs and other components
according to the hardware
actually inserted.

4. For changing the IP address in
the inspector window you go to
the Properties tab. There you
select the Ethernet addresses.
Set the IP address and subnet
mask. Creating an Ethernet
network.
A MAC address is entered only if
the station is to communicate via
ISO transport layer 4.

5. Repeat the steps for all SIMATIC
stations.

6. Create an S7 connection The connection configuration is described together with the
configuration of the PC station (in chapter 6.2)

5 Configuration and Settings
5.2 Configuration of the OPC server station

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 58

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

7. If all of the settings have been
confirmed, load the configuration
into the S7 CPUs by restarting.

5.2 Configuration of the OPC server station
The configuration and settings of the SIMATIC PC station are made via STEP 7
and are described step by step. Alternatively, a configuration can also be made
using the NCM-PC software package. The procedure is identical, however,
unilaterally configured connections are used.

Table 5-3

No. Action
Remarks

1. Starting STEP 7 V13.
Opening the previously created “UA-Sample” project.

2. Inserting a SIMATIC PC station and assigning a name.
The name of the PC station must be identical with the “Windows name” of the PC (see Computer
 Properties Computer name).

5 Configuration and Settings
5.2 Configuration of the OPC server station

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 59

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

3. Open the Device view of the PC station. There, you enter the Ethernet card and the OPC server
V8.2.
Note
If you wish to use an S7-1200 or an S7-1500 CPU with optimized data blocks, you need to use OPC
Server V12.

The slot must be identical with the index assigned in the configuration console, here index “2” for
Ethernet card. The “OPC server” application was plugged into slot “1”.

4. For the Ethernet card, an IP address (here “192.168.172.1”) is assigned in the Properties and the
card is connected with the Ethernet network.

5. In the Properties pages of the OPC server, in the “S7” tab, the usage of symbolic addressing is
activated.

5 Configuration and Settings
5.2 Configuration of the OPC server station

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 60

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

6. In the Network view, three S7 connections from the OPC server to the S7 controllers are created.
The connections are created via Ethernet.

1

2

3

4

5

5 Configuration and Settings
5.2 Configuration of the OPC server station

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 61

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

7. S7 connection via Ethernet:
After the S7 connections have been created, further settings are made by clicking on the connection
and on the Properties tab in the inspector window.
After the connection path has been selected, the connection name can be changed (here “Conn001”
for the connection to S7-300, “Conn002” for the connection to S7-400 and “Conn003”).
The connection partners and the parameters of the connection are displayed.

8. In the Properties of the S7 connections, the “OPC” menu is selected where connection-specific
settings are made.
The connection establishment is set to permanent in order to maintain the connection even while no
communication is taking place.
The connection is configured for the transmission of alarms and diagnostic events.
Furthermore, the immediate reaction to an interrupted connection is activated in order to avoid
unnecessary wait times for timeouts.

9. After the connections have been created, the new configuration must be loaded into the stations.
The PC station can also be downloaded with the XDB-file, as described in chapter 6.

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 62

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

5.3 Configuration of the OPC UA Security
The security mechanisms of the OPC Unified Architecture are set at different
levels. Encryption and signature of the transmission as well as authentication for
the connection establishment can be set separately from each other. After installing
the SIMATIC NET OPC UA Server, secure connections are principally possible.
Apart from this encrypted communication, non-encrypted connection is also
possible. The server accepts authentication with user and password or also the
anonymous connection establishment. These settings are “insecure” and are only
used to simplify commissioning. The OPC UA server can be configured in a way
that it only accepts an encrypted transfer with user authentication.

5.3.1 OPC UA remote communication

All settings necessary on the server side, regarding the Windows firewall can
simply be set and can also be removed again with the “Set PC Station”
(Configuration Console) configuration tool.

Table 5-4

No. Action Remarks

1. Start the configuration tool:
“Communication Settings”
and select the “SIMATIC Net
configuration > OPC settings >
Security” menu

2. With a single push of a button all
necessary settings are
performed in the firewall to
permit remote communication or
to block it again.

Note Please note, that an exception for the application and for the TCP port (4845)
also has to be entered at the firewall of the “OPC Client Station” PC.

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 63

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

5.3.2 Certificate storage

Certificates are exchanged when establishing a secure connection between OPC
UA client and OPC UA server. Both applications have to check and accept the
corresponding certificate of the counterpart so that a connection can be
established.
Figure 5-1

Windows Certificate Store

SIMATIC NET
OPC UA Server

.NET Sample
OPC UA Client

Client.der

Secure EndPoint

Server‘s Certificate Location

Server.der

Certificates

Basic128RSA15

Server.der

Copy
Rejected Client.der

Accept

Certificates

SecureChannel with
selected

SecurityPolicy

The OPC UA client of this example uses the Windows Certificate Store. This is
where the public certificate of the client is located.
At the first start, the example clients create a public certificate (UA Test Client) in
this certificates administration The test client must be started with administration
rights upon when first started.
When establishing an encrypted connection, server and client exchange their
certificates. The client displays the certificate and the user has to trust this
certificate. By accepting, the server certificate is stored in the Windows certificate
store.
The OPC UA server uses its own certificate directory and is independent from the
Windows certificate store. First of all, the OPC UA server will reject each certificate
of an unknown client and will saves it in a “rejected-folder”, for reasons of security.
An administrator has to copy this client certificate in the list of trusted certificates,
just as with other server services, to allow the corresponding client access to the
server. The location at which the OPC UA server stores and manages its own and
the certificates of the OPC UA clients, is the data directory of the OPC UA server.

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 64

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

C:\Documents and settings\All Users\Application Data\Siemens\OPC\PKI\CA\
This is where three subfolders are located with the following content:

\certs
contains the public certificate of the server as well as all trusted certificates
of clients. Public certificates from OPC UA clients have to be copied in this
folder so that the server accepts them.
\crl
contains a file with a list of untrusted certificates, the so called
“RevocationList”
\private
contains the private certificate of the OPC UA server. This certificate must
not be accessible to anybody.

The server independently creates the \reject\ folder underneath of \certs\ and first
of all saves all unknown client certificates in this “rejected-folder”. By simply
“moving” the file, the certificate can be made trusted.

Configuration server with SIMATIC NET DVD V8.2
From SIMATIC NET CD V8.0 on this is possible with the “Siemens Communication
Settings” configuration tool.

Table 5-5

No. Action Remarks

1. Start the configuration tool:
“Siemens Communication
Settings” and select the
“SIMATIC Net configuration >
OPC settings > OPC-UA-
certificates” menu

On the server PC.

2. All public UA certificates known
to the server are found here.
With a right-click on a selected
certificate you can accept it.

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 65

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Configuration server with SIMATIC NET CD 2008 (V7.1)
In the SIMATIC NET CD 2008 (V7.1) the untrusted client certificates have to be
copied manually to the certificate directory of the server. They are first exported out
of the Windows certificate store from the client PC.

Table 5-6

No. Action Remarks

3. Open the Windows certificate
store in the Management
Console.

On the “OPC Client Station” client PC
Start Execute “mmc”

4. In the file menu select “Add or
Remove SnapIn” and afterwards
select “Add>”.

5. Select the certificates for the
“Computer account” of the local
computer.

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 66

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

6. Select the certificate to be
exported (right-click All Tasks

 Export…).

In this example, the UA Test Client certificate created by
the OPC UA Example Clients at the first START.
The Export wizard is started

7. The private key is NOT exported
but only the “public” key

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 67

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

8. Select DER coding

9. Enter a file name and store it in
the certificate file.

Manual import of client certificate at server
In the SIMATIC NET CD 2008 (V7.1) trusted client certificates have to be copied
directly to the certificate directory of the server. The certificate file from the client
PC, exported from the Windows certificate store is renamed and copied on the
server PC (in the certificate directory of the server).

Table 5-7

No. Action Remarks

1. Open the directory in the
Windows Explorer.

On the PC “OPC Server Station”

2. Copy the file on the “OPC Server
Station” server PC and change
the file ending to “DER”

In this example here:
“UA Test Client.der”

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 68

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

3. In the certificate directory of the
servers you will find all public
OPC UA certificates trusted by
the server. This is where the
client certificate has to be copied
to be accepted by the server.

The directory is located in the SIMATIC NET software data
directory.
C:\Documents and settings\All Users\Application Data
\Siemens\OPC\PKI\CA\

5.3.3 Authentication, SecurityPolicy and MessageSecurityMode

The OPC UA server supports the authentication of clients during connection
establishment. Two types of authentication are supported:

 Anonymous
 UserName / Password

After the installation both modes are active, to make commissioning easier. The
server can be reconfigured so that anonymous logons are no longer possible. User
name and password have to be indicated by the client and the server checks it
against the Windows user administration. Thus, only clients which have a Windows
account on the server machine can connect.
The server has two connection endpoint configurations which can be used by the
clients. Each of these endpoints represents another encryption mechanism for data
transmission

 None
 Basic128RSA15

After the installation both SecurityPolicies are active to make commissioning
easier. The server can be reconfigured to only use secure encrypted connections.
Thus, only clients can connect which know how to handle the Basic128RSA15
encryption.
If you want to change the security mechanisms of the OPC UA server, edit the
configuration file of the OPC UA server and afterwards restart the server.
C:\ Documents and settings\All Users\Application Data
\Siemens\Simatic.Net\opc2\bins7\ SCoreS7.xml

5 Configuration and Settings
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 69

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Table 5-8

No. Action Remarks

1. Open the OPC UA
“SCoreS7.xml” server
configuration file in an editor
(e.g. notepad)

The file is located in the SIMATIC NET software data
directory.
C:\Documents and Settings\All Users\Application
Data\Siemens\Simatic.Net\opc2\bins7

2. Set the
RequireUserAuthenticationForSe
ssion to “true” if each OPC UA
client is to authenticate itself by
username and password to be
able to establish a session.

3. Delete the complete
SecuritySetting entry for
SecurityPolicy “none” and
MessageSecurityMode “none”
from the UAEndpoint
configuration. Afterwards the
server will only allow encrypted
transmissions of the
“Basic128RSA15” type with
signature and encryption. Only
clients which also support this
encryption type can connect
themselves (if their certificate is
trusted).

6 Installation
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 70

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

6 Installation

This chapter describes which hardware and software components have to be
installed. It is also important to read the descriptions, manuals and any delivery
information supplied with the products.

Installing the hardware
The figure below shows the hardware setup of the application as well as the
required software components.

Figure 6-1

OPC Client Station

CPU
S7-300

CPU
S7-400

OPC Server Station

S7 protocol

Ethernet NIC

MS Visual Studio
2008 SP1

.NET Framework 3.5

.NET Example
OPC UA Client

Ethernet NIC

SIMATIC NET
OPC UA Server S7

min. CD Edition 2008
opc.tcp

CP CP

S
7

S
7

UA Stack

Note The installation guidelines for Industrial Ethernet must generally be observed.

6 Installation
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 71

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Software installation
This chapter describes the steps for the software installation required for the
application.

Table 6-1

No. Action Remarks

1 Install SIMATIC NET DVD V12 onto the SIMATIC OPC
Server station.

2 Install STEP 7 V13 on the engineering station (e.g. laptop). Only required for programming
and the configuration of the
connection of the S7-300/400 and
for creating symbol information

3 Install the .NET Framework 3.5 SP1 on the OPC client
station.

This step is only necessary when
the framework has not yet been
installed by any other application.

4 Install Microsoft Visual Studio 2010 on the OPC UA Client
station. Install the C# development environment.

This step is only necessary if the
code is verified or modified.

Installing the examples
This chapter describes the steps for the installation of the example code.

Table 6-2

No. Action Remarks

1 Install the application software on the OPC UA client station.
Copy the Executables as well as the Assemblies (file: “bin”)
and also the source code (file: “scr”) in a directory to which
you have access rights.

You only need the source code if
you want to make modifications or
verify individual functions.

2 Install the STEP 7 program. Copy and unzip the STEP 7
project.

If necessary, adjust the
configuration of your hardware.

7 Commissioning the Application
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 72

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

7 Commissioning the Application

It is required that all hardware and software components have been successfully
installed and cabled.

Note The project file (XDB) delivered with this example contains the completely
configured PC station. This file can only be used without adjustment if the
hardware is identical with the configuration.

If different hardware is used, the configuration of the PC station has to be adjusted.
This is particularly necessary when the hardware releases differ or when the
Ethernet addresses are not identical. The STEP 7 project included in the delivery
has to be opened and adapted accordingly (see chapter 6). After saving and
compiling, all configuration information is overwritten in the XDB file.

Commissioning the PC station
The following table shows the configuration and settings of the PC stations by
importing an XDB file.

Table 7-1

No. Action Remarks

1. Dearchiving the project Unzip the OPC_UA_STEP7_v10.zip file

2. Open project file with STEP 7,
configure the CPU stations and
load the configuration into the
controller.

Make the corresponding adjustments if you use different
hardware. The PC station can also be configured and
loaded “online”.

Alternative: load the PC station using the XDB file: see
steps below.

7 Commissioning the Application
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 73

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

3. Open the Station
Configurator by double-

clicking on the icon in the
task bar.

4. Click on Import Station Confirm the query with Yes.

5. Select the XDB file The XDB file is located in the XDB subdirectory of the
extracted ZIP file in the directory tree of the STEP7 project.

6. After importing the XDB file the
PC station has been configured.
In the process, not only the
connection information was
accepted but the symbol file was
also extracted from the XDB and
made available on the server.

7 Commissioning the Application
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 74

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

Testing with OPC Scout V10
The new OPC Scout V10 is a combined OPC client, which handles the classis
COM OPC interfaces as well as the new OPC UA. This client is delivered and
installed with the SIMATIC NET CD.

Table 7-2

No. Action Remarks

1. Start the OPC Scout V10 from
the start menu

On the PC “OPC Server Station”

2. Connect with the “unsecure”
endpoint “none”. The connection
is established as soon as you
open the corresponding entry in
the tree view.

3. Browse to the “S7:” subfile and
insert the “&statepath” tag from
the “Conn002” connection via
drag&drop in the bottom window.

7 Commissioning the Application
5.3 Configuration of the OPC UA Security

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 75

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

4. Browse to the “SYM:” subfile and
insert the “CountUP” tag via
drag&drop in the bottom window.

5. Switch on monitoring and check
whether the corresponding
values are displayed in the Value
column. The connection status
tag has to have (established)
value “2” and the counter should
increment.

Starting the example application
Table 7-3

No. Action Remarks

1. Start the respective application
“simple” or “comfortable client”
with administrator rights.

The file is located in the “bin” subfile of the unzipped
example.
At the first program start, you need to start the clients with
administrator rights in order to create the certificates of the
clients.
Start the clients by right-clicking on the EXE file and then
selecting the administrator account at “Execute as”.

2. Starting the example application See chapter 8

8 Operating the Application
8.1 Operating the Simple Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 76

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

8 Operating the Application
8.1 Operating the Simple Client

Access with indirect addressing
In the first part of the simple example, data of S7 tags is monitored, read and
written via direct addressing.

Table 8-1

No. Action Remarks

1 Start the
simple client
with
administrator
rights.

After starting the application this user interface will appear.

2 Establish
connection to
server

The server URL has to be entered manually. All identifiers for NodeIDs in the user
interface use the same namespace. The namespace S7: is specified for the direct
addressing, by default
The Connect button can be used to establish the connection to the server.

Note
In order to access optimized data blocks of the S7-1200/S7-1500 CPU, at least
OPC server V12 needs to be configured and the OPC server be accessed via the
SimetcNET.S7OPT (Port 4850) via the client.

3 Monitoring of
data

For the monitoring of data changes, reading, and writing, two tags can be
indicated. The NodeID is made up of the identifier and namespace. Via the
Monitor button, monitoring can be switched on. The reported data changes are
displayed in the text boxes next to the button.

8 Operating the Application
8.1 Operating the Simple Client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 77

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

4 Reading and
writing

For reading and writing, the same NodeIDs are used as for monitoring. By
pressing the Read button the two tags are read. The tags can be written
individually via the two Write buttons. Before writing, it has to be read first, since
the data conversion for writing is on the basis of the read values.

Using the block services
A typical application for block-oriented services is shown here as a clear, simple
example: the sending of recipe data to the S7 or the receiving of result data from
the S7, whilst using the BSEND and BRCV block services.
The S7 controller receives a recipe from the “OPC Client Station” PC station. Two
“recipes” were simulated in the OPC UA client which are sent to the OPC UA
server after clicking the corresponding button via a write job to the NodeID of the
BSEND tag. The OPC UA server sends a BSEND call to the corresponding
controller. In turn, the S7 has to call an appropriate BRCV to receive the data. The
BRCV has to be available with the correct RID for the right connection with the
required minimum length at the right time. Proceed according to the step-by-step
instruction below.

Table 8-2

No. Action Remarks

1. Start STEP 7 and open
the tag table (VAT) of the
receive buffer.

Go to the SIMATIC controller -> CPU ->S7 program -> blocks and
open “VAT_ReceivedData”. Switch to the Online view (glasses)

2. Start the OPC UA client
and connect yourself
with the OPC UA server

3. Receiving from the S7 For receiving from the S7, subscription with Monitored Item must be
created. For this purpose, the “Monitoring Block” has to be clicked in
the “Block Read” group.
In the field next to the button the result data is shown as HEX code.
Please consider the R_ID as part of the NodeID. The S7 has to
supply the BSEND block with this ID

4. Sending of data to S7 Select the recipe by either pressing “Write Block 1” or “Write Block 2”.
The first button writes into the data block by incrementing a value for
each array entry from 0 onwards. The second button decrements the
array entries from 255.

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 78

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks
Please consider the R_ID as part of the NodeID. In the S7, the BRCV
block has to be supplied with this ID.

5. Check with the tag table
(VAT) whether the data
has arrived.

6. Processing in S7 Now the recipe should be processed in S7 and then, the BRCV
should be switched to ready to receive.

7. Reenabling of receiving Once the data was processed, actively call the BRCV (in the example
this happens automatically).

8. Resending Now send the second recipe with the OPC UA client.

8.2 Operating the convenient OPC UA client
Table 8-3

No. Action Remarks

1 Start the OPC UA
client (this example)

After starting the application this user interface will appear.

2 Manually enter a
server URL

To establish a connection with an OPC UA server the URL of the server
can be entered manually in the Endpoints text field.
If the SIMATIC NET OPC UA server is installed on the same computer,
then the following URL can be used: opc.tcp://localhost:4845.
When the entry is manual, it will be tried to establish a connection without
security.

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 79

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks
Note
In order to access optimized data blocks of the S7-1200/S7-1500 CPU, at
least OPC server V12 needs to be configured and the OPC server be
accessed via the SimetcNET.S7OPT (Port 4850) via the client.

3 List of available
endpoints

Via the Endpoints selection list, the list of available endpoints can be
listed. If the Node text field is empty, the local servers or their endpoints
will be listed.
Entering a remote computer name in the Node text field and subsequently
clicking the Endpoints selection list, will display the available endpoints on
the remote computer.
Apart from the server name, the security settings and the URL of the
endpoint is displayed.

4 Establishing a
connection with the
server

The Connect button is used to establish the connection to the server.

If the server certificate is considered untrusted, the user will be asked
whether he/she wants to accept it nevertheless.
The necessary steps for the server to accept the client certificate are
described in chapter 5.3.2.

If establishing a connection was successful, the top level of the address
space of the OPC UA server is displayed in the window on the left:

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 80

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

Disconnect will now appear on the button.

5 Browse The tree view makes it possible to navigate in the address space of the
server.

6 Reading the node
attributes

By selecting a node in the tree view, its attributes and their values are
displayed on the right, next to the list.

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 81

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

7 Monitoring tags
(Monitored items).

Tags present in the address space of the server, can be dragged from the
tree view into the bottom monitoring window via drag&drop. This is where
the value changes will be displayed.

8 Writing of OPC
items

If one or several tags have been selected in a monitoring window, the user
can start a write process via the context menu of the list:

In the dialog window now opened, the tags selected from the list earlier are
displayed with their current values:

In the Write Value column, the values can be entered:

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 82

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

By clicking the Ok button the new values are written and the dialog is
closed. However, if the Apply button is clicked, the values are written and
the dialog remains open for the further writing of values.

9 Change the
sampling interval

Three different sampling intervals can be set by using the context menu.
Several entries of the list field can be selected.

10 Change the
publishing interval

The publish interval of the subscription can also be changed via the
context menu of the monitoring window.

8 Operating the Application
8.2 Operating the convenient OPC UA client

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 83

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

No. Action Remarks

11 Remove monitored
items

The selection of the Remove Item(s) menu entry, removes all tags
selected in the list.

12 Calling of actions
from the menu bar

Actions 8 to 11 can also be carried out via the menu bar:

13 Terminate
connection with the
server

The Disconnect button can be used to terminate the connection with the
OPC UA server.

14 Connection error of
OPC UA server
connection with the
controller

If the connection between OPC UA server and S7 is interrupted then the
status of the tags in the monitoring list changes to “Bad”.

15 Error when calling If errors occur during OPC UA calls, these errors are displayed in the
status bar of the application.
If the server does not respond, the client API will deliver a timeout error.

9 Further Notes, Tips & Tricks, etc.

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 84

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

9 Further Notes, Tips & Tricks, etc.
Reusability and expansion of the client API

The client API is realized as an independent, reusable assembly DLL. It can be
directly used in other applications. An expansion for additional OPC UA features
such as method calls can be easily achieved.

Reusability of the GUI controls
The GUI elements for browsing, listing of attributes and for monitoring of tag values
have been created as controls. For reusability it makes sense to store these
controls in an independent assembly DLL.

Saving NodeIDs
NodeIDs are made up of an identifier and the namespace index. Although the
namespace index does not change as long as the OPC UA server is running, it is
always possible that the index changes during a restart of the OPC UA server.
Although this is not the case with the SIMATIC NET OPC UA server, an OPC UA
client should nevertheless be prepared for it when storing the NodeIDs.
When storing, the index must not simply be saved but the namespace URI has to
be saved. This URI remains constant, even when the index changes.
There are two strategies to save the namespace URI:
 Instead of saving the index, the URI is saved with the identifier for the NodeID.

This is the easiest variant but has the disadvantage that a great deal of
redundant information is saved when the namespace URI is the same for all
stored NodeIDs of the server.

 The index is saved with the identifier but the appropriate namespace table with
the namespace URIs is stored in parallel. This variant is more efficient.
However, it requires an additional storage location for the table.

For both variants the namespace table has to be read from the server, after
establishing a connection with the server, and the namespace URI has to be
reimplemented in the current index.

Optimizing of the NodeIDs for read and write
NodeIDs may contain long texts and are therefore not suitable to be used in cyclic
calls of Read and Write since this causes an unnecessary overhead on the network
and during the processing on the server.
OPC UA provides the special services RegisterNodes and UnregisterNodes, to be
able to achieve an optimization. RegisterNodes supplies a list of optimized
NodeIDs with numeric identifiers for a list of original NodeIDs, which can be used
like Handles. These NodeIDs are only four bytes long on the network and can be
used for very fast data access on the server.
Since the Handle is also a NodeID, it can be used in all services instead of the
original NodeID. However, the optimized NodeID is only valid within the session.
If registered NodeIDs are no longer needed, they should be released with
UnregisterNode to release resources on the server.

10 Links & Literature

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 85

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

10 Links & Literature
10.1 Bibliographic references

This list is not complete and only represents a selection of relevant literature.
Table 10-1

Topic Title

/1/ STEP 7 Automating with STEP 7 in STL and SCL
Hans Berger
Publicis Corporate Publishing
ISBN 3-89578-113-4

/2/ OPC UA OPC Unified Architecture
Mahnke, Leitner, Damm
Springer Verlag
ISBN 978-3-540-68898-3

10.2 Internet link specifications
This list is by no means complete and only presents a selection of suitable
information.
Table 10-2

Topic Title

\1\ Link to this
document

http://support.automation.siemens.com/WW/view/en/42014088

\2\ Siemens I IA/DT
Customer Support

http://support.automation.siemens.com

\3\ OPC Data Access
Custom Interface
Version 3.0

Specification on the OPC Foundation website for download
for OPC members
www.opcfoundation.org

\4\ OPC unified
architecture

Specification on the OPC Foundation website for download
for OPC members
www.opcfoundation.org

\5\ SIMATIC NET
Commissioning
SIMATIC NET PC
stations –
Instruction and
quick start for
SIMATIC NCM
PC / STEP 7 from
Version V5.2

Description or information on:
 General information on the PC tools.
 Functions of NCM PC.

Installed by SIMATIC NET, see: Start Simatic
Documentation English.
http://support.automation.siemens.com/WW/view/en/13542666

\6\ SIMATIC NET –
Industrial
communication
with PG/PC

Manual for industrial communication on PG/PC with SIMATIC
NET.
Installed by SIMATIC NET, see: Start Simatic
Documentation English.
http://support.automation.siemens.com/WW/view/en/2044387

\7\ Unified
automation

http://www.unified-automation.com/downloads/opc-ua-
development.html

http://support.automation.siemens.com/WW/view/en/42014088
http://support.automation.siemens.com/
http://www.opcfoundation.org/
http://www.opcfoundation.org/
http://support.automation.siemens.com/WW/view/en/13542666
http://support.automation.siemens.com/WW/view/en/2044387
http://www.unified-automation.com/downloads/opc-ua-development.html
http://www.unified-automation.com/downloads/opc-ua-development.html

11 History

.NET OPC UA-Client
Entry ID:42014088, V1.1, 08/2014 86

C
op

yr
ig

ht
Si

em
en

s
AG

20
14

Al
lr

ig
ht

s
re

se
rv

ed

11 History

Table 11-1

Version Date Modifications

V1.1 06/2014 Revised version: migration to STEP 7 V13, adjusting the
documentation

V1.0 04/2010 First version

	Programming an OPC UA .NET Client with C# for the SIMATIC NET OPC UA Server
	Table of Contents
	Warranty and Liability
	1 Automation Task
	1.1 Overview
	1.2 Requirements

	2 Automation Solution
	2.1 Solution overview
	2.2 Description of the core functionality
	2.3 Hardware and software components used
	2.4 Alternative solutions

	3 Basics
	3.1 Basics on OPC
	3.2 Basics on OPC Unified Architecture
	3.2.1 OPC UA specifications
	3.2.2 Structure of the OPC UA Server address space
	3.2.3 Interface for access to the OPC UA Server address space
	3.2.4 Protocols and security mechanisms
	3.2.5 Delimitation and comparison with OPC data access

	3.3 Basics on S7 communication
	3.3.1 General
	3.3.2 Optimized S7 communication

	4 Functional Mechanisms of this Application
	4.1 OPC UA Client API
	4.2 Simple OPC UA Client
	4.3 Comfortable OPC UA Client
	4.3.1 User interface
	4.3.2 Class diagram
	4.3.3 Sequence diagrams

	4.4 S7 program

	5 Configuration and Settings
	5.1 Configuring the SIMATIC S7 stations
	5.2 Configuration of the OPC server station
	5.3 Configuration of the OPC UA Security
	5.3.1 OPC UA remote communication
	5.3.2 Certificate storage
	5.3.3 Authentication, SecurityPolicy and MessageSecurityMode

	6 Installation
	7 Commissioning the Application
	8 Operating the Application
	8.1 Operating the Simple Client
	8.2 Operating the convenient OPC UA client

	9 Further Notes, Tips & Tricks, etc.
	10 Links & Literature
	10.1 Bibliographic references
	10.2 Internet link specifications

	11 History

