SIEMENS

SIMATIC

Embedded Automation
Software Development Kit for EC31

Programming Manual

08/2010

A5E01716340-03

Introduction

Description 1 _
Programming 2
Functions 3
Appendix A

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

ALDANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

ALCAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation for the specific task, in particular its warning notices and
safety instructions. Qualified personnel are those who, based on their training and experience, are capable of
identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Trademarks

Note the following:

AAWARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG A5E01716340-03 Copyright © Siemens AG 2010.
Industry Sector ® 07/2010 Technical data subject to change
Postfach 48 48

90026 NURNBERG

GERMANY

Introduction

Conventions
o FC31

In the documentation, the term embedded controller or device is also used to designate
the £C37 product.

o S7 Modular Embedded Controller

The entire S7 modular embedded controller system - consisting of an embedded
controller with PC upgrades, signal modules and expansion modules is abbreviated
to S7-mEC.

Purpose of this document

This document contains information that you will need to program with the software
development kit (SDK) for the S7-mEC system. It is intended for use by programmers who
commission the device themselves.

Scope

This documentation is valid for all product variants of S7-mEC and describes the
EC31 with product version 2.0 or higher.

Basic knowledge required

The S7-mEC system must only be used by qualified personnel. Knowledge of the following
is considered essential:

® Set-up guidelines for SIMATIC S7-300

e PC skills

e (C/C++ programming skills

® Operating system Windows Embedded Standard 2009

Position in the Information Landscape
For further information on using the hardware, refer to the relevant equipment manuals.

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Introduction

Software Development Kit for EC31
4 Programming Manual, 08/2010, A5E01716340-03

Table of contents

11100 (8 T2 1T o T 3
1 [0 L= o7 4 o) 1T o 1 7
1.1 Software DevelopmeENt Kilccuiiiiiiiici eaaas 7
1.2 ST T 0] o] (=3 o] oo [= o SRS 8
2 Programimingcoooe e oo e e e e e s e s ne s me e e e e s e e b e e e ar e nes 9
2.1 L@ (== o = o] o Yo =1 1o OSSR 9
2.2 oo =T 0 TS {1 o (1 = S 11
2.3 Addressing SigNal MOAUIESooiiii i a e e e e e re e e e e e eeennnrens 13
2.4 (07111 oY= o1 1q8 {0 aTox (o 1o - USSR 15
3 LT o 1o 3 T 17
3.1 (@YY V11 TN 17
3.2 (072101 (= | I VL@ I8 101 Lo o] o 1< 19
3.2.1 =TT o {0 T3 o] o = 19
B 30t Tt B - Yoo (o N 011 = (= SO PUPRRRPOt 19
3.2.1.2 €CCIO_AEINIKIANZE ...ttt ettt e e e e e et e e e e e e e e e e eeabe e e e e e e eeeraas 21
1 707200 IR S = To o (o TN 01U 11 011 | & o7 o1 o] I SRR 22
R T I S Yo Tox (o i o1 o T3 [o] £ N 23
T2 N T ot od To T =Tod (=1 = 1 o [24
3.2.1.6 Callback alarm_notifiCationcoiiiiiiiiiiiie e 25
3.2.2 Reading and Writing data ... e 26
B I B - Votor (o I (=Y Lo [-1 = PPN 26
B I Y oer (o I 41 (ST = = LN 27
3.2.3 Assigning parameters to Signal MOAUIEScooouiiiiiiiii e 28
3.2.3.1 Basic principles - parameter assignmeNtScccuviiiiiie i 28
I T2 T A - Yot [0 (== Lo Mo b=\ = T-T=] AU PRR O 30
3.2.3.3 €CCIO_WIItE_dAtASEL......coeieiiie it ettt e e e e e e ettt e e e e e e e e e eae b e e e e e e eeeaaas 31
3.2.3.4 eccio_def_par_ WIte_SINGIEooi e 32
3.2.3.5 eccio_def_par_write_broadCast ... 33
3.3 LED and RUN/STOP SWiItCh fUNCHIONSvueeiiiiieeeeeeee et 34
3.3.1 ECIEArS_INILIANIZE ... eeeeiie e e e e e e e e e e e e are s 34
3.3.2 €Cledrs_deINItIAIIZEcoeeeee et eeaaa 35
3.3.3 [T [[T 1 (= SOOI 36
3.34 ecledrs_registerswitchchangechkooo i 38
3.3.5 ecledrs_deregisterswitchChangeCbhKoouiiiiiiiiii e 39
3.3.6 Callback switch_change_notificationccuuviiiiiiii i 40
3.4 PersiStENCE fUNCHIONSciiiiii i e e e e e e e e e e e e ereaeeeaaeeeaan 41
3.4.1 ECPEIS_INIIANIZEeeieieiiieie e annnanan 41
3.4.2 L= Te] 01T E e [T a1 F= = S 42
3.4.3 L= Tod 01 E T (==L | o] (o] QS 43
344 L= Tod 01 £/ 1 (=Y o] (o o1 G S 44
3.4.5 Callback power_fail_NotifiCationccoooiiiiiiiiiiii e 45

Software Development Kit for EC31

Programming Manual, 08/2010, A5E01716340-03

Table of contents

A L 7= o o[PP PPR a7
A.1 =Y =T Y 0 1= S TSP OUPPP 47

A.1A1 (€770 ¥ [« | SHUTT TP RPN 47

A1.2 S UE] =1 1610 o T TP 48

A1.3 1Y/ oo (81 [0 [(o TN 49

A14 F N =T 0 010 (o P RTPTRTRRE 50

A2 REUIN VAIUBSottt e et e e et e e e e e e e e e e e s saa e e e eaaa e e esnan e eeeaas 51

A3 AVE= 1TUISTST (o] gt F= 1 =T o] (o o1 G O F TR 54

T 1= 55
Software Development Kit for EC31

6 Programming Manual, 08/2010, A5E01716340-03

Description 1

1.1 Software Development Kit

Software Development Kit (SDK)

An SDK contains programs and definitions for specific software, and provides functions for
creating C user programs.

The SDK programming interface for the embedded controller thus allows access to the
signal modules on the backplane bus (central 1/0), EC31 displays and operator controls,
the storage locations for retentive data (persistence), and notifications for interrupts,
RUN/STOP switch changes, and power failures.

Functions
The SDK subdivides the components for the functions into the following groups:
e ECCIO ... - Components for central I/O
e ECLEDRS ... - Components for LED and RUN/STOP switches

e ECPERS ... - Components for persistence

Schematic diagram

User
program
LED and RUN/STOP Central 1/O functions
* switch functions
Software B — I I
Development Kit >
8 EC31 SM | SM | SM | SM SM | SM| SM | SM
Persistence

function

Software Development Kit for EC31
Programming Manual, 08/2010, A5SE01716340-03

Description

1.2 Sample program

1.2 Sample program

Sample program included as standard

The EC31 is supplied with a complete program that calls all SDK functions which are
exemplary for an S7-mEC configuration with digital output module and analog input module.
This example illustrates the basic program structure, and the individual phases of a normal
application. The source code is preinstalled on the EC31 and also available on the
"S7-mEC Software & Documentation” DVD included in the package.

Opening the sample program

On the EC31, you can open the folder containing the Visual Studio sample program project
from the Windows task bar using the following command:

Start > (All Programs) > SIMATIC > S7-mEC > EC31 > SDK > Examples

Software Development Kit for EC31
8 Programming Manual, 08/2010, A5E01716340-03

Programming 2

2.1

Requirements

Creating a program

The C/C++ programming environment, such as Visual Studio 2005, is installed on the
embedded controller EC31, or on an external engineering PC.

You have access to the SDK header files. These files are available on the EC31, and on
the Software & Documentation DVD at ...\SDK\inc\.

You will find the DLL files on the EC31 under C:\Windows\System32\

Note
Remote debugging

Remote debugging (Microsof Visual Studio 2005 or higher) allows you to start the
application directly on EC31. To do this you have to install the monitor (Msvsmon.exe),
which is supplied with every Visual Studio, on EC31.

You can find the required project settings and releases on the Internet at Microsoft
Software Development Network (MSDN), under "Remote Debugging".

SDK header files and libraries

Needed for ... Header file DLL file

Central I/O functions eccio.h eccio.dll

e for accessing the signal modules via the backplane bus
e for assigning parameters to signal modules

o for detecting interrupts using callback functions, and
responding to them

e for saving retentive data
o for detecting a power failure (POWER OFF)

LED and RUN/STOP switch functions ecledrs.h ecledrs.dll
o for activating LEDs on the EC31
o for detecting changes in the status of the RUN/STOP switch
on the EC31
Persistence functions ecpers.h ecpers.dll

Note
Header files on the EC31

On the EC31, you can open the folder containing the header files for SDK from the Windows

task bar using the following command:

Start > (All Programs) > SIMATIC > S7-mEC > EC31 > SDK > Interfaces

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Programming
2.1 Creating a program

Creating a program

1. Incorporate the header files and the DLL files that you will need for your user program
into your project.

2. Use the SDK functions to program the user program.
3. Compile your project.
Result: The "*.exe" user program can be transferred to the EC31.

Note

On the Windows Embedded Standard 2009 OS platform, other programs or connected
devices can have an adverse effect on the time taken to access the backplane bus.

Software Development Kit for EC31
10 Programming Manual, 08/2010, ASE01716340-03

Programming

2.2 Program structure

2.2 Program structure

Typical structure
When it runs, a user program is typically divided into 3 phases:
® |nitialization phase
® Productive mode

® End phase

Rules
Note the following points when you program:

® The functions of the inifialization phase activate the necessary components from the SDK
via the user program. The functions of the end phase end these components.
The functions must be used in the program.

® The functions for productive mode are optional.

Central I/O functions

Phase Function

Initialization eccio initialize

eccio output control

eccio def par write single
eccio def par write broadcast
Productive mode eccio_check bus

eccio ack alarm

eccio write dataset

eccio read dataset

eccilo read data

eccio write data

Ending eccio deinitialize

LED and RUN/STOP switch functions

Phase Function
Initialization ecledrs_initialize
ecledrs registerswitchchangecbk
Productive mode ecledrs write
Ending ecledrs_deregisterswitchchangecbk
ecledrs deinitialize

Persistence functions

Phase Function

Initialization ecpers_initialize

Productive mode ecpers_readblock
ecpers writeblock

Ending ecpers_deinitialize

Software Development Kit for EC31
Programming Manual, 08/2010, ASE01716340-03 11

Programming

2.2 Program structure

Flow diagram for a user program

12

START

!

»|
<

'

\

eccio initialize

No

_ Central I/O functions

Y

eccio check bus

l

Yes

No

End?

Yes

)

No

eccio deinitialize

J

Figure 2-1 Program flow diagram

Note
Ending the user program

Always use the eccio_deinitialize. call to end the user program.

Software Development Kit for EC31
Programming Manual, 08/2010, ASE01716340-03

Programming
2.3 Addressing signal modules

2.3 Addressing signal modules

Addressing signal modules via GeoAddr

Central I/O functions require the signal modules concerned to be addressed. The signal
modules are addressed in the relevant functions with the ceoaddr data type using the racx
and siot parameters.

The following diagram shows the maximum configuration on the central I/O with the relevant
numbers for rack and s1ot. Slot 3 on each rack is reserved for the interface module (IM),
so counting for the signal modules starts from 4.

o (@]
Rack3 =— IM |SM|SM |SM |SM |SM | SM | SM | SM —
(=) (@)
Slot 3 4 5 6 7 8 9 10 11
o o
Rack2 —— M [SM|SM|SM |SM |SM | SM | SM | SM —
@) (@)
Slot 3 4 5 6 7 8 9 10 11
Al
o (@]
Rack1 =— IM | sMm SM | SM | SM | SM | SM | SM —
@) (@]
Slot 3 4 5 6 7 8 9 10 M
DI
Rack 0 |° I I °
51 (PS) ® EC 3x IM | SM|SM | SM SM | SM | SM | SM
o (@)
Slot 1 2 3 4 5 6 7 8 9 10 11

Figure 2-2 Addressing of signal modules

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 13

Programming

2.3 Addressing signal modules

Examples - addressing signal modules via the GeoAddr parameter
The signal modules marked in the picture are addressed as follows:
e Addressing for the digital input module DI

GeoAddr digital input;
digital input.rack = 0;
digital input.slot = 7;

® Addressing for the analog input module Al

GeoAddr analog input;
analog input.rack = 1;
analog input.slot = 5;

See also
GeoAddr (Page 47)

Software Development Kit for EC31
14 Programming Manual, 08/2010, ASE01716340-03

Programming
2.4 Callback functions

2.4 Callback functions

How it works

Callback functions are specified by the user program. A callback function may be
assigned any name.

A callback event is an asynchronous event that is called by the ECCIO interface. It interrupts
the flow of the user program, and starts the callback function in a separate thread.

Callback functions
The following callback functions may be defined in the SDK for S7-mEC:

Callback function Callback event Registered by ...

alarm_notification Hardware interrupt / | eccio_initialize()
diagnostic error
interrupt at a signal
module

switch_change_notification | Change in the status | ©cledrs_registerswitchchangecbk ()
of the RUN/STOP
switch on the EC31

power_fail_notification Power failure on ecpers_initialize()
the EC31

Runtime coordination for callbacks

A callback function can interrupt the user program at any time. Callback functions for
different events can also interrupt one another. A callback function must therefore be
designed to run multiple times, including simultaneously (reentrant) because it can be called
from different threads. In practice, this means that the writing and reading of shared tags
must be protected by synchronization mechanisms.

Avoid waits in callback functions, particularly when entering Critical Sections. A further call to
a callback function would be blocked by the same callback event. Instead, you should keep
your stored data as separate as possible.

A separate callback function can be registered for each callback event. It is also possible to
combine multiple callback events in a single callback function, however.

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 15

Programming

2.4 Callback functions

Sample declarations for user-defined callback functions
void eccioCB AlarmNotification (AlarmInfo* alarm data);
void ecledrsCB SwitchChangeNotification (unsigned char state);
void ecpersCB PowerFailNotification (void);

See also
eccio_initialize (Page 19)
ecledrs_registerswitchchangecbk (Page 38)
ecpers_initialize (Page 41)

Software Development Kit for EC31
16 Programming Manual, 08/2010, ASE01716340-03

Functions

Overview

The SDK provides components for the following functions:

e Central I/O
e | ED and RUN/STOP switch

® Persistence

Central I/O functions

Name

| Description

Basic functions

ecclo initialize

The user program uses this function to register
the embedded controller on the backplane bus.

eccio deinitialize

The user program uses this function to deregister
the embedded controller on the backplane bus.

eccio_output control

This function activates / deactivates the outputs of
the signal modules.

eccio check bus

This function compares the current configuration on the
backplane bus with the list of stations that were identified
using the eccio initialize function.

eccio_ack_alarm

This function acknowledges interrupts
from signal modules.

Reading and writing data

ecclo read data

This function reads 1, 2 or 4 bytes from an input module.

eccio write data

This function writes 1, 2 or 4 bytes to an output module.

Assigning parameters to signal modules

eccio_read dataset

This function reads data blocks up to 240 bytes long from
a signal module.

eccio write dataset

This function writes data blocks up to 240 bytes
long to a signal module.

e Assigning parameters to signal modules

e Setting the type of measurement and measuring
ranges (voltage and current)

e Enabling / disabling interrupts

eccilo def par write single

This function transfers the parameter assignment status
to one signal module.

ecclo def par write broadcast

This function transfers the parameter assignment status
to all signal modules on the backplane bus.

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

17

Functions

3.1 Overview

LED and RUN/STOP switch functions

Name Description

ecledrs_initialize This function initializes the LED and RUN/STOP
switch functions.

ecledrs_deinitialize This function ends the LED and RUN/STOP
switch functions.

ecledrs_write This function is used to control LEDs on the EC31.

ecledrs_registerswitchchangecbk This function activates the status monitoring for the
RUN/STOP switch on the EC31.

ecledrs_deregisterswitchchangecbk This function deregisters the status monitoring for
the RUN/STOP switch.

Persistence functions
Name Description
ecpers_initialize This function initializes the persistence functions.
ecpers_deinitialize This function ends the persistence functions.
ecpers_readblock This function reads data from a retentive memory.
ecpers_writeblock This function writes data to a retentive memory.

Software Development Kit for EC31
18 Programming Manual, 08/2010, ASE01716340-03

Functions
3.2 Central I/O functions

3.2 Central 1/O functions
3.2.1 Basic functions

3.21.1 eccio_linitialize

Description

This function initializes the backplane bus, and registers a user-defined callback function that
is called in response to an interrupt at a signal module.

Once the call has been processed successfully, it sends the list of stations to all signal
modules plugged into the backplane bus. The DC5V LED on the EC31 lights up to indicate
that the control voltage is present at the connected signal modules.

Requirement:

® The signal modules are supplied with voltage.

® The ident and alarm notification parameters were successfully initialized.

Note
Call the function in the user program before the other central I/O functions.

If the function is called a second time, the backplane bus is reset, and the stations are
identified once again.

Syntax
unsigned short eccio initialize(
BusEnum* ident,
FP_EC CIO _ALARM NOTIFICATION alarm notification,
unsigned short config flags)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 19

Functions

3.2 Central I/O functions

Parameters
Name Type | Description Data type
ident out List of stations containing all the signal modules on the BusEnum*
backplane bus.
alarm_notification |in Pointer to a user function that is called in the event of an -
interrupt.
config_flags in Permitted values: unsigned

0: EC_INITFLAGS DO _DISABLE OUTPUT_ON_STOP short
Safe backplane bus configuration enabled.

This means that the backplane bus is dependent on the
position of the RUN/STOP switch.

1: EC INITFLAGS_DONT _DISABLE_OUTPUT_ON_STOP
Safe backplane bus configuration disabled.

This means that the backplane bus does not depend on
the position of the RUN/STOP switch.

Safe backplane bus configuration

With the "Safe backplane bus configuration”, the backplane bus responds according to the
position of the RUN/STOP switch on the embedded controller.

Requirement:
The signal module outputs are enabled using the eccio_output_control function.

e Switch in STOP position:

The outputs of all the signal modules are disabled.
e Switch in RUN position once more:

The outputs of the signal modules are not automatically enabled.

Note

Always enable the outputs of the signal modules using the eccio_output control function.

Return value

EC_CIO_OK
EC_CIO_E_PARAM
EC_CIO_E_STATE
EC_CIO_E_BUS
EC_CIO_E_UNKNOWN
EC_CIO_E_DRIVER

See also
eccio_deinitialize (Page 21)
eccio_output_control (Page 22)
Callback functions (Page [15)

Return values (Page 51|

Software Development Kit for EC31
20 Programming Manual, 08/2010, ASE01716340-03

Functions

3.2 Central I/O functions

3.21.2 eccio_deinitialize

Description

This function ends the use of the central I/0 functions on the backplane bus.

It stops all operations on the backplane bus.

It disables the signal module outputs.

The backplane bus is switched off (POWER OFF).

The DC5V LED goes out, but this does not switch off the EC31.

Note
Call the function in the user program when all central 1/O functions have ended.

Syntax

unsigned short eccio deinitialize()

Return value

See also

EC_CIO_OK
EC_CIO_E_STATE
EC_CIO_E_FATAL
EC_CIO_E_BUS
EC_CIO_E_UNKNOWN

eccio_initialize (Page 19)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, ASE01716340-03 21

Functions

3.2 Central I/O functions

3.21.3 eccio_output_control

Description

This function enables or disables the outputs of the signal modules.

Enable the outputs so that write functions can be executed at outputs.

Syntax
unsigned short eccio output control(
unsigned short req_state)
Parameters
Name Type Description Data type
req_state in Permitted values unsigned short

e EC_CIO_PERI_ENABLE:
enables the outputs

disables the outputs

e EC_CIO_PERI_DISABLE:

Return value
e EC_CIO_OK
e EC_CIO_E_PARAM
e EC_CIO_E_STATE
e EC_CIO_E_BUS
e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

See also
eccio_initialize (Page 19)
eccio_check_bus (Page 23)
Return values (Page 51|
22

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Functions
3.2 Central I/O functions

3214 eccio_check_bus

Description

This function compares the current configuration on the backplane bus with the list of
stations that were identified using the eccio_initialize function. If the configuration differs
from the saved list of stations, then the function returns the value EC_CIO_E_BUS.

Use the eccio_initialize function to initialize the bus again before starting further
operations.

Syntax

unsigned short eccio check bus (void)

Return value
e EC_CIO_OK
e EC_CIO_E_BUS
e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

See also
eccio_output_control (Page 22)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 23

Functions

3.2 Central I/O functions

3.215 eccio_ack_alarm

Description

This function acknowledges interrupts at a signal module. It must be called after the interrupt
has been processed.

Note

The signal module cannot report a second interrupt until the first interrupt has been
acknowledged.

Syntax
unsigned short eccio_ack alarm (
unsigned char alarm type)
Parameters
Name Type | Description Data type
alarm_type in Permitted values: unsigned char

e EC_CIO_PROCESS_ALARM
e EC_CIO_DIAGNOSTIC_ALARM

Return value
e EC_CIO_OK
e EC_CIO_E_PARAM
e EC_CIO_E_STATE
e EC_CIO_E_BUS
e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

See also
Alarminfo (Page 50)

Return values (Page 51)

Software Development Kit for EC31
24 Programming Manual, 08/2010, ASE01716340-03

Functions

3.21.6

Description

Requirement

Rules

Syntax

Parameters

3.2 Central I/O functions

Callback alarm_notification

The user-defined callback function is called when a process interrupt, or diagnostic interrupt
is triggered at a signal module. When the eccio_initialize function is called, a pointer to
the callback function is passed as a parameter. You can choose any name. The return value
must be of the type void . The function writes the interrupt information in a structure of the
type alarminfo.

Parameters must be assigned to the relevant signal modules to trigger interrupts via the
callback functions.

The interrupt must be acknowledged using the eccio _ack_alarm function which must be
called after the interrupt has been processed.

If synchronization mechanisms are used, any blocks must be cancelled before the
callback function is ended in order to avoid blockages.

NOTICE

Processing interrupts

In SIMATIC automation systems, process and diagnostic interrupts are triggered
acyclically in response to specific events, rather than cyclically. As a result, they are
relatively infrequent. If signal modules trigger interrupts too frequently, they can impact
negatively on the stability of the operating system. For example, several interrupts in
succession could block the operating system for a long period.

We therefore recommend that you implement your applications so that interrupts are

only triggered in exceptional circumstances.

Sample declaration:

void wusr alarm cbf (AlarmInfo* alarm data)
Name Type | Description Data type
alarm_data in Pointer to a structure with interrupt Alarminfo*
information

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 25

Functions

3.2 Central I/O functions

3.2.2

3.2.2.1

Description

Syntax

Parameters

Return value

Reference

See also

26

Reading and writing data

eccio_read_data

This function reads 1, 2 or 4 bytes from an input module.
Requirement:

eccio_initialize() was executed successfully.

The DC5V LED on the EC31 lights up

The signal module is plugged in.

There are no faults in the signal module.

The signal module is contained in the list of stations created by eccio_initialize().

Signal modules that are to be assigned parameters using parameter assignment data

blocks 0 and 1 must receive at least the default values before the function can

be executed.

unsigned short eccio read data (
GeoAddr geo,
void* pret buffer,
unsigned char length)

For information about the signal modules, refer to the

S7-300 Aufomation System, Module data equipment manual.

You will find the documentation on the Internet at:

(http://support.automation.siemens.com/WW/view/en/8859629)

Return values (Page 51))

Name Type Description Data type
geo in Address of the signal module GeoAddr
pret_buffer out Pointer to a buffer that holds the data. void®
length in Permitted values: 1, 2, 4 unsigned char
e EC_CIO_OK
e EC_CIO_E_PARAM
e EC_CIO_E_STATE
e EC_CIO_E_BUS
e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

Software Development Kit for EC31

Programming Manual, 08/2010, A5E01716340-03

http://support.automation.siemens.com/WW/view/en/8859629�

Functions

3.2 Central I/O functions

3222 eccio_write_data

Description
This function writes 1, 2 or 4 bytes to an output module.
Requirement:
® cccio initialize() Was executed successfully.
® The DC5V LED on the EC31 lights up
® The signal module is plugged in.
® The signal module is contained in the list of stations created by eccio_initialize().
® The signal module supports the writing of data of the appropriate length.
® There are no faults in the signal module.
® The signal module's outputs have been enabled.

e Signal modules that are to be assigned parameters using parameter assignment data
blocks 0 and 1 must receive at least the default values before the function can be
executed.

Syntax
unsigned short eccio write data (
GeoAddr geo,
void* pbuffer,
unsigned char length)
Parameters
Name Type Description Data type
geo in Address of the signal module GeoAddr
pbuffer in Pointer to a buffer that holds the data. void*
length in Permitted values: 1, 2, 4 unsigned char
Return value
e EC_CIO_OK

e EC_CIO_E_PARAM

e EC_CIO_E_STATE

e EC_CIO_E_BUS

e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 27

Functions
3.2 Central I/O functions

Reference
For information about the signal modules, refer to the
S7-300 Aufomation System, Module data equipment manual.
You will find the documentation on the Internet at:
(http://support.automation.siemens.com/WW/view/de/8859629)
See also
Return values (Page 51|
3.2.3 Assigning parameters to signal modules
3.2.31 Basic principles - parameter assignments

Default settings

In their as-delivered state, all modules with parameters in the S7 automation system are set
to default values that are suitable for standard applications. These default values allow the
modules to be used immediately without making any additional settings. To determine
whether the signal modules can be assigned parameters, and to find the default values,
refer to the module descriptions in the "S7-300 Automation System, Module Data" manual.

Software Development Kit for EC31
28 Programming Manual, 08/2010, ASE01716340-03

http://support.automation.siemens.com/WW/view/de/8859629

Functions
3.2 Central I/O functions

Assigning module parameters

The picture below shows the program flow for assigning parameters to signal modules on
the backplane bus of the EC31.

1. Initialize bus
eccio_initialize(&BusEnum, ...)

:

2. Prepare modules for configuration

eccio_def_par_write_broadcast(EC_CIO_DEFAULT_PAR_SET_MODULE_DEFPAR_ENABLE)
eccio_def_par_write_broadcast(EC_CIO_DEFAULT_PAR_SET_MODULE_CLR_PAR)

v
No
> For each module
¢ Yes L

4. Activate outputs of modules
eccio_output_control(EC_CIO_PERI_ENABLE)

(Read, write data >

A

5. Deactivate module outputs
eccio_output_control(EC_CIO_PERI_DISABLE)

Can module
be configured?

No Use default Yes
configuration?

\ 4
3 a. Configure module with 3 b. Configure module with
own parameter data record default parameter data record

eccio_def_par_write_single(module_geo,
EC_CIO_DEFAULT_PAR_SET_MODULE_
DEF_PAR)

eccio_write_dataset
(module_geo, DS_NR, &buffer, length)

Figure 3-1 Program flow - Assigning module parameters

Note
All relevant modules must be assigned parameters

Never assign parameters to signal modules with parameters in your user program (step 3.a
or 3.b).

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 29

Functions

3.2 Central I/O functions

3.23.2 eccio_read_dataset

Description

This function reads parameter assignment data blocks up to 240 bytes long from a signal
module.

Requirements:

® cccio initialize() was executed successfully.

The signal module is plugged in.

The signal module is contained in the list of stations created by eccio_initialize().
The signal module supports the reading of data blocks.

The data blocks correspond to the structure described in the
S7-300 Aufomation System, Module data equipment manual.

Syntax
unsigned long eccio_read dataset (
GeoAddr geo,
unsigned char ds nr,
unsigned char* pbuffer,
unsigned short length)
Parameters
Name Type Description Data type
geo in Address of the signal module GeoAddr
ds_nr in Number of the data block unsigned char
pbuffer out Pointer to a buffer that holds the data. unsigned char*
length in Length of the data block unsigned short
Return value
e EC_CIO_OK
e EC_CIO_E_PARAM
e EC_CIO_E_STATE
e EC_CIO_E_BUS
e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER
e EC_CIO_W_LENGTH

Reference
For information about the signal modules, refer to the
S7-300 Aufomation System, Module data equipment manual.
You will find this on the Internet at:
(http://support.automation.siemens.com/WW/view/en/8859629)
See also

GeoAddr (Page 47)
Return values (Page 51)

Software Development Kit for EC31
30 Programming Manual, 08/2010, A5E01716340-03

http://support.automation.siemens.com/WW/view/en/8859629�

Functions

3.233 eccio_write_dataset

Description

3.2 Central I/O functions

This function writes parameter assignment data blocks up to 240 bytes long to a signal
module. The function can be used to carry out the following operations:

® Assigning parameters to signal modules
e Setting the types of measurement and measuring ranges (voltage and current)
® Enabling / disabling interrupts

Note

When they receive the parameter assignment data blocks, signal modules need several

milliseconds for the internal reassignment. They cannot be accessed during this time.

Syntax

unsigned long

Parameters

GeoAddr

unsigned
unsigned
unsigned

eccio _write dataset (
geo,

char ds_nr,

char* pbuffer,

short 1length)

Name

Description

Data type

geo

Address of the signal module

GeoAddr

ds_nr

Number of the data block

unsigned char

pbuffer

Pointer to a buffer with the data to be written.

unsigned char*

length

Length of the data block

unsigned short

Return value

Reference

EC_CIO_OK
EC_CIO_E_PARAM
EC_CIO_E_STATE
EC_CIO_E_BUS
EC_CIO_E_UNKNOWN
EC_CIO_E_DRIVER

For information about the signal modules, refer to the
S7-300 Aufomation System, Module data equipment manual.
You will find this on the Internet at:

http://support.automation.siemens.com/WW/view/de/8859629

See also

eccio_def_par_write_single (Page 32)

eccio_def_par_write_broadcast (Page 33)
GeoAddr (Page 47)
Return values (Page 51)

Software Development Kit for EC31

Programming Manual, 08/2010, A5E01716340-03

31

http://support.automation.siemens.com/WW/view/de/8859629

Functions

3.2 Central I/O functions

3.234

Description

Syntax

Parameters

Return value

See also

32

eccio_def_par_write_single

This function transfers the default parameter assignment to one signal module.

Note

Do not run the default parameter assignment unless the signal module has not already been
assigned parameters using the eccio write dataset function.

unsigned short eccio_def par write single(
GeoAddr geo,
unsigned short par_ stat)

Name Typ | Description Data type
e
geo in Address of the signal module GeoAddr
par_stat in Permitted values: unsigned
e EC_CIO_DEFAULT_PAR_SET_MODULE_DEF_PAR short

e EC_CIO_DEFAULT_PAR_SET_MODULE_CLR_PAR
e EC_CIO_DEFAULT_PAR_SET_MODULE_DEFPAR_ENABLE

e EC_CIO_DEFAULT_PAR_SET_MODULE_PAR_DS

You will find information about the meaning of the parameter values, and how they are used
in the user program at Basic principles - parameter assignments (Page 28).

e EC_CIO_OK

e EC_CIO_E_PARAM

e EC_CIO_E_STATE

e EC_CIO_E_BUS

e EC_CIO_E_UNKNOWN
e EC_CIO_E_DRIVER

eccio_write_dataset (Page 31)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Functions

3.23.5

Description

Syntax

Parameters

Return value

See also

3.2 Central I/O functions

eccio_def_par_write_broadcast

This function transfers the default parameter assignment to all the signal modules on the
backplane bus.

Note

Do not run the default parameter assignment unless the signal modules have not already
been assigned parameters using the eccio write dataset function.

unsigned short eccio_def par write broadcast (
unsigned short par_ stat)

Name Type | Description Data type
par_stat in Permitted values: unsigned
e EC_CIO_DEFAULT_PAR_SET_MODULE_DEF_PAR short

e EC_CIO_DEFAULT_PAR_SET_MODULE_CLR_PAR
e EC_CIO_DEFAULT_PAR_SET_MODULE_DEFPAR_ENABLE
e EC_CIO_DEFAULT_PAR_SET_MODULE_PAR_DS

You will find information about the meaning of the parameter values, and how they are used
in the user program at Basic principles - parameter assignments (Page 28).

e EC_CIO_OK

e EC_CIO_E_PARAM

e EC_CIO_E_STATE

e EC_CIO_E_BUS

e EC_CIO_E_UNKNOWN
e EC_CIO_E DRIVER

eccio_write_datasel (Page 31)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 33

Functions

3.3 LED and RUN/STORP switch functions

3.3 LED and RUN/STOP switch functions
3.3.1 ecledrs_initialize
Description

This function initializes the LED and RUN/STOP switch functions. Together with the other
functions on the EC31, it is used to control LEDs, and to detect changes in the status of the
RUN/STOP switch.

Note
Call the function in the user program before the other LED and RUN/STOP switch functions.

Syntax

unsigned short ecledrs initialize(void)

Return value
e EC_LEDRS_OK
e EC_LEDRS_E_MISSINGDRIVER
e EC_LEDRS_E_STATE
e EC_LEDRS_E_UNKNOWN

See also
ecledrs_deinitialize (Page 35)

Return values (Page 51|

Software Development Kit for EC31
34 Programming Manual, 08/2010, ASE01716340-03

Functions
3.3 LED and RUN/STORP switch functions

3.3.2 ecledrs_deinitialize

Description
This function ends the use of the LED and RUN/STOP switch functions on the EC31.

Note

Call the function in the user program when all LED and RUN/STOP switch
functions have ended.

Syntax

unsigned short ecledrs deinitialize(void)

Return value
e EC_LEDRS_OK
e EC _LEDRS_E_STATE
e EC_LEDRS_E_UNKNOWN

See also
ecledrs_initialize (Page 34)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 35

Functions

3.3 LED and RUN/STORP switch functions

3.3.3 ecledrs_write
Description
This function is used to control the LEDs on the EC31. It transfers the selected status to the
controlled LEDs. To control several LEDs simultaneously, you can link the Defines by means
of logic OR operation.
Figure 3-2 LEDs on the EC31
Syntax
unsigned short ecledrs write (
unsigned short 1led,
unsigned char state)
Parameters
Name Type Description Data type
led in LED on the EC31 to be activated. unsigned short
state in Status with which the activated LED should respond. | unsigned char
LED Color Meaning
EC_LEDRS_BF1 Red Bus fault 1 LED
EC_LEDRS_BF2 Red Bus fault 2 LED
EC_LEDRS_U1BF3 Red User 1/ Bus fault 3 LED
EC_LEDRS_U2BF4 Red User 2 / Bus fault 4 LED
EC_LEDRS_U3 Yellow User 3
EC_LEDRS_U4 Green User 4
EC_LEDRS_SF Red System fault LED
EC_LEDRS_DC5V Green 5V supply for the backplane bus (cannot be
programmed)
EC_LEDRS_RUN Green RUN LED
EC_LEDRS_STOP Yellow STOP LED
Software Development Kit for EC31
36 Programming Manual, 08/2010, ASE01716340-03

Functions
3.3 LED and RUN/STORP switch functions

STATE Meaning

EC_LEDRS_STATE_ON Activated LED lights up
EC_LEDRS_STATE_OFF Activated LED goes out
EC_LEDRS_STATE_BLINK_SLOW Activated LED flashes slowly (0.5 Hz)
EC_LEDRS_STATE_BLINK_FAST Activated LED flashes quickly (2 Hz)

Return value
e EC_LEDRS_OK
e EC_LEDRS_E_STATE
e EC_LEDRS_E_UNKNOWN
e EC_LEDRS_E_PARAM

See also
Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 37

Functions

3.3 LED and RUN/STORP switch functions

3.34

Description

Callback function

Syntax

Parameters

Return value

See also

38

ecledrs_registerswitchchangecbk

This function registers a callback function that signals changes in the status of the
RUN/STOP switch on the EC31. The specified callback function is called for every status
change. When it is registered, the callback function is called for the first time, and the current
switch position is displayed.

Note

If the switch position changes very quickly (RUN-STOP-RUN), only the most recently
registered switch position is signaled, rather than all the intermediate states.

Monitoring of the status of the RUN/STOP switch is only ended with the
ecledrs_deregisterswitchchangecbk function.

Sample declaration for a user-defined callback function:
unsigned short switch cbf(
unsigned char newstate)

Note

The callback function should execute as few operations are possible so as not to
block the system.

unsigned short ecledrs registerswitchchangecbk(
FP_EC LEDRS SWITCH CHANGE CBK prunstopchangecallback)

Name Type Description Data type

prunstopchangecallback in Pointer to user functions that are called in |-
response to a change in status of the
RUN/STOP switch on the EC31.

EC_LEDRS_OK
EC_LEDRS_E_PARAM
EC_LEDRS_E_STATE
EC_LEDRS_E_UNKNOWN

Callback functions (Page [15)
Callback switch_change_natification (Page 40)
Return values (Page 51))

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Functions
3.3 LED and RUN/STORP switch functions

3.3.5 ecledrs_deregisterswitchchangecbk

Description

This function ends the status monitoring for the RUN/STOP switch on the EC31 via the
user program.

Note

Call the function in the user program when all RUN/STOP switch functions have ended.

Syntax

unsigned short ecledrs deregisterswitchchangecbk (void)

Return value
e EC_LEDRS_OK
e EC _LEDRS_E_STATE
e EC_LEDRS_E_UNKNOWN

See also
Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 39

Functions

3.3 LED and RUN/STORP switch functions

3.3.6

Description

Syntax

Parameters

See also

40

Callback switch_change_notification

The user-defined callback function is called in response to changes in the status of the
RUN/STOP switch on the EC31. When the ecledrs_registerswitchchangecbk function is
called, a pointer to the callback function is passed as a parameter. You can choose any
name. The return value must be of the type void . The response to status changes is

defined by the program.

The following status changes are signaled (output parameter state)

Definition Meaning
EC_LEDRS_SWITCH_RUN Toggle to the RUN state
EC_LEDRS_SWITCH_STOP Toggle to the STOP state

EC_LEDRS_SWITCH_MRES

Toggle to the MRES state

The callback function remains active, and signals any status changes that occur until it is
deregistered by calling the ec1edrs_deregisterswitchchangecbk function.

Sample declaration:

void register switch change cbf

(unsigned char state)

Name Type

Description

Data type

state out

Status change

unsigned char

ecledrs_registerswitchchangecbk (Page 38)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Functions

3.4 Persistence functions

3.4 Persistence functions
3.4.1 ecpers_initialize
Description

This function initializes the persistence functions on the EC31. A user-defined callback
function is called if the power fails. This allows up to 256 KB data to be saved after a
power failure.

Note
Call the function before the other persistence functions.

Syntax
unsigned short ecpers_initialize(
FP _EC PERS PFCALLBACK pfcallback,
unsigned long* pmaxlength)

Sample declaration for a user-defined callback function
void FP EC PERS PFCALLBACK (void)

Parameters
Name Type Description Data type
pfcallback in Pointer to the user-defined callback function to be -
called in response to a power failure on the embedded
controller.
pmaxlength out Determines the size of the available retentive memory | unsigned long*
for saving data in the event of a power failure.

Return value
e EC_PERS_OK
e EC_PERS_E_PARAM
e EC_PERS_E_OPENDRIVER
e EC_PERS_E_MAPPING_MEMORY
e EC_PERS_E_REGISTER_POWERFAIL
e EC_PERS_E_ALREADY_INITIALIZED

See also
ecpers_deinitialize (Page 42)
ecpers_readblock (Page 43)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, ASE01716340-03 41

Functions

3.4 Persistence functions

3.4.2

Description

Syntax

Return value

See also

42

ecpers_deinitialize

This function ends the use of the persistence functions on the EC31.

The previously registered callback function will not be called again after this function.

Note

Call the function in the user program when the persistence functions have ended.

unsigned short ecpers deinitialize(void)

e EC_PERS_OK
e EC_PERS_E_NOT_INITIALIZED

ecpers_initialize (Page 41)

Return values (Page 51|

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Functions

3.4 Persistence functions

3.4.3 ecpers_readblock

Description
This function reads data from a retentive memory.

Syntax
unsigned short ecpers readblock(
void* pbuffer,
unsigned long offset,
unsigned long length)
Parameters
Name Type Description Data type
pbuffer in Pointer to a buffer that holds the data. void*
offset in Offset of the retentive memory in which the written unsigned long

data is to be read.
The value must be less than *pmaxlength.

*pmaxlength is used inthe ecpers initialize
function.

length in Determines the size of the data to be read.

The value must be greater than 0 and less than or
equal to *pmaxlength - offset.

*pmaxlength is used inthe ecpers initialize
function.

unsigned long

Return value
e EC_PERS_OK
e EC_PERS_E_PARAM
e EC_PERS_E_NOT_INITIALIZED

See also
ecpers_initialize (Page 41)

Return values (Page 51)

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

43

Functions
3.4 Persistence functions

3.4.4 ecpers_writeblock

Description
This function writes data to a retentive memory.

Syntax
unsigned short ecpers writeblock(
void* pbuffer,
unsigned long offset,
unsigned long length)
Parameters
Name Type Description Data type
pbuffer in Pointer to a buffer that contains the data to be written. | void*
offset in Offset of the retentive memory in which the data is to | unsigned long
be written.

The value must be less than *pmaxlength.

*pmaxlength is used inthe ecpers initialize
function.

length in Determines the size of the data to be written. unsigned long

The value must be greater than 0 and less than
or equal to

*pmaxlength - offset.

*pmaxlength is used in the ecpers _initialize
function.

Return value
e EC_PERS_OK
e EC_PERS_E_PARAM
e EC_PERS_E_NOT_INITIALIZED

See also
ecpers_initialize (Page 41)

Software Development Kit for EC31
44 Programming Manual, 08/2010, ASE01716340-03

Functions
3.4 Persistence functions

3.4.5 Callback power_fail_notification

Description

This user-defined callback function is called in response to a power failure on the EC31 if
there is still data to be saved, for example. When the ecpers_initialize function is called,
a pointer to the callback function is passed as a parameter. You can choose any name.
The return value must be of the type void.

The callback function remains active until it is deregistered by calling the
ecpers _deinitialize function.

Only one callback function of this type may be registered.

Syntax

Sample declaration:
void FP EC PERS PFCALLBACK (void)

Parameters
None

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 45

Functions

3.4 Persistence functions

46

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Appendix

A1 Data types
A1A1 GeoAddr
Description

The ceoaddr structure contains the address of a signal module.

Syntax
typedef struct
{
unsigned char rack;
unsigned char slot;
unsigned char reserved;
unsigned char subaddress;
}GeoAddr;
Parameters
Name Description Data type Range of
values
rack Number of the rack that contains the signal | unsigned char 0...3
module.
slot Slot that contains the signal module. unsigned char 4.11
subaddress Offset of the logical address unsigned char 0...255
See also

Addressing signal modules (Page [13)

Software Development Kit for EC31

Programming Manual, 08/2010, A5E01716340-03

47

Appendix

A.1 Data types

A1.2 BusEnum

Description

The BusEnum structure contains a list of the signal modules on the backplane bus.

Syntax

typedef struct
{

Module Info Peril[MAX MODULE COUNT];

unsigned short Module Count;

unsigned short Rack Count;

unsigned short Rack Slot Count[MAX RACK COUNT];

unsigned short reserved;

unsigned char reserved;

unsigned char reserved;
} BusEnum;

Parameters

Name Description Data type Range of values
Module_lInfo Peril List of signal modules - -
Module_Count Number of all signal modules unsigned short | 0...32
Rack_Count Number of all racks unsigned short 1.4
Rack_Slot_Count Number of signal modules unsigned short | 0...8
Rack_Im_Type reserved unsigned short | -
Rack_Is_Im_Available reserved unsigned char -
Rack_Is_Im_Plugged reserved unsigned char -

Software Development Kit for EC31
48 Programming Manual, 08/2010, ASE01716340-03

Appendix
A.1 Data types

A1.3 Module_Info

Description

The Module 1nfo structure contains the address of a plugged-in signal module.

Syntax
typedef struct
{
unsigned short reserved;
unsigned char Plugged;
unsigned char Rack;
unsigned char Slot;
} Module Info;
Parameters
Name Description Data type Range of
values
Type reserved unsigned short | -
Plugged Is the signal module plugged in? unsigned char 1: true
0: false
Rack Number of the rack that contains the signal unsigned char 0...3
module.
Slot Slot into which the signal module is plugged. unsigned char 4.1

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 49

Appendix

A.1 Data types

A14 Alarminfo

Description

The a1armInfo structure contains the address of a signal module that signals an interrupt,
and information about the interrupts.

Syntax

typedef struct

{
GeoAddr geo_ address;
unsigned short Status Wdl;
unsigned short Status Wd2;
unsigned short Alarm Coming;
unsigned char Alarm Type;

} AlarmInfo;

Parameters

Name Description Data type Range of values

Geo_address Address of the signal module GeoAddr -
that triggered the interrupt

Status_Wd1 First status word contained in the | unsigned short | Depends on the module
interrupt message.

Status_Wd2 Second status word contained in | unsigned short | Depends on the module
the interrupt message.

Alarm_Coming e A process interrupt is always | unsigned short | 0: EC_ALARM_COMING
"coming". 1: EC_ALARM_GOING

e A diagnostic interrupt may be
"going", or "coming".

Alarm_Type Interrupt type: unsigned char 0: EC_CIO_PROCESS
e Process interrupt _ALARM
1: EC_CIO_DIAGNOSTIC

o Diagnostic interrupt ALARM

Reference

For information about the signal modules, refer to the

S7-300 Aufomation System, Module data equipment manual.
You will find it on the Internet at:
http://support.automation.siemens.com/WW/view/en/8859629.

See also
eccio_ack_alarm (Page 24)

Software Development Kit for EC31
50 Programming Manual, 08/2010, A5E01716340-03

http://support.automation.siemens.com/WW/view/de/8859629

Appendix

A.2 Return values

A.2 Return values

Return values

The following tables contain the return values for the functions, and options for
eliminating errors.

Return values and remedies

Table A- 1 Return values for central 1/0 functions

Name Description Remedy

EC_CIO_OK The call was successfully -
processed.

EC_CIO_E_PARAM A parameter is incorrect or Check the parameters, and call the function
does not correspond to the again.
range of values.

EC_CIO_E_STATE The call is not possible in Check the function and order of the calls:
this state. o A call was sent after the backplane bus

was deinitialized with
eccio deinitialize.

e A call was sent before the backplane bus
was initialized with eccio_initialize.

EC_CIO_E_FATAL The driver was unable to Check whether the signal modules are
process the call. plugged in correctly.

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03 51

Appendix

A.2 Return values

Name

Description

Remedy

EC_CIO_E_BUS

Error on the backplane bus

e A module is not detected. Check if the
module is correctly inserted.
Call eccio _initialize to update the list
of stations.

e The address of a module is incorrect:
Check the parameters in the Geoaddr
structure.

¢ The signal module has not been assigned
parameters, or the wrong parameters
were assigned:
Call eccio_write dataset toassign
parameters to the signal module. Follow
the documentation for the signal modules.

e Check whether the module supports the
function. If a Read / Write function failed,
check whether the function supports the
necessary byte length. Follow the
documentation for the signal modules.

e The current configuration differs from the
saved list of stations:
Call eccio_check bus to compare the
current configuration on the backplane
bus with the list of stations. If there are
any differences, call eccio initialize
to update the list of stations.

e The identification of the stations on the
backplane bus is incomplete.
Cause: Modules are in a temporarily
unavailable state:
Call eccio initialize again after a
short waiting period.

e A module was unplugged or plugged in
while the backplane bus was being

initialized, and the stations need to be
identified.

e Check whether the device is defective.

EC_CIO_E_UNKNOWN

Internal error

e Check the access rights
e Contact your local SIEMENS partner.

EC_CIO_E_DRIVER

Driver missing or is defective.

Install the driver, and restart the call.

EC_CIO_W_LENGTH

Data record too long.

Only for eccio_read_dataset():

Some signal modules support only the
reading of 4 bytes or 16 bytes for data record
0 and data record 1. If you try to read a
greater length of one of these two data
records for such signal modules, the return
value EC_CIO_W_ LENGTH indicates that
only 4 bytes (data record 0) or 16 bytes
(data record 1) were actually read.

52

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

Appendix
A.2 Return values

Table A-2 Return values for LED functions
Name Description Remedy
EC_LEDRS_OK The call was successfully -

processed.

EC_LEDRS_E_MISSINGDRIVER

The driver is not installed,
or is defective.

Install the driver, and restart the call.

EC_LEDRS_E_STATE

The call is not possible in
this state.

Check the order of the calls:

e A call was sent after the LED
component was deinitialized with
ecledrs deinitialize.

e A call was sent before the LED
component was initialized with
ecledrs_initialize.

e ccledrs initialize was called more
than once.

EC_LEDRS_E_UNKNOWN

Internal error

e Check the access rights
e Contact your local SIEMENS partner.

EC_LEDRS_E_PARAM

At least one parameter is
incorrect, or does not
correspond to the range
of values.

Check the parameters, and restart the call.

Table A-3 Return values for persistence functions
Name Description Remedy
EC_PERS_OK The call was successfully -

processed.

EC_PERS_E_PARAM

A parameter is 0, or is not
permitted for the Read /
Write function.

Check the parameters, and restart the call.

EC_PERS_E_OPENDRIVER

The persistence driver could not
be opened.

Check whether the driver is installed.

EC_PERS_E_MAPPING_MEMORY

Driver error while assigning the
retentive memory.

e Check whether the driver is installed,
and is working.

e Check the hardware configuration

EC_PERS_E_REGISTER_POWERFAIL

Another application has already
registered a callback function.

Check whether other applications
are active.

EC_PERS_E_ALREADY_INITIALIZED

The persistence components
have already been initialized.

Check the order of the calls.

EC_PERS_E_NOT_INITIALIZED

The persistence components
were not initialized.

Check the order of the calls.

Software Development Kit for EC31

Programming Manual, 08/2010, A5E01716340-03

53

Appendix

A.3 Values for data block 0

A3

Values for data block O

Some modules can generate interrupts when there is diagnostic information available.

These "diagnostic interrupts" must be enabled by the entry in parameter assignment data
block 0 (DS0). The settings are shown in the table below. Please note that some modules
also require settings in parameter assignment data block 1.

DSO0 values for analog modules

Table A-4 DSO values for analog modules
Module Order number DSO value if DSO0 value if
"Diagnostic "Diagnostic interrupt
interrupt disabled" | enabled"
SM 331; Al 8 x 13 bit 6ES7331-1KF01-0ABO (no interrupts, parameter assignment
information only)
SM 331; Al 8 x 12 bit 6ES7331-7KF02-0AB0 00 00 FF 01
diagnostic interrupt /
process interrupt
SM 331; Al 2 x 12 bit 6ES7331-7KB02-0AB0 00 00 03 01
diagnostic interrupt /
process interrupt
SM 332, AO 4 x 12 bit 6ES7332-5HD01-0AB0 00 00 OF 00
diagnostic interrupt
SM 332; AO 2 x 12 bit 6ES7332-5HB01-0ABO 00 00 03 00
SM 332; AO 8 x 12 bit 6ES7332-5HF00-0ABO 00 00 FF 00

Further references

For further information about the parameter assignment record 1 for the signal modules,
refer to the S7-300 Aufomation System, Module Data manual.

You will find a detailed description of how to analyze the diagnostic data from signal modules
in the user program in the STEP 7 documentation.

Software Development Kit for EC31
54 Programming Manual, 08/2010, A5E01716340-03

Index

A

Addresses
Signal modules, 13
Addressing
Examples, 14
Alarminfo, 50

B

Backplane bus
Configuration, 23
Initializing, 19

Basic knowledge, 3

BusEnum, 48

C

Central I/O functions, 17
Conventions, 3

D

Data

Read, 26

Writing, 27
Data blocks

Reading, 30

Writing, 31
Data type

Alarminfo, 50

BusEnum, 48

GeoAddr, 47

Module_Info, 49
Declaration

Interrupt callback function, 16
Default parameter assignment, 32, 33
DLL files, 9

E

EC31, 3

ECCIO, 7
eccio_ack_alarm, 24
eccio_check_bus, 23

Software Development Kit for EC31
Programming Manual, 08/2010, A5E01716340-03

eccio_def_par_write_broadcast, 33
eccio_def_par_write_single, 32
eccio_deinitialize, 21
eccio_initialize, 19
eccio_output_control, 22
eccio_read_data, 26
eccio_read_dataset, 30
eccio_write_data, 27
eccio_write_dataset, 31
ECLEDRS, 7
ecledrs_deinitialize, 35
ecledrs_deregisterswitchchangecbk, 39
ecledrs_initialize, 34
ecledrs_registerswitchchangecbk, 38
ecledrs_write, 36
ECPERS, 7
ecpers_deinitialize, 42
ecpers_initialize, 41
ecpers_readblock, 43
ecpers_writeblock, 44
Embedded Controller EC31, 3
End phase, 11
Examples

Addressing, 14

G
GeoAddr, 47

H

Header files, 9
Sample program, 9

Initialization phase, 11

Interrupts
acknowledge, 24
Activate, 31
Disable, 31

55

Index

L Software Development Kit, 7
LED functions, 18
Libraries, 9 T

List of stations, 19
Types of measurement, 31

M
M , U
easuring ranges, 31
Module_lInfo, 49 User program
create, 10
Rules, 11
@) Sequence of operations, 12
Outputs Structure, 11
Disabling, 22
Enabling, 22 W
Writing
P Data, 27
Parameter assignment data blocks, 31
Parameter
rack, 47
slot, 47 X
subaddress, 47
Persistence, 7 xxx, 25, 40, 45

Persistence functions, 18
Productive mode, 11
Program

create, 10
Program flow, 12
Programming environment, 9

R

Read

Data, 26

Parameter assignment data blocks, 30
Rules

User program, 11
RUN/STOP switch functions, 18

S

S7 Modular Embedded Controller, 3
S7-mEC, 3
Sample declaration

Interrupt callback function, 16
Sample program, 9
Scope, 3
Signal modules

Assign parameters, 31

Software Development Kit for EC31
56 Programming Manual, 08/2010, A5E01716340-03

	Software Development Kit for EC31
	Legal information
	Introduction
	Table of contents
	1 Description
	1.1 Software Development Kit
	1.2 Sample program

	2 Programming
	2.1 Creating a program
	2.2 Program structure
	2.3 Addressing signal modules
	2.4 Callback functions

	3 Functions
	3.1 Overview
	3.2 Central I/O functions
	3.2.1 Basic functions
	3.2.1.1 eccio_initialize
	3.2.1.2 eccio_deinitialize
	3.2.1.3 eccio_output_control
	3.2.1.4 eccio_check_bus
	3.2.1.5 eccio_ack_alarm
	3.2.1.6 Callback alarm_notification

	3.2.2 Reading and writing data
	3.2.2.1 eccio_read_data
	3.2.2.2 eccio_write_data

	3.2.3 Assigning parameters to signal modules
	3.2.3.1 Basic principles - parameter assignments
	3.2.3.2 eccio_read_dataset
	3.2.3.3 eccio_write_dataset
	3.2.3.4 eccio_def_par_write_single
	3.2.3.5 eccio_def_par_write_broadcast

	3.3 LED and RUN/STOP switch functions
	3.3.1 ecledrs_initialize
	3.3.2 ecledrs_deinitialize
	3.3.3 ecledrs_write
	3.3.4 ecledrs_registerswitchchangecbk
	3.3.5 ecledrs_deregisterswitchchangecbk
	3.3.6 Callback switch_change_notification

	3.4 Persistence functions
	3.4.1 ecpers_initialize
	3.4.2 ecpers_deinitialize
	3.4.3 ecpers_readblock
	3.4.4 ecpers_writeblock
	3.4.5 Callback power_fail_notification

	A Appendix
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X

