SIEMENS

	General	1	
SINUMERIK 840D sl/840D/840Di sl	Parameter description		

Safety Guidelines

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning and operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes in this documentation qualified persons are defined as persons who are authorized to commission, ground and label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage

Note the following:

WARNING

This device may only be used for the applications described in the catalog or the technical description and only in connection with devices or components from other manufacturers which have been approved or recommended by Siemens. Correct, reliable operation of the product requires proper transport, storage, positioning and assembly as well as careful operation and maintenance.

Trademarks

All names identified by \circledR^{\circledR} are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

Structure of the documentation

The SINUMERIK documentation is organized in 3 parts:

- General Documentation
- User documentation
- Manufacturer/service documentation

A list of documents, updated on a monthly basis and indicating the available languages, is available on the Internet at: http://www.siemens.com/motioncontrol
Select "Support" \rightarrow "Technical Documentation" \rightarrow "Overview of Documents".

The Internet version of the DOConCD (DOConWEB) is available at:
http://www.automation.siemens.com/doconweb

Information on the range of training courses and FAQs (frequently asked questions) are available in the Internet under:
http://www.siemens.com/motioncontrol and there under the menu item "Support"

Target group

This Manual is intended for machine-tool programmers.

Benefits

With the user manual, the target group can develop, write, test, and debug programs.

Standard scope

The functionality of the standard scope (measuring cycle release SW 6.3) is described in this programming manual. The machinery construction OEM documents supplements or changes that he makes (the machinery construction OEM).

Other functions not described in this documentation might be executable in the control. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.
For the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation, or maintenance.

Technical Support

If you have any questions, please contact our Hotline:

Europe and Africa time zone
A\&D Technical Support
Tel.: +49 (0) 180 / 5050-222
Fax: +49 (0) 180/5050-223
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

Asia and Australia time zone
A\&D Technical Support
Tel.: +86 1064719990
Fax: +86 1064747474
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

America time zone
A\&D Technical Support
Tel.: +1 4232622522
Fax: +1 4232622289
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

Note

Country telephone numbers for technical support are provided under the following Internet address:

Enter http://www.siemens.com/automation/service\&support

Questions on the manual

If you have any queries (suggestions, corrections) in relation to this documentation, please fax or e-mail us:

Fax: +49 (0) 9131 / 98-63315
Email: mailto:motioncontrol.docu@siemens.com
Fax form: See the reply form at the end of this publication

SINUMERIK Internet address

http://www.siemens.com/sinumerik

Validity

This User's Guide is valid for the following controls:
Measuring cycles, version 7.3.
Software versions stated in the programming manual refer to the 840D and their 810D equivalent, e.g. SW 5 (840D) corresponds to SW 3 (810D).

Structure of descriptions

All cycles and programming options have been described according to the same internal structure, as far as this is meaningful and practicable. The various levels of information have been organized such that you can selectively access the information you need for the task in hand.

Supplementary devices

The applications of SIEMENS controls can be expanded for specific purposes through the addition of special add-on devices, equipment and expansions supplied by SIEMENS.

Table of contents

Preface 3
1 General 17
11 Basics 17
1.2 General prerequisites 18
1.3 Behavior on block search, dry run, program testing, simulation 19
1.4 Reference points on the machine and workpiece 22
1.5 Definition of the planes, tool types 24
1.6 Probes that can be used 27
1.7 Probe, calibration body, calibration tool 29
1.7.1 Measuring workpieces on milling machines, machining centers 29
1.7.2 Measuring tools on milling machines, machining centers 30
1.7.3 Measuring workpieces at the turning machines 31
1.7.4 Measuring tools at lathes 34
1.8 Measurement principle 36
1.9 Measuring strategy for measuring workpieces with tool offset 41
1.10 Parameters for checking the measurement result and offset 44
1.11 Effect of empirical value, mean value, and tolerance parameters 49
1.12 Overview of measuring cycle functions for milling technology 50
1.12.1 Tool measurement on milling machines, machining centers 50
1.12.2 Calibrating workpiece probes 51
1.12.3 Workpiece measurement at one point 51
1.12.4 Measuring the workpiece parallel to the axis 52
1.12.5 Measuring a workpiece at an angle 55
1.12.6 Measuring a surface at an angle 56
1.12.7 Measuring spheres 57
1.12.8 Workpiece measurement: Setting-up a corner 58
1.13 Overview of measuring cycle functions for turning technology 59
1.13.1 Measuring tools at lathes 59
1.13.2 Calibrating workpiece probes 60
1.13.3 Measuring workpieces at lathes: 1-point measurement 61
1.13.4 Measuring workpieces at lathes: 2-point measurement 62
2 Parameter description 63
2.1 Parameter concept of the measuring cycles 63
2.2 Parameter overview 65
2.2.1 Defining parameters 65
2.2.2 Result parameters 67
2.3 Description of the most important defining parameters 69
2.3.1 Measurement variant: MVAR 69
2.3.2 Number of the measuring axis: _MA 69
2.3.3 Tool number and tool name: _TNUM and _TNAME 70
2.3.4 Offset number: _KNUM 71
2.3.5 Offset number_KNUM extended for tool offset: up to 9 digits 73
2.3.6 Correcting setup and additive offset in workpiece measurement: _DLNUM 74
2.3.7 Correcting the tool of a stored tool environment: _TENV 75
2.3.8 Example of automatic tool offset with and without saved tool environment in workpiece measuring cycles 76
2.3.9 Variable measuring velocity: _VMS 77
2.3.10 Offset angle position: _CORA 78
2.3.11 Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA 78
2.3.12 Measurement path: _FA 79
2.3.13 Probe type, probe number: _PRNUM 80
2.3.14 Empirical value, mean value: _EVNUM 81
2.3.15 Multiple measurement at the same location: _NMSP $\overline{82}$
2.3.16 Weighting factor for mean value calculation: _K 83
3 Measuring cycle help programs 85
3.1 Package structure of the measuring cycles 85
3.2 Measuring cycle subroutines 87
3.2.1 Overview 87
3.2.2 CYCLE116: Calculation of center point and radius of a circle 88
3.3 Measuring cycle user programs 90
3.3.1 General information 90
3.3.2 CYCLE198: User program before undertaking measurement 90
3.3.3 CYCLE199: User program after undertaking measurement 90
4 Measuring in JOG 91
4.1 Overview 91
4.2 Workpiece measurement 94
4.2.1 Overview 94
4.2.1.1 General information. 94
4.2.1.2 Operational sequence 94
4.2.1.3 "Function interface of the measuring point softkeys (P1...P4)", in the PLC 96
4.2.1.4 Measuring in JOG with active TRAORI 97
4.2.2 Calibrating the workpiece probe 98
4.2.2.1 General information 98
4.2.2.2 Calibrating probe length 99
4.2.2.3 Calibrating probe radius 100
4.2.3 Measure edge 101
4.2.3.1 General information 101
4.2.3.2 Setting the edge 103
4.2.3.3 Orienting the edge 104
4.2.3.4 Distance 2 edges 106
4.2.4 Measuring corner 107
4.2.4.1 General information. 107
4.2.4.2 Right-angled corner 108
4.2.4.3 Any corner 110
4.2.5 Measuring pocket, hole or spigot 111
4.2.5.1 General information 111
4.2.5.2 Rectangular pocket or 1 hole or 1 spigot 112
4.2.5.3 2 holes or 2 circular spigots $\overline{115}$
4.2.5.4 3 holes or 3 circular spigots 117
4.2.5.5 4 holes or 4 circular spigots 118
4.2.6 Align plane 120
4.2.6.1 General information 120
4.2.6.2 Measuring a plane that is oblique in space 121
4.2.7 Rejection, repetition, end of measurement 122
4.2.7.1 Rejection and repetition of measurements 122
4.2.7.2 Terminating the measurement 123
4.2.8 Cascaded measurement 124
4.2.9 Support of set-up in JOG - after measurement 125
4.2.9.1 General information 125
4.2.9.2 Example 1 126
4.2.9.3 Example 2 127
4.3 Measuring the tool 129
4.3.1 Overview of function and sequence 129
4.3.2 Calibrating the tool probe 129
4.3.3 Measuring milling or drilling tools 131
5 Measuring Cycles for Milling and Machining Centers 135
5.1 General prerequisites 135
5.1.1 General information 135
5.1.2 Overview of measuring cycles 135
5.1.3 Overview of the auxiliary programs required 136
5.1.4 Call and return conditions 136
5.2 CYCLE971 tool: Measuring milling tools, drills 138
5.2.1 Function overview 138
5.2.2 Measurement and correction strategy 140
5.2.2.1 Measuring strategy 140
5.2.2.2 Compensation strategy 141
5.2.2.3 Compensation with correction table when measuring with rotating spindle 142
5.2.3 Calibrating tool probes 144
5.2.3.1 Calibration 144
5.2.3.2 Programming example 1 $\overline{146}$
5.2.3.3 Programming example 2 147
5.2.3.4 Operational sequence 149
5.2.4 Calibrating tool probes automatically $\overline{150}$
5.2.4.1 Automatic calibration 150
5.2.4.2 Programming example 152
5.2.4.3 Operational sequence 153
5.2.5 Measuring tool 154
5.2.5.1 Measurement 154
5.2.5.2 Programming examples 1 159
5.2.5.3 Programming example 2 161
5.2.5.4 Operational sequence 162
5.3 CYCLE976 calibrate workpiece probe 163
5.3.1 Function overview 163
5.3.2 Calibrating a workpiece probe in a hole of known hole center point $\overline{166}$
5.3.2.1 General information 166
5.3.2.2 Programming example 168
5.3.2.3 Operational sequence $\overline{169}$
5.3.3 Calibrating a workpiece probe in a hole of unknown hole center point 170
5.3.3.1 General information 170
5.3.3.2 Programming example 172
5.3.3.3 Operational sequence 173
5.3.4 Calibration of a workpiece probe on a surface 174
5.3.4.1 General information 174
5.3.4.2 Programming example 176
5.3.4.3 Operational sequence 177
5.3.5 Calibrating a workpiece probe in the applicate determining probe length 177
5.3.5.1 General information 177
5.3.5.2 Programming example 179
5.3.5.3 Operational sequence 180
5.4 CYCLE977 workpiece: Measure hole/shaft/groove/web/rectangle parallel to axes 181
5.4.1 Function overview 181
5.4.2 Measuring contour elements $\overline{185}$
5.4.2.1 General information 185
5.4.2.2 Programming example 188
5.4.2.3 Operational sequence 190
5.4.3 Measuring and tool offset $\overline{193}$
5.4.3.1 General information 193
5.4.3.2 Programming example 196
5.4.4 Measurement and ZO determination $\overline{198}$
5.4.4.1 General information 198
5.4.4.2 Programming example 200
5.5 CYCLE978 workpiece: Measuring a surface parallel to the axis 202
5.5.1 Function overview 202
5.5.2 Measuring the surface 204
5.5.3 Measurement and ZO determination 206
5.5.3.1 General information 206
5.5.3.2 Programming example 207
5.5.4 Measuring and tool offset 209
5.5.4.1 General information 209
5.5.4.2 Programming example 210
5.6 CYCLE979 workpiece: Measure hole/shaft/groove/rib at an angle 213
5.6.1 Function overview 213
5.6.2 Measure shaft, groove, web 216
5.6.2.1 General information 216
5.6.2.2 Operational sequence 218
5.6.3 Measuring and tool offset 221
5.6.3.1 General information 221
5.6.3.2 Programming example 223
5.6.4 Measurement and ZO determination 225
5.6.4.1 General information 225
5.6.4.2 Programming example 227
5.7 CYCLE998 workpiece: Angle measurement and ZO determination 229
5.7.1 Function overview 229
5.7.2 1-angle measurement 232
5.7.2.1 General information 232
5.7.2.2 Programming example 235
5.7.2.3 Operational sequence 236
5.7.3 2-angle measurement 240
5.7.3.1 General information 240
5.7.3.2 Programming example 1 241
5.7.3.3 Programming example 2 243
5.7.3.4 Operational sequence 246
5.8 CYCLE961 workpiece: Setup inside and outside corner 248
5.8.1 Function overview 248
5.8.2 Setting up a corner with definition of distances and angles 250
5.8.2.1 General information 250
5.8.2.2 Programming example 252
5.8.2.3 Operational sequence 254
5.8.3 Setting up a corner with 4 points 256
5.8.3.1 General information 256
5.8.3.2 Programming example 257
5.8.3.3 Operational sequence 259
5.9 CYCLE997 workpiece: Measuring a sphere and ZO determination 261
5.9.1 Function overview 261
5.9.2 Measurement and ZO determination 266
5.9.2.1 General information 266
5.9.2.2 Operational sequence 268
5.9.3 Programming example CYCLE997 271
5.9.4 CYCLE119: Arithmetic cycle for determining position in space 273
5.9.4.1 General information 273
5.9.4.2 Programming example 275
5.10 CYCLE996 workpiece: Measure kinematics 276
5.10.1 General 276
5.10.2 Measurement procedure 277
5.10.2.1 Proceed as follows 277
5.10.2.2 Measuring an individual rotary axis 278
5.10.2.3 Measuring an individual ball position 280
5.10.2.4 Calculating and activating the swivel data records 280
5.10.3 Example of the procedure to measure the kinematics (CYCLE996) 280
5.10.4 Activation of the function 281
5.10.5 Measuring kinematics 282
5.10.6 Programming via a screen form 282
5.10.6.1 General 282
5.10.6.2 Parameters of "1st, 2nd, 3rd measurement" screen form 284
5.10.6.3 Parameters of "Calculate kinematics" screen form 286
5.10.6.4 Result bit 289
5.10.7 Programming using parameters 289
5.10.7.1 Programming using parameters 289
5.10.7.2 Result parameters, intermediate results 292
5.10.8 Programming example 295
6 Measuring Cycles for Turning Machines 297
6.1 General prerequisites 297
6.1.1 General information 297
6.1.2 Overview of measuring cycles 297
6.1.3 Overview of the auxiliary programs required 297
6.1.4 Call and return conditions 298
6.2 CYCLE982, CYCLE972 Tool: Measure turning tools 300
6.2.1 Function overview 300
6.2.2 Calibrate tool probe (machine-related) 302
6.2.3 Determining dimensions of calibration 307
6.2.4 Measure turning tool (machine-related) 307
6.3 CYCLE982 tool: Measure turning and milling tools 313
6.3.1 Function overview 313
6.3.2 Calibrating tool probes 319
6.3.3 Measuring tool. 322
6.3.4 Automatic tool measurement 331
6.3.5 Incremental calibration 337
6.3.6 Incremental measurement 341
6.3.7 Milling tool: Suppression of start angle positioning _STA1 347
6.3.8 Measuring drills - Special applications 348
6.3.9 Measuring a tool with orientational tool carriers -90° multiples of tool position (measuring cycle release SW 6.3 and higher) 349
6.3.9.1 Overview of the functions 349
6.3.9.2 Measuring turning tools -90° multiples of the tool position 351
6.3.9.3 Measuring milling/drilling tools -90° multiples of the tool position 353
6.4 CYCLE973 Calibrating workpiece probes 355
6.4.1 Function overview 355
6.4.2 Calibrating in the reference groove 358
6.4.2.1 General information 358
6.4.2.2 Programming example 360
6.4.2.3 Operational sequence 361
6.4.3 Calibration on surface 361
6.4.3.1 General information 361
6.4.3.2 Programming example 363
6.4.3.3 Operational sequence 364
6.5 CYCLE974 workpiece: 1-point measurement 365
6.5.1 Function overview 365
6.5.2 1-point measurement and ZO determination 368
6.5.2.1 General information 368
6.5.2.2 Programming example 369
6.5.2.3 Operational sequence 370
6.5.3 1-point measurement and tool offset 370
6.5.3.1 General information 370
6.5.3.2 Programming example 372
6.5.3.3 Operational sequence 374
6.5.4 1-point measurement with reversal and tool offset 375
6.5.4.1 General information 375
6.5.4.2 Programming example 376
6.6 CYCLE994 workpiece: 2-point measurement 378
6.6.1 Function overview 378
6.6.1.1 General information 378
6.6.1.2 Programming example 383
6.6.1.3 Operational sequence 385
6.7 Complex example for tool measurement 387
7 Miscellaneous functions 389
7.1 Log measurement results 389
7.1.1 Overview of the logging cycles 389
7.1.2 Log file 389
7.1.3 Handling the log cycles 390
7.1.3.1 General information 390
7.1.3.2 CYCLE100 Logging ON 390
7.1.3.3 CYCLE101 Logging OFF 390
7.1.3.4 CYCLE105(PAR1) Creating log content 391
7.1.3.5 CYCLE106(PAR1) Logging sequence control 391
7.1.3.6 CYCLE113(PAR1,PAR2) Read system date and time 391
7.1.3.7 CYCLE118(PAR1,PAR2,PAR3,PAR4,PAR5) 391
7.1.3.8 Programming example for formatting a single number 392
7.1.3.9 Programming example for formatting three numbers 393
7.1.4 Variables when logging 393
7.1.5 Selection of the log content 394
7.1.6 Log format 396
7.1.7 Log header 397
7.1.8 Example: Creating a measurement result log 398
7.2 Measuring cycle support in the program editor (up to measuring cycles SW 5.4) 401
7.2.1 Measuring cycle support files 401
7.2.2 Load the measuring cycle support 402
7.2.3 Assigning calls and measuring cycles 402
7.2.4 Description of the parameterizing cycles 403
7.2.4.1 General information $\overline{403}$
7.2.4.2 Setting additional parameters - CYCLE_PARA 403
7.2.4.3 Calibrate tool probe - CYCLE_CAL_TOOLSETTER 404
7.2.4.4 Calibration on surface - CYCLE CAL PROBE 404
7.2.4.5 Calibration in groove - CYCLE_973 405
7.2.4.6 Calibration in hole - CYCLE_976 405
7.2.4.7 Measuring milling tools - CYCLE_971 406
7.2.4.8 Measuring turning tools - CYCLE 972 $\overline{407}$
7.2.4.9 Hole, measure shaft - CYCLE_977_979A 407
7.2.4.10 Groove, measure web - CYCLE_977_979B 408
7.2.4.11 Measure rectangle - CYCLE_977_979C 408
7.2.4.12 Single-point measurement - CYCLE_978 409
7.2.4.13 Angle measurement - CYCLE_998 409
7.2.4.14 Corner measurement with specification of angles - CYCLE_961_W 410
7.2.4.15 Corner measurement with specification of points - CYCLE_961_P 411
7.2.4.16 Single-point measurement - CYCLE_974 411
7.2.4.17 Two-point measurement - CYCLE_994 412
7.3 Measuring cycle support in the program editor (from measuring cycles SW 6.2) 413
7.3.1 Menus, explanation of the cycles 413
7.3.1.1 General information 413
7.3.1.2 Softkey bars for turning $\overline{414}$
7.3.1.3 Softkey bars for milling 416
7.3.1.4 Programming example 418
7.3.2 Pre-setting of the measuring cycle support 419
7.4 Measuring result screens 423
8 Hardware/software 425
8.1 Hardware requirements 425
8.1.1 General hardware prerequisites $\overline{425}$
8.1.2 Measuring probe connection 425
8.1.2.1 General information 425
8.1.2.2 SINUMERIK 810D, 840D powerline, 840Di 425
8.1.2.3 SINUMERIK 840D sl (solution line) probe connection to X122, NCU 7×0 $\overline{430}$
8.1.3 Measuring in JOG 431
8.2 Software requirements 432
8.2.1 How the measuring cycles are supplied 432
8.2.2 Software versions NC and MMC/HMI 432
8.2.3 Options 432
8.3 Function test 433
9 Data description 435
9.1 Machine data for machine cycle runs 435
9.1.1 Machine data that configure the memory 435
9.1.1.1 General information 435
9.1.1.2 Memory configuring machine data, SRAM 436
9.1.1.3 Memory configuring machine data, DRAM 439
9.1.2 Other machine data 441
9.2 Cycle data 443
9.2.1 Data blocks for measuring cycles 443
9.2.1.1 General information 443
9.2.1.2 Data block GUD5.DEF 443
9.2.1.3 Data block GUD6.DEF 443
9.2.2 Data adjustment to a specific machine 448
9.2.3 Central values $\overline{449}$
9.2.4 Central bits 457
9.2.4.1 In data block GUD6.DEF 457
9.2.4.2 Detailed description 458
9.2.5 Central strings 461
9.2.6 Channel-oriented values 462
9.2.7 Channel-oriented bits 466
9.2.7.1 In data block GUD6.DEF $\overline{466}$
9.2.7.2 Detailed description 468
9.3 Data for measuring in JOG 474
9.3.1 Machine data for ensuring operability 474
9.3.2 Modifying the GUD7 data block 476
9.3.3 Settings in data block GUD6 481
9.3.4 Loading files for measuring in JOG 482
10 Start-up (hardware) 485
10.1 Commissioning measuring cycles for the first time 485
10.1.1 Requirements 485
10.1.2 Overview of diskette in delivery form 485
10.2 Steps for commissioning measuring cycles for the first time 487
10.2.1 General information 487
10.2.2 Step 0.1 - set up memory configuring machine data 487
10.2.3 Step 0.2 - set up other machine data 487
10.2.4 Step 0.3 - set up machine data for measuring in JOG 488
10.3 Commissioning measuring cycles for HMI-Advanced PCU50 powerline up to SW 06.03.18 and/or SW 06.04.08 489
10.3.1 Requirements 489
10.3.2 Step 1 - load definition files 489
10.3.2.1 General 489
10.3.2.2 Only for measuring in JOG up to measuring cycle release SW 6.02.16 490
10.3.3 Step 2 - load cycle programs 491
10.3.4 Step 3 - load measuring cycle text files 491
10.3.5 Step 4 - load files for measurement result display 492
10.3.6 Step 5 - load measuring cycle support 492
10.3.7 Step 6 - activate measuring cycle support, configure 492
10.3.8 Step 7 - load and activate measuring in JOG 493
10.3.9 Step 8 - set measuring cycle data 493
10.4 Commissioning measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or SW 06.04.10 and HMI-Advanced PCU50 Solutionline 495
10.4.1 Requirements 495
10.4.2 Step 1 - load definition files 495
10.4.3 Step 2 - load other archive 496
10.4.4 Step 3 - activate entry softkeys "Measure turning" and "Measure milling" for measuring cycle support 497
10.4.5 Step 4 - activate softkey "Measuring cycles" in the "Commissioning" area 497
10.4.6 Step 5 - activate entry softkeys "Measure workpiece" and "Measure tool" for measuring in JOG in the machine's "JOG" area 498
10.4.7 Step 6 - set measuring cycle data 498
10.5 Commissioning measuring cycles for HMI-Embedded PCU20 powerline 499
10.5.1 Requirements 499
10.5.2 Step 1 - load definition files 499
10.5.3 Step 2 - load cycle programs 499
10.5.4 Step 3 - set measuring cycle data 499
10.5.5 Step 4 - menu tree for extending measuring cycles 499
10.5.6 Step 5 - configure measuring cycle support 500
10.5.7 Step 6 - incorporate text files 500
10.5.8 Step 7 - incorporate files for measurement result display 500
10.5.9 Step 8 - incorporate measuring cycle support 501
10.5.10 Step 9 - incorporate displays for measuring cycle support 501
10.5.11 Step 10 - produce image file and program on a Flash card 502
10.6 Commissioning measuring cycles, HMI-Embedded TCU solution line SW 1.x 503
10.6.1 Requirements 503
10.6.2 Step 1 - load archive 503
10.6.3 Step 2 - activate definition files 503
10.6.4 Step 3 - activate entry softkeys "Measure turning" and "Measure milling" for measuring cycle support 504
10.6.5 Step 4 - activate softkey "Measuring cycles" in the "Commissioning" area 504
10.6.6 Step 5 - set measuring cycle data 504
10.7 Upgrading measuring cycles. 505
10.7.1 General information 505
10.7.2 Upgrading measuring cycles for HMI-Advanced PCU50 powerline up to SW 06.03.18 and/or SW 06.04.08 505
10.7.3 Upgrading measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or as of SW 06.04.10 and HMI-Advanced PCU50 solution line 506
10.7.3.1 Requirements 506
10.7.3.2 Step 1 - load definition files 507
10.7.3.3 Step 2 - load other archive 507
10.7.3.4 Step 3 - update Bitmaps 508
10.7.4 Upgrading measuring cycles for HMI-Embedded PCU20 powerline 508
10.8 Sequence for probe installation 509
10.9 Example of calculating the repeat accuracy 511
11 Alarm, error, and system messages 513
11.1 General notes 513
11.2 Error rectification in the measuring cycles 513
11.3 Overview of measuring cycle alarms 513
12 Adaptation of the Measuring Cycles to Previous Software Versions 515
12.1 General information 515
12.2 Measuring cycle subroutines 515
A Appendix. 517
A. 1 Overview of measuring cycle parameters 517
B List of abbreviations 561
C Parameter 563
Glossary 565
Index. 571

General

1.1 Basics

General information

Measuring cycles are general subroutines designed to solve specific measurement tasks. They can be adapted to specific problems via parameter settings.
When taking general measurements, a distinction is made between

- tool measurements and
- workpiece measurements.

Workpiece measurements

In workpiece measurement, a measuring probe is moved up to the clamped workpiece in the same way as a tool and the measured values are acquired. The flexibility of measuring cycles makes it possible to perform nearly all measurements required on a milling or turning machine.
An automatic tool offset or ZO correction can be applied to the workpiece measurement result.

Tool measurements

In tool measurement, the selected tool is moved up to the probe and the measured values are acquired. The probe is either in a fixed in position or is swung into the working area with a mechanism. The tool geometry measured is entered in the appropriate tool offset data set.

1.2 General prerequisites

Certain preconditions must be met before measuring cycles can be used.
These are detailed in Part 2 Description of Functions (Chapter 8 ff .).
The following checklist is useful for checking which preconditions have been met:

Machine

- All machine axes are designed in accordance with DIN 66217.
- Machine data have been adapted.

Existence of cycles, data blocks

The following have been loaded into the control and activated:

- The data blocks into the "Definitions" directory:
- GUD5.DEF
- GUD6.DEF and
- GUD7.DEF (for measuring in JOG)
- The measuring cycles into the standard cycle directory.

Starting position

- The reference points have been approached.
- The starting position can be reached by linear interpolation without collision.

Display functions of the measuring cycles

An HMI/PCU is required for showing the measuring result displays and measuring cycle support.

Please observe the following when programming:

- Tool radius compensation is deselected before it is called (G40).
- All parameters for the cycle call have been defined beforehand.
- The cycle is called no later than at the 5th program level.
- The system of units allows measuring in the programmed unit system that deviates from the basic system with switchable technology data.
- For metric dimension system with active G70, G700.
- For inch-based dimension system with active G71, G710.

1.3 Behavior on block search, dry run, program testing, simulation

Function

The measuring cycles are skipped during execution if one of the following execution modes is active:

- "Trial run"
(\$P_DRYRUN=1)
- "Program test"
(\$P_ISTEST=1)
- "Block search"
(\$P_SEARCH=1), only if \$A_PROTO=0.

Simulation

- On HMI Advanced (\$P_SIM=1)

The measuring cycle programs are executed on selection of "Simulation" on the HMI.

- On Jobshop products (\$P_SEARCH=1 and \$A_PROTO=1)

The measurements are simulated. No selected tool or zero offset is applied. Active functions such as "measuring result display", "travel with collision monitoring", "measuring cycle logging" are not executed.
Suppression of simulation execution
Execution of the measuring cycles in simulation can be suppressed in simulation by resetting the variable _MC_SIMSIM=0 in data block GUD6. The measuring cycles are then skipped.
Specifying differences for simulation
The variable _MC_SIMDIFF of data type REAL permits specification of simulated measurement deviations at measuring points. The value is a dimension in the basic system of the control.

Excessive values of _MC_SIMDIFF with corresponding value assignment of the defining parameters cause cycle alarms to be output.

Note

It is not ensured that the correction value contains the correct sign of _MC_SIMDIFF. This depends on the measurement or calibration task and the direction of measurement. The sign is influenced in such a way that the overall result makes sense (e.g. "Measure hole"). Changing the sign always causes the sign of the result to change.

Demo program for simulation on HMI Advanced

The measuring cycle software supplied includes programs for demonstrating how the measuring cycles work when simulating on HMI Advanced. The programs are divided into turning technology and milling technology. When a program is loaded, the "workpieces" are created whose directory contains all data and settings required for simulation.

Example 1: Measure hole (TESIM_977BO with CYCLE977, milling technology)

Example 2: Calibrate tool probe (TESIM_982MKS with CYCLE982, turning technology)

1.4 Reference points on the machine and workpiece

General information

Depending on the measuring task, measured values may be required in the machine coordinate system or in the workpiece coordinate system.
e.g.: It may be easier to ascertain the tool length in the machine coordinate system.

Workpiece dimensions are measured in the workpiece coordinate system.
Where:

- $M=$ Machine zero
- $\mathrm{W}=$ Workpiece zero
- $\mathrm{F}=$ Tool reference point

Reference points

Example: Turning machine

The position of tool reference point F in the machine coordinate system is displayed with machine zero M as the machine actual value.

The position of the tool tip (active tool) in the workpiece coordinate system is displayed with workpiece zero W as the workpiece actual value. If a workpiece probe is active, the position usually refers to the center point of the probe ball.

The zero offset (ZO) characterizes the position of the workpiece on the machine. The ZO is the position of workpiece zero W in the machine coordinate system. In addition to the pure offset, a ZO might also include rotation, mirroring, and a dimension factor. Together these are termed a frame.

SINUMERIK controls use numerous frames: various basic frames, system frames, settable frames (e.g. G54), programmable frames: They interact in a frame chain to produce the overall frame and the workpiece coordinate system.
Measuring cycles do not support any frames with an active scale factor. Rotation or mirroring is not supported in some cycles and measuring variants.
The machine and workpiece coordinate system can be set and programmed separately in the "inch" or "metric" measuring system.

Note

Transformation

If kinematic transformation is active, the control makes a distinction between the basic coordinate system and machine coordinate system.
If kinematic transformation is deactivated, this distinction is made.
All descriptions provided below assume that kinematic transformation is deactivated and therefore refer to the machine coordinate system.

1.5 Definition of the planes, tool types

The G17, G18 or G19 tool radius correction planes can be selected.
Depending on the tool type, the tool lengths are assigned to the axes as follows:

- Milling cutter, workpiece probe for milling: 1 xy or workpiece probe for milling: 710
- Drill: $2 x y$
- Turning tool, workpiece probe for turning: 5xy

Milling

G17 plane

Tool type
Length 1
Length 2
Length 3

G18 plane

Tool type
Length 1
Length 2
Length 3

G19 plane
Tool type
Length 1
Length 2
Length 3

1xy / 2xy / 710
active in Z (applicate)
active in Y (ordinate)
active in X (abscissa)

Lengths 2 and 3 are used in special cases, for example, if an angle head is attached.

Example of plane definition for milling

Turning

Turning machines generally only use axes Z and X and therefore:

G18 plane

Tool type	$5 x y$ (turning tool, workpiece probe)
Length 1	active in X (ordinate)
Length 2	active in Z (abscissa)

G17 and G19 are used for milling on a turning machine. If there is no machine axis Y , milling can be implemented with the following kinematic transformations.

- TRANSMIT
- TRACYL

In principle, measuring cycles support kinematic transformations. This is stated more clearly in the individual cycles, measuring variants.

Note

If a drill or milling cutter is measured on a turning machine, in most cases, setting data SD 42950: TOOL_LENGTH_TYPE $=2$ set. These tools are then length-compensated like a turning tool.

SINUMERIK controls have other machine and setting data that can influence calculation of a tool.

References:

- /FB1/, Description of Functions - Basic Machine
- /FB2/, Description of Functions - Extended Functions
- /FB3/, Description of Functions - Special Functions

Example of plane definition for turning

1.6 Probes that can be used

General information

To measure tool and workpiece dimensions, a touch-trigger probe is required that provides a signal change (edge) when deflected.
The probe must operate virtually bounce-free.
Different types of probe are offered by different manufacturers. Probes are distinguished according to the number of measuring directions.

- Monodirectional (mono probe)
- Bidirectional
- Multidirectional (multi probe)

The probe type is defined by a parameter (_PRNUM) in measuring cycles (see Section 2.10).

Monodirectional probe

This type of probe can only be used if the spindle can be positioned with NC function SPOS and the switching signal of the probe can be transmitted through 360° to the receiving station (at the machine column).
The probe must be mechanically aligned in the spindle to permit measurements in the following directions at the 0 degree position of the spindle.

X-Y plane G17: Positive X direction
Z-X plane G18: Positive Z direction
Y-Z plane G19: Positive Y direction

NOTICE

- The measurement takes longer with mono probes since the spindle must be positioned in the cycle several times by means of SPOS.
- In workpiece measurement, a bidirectional probe is treated like a mono probe.
- The mono- and bi-directional probe should only be used for minor precision requirements!

Table 1-1 Probe assignment

Probe type	Turning machines		Milling and machining centers
	Tool measurements	Workpiece measurements	Workpiece measurements
Multidirectional (multi probe)	X	X	X
Bidirectional	--	X	X
Monodirectional (mono probe)	--	--	X

Note

If a workpiece probe is used, both the direction of deflection and transmission of switching signal to the machine column (radio, infrared light or cable) must be taken into account.
In some versions, transmission is only possible in particular spindle positions or in particular ranges.
This may further limit the use of the probe.
In any case, please follow the advice of the probe or machine manufacturer.

1.7 Probe, calibration body, calibration tool

1.7.1 Measuring workpieces on milling machines, machining centers

Workpiece probe

On milling machines and machining centers, the probe is classified as tool type 1 xy or 710 (3D probe) and must therefore be entered as such in the tool memory.

The wear and other tool parameters must be assigned the value 0 .
In _CBIT[14] you can set whether length L1 refers to the ball center point or the ball circumference.

Note

_CBIT[14]
see Subsection 9.2.4 (central bits).

Calibration

A probe must be calibrated before it can be used. Calibration involves determining the triggering points (switching points), positional deviation (skew), and active ball radius of the workpiece probe and then entering them in special data fields _WP[] in data block GUD6.DEF.

The default setting has data fields for 3 probes. Up to 99 are possible.
Calibration can be performed on holes of a known size or workpiece surfaces with a sufficient form precision and low surface roughness.

Use of special gauging blocks is not supported on milling and machine centers.
Use the same measuring velocity for calibrating and measuring.
A special cycle is available for calibration.

1.7.2 Measuring tools on milling machines, machining centers

Tool probe

The tool probes have dedicated data fields _TP[] and _TPW[] in data block GUD6.DEF.
The triggering points (switching points), upper disk diameter and edge length are entered here.

Approximate values must be entered here before calibration - if cycles are used in automatic mode. The cycle will then recognize the position of the probe.
The default setting has data fields for 3 probes. Up to 99 are possible.

Calibration, calibrating tool

A probe must be calibrated before it can be used. Calibration involves precisely determining the triggering points (switching points) of the tool probe and entering them in special data fields.

Calibration is performed with a calibration tool. The precise dimensions of the tool are known.

Use the same measuring velocity for calibrating and measuring.
A special cycle is available for calibration.

The wear and other tool parameters must be assigned the value 0 .

1.7.3 Measuring workpieces at the turning machines

Workpiece probe

On turning machines, the workpiece probes are treated as tool type $5 x y$ with permissible cutting edge positions (SL) 5 to 8 and must be entered in the tool memory accordingly.

Lengths specified for turning tools always refer to the tool tip, except in the case of workpiece probes on turning machines where they refer to the probe center.
Probes are classified according to their position:
Workpiece probe SL 7

The wear and other tool parameters must be assigned the value 0 .

Workpiece probe SL 8

Entry in tool memory		Workpiece probe for turning machine Example: Cutting edge position $\mathrm{SL}=8$
Tool type (DP1):	$5 x y$	
Cutting edge position (DP2):	8	${ }^{\text {F }}$
Length 1 - geometry:	L1	\uparrow
Length 2 - geometry:	L2	
Radius (DP6):	r	
Length 1 - basic measurement (DP21):	only if required	L1
Length 2 - basic measurement (DP22):	only if required	

The wear and other tool parameters must be assigned the value 0 .

Workpiece probe SL 5 or SL 6

The wear and other tool parameters must be assigned the value 0 .

Calibration, gauging block

A probe must be calibrated before it can be used. During calibration the triggering points (switching points), positional deviation (skew), and precise ball radius of the workpiece probe are determined and then entered in special data fields _WP[] in data block GUD6.DEF.
The default setting has data fields for 3 probes. Up to 99 are possible.
Calibration of the workpiece probe on turning machines is usually performed with gauging blocks (reference grooves). The precise dimensions of the reference groove are known and entered in the relevant data fields _KB[] in data block GUD6.DEF.

The default setting has data fields for 3 calibration bodies. The gauging block is selected in the program with variable _CALNUM.
It is also possible to calibrate on a known surface.
Use the same measuring velocity for calibrating and measuring.
A cycle with different measuring versions is provided for calibration.

1.7.4 Measuring tools at lathes

Tool probe

The tool probes have dedicated data fields _TP[] and _TPW[] in data block GUD6.DEF.
The triggering points (switching points) are entered here. Approximate values must be entered here before calibration - if cycles are used in automatic mode. The cycle will then recognize the position of the probe.

The default setting has data fields for 3 probes. Up to 99 are possible.
In addition to turning tools, drills and mills can also be measured.

Calibration, gauging block

A probe must be calibrated before it can be used. Calibration involves precisely determining the triggering points (switching points) of the tool probe and entering them in special data fields.

Calibration is performed with a calibration tool. The precise dimensions of the tool are known.

Use the same measuring velocity for calibrating and measuring.

A special measuring variant in a cycle is available for calibration.
On turning machines, the calibration tool is treated like a turning tool with cutting edge position 3 . The lengths refer to the ball circumference, not to the ball center.

Entry in tool memory		
Tool type (DP1):	5xy	Calibration tool for tool probe on turning machine
Cutting edge position (DP2):	3	
Length 1 - geometry:	L1	Tool type 5xy, cutting edge position, SL=3
Length 2 - geometry:	L2	
Radius (DP6):	r	
Length 1 - basic measurement (DP21):	only if required	F
Length 2 - basic measurement (DP22):	only if required	

The wear and other tool parameters must be assigned the value 0 .

1.8 Measurement principle

On-the-fly measurement

The principle of "on-the-fly" measurement is implemented in the SINUMERIK control. The probe signal is processed directly on the NC so that the delay when acquiring measured values is minimal. This permits a higher measuring speed for the prescribed measuring precision and time needed for measuring is reduced.

Connecting probes

Two inputs for connecting touch trigger probes are provided on the I/O device interface of the SINUMERIK control systems.

Measurement operation

The procedure is described using the workpiece measurement. The procedure is the same for tool measurement. In this case, however, the tool is moved and the probe is fixed.

Depending on its design, the actual movements of a machine may be different anyway. Workpiece measurement is described as follows:

The workpiece is stationary and the probe moves.
The starting position for the measuring procedure is a position _FA in front of the specified set position (expected contour).

The starting position is calculated in the cycle based on parameter entries and probe data.
The starting position is approached either with rapid traverse G0 or with positioning velocity G1; then from the starting position with measuring velocity.

The switching signal is expected along path $2 \cdot$ _FA as from the starting position. Otherwise, an alarm will be triggered or the measurement repeated.

The resulting maximum measuring position is in the measuring block of the cycle.
At the instant the switching signal is output by the probe, the current actual position is stored internally "on-the-fly" as the actual value, the measuring axis is stopped and then the "Delete distance-to-go" function is executed.

The distance-to-go is the path not yet covered in the measuring block. After deletion, the next block in the cycle can be processed. The measuring axis travels back to the starting position. Any measurement repetitions selected are restarted from this point.

Measurement path _FA

Measurement path _FA defines the distance between the starting position and the expected switching position (setpoint) of the probe (see section 2).

Measuring velocity

The measuring velocity is dependent on the measurement path _FA and its default setting is $150 \mathrm{~mm} / \mathrm{min}$ if _FA=1; if FA>1: $300 \mathrm{~mm} / \mathrm{min}$. Cycles parameter _VMS is then $=0$.

Other measuring velocities can be set by the user to a value of >0 in _VMS (see Chapter 2).
The maximum permissible measuring velocity is derived from:

- the deceleration behavior of the axis.
- the permissible deflection of the probe.
- the signal processing delay.

Deceleration distance, deflection of probe

CAUTION

Safe deceleration of the measuring axis to standstill within the permissible deflection path of the probe must always be ensured.

Otherwise damage will occur!

A delay "t" typical of the control is taken into account in signal processing (IPO cycle) for the time between detection of the switching signal and output of the deceleration command to the measuring axis MD 10050: SYSCLOCK_CYCLE_TIME and MD 10070:
IPO_SYSCLOCK_TIME_RATIO). This results in the deceleration path component.
The following error of the measuring axis is reduced. The following error is velocity dependent and at the same time dependent on the control factor of the measuring axis (servo gain of the associated machine axis: servo gain factor).
The deceleration rate of the axis must also be taken into account.
Together they produce an axis-specific velocity-dependent deceleration distance.
The servo gain factor is MD 32200: POSCTRL_GAIN.
Axis acceleration / deceleration rate a is stored in MD 32300: MAX_AX_ACCEL. It may have a lesser effect due to other influences.

Always used the lowest values of the axes involved in the measurement.

Calculation of the deceleration path

The deceleration path to be considered is calculated as follows:

$$
\mathrm{s}_{\mathrm{b}}=\underbrace{1000 \cdot \mathrm{v} \cdot \mathrm{t}}_{\Delta \mathrm{s}_{1}}+\underbrace{\frac{1000 \cdot \mathrm{v}^{2}}{2 \mathrm{a}}+\Delta \mathrm{s}}_{\Delta \mathrm{s}_{2}}
$$

sb	Deceleration path	in mm
v	Measuring velocity	in m / s
t	Delay signal	in s
a	Deceleration	in $\mathrm{m} / \mathrm{s}^{2}$
$\Delta \mathrm{~s}$	Following error	in mm
$\Delta \mathrm{s}=\mathrm{v} / \mathrm{Kv}$		v here in $\mathrm{m} / \mathrm{min}$
Kv	Servo gain	in $(\mathrm{m} / \mathrm{min}) / \mathrm{mm}$

Example of calculation:

- $v=6 \mathrm{~m} / \mathrm{min}=0.1 \mathrm{~m} / \mathrm{s}$ measuring velocity
- $a=1 \mathrm{~m} / \mathrm{s}^{2}$ deceleration
- $t=16 \mathrm{~ms}$ signal delay
- $\mathrm{Kv}=1 \mathrm{in}(\mathrm{m} / \mathrm{min}) / \mathrm{mm}$

The deflection of the probe $=$ deceleration distance to zero speed of axis is: $\mathrm{sb}=12.6 \mathrm{~mm}$.

The deceleration distance components are:

$$
\begin{aligned}
& \Delta \mathrm{s}=6 / 1=6 \mathrm{~mm} \\
& \Delta \mathrm{~s} 2=1000 \cdot 0.01 / 2+6=11 \mathrm{~mm} \\
& \Delta \mathrm{~s} 1=1000 \cdot 0.1 \cdot 0.016=1.6 \mathrm{~mm}
\end{aligned}
$$

Following error
axis-specific component
Percentage due to signal delay

Measuring accuracy

A delay occurs between detection of the switching signal from the probe and transfer of the measured value to the control. This is caused by signal transmission from the probe and the hardware of the control. In this time a path is traversed that falsifies the measured value. This influence can be minimized by reducing the measuring speed.

The rotation when measuring a mill on a rotating spindle has an additional influence. This can be compensated for by compensation tables. (see Section 5.2.2 CYCLE971 "Measurement and correction strategy").
The measurement accuracy that can be obtained is dependent on the following factors:

- Repeat accuracy of the machine
- Repeatability of the probe
- Resolution of the measuring system

Note

Repeat accuracy
A test program for determining the overall repeatability of a machine is described in Section 10.4.

1.9 Measuring strategy for measuring workpieces with tool offset

The actual workpiece dimensions must be measured exactly and compared with the setpoint values to be able to determine and compensate the actual dimensional deviations on the workpiece. An offset value can then be ascertained for the tool used for machining.

Function

When taking measurements on the machine, the actual dimensions are derived from the path measuring systems of the position-controlled feed axes. For each dimensional deviation determined from the set and actual workpiece dimensions there are many causes which essentially fall into 3 categories:

- Dimensional deviations with causes that are n ot subject to a particular trend, e.g. positioning scatter of the feedforward axes or differences in measurement between the internal measurement (measuring probe) and the external measuring device (micrometer, measuring machine, etc.).

In this case, it is possible to apply empirical values, which are stored in separate memories. The set/actual difference determined is automatically compensated by the empirical value.

- Dimensional deviations with causes that a re subject to a particular trend, e.g. tool wear or thermal expansion of the leadscrew.
- Accidental dimensional deviations, e.g. due to temperature fluctuations, coolant or slightly soiled measuring points.
Assuming the ideal case, only those dimensional deviations that are subject to a trend can be taken into account for compensation value calculation. Since, however, it is hardly ever known to what extent and in which direction accidental dimensional deviations influence the measurement result, a strategy (sliding averaging) is needed that derives a compensation value from the actual/set difference measured.

Mean value calculation

Mean value calculation in conjunction with measurement weighting has proven a suitable method.

The formula of the mean value generation chosen is:

$$
M i_{\text {neu }}=M i_{\text {alt }}-\frac{M i_{\text {alt }}-D_{i}}{k}
$$

Mvnew	Mean value new = amount of compensation
Mvold	Mean value prior to last measurement
k	Weighting factor for average value calculation
Di	Actual/set difference measured (minus any empirical value)

The mean value calculation takes account of the trend of the dimensional deviations of a machining series. The weighting factor k from which the mean value is derived is selectable.
A new measurement result affected by accidental dimensional deviations only influences the new tool offset to some extent, depending on the weighting factor.

Computational characteristic of the mean value with different weightings k

- The greater the value of k, the slower the formula will respond when major deviations occur in computation or counter compensation. At the same time, however, accidental scatter will be reduced as k increases.
- The lower the value of k, the faster the formula will react when major deviations occur in computation or counter compensation. However, the effect of accidental variations will be that much greater.
- The mean value Mi is calculated starting at 0 over the number of workpieces i , until the calculated mean value exceeds the range of "zero compensation"(cycle parameter _TZL, see Chapter 2). From this limit on, the calculated mean value is applied as an offset.
- Once the mean value has been used for the offset, it is deleted from the memory. The next measurement then starts again with Miold $=0$.

Table 1-2 Example of mean value calculation and offset

	$\begin{aligned} & \text { Lower } \\ & \text { (_TZL } \end{aligned}$	$\begin{aligned} & \text { it }=40 \mu \mathrm{~m} \\ & .04) \end{aligned}$		
i	Di $[\mu \mathrm{m}]$	$\begin{gathered} \mathrm{Mi} \\ \mathrm{k}=3 \\ {[\mu \mathrm{~m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mi} \\ \mathrm{k}=2 \\ {[\mu \mathrm{~m}]} \\ \hline \end{gathered}$	
$1^{\text {st }}$ measurement	30	10	15	Characteristics of mean values with two different weighting factors
$2^{\text {nd }}$ measurement	50	23.3	32.5	
$3{ }^{\text {rd }}$ measurement	60	35.5	46.2 (3)	
$4^{\text {th }}$ measurement	20	30.3	10	Mean values > _TZL. are executed as correction
$5^{\text {th }}$ measurement	40	32.6	25	40 _ 1 Zero offset
$6^{\text {th }}$ measurement	50	38.4	37.5	
$7^{\text {th }}$ measurement	50	42.3 (1)	43.75 (4)	
$8^{\text {th }}$ measurement	30	10	15	
$9^{\text {th }}$ measurement	70	30	42.5 (5)	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \mathrm{i}\end{array}$
$10^{\text {th }}$ measurement	70	43.3 (2)	35	Number of mean value formations (number of workpieces) $---k=2$ $k=3$

In the measurements with marked fields, tool compensation is performed with the mean value (calculated mean value >_TZL):

- If $k=3$ in the 7 th and 10th measurement (1) and (2)),
- If $\mathrm{k}=2$ in the 3 rd , 7 th, and 9 th measurement (3), (4) and (5).

1.10 Parameters for checking the measurement result and offset

For constant deviations not subject to a trend, the dimensional deviation measured can be compensated by an empirical value in certain measuring variants.

For other compensations resulting from dimensional deviations, symmetrical tolerance bands are assigned to the set dimension which result in different responses.

Empirical value/mean value _EVNUM

The empirical values are used to suppress dimensional deviations that are not subject to a trend.

Note

If you do not want to apply any empirical values, _EVNUM = 0 must be set.

The empirical values themselves are stored in data block (GUD5) in field _EV[] empirical value.
_EVNUM specifies the number of the empirical value memory. The actual/set difference determined by the measuring cycle is corrected by this valuebefore any further correction measures are taken.
This is the case:

- for workpiece measurement with automatic tool offset.
- for single-point measurement with automatic zero offset.
- tool measurement.

Mean value _EVNUM is active only for workpiece measurement with automatic tool offset.
When calculating the mean value in a series of machining operations, the mean value determined by the measurement at the same measurement location on the previous workpiece can be taken into account (_CHBIT[4]=1).
The mean values are stored in data block (GUD5) in field _MV[] Mean value. _EVNUM specifies the number of the mean value memory in this field.

Safe area_TSA
The safe area is effective for almost all measuring variants and does not affect the offset value; it is used for diagnostics.

If this limit is reached then the following can be assumed:

- a probe defect, or
- an incorrect setpoint position, or
- an illegal deviation from the setpoint position can be assumed.

Note

AUTOMATIC mode

AUTOMATIC operation is interrupted and the program cannot continue. An alarm text appears to warn the user.

Dimensional difference check_TDIF

_TDIF is active only for workpiece measurement with automatic tool offset and for tool measurement.
This limit has no effect on generation of the compensation value either. When it is reached, the tool is probably worn and needs to be replaced.

Note

An alarm text is displayed to warn the operator and the program can be continued by means of an NC start.

This tolerance limit is generally used by the PLC for tool management purposes (twin tools, wear monitoring).

Tolerance of the workpiece _TLL, _TUL

Both parameters are active only for tool measurement with automatic tool offset.
When measuring a dimensional deviation ranging between " $2 / 3$ tolerance of workpiece" and "Dimensional difference control", this is regarded 100% as tool compensation. The previous average value is erased.
This enables a fast response to major dimensional deviations.

Note

When the tolerance limit of the workpiece is exceeded, this is indicated to the user depending on the tolerance position "oversize" or "undersize".

2/3 workpiece tolerance _TMV

_TMV is active only for workpiece measurement with automatic tool offset.
Within the range of "Lower limit" and " $2 / 3$ workpiece tolerance" the mean value is calculated according to the formula described in Section "Measuring strategy".

Note

My ${ }_{\text {new }}$
Mynew is compared with the zero compensation range:

- If $\mathrm{My}_{\mathrm{new}}$ is greater than this range, compensation is corrected by $\mathrm{My}_{\text {new }}$ and the associated mean value memory is cleared.
- If Mynew is less than this range, no compensation is carried out. to prevent excessively abrupt compensations.

Weighting factor for mean value calculation _k

K is active only workpiece measurement with automatic tool offset. The weighting factor can be used to give a different weighting for each measurement.
A new measurement result thus has only a limited effect on the new tool offset as a function of $_$K.

Lower limit (zero compensation area) _TZL
_TZL active for

- Workpiece measurement with automatic tool offset
- Tool measurement and calibration for milling tools and tool probes

This tolerance range corresponds to the amount of maximum accidental dimensional deviations. It has to be determined for each machine.

No tool compensation is made within these limits.
In workpiece measurement with automatic tool offset, however, the mean value of this measuring point is updated and re-stored with the measured actual/set difference, possibly compensated by an empirical value.
The tolerance bands (range of permissible dimensional tolerance) and the responses derived from them are as follows:

- For workpiece measurement with automatic tool offset

Note

In measuring cycles, the workpiece setpoint dimension is placed in the middle of the permitted \pm tolerance limit for reasons associated with symmetry.
See Subsection 2.3.11 "Tolerance parameters..."

- For tool measurement

- For workpiece measurement with zero offset

- For workpiece probe calibration

- For tool probe calibration

1.11 Effect of empirical value, mean value, and tolerance parameters

The following flowchart shows the effect of empirical value, mean value, and tolerance parameters on workpiece measurement with automatic tool offset.

1.12 Overview of measuring cycle functions for milling technology

1.12.1 Tool measurement on milling machines, machining centers

Measuring cycle CYCLE971 can be used to calibrate a tool probe and measure the tool length and/or radius for milling tools.

Calibrating tool probes

Result:

Probe switching point with reference to machine or workpiece zero.

Measuring tool

Result:

- Tool length
- Tool radius

1.12.2 Calibrating workpiece probes

With cycle CYCLE976 a workpiece probe can be calibrated in a hole (calibration ring) or on a surface for a particular axis and direction.

Calibration on surface

Result:

Probe switching point (trigger value), possibly an additional position deviation, active ball diameter of probe

1.12.3 Workpiece measurement at one point

CYCLE978 permits measurement at one point of a surface.
The measuring point is approached paraxially in the active workpiece coordinate system.
Depending on the measuring variant, the result may influence the selected tool offset or zero offset.

Workpiece measurement: Blank measurement

Result:

- Position
- Deviation
- Zero point offset

General
1.12 Overview of measuring cycle functions for milling technology

Workpiece measurement: 1-point measurement

Result:

- Actual dimension
- Deviation
- Tool offset

1.12.4 Measuring the workpiece parallel to the axis

The following measuring variants are provided for the paraxial measurement of a hole, shaft, groove, web, or rectangle. They are executed by cycle CYCLE977.

Workpiece measurement: Measure hole

Result:

- Actual dimension, deviation: Diameter, center point
- Deviation: Tool offset of the zero offset

Workpiece measurement: Measuring a shaft

Result:

- Actual dimension, deviation: Diameter, center point
- Deviation: Tool offset of the zero offset

Workpiece measurement: Measuring a groove

Result:

- Actual dimension, deviation: Groove width, groove center
- Deviation: Tool offset of the zero offset

Workpiece measurement: Measuring a web

Result:

- Actual dimension, deviation: Web width, web center
- Deviation: Tool offset of the zero offset

General
1.12 Overview of measuring cycle functions for milling technology

Workpiece measurement: Inside rectangle

Result:

- Actual dimension, deviation: Rectangle length and width, rectangle center
- Deviation: Tool offset of the zero offset

Workpiece measurement: Outside rectangle

Result:

- Actual dimension: Rectangle length and width, rectangle center
- Deviation: Rectangle length and width, rectangle center
- Deviation: Tool offset of the zero offset

1.12.5 Measuring a workpiece at an angle

The following measuring variants are provided for the measurement of a hole, shaft, groove, or web at an angle. They are executed by CYCLE979.

Three- or four-point measurement at an angle

Result:

- Actual dimension, deviation: Diameter, center point
- Deviation: Tool offset of the zero offset

Two-point measurement at an angle

Result:

- Actual dimension, deviation: Groove, web width, groove, web center
- Deviation: Zero point offset

1.12.6 Measuring a surface at an angle

CYCLE998 permits correction of the zero offset after measurement of a surface at an angle. It is still possible to determine the angles on an oblique surface in space.

Workpiece measurement: Angle measurement

Result:

- Actual dimension: Angle
- Deviation: Zero point offset

Workpiece measurement: Two-angle measurement

Result:

- Actual dimension: 2 angle
- Deviation: Zero point offset

1.12.7 Measuring spheres

CYCLE997 permits correction of the zero offset after measurement of a sphere or of three identically sized spheres on a common base (workpiece). Either paraxial measurement or measurement at an angle can be selected.

Workpiece measurement: sphere

Result:

- Actual dimension: Actual position of center, diameter
- Deviation: Zero offset (for one sphere translation only, for three spheres also rotation in space)

1.12.8 Workpiece measurement: Setting-up a corner

Using the CYCLE961 cycle, it is possible to determine the position of a workpiece corner (inner or outer) and use this as zero offset.

Measuring a corner by specifying clearances and angles

Result:

- Actual position of the corner with angle
- Zero offset, rotation

Measuring a corner, specifying 4 points

Result:

- Actual position of the corner with angle
- Zero offset, rotation

1.13 Overview of measuring cycle functions for turning technology

1.13.1 Measuring tools at lathes

Cycle CYCLE982 is used to calibrate a tool probe and measure turning, drilling, and milling tools on turning machines.

Calibrating tool probes

Result:
Probe switching point with reference to machine or workpiece zero

Measuring tool

Result:

- Tool length: length 1, length 2
- Milling cutter radius: R - for milling tools

1.13.2 Calibrating workpiece probes

CYCLE973 permits calibration of a probe on a surface of the workpiece or in a calibration groove.
Example:
Calibrate probe with cutting edge position 7 , in X axis in both directions in a calibration groove.

1.13.3 Measuring workpieces at lathes: 1-point measurement

CYCLE974 is used to determine the actual value of the workpiece in the selected measuring axis with reference to the workpiece zero with 1-point measurement.

1-point measurement, outside or inside

Result:

- Actual dimension: Diameter, length
- Deviation: Tool offset of the zero offset

One-point measurement, outside or inside with 180° spindle reversal

Result:

- Actual dimension: Diameter, length
- Deviation: Tool offset

1.13.4 Measuring workpieces at lathes: 2-point measurement

CYCLE994 is used to determine the actual value of the workpiece in the selected measuring axis with reference to the workpiece zero with 2-point measurement. This is done automatically by approaching two opposite measuring points on the diameter.

2-point measurement on diameter, outside or inside

Result:

- Actual dimension: Diameter
- Deviation: Tool offset

Parameter description

2.1 Parameter concept of the measuring cycles

General

Measuring cycles are general subroutines designed to solve specific measurement tasks, which are suitably adapted to the problem at hand with parameter settings. They can be adapted for this purpose via defining parameters.
The measuring cycles also return data such as measuring results. They are stored in result parameters.

These measuring cycle parameters are called Global User Data (abbreviated to GUD).
They are located in the battery-backed memory of the control. These values are therefore not lost when the control is switched off and on.

Data block

The global user data is kept in data blocks.

- GUD5.DEF
- GUD6.DEF and
- GUD7.DEF (for measuring in JOG)

Delivery of the measuring cycles

On delivery, these data have default settings (see Section Parameter overview). These must be adapted by the user or machine manufacturer on installation (see chapter Data description)

Value assignments

The defining parameters must be assigned values before the measuring cycle is called:

- Either in the program or
- Operator input in the measuring cycle support

Data display

The data in the operating area "Parameters" can be displayed by means of "User data", "Global user data", "GUD..." or "Channel-specific user data", "GUD...".. As an alternative, parameters that are not assigned values in the program or in the measuring cycles support can be assigned values directly by experts.

Internal parameters

Measuring cycles also require internal parameters for calculations. Local User Data (abbreviated to LUDs) are used in the measuring cycles as internal arithmetic parameter.

These are set up in the cycle and exist only during runtime.

2.2 Parameter overview

2.2.1 Defining parameters

General

The defining parameters of the measuring cycles can be classified as follows:

- Mandatory parameters
- Auxiliary parameters

Mandatory parameters

Mandatory parameters are parameters that have to be adapted to the measuring task at hand (for example, setpoint axis, measuring axis, etc,) before each measuring cycle call.

Parameter	Type	Validity	Default	Meaning
_SETVAL ${ }^{1)}$	REAL	CHAN	-	Setpoint
_SETV[] ${ }^{11}$	REAL	CHAN	-	Setpoints - additional, e.g. for measuring rectangle
_ID ${ }^{1)}$	REAL	CHAN	-	Incremental infeed depth/offset
_CPA ${ }^{11}$	REAL	CHAN	-	Center point abscissa for measuring at angle
_CPO ${ }^{1)}$	REAL	CHAN	-	Center point ordinate for measuring at angle
_SZA ${ }^{1)}$	REAL	CHAN	-	Protection zone in abscissa
_SZO ${ }^{1)}$	REAL	CHAN	-	Protection zone in ordinate
_STA1	REAL	CHAN	-	Start angle
_INCA	REAL	CHAN	-	Incrementing angle
_MVAR	INT	CHAN	-	Measuring variant
_MA	INT	CHAN	-	Measuring axis
_MD	INT	CHAN	-	Measuring direction
_TNUM	INT	CHAN	-	T number
_TNAME	STRING[32]	CHAN	-	Tool name (alternative to _TNUM in tool management)
_KNUM	INT	CHAN	-	Correction number (D No. or ZO No.)
_RA	INT	CHAN	-	Number of rotary axis at angle measurement
_TENV	STRING[32]	CHAN	-	Name of tool environment
_DLNUM	INT	CHAN	-	DL number for setup or additive offset

Auxiliary parameters

Additional parameters can generally be assigned once on a machine. They are then valid for each additional measuring cycle call until modified by programming or operation.

Parameter	Type	Validity	Default	Meaning
_VMS	REAL	CHAN	0	Variable measuring speed
_RF	REAL	CHAN	0	Feedrate in circular-path programming
_CORA	REAL	CHAN	0	Compensation angle, e.g. for mono probe
_TZL	REAL	CHAN	0.001	Zero offset area
_TMV	REAL	CHAN	0.7	Mean value generation with compensation
_TNVL	REAL	CHAN	1.2	Limit value for distortion of triangle
_TUL ${ }^{1}$	REAL	CHAN	1.0	Tolerance upper limit
_TLL ${ }^{1)}$	REAL	CHAN	-1.0	Tolerance lower limit
_TDIF	REAL	CHAN	1.2	Dimension difference check
_TSA	REAL	CHAN	2	Safe area
_FA ${ }^{2}$	REAL	CHAN	2	Measurement path in mm
_CM[]	REAL	NCK	$\begin{aligned} & 100,1000,1,0.005, \\ & 20,4,10,0 \end{aligned}$	Monitoring parameters for tool measurement for a rotating spindle
_PRNUM	INT	CHAN	1	Probe number
EVNUM	INT	CHAN	0	Number of empirical value memory
_CALNUM	INT	CHAN	0	Calibration block number
_NMSP	INT	CHAN	1	Number of measurements at the same location
_K	INT	CHAN	1	Weighting factor for mean value calculation

Note

1)

All parameters with dimensions, except for those marked 1), must be programmed in the unit of measurement of the basic system. The parameters marked 1) must be programmed in the unit of the active system of units.
2)
_FA is always a value in mm, even when the unit system set is inches.

Parameters for logging only

Parameter	Type	Validity	Meaning
_PROTNAME[]	STRING[32]	NCK	[0]: Name of main program the log is from [1]: name of log file
_HEADLINE[]	STRING[80]	NCK	6 strings for protocol headers
PPROTFORM[]	INT	NCK	Log formatting
_PROTSYM[]	CHAR	NCK	Separator in the log
_PROTVAL[]	STRING[100]	NCK	$[0,1]:$ Log header line $[2 \ldots 5]:$ Specification of the values to be logged
_DIGIT	INT	NCK	Number of decimal places

Variable

In addition to defining parameters for calculation or character string input, there are also BOOLEAN type variables. These bits can be used to vary planned cycle sequences or enable or disable certain settings. These cycle bits are arrays of variables and of two types:

- Central bits: _CBIT[]
- Channel-oriented bits: _CHBIT[]

Their name defines their validity and occurrence:

- Central bits \rightarrow NCK: once present, applies for all channels
- Channel bits \rightarrow CHAN: extra for each channel.

An overview of central and channel-oriented bits is given in Section Data description, cycle data.

These bits can also be changed by programming or operation.

2.2.2 Result parameters

Result parameters are measurement results provided by the measuring cycles.

Parameter	Type	Validity	Meaning
_OVR[]	REAL	CHAN	Result parameter - real number: Setpoint values, actual values, differences, offset values, etc.
_OVI[]	INTEGER	CHAN	Result parameter - integer

If the result parameters (_OVR[]) are used as input or transfer parameters for other standard or measuring cycles, the ranges of values defined in the "Fundamentals" Programming Manual apply.

The following specifications apply to angular values (in accordance with the "Fundamentals" Programming Manual):

- Rotation around 1st geometry axis: -180 degrees to +180 degrees
- Rotation around 2nd geometry axis: -90 degrees to +90 degrees
- Rotation around 3rd geometry axis: -180 degrees to +180 degrees

Note

If the angular values to be transferred are smaller than the programmed calculation resolution in the NCU, they are rounded down to zero.
The calculation resolution for angle positions on the NCU is specified in machine data 10210 \$MN_INT_INCR_PER_DEG.

Example:

Transfer of parameter _OVR[21] (compensation value, angle at 1st axis of level) of measuring cycle CYCLE998 (Measure angle), e.g., to swivel cycle Cycle800.

In accordance with MD \$MN_INT_INCR_PER_DEG, the calculation resolution = 1000.

```
_OVR[21]=-0.000345
IF ((ABS(_OVR[21] * $MN_INT_INCR_PER_DEG)) < 1)
_OVR[21]=0
ENDIF
```


Explanation

If the value of parameter _OVR[21] is less than the programmed calculation resolution, it is rounded down to zero.

2.3 Description of the most important defining parameters

2.3.1 Measurement variant: _MVAR

Parameter

The measuring variant of each individual cycle is defined in parameter _MVAR. _MVAR can be assigned certain positive integer values.

Please refer to the individual cycle descriptions!

Note

Validity
The value in _MVAR is plausibility checked by the cycle. If it does not have a defined value, alarm 61307 is output: "Incorrect measuring variant".

The cycle must be interrupted by an NC RESET. _MVAR must be corrected.

2.3.2 Number of the measuring axis: _MA

Parameter

In some cycles or measuring variants, number 1, 2, or 3 must be specified in _MA for the measuring axis. This might by axis X, Y, or Z in the workpiece coordinate system depending on whether G17, G18, or G19 is active.

This always results in:
Measuring axis, _MA = 1 abscissa

Measuring axis,
_MA = 2 ordinate
Measuring axis, _MA = 3 applicate
Example:
Workpiece measurement on milling machine with G17, various measuring directions

With some measuring variants, for example, in CYCLE998, positioning in another axis that must be defined, also called offset axis can be performed between measurements in the measuring axis. This must be defined in parameter _MA with offset axis/measuring axis. The higher digit codes the offset axis, the lower digit the measuring axis, the tens digit is 0 .

Example of _MA in CYCLE998:

$$
\begin{array}{lll}
\text { _MA } & =102 & \\
& \rightarrow \text { Offset axis } & \\
& \rightarrow \text { Measuring axis } & \\
& 2 \text { (abscissa) } \\
& \text { ordinate) }
\end{array}
$$

2.3.3 Tool number and tool name: _TNUM and _TNAME

Parameter

The tool to be offset is entered during workpiece measurement in the parameters _TNUM and _TNAME.

The parameter _TNAME is only relevant if tool management is active. Here it can be used as an alternative to _TNUM. However, a programmed _TNUM >0 always has priority.

Example

- Without tool management:
_TNUM = 12 the tool , T number 12, is corrected
- With tool management:

$$
\begin{array}{ll}
\quad \text { TNUM }=0 & \\
& \rightarrow \text { TNAME }=\text { "DRILL" } \\
\text { or } & \\
\quad \text { TNUM }=13 & \\
& \\
& \rightarrow \text { the tool called "DRILL" is corrected }
\end{array}
$$

In the case of replacement tools, the tool that was last used is corrected.
However, it is necessary that only one tool in a group be "active" at any one time. Otherwise, the internal tool number of the tool used must be determined and assigned to _TNUM via the system variable \$P_TOOLNO during processing.

2.3.4 Offset number: _KNUM

Parameter

With measuring variant _MVAR you can select whether automatic tool offset will be used or a zero offset will be corrected in a workpiece measuring cycle.

Parameter _KNUM contains the

- tool offset memory number (D number)
or a
- code for the zero offset to be corrected.

Values of _KNUM: ≥ 0, integer

1. Specification_KNUM for tool offset, 7 digits:
_KNUM can accept values with up to 7 digits (for special MD settings, even 9 digit values).
_KNUM=0: no automatic tool offset

In the default setting, the D number has values between 0 and 9 .
Depending on MD 18102: MM_TYPE_OF_CUTTING_EDGE = 0 and MD 18105:
MM_MAX_CUTTING_EDGE_NO and a value of this MD of between 10...999, the last three digits are read as a D number.

With a value ≥ 1000, KNUM is evaluated as a 5 -digit D number (unique D number, as in flat D number structure, see next Section).

Example of _KNUM=12003: D3 is correct, calculated as a radius offset, inverted (sign inverted).

2. Specification _KNUM for zero offset:

- _KNUM=0:

No automatic ZO correction.

- _KNUM=1... 99:

Automatic ZO correction in settable frame / NV G54...G57, G505...G599.

- _KNUM=1000:

Automatic ZO correction in the last active channel basic frame according to MD 28081: MM_NUM_BASE_FRAMES.
The offset is calculated to have the right effect when G500 is activated. The corresponding basic frame must then also be active (relevant bit in \$P_CHBFRMASK must be set).

- _KNUM=1011...1026:
automatic ZO in 1st to 16th channel basic frame (\$P_CHBFR[0]...\$P_CHBFR[15]).
- _KNUM=1051...1066:
automatic ZO in 1st to 16th basic frame (NCU global) (\$P_NCBFR[0]...\$P_NCBFR[15])
- _KNUM=2000:
automatic ZO in system frame (scratch system frame \$P_SETFR).
- _KNUM=9999:
automatic ZO in active frame:
- active settable frame G54...G57, G505...G599 or
- If G500 active: last active basic frame acc. to \$P_CHBFRMASK (highest set bit).

The modified frame is only activated immediately in the cycle if _KNUM=9999, otherwise by the user by writing G500, G54...G5xy.

Note

The remaining active frame chain must be retained.
With NCU-global frames, correction for rotation is not possible.

Start up

The following must be set during installation (default setting):

- MD 28082: MM_SYSTEM_FRAME_MASK,
- Bit 5=1 (system frame for cycles)
- and bit $0=1$ (system frame for scratching), recommended ${ }^{1)}$
- Additionally the MDs for the required basic frames

Note

Regarding 1)

If bit $0=0$, then corrections cannot be made in the basic frame in "Measuring in JOG" and the parameterization variant $\mathrm{KNUM}=2000$ cannot be used when measuring in automatic mode!

AUTOMATIC mode

In the measuring cycles in AUTOMATIC mode the offset for the default setting is corrected additively with fine offset (if MD 18600: MM_FRAME_FINE_TRANS=1).

Otherwise (when MD 18600=0), or in CYCLE961, or when _KNUM=2000, or when "measuring in JOG" is active, the offset is implemented in the coarse offset. Any existing fine offset is included in the calculation and then deleted.

When measuring workpieces with ZO (offset in CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE997) in AUTOMATIC mode, values can be written either to the coarse or fine offset:
_CHBIT[21]:

0: \quad ZO translation additive in FINE
1: ZO translation into COARSE, FINE $=0$ When undertaking offset in the coarse offset, an existing fine offset is included in the offset value and the fine offset deleted.

Note

If _KNUM=2000 (scratch system frame \$P_SETFR), the offset value is always written to the coarse offset.

2.3.5 Offset number _KNUM extended for tool offset: up to 9 digits

Parameter

For special tool offset structures (D number structures), parameter _KNUM can have up to nine digits.
The "Flat D number" functionality is implemented as from NCK-SW 4.
This function is defined with MD 18102: MM_TYPE_OF_CUTTING_EDGE=1. Up to 5-digit D numbers are therefore possible.
"Unique D number" is a second method of implementing a 9-digit _KNUM.
As from NCK-SW 5 and depending on MD 18102: MM_TYPE_OF_CUTTING_EDGE=0 and MD 18105: MM_MAX_CUTTING_EDGE_NO ${ }^{31} 1000$ the D number contains 5 digits and _KNUM therefore has 9 digits.

References: /FB/, W1, "Tool Compensation"
The D number is contained in the five lowest digits of _KNUM. This is automatically recognized in the cycles by the MD settings. The remaining digits of _KNUM still have the same meaning but have been shifted two places along.

2.3.6 Correcting setup and additive offset in workpiece measurement: _DLNUM

Parameter

Setup and additive offsets are assigned to the tool and a D number. Each D number can be assigned up to 6 setup and additive offsets using DL numbers in the program. If $D L=0$, no setup or additive offset is activated.

The existence or number of setup or additive offset is set in the machine data.
References: /FB1/, W1, "Tool Compensation"
From measuring cycles SW 6.3 onwards, it is possible to correct a selected setup or additive offset in the measuring cycles when measuring workpieces with automatic tool offset using parameters _TNUM and _TNAME, _KNUM (D-number coded) and additional parameter _DLNUM.
_DLNUM is an integer. The value range is 0 to 6 . This variable need only be defined by the user if the corresponding digit is also programmed in variable _KNUM.

Two channel-oriented bits are available for selecting additive and setup offsets (see Section Data description).
The measuring cycles for workpiece measurement with automatic tool offset use channel bit _CHBIT[6] for selecting length and radius offsets in wear or geometry.

0 : The offset value is added to the existing wear.
1: Geometry(new) = geometry (old) + wear (old) + offset value, wear (new) = 0
_CHBIT[6] is also used for correcting setup and additive offsets:

0 : The offset value is added to the existing additive offset.
1: \quad Setup offset (new) $=$ setup offset (old) + additive offset (old) offset value, additive offset (new) = 0

Additionally _CHBIT[8]:
0: Correct additive/setup offset according to _CHBIT[6].
1: The offset value is added to the existing setup offset, regardless of _CHBIT[6].

2.3.7 Correcting the tool of a stored tool environment: _TENV

Parameter

As from NCK SW 6.3, you can save the operating environment of a particular tool you are using. This is to allow you to correct the tool used to measure a workpiece taking into account the operating conditions (environment: e.g. plane, length assignment, ...).

You then no longer have to specify the T, D, DL number in the offset explicitly. These are included in the stored tool environment. The name of a tool environment can have up to 32 characters

References: /PGA/, "Programming Guide Advanced"
Parameter _TENV is used in measuring cycles for workpiece measurement with automatic tool offset to define the tool environment.
_TENV is type string [32]. _TENV is only considered if the corresponding digit is programmed in parameter _KNUM

Note

_TENV can only be used if function
TOOLENV("NAME") has already been programmed by the user in the workpiece machining program. This sets up the tool environment.

The number tool environments that can be created in the SINUMERIK control is set in
MD 18116: MM_NUM_TOOL_ENV.
A tool offset used in conjunction with a tool environment offers many possibilities. These will be shown in more detail using examples in the next Section.

2.3.8 Example of automatic tool offset with and without saved tool environment in workpiece measuring cycles

General information

During workpiece machining, if the tool environment was saved with TOOLENV("NAME"), it is possible to subsequently correct a tool under these stored conditions while measuring a workpiece.

First, the name of the tool environment _TENV="name" must be specified in the offset.
_TENV is evaluated if the corresponding position in _KNUM has value 2 or 3 (offset ... according to _TENV).

To correct tool T stored in tool environment "NAME", _TNUM=0 must be set. Otherwise, the programmed _TNUM / TNAME, D (contained in _KNUM), _DLNUM is corrected with the conditions of the specified tool environment "NAME". Further alternatives: See examples.

In "flat D number " structure _TNUM has no significance. Here, only _KNUM (for D) and _DLNUM are relevant.

Example 1: (without _TENV)
The wear of length 1 is to be corrected additively for tool T7 with D2. The tool environment is to be the environment currently active (= measuring environment).

Relevant data:
_TNUM=7 _KNUM=0100002 _CHBIT[6]=0

Example 2: (without _TENV)
For tool T8 with D3, the wear of the length assigned to measuring axis _MA for this tool type and setting ($\mathrm{G} 17, \mathrm{G} 18$, or G19 etc.) is to be corrected additively.
The tool environment is to be the environment currently active (= measuring environment).

Relevant data:

_TNUM=8 _KNUM=3 _CHBIT[6]=0 _MA=1

Example 3: (without _TENV)
For tool T5 with D2, the additive offset of $D L=3$, active in the length as defined for measuring axis _MA, is to be corrected additively.

The tool environment is to be the environment currently active (= measuring environment).
Relevant data:
_TNUM=5 _KNUM=1001002 (or =1000002)_DLNUM=3 _CHBIT[6]=0 _CHBIT[8]=0 _MA=1

Example 4: (with TENV)

The wear of length 1 or the tool and D number stored in tool environment "WZUMG1" is to be corrected additively (T and D not directly known).

Relevant data:

_TNUM=0 _TENV= "WZUMG1" _KNUM=2100000 _CHBIT[6]=0

Example 5: (with TENV)

For tool T stored in tool environment "WZUMG2" but specific D number D2, the wear of the length assigned to measuring axis _MA for the stored tool type and stored setting (G17, G18, or G19) is to be corrected additively.

Relevant data:

_TNUM=0 _TENV= "WZUMG2" _KNUM=2001002 (or _KNUM=2000002) CHBIT[6]=0 _MA=2

Example 6: (with TENV)

Tool environment is to be the tool environment stored in "WZUMG3".
However, the following is to be corrected irrespective of T, D, DL stored in it.
For tool T6 with D2 the additive offset of $\mathrm{DL}=4$ that is assigned to the length for tool type T6 and setting (G17, G18, or G19) stored in "WZUMG3" of the measuring axis is to be corrected additively.

Relevant data:

_TNUM=6 _TENV="WZUMG3" _KNUM=3001002 (or _KNUM=3000002) _DLNUM=4
_CHBIT[6]=0 _CHBIT[8]=0 _MA=1

2.3.9 Variable measuring velocity: _VMS

Parameter

The measuring velocity can be freely selected by means of _VMS. It is specified in $\mathrm{mm} / \mathrm{min}$ or inch/min depending on the basic system.

The maximum measuring velocity must be selected to ensure safe deceleration within the probe deflecting path.
When _VMS $=0,150 \mathrm{~mm} / \mathrm{min}$ is the default value for the feedrate (when _FA=1). This feedrate value automatically increases to $300 \mathrm{~mm} / \mathrm{min}$ if _FA>1 is selected.
If the basic system is in inches, $5.9055 \mathrm{inch} / \mathrm{min}$ or $11.811 \mathrm{inch} / \mathrm{min}$ takes effect.

2.3.10 Offset angle position: _CORA

Parameter

The parameter _CORA contains an offset angular position for mono probes, i.e. alignment of the probe according to its single-dimensional direction of switching ("high point").

Note

In CYCLE982 _CORA is also used to correct the spindle setting after measurement with reversal during milling.

2.3.11 Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA

In the "General section, measuring principle" chapter, the correction strategy of measuring cycles is explained and a description of the effect of the parameters given.

Parameter

Parameter	Data type	Meaning
_TZL	REAL ${ }^{3} 0$	Zero offset ${ }^{122)}$
_TMV	REAL >0	Mean value generation with compensation ${ }^{1)}$
_TUL/_TLL	REAL	Workpiece tolerance ${ }^{1)}$
-TDIF	REAL >0	Dimension difference check ${ }^{122}$)
_TSA	REAL >0	Safe area
_TZL	REAL ${ }^{3} 0$	Zero offset ${ }^{122)}$
1) For workpiece measurement with automatic tool offset only 2) Also for tool measurement		

Range of values

All of these parameters can have any value. However, only values increasing from _TZL to _TSA are meaningful (absolute values). Parameters _TUL/_TLL are specified in mm or inches depending on the active dimension system and are signed. All other parameters are programmed in the basic system.

Making the workpiece tolerance and setpoint symmetrical

If asymmetrical values are chosen for the tolerance parameters _TUL, _TLL (workpiece tolerance), the setpoint (_SETVAL) is corrected internally to place it in the center of a new, symmetrical tolerance band. These changed values appear in the result parameters: OVR[0] - setpoint, OVR[8] - upper tolerance limit, OVR[12] - lower tolerance limit.

The defining parameters themselves (_TUL, _TLL, _SETVAL) remain unchanged.

Example

_TUL=0.0 _TLL=-0.004 _SETVAL=10

The result is:
OVR[8]=0.002 OVR[12]=-0.002 OVR[0]=9.998

2.3.12 Measurement path: _FA

Parameter

Example: Workpiece measurements
Start position max. measurement for measurement position procedure
Meas. path Meas. path
FA FA

Actual position

Measurement path _FA defines the distance between the starting position and the expected switching position (setpoint) of the probe. _FA is data type REAL with values >0.

Values <0 can only be programmed in CYCLE971
Always specify _FA in mm.
The measuring cycles automatically generate a total measuring distance $=2 \cdot$ _FA in mm .
The maximum measuring position is therefore _FA behind the set position.

Note

See also Chapter 1 "General section, measuring principle".

Example

The default setting is _FA=2.0.
In the measuring cycle, a total measuring distance of 4 mm is therefore generated, starting 2 mm in front of and 2 mm behind the defined set position.
_FA is also used as a distance for traveling around workpieces or tool probes.

CAUTION

Even if inches is selected as the measuring system, measurement distance _FA is always specified in mm!
In that case, convert the measurement distance to mm :
FA [mm] = _FA‘ [inch] • 25.4

Note

In previous measuring cycle versions, _FA was the name for "multiplication factor of measurement distance". Its task and function remain the same.
_FA is now directly assigned mm as the unit of measurement.

2.3.13 Probe type, probe number: _PRNUM

General information

- The data for the workpiece probes are stored in the data block (GUD6) in array _WP[] workpiece probe.
- The data for the tool probes are stored (in relation to machine) in the data block (GUD6) in array _TP[] - tool probe.
- From measuring cycles SW 6.3, the data for the tool probes can be stored workpiecespecifically in data block (GUD6) in array _TPW[] - tool probe in any workpiece coordinate system.
Arrays are available for up to 99 probes. In the default setting, there are arrays for three probes each.
_PRNUM states the number of the probe. This number is used as the index for the probe's array.
Array type _WP, _TP, or _TPW is selected in the cycle via the measuring variant and measuring task: workpiece or tool measurement.

Note

Which measuring input (1 or 2) is used for workpiece measurement and which is used for tool measurement is defined in _CHBIT[0] and _CHBIT[1] (see chapter "Data description, cycle data").

The arrays are configured by the machine manufacturer during installation (see Chapter "Data description").

Parameter

Value of _PRNUM: >0, integer
_PRNUM can only have three digits in workpiece measurement. In that case the most significant digit is evaluated as the probe type.
The two least significant digits represent the probe number.

Digit		Meaning	
3	2	1	
	-	-	Probe number (two digits)
0			Multi probe
1			Mono probe

Example of workpiece measurement

_PRNUM	$=102$	
	\rightarrow Probe type	Mono probe
	\rightarrow Probe number	2
	\rightarrow Array index	_WP[1,n]

Example of tool measurement

$_$PRNUM	$=\mathbf{3}$	
	\rightarrow Probe number	3
	\rightarrow Array index	_TP[2,n]

2.3.14 Empirical value, mean value: _EVNUM

General information

The effect of empirical and mean values is described in the chapter "General section, measuring principle and measurement strategy".

The empirical values and mean values are stored in data block (GUD5) in arrays

- _EV[] empirical values and
- _MV[] mean values.

The unit of measurement is mm in the metric basic system and inch in the inch basic system, irrespective of the active system of units.

The number of existing empirical and mean values is entered in data block (GUD6) _EVMVNUM[m,n].

- m: array dimension _EV[m]
- n : array dimension _MV[n]

The default setting provides 20 values each (array index _EV, _MV: 0...19).

Parameter

Values of_EVNUM	
$=0$	without empirical value, without mean value memory
>0 to 9999	Empirical value memory number = mean value memory number
>9999	The top 4 digits of _EVNUM are interpreted as the mean value memory number, the lower 4 digits as the empirical value memory number.

The array index for _EV and _MV is formed from the value in _EVNUM.

Example

EVNUM	$=11$	
	\rightarrow EV memory: 11	\rightarrow _EV[10]
	\rightarrow MV memory: 11	\rightarrow _MV[10]
EVNUM	$=90012$	
	\rightarrow EV memory: 12	\rightarrow _EV[11]
	\rightarrow MV memory: 9	\rightarrow MV[8]

2.3.15 Multiple measurement at the same location: _NMSP

Parameter

Parameter _NMSP can be used to determine the number of measurements at the same location.

The measured values or distances-to-go Si (i=1...n) are averaged.
That results, for example, in distance-to-go D:
$D=\left(S_{1}+S_{2}+\ldots S_{n}\right) / n$
n : Number of measurements

2.3.16 Weighting factor for mean value calculation: _K

Parameter

The parameter for weighting factor _K can be applied to allow different weighting to be given to an individual measurement.

Note

A detailed description is given in the chapter "General section, measuring strategy and compensation value definition".

Measuring cycle help programs

3.1 Package structure of the measuring cycles

Note

The machine data configuration and the software package version determine which programs can be used. It is also possible to partially define these programs in the global cycle data during start-up.
\rightarrow Please refer to data supplied by the machine manufacturer and Installation and Start-up Guide

General information

The measuring cycle package supplied consists of:

- Data blocks for defining the global measuring cycle data
- Measuring cycles
- Measuring cycle subroutines
- Convenience Functions

To ensure that the measuring cycles can be executed in the control, the data blocks must have been loaded into directory "Definitions" and the measuring cycles and measuring cycle subroutines must be stored in the part program memory.

Note

Please note that the control always requires a Power ON between loading and execution of the measuring cycles!
\rightarrow Please refer to the notes on installation in the Commissioning chapter!

Subpackages
In many applications, not all the measuring cycles are used on one machine. Instead, subpackages are used.

The following overview shows which subpackages are advisable and executable. This will help you to save memory.

3.2 Measuring cycle subroutines

3.2.1 Overview

General information

The measuring cycle subroutines are called directly by the cycles. With the exception of CYCLE100, CYCLE101, and CYCLE116, these subroutines cannot be executed by a direct call.

Programming

Cycle	Function		Note
CYCLE100	Activate logging		
CYCLE101	Deactivate logging		
CYCLE102	Measuring result display		
CYCLE103	Parameter setting in interactive mode		only up to measuring cycles SW 4.5
CYCLE104	Internal subroutine:	Measuring cycle interface	
CYCLE105	Internal subroutine:	Log	
CYCLE106	Internal subroutine:	Log	
CYCLE107	Output of measuring cycle messages		only up to measuring cycles SW 6.2
CYCLE108	Output of measuring cycle alarms		only up to measuring cycles SW 6.2
CYCLE109	Internal subroutine:	Data transfer	
CYCLE110	Internal subroutine:	Plausibility checks	
CYCLE111	Internal subroutine:	Measuring functions	
CYCLE112	Internal subroutine:	Measuring functions	
CYCLE113	Internal subroutine:	Log	
CYCLE114	Internal subroutine:	Load ZO memory, load tool offset	
	Internal subroutine:	Load tool offset	
CYCLE115	Internal subroutine:	Load ZO memory	
CYCLE116	Calculation of center point and radius of a circle		
CYCLE117	Internal subroutine:	Pre-positioning	
CYCLE118	Internal subroutine:	Log	
CYCLE119	Internal subroutine:	Arithmetic cycle for determining position in space	from meas. cycles - SW 6.3

3.2.2 CYCLE116: Calculation of center point and radius of a circle

Function

This cycle calculates from three or four points positioned on one plane the circle they inscribe with center point and radius.

To allow this cycle to be used as universally as possible, its data are transferred via a parameter list.

An array of REAL variables of length 13 must be transferred as the parameter.

Programming

CYCLE116(_DATE, _ALM)

Parameter

- Input data

Parameter	Data type	Meaning
-DATE [0]	REAL	Number of points for calculation (3 or 4)
_DATE [1]	REAL	Abscissa of first point
_DATE [2]	REAL	Ordinate of first point
-DATE [3]	REAL	Abscissa of second point
-DATE [4]	REAL	Ordinate of second point
-DATE [5]	REAL	Abscissa of third point
-DATE [6]	REAL	Ordinate of third point
-DATE [7]	REAL	Abscissa of fourth point
_DATE [8]	REAL	Ordinate of fourth point

- Output data

Parameter	Data type	Meaning
- DATE [9]	REAL	Abscissa of circle center point
- DATE [10]	REAL	Ordinate of circle center point
- DATE [11]	REAL	Circle radius
-DATE [12]	REAL	Status for calculation 0 Calculation in progress 1 Error occurred
- ALM	INTEGER	Error number (61316 or 61317 possible)

Note

This cycle is called as a subroutine by, for example, measuring cycle CYCLE979.

Example

```
%_N_Circle_MPF
DEF INT _ALM
DEF REAL _DATE[13]= (3,0,10,-10,0,0, ; 3 points specified P1: 0,10
-10,0,0,0,0,0,0)
CYCLE116(_DATE, _ALM) ;Result:
_DATE[9]=0
_DATE[10]=0
_DATE[11]=10
_DATE[12]=0
_ALM=0
M0
STOPRE
M30
```


3.3 Measuring cycle user programs

3.3.1 General information

Measuring cycle user programs CYCLE198 and CYCLE199 are called in the measuring cycles and can be used to program necessary adjustments before or after a measurement (e.g. activate probe, position spindle).

3.3.2 CYCLE198: User program before undertaking measurement

Function
CYCLE198 is called at the beginning of each measuring cycle.
It can be used to program actions necessary before starting a measurement (e.g. activate probe).

In the as-delivered state, this cycle only contains one CASE statement that executes a jump to a label with subsequent M17 (end of subroutine) for each measuring cycle.

Example

_M977: ;before measurement in CYCLE977
M17 ;end of cycle
From this label all actions to be executed on each CYCLE977 call must be programmed.

3.3.3 CYCLE199: User program after undertaking measurement

Function

CYCLE199 is called in each measuring cycle when measurement is complete. It can be used to program actions necessary following completion of a measurement (e.g. deactivate probe).

The internal structure of the cycle is the same as that of CYCLE198, i.e. the program lines must be inserted between the label for a particular cycle and M17 (end of subroutine).

Measuring in JOG

4.1 Overview

General information

There are two types of measurement: Workpiece measurement and tool measurement. These measurements may be undertaken

- automatically
(Cycles for automatic operations: refer to Milling technology chapter and Turning technology chapter) or
- semi-automatically in JOG mode.

The following chapter describes semi-automatic measurement for milling technology: measuring in JOG.

Workpiece measurements

Workpiece measurements may include:

- Calibrating the workpiece probe.
- Measuring the contour elements on a workpiece (edge, corner, hole, spigot, rectangle) and then aligning the workpiece by determining and setting a zero offset.

Tool measurements

Tool measurements may include:

- Calibrating the tool probe.
- Determining the tool length or radius of milling tools, or tool length of drills and then setting the appropriate offset in the tool offset memory.

General sequence

The required function is selected via softkeys on the HMI in JOG mode. Input displays are shown. These have to be completed via screen forms. This describes the measurement tasks and selects the offset.

The user must put the tool or probe into a permissible starting position for the measurement task, e.g. using the traverse keys or handwheel (manual traverse).
Once you have pressed the "NC start" key in JOG mode, the remaining sequence is automatic.
To cancel measurement, press "RESET".

NOTICE

Be sure to select the correct channel!
The "Measure in JOG" function is channel-specific.

Calling CYCLE198, CYCLE199

CYCLE198 and CYCLE199 are called before and after a measurement, see Measuring cycle user program chapter.

In addition, CYCLE199 is called on "Measure in JOG" after completion of complex measurements with several cycle calls, e.g. after "Center calculation from 3 holes/spigots with offset". CYCLE199 contains labels specially for the various complex measurements. Users can program their own special actions after the label in question.

Entry for "Measure in JOG" and selection is performed via the softkeys in the main screen of JOG mode:

Measure
workpiece

| Measure
 tool |
| :--- | Calculating and setting workpiece reference points or calibrating the workpiece probe.

Measurement of milling or drilling tools or calibration of tool probe.

Requirements

The prerequisites for "Measuring in JOG" are detailed in Part 2 "Function description".
The following checklist is useful for determining whether the preconditions are fulfilled:

- Machine

- All machine axes are designed in accordance with DIN 66217.
- All 3 geometry axes are present according to MD 20050 AXCONF_GEOAX_ASSIGN_TAB.
- Reference point approach was completed in all the required machine axes.
- A touch-trigger workpiece probe (3D) is provided for acquiring workpiece dimensions, and a touch-trigger tool probe for acquiring tool dimensions.
- PLC

810D, 840D, 840Di, 840D sl with HMI Advanced, with the option required:
"Inter-modal actions" (ASUP's and synchronized actions in all modes)

- General machine data for machine cycle runs

These machine data are described in the "Data description, general machine data for machine cycle runs" chapter.

- Special machine data and other data for measuring in JOG

These special data and settings are described in the "Data description, data for measuring in JOG" chapter.

- Interrupt for starting the ASUPs

As of PLC-SW 6.1, interrupt number 9 applies. 8 applies before this.
This interrupt must not be used by any other application during "measuring in JOG".

- Data blocks and measuring cycles in general
- The data blocks:

GUD5.DEF and
GUD6.DEF
in directory DEFINE of the software supplied have been loaded into the control and activated (directory "Definitions" in the file system).

- The measuring cycles in directory CYCLES of the software supplied have been loaded into the standard cycle directory of the control and a power-on has been performed.
- Special files for measuring in JOG
- All files in directory JOG_MEASICYCLES of the software supplied have been loaded into the control via "Data in" and a power-on has been performed.
- Data block GUD7_MC.DEF in directory JOG_MEASIDEFINE of the software supplied has been adapted and loaded into the control.
Data block GUD7.DEF has been activated.
Detailed function description:
See "Data description, data for measuring in JOG" chapter and information on upgrading measuring cycles in the "Commissioning" chapter and in the SIEMENSD.TXT file of the software supplied.

See also

Modifying the GUD7 data block (Page 476)
General information (Page 505)

4.2 Workpiece measurement

4.2.1 Overview

4.2.1.1 General information

The "measure workpiece" function permits set-up of a workpiece clamped onto a machine table. Reference points on the workpiece are measured by means of workpiece probes, and necessary ZO compensation is calculated and set.

For complete set-up, more than one call may be necessary (several axes, rotated clamping, see Section "Cascaded measurement").
The workpiece probe can be calibrated.

4.2.1.2 Operational sequence

General procedure

1. The workpiece is clamped; the probe is in the spindle.
2. Pressing the "Measure workpiece" softkey displays the following softkey bar for selection:

3. The measurement task is selected by pressing the relevant softkeys.
4. The relevant input displays are shown. The input screen forms must be filled out.
5. Select the zero offset (ZO) to which the specified setpoint position refers and for which the offset is to apply.
6. Input of setpoints

- e.g. approximate diameter for hole/spigot
- e.g. specifying the set positions in the meas. axis (at edge)
- e.g. specifying the center point (for hole/spigot) or the corner point

7. Select axis and axis direction for edge/corner.
8. For "NC start", measurement is started and completed with a preset measurement feed. The first traversing motion is used to correct the mechanical position deviation of the measuring probe, determined when calibrating, and is automatically executed by the system!

Internal sequence

After pressing "NC start", an automatically generated ASUB
(/_N_SPF_DIR/_N_JM_MESS_SPF) is started to call up a measuring cycle with parameters, supplied from entries made in screen forms. This measuring cycle generates the measurement paths and intermediate positions as a function of the specified setpoints.
While the measuring cycle is running, the following settings, defined in the datablock GUD6, in the field _JM_I[] are effective:

- Zero point offset
- Working plane (G17...G19)
- the data field _WP[] assigned to the active measuring probe

The switching behavior parameters of the probe determined by calculating the probe are stored in this data field (data array) _WP[].

Zero offset

The translation offset and/or an offset for the rotation around the infeed axis in the selected ZO is applied based on the measuring results and the specified setpoint position, depending on the measurement task.
With the default setting ($_\mathrm{JM} _1[5]=0$), the following offsets are possible:

- "Measuring Only" mode
(no ZO correction, just display measurement results)
- "G54...G57, ..."
(correction in settable ZO)
- "Basic reference"
(offset in the system frame "set zero point" \$P_SETFRAME)

In the extended correction selection (_JM_l[5]=1), the following options are available:

- Correction in any global basic frame of the frame chain active during measurement. Only possible if no rotation is measured:
e.g. during "measure edge", "measure distance", "measure hole", and "measure spigot".
- Correction in any channel-specific basic frame of the frame chain active during measurement.

4.2.1.3 "Function interface of the measuring point softkeys (P1...P4)", in the PLC

General information

This function includes transfer of the status " n . measuring point completed and measure value saved" to the PLC interface. This has the same significance as activating a corresponding, vertical measuring point softkey (P1 ... P4), after a successful measurement in one of the workpiece measuring variants from measuring in JOG.
The function "reject n . measurement $\rightarrow \mathrm{n}$. measuring point inactive" can be controlled from the PLC interface - equivalent to the same operator sequence at the HMI when measuring in JOG.

Description of the PLC user interface

- Signal flow: PLC \rightarrow measuring in JOG (HMI)

Data	Description
DB19.DB43 Bit $0=1$	Switches softkey "1st measuring point" inactive \rightarrow reject measurement, The signal must be displayed on the HMI until DB19.DB43 Bit 4 $=0$.
DB19.DB43 Bit $1=1$	Switches softkey "2nd measuring point" inactive \rightarrow reject measurement, The signal must be displayed on the HMI until DB19.DB43 Bit $5=0$.
DB19.DB43 Bit 2 = 1	Switches softkey "3rd measuring point" inactive \rightarrow reject measurement, The signal must be displayed on the HMI until DB19.DB43 Bit $6=0$.
DB19.DB43 Bit 3 = 1	Switches softkey "4th measuring point" inactive \rightarrow reject measurement, The signal must be displayed on the HMI until DB19.DB43 Bit $7=0$.

- Signal flow: Measuring in JOG (HMI) \rightarrow PLC

Data	Description
DB19.DB43 Bit 4 = 1	If softkey "1st measuring point" active and can be seen on the screen, Measuring 1st measuring point completed and measured value saved.
DB19.DB43 Bit 5 = 1	If softkey "2nd measuring point" active and can be seen on the screen, Measuring 2nd measuring point completed and measured value saved.
DB19.DB43 Bit 6 = 1	If softkey "3rd measuring point" active and can be seen on the screen, Measuring 3rd measuring point completed and measured value saved.
DB19.DB43 Bit 7 = 1	If softkey "4th measuring point" active and can be seen on the screen, Measuring 4th measuring point completed and measured value saved.

Example

The functionality shown can be used with a Siemens handheld unit (HHU) - when a measuring point has been successfully completed, an LED on the HHU keyboard is lit. The HHU key, assigned to this LED can then act from the sense as rejecting a measuring point.
The PLC user interface signals should be interlocked with the input and output signals of the HHU using the functionality of the PLC user program.

The use of an HHU should allow the process-related control of a measuring operation.

4.2.1.4 Measuring in JOG with active TRAORI

Operational sequence

The subsequent description refers to the following applications:

- Measuring in JOG, with active TRAORI and applied measuring probe.
- Measuring in JOG, in the rotated (swiveled) planes

1. TRAORI is active.
2. If a workpiece is measured and the measuring probe is not in the basic (initial) setting of the machine kinematics, then this must be communicated to the NCU as rotation in the active zero offset (ZO).

- Example 1: The workpiece cannot be clamped to the machine by the longitudinal and transverse end. In this case, the workpiece coordinate system (WCS) must be rotated around Z through 90 degrees. Entry in the active ZO, rotation around Z.
- Example 2: The hole to be measured is located on a vertical side of the workpiece. In this case, the WCS must be rotated around X or Y through 90 degrees. Entry in the active ZO rotation around X or Y .

3. Aligning the workpiece coordinate system (WCS) in the tool direction in MDA: G0 C3=1 (valid for G17 plane).
4. With NC start, traversing motion is initiated and the tool aligns itself in the rotated WCS in the Z axis.

The vertical orientation to the XY plane is kept.
5. Approach the edge, corner, ... to be measured

If the edge, corner,... cannot be completely reached with the machine axes, the measuring probe can be advanced using the rotary axes.

In this case, the WCS is not updated.
6. Start the measuring process!

From measuring cycles SW 6.3 onwards, the descriptive points 2. and 3. can also be executed with the functionality of "swivel in JOG".

Note

If the "swiveling" or 5-axis transformation (TRAORI) are used to align the measuring probe, then these must also be appropriately set-up in the machine!

Note the machine manufacturer's instructions.

Note

In general:

- The translation offset is applied in the coarse offset.
- Any fine offset is reset.

4.2.2 Calibrating the workpiece probe

4.2.2.1 General information

Prerequisite

The workpiece probe is the active tool in the spindle with activated tool offsets. The approximate length and the radius of the measuring probe sphere must be entered in the tool data.

An SPOS-capable spindle is required to calibrate the radius of the measuring probe sphere.

Calibration process

On milling machines and machining centers, the workpiece probe is inserted in the spindle. This can lead to measuring errors caused by the clamping tolerances of the probe in the spindle. The switching points (trigger points) of the measuring probe with reference to the spindle center must therefore be determined for each new probe inserted.
This is achieved with calibration by which the probe is calibrated in a hole or on a surface.

Note

The feedrate override should have the same value during calibration and measurement to reduce measurement inaccuracies.

Operation

After you have pressed the "probe calibration" softkey, a display image is shown, containing the following options:

- "Length" (calibrating the length of the probe at the surface)
- "Radius" (calibrating the radius of the measuring probe sphere in the hole)

The reference dimension for the diameter of the calibration hole and the height of the calibration surface to be specified can be pre-assigned using the following GUD parameters:

- E_MESS_CAL_D \rightarrow diameter, calibration hole (calibration ring)
- E_MESS_CAL_L \rightarrow calibration height in the feed axis (refer to WCS)

4.2.2.2 Calibrating probe length

General information

By selecting "length", it is possible to calibrate the probe in the infeed axis on a suitable and precisely known surface, e.g. on the workpiece. The precise length 1 (L1) of the prove is also determined and entered in the tool offset memory.
Note the setting of _CBIT[14]:
_CBIT[14]=0: L1 referred to ball center
_CBIT[14]=1: L1 ref. to ball circumference

Approaching the calibration surface

The probe must be positioned opposite to the calibration surface of the reference or workpiece.

Enter details in input form

Enter the known dimension (workpiece coordinate) of the calibration surface, referred to the WCS active when calibrating.
Note the settings in data block GUD6:

- Active zero offset during measurement:

Variable _JM_I_[4])

- Active working plane during measurement:

Variable _JM_I_[3].

Result

Calibration is performed automatically as soon as you press "NC Start". Trigger value and length offset L1 are stored.

4.2.2.3 Calibrating probe radius

General information

With the "radius" selection, the probe can be calibrated in the axes of the working plane in a suitable hole (geometrical accuracy, low surface roughness) and precisely known diameter or in calibration ring.

Approaching the calibration ring

Position the probe roughly in the hole center and at calibration depth.

Enter details in input form

Enter the known dimension of the calibration ring diameter.
Note the settings in data block GUD6:

- Active zero offset during measurement:

Variable _JM_I_[4].

- Active working plane during measurement:

Variable _JM_I_[3].

Result

Calibration is performed automatically as soon as you press "NC Start".
The precise position of the hole center is determined first. After that, in both axes of the plane and in each of the two directions, the 4 switching points within the hole are determined and stored as trigger values in the probe's array.

Note

If mono probes are used, no positional deviation is shown in "Measure in JOG"
The calibration variant used here, "Calibrate with unknown center point", does not provide the appropriate requirements. This means that the value "zero" is entered in the GUD6 parameters _WP[n,7] and _WP[n,8].

4.2.3 Measure edge

4.2.3.1 General information

Prerequisite

The workpiece probe is the active tool with activated tool offsets in the spindle and is already calibrated (refer to "Calibrating workpiece probe" chapter).

Selection display

After selecting "edge", a selection display is shown containing the following options:

- "Setting the edge"
- "Orienting the edge"
- "Distance 2 edges"

Note

Set the feedrate override to the same value as for calibration!

See also

Calibrating probe length (Page 99)
Calibrating probe radius (Page 100)

4.2.3.2 Setting the edge

This enable measurement of a reference point (paraxial edge) on a workpiece in one of the axes X, Y, or Z and setting as ZO (translation).

Approaching the workpiece

Position the probe in front of the edge.

Enter details in input form

- Selection of the ZO.
- Select an axis and measuring direction.
- Enter the set position required for the reference point (edge) for the selected ZO.

Result

Measurement is performed automatically with the set measuring feed as soon as you press "NC Start". Measurement is followed by rapid-traverse retraction to the starting position. The offset is then automatically calculated. If the selected offset is the active ZO, then this is automatically activated.

Display and correction

After successful offset calculation, the frame components of the selected ZO are redisplayed along with the measured position of the edge in the measuring axis.

ZO correction is calculated in such a way that the measured edge assumes the required setpoint after activation of the selected ZO.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.3.3 Orienting the edge

By measuring two points on a straight workpiece edge, it is possible to determine the angle position of this edge with respect to a reference axis.

Orientation of the workpiece edge is possible by

- "Coordinate rotation" or
- Rotating the workpiece using a rotary table (specifying the rotary axis).

2 measuring points are possible, P1 and P2.

Approaching the workpiece

Position the probe in front of the edge, first at P1 and after completion of this measurement at P2.

Enter details in input form

- Selection of the ZO.
- Select axis X, Y, or Z and measurement direction.
- Select reference axis for the angle.
- Select the required angle offset: Select "coordinate rotation" or the name of the rotary axis.
- When entering the "set angle", an orientation deviating from 0 degrees is possible.

Orienting the edge, rotating with rotary table

Result
Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". Measurement is followed by rapid-traverse retraction to the starting position.

After successful measurement, the measured value is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.
After manual positioning at measuring point P2 and with softkey "P1 stored" switched active, pressing "NC Start" starts measurement of the 2nd measuring point in the selected measuring axis. After successful measurement, softkey "P2 stored" is activated, and the 2nd measured value is stored.

A vertical "Calculate" softkey is then displayed. After this softkey is pressed, then angle between the edge and the reference axis and the selected contour calculation is calculated.
When the "coordinate rotation" angular offset (correction) is selected, then the offset is also activated if it is the active ZO.

When the "rotary axis" angular offset is selected (name of the rotary axis), a help function for the user is displayed to activate the offset (refer to "Support of set-up in JOG" chapter).

Display and correction

After offset calculation has been completed, the frame components of the selected ZO are redisplayed along with the measured "alpha" angle.

In the case of ZO correction by "rotation of the workpiece coordinate system", the selected ZO is calculated such that the measured edge forms the required angle (set angle) with the selected reference axis after activation of the selected ZO.

In the case of ZO correction in a specified rotary axis, the difference in angle between the measured and desired angle is entered in the selected ZO (translation) of the specified rotary axis.

No check is made for correct assignment of the specified rotary axis!

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.3.4 Distance 2 edges

This means that the distance L of two edges parallel to an axis at a workpiece, e.g.: Slot, rib, or step, can be determined in one of the axes X, Y or Z and their center set as reference point in a ZO.
2 measuring points are possible, P1 and P2.

Approaching the workpiece

Position the probe in front of the edge, first at P1 and after completion of this measurement at P2.

Enter details in input form

- Selection of the ZO.
- Select axis X, Y, or Z and measurement direction at P 1 .
- Select the measuring direction at P2.
- Enter the set position of the two edges for the selected ZO.

Result
Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". After successful measurement, the measured value is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.

After manual positioning at measuring point P2 and with softkey "P1 stored" switched active, pressing "NC Start" starts measurement of the 2nd measuring point P2 in the selected measuring axis. After successful measurement, softkey "P2 stored" is activated, and the 2nd measured value is stored.
A vertical "Calculate" softkey is then displayed. After this softkey is pressed, the distance and the distance center between the 2 measuring points in the selected measuring axis and the selected offset calculation are calculated. The offset is activated at the same time if it is the active ZO.

Display and correction

After the offset calculation has been successfully completed, the frame components of the selected ZO are re-displayed so that the calculated center of the measured edge distance after activating the selected ZO assumes the required setpoint position (e.g. X0) in the corrected workpiece coordinate system.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.4 Measuring corner

4.2.4.1 General information

Prerequisite

The workpiece probe is the active tool with activated tool offsets in the spindle and is already calibrated (refer to "Calibrating workpiece probe" chapter).

Selection display

After selecting "corner", a selection display is shown containing the following options:

- "right-angled corner"
- "any corner"

Note

Set the feedrate override to the same value as for calibration!

4.2.4.2 Right-angled corner

This permits measurement of a right-angled corner of a workpiece as the reference point in the axes of the working plane and setting it as the ZO (translation and rotation).

3 measuring points are required: P1, P2, and P3.
The 1st axis of the working plane functions as the reference axis (for G17: X axis). Edge P1, P 2 functions as the reference edge on the workpiece. This edge is aligned parallel to the reference axis (G17: X axis).

Approaching the workpiece

Position the probe on the corner, first at P1 and after completion of this measurement at P2, and after completion of this measurement at P3-to measuring depth in each case.

Enter details in input form

- Select of the ZO
- Select outside or inside corner
- Select the position of the corner
- Enter the set position required for the reference point P0 (corner) for the selected ZO in both axes.

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". Measurement is performed in the axis and axis direction determined by the selected position. After successful measurement, the previously inactive softkey "P1 stored" is activated and the coordinates of the 1st measuring point P1 is stored internally.

After manual positioning in front of the 2nd measuring point P2, measuring is performed automatically at this measuring point on pressing "NC start". Proceed in the same way for measuring point P3.
If all of the measuring points have been successfully completed and all "Px saved" softkeys activated, then a vertical "calculate" softkey is displayed. After this softkey has been pressed, the corner coordinates P0 and the offset are calculated. The offset is activated at the same time if it is the active ZO .

Display and correction

After successful calculation and offset application, the coordinates of the corner point determined are displayed in the WCS active during measurement. Display of the translation frame components of the selected ZO is updated.
If you have selected "Just measure", the corner point determined and the angle of the reference axis will only be displayed.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also
Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.4.3 Any corner

This permits measurement of a corner of a workpiece as the reference point in the axes of the working plane and setting it as the ZO (translation and rotation).

The corner does not have to be right-angled.
4 measuring points are required: $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$, and P 4 .
The 1st axis of the working plane functions as the reference axis (for G17: X axis). Edge P1, P 2 functions as the reference edge on the workpiece. This edge is aligned parallel to the reference axis (G17: X axis).

Approaching the workpiece

Position the probe on the corner, first at P1 and after completion of this measurement at P2, and after completion of this measurement at P 3 , etc.

Enter details in input form

- Select of the ZO
- Select outside or inside corner
- Select the position of the corner
- Enter the set position required for the reference point (corner) for the selected ZO in both axes.

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start".

This is the same sequence as for "right-angled corner" but with 4 measuring points.

4.2.5 Measuring pocket, hole or spigot

4.2.5.1 General information

Prerequisite

The workpiece probe is the active tool with activated tool offsets in the spindle and is already calibrated (refer to "Calibrating workpiece probe" chapter).

Pocket/hole selection display

After selecting "pocket/hole", a selection display is shown containing the additional following options:

- "Rectangular pocket"
- "1 hole"
- "2 holes"
- "3 holes"
- "4 holes"

Spigot selection display

After selecting "spigot", a selection display is shown containing the additional following options:

- "Rectangular spigot"
- "1 circular spigot"
- "2 circular spigots"
- "3 circular spigots"
- "4 circular spigots"

Note

Feed override

Set the feedrate override to the same value as for calibration!

4.2.5.2 Rectangular pocket or 1 hole or 1 spigot

It can be measured by selecting the center on the workpiece as the reference point and by setting as the ZO (translation) :

- A paraxial rectangular pocket or
- a hole or
- a paraxial rectangular spigot or
- a circular spigot

Measurement is performed in both axes of the working plane.

Approaching the workpiece

Position the probe roughly at measuring depth in the center of the pocket/hole, or in the case of spigots roughly in the center above the spigot.

Enter details in input form

- Select of the ZO
- For rectangular pocket, rectangular spigot:

Enter approx. length (1st axis of operating plane) and width W (2nd axis of operating plane).

- For hole, circular spigot:

Enter the approximate diameter.

- For spigots only:

Enter infeed value DZ (measuring depth as from starting position, value >0).

- For hole, circular spigot only:

Enter the probing angle if measurement is not to be paraxial.

- Enter the set position required for the reference point P0 (center) for the selected ZO in both axes.

Result

Measurement is performed automatically as soon as you press "NC Start". The probe probes 4 points of the inside and outside wall in succession.

The offset is then automatically calculated. If the selected offset is the active ZO, then this is automatically activated.

Display and correction

After completion of calculation and offset, the diameter or width/length and the coordinates of the center P0 are displayed.

An offset is applied in the translation components of the selected ZO in both axes.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

$\underline{\text { Rejection and repetition of measurements (Page 122) }}$
General information (Page 125)

4.2.5.3 2 holes or 2 circular spigots

This permits calculation of the basic rotation (rotation in the working plane) of the clamped workpiece.

This enables orientation by:

- "Coordinate rotation" or
- rotation of the workpiece with a rotary table (rotary axis).

For an angle offset by "coordinate rotation", it is possible to set the reference point for the calculated center of the 1st hole/spigot.
Measurement is performed in both axes of the working plane.

Approaching the workpiece

Position the probe roughly in the center of the 1st hole/spigot P1, after completion of this measurement in the rough center of the 2nd hole/spigot P2, for a hole to measuring depth in each case, for a spigot above the spigot.

Enter details in input form

- Select of the ZO
- Enter approximate diameter (hole/spigot).

This must be selected such that it applies to all holes/spigots.

- For spigots only: Enter the infeed value DZ:
(measuring depth as from starting position, value >0)
- Select the required angle offset:
"Coordinate rotation" or axis name of the rotary axis
- Under the "set angle" input, an orientation deviating from 0 degrees with respect to the 1st axis of the working plane (e.g., G17: X axis) is possible.
- Only for offset type "coordinate rotation" and if "set P1" is selected:

Enter the set position required for the reference point P1 (center of the 1st hole) for the selected ZO in both axes.

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". The probe probes 4 points of the inside and outside wall in succession.
After successful measurement, the center is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.
After manual positioning at point P2 and with softkey "P1 stored" switched active, pressing "NC start" starts measurement of the 2nd hole/spigot. After successful measurement, softkey "P2 stored" is activated, and the 2nd center is stored. If all of the measuring points have been successfully completed and all "Px saved" softkeys activated, then a vertical "calculate" softkey is displayed. After this softkey is pressed, "alpha" is calculated.

When the "coordinate rotation" angular offset (correction) is selected, then the offset is also activated if it is the active ZO.

When the "rotary axis" angular offset is selected (name of the rotary axis), a help function for the user is displayed to activate the offset.

Display and correction

After offset calculation has been completed, the frame components of the selected ZO are redisplayed along with the measured "alpha" angle and the coordinates of the reference point P1.
ZO correction is effected in such a way that the angle determined is in the required set rotation and point P1 is in the set position in the corrected workpiece coordinate system after activation of the selected ZO.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.5.4 3 holes or 3 circular spigots

This permits calculation of the reference point P0 and the "alpha" rotation of the clamped workpiece.

This enables orientation by coordinate rotation and setting the center P0 of the partial circle on which the 3 holes/spigots are located as the reference point.
Measurement is performed in both axes of the working plane.

Approaching the workpiece

Position the probe roughly in the center of the 1st hole/spigot P1, after completion of this measurement in the rough center of the 2nd hole/spigot P2, after completion of this measurement in the rough center of the 3rd hole/spigot P3, for a hole to measuring depth in each case, for a spigot above the spigot.

Meas. 3 circ. spigots		Aut. override in work offset	
Y	Work offs	G54	$\|\cup\|$
- P1	$X \quad 0.0000 \mathrm{deg}$		50.0000
\rightarrow	$Y \quad 0.0000 \mathrm{deg}$	DZ	7.0000
	$Z \quad 0.0000 \mathrm{deg}$	X0	0.0000
PO_{2}	WO dur measur.: G500	Y0	0.0000
	α	Angle offset	Yes
P3	meas $\times 0$:	Spec. angle	0.0000
$\longrightarrow x$	meas YO :		

Enter details in input form

- Select of the ZO
- Enter approximate diameter (hole/spigot).

This must be selected such that it applies to all holes/spigots.

- For spigots only: Enter the infeed value DZ:
(measuring depth as from starting position, value >0).
- Enter the set position required for the reference point P0 (center of the partial circle of the 3 holes/spigots) for the selected ZO in both axes.
- If angle offset is selected:

Under the "set angle" input, an orientation deviating from 0 degrees with respect to the 1st axis of the working plane (e.g., G17: X axis) is possible.

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". The probe probes 4 points of the inside and outside wall in succession.

After successful measurement, the measured value is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.

After manual positioning at the next center P2 and with softkey "P1 stored" switched active, pressing "NC start" starts measurement for this hole/spigot.

The rest of the sequence is as for P 1 .
If all of the measuring points have been successfully completed and all "Px saved" softkeys activated, then a vertical "calculate" softkey is displayed. After this softkey is pressed, P0 and "alpha" are calculated.

When the "coordinate rotation" angular offset (correction) is selected, then the offset is also activated if it is the active ZO.

When the "rotary axis" angular offset is selected (name of the rotary axis), a help function for the user is displayed to activate the offset.

Display and correction

After offset calculation has been completed, the frame components of the selected ZO are redisplayed along with the measured "alpha" angle and the coordinates of the reference point PO.
ZO correction is effected in such a way that the "alpha" angle determined and point P0 are at the desired setpoints (translation and rotation) in the offset workpiece coordinate system after activation of the selected ZO.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.5.5 4 holes or 4 circular spigots

This permits calculation of the reference point P0 and the "alpha" rotation of the clamped workpiece.

This permits orientation by coordinate rotation and setting point P0 (intersection point of the 2 straight lines, whose hole centers are connected diagonally) as the reference point.

Measurement is performed in both axes of the working plane.

Approaching the workpiece

Position the probe roughly in the center of the 1st hole/spigot P1, after completion of this measurement in the rough center of the 2nd hole/spigot P2, etc., for a hole to measuring depth in each case, for a spigot above the spigot.

Measure 4 holes		Aut. override in work offset	
Y	Work offs	G54	ω
	$X \quad 0.0000 \mathrm{deg}$	Diameter	50.0000
?	$Y \quad 0.0000 \mathrm{deg}$	X0	0.0000
$\mathbf{p}_{4}\lceil\cap)$	$Z \quad 0.0000 \mathrm{deg}$	Yo	0.0000
$\mathrm{P}_{0} \rightarrow+\alpha$	WO dur. measur.: G500	Angle offset	Yes
P1 $\left.\mathrm{H}^{2}-2\right]$	α	Spec. angle	0.0000
	measX0		
$\rightarrow \mathrm{x}$	measY0		

Meas. 4 circ. spigots		Aut. override in work offset	
Y	Work offs	G54	()
	$\times \quad 0.0000$ deg	Diameter	50.0000
5	$Y \quad 0.0000 \mathrm{deg}$	DZ	7.0000
	$Z \quad 0.0000$ deg	X0	0.0000
P0 α	WO dur. measur.: G500	Y0	0.0000
$\mathrm{P} 1 \times \square$	α	Angle offset	Yes
p2	measX0	Spec. angle	0.0000
$\longrightarrow \mathrm{x}$	measY0		

Enter details in input form

- Select of the ZO
- Enter approximate diameter (hole/spigot).

This must be selected such that it applies to all holes/spigots.

- For spigots only: Enter the infeed value (DZ) (measuring depth as from starting position, value >0)
- Enter the set position required for the reference point P0 (intersection point of the diagonals) for the selected ZO in both axes.
- If angle offset is selected:

Under the "set angle" input, an orientation deviating from 0 degrees with respect to the 1st axis of the working plane (e.g., G17: X axis) is possible.

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". The probe probes 4 points of the inside and outside wall in succession.
After successful measurement, the measured value is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.

After manual positioning at the next center P2 and with softkey "P1 stored" switched active, pressing "NC start" starts measurement for this hole/spigot

The rest of the sequence is as for P 1 .
If all of the measuring points have been successfully completed and all "Px saved" softkeys activated, then a vertical "calculate" softkey is displayed. After this softkey is pressed, P0 and "alpha" are calculated.

When the "coordinate rotation" angular offset (correction) is selected, then the offset is also activated if it is the active ZO.

When the "rotary axis" angular offset is selected (name of the rotary axis), a help function for the user is displayed to activate the offset.

Display and correction

After offset calculation has been completed, the frame components of the selected ZO are redisplayed along with the measured "alpha" angle and the coordinates of the reference point $P 0$.

ZO correction is effected in such a way that the "alpha" angle determined and point P0 are at the desired setpoints (translation and rotation) in the offset workpiece coordinate system after activation of the selected ZO.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- Support for the user is featured for activation of the zero offset determined in JOG mode and for necessary probe reorientation. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.6 Align plane

4.2.6.1 General information

Prerequisite

The workpiece probe is the active tool with activated tool offsets in the spindle and is already calibrated (refer to "Calibrating workpiece probe" chapter).

Selection display

After selection of "orient plane", the following selection display is shown:

Note

Set the feedrate override to the same value as for calibration!

4.2.6.2 Measuring a plane that is oblique in space

That permits measurement of a workpiece plane that is oblique in space and determination of "alpha" and "beta" rotation.
That enables orthogonal orientation of the infeed axis with respect to this plane by coordinate rotation.

Measurement is performed in the infeed axis (3rd axis) at 3 different points in the working plane.

Approaching the workpiece

Position the probe above measuring point P 1 , after completion of this measurement above measuring point P2, after completion of this measurement above measuring point P3.

Enter details in input form

Select of the ZO

Result

Measurement is performed automatically at P1 with the set measuring feed as soon as you press "NC Start". After successful measurement, the measured value is stored internally and the "P1 stored" softkey that was previously switched inactive is activated.
After manual positioning at the next measuring point P2 and with softkey "P1 stored" switched active, pressing "NC start" starts measurement for this measuring point.

The rest of the sequence is as for P1.
If all of the measuring points have been successfully completed and all "Px saved" softkeys activated, then a vertical "calculate" softkey is displayed. After this softkey is pressed, "alpha" and "beta" are calculated.

Display and correction

After offset calculation has been completed, the frame components (rotation) of the selected ZO are redisplayed along with the measured "alpha" and "beta" angle.
ZO correction is performed in such a way that the plane with the calculated points P1 to P3 after activation of the selected ZO is parallel to the new working plane.

Note

- The rejection, repetition, and end of measurement are described in the "Reject, repeat, end of measurement" chapter.
- A support function is available to the user when activating the determined ZO correction in the JOG mode. This is shown right after the measurement and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

See also

Rejection and repetition of measurements (Page 122)
General information (Page 125)

4.2.7 Rejection, repetition, end of measurement

4.2.7.1 Rejection and repetition of measurements

The last measurement (Px) can be declared invalid any number of times by pressing the assigned softkey "Px stored"
. The softkey is then deactivated (grayed out).
Pressing "NC start" again repeats this measurement and the "Px stored" softkey is then reactivated (black text).

Example

Vertical softkeys P1 to P4 - inactive:

4.2.7.2 Terminating the measurement

If all "Px saved" softkeys are active, then a vertical "calculate" softkey is displayed.
When this softkey is pressed, the measuring points are finally confirmed/acknowledged and the translatory and rotary offset values are calculated. The result is immediately entered into the pre-selected "zero offset". If this is identical with "ZO when measuring", the offset values become immediately effective. This means that the measurements have been completed.
For offsets/corrections, that required e.g. a new alignment/orientation of the measuring probe or the rotary table, the user is provided with a support function to activate the determined ZO offset in the JOG mode. Once the "Calculate" softkey has been pressed, this is shown and is detailed in the Measuring workpieces chapter, "Support of set-up in JOG - after measurement".

The "Px stored" softkeys are then switched inactive and it is possible to start new measurement.

The number of softkeys $P x$ is determined with the measurement task.
When the input screen form is exited, a measurement is also completed/interrupted.

Note

A mode change is only possible after exiting the operator area "measuring in JOG".

Example

Vertical softkeys P1 to P4 active,the "calculate" softkey is displayed:

4.2.8 Cascaded measurement

Often, it is not possible to completely set-up a workpiece using just one single measurement; instead, a series of measurements has to be made. This results in certain interdependencies regarding the selected measuring series.

Example

- Orienting an oblique plane
- Orienting an edge, reference in X axis or
- Orienting an edge, reference in Y axis
- Setting a reference point in X, Y, Z

Zero offset

A zero offset can be applied after every measurement.
The "measuring in JOG" function supports activation of another or changed ZO in JOG mode by displaying an additional activation screen form with queries after measurement.
If so selected, the new zero offsets are activated and the probe possibly also re-oriented.
The changed zero offset is offered as the preferred setting for the next measurement. This setting can therefore deviate from the basic setting _JM_I[4] in data block GUD6.

4.2.9 Support of set-up in JOG - after measurement

4.2.9.1 General information

Compensation in the zero offset

After an offset has been applied in the selected zero offset by the measuring function, this ZO is activated in JOG mode and the probe possibly oriented in the new WCS, e.g. for the following measurements.
For "measuring in JOG", an offset in the active ZO (the ZO that applies during measurement) is preset. This ZO is updated after measurement and is therefore active.
This is sufficient in cases where translation offset of the workpiece coordinate system and / or rotation about the infeed axis has occurred.

Set-up in JOG.

Positioning of the rotary axes for orienting the workpiece after measurement or orienting the probe because of rotation about the axes of the working plane has so far only been possible in MDA or AUTOMATIC mode.
To support set-up in JOG after measurement, an additional activation screen form is automatically shown afterward, if at least one of the following reasons applies:

- Offset in a ZO not active during measurement.
- An offset causes rotation of the WCS about at least one plane axis following by a necessary reorientation of the probe.
- An offset demands rotary axis positioning for workpiece alignment without affecting the WCS.
The system detects whether the measuring probe must be aligned/oriented using the function "swiveling" or the 5 -axis transformation (TRAORI). The relevant screen form is displayed.
If axial movements are required, the user is informed about this in the screen form. It is possible to decide whether pressing "NC start" will start the swivel cycle for orienting the probe or whether the selected rotary axis will move to orient the workpiece.

Note

Align probe

If the function "swiveling" or the 5-axis transformation (TRAORI) is used to align/orient the measuring probe, then this must also be set-up in the machine!
Note the machine manufacturer's instructions.

4.2.9.2 Example 1

Measurement

4 holes were measured. An offset is applied in a ZO that was not active during measurement. Reorientation of the probe is not necessary. The following selection display appears with information:

Explanations on selection display

The display for the measurement function "measure 4 holes" is shown in the left part of the screen form. The display of the measurement result is also shown in the WCS that was active during measurement (G500) and display of the translation values of the offset ZO.
The operator is informed about the selection made in the selection field (yes) with a text or in an upper image line:

- "You have applied an offset in a non-active ZO!"

A message text also appears for the special case:

- "The WCS is about the ...".

An additional text is output on the HMI "dialog line with user information and instructions. It provides instructions on action to take:

- "Please press NC start to activate!"

After pressing "NC start", the ZO with the applied offset is activated. It is not necessary to traverse axes.

The previous measurement selection screen is then re-displayed. Measurement can be performed again.

To avoid activating the ZO with the applied offset, exit the display by pressing the softkey "<<" (return).

4.2.9.3 Example 2

Measurement

An oblique plane was measured. An offset is applied in a ZO that was not active during measurement. "Swiveling" is active. This requires re-orientation of the probe with respect to the plane via the swivel cycle.

The following selection display appears with information:

Align plane		You have corrected in an inactive W0!	
		Activate this work offset? Set probe perpendicular to plane? Alignment made by swivelling! Retract:	Yes $\|\cup\|$ Yes Z

Explanations on selection display

The display for the measurement function "orient plane" is shown in the left part of the screen form. The display of the measurement result is also shown in the WCS that was active during measurement and display of the translation values of the offset ZO.

The operator is informed about the selection made in the selection field 1 (yes) with a text or in an upper image line:

- "You have applied an offset in a non-active ZO!"

Because of the answer with "yes" in toggle field 2, the text in the upper display line is changed to:

- "The new WCS has new orientation!"

With toggle field 3 , retraction is supported.
If all screen forms have been filled out, a further text appears on a lower line of the display. It provides instructions on action to take:

- "Please press NC start to activate!"

After pressing "NC start", execution is performed according to the entries that the user made in the activation screen form:

- Activating the corrected ZO or
- Retracting the measuring probe and re-aligning/orienting it using the swivel cycle.

The previous measurement selection screen is then re-displayed.
After the plane has been successfully aligned/oriented, the workpiece can continue to be gauged with measuring "edge", "holes", "spigots" etc (see previous chapter).
To avoid activating the ZO with the applied offset, exit the selection display by pressing the softkey "<<" (return).

4.3 Measuring the tool

4.3.1 Overview of function and sequence

The "tool measurement" function permits the following functions.

- Calibrating the tool probe
- Determining the tool length or radius of milling tools, or tool length of drills and then setting the appropriate offset in the tool offset memory.
The tools are measured on the machine.

General sequence

When you press softkey "Measure tool", the following selection and more appears on the vertical softkey bar:

Length

Radius

Calibration

probe

<<

Back

1. The measuring variant is selected and the input screen form is filled with values.
2. Position the tool near the tool measuring probe with the axis traverse keys.
3. "NC start" starts measurement and the remaining sequence with offset entry runs automatically.

4.3.2 Calibrating the tool probe

The function "Calibrate tool measuring probe" calculates the current distance (switching points) between the machine zero and the tool probe (calibration relative to machine) using a calibration tool and automatically writes them to a data storage area as trigger values.
The type 120 (end mill) can be defined as the tool type for the calibration tool. There is no special "calibration tool" type.

Prerequisite

- The tool probe is mounted in the machining space of the machine (usually on the machine table) and aligns with the machining axes (machine axes).
- All necessary data of the tool probe (form, dimensions, ...) are entered in the intended variables for "measuring in JOG" E_MESS_MT_... in data block GUD7 (see Data description chapter "Data for measuring in JOG").
- The precise length 1 and the radius of the calibration tool must be stored in a tool offset data set (geometry).
- The calibration tool is in the spindle and is activated with the offset data set.

Proceed as follows

Approaching the tool measuring probe

Position the calibration tool roughly over the center of the measuring surface of the tool probe.

Select the function with softkey

Measure tool

Calibration
button

Continue with

In the input screen form, select the type of calibration by pressing the "alternative" softkey.

- Calibrate length only:

or
- Calibrate length and diameter:

Result

On "NC start", calibration runs automatically with the measuring feed entered in _E_MESS_MT_FM in data block GUD7.

The current distance dimensions between the machine zero and tool probe (trigger points) are determined using the calibration tool and stored in a data area.

The tool probe is now prepared for measurement of tools.

4.3.3 Measuring milling or drilling tools

Prerequisite

- The specific GUD parameters used to measure tools are adapted to the real user conditions.
- The reference points have been approached.
- The tool probe is functional.
- The tool probe has been calibrated before measurement.
- The tool to be measured is located in the spindle and is activated.
- The tool offset data (length radius) are entered as approximate values and activated.

Measurement

This allows you to determine the tool length or radius of milling tools, or tool length of drills and then set the appropriate offset in the tool offset memory.
The tool offset mode for "measure in JOG" can be set via a variable in data block GUD6.

- _JM_B[0]=0: Offset in geometry component
- _JM_B[0]=1: Offset in wear component

For milling tools, cutting edges with a special shape, e.g. rounded cutting edges, can be taken into account with additional entries.
Measurement is performed with a motionless or rotating spindle.

- Radius measurement is performed with a rotation spindle.
- Length measurement is performed with a rotating spindle if the tool radius is greater than the upper radius of the too probe. Otherwise, measurement is with a motionless spindle.
Corresponding to the user specifications regarding the required measuring accuracy, it is possible that extremely small measurement feeds are applied. This is the reason that the tool gauging is automatically sub-divided into two measuring operations (corresponding to the default setting of E_MESS_... parameterization in GUD7_MC).
- The first measurement is always made from a starting position selected by the user with a high measurement velocity. This is used to detect the principle position of the tool to be gauged.
- The 2nd measurement is realized from an optimized position with a short measuring distance and a low measurement feed corresponding to the required measuring accuracy.
The number of probing operations, the required/specified measurement accuracy as well as various limit values can be adapted to the real conditions in the GUD parameters associated with tool measurement (E_MESS_...) (refer to Data description chapter, "Data for measuring in JOG").

Note

Mathematical connection between measuring accuracy and measuring feed

See Measuring cycles for milling and machining centers chapter, "Measurement and correction strategy".

Proceed as follows

Approaching the tool probe

Position the active tool:

- Over the measuring surface of the tool probe (for length measurement) or
- from the side over the measuring probe when measuring the radius

Select the function with softkey

Measure tool

Radius
Continue with selection

The system displays:

Or:
Length
The system displays:

Length measurement of milling cutters

If the tool diameter (entered tool radius x 2) is greater than the entered upper diameter of the tool probe, the milling tool is placed in the center of the probe, offset by the tool radius and measured with rotating spindle (measuring the longest cutting edge).
Otherwise, the tool is placed in the center and measurement is performed with a motionless spindle.

Measurement of milling cutters with special cutting edge

If a cutting edge is rounded, for example, the tool must be measured with a probe offset. This offset (V) must be entered additionally for diameter determination.

Enter details in input form

Enter offset (V, positive value) when required.

Result

Measurement is performed automatically as soon as you press "NC Start".
The tool offsets "radius" or "length 1" are calculated in and entered in the active tool offset data in accordance with the setting (in geometry or wear).

Measuring in JOG
4.3 Measuring the tool

Measuring Cycles for Milling and Machining Centers

5.1 General prerequisites

5.1.1 General information

The measuring cycles below are intended for use on milling machines and machining centers.

Under certain conditions, workpiece measuring cycles CYCLE976, CYCLE977, and CYCLE978 can also be used on turning machines.
To be able to run the measuring cycles described in this chapter, the following programs must be stored in the part program memory of the control.

The measuring cycle data are defined in the data blocks:

- GUD5.DEF
- GUD6.DEF

5.1.2 Overview of measuring cycles

Cycle	Function
CYCLE961	Workpiece: Setup inside and outside corner
CYCLE971	Tool measurement for milling tools, calibrate tool probe
CYCLE976	Calibrate workpiece probe in a hole or on a surface
CYCLE977	Workpiece: Paraxial measurement of hole, shaft, groove, web or ZO calculation
CYCLE978	Workpiece: 1-point measurement or ZO determination on surface
CYCLE979	Workpiece: Measurement of hole, shaft, groove, web, or ZO determination at an angle
CYCLE996	Workpiece: Measure kinematics (from measuring cycles SW 7.5)
CYCLE997	Workpiece: Measuring spheres or ZO determination (from measuring cycles SW 6.3)
CYCLE998	Workpiece: Angle measurement (ZO determination only)

5.1 General prerequisites

5.1.3 Overview of the auxiliary programs required

Cycle	Function
CYCLE100	Log ON
CYCLE101	Log OFF
CYCLE102	Measurement result display selection
CYCLE103	Preassignment of input data
CYCLE104	Internal subroutine: Measuring cycle interface
CYCLE105	Generate log contents
CYCLE106	Log sequential controller
CYCLE107	Output of message texts (up to measuring cycles SW 6.2)
CYCLE108	Output of alarm messages (up to measuring cycles SW 6.2)
CYCLE109	Internal subroutine: Data transfer
CYCLE110	Internal subroutine: Plausibility checks
CYCLE111	Internal subroutine: Measuring functions
CYCLE112	Internal subroutine: Measuring functions
CYCLE113	Internal subroutine: Log
CYCLE114	Internal subroutine (tool offset)
CYCLE115	Internal subroutine (zero offset)
CYCLE116	Calculate circle center point
CYCLE118	Format real values
CYCLE119	Internal subroutine: Determining position in space

5.1.4 Call and return conditions

The following general call and return conditions must be observed:

- The D offset must be activated with the data of the probe for workpiece measurement before the cycle is called. Tool type 1×0 or 710 (3D probe) is permitted. Dimension factors <> 1 may be active.
- The workpiece measuring cycles can also be used on turning machines if the following conditions are fulfilled:
- The 3rd geometry axis exists.
- Tool type of probe $5 x y$ with cutting edge positions 5 to 8 .
- The tool length correction is specific to the turning machine (SD TOOL_LENGTH_TYPE=2).
- With cutting edge positions 5 or 7 , measurements are taken in the G17 plane, with cutting edge positions 6 or 8 , in the G19 plane.
- Coordinate rotation is permitted for workpiece measuring cycles.
- Mirroring for the workpiece measuring cycles is permitted with the exception of calibration (condition: MD 10610=0).
- When using a multidirectional probe the best measurement results are achieved if, during calibration and measurement, the probe in the spindle is mechanically oriented to have one and the same point on the probe ball point, for example, in the + direction of the abscissa (+X with active G17) in the active workpiece coordinate system.
- The G functions active before the measuring cycle is called remain active after the measuring cycle call, even if they have been changed inside the measuring cycle.
- Measurements must always be performed under the same conditions as applied when the probe was calibrated.

Note

Measuring cycles from measuring cycles SW 6.2 and higher can only be used with NCKSW 6.3 and higher.

5.2 CYCLE971 tool: Measuring milling tools, drills

5.2.1 Function overview

Function

Measuring cycle CYCLE971 implements:

- Calibration of a tool probe
- Measurement of the tool length with motionless or rotating spindle for drills and milling tools
- Measure tool radius with motionless and rotating spindle for milling tools

Programming
CYCLE971

Measuring variants

Measuring cycle CYCLE971 permits the following measuring variants which are specified via parameter _MVAR.

Value	Measuring variant
0	Calibrate tool probe (machine-related)
1	Measure tool with motionless spindle (length or radius, machine-related)
2	Measure tool with rotating spindle (length or radius, machine-related)
10000	Calibrate tool probes incrementally (machine-related)
10	Calibrate tool probes (workpiece-related) ${ }^{1}$)
11	Measure tool with motionless spindle (length or radius, workpiece-related) ${ }^{1)}$
12	Measure tool with rotary spindle (length or radius, workpiece-related) ${ }^{1)}$
10010	Calibrate tool probes in increments (workpiece-related) ${ }^{1)}$
1$)$ from meas. cycles SW 6.3	

Result parameters

The measuring cycle CYCLE9 71 returns the following values in the data block GUD5 for the measuring variant calibration:

Parameter	Data type	Result
_OVR [8]	REAL	Trigger point in minus direction, actual value of 1st geometry axis
_OVR [10]	REAL	Trigger point in plus direction, actual value of 1st geometry axis
_OVR [12]	REAL	Trigger point in minus direction, actual value of 2nd geometry axis
_OVR [14]	REAL	Trigger point in plus direction, actual value of 2nd geometry axis
_OVR [16]	REAL	Trigger point in minus direction, actual value of 3rd geometry axis
_OVR [18]	REAL	Trigger point in plus direction, actual value of 3rd geometry axis
_OVR [9]	REAL	Trigger point in minus direction, difference of 1st geometry axis
_OVR [11]	REAL	Trigger point in plus direction, difference of 1st geometry axis
_OVR [13]	REAL	Trigger point in minus direction, difference of 2nd geometry axis
_OVR [15]	REAL	Trigger point in plus direction, difference of 2nd geometry axis
_OVR [17]	REAL	Trigger point in minus direction, difference of 3rd geometry axis
_OVR [19]	REAL	Trigger point in plus direction, difference of 3rd geometry axis
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVI [2]	INTEGER	Measuring cycle number
-OVI [3]	INTEGER	Measuring variant
_OVI [5]	INTEGER	Probe number
_OVI [9]	INTEGER	Alarm number

Measuring cycle CYCLE971 returns the following values in the data block GUD5 for tool measurement:

Parameter	Data type	Result
_OVR [8]	REAL	Actual value length L1
_OVR [10]	REAL	Actual value radius R
_OVR [9]	REAL	Difference length L1
_OVR [11]	REAL	Difference radius R
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVR [29]	REAL	Permissible dimensional difference
_OVR [30]	REAL	Empirical value
_OVI [0]	INTEGER	D number
_OVI [2]	INTEGER	Measuring cycle number
_OVI [3]	INTEGER	Measuring variant
_OVI [5]	INTEGER	Probe number
_OVI [7]	INTEGER	Number of empirical value memory
_OVI [8]	INTEGER	T number
_OVI [9]	INTEGER	Alarm number

5.2.2 Measurement and correction strategy

5.2.2.1 Measuring strategy

Pre-positioning the tool

The tool must be aligned vertically with the probe before the measuring cycle is called.
Tool axis parallel to center line of probe.
It must be prepositioned in such as way that collision-free approach to the probe is possible. First, the measuring cycle generates traverse paths to the position where measuring starts with a reduced rapid traverse velocity (_SPEED[0]), or with active collision monitoring at the position feedrate set in _SPEED[1] or _SPEED[2].

Tool measurement with motionless spindle

Before the cycle call for measurement of milling tools the tool and spindle must be moved such that the selected cutting edge can be measured (length or radius).

The measurement feedrate is defined in _VMS.

Tool measurement with rotating spindle

Typically, measurements of the radius of milling tools are executed with rotating spindle, that is the largest edge determines the measuring result.
Length measurement of milling tools with rotating spindle might also be practical.
Points to bear in mind:

- Is the tool probe permissible for measuring with rotating spindle with length and/or radius calculation? (Manufacturer documentation).
- Permissible peripheral speed for the tool to be measured.
- Maximum permissible speed.
- Maximum permissible feedrate for probing.
- Minimum feedrate for probing.
- Selection of the rotation direction depending on the cutting edge geometry to prevent hard impacts when probing.
- Required measuring accuracy.

When measuring with rotating tool the relation between measuring feedrate and speed must be taken into account. One cutting edge is taken into account. With multiple cutters, the longest edge is used for the measuring result.

The following connections have to be taken into account:

$$
\begin{aligned}
& \mathrm{n}=\mathrm{S} /(2 \pi \cdot \mathrm{r} \cdot 0.001) \\
& \mathrm{F}=\mathrm{n} \cdot \Delta
\end{aligned}
$$

Where:
Basic system

n	Spindle speed
I	Max. permissible peripheral speed
r	Tool radius
F	Measuring feedrate
Δ	Measuring accuracy

Metric	inch
rpm	rpm
$\mathrm{m} / \mathrm{min}$	feet $/ \mathrm{min}$
mm	inch
$\mathrm{mm} / \mathrm{min}$	inch $/ \mathrm{min}$
mm	inch

Example:

Given a peripheral speed of $S=90 \mathrm{~m} / \mathrm{min}$, speeds of $\mathrm{n}=2865$ to 143 rpm will result for milling tools with a radius of $r=5$ to 100 mm .

Given a specified measuring accuracy of $\Delta=0.005 \mathrm{~mm}$ measuring feedrates of $F=14 \mathrm{~mm} / \mathrm{min}$ to $F=0.7 \mathrm{~mm} / \mathrm{min}$ will result.

5.2.2.2 Compensation strategy

The tool measuring cycle is provided for various applications:

- First-time measurement of a tool
(_CHBIT[3]=0):
The tool offset values in geometry and wear are replaced.
Compensation is written in the geometry component of length or radius. The wear component is reset.
- Remeasurement of a tool (_CHBIT[3]=1):

The resulting difference is calculated into the wear component (radius or length).
Further, for tool measurement, the measured values can be corrected by empirical values
Compensation of length 1 or the tool radius only occurs in tool measurement if the measured difference lies in the tolerance band between _TZL and _TDIF!

Compensation of the tool probe trigger points _TP[] and. _TPW[] only occurs when the too probe is calibrated if the measured difference lies in the tolerance band between _TZL and _TSA!

5.2.2.3 Compensation with correction table when measuring with rotating spindle

When measuring tools with a rotating spindle, the measuring precision can be compensated for by additional compensation values during measurement of the cutter radius or cutter length. These compensation values are stored in tables in the dependency peripheral speed/ cutter radius. Users can also create their own compensation values in dedicated tables in data block GUD6.
This offset is activated with variable of data type INTEGER _MT_COMP >0.
_MT_COMP= 0: No compensation
_MT_COMP= 1: Automatic compensation, i.e. internal compensation when using a TT130 (Heidenhain) or TS27R (Renishaw)
_MT_COMP=2: Correction using user-defined compensation, i.e. even if Heidenhain or Renishaw are specified (deviating probe)

Preproduced compensation tables of some tool probe models can be activated using variables of the data type INTEGER_TP_CF:

_TP_CF= 0:	No data
_TP_CF= 1:	TT130 (Heidenhain)
_TP_CF= 2:	TS27R (Renishaw)

The user can enter his own compensation values in two arrays of data type REAL:

- _MT_EC_R[6,5] for radius measurements and
- _MT_EC_L[6,5] for length measurements.

Structure of user arrays

$\begin{gathered} \hline \text { _MT_EC_R } \\ \text { _MT_EC_L } \\ {[\mathrm{n}, \mathrm{~m}]} \\ \hline \end{gathered}$	$\mathrm{m}=0$	$\mathrm{m}=1$	$\mathrm{m}=2$	$\mathrm{m}=3$	$\mathrm{m}=4$
$\mathrm{n}=0$	0	$1^{\text {st }}$ radius	$2^{\text {nd }}$ radius	3 rd radius	$4^{\text {th }}$ radius
$\mathrm{n}=1$	${ }^{\text {st }}$ peripheral speed	Compensation value for $1^{\text {st }}$ radius/ $1^{\text {st }}$ peripheral speed	Compensation value for $2^{\text {nd }}$ radius/ $1^{\text {st }}$ peripheral speed	Compensation value for $3^{\text {rd }}$ radius/ $1^{\text {st }}$ peripheral speed	Compensation value for $4^{\text {th }}$ radius/ $1^{\text {st }}$ peripheral speed
$\mathrm{n}=2$	$2^{\text {nd }}$ peripheral speed	Compensation value for $1^{\text {st }}$ radius/ $2^{\text {nd }}$ peripheral speed	Compensation value for $2^{\text {nd }}$ radius/ $2^{\text {nd }}$ peripheral speed	Compensation value for $3^{\text {rd }}$ radius/ $2^{\text {nd }}$ peripheral speed	Compensation value for $4^{\text {th }}$ radius/ $2^{\text {nd }}$ peripheral speed
$\mathrm{n}=3$	$3^{\text {rd }}$ peripheral speed	Compensation value for $1^{\text {st }}$ radius/ $3^{\text {rd }}$ peripheral speed	Compensation value for $2^{\text {nd }}$ radius/ $3^{\text {rd }}$ peripheral speed	Compensation value for $3^{\text {rd }}$ radius/ 3 rd peripheral speed	Compensation value for $4^{\text {th }}$ radius/ $3^{\text {rd }}$ peripheral speed

$\begin{gathered} \hline \text { _MT_EC_R } \\ \text { _MT_EC_L } \\ {[\mathrm{n}, \mathrm{~m}]} \\ \hline \end{gathered}$	$\mathrm{m}=0$	$\mathrm{m}=1$	$\mathrm{m}=2$	$\mathrm{m}=3$	$\mathrm{m}=4$
$\mathrm{n}=4$	$4^{\text {th }}$ peripheral speed	Compensation value for $1^{\text {st }}$ radius/ $4^{\text {th }}$ peripheral speed	Compensation value for $2^{\text {nd }}$ radius/ $4^{\text {th }}$ peripheral speed	Compensation value for $3^{\text {rd }}$ radius/ $4^{\text {th }}$ peripheral speed	Compensation value for $4^{\text {th }}$ radius/ $4^{\text {th }}$ peripheral speed
$\mathrm{n}=5$	$5^{\text {th }}$ peripheral speed	Compensation value for $1^{\text {st }}$ radius/ $5^{\text {th }}$ peripheral speed	Compensation value for $2^{\text {nd }}$ radius/ $5^{\text {th }}$ peripheral speed	Compensation value for $3^{\text {rd }}$ radius/ $5^{\text {th }}$ peripheral speed	Compensation value for $4^{\text {th }}$ radius/ $5^{\text {th }}$ peripheral speed
Units:	mm or inch		for tool radius and compensation value		
	$\mathrm{m} / \mathrm{min}$ or ft/min		for peripheral speed		

Function and notes:
In the as-delivered state of the measuring cycles the default setting of the of the arrays is 0 . The radii and peripheral speeds must be entered in ascending order.

These arrays are only accessed in automatic mode when _MT_COMP $=2$. When tool measuring with a rotating spindle, the tool radius of the tool being measured is used to calculate a compensation value from these tables. The value for the next lowest table peripheral speed and the next lowest table radius are always the values used. In radius measurement the corresponding compensation value in array _MT_EC_R[n,m] is subtracted from the measured tool radius. In length measurement the corresponding compensation value in array _MT_EC_L [n,m] is subtracted from the measured tool length.

5.2.3 Calibrating tool probes

5.2.3.1 Calibration

Function

The cycle uses the calibration tool to ascertain the current distance dimensions between machine zero (machine-related calibration) and workpiece zero (workpiece-related calibration) and the tool probe trigger points, and automatically loads them into the appropriate data area in data block GUD6.
Values are corrected without empirical and mean values.

Prerequisite

- The approximate coordinates of the tool probe must be entered before calibration starts in array _TP[_PRNUM-1, 0] to _TP[_PRNUM-1, 9] (machine-related) or _TPW[_PRNUM-1, 0] to _TPW[_PRNUM-1, 9] (workpiece-related).
- The precise length and radius of the calibration tool must be stored in a tool offset data block.
This tool offset must be active when the measuring cycle is called. Tool type 120 can be entered.
There is no special "calibration tool" type.
- Machining plane G17, G18, or G19 must be defined before the cycle is called.
- All the necessary parameters have been assigned values.

Parameter

Parameter	Data type	Meaning
-MVAR	$\begin{array}{r} 0 \\ 10 \\ 10000 \\ 10010 \end{array}$	Calibrate tool probe (machine-related) Calibrate tool probe (workpiece-related) Calibrate tool probes incrementally (machine-related) Calibrate tool probe incrementally (workpiece-related)
_MA	103, 203 102, 201	Number of the measuring axis Number of the offset and measuring axis (not for _MVAR=10000 and _MVAR=10010)
_FA	$\begin{aligned} & >0 \\ & <0 \end{aligned}$	Measurement path For incremental calibration (_MVAR=1000x0) the travel direction is also defined via _FA. _FA > 0: Travel direction + _FA < 0: Travel direction -
_ID	REAL, ≥ 0	Offset The offset affects calibration of 3rd measuring axis if the calibration tool diameter is larger than the upper diameter of the probe. Here the tool is offset by the tool radius from the center of the probe, minus the value in _ID. The offset axis is also specified in _MA. Parameter _ID should usually set to 0 .

The following additional parameters are also valid:

```
_VMS, _TZL, _TSA, _PRNUM and _NMSP.
```

_TZL, _TSA not for incremental calibration!

See also

Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

5.2.3.2 Programming example 1

Fully calibrate tool probe (machine-related)

Values of the calibration tool T7 D1:
Tool type (DP1): 120
Length 1 - geometry (DP3). $\quad \mathrm{L} 1=20.000$
Radius - geometry (DP6): $\quad R=5.000$

Values of the tool probe 1 in data block GUD6, approximate values before calibration begins (machine-related):
_TP $[0,0]=50$
_TP[0,1] $=28$
_TP[0,2] $=42$
TP[0,3] = 20
_TP[0,4] = 80
_TP[0,6] = 20 (upper diameter)
_TP[0,9] = 4
_TP $[0,0]=50$


```
%_N_CALIBRATE_MTT_MPF
N05 G0 G17 G94 G90
N10 T7 D1
N15 M6
N30 SUPA G0 Z100
N35 SUPA X70 Y90
N40 _TZL=0.005 _TSA=5 _ VMS=0 _NMSP=1
_PRNUM=1 _FA=6
N41 _MVAR=0 _MA=102
N50 CYCLE971
N55 SUPA Z100
N60 SUPA Y0
N65 _MA=2
N70 CYCLE971
```

```
N80 SUPA X70 Z100 ;Retract probe in }X\mathrm{ axis and }Z\mathrm{ axis, rapid
N85 _MA=1 ;Calibration in the x axis
N90 CYCLE971 ;Calibration in minus X direction
N100 SUPA Z100 ;Retract from probe in z axis, rapid
N110 SUPA X10 ;In X axis move to position from which
N120 CYCLE971 ;Calibration in plus x direction
N130 SUPA Z100 ;Traverse up in infeed axis
N140 _MA=3
N150 CYCLE971 ;Calibration in minus Z direction
N160 M2
```

```
                                    ;traverse
```

 ;traverse
 ;traverse
;traverse
;calibration in the plus direction is
;calibration in the plus direction is
; possible
; possible
;Calibration in the Z axis on G17
;Calibration in the Z axis on G17

```
;End of program
```

```
;End of program
```


Explanation of example 1

The new trigger values in $-X,+X,-Y,+Y$, and $-Z$ are stored in the global data of tool probe 1 (_PRNUM=1) _TP[0,0...4] if they deviate by more than $0.005 \mathrm{~mm}\left(_T Z L=0.005\right)$ from the old values. Deviations of up to $5 \mathrm{~mm}\left(_T S A=5\right)$ are permissible.

5.2.3.3 Programming example 2

Calibrate tool probe in minus X (workpiece-related)

Values of the calibration tool T7 D1:
Tool type (DP1): 120
Length 1 - geometry (DP3). $\quad L 1=20.000$
Radius - geometry (DP6): $\quad R=5.000$

Values of the settable ZO for G54:
Displacement: $\quad X=60, Y=15, Z=30$
Rotation around: $X=0, Y=0, Z=18$ degrees
S1

Values of the tool probe 1 in data block GUD6, approximate values before calibration begins (workpiece-related):
_TPW[0,0] = 50
_TPW[0,1] = 28
_TPW[0,2] = 42
_TPW[0,3] = 20
_TPW[0,4] = 80
_TPW[0,9] = 4
N05 G0 G17 G94 G54 ;Define machining plane, zero offset and
;feed type
N15 M6 ;Change calibration tool and
N41 _MVAR=10 _MA=1 ;The array of
;tool probe 1 is effective: _TPW[0,i]
N55 z100 ;Traverse up in infeed axis in rapid

```
```

%_N_CALIBRATE_MTT_X_MPF

```
```

%_N_CALIBRATE_MTT_X_MPF
N10 T7 D1
N10 T7 D1
N30 G0 Z100
N30 G0 Z100
N35 X70 Y90
N35 X70 Y90
N40 _TZL=0.005 _TSA=5 _VMS=0 _NMSP=1
N40 _TZL=0.005 _TSA=5 _VMS=0 _NMSP=1
_PRNUM=1 _FA=6
_PRNUM=1 _FA=6
N50 CYCLE971
N50 CYCLE971
N60 M2

```
```

N60 M2

```
```

```
;Select calibration tool
;activate compensation
;Position infeed axis over tool
;Position in plane on tool
;Parameters for calibration in the X axis
;Calibration in minus x direction
;traverse
;End of program
```


Explanation of example 2

The calibration tool moves with its point from the starting position at N35 (X70, Y90, Z100) in Y to the center of the probe Y31 ((_TPW[0,2] + (_TPW[0,3]) / $2=(42+20) / 2=31)$); then in the measuring axis $\mathrm{X}\left(_M A=1, G 17\right)$ to position X61 (_TPW[0,0] + _FA $+R=50+6+5=61$). Here it is lowered to position
Z76 (_TPW[0,4] - _TPW[0,9] = 80-4=76). Then measuring (calibration) is performed in the minus X direction. At the end, the calibration tool is again at position X61.
The new trigger values in minus X are stored in the data of tool probe 1 (_PRNUM=1) _TP[0,0] if they deviate by more than $0.005 \mathrm{~mm}(\ldots T Z L=0.005)$ from the old values. Deviations of up to $5 \mathrm{~mm}\left(_T S A=5\right)$ are permissible.
In block N55 the calibration tool is moved up to position Z100 and the program ends with block N60.

5.2.3.4 Operational sequence

Position before measuring cycle call

The calibration tool must be prepositioned as shown in the figure and for the selected variant. The tool must have reached a permissible starting position.

With incremental calibration, there is no generation of traversing movements before the actual measured block. The calibration tool must be positioned in front of the tool probe such that the calibration tool traverses to the tool probe when the measuring axis and a signed incremental measuring path up to the expected edge are entered in FA.
In normal calibration the measuring cycle calculates the approach path to the probe independently from the starting position and then generates the appropriate traverse blocks.

Note on calibrating in the 3rd measuring axis (_MA=3, _MA=103, _MA=203):
If the tool diameter (2 x \$TC_DP6) is smaller than the upper diameter of the probe (_TP[i,6]), the calibration tool is always positioned in the center of the probe.

If the tool diameter is larger, the calibration tool is offset by the tool radius toward the center onto the probe. The value of IID is subtracted.
The axis in which the offset is applied (offset axis) is also specified in _MA (_MA=103 or $\mathrm{MA}=203$).
If no offset axis is specified (_MA=3), the offset is applied in the abscissa, if necessary (for G17: X axis).

Sequence on additional offset axis specification

Additionally specifying the offset axis in _MA (_MA= 102 or _MA= 201) first causes the exact center of the tool probe to be detected in the offset axis before calibration takes place in the measuring axis.

An entry in the array is only made for the measuring axis in the selected direction of measurement.

Position after end of measuring cycle

On completion of calibration, the calibration tool (radius) is _FA from the measuring surface.

5.2.4 Calibrating tool probes automatically

5.2.4. Automatic calibration

Function

Measuring variants

- _MVAR $=100000$ (machine-related)
- _MVAR=100010 (workpiece-related)
are used to calibrate the tool probe automatically.
The cycle uses the calibration tool to determine the tool probe trigger points in all axes and loads them into the relevant data area of data block GUD6.
A measuring axis does not have to be specified in _MA.
Otherwise, the same parameters apply as for calibration of an axis.
Values are corrected without empirical and mean values.

Prerequisite

The approximate coordinates of the tool probe must be entered before calibration starts in array _TP[_PRNUM-1, 0] to _TP[_PRNUM-1, 9] (machine-related) or _TPW[_PRNUM-1, 0] to _TPW[_PRNUM-1, 9] (workpiece-related). These values must be so precise that the parameter values of _TSA and _FA are fulfilled.

The precise length and radius of the calibration tool must be stored in a tool offset data block. This tool offset must be active when the measuring cycle is called. Tool type 120 can be entered. There is no special "calibration tool" type.

Machining plane G17, G18, or G19 must be defined before the cycle is called.
All the necessary parameters have been assigned values.

Parameter

Parameter	Value	Meaning
$-{ }^{\text {MVAR }}$	100000	Calibrate tool probe automatically (machine-related)
	100010	Calibrate tool probe automatically (workpiece-related)
_FA	>0	Measurement path

The following additional parameters are also valid:
_VMS, _TZL, _TSA, _PRNUM, _ID and _NMSP.
Set offset _ID=0 as standard.

See also

Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

5.2.4.2 Programming example

Calibrate tool probe automatically, machine-related for G17

Values of the calibration tool T7 D1:	
Tool type (DP1):	120
Length 1 - geometry (DP3).	$\mathrm{L} 1=70.123$
Radius - geometry (DP6):	$\mathrm{R}=5.000$

_TP $[0,0]=50$ (minus X axis)
_TP[0,1] = 28 (plus X axis)
_TP[0,2] = 42 (minus Y axis)
_TP[0,3] = 20 (plus Y axis)
_TP[0,4] $=80$ (minus Z axis)
_TP[0,6] = 21 (cutting edge diameter on upper edge)
_TP[0,7] = 133 (can be calibrated: minus Z axis, in both X and Y directions)
_TP $[0,8]=101$ (cutting edge in X/Y)
_TP $[0,9]=4$ (distance to upper edge, depth of calibration)

```
%_N_AUTO_CALIBRATE_MPF
N10 G17 G0 G90 G94
N20 T7 D1 ;Preselect calibration tool
N30 M6 ;Change calibration tool and
;activate offset
N40 SUPA X39 Y31 Z100 ;Take up start position
N20 _MVAR=100000 _FA=6 _TSA=5 _TZL=0.001 ;Parameters for calibration cycle
_PRNUM=1 _VMS=0 _NMSP=1
N30 CYCLE971 ;Automatic calibration (complete)
N99 M2
```


Explanation of example

The tool probe is calibrated from the starting position in the $-Z,+X,-X,+Y,-Y$ and again $-Z$ axes. The values are entered in the _TP field and _OVR field if the results (values of the differences) are within the limits:
>_TZL, <_TSA.

5.2.4.3 Operational sequence

Position before measuring cycle call

The position before measuring cycle call can be anywhere, but:
The cycle must be able to position the 1st calibration point at distance _FA above the center of the probe without collision.
The cycle approaches this point in the axis sequence: applicate (tool axis) followed by axis of the plane.

All subsequent traversing movements are also performed by the measuring cycle with "automatic calibration" using the values entered in array _TP[] or TPW[] of the probe and the dimensions of the active calibration tool.
Calibration is performed in this sequence:

- -applicate, +abscissa, -abscissa, +ordinate, -ordinate;
then finally again in
- -applicate, but now in the located center.

For G17, for example, these are the axes: $-\mathrm{Z},+\mathrm{X},-\mathrm{X},+\mathrm{Y},-\mathrm{Y},-\mathrm{Z}$.

Calibration in the plus direction of the abscissa is performed after ascertaining the center of the probe in the ordinate. Additional movements are performed in the plane.

This sequence applies to
_TP[_PRNUM-1, 7]=133 or _TPW[_PRNUM-1, 7]=133:
probe in Z axis can only be calibrated in minus direction, X, Y, in both directions.
Value _TP[k, 7] or _TPW[k, 7] =133 is the default value.
If some axes or axis directions on the probe cannot be approached the value must be changed.
Significance:

Decimal point ones 1st geometry axis (X)
tens: 2nd geometry axis (Y)
hundreds: 3rd geometry axis (Z)
Value $\quad 0$: axis not possible
1: only minus direction possible
2: only plus direction possible
3: both directions possible
Example _TP[k, 7]=123:
X in both directions,
Y only in plus direction,
Z can only be calibrated in minus direction.
It must always be possible to approach the tool axis (applicate, for example, Z axis for G 17) in the minus direction. Otherwise, automatic calibration is not possible.
The sequence described above changes according to the value of _TP[k, 7] or _TPW[k, 7].

Position after end of measuring cycle

On successful completion of the calibration process, the calibration tool is positioned distance _FA above the center of the probe.

5.2.5 Measuring tool

5.2.5.1 Measurement

Function

The cycle determines the new tool length or the new tool radius and checks whether the difference can be corrected with an empirical value to the old tool length or radius within a defined tolerance range (upper limits: Safe area _TSA and dimensional deviation check _TDIF, lower limit: Zero offset range _TZL).

If this range is not violated, the new tool length or radius is accepted, otherwise an alarm is output. Violation of the lower limit is not corrected.

Measuring is possible either with:

- motionless spindle
- rotating spindle

Prerequisite

- The tool probe must be calibrated.
- The tool geometry data (approximate values) must be entered in a tool offset data record.
- The tool must be active.
- The desired machining plane must be activated
- The tool must be prepositioned in such as way that collision-free approach to the probe is possible in the measuring cycle.

Special features of measurement with rotating spindle

- An additional compensation can be activated with variable _MT_COMP>0. (See Measuring and compensation strategy chapter).
- By default, the cycle-internal calculation of feed and speed is executed from the limit values defined in array _CM[] for peripheral speed, rotation speed, minimum feed, maximum feed and measuring accuracy, as well as the intended direction of spindle rotation for measurement.

Measuring is conducted by probing twice; the first probing action causes a higher feedrate. A maximum of three probing operations are possible for measuring.

If probing is performed several times the speed is additionally reduced on the last probing operation. This speed reduction can be suppressed by setting channel-related bit _CHBIT[22].

- The operator can deactivate the cycle-internal calculation via the measuring cycle bit _CBIT[12]=1 and specify his or her own values for feed and speed.

Array _MFS[] is for entering the values. If the bit is set, the values from _MFS[0/1] are valid for the first probing and the values from _MFS[2/3] (speed/feedrate) for the second. If _MFS[2] $=0$ only one probing action is performed. If _MFS[4]> 0 and_MFS[2]> 0, probing is performed in three probing actions; the values from _MFS[4/5] are valid in the third action.

The monitoring functions from array _CM[] are not active!

- If the spindle is motionless when the measuring cycle is called, the direction of rotation is determined from _CM[5].

Monitoring for measuring with rotating spindle and cycle-internal calculation

Parameter	Type	Meaning	
_CM[0]	REAL	Maximum permissible peripheral speed [m/min]/[feet/min] Default setting: $100 \mathrm{~m} / \mathrm{min}$	
_CM [1]	REAL	Maximum permissible speed for measuring with rotating spindle [rpm] (speed is automatically reduced if this is exceeded) Default setting: 1000 RPM	
_CM [2]	REAL	Minimum feedrate for first probing operation [mm/min]/[inch/min] (prevents feed rates which are too low when working with large tool radii) Default setting: $1 \mathrm{~mm} / \mathrm{min}$	
_CM [3]	REAL	Required measuring accuracy [mm]/[inch] Is effective during last probing Default setting: 0.005 mm	
_CM [4]	REAL	Maximum feedrate for probing [$\mathrm{mm} / \mathrm{min}] /[\mathrm{inch} / \mathrm{min}$] Default setting: $20 \mathrm{~mm} / \mathrm{min}$	
_CM[5]	REAL	Direction of spindle rotation during measuring Default setting: $4=\mathrm{M} 4$	
_CM[6]	REAL	Feed factor 1	
		Values:	0 : Probing just once with calculated feedrate (but at least value of _CM[2])
			≥ 1 : 1 st probing with calculated feedrate (but at least value of _CM[2]) - Feed factor 1
		Default setting: 10	
-CM [7]	REAL	Feed factor 2	
		Values:	0 : 2nd probing with calculated feedrate (only active when _CM[6]>0)
			$\geq 1: 2$. Probing action with calculated feed \cdot Feed factor 2 3rd probing with calculated feed
		Feed factor 2 should be smaller than feed factor 1. Default setting: 0	

NOTICE

If the spindle is already rotating when the measuring cycle is called, this direction of rotation remains independent of _CM[5]!

Measuring variants

- Length measuring variants (Example: G17, machine-related)

- Radius measuring variants (milling tool) (Example: G17, machine-related, _MA=1)

Note

If the tool diameter ($2 x$ \$TC_DP6) is smaller than the upper diameter of the probe (_TP[i,6]), the tool is always positioned in the center of the probe.

If the tool diameter is larger, the tool is offset by the tool radius toward the center onto the probe. The value of _ID is subtracted. The axis in which the offset is applied (offset axis) is also specified in _MA (_MA=103 or MA=203).
If no offset axis is specified (_MA=3), the offset is applied in the abscissa, if necessary, (for G17: X axis).

Parameter

Parameter	Value	Meaning
_MVAR	1	Measure with motionless spindle, machine-related
	2	Measure with rotating spindle, machine-related
	11	Measure with motionless spindle, workpiece-related
	12	Measure with rotating spindle, workpiece-related
_MA		Number of the measuring axis
	1	Measure radius in abscissa direction (milling tool)
	2	Measure radius in ordinate direction (milling tool)
	3	Measure length at center point of the tool probe (drill or milling tool)
	103	Measure length, offset by radius in abscissa direction (milling tool)
	203	Measure length, offset by radius in ordinate direction (milling tool)
_ID	REAL, ≥ 0	Offset Parameter is usually set to 0 . With multiple cutters the offset of tool length and the highest point of the tool edge must be specified in _ID for radius measurement and the offset from the tool radius to the highest point of the tool edge must be specified for length measurement.
_MFS [0]	REAL	Speed 3rd probing (only with _CBIT[12]=1)
-MFS [1]		Feed 1st probing
-MFS [2]		Speed 2nd probing 0 : Measurement terminated after 1st probing
_MFS [3]		Feed 2nd probing
-MFS [4]		Speed 3rd probing 0 : Measurement terminated after 2nd probing
-MFS [5]		Feed 3rd probing

The following additional parameters are also valid:

```
_VMS, _TZL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM and _NMSP.
```


See also

Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

5.2.5.2 Programming examples 1

Measuring the length and radius of a milling tool (machine-related)

Milling tool F3 with D1 is to be measured for the first time along length L1 and radius R (to determine geometry).

The length measurement is to be performed with motionless spindle. Radius measurement is to be performed with rotating spindle - in the X axis.

The tool has a specially shaped cutting edge and therefore requires an offset for measurement.

A measured value deviation of $<1.6 \mathrm{~mm}$ compared with the entered values is expected.

Values of calibration tool T3 D1, before the measurement:
Tool type (DP1): 123
Length 1 - geometry (DP3): $\quad \mathrm{L} 1=70$
Radius - geometry (DP6): $\quad R=18$
Length 1 - wear (DP12): 0
Radius - wear (DP15): 0
Tool probe 1 is used. It has already been calibrated under the same conditions.

Values: See programming example 1 "Calibration"


```
%_N_T3_MEAS_MPF
N01 G17 G90 G94
N05 T3 D
N10 M6
N15 G0 SUPA Z100
N16 SUPA X70 Y90 SPOS=15
N20 _CHBIT[3]=0 _CBIT[12]=0
N30 _TZL=0.04 _TDIF=1.6 _TSA=2
_PRNUM=1 _VMS=0 _NMSP=1 _FA=3 _EVNUM=0
N31 _ID=2.2 _MVAR=1 _MA=103
N40 CYCLE971
N50 SUPA X70
N70 _ID=2.4 _MA=1 _MVAR=2
N80 CYCLE971
N90 SUPA Z100 M2
;Selection of the tool to be measured
;Insert tool, offset active
;Position infeed axis with probe
;Position \(\mathrm{X} / \mathrm{Y}\), align cutting edge
;(if needed)
;Compensation of tool geometry, internal
;cycle calculation of feedrate and
;speed during measurement with rotating
;spindle
;Parameters for cycle
;Offset in X axis for length measurement
;Measure length with motionless spindle
; Retract from probe in X
; New offset for radius measurement
;Measure radius in minus \(x\) direction with
; rotating spindle
; Raise in \(Z, ~ e n d ~ o f ~ p r o g r a m ~\)
```


Explanation of example 1

Length 1 (derived in block N40) and the radius (derived in block N80) of the active tool (T3, D1) are entered in the relevant geometry memory (_CHBIT[3]=0) if they

- deviate by more than 0.04 mm
(_TZL=0.04) and
- less than 1.6 mm (_TDIF=1.6)
from entered values $L 1, R$.
If the differences are \geq _TDIF or _TSA alarms are output.
Values are corrected without empirical values (_EVNUM=0).
Wear values L1 and R of the tool are reset (_CHBIT[3]=0).

5.2.5.3 Programming example 2

Measure radius of milling tool (workpiece-related)

Milling tool T4 with D1 is to be remeasured in radius R (to ascertain wear).
Radius measurement is to be performed with rotating spindle - in the X axis.
A measured value deviation of $<0.6 \mathrm{~mm}$ compared with the entered values is expected.

Values of calibration tool T4 D1, before the measurement:

Tool type (DP1): 120
Length 1 - geometry (DP3): \quad L1 $=70$
Radius - geometry (DP6): $\quad \mathrm{Rg}=18.0$
Radius - wear (DP15): $\quad R v=0.024$
$R=R g+R v$
Values of the settable ZO for G54:
Displacement: $X=60, Y=15, Z=30$
Rotation about: $X=0, Y=0, Z=18$ degrees
Tool probe 1 is used. It has already been calibrated under the same conditions (G17, G54, ...).
Values: See programming example 2 "Calibration"

```
%_N_T4_MEASURE_MPF
NO1 _PRNUM=1 ;Select tool probe 1
N02 G17 G54 G94 G90 ;Plane, zO, feedrate type, dimensioning
N05 T4 D1 ;Selection of the tool to be measured
N10 M6 ;Insert tool, offset active
N15 G0 Z=_TPW[_PRNUM-1,4]+20
N16 X=_TPW[_PRNUM-1,0]+$P_TOOLR+20
Y=_TPW[_PRNUM-1,2] +$P_TOOLR +20
N20 _CHBIT[3]=1 _CBIT[12]=0
N30 _TZL=0.04 _TDIF=0.6 _TSA=2 _VMS=0
_NMSP=1 __FA=3 _EVNUM=0
N31 _ID=0 _MVAR=12 _MA=1
N40 CYCLE971
N50 Z=_TPW[_PRNUM-1,4]+20
N60 M2
;Select tool probe 1
;Plane, ZO, feedrate type, dimensioning ;Selection of the tool to be measured ;Insert tool, offset active
; Position in infeed axis above the ;tool probe
;Position \(X / Y\) plane: tool edge 20 mm next ;to probe edge +X, +Y
; Compensation in wear, internal cycle ;calculation of feedrate and speed ; during measurement with rotating spindle ;Remaining parameters for cycle
;Without offset
;Measurement with rotating spindle ; Raise from probe in Z
```

 (\quad MVAR $=2, _M A=1$)

Explanation of example 2

The tool moves in N40 (in cycle) with its point from the starting position in N16 in Y to the center of the probe (_TPW[0,2] + (_TPW[0,3]) / 2); then in the measuring axis X (_MA=1, G17) to position (_TPW[0,0] + _FA + R). Here it is lowered to the position in Z (_TPW[0,4] _TPW[0,9]. Then measuring is performed in the minus X direction. At the end, the tool (radius) is again positioned distance _FA in X in front of the probe. In block N50 the tool is raised 20 mm in Z above the probe. Then the program is ended (N60).
The difference in radius (derived in block N40) of the active tool (T4, D1) is subtracted from the wear and entered (_CHBIT[3]=1), if they

- deviate by more than $0.04 \mathrm{~mm}\left(_T Z L=0.04\right)$ and
- less than 0.6 mm (_TDIF=0.6).

If the difference is $\geq_{\text {_ }}$ TDIF or _TSA, alarms are output.
Values are corrected without empirical values (_EVNUM=0).

5.2.5.4 Operational sequence

Position before measuring cycle call

Before cycle call a starting position must be taken up from which approach to the probe is possible without collision. The measuring cycle calculates the continued approach path and generates the necessary travel blocks.

Position after end of measuring cycle

On completion of the cycle, the tool nose or tool radius is positioned facing the measuring surface at a distance corresponding to _FA.

5.3 CYCLE976 calibrate workpiece probe

5.3.1 Function overview

Function

With milling machines and machining centers, the probe is usually loaded into the spindle from a tool magazine.

This may result in errors when further measurements are taken on account of probe clamping tolerances in the spindle.

The probe trigger points must be determined in the axis directions that are dependent on:

- the probe ball diameter:
- the mechanical design of the probe.
- speed at which the probe hits an obstacle.

With this calibration cycle it is possible to calibrate a workpiece probe in a hole (axes in the plane) or on suitable surfaces for a particular axis and direction.

Determining the positional deviation of the workpiece probe

A real workpiece probe can deviate from its ideal vertical position even when not deflected. This positional deviation (skew) can be determined with measuring variants in this cycle and then entered in the intended array of the workpiece _WP[i, 7] for abscissa and _WP[i, 8] for ordinate (for detailed data: refer to Data description chapter "Cycle data").
These values are taken into account in precise probe positioning in subsequent measurements with a similarly calibrated workpiece probe.

Workpiece probe types that can be used

- Multidirectional probe (_PRNUM=xy)
- Monodirectional, bidirectional probe (_PRNUM=1xy)

Programming

CYCLE9 96

Measuring variants

Measuring cycle CYCLE 976 permits the following calibration variants which are specified via parameter _MVAR.

- Calibration in hole (axes of the plane)

Digit					Measuring variant	
6	5	4	3	2	1	
					1	Hole (for measurement in the plane), center of the hole known
					8	Hole (for measurement in the plane), center of the hole not known
				0		With any data in the plane (workpiece-related)
			0			Without including probe ball in calculation
			1			Including probe ball in calculation (for measurement in plane)
		0				4 axis directions
		1				1 axis direction (also specify measuring axis and axis direction)
		2				2 axis directions (also specify measuring axis)
	0					Without determining position deviation of probe
	1					With determining position deviation of probe
0						Paraxial calibration (in the plane)
1						Calibration at an angle (in the plane)

Note

When _MVAR $=x x 1 \times 0 x$ calibration is only performed in one direction. It is not possible to determine position deviation or calculate probe ball.

Result parameters

Measuring cycle CYCLE9 96 returns the following values in data block GUD5 for calibration:

Parameter	Data type	Result
_OVR [4]	REAL	Actual value probe ball diameter
_OVR [5]	REAL	Difference probe ball diameter
_OVR [6]1)	REAL	Center point of the hole in the abscissa
_OVR [7]1)	REAL	Center point of the hole in the ordinate
_OVR [8]	REAL	Trigger point in minus direction, actual value, abscissa
_OVR [10]	REAL	Trigger point in plus direction, actual value, abscissa
_OVR [12]	REAL	Trigger point in minus direction, actual value, ordinate
_OVR [14]	REAL	Trigger point in plus direction, actual value, ordinate
_OVR [16]	REAL	Trigger point in minus direction, actual value, applicate
_OVR [18]	REAL	Trigger point in plus direction, actual value, applicate
_OVR [9]	REAL	Trigger point in minus direction, difference, abscissa
_OVR [11]	REAL	Trigger point in plus direction, difference, abscissa
_OVR [13]	REAL	Trigger point in minus direction, difference, ordinate
_OVR [15]	REAL	Trigger point in plus direction, difference, ordinate
_OVR [17]	REAL	Trigger point in minus direction, difference, applicate
_OVR [19]	REAL	Trigger point in plus direction, difference, applicate
_OVR [20]	REAL	Positional deviation abscissa (skew of probe)
_OVR [21]	REAL	Positional deviation ordinate (skew of probe)
_OVR [22$]^{2)}$	REAL	Probe length of the workpiece probe
-OVR [24]	REAL	Angle at which the trigger points were determined
_OVR [27]	REAL	Zero offset area
-OVR [28]	REAL	Safe area
_OVI [2]	INTEGER	Measuring cycle number
_OVI [5]	INTEGER	Probe number
_OVI [9]	INTEGER	Alarm number
1) For calibration variant with unknown hole center point only 2) For determining probe length only		

5.3.2 Calibrating a workpiece probe in a hole of known hole center point

5.3.2.1 General information

Function

Using the measuring cycle and the _MVAR=xxxx01 measuring variant, it is possible to calibrate the probe in the axes of the plane (G17, G18, or G19) in a calibration ring. A hole that is perpendicular to the selected plane and with the same quality requirements regarding geometrical accuracy and surface roughness can also be used.

The center point (CP) of the hole and its diameter (D) must be known for this calibration variant!
The calculated trigger points are automatically loaded in the relevant data area _WP[] of block GUD6.DEF if the calculated difference from the stored trigger points lies within the tolerance band between _TZL and _TSA. If _TSA is exceeded an error message is output.
Calibration is performed either paraxially with the axes of the active workpiece coordinate system or at an angle to these axes.

The number of axes and axis directions can be selected in _MVAR. If fewer than four axis directions are selected (_MVAR= xx1xx01, xx2xx01), additional information must be supplied in _MA and possibly in _MD.

Prerequisite
The probe must be called with tool length offset.
Tool type, preferably: 710.

NOTICE

The first time calibration is performed the default setting in the array of probe _WP[] is still " 0 ". For that reason _TSA> probe ball radius must be programmed to avoid alarm "Safe area violated".

Parameter

Parameter	Data type	Meaning
_MVAR	xxxx01	Calibration variant
_SETVAL	REAL, >0	Calibration setpoint = diameter of hole
-MA	1,2	Meas. axis, only for _MVAR $=x \times 1 \times x 01,=x \times 2 \times x 01$ (only 1 axis or only 1 axis direction)
-MD	0 positive axis direction 1 negative axis direction	Meas. axis, only for _MVAR= xx1x01 (calibrate one axis direction only)
_PRNUM	>0	Probe number
-STA1	REAL	Starting angle, only for _MVAR= 1xxx01 (calibration performed at this angle)

The following additional parameters are also valid:
_VMS, _CORA, _TZL, _TSA, _FA and _NMSP.
_CORA only relevant for monodirectional probe.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

5.3.2.2 Programming example

Calibrating a workpiece probe in the $X-Y$ plane, known hole center point
Workpiece probe 3, used as tool T9, D1, is to be recalibrated in a known hole with $M P x=100,000, M P y=80,000, D=110,246 \mathrm{~mm}$
in axes X and Y in both axis directions with G 17 and paraxially (to redetermine trigger values _WP[i,1] to _WP[i,4].

The positional deviation (skew _WP[i,7], _WP[i,8]) and precise ball diameter _WP[i,0] of the probe is also to be ascertained.

The radius of the probe ball and length 1 must be entered in the tool offset memory under T9 D1, before the cycle is called. Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$ Length 1 (L1) must refer to the center of the probe ball: _CBIT[14]=0.
Careful when positioning! Radius R in length (L1) is ignored. But the desired calibration height can be entered directly. Zero offset, with settable ZO G54:
Arrays for workpiece probe 3: NVx, NVy, ... (already contains approximate values)


```
%_N_CALIBRATE_IN_X_Y_MPF
N10 G54 G90 G17 T9 D1
N2O M6
N30 G0 X100.000 Y80.000
N40 Z10
N50 _CBIT[ 14]=0
```

; ZO selection, select probe as tool and
;operating plane
; Insert probe and activate tool offset
;Position probe at center of hole
;Position probe in hole at calibration
;height
; Length 1 relative to probe ball center

```
N60 _TSA=1 _PPRNUM=3 _VMS=0 _NMSP=1 
N60 _TSA=1 _PRNUM=3 _VMS=0 _NMSP=1 
N60 _TSA=1 _PRNUM=3 _VMS=0 _NMSP=1 
N70 CYCLE976
N80 z40
N100 M2
```

```
;Set parameter for calibration cycle:
;Calibrate probe 3 in
;4 axis directions with calculation of
;positional deviation and calculation of
;effective diameter of probe ball
;Measuring cycle call, calibrate paraxially
;Position probe above workpiece
;End of program
```


Explanation of example

The new trigger values in $-X,+X,-Y$ and $+Y$ are stored in the global data of measuring probe 3 _WP $[2,1 \ldots 4]$. The positional deviation calculated in the X and Y direction is stored in _WP[2,7], _WP[2,8], the active probe ball diameter in _WP[2,0].

5.3.2.3 Operational sequence

Position before measuring cycle call

The probe must be positioned at the center of hole (MP) in the abscissa and the ordinate of the selected measuring plane and at the calibration depth in the hole.

Axis sequence, axis direction sequence

- Paraxial, two axis directions:

Calibration starts in the positive axis direction. If _MVAR=xx0xx1 (all four directions), calibration starts in the abscissa. This is followed by the ordinate.

- At an angle:

The axes travel in combination acc. to starting angle _STA1 plus steps of 90 degrees. Otherwise, the same principle as for "paraxial" applies.

Position after end of measuring cycle

When calibration is complete the probe is again positioned at calibration depth in the center of the hole.

5.3.3 Calibrating a workpiece probe in a hole of unknown hole center point

5.3.3.1 General information

Function

Using the measuring cycle and the _MVAR=xx0x08
measuring variant, it is possible to calibrate the probe in the axes of the plane (G17, G18, or G 19) in a calibration ring. A hole that is perpendicular to the selected plane and with the same quality requirements regarding geometrical accuracy and surface roughness can also be used.
The center (CP) of the hole is unknown in the precise position. But diameter (D) is known.

In this measuring variant first the hole center and then the positional deviation (skew) of the probe is calculated. Then the trigger points in all 4 axis directions on the plane are calculated.

In addition to the values in array _WP[], the measuring cycle also provides the determined hole center point in result array _OVR[6], _OVR[7].
Calibration can be performed paraxially or at an angle to the active workpiece coordinate system. All 4 axis directions are always calibrated.

Prerequisite

- The probe must be called with tool length offset.
- Tool type, preferably: 710.
- The exact diameter of the hole is known.
- The spindle must be SPOS-capable.
- Probe in spindle can be positioned $0 . . .360$ degrees (all-round coverage).

NOTICE

The first time calibration is performed the default setting in the array of the probe is still " 0 ". For that reason _TSA> probe ball radius must be programmed to avoid alarm "Safe area violated".

Parameter

Parameter	Data type	Meaning
-MVAR	xx0x08	Calibration in hole, center unknown
SETVAL	REAL, >0	Calibration setpoint = diameter of hole
_PRNUM	>0	Probe number
_STA1	REAL	Starting angle, only for MVAR $=1 \times x \times 08$ (calibration performed at this angle)

The following additional parameters are also valid:
_VMS, _CORA, _TZL, _TSA, _FA and _NMSP.
_CORA only relevant for monodirectional probe.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Multiple measurement at the same location: _NMSP (Page 82)

5.3.3.2 Programming example

Calibrating a workpiece probe in the $X-Y$ plane, unknown hole center point
Workpiece probe 2, used as tool T10, $D 1$, is to be recalibrated in a hole with $D=110.246 \mathrm{~mm}$ and not precisely known center point (CP) in axes X and Y in both axis directions with G17 and paraxially (to redetermine trigger values _WP[i, 1] to _WP[i,4].
The positional deviation (skew _WP[i,7], _WP[i,8]) and precise ball diameter _WP[i,0] of the probe is also to be ascertained.

The radius of the probe ball and length 1 must be entered in the tool offset memory under T10, D1, before the cycle is called. Tool type (DP1): 710 Length 1 - geometry (DP3): $\quad L 1=50.000$ Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball: _CBIT[14]=0.
Careful when positioning! Radius R in length (L1) is ignored. But the desired calibration height can be entered directly.
Zero offset, with settable ZO G54:
$N V x, N V y, \ldots$
Arrays for workpiece probe 2: _WP[1, ...]


```
%_N_CALIBRATE2_IN_X_Y_MPF
N10 G54 G90 G17 T10 D1
N20 M6
N30 G0 X100 Y80
N40 z10
N50 _CBIT[ 14 ]=0
N60 _TSA=1 _PRNUM=2 _VMS=0 _NMSP=1
_TZL=0
N61 _MVAR=010108 _SETVAL=110.246
_FA=_SETVAL/2
N70 CYCLE976
N80 Z40
N100 M2
```

(already contains approximate values)

```
;ZO selection, select probe as tool and
;operating plane
;Insert probe and activate tool offset
;
;Position probe in hole
;Position probe in hole at
;calibration height
;Length 1 relative to probe ball center
; Set parameter for calibration cycle:
;Calibrate probe 2 in
;4 axis directions with calculation of
; positional deviation and calculation of
;diameter of probe ball
;Measuring cycle call, calibrate paraxially
;Position probe above workpiece
; End of program
```


Explanation of example

The hole center is determined twice, the spindle with the probe being rotated through 180° between each measurement if a multi probe is used, in order to record any positional deviation (skew) of the measuring probe. Triggering is then determined in all 4 axis directions.

The new trigger values in $-X,+X,-Y$ and $+Y$ are stored in the global data of probe 2_WP[1,1...4], the positional deviation in the X and Y direction in _WP[1,7], _WP[1,8], the active probe ball diameter in _WP[1,0].
The calculated hole center is entered in OVR[6], OVR[7].

5.3.3.3 Operational sequence

Position before measuring cycle call

The probe must be positioned near the hole center in the abscissa and the ordinate of the selected measuring plane and at the calibration height in the hole.

Axis sequence, axis direction sequence

- Paraxial:

Calibration always starts in the positive axis direction, first in the abscissa, then in the ordinate.

- At an angle:

The axes always travel in combination acc. to starting angle _STA1, _STA1+180 degrees, _STA1+90 degrees, and _STA1+270 degrees.

Otherwise, the same principle as for "paraxial" applies.

2 measuring runs, one with spindle reversal
The cycle performs two measurement operations to determine the positional deviance of the probe and the center point of the hole.

1. Spindle positioned 180 degrees from initial position with SPOS and all axis directions traversed.
2. Spindle positioned at initial position and all axis directions traversed again.

Position after end of measuring cycle

When calibration is complete the probe is again positioned at calibration height in the center of the hole.

Note

Repeating calibration using the determined hole center is advisable if the starting position at the beginning is severely eccentric or measuring accuracy demands are high.

5.3.4 Calibration of a workpiece probe on a surface

5.3.4.1 General information

Function

Using this measuring cycle and the _MVAR=0
measuring variant, a workpiece probe can be calibrated in one axis and one direction on a known surface with sufficiently good surface roughness and which is perpendicular to the measuring axis. This can be done on a workpiece, for example.
The trigger point of the relevant axis and axis direction is calculated and entered in the workpiece probe array _WP[i,1] to _WP[i,5] provided.

Prerequisite

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type $5 x y$ and _CBIT[14]=0.

Parameter

Parameter	Data type	Meaning
$-{ }^{\text {MVAR }}$	0	Calibration variant: Calibration on surface
SETVAL	REAL	Calibration setpoint (position of surface)
$-{ }^{\text {MA }}$	1,2 or 3	Measuring axis
$-{ }^{\text {MD }}$	0 positive axis direction 1 negative axis direction	Measuring direction
_PRNUM	INT, >0	Probe number

The following additional parameters are also valid:
_VMS, _CORA, _TZL, _TSA, _FA and _NMSP.
_CORA only relevant for monodirectional probe.

NOTICE

The first time calibration is performed the default setting in the array of the probe is still "0". For that reason _TSA>probe ball radius must be programmed to avoid alarm "Safe area violated".

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position: _CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

5.3.4.2 Programming example

Calibrating a workpiece probe on the workpiece.

Workpiece probe 1 is to be calibrated in the Z axis on the surface at position $Z=20.000 \mathrm{~mm}$ of a clamped workpiece: Determine trigger value in minus direction _WP[0.5].
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
The workpiece probe is to be inserted as tool T9 with offset D1.
The radius of the probe ball and length 1 must be entered in the tool offset memory under T9 D1, before the cycle is called. Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball: _CBIT[14]=0.
Careful when positioning! Radius R in length (L1) is ignored. But the desired calibration height can be entered directly when calibrating in the abscissa or ordinate
 (_MA=1, =2).
_WP[0, ...]

```
%_N_CALIBRATE_IN_Z_MPF
N10 G54 G90 G17 T9 D1
N20 M6
N30 G0 X100 Y80 ;Position probe above surface
N40 Z55 ;Lower probe, distance > (_FA + R)
N50 _CBIT[14]=0
N60 _TSA=4 _TZL=0 _PRNUM=1 _VMS=0
_NMSP=1 _FA=2
N61 _MVAR=0 _SETVAL=20 _MA=3 _MD=1
N70 CYCLE976
N80 z55
N100 M2
; ZO selection, select probe as tool and
; operating plane
;Insert probe and activate tool offset
;Position probe above surface
;Lower probe, distance > (_FA + R)
;Length 1 relative to probe ball center
;Define parameter for calibration cycle,
;calibrate probe 1 in minus \(Z\) axis
;Measuring cycle call
;Position probe above workpiece
;End of program
```


Explanation of example

The new trigger value in the minus Z direction is entered in the global data of workpiece probe 1 in _WP[0,5].

5.3.4.3 Operational sequence

Position before measuring cycle call

The probe must be positioned facing the calibration surface.
Recommended distance: >_FA.

Position after end of measuring cycle

When calibration is complete the probe (ball radius) is distance _FA from the calibration surface if _MA=3, if _MA=1 or _MA=2 it is at the starting position.

5.3.5 Calibrating a workpiece probe in the applicate determining probe length

5.3.5.1 General information

Function

Using this measuring cycle and the _MVAR=10000 measuring variant, a workpiece probe can be calibrated in the tool axis (applicate) on a known surface with sufficiently good surface roughness and which is perpendicular to the measuring axis.

This can be done on a workpiece, for example.
The trigger point of the relevant axis and axis direction is calculated and entered in the workpiece probe array _WP[i,5] provided.

At the same time length 1 (L1) of the probe is calculated according to the setting of _CBIT[14] and entered in the tool compensation memory:

- _CBIT[14]=0: L1 referred to ball center
- _CBIT[14]=1: L1 ref. to ball circumference

Prerequisite

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type $5 x y$ and _CBIT[14]=0.

NOTICE

If you want to position with the tool in the program, the approximate probe length should be known and entered in the tool offset memory. Otherwise, position the probe with JOG in front of the calibration surface.
The exact ball radius must be known and entered.
The first time calibration is performed the default setting in the array of the probe is still " 0 ". Therefore:
TSA> probe ball radius must be programmed to avoid alarm "Safe area violated".

Parameter

Parameter	Data type	Meaning
$-{ }^{\text {MVAR }}$	10000	Calibration in applicate with length calculation
SETVAL	REAL	Calibration setpoint (position of surface)
_MA	3	Measuring axis, only tool axis (applicate) possible
- ${ }^{\text {MD }}$	0 1 positive axis direction negative axis direction	Measuring direction
_PRNUM	>0	Probe number

The following additional parameters are also valid:
_VMS, _CORA, _TZL, _TSA, _FA and _NMSP.
_CORA only relevant for monodirectional probe.
_TSA is only evaluated with reference to the trigger value, not with reference to the tool length.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

5.3.5.2 Programming example

Calibration of a workpiece probe in the Z axis on the workpiece with length calculation

Workpiece probe 1 is to be calibrated in the Z axis on the surface at position $Z=20.000 \mathrm{~mm}$ of a clamped workpiece: Determine trigger value in minus direction _WP[0,5] and length 1 (L1).
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
The workpiece probe is inserted as tool T9 with offset D1.

The radius of the probe ball and length 1 must be entered in the tool offset memory under T9 D1, before the cycle is called. Tool type (DP1): 710
Length 1 - geometry (DP3): \quad L1 = ?
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball: _CBIT[14]=0.
Careful when positioning! Radius R in length (L1) is ignored. But the desired calibration height can be entered directly when calibrating in the abscissa or ordinate (_MA=1, =2).

Calibrate on surface in the minus Z direction with specification of length L1 (_CBIT[14]=0)

Arrays for workpiece probe 1: _WP[0, ...]

```
%_N_CALIBRATE_Z_L_MPF
N10 G54 G90 G17 T9 D1 ;ZO selection, select probe as tool and
;operating plane
N20 M6 ;Insert probe and activate tool offset
; ... ;The probe is prepositioned in front of the
;calibration surface
;within a distance of 2 x _FA
;Length 1 relative to probe ball center
;Define parameter for calibration cycle,
;calibrate probe 1 in minus Z axis
;with determination of length 1
;Measuring cycle call
;determine calibration in minus Z and L1
;End of program
```


Explanation of example

On cycle call, the probe travels in the minus Z direction max. 24 mm (_FA=12) at measuring feedrate $300 \mathrm{~mm} / \mathrm{min}\left(_\mathrm{VMS}=0\right.$, $_\mathrm{FA}>1$). If the probe is triggered within this measuring path of 24 mm , length 1 (geometry) is calculated and entered in tool offset memory T9, D1, D3.
The trigger value of probe 1 in the minus Z direction is used as the ball radius of the probe from T9, D1, DP6 and then entered in _WP[0,5] - if _CBIT[14]=0.

If _CBIT[14]=1, this value is $=0$.

5.3.5.3 Operational sequence

Position before measuring cycle call

The probe should be positioned opposite the calibration surface such that it is deflected at the start of the cycle within the max. measurement path of $2 \times$ _FA [mm].

Position after end of measuring cycle
When the calibration procedure is completed the probe is positioned on the starting position.

5.4 CYCLE977 workpiece: Measure hole/shaft/groove/web/rectangle parallel to axes

5.4.1 Function overview

Function

With this measuring cycle you can measure the dimensions of the following contour elements on a workpiece using different measuring variants:

- Hole
- Shaft
- Groove
- Web
- Inside rectangle
- Outside rectangle

Measurement is performed paraxially to the workpiece coordinate system.
In some measuring variants defined safety zones are taken into account during the measuring operation.

CYCLE977 can

- measure the contour elements
and additionally either
- perform an automatic tool offset
for a specified tool based on the differences in diameter or width, or
- a zero offset (ZO) based on the differences between the center positions.

Workpiece probe types that can be used

- Multidirectional probe (_PRNUM=xy)
- Monodirectional, bidirectional probe (_PRNUM=1xy)

Programming

CYCLE977

Measuring variants

Measuring cycle CYCLE977 permits the following measuring variants which are specified via parameter _MVAR:

Value	Measuring variant
1	Measure hole with tool offset
2	Measure shaft with tool offset
3	Measure groove with tool offset
4	Measure web with tool offset
5	Measure rectangle inside with tool offset
6	Measure rectangle outside with tool offset
101	ZO calculation in hole with ZO compensation
102	ZO calculation in groove with ZO compensation
103	ZO calculation on web with ZO compensation
104	ZO determination in inside rectangle with ZO correction
105	Measure hole traveling around a safety zone and tool offset
106	Measure shaft taking account of a safety zone and tool offset
1001	Measure groove traveling around a safety zone and tool offset
1002	Measure web taking account of a safety zone and tool offset
1003	Measure inside rectangle with safety zone and tool offset
1004	Measure outside rectangle with safety zone and tool offset
1005	ZO determination, hole traveling around a safety zone with ZO correction
1006	ZO determination, shaft taking account of a safety zone with ZO correction
1101	ZO determination, groove traveling around a safety zone with ZO correction
1102	ZO determination, web taking account of a safety zone with ZO correction
1103	ZO determination, inside rectangle with safety zone with ZO correction
1104	
1105	

Result parameters

Depending on the measuring variant _MVAR=xxx1 to _MVAR=xxx4, measuring cycle CYCLE977 supplies the following values as results in data block GUD5 (not for rectangle measurement, see next table for this):

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint diameter/width hole, shaft, groove, web
_OVR [1]	REAL	Setpoint center point/center hole, shaft, groove, web in abscissa
_OVR [2]	REAL	Setpoint center point/center hole, shaft, groove, web in ordinate
-OVR [4]	REAL	Actual value diameter/width hole, shaft, groove, web
_OVR [5]	REAL	Actual value center point/center hole, shaft, groove, web in abscissa
_OVR [6]	REAL	Actual value center point/center hole, shaft, groove, web in ordinate
_OVR [8] ${ }^{1)}$	REAL	Upper tolerance limit for diameter/width hole, shaft, groove, web
_OVR [12] ${ }^{1)}$	REAL	Lower tolerance limit for diameter/width hole, shaft, groove, web
_OVR [16]	REAL	Difference diameter/width hole, shaft, groove, web
_OVR [17]	REAL	Difference center point/center hole, shaft, groove, web in abscissa
_OVR [18]	REAL	Difference center point/center hole, shaft, groove, web in ordinate
_OVR [20$]^{1)}$	REAL	Compensation value
OVR [27] ${ }^{1)}$	REAL	Zero offset area
_OVR [28]	REAL	Safe area
OVR [29] ${ }^{1)}$	REAL	Dimensional difference
OVR [30$]^{1)}$	REAL	Empirical value
_OVR [31$]^{1)}$	REAL	Mean value
_OVI [0]	INTEGER	D number or ZO number
_OVI [2]	INTEGER	Measuring cycle number
_OVI [4] ${ }^{1)}$	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
OVI [6] ${ }^{10}$	INTEGER	Mean value memory number
_OVI [7]1)	INTEGER	Empirical value memory number
_OVI [8]	INTEGER	Tool number
_OVI [9]	INTEGER	Alarm number
OVI [11] ${ }^{2}$	INTEGER	Status offset request
OVI [13$]^{1)}$	INTEGER	DL number (from measuring cycles SW 6.3)
1) for workpiece measurement with tool offset only 2) for ZO correction only		

Measuring cycle CYCLE977 supplies the following values as results in data block GUD5 depending on the rectangle measurement (_MVAR= $x x x 5$, =xxx6) measuring variant:

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint value rectangle length (in the abscissa)
_OVR [1]	REAL	Setpoint value rectangle length (in the ordinate)
_OVR [2]	REAL	Setpoint for rectangle center point, abscissa
_OVR [3]	REAL	Setpoint for rectangle center point, ordinate
-OVR [4]	REAL	Actual value for rectangle length (in the abscissa)
_OVR [5]	REAL	Actual value for rectangle length (in the ordinate)
_OVR [6]	REAL	Actual value for rectangle center point, abscissa
_OVR [7]	REAL	Actual value for rectangle center point, ordinate
OVR [8 ${ }^{1)}$	REAL	Upper tolerance limit for rectangle length (in the abscissa)
OVR [9$]^{1)}$	REAL	Upper tolerance limit for rectangle length (in the ordinate)
_OVR [12])	REAL	Lower tolerance limit for rectangle length (in the abscissa)
OVR [13] ${ }^{1)}$	REAL	Lower tolerance limit for rectangle length (in the ordinate)
_OVR [16]	REAL	Difference of rectangle length (in the abscissa)
_OVR [17]	REAL	Difference of rectangle length (in the ordinate)
-OVR [18]	REAL	Difference of rectangle center point, abscissa
_OVR [19]	REAL	Difference of rectangle center point, ordinate
-OVR [20$]^{1)}$	REAL	Compensation value
OVR [27$]^{1)}$	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVR [29] ${ }^{1)}$	REAL	Dimensional difference
OVR [30$]^{1)}$	REAL	Empirical value
OVR [31$]^{1)}$	REAL	Mean value
_OVI [0]	INTEGER	D number or ZO number
-OVI [2]	INTEGER	Measuring cycle number
_OVI [4] ${ }^{11}$	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
_OVI [6] ${ }^{11}$	INTEGER	Mean value memory number
OVI [7] ${ }^{1}$	INTEGER	Empirical value memory number
_OVI [8]	INTEGER	Tool number
_OVI [9]	INTEGER	Alarm number
-OVI [11] ${ }^{2)}$	INTEGER	Status offset request
OVI [13] ${ }^{1)}$	INTEGER	DL number (from measuring cycles SW 6.3)
1) for workpiece measurement with tool offset only 2) for ZO correction only		

5.4.2 Measuring contour elements

5.4.2.1 General information

Function

Using this measuring cycle and various _MVAR measuring variants the following contour elements can be measured:

_MVAR $=x x x 1$	- hole
_MVAR $=x x x 2$	- shaft
_MVAR $=x x x 3$	- groove
_MVAR $=x x x 4$	- web
_MVAR $=x x x 5$	- rectangle, inside
_MVAR $=x x x 6$	- rectangle, outside

If no tool offset or ZO correction is to be applied, _KNUM=0 should be set.
Detailed information on the parameters: see Parameter description section "Description of the most important defining parameters".

Measuring principle for hole or shaft

Two points each are measured in the abscissa and ordinate. The actual position of the center point (CP) in relation to workpiece zero is calculated from these four measured values. The actual diameter is calculated from the two points in the ordinate.

The center of the abscissa is calculated from the two points in the abscissa. Then the probe is positioned on this calculated center and the two points on the ordinate measured. The hole and shaft center points are now known and the results entered in array _OVR[].
The positive direction of an axis is measured first.

Measuring principle for groove or web

The groove or web lies parallel to the axes of the workpiece coordinate system.
2 measuring points are measured with specified measuring axis _MA.
The actual value of the groove width and web width and the actual position of the groove center and web center in relation to workpiece zero are calculated from the two measured values. The results are entered in array _OVR[].
The positive direction of the axis is measured first.

Measuring principle for inside and outside rectangle

The rectangle lies parallel to the axes of the workpiece coordinate system.
The measuring cycle ascertains 2 measuring points in both axes and determines the actual rectangle center and both actual values of the rectangle lengths. The procedure is the same as for hole and shaft.
The results are entered in array _OVR[].
The positive direction of an axis is measured first.

Procedure for specifying a safety zone

If required,
_MVAR=1xxx
can take account of a safety zone (_SZA, _SZO) in the travel movement. The safety zone refers to the center point or center line of the hole, shaft, groove, web, and rectangle. The starting point in the height is always above the hole, shaft, groove, web, or rectangle.

Supplementary functions for hole and shaft diameter, groove or web width, and tool compensation.

- An empirical value from data block GUD5 can be included with the correct sign.
- A mean value can be derived from several workpieces, measurement calls.

Prerequisite

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type $5 x y$ and _CBIT[14]=0.

Parameter

Parameters	Data type	Meaning
_MVAR	xxx1 xxx2 xxx3 xxx4 xxx5 xxx6	Measure hole Measure shaft Measure groove Measuring a web Measure rectangle, inside Measure rectangle, outside
_SETVAL	REAL, >0	Setpoint (acc. to drawing) (only for hole, shaft, groove, web)
$\begin{array}{\|l\|l} \hline-\operatorname{SETV}[0] \\ -\operatorname{SETV}[1] \end{array}$	REAL, >0	Setpoint value rectangle length (in the abscissa) Setpoint for rectangle length (in the ordinate) (only for measuring rectangle)
_ID	REAL	Incremental infeed in the applicate, direction indicated by prefix (only for measuring shaft, web, or rectangle, and for measuring hole/groove/shaft/web traveling around or taking account of a safety zone)
_SZA	REAL, >0	- Diameter or width of the protection zone (inside for hole/groove, outside for shaft/web) - Length of the safety zone in the abscissa (only for measuring rectangle)
_SzO	REAL, >0	Length of the protection zone in the ordinate (only for measuring rectangle)
_MA	1,2	Number of measuring axis (only for measuring a groove or a web)
_KNUM	0	0 : Without automatic tool offset, without ZO determination

The following additional parameters are also valid:
_VMS, _CORA, _TSA, _FA_, PRNUM, _EVNUM, and _NMSP.
The following also applies for measuring variants with tool compensation (even when KNUM=0):
_TZL, _TMV, _TUL, _TLL, _TDIF
With _TSA, the diameter or width is monitored for "tool compensation", the center for "ZO determination".
_CORA only relevant for monodirectional probe.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position: _CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location:_NMSP (Page 82)

5.4.2.2 Programming example

Measuring a web - paraxial

In the G17 plane, a web is to be measured with a setpoint width of 132 mm . The assumed center is $\mathrm{X}=220$.
The maximum possible deviation of the center is taken as 2 mm , the width 1 mm . To obtain a minimum measuring path of 1 mm , the measuring path is programmed as _FA $=2+1+1=4$ mm (max. measuring path _FA $=8 \mathrm{~mm}$). A measured variance of web center of $>1.2 \mathrm{~mm}$ is not however permissible.
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
Workpiece probe 1 , used as tool T9, D1, is to be used.

The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.

\%_N_WEB_MEASURE_MPF	
N10 G54 G17 G90 T9 D1	; ZO, select tool as probe ...
N20 M6	; Insert probe,
	;activate tool offset
N30 G0 X220 Y130	;Position probe in X / Y plane at setpoint web ;center position in X and measurement ; position Y
N40 Z101	;Position Z axis above web
$\begin{aligned} & \text { N60 } \quad \text { TSA }=1.2 \quad \text { PRNUM }=1 \quad \text { VMS }=0 \quad \text { NMSP }=1 \\ & \text { FA }=4 \end{aligned}$;Set parameter for measuring cycle call ;with ZO and without tool compensation,
N61 _MVAR=104 _SETVAL=132 _MA=1 _ID=-	; note negative prefix for _ID!
40 _KNUM $=0$; Probe lowered in Z axis!
	;Measuring variant with $Z O$ calculation has ;been selected (MVAR=X1xxx) because web
	;center is to be monitored (with _TSA),
	;but KNUM=0: without running
	; the ZO calculation and ZO compensation
N70 CYCLE977	; Call measuring cycle
N80 G0 Z160	;Traverse up Z axis
N100 M2	; End of program

Explanation of example

The measuring results of web width, web center in X, and associated differences are entered in result array _OVR[]. If the difference in the position of the web center is $>1.2 \mathrm{~mm}$ (_TSA=1.2) an alarm is output. Only cancellation with NC RESET is then possible.
The setpoint of the web center is the position of the probe in the workpiece coordinate system at the beginning of the cycle in the X axis.

5.4.2.3 Operational sequence

Specification of setpoints

- For diameter and/or with using _SETVAL
- For the lengths of the rectangle using _SETV[0], _SETV[1]

The position of the probe in the abscissa, ordinate at the beginning of a cycle is evaluated for the setpoint of the center point of a hole, shaft, or rectangle, or for the center of a groove, web.
This value is also entered in the following result array:

- _OVR[1], _OVR[2] (for hole, shaft, groove, web).
- _OVR[2], _OVR[3] (for rectangle).

Specification of measuring axis:

The measuring axis in _MA only has to be specified for web or groove:

- _MA=1: measurement in abscissa
- _MA=2: measurement in ordinate.

For the remaining contour elements, measurement is always performed in both axes of the plane and in both directions.

Position before measuring cycle call for shaft, web, rectangle - outside

_MVAR	Pre-positioning	
	in the plane	in applicate
$2 / 102$	Shaft center point	Above shaft
$4 / 104$	Web center, meas. axis	Above web
$6 / 106$	Rectangle center point	Above rect.

The probe must be positioned at the center point in the plane and the probe ball positioned above the upper edge such that when infeed of value _ID (sign) is applied, measurement depth is reached.

Position before cycle call for hole, groove, rectangle - inside

$_$MVAR	Pre-positioning	
	in the plane	in applicate
$1 / 101$	Hole center point	At meas. height
$3 / 103$	Groove center, meas. ax.	At meas. height
$5 / 105$	Rectangle center point	At meas. height

The probe must be positioned at the center point in the plane. The probe ball must be positioned at measurement height inside the hole/groove/rectangle.

Position before measuring cycle call when measuring with safety zone

_MVAR	Pre-positioning	
	in the plane	in applicate
$1001 / 1101$	Hole center point	Above hole
$1003 / 1103$	Groove center, meas. ax.	Above groove
$1005 / 1105$	Rectangle center point	Above rect.
$1002 / 1102$	Shaft center point	Above shaft
$1004 / 1104$	Web center, meas. axis	Above web
$1006 / 1006$	Rectangle center point	Above rect.

Note

If the value selected for _FA is so large that the safety zone is violated the distance is automatically reduced in the cycle. However, there must be sufficient room for the probe ball.

Specification of safety zone

The safety zone (diameter or width) for shaft, hole, web, and groove is defined in _SZA.
For a rectangle, the safety zone (length) is defined with _SZA in the abscissa and with _SZO in the ordinate.

Position after end of measuring cycle

Measuring cycle positions at start and end			
Example: G 17 plane, hole			
Actual hole			
Actual center (MP)/			
X (abscissa)			

When measurement is complete the probe is positioned above the calculated center point or center at starting position height.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

The range of positions of the center or diameter, or groove, web width, rectangle length, must be within the value specified in _FA for all workpieces to be measured.

Otherwise, there is danger of collision or the measurement cannot be performed!

5.4.3 Measuring and tool offset

5.4.3.1 General information

Function

Using this measuring cycle and the _MVAR = x0xx
measuring variant, a hole, shaft, groove, a web, or a rectangle can be measured paraxially.
Automatic tool offset is also possible. This tool is specified in _TNUM and _TNAME.
The D number and type of offset are specified in coded form in variable _KNUM.
From measuring cycles SW 6.3, extended tool offset is available. With this function a tool from a particular stored tool environment _TENV, and additive, setup offsets can be corrected by specifying the DL number in _DLNUM.

Detailed information on the parameters: see Parameter description section "Description of the most important defining parameters".

If the dimensions of a tool are corrected to this extent, the next workpiece can be manufactured with lower tolerances.

Parameter

Parameter	Data type	Meaning
_MVAR	1	Measure hole with tool offset
	2	Measure shaft with tool offset
	3	Measure groove with tool offset
	4	Measure web with tool offset
	5	Measure rectangle inside with tool offset
	6	Measure rectangle outside with tool offset
	1001	Measure hole by contouring a protection zone with tool offset
	1002	Measure shaft by including a protection zone with tool offset
	1003	Measure groove by contouring a protection zone with tool offset
	1004	Measure web by including a protection zone with tool offset
	1005	Measure rectangle inside with protection zone with tool offset
	1006	Measure rectangle outside with protection zone with tool offset
_SETVAL	REAL, >0	Setpoint (acc. to drawing) (only for hole, shaft, groove, web)
$\begin{array}{\|l\|} \hline-\operatorname{SETV}[0] \\ -\operatorname{SETV}[1] \end{array}$	REAL, >0	Setpoint value rectangle length (in the abscissa) Setpoint for rectangle length (in the ordinate) (only for measuring rectangle)
-ID	REAL	Incremental infeed of applicate with sign (only for measuring shaft, web, or rectangle, and for measuring hole/groove/shaft/web traveling around or taking account of a safety zone)
_SZA	REAL, >0	- Diameter/width of the protection zone (inside for hole/groove, outside for shaft/web) - Length of the safety zone in the abscissa (only for measuring rectangle)
_SzO	REAL, >0	Length of the protection zone in the ordinate (only for measuring rectangle)
_MA	1... 2	Number of measuring axis (only for measuring a groove or a web)
_KNUM	$0,>0$	0 : without automatic tool offset >0 : with automatic tool offset (individual values: Parameter_KNUM)
_TNUM	INT, $\geqq 0$	Tool number for automatic tool offset
-TNAME	STRING[32]	Tool name for automatic tool compensation (alternative for _TNUM if tool management active)
_DLNUM	INT, $\geqq 0$	DL number for additive, setup offset (from measuring cycles SW 6.3)
_TENV	STRING[32]	Name of tool environment for automatic tool compensation (from measuring cycles SW 6.3)

The following additional parameters are also valid:

_CORA only relevant for monodirectional probe. With _TSA, the diameter or width is monitored for "tool compensation". The other parameters must also be assigned if _KNUM=0 because they refer to the workpiece.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position: _CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)
Weighting factor for mean value calculation: _K (Page 83)
Tool number and tool name: _TNUM and _TNAME (Page 70)
Offset number: _KNUM (Page 71)
$\underline{\text { Offset number _KNUM extended for tool offset: up to } 9 \text { digits (Page 73) }}$

5.4.3.2 Programming example

Measuring a hole - paraxially with tool offset

The diameter of a hole in a workpiece is to be measured in the G17 plane and the radius of a tool corrected accordingly.
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
Workpiece probe 1 , used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710 Length 1 - geometry (DP3): $\quad L 1=50.000$ Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.

The hole was machined with milling tool T20, D1 in the same environment as for measuring ($\mathrm{G} 17, \ldots$) with circular milling.
The radius of this tool should be corrected in wear according to the measuring result for the hole diameter difference (actual value - set value). This tool offset will therefore affect the production of the next workpieces or possible remachining.
The offset must take the empirical value in memory _EV[9] into consideration. Mean value calculation _MV[9] and inclusion in calculation are also to be used.
A maximum deviation of the diameter from the setpoint of 1 mm is expected.

```
%_N_DRILL_MEASURE_MPF
N10 G54 G17 G90 T9 D1 ;ZO, select tool as probe ...
N20 M6 ;Insert probe,
N30 G0 X180 Y130 ;Position probe in X/Y plane to
N40 Z20 ;Position Z axis to measuring depth
N50 _CHBIT[4]=1 ;Include average value
N60 _TUL=0.03 _TLL=-0.03 _EVNUM=10 ; Set parameter for measuring cycle call,
_K=3 _TZL=0.01 _TMV=0.02 _TDIF=0.06 ;probe 1 (multi-directional),
_TSA=1 _PRNUM=1 _VMS=0 _NMSP=1 _FA=1 ;measure hole, setpoint diameter
N61 MVAR=1 _SETVAL=132 _TNUM=20 ;132 mm, compensation in radius of T20, D1
_KNUM=2001
N70 CYCLE977 ;Call measuring cycle
N560 G0 Z160 ;Retract z axis from hole
N570 M2
```

```
;activate tool offset
```

;activate tool offset
;hole center point
;hole center point

```
;End of program
```

```
;End of program
```


Explanation of example

The difference calculated from the actual and setpoint diameter is compensated for by the empirical value in the empirical value memory _EV[9] and compared with the tolerance parameter.

- If it is more than 1 mm (_TSA), alarm "Safe area violated" is output and the program is halted.
- Cancel with NC RESET on the control!
- If it is more than 0.06 mm (_TDIF), no compensation is performed and alarm "Permissible dimensional difference exceeded" is output and the program continues.
- If $\pm 0.03 \mathrm{~mm}\left(_T U L / _T L L\right)$ is exceeded, the radius in T20 D1 is compensated 100% by this difference/2.
- Alarm "Oversize" or "Undersize" is displayed and the program is continued.
- If 0.02 mm (_TMV) is exceeded, the radius in T20, D1 is compensated 100% by this difference/2.
- If it is less than 0.02 mm ($_$TMV), the mean value is calculated from the mean value in mean value memory _MV[9] and inclusion of weighting factor _K=3 (only for _CHBIT[4]=1! with mean value memory).
- If the mean value obtained is >0.01 (_TZL), the reduced compensation of the radius for T20 D1 is the mean value/2 and the mean value is deleted in _MV[9].
- If the mean value is <0.01 (_TZL) the radius in T20 D1 is not compensated but is stored in mean value memory _MV[9].
The results are entered in result array _OVR[]. The wear of the radius of T20, D1 is included if a change is necessary.

5.4.4 Measurement and ZO determination

5.4.4.1 General information

Function

Using this measuring cycle and the _MVAR = x1xx measuring variant, a hole, shaft, groove, a web, or a rectangle can be measured paraxially. The zero offset (ZO) of the associated workpiece can also be determined and corrected. A possible rotation of the workpiece is kept without changing it.

The angular position cannot be determined with this cycle.
Compensation of the ZO is executed in such a way that the actual center (position of center on the machine, e.g.: MPX1, MPY1) includes the desired setpoint position in the workpiece coordinate system when the compensated ZO (frame) is applied.
Mirroring can be active in a frame of the frame sequence. Dimension factors must never be active.
The ZO to be corrected is specified in coded form with variable _KNUM >0.
The ZO can be specified and corrected by various methods, e.g. in various settable frames, in various basic frames, system frames, fine offset, or coarse offset, etc.
For detailed information on specifying _KNUM for the zero offset: see Parameter description section "Description of the most important defining parameters".

ZO determination in a hole, on a shaft, or rectangle
ZO correction of a workpiece is applied in the abscissa and ordinate using the actual value/setpoint difference of the position of the center point.

ZO determination in a groove or on a web

ZO correction of a workpiece is applied in measuring axis _MA (abscissa and ordinate) using the actual value/setpoint difference of the position of the center.

Parameter

Parameter	Data type	Meaning
-MVAR	101	ZO calculation in hole with ZO compensation
	102	ZO determination on a shaft with ZO correction
	103	ZO determination in a groove with ZO correction
	104	ZO determination on a web with ZO correction
	105	ZO determination in inside rectangle with ZO correction
	106	ZO determination in outside rectangle with ZO correction
	1101	ZO determination in hole traveling around a safety zone with ZO corr.
	1102	ZO determination, shaft taking account of a safety zone with ZO correction
	1103	ZO determination in groove traveling around a safety zone, ZO correction
	1104	ZO determination, web taking account of a safety zone with ZO correction
	1105	ZO determination, inside rectangle with safety zone with ZO correction
	1106	ZO determination, outside rectangle with safety zone with ZO correction
_SETVAL	REAL, >0	Setpoint (acc. to drawing) (only for hole, shaft, groove, web)
$\begin{aligned} & \hline \text { _SETV[0] } \\ & \text { _SETV [} 1 \text {] } \end{aligned}$	REAL, >0	Setpoint value rectangle length (in the abscissa) Setpoint for rectangle length (in the ordinate) (only for measuring rectangle)
_ID	REAL	Incremental infeed of applicate with sign (only for measuring shaft, web, or rectangle, and for measuring hole/groove/shaft/web traveling around or taking account of a safety zone)
_SZA	REAL, >0	- Diameter/width of the protection zone (inside for hole/groove, outside for shaft/web) - Length of the safety zone in the abscissa (only for measuring rectangle)
_Szo	REAL, >0	Length of the protection zone in the ordinate (only for meas. rectangle)
_MA	1... 2	Number of measuring axis (only for measuring a groove or a web)
_KNUM	$0,>0$	0 : without automatic tool offset >0 : with automatic tool offset (Individual values: Parameter _KNUM)

The following additional parameters are also valid:
_VMS, _CORA, _TSA, _FA, _PRNUM, and _NMSP.
_CORA only relevant for monodirectional probe. With _TSA the center is monitored with ZO determination.

See also

Offset number: _KNUM (Page 71)
Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path:_FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

5.4.4.2 Programming example

ZO determination on a rectangle with CYCLE977

In the G17 plane, an outside rectangle web is to be measured with setpoint lengths width in $X=100.000$ and in $Y=200.00 \mathrm{~mm}$. The settable ZO G54 is to be corrected in such a way that the center of the rectangle is at $X=150.000$ and $Y=170.000 \mathrm{~mm}$.
Measurement is also performed at G54. After measurement is complete, the changed ZO is activated.

The maximum possible deviation of the center is taken as 2 mm ; the maximum possible variance in lengths is 3 mm . To obtain a minimum measuring path of 1 mm , the measuring path is programmed as _FA=2+3+1=6 mm (max. measuring path _FA=12 mm).

A measured deviation of the center of the rectangle from the setpoint of $>1.8 \mathrm{~mm}$ is however not permitted in either axis.

Height of rectangle and measuring height in Z: see Figure
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ... (values when measuring)

Workpiece probe 1 , used as tool T9, D1, is to be used.
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.


```
%_N_ZO_RECTANGLE_MPF
N10 G54 G17 G90 T9 D1 ;ZO, select tool as probe ...
N20 M6 ;Insert probe,
N30 G0 X150 Y170
N40 z120 ;Position Z axis above rectangle
N60 _KNUM=1 _TSA=1.8 _PRNUM=1 _VMS=0 ; Set parameters for measuring cycle call,
_NMSP=1 _FA=6
N61 _MVAR=106 _SETV[0]=100 ;Measuring height lowered by 30 mm in Z
_SETV[1]=200 _ID=-30
N70 CYCLE977 ;Call measuring cycle
N80 G54 ;Repeat call of zo G54
N90 G0 z160 ;Traverse up z axis
N100 M2
```

```
;The changed zo correction is therefore
```

;The changed zo correction is therefore
;effective!
;effective!

```
;activate tool offset
```

;activate tool offset
;Position probe in X/Y plane to
;Position probe in X/Y plane to
;rectangle center (setpoint position)
;rectangle center (setpoint position)
;End of program

```
;End of program
```


Explanation of example

Automatic compensation is performed in G54 - translation in axes X and Y by the calculated difference between actual value and setpoint of the rectangle center point, if it is less than 1.8 mm (_TSA=1.8) in both axes. Otherwise, alarm "Safe area violated" is output and program execution cannot be continued.

If the values are inside the tolerance, the setpoint and actual values for center point and length of rectangle in the abscissa and ordinate as well as the differences are entered in result array OVR[]. The zero offset (ZO) for G54 is entered in the data management (\$P_UIFR[1]) and is activated by programming G54 again in block N80.

5.5 CYCLE978 workpiece: Measuring a surface parallel to the axis

5.5.1 Function overview

Function

This measuring cycle determines the position of a paraxial surface in the workpiece coordinate system. This is done with 1-point measurement
On the basis of the measuring results and depending on the measuring variant selected,

- automatic tool compensation can also be undertaken for a tool or
- a zero offset (ZO) can also be corrected.

A special measuring variant permits differential measurement with the axes of the plane. The special procedure for this measurement permits use of an uncalibrated multidirectional probe.

Workpiece probe types that can be used

- Multidirectional probe (_PRNUM=0xy)
- Monodirectional, bidirectional probe (_PRNUM=1xy)
(These probes should be used only with low accuracy requirements!)

NOTICE

A monodirectional or bi-directional probe must always be calibrated! These probes cannot be used for the differential measurement!

Preconditions for differential measurement

- Spindle can be positioned between $0 . . .360$ degrees (at least every 90 degrees, with SPOS command)
- Multidirectional probe (all-round coverage)

Programming

CYCLE978

Measuring variants

Measuring cycle CYCLE9 78 permits the following measuring variants which are specified via parameter _MVAR.

Value	Measuring variant
0	Measure surface and tool offset
100	ZO determination on surface and ZO correction
1000	Measure surface with differential measurement and tool offset
1100	ZO determination on surface with differential measurement and ZO correction

Result parameters

Depending on the measuring variant, measuring cycle CYCLE978 makes the following values available as results in data block GUD5:

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint value for measuring axis
_OVR [1]	REAL	Setpoint in abscissa \rightarrow only when _MA=1
-OVR [2]	REAL	Setpoint in ordinate \rightarrow only when _MA=2
_OVR [3]	REAL	Setpoint in applicate \rightarrow only when _MA=3
_OVR [4]	REAL	Actual value for measuring axis
_OVR [5]	REAL	Actual value in abscissa \rightarrow only when _MA=1
_OVR [6]	REAL	Actual value in ordinate \rightarrow only when _MA $=2$
-OVR [7]	REAL	Actual value in applicate \rightarrow only when _MA=3
_OVR [8] ${ }^{1)}$	REAL	Upper tolerance limit for measuring axis
_OVR [12] ${ }^{1)}$	REAL	Lower tolerance limit for measuring axis
_OVR [16]	REAL	Difference for measuring axis
_OVR [17]	REAL	Difference in abscissa \rightarrow only when _MA=1
_OVR [18]	REAL	Difference in ordinate \rightarrow only when _MA=2
_OVR [19]	REAL	Difference in applicate \rightarrow only when _MA=3
_OVR [20$]^{1)}$	REAL	Compensation value
_OVR [27] ${ }^{1)}$	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVR [29] ${ }^{1)}$	REAL	Dimensional difference
_OVR [30]	REAL	Empirical value

Parameter	Data type	Result
-ovR [31$]^{1)}$	REAL	Mean value
_OVI [0]	INTEGER	D number or ZO number
_OVI [2]	INTEGER	Measuring cycle number
OVI [4] ${ }^{1 /}$	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
_OVI [6] ${ }^{1)}$	INTEGER	Mean value memory number
OVI [7] ${ }^{1)}$	INTEGER	Empirical value memory number
_OVI [8]	INTEGER	Tool number
-OVI [9]	INTEGER	Alarm number
_OVI [11] ${ }^{2}$	INTEGER	Status offset request
OVI [13] ${ }^{1)}$	INTEGER	DL number (from measuring cycles SW 6.3)
1) for 1-point measurement with automatic tool offset only 2) for ZO correction only		

5.5.2 Measuring the surface

Position before measuring cycle call

The probe is positioned in relation to the surface to be measured in such a way that during traversal of the specified measuring axis _MA in the direction of the setpoint _SETVAL, the intended measuring point on the surface will be reached.

Recommended distance from surface: >_FA.

The absolute value of the positional deviation from the setpoint must not be greater than the measuring path _FA. Otherwise, no measurement will be performed.

Position after end of measuring cycle

After the end of the measuring cycle, the probe (ball circumference) is at a distance _FA from the measuring surface.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

Prerequisite

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type $5 x y$ and _CBIT[14]=0.

Special procedure for differential measurement

The measuring point is measured twice during differential measurement.

1. With spindle rotated through 180 degrees compared with the position at the beginning of the cycle (rotation of the probe by 180 degrees).
2. With the spindle position that applied at the beginning of the cycle.

The tool radius of the probe +R or -R is defined as the trigger point defined for the axis direction.
A multidirectional probe does not have to be calibrated at the beginning of the cycle for measuring variants.
_MVAR $=1000$ or _MVAR=1100

However, with these measuring variants, only the measuring axes _MA=1 or _MA=2 are of any use.

NOTICE

In the case of great measurement accuracy demands, differential measurement is not recommended!

5.5.3 Measurement and ZO determination

5.5.3.1 General information

Function

Parameter

Using this measuring cycle and the _MVAR=100, _MVAR=1100 measuring variants, the position of a paraxial surface can be determined in the workpiece coordinate system.
The zero offset (ZO) of the associated workpiece can also be determined and corrected.
The offset is corrected in such a way that the real position of the surface (actual value) adopts the required set angle (_SETVAL) in the workpiece coordinate system when the corrected ZO (frame) is used.
Mirroring can be active in a frame of the frame sequence. Dimension factors must never be active.
The ZO to be corrected is specified in coded form with variable _KNUM >0.
The ZO can be specified and corrected by various methods, e.g. in various settable frames, in various basic frames, system frames, fine offset, or coarse offset, etc.
If _KNUM=0, there is no ZO correction.
For detailed information on specifying _KNUM for the zero offset: see Parameter description section "Description of the most important defining parameters".
An empirical value stored in data block GUD5 in array _EV[] can be included in calculation of the result after measurement is completed.

This is activated in _EVNUM (see Parameter description Section "Description of the most important defining parameters").

Parameter	Data type	Meaning
- MVAR	100	ZO determination on surface and ZO correction
	1100	ZO determination on surface with differential measurement and ZO correction
SETVAL	REAL, >0	Setpoint with respect to workpiece zero
- MA	$1 \ldots 3$	Number of the measuring axis
_KNUM	$0,>0$	$0:$ without automatic ZO correction $>0:$ with automatic ZO correction (individual values: see Parameter description section "Description of the most important defining parameters", Parameter_KNUM)

The following additional parameters are also valid:
VMS, _CORA, _TSA, _FA, _PRNUM, _EVNUM and _NMSP
_CORA only relevant for monodirectional probe.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)

Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

5.5.3.2 Programming example

ZO calculation at a workpiece with CYCLE978

A rectangular workpiece is clamped in the $G 17$ plane. The $Z O$ in axes X and Y is to be checked. Any deviation from the active values should be automatically corrected in settable ZO G54. The corrected ZO should also be activated so that machining of the workpiece can start directly after.

The empirical value entered in array _EV[9] (data block GUD5) for the X axis and _EV[10] for the Y axis are to be included in the measuring results.
The permissible deviation is 3 mm from the setpoint value is assumed. To obtain a minimum measurement path of 1 mm to the surface, the measurement path is programmed with _FA=3+1=4 mm (max. total measurement path $=8 \mathrm{~mm}$).
The value of the positional deviation should not be monitored. Therefore _TSA > _FA is set.
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ... (values when measuring)
Workpiece probe 1 , used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:

Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$


```
%_N_ZO_DETERMINING_1_MPF
N10 G54 G17 G90 T9 D1
N20 M6
N30 G0 G90 X-20 Y25
N40 Z10
N60_TSA=6 _PRNUM=1 _VMS=0 _NMSP=1
_FA=4
N61 _MVAR=100 _SETVAL=0 _MA=1 _KNUM=1
_EVNUM=10
N70 CYCLE978 ;Measuring cycle for zO determination in x
N80 G0 X-20
N90 Y-20
N100 X22
N110 _EVNUM=11 _MA=2
N120 CYCLE978
N130 G54
N140 G0 Y-20
N150 z50
N160 X-40 Y80
N200 M2
```


Explanation of example

Automatic compensation is performed in G54 - translation of axes X and Y by the calculated difference between actual value and setpoint.
The setpoints and actual values as well as the differences are entered in result array OVR[]. At the end of the program the values for the Y axis (ordinate) are in the result array as these were the last to be measured.
The zero offset (ZO) for G54 is entered in the data management (\$P_UIFR[1]) and is activated by programming G54 again in block N130.

5.5.4 Measuring and tool offset

5.5.4.1 General information

Function

Using this measuring cycle and the _MVAR=0, _MVAR=1000
measuring variants, the measurement (position) of a paraxial surface can be determined in the workpiece coordinate system.
Automatic tool offset is also possible. This tool is specified in _TNUM and _TNAME. The D number and type of offset are specified in coded form in variable _KNUM.
From measuring cycles SW 6.3, extended tool offset is available. With this function a tool from a particular stored tool environment _TENV, and additive, setup offsets can be corrected by specifying the DL number in _DLNUM.

Detailed information on the parameters: see Parameter description section "Description of the most important defining parameters".

Empirical values and mean values

An empirical value stored in data block GUD5 in array _EV[] can be included in calculation of the result after measurement is completed.

Optionally, averaging is performed over a number of parts (array _MV[]) and the tolerance bands are checked.

Both are activated in _EVNUM (see Parameter description Section "Description of the most important defining parameters").

Parameter

Parameter	Data type	Meaning
- MVAR	0	Measure surface and tool offset
	1000	Measure surface with differential measurement and tool offset
- SETVAL	REAL, >0	Setpoint (acc. to drawing)
$-{ }^{\text {MA }}$	$1 \ldots 3$	Number of the measuring axis
KNUM	$0,>0$	$0:$ without automatic tool offset $>0:$ with automatic tool offset
- TNUM	INT, $\geqq 0$	Tool number for automatic tool offset
- TNAME	STRING[32]	Tool name for automatic tool offset (alternative to _TNUM with tool management active)
- DLNUM	INT, $\geqq 0$	DL number for additive, setup offset (from measuring cycles SW 6.3)
- TENV	STRING[32]	Name of tool environment for automatic tool compensation (from measuring cycles SW 6.3)

The following additional parameters are also valid:

- VMS, _CORA, _TZL, $\bar{K}^{\text {TMV }}$, _TUL, _TLL, _TDIF, _TSA, _FA, _PRNUM,
_CORA only relevant for monodirectional probe.
The parameters must also be assigned if _KNUM=0 because they refer to the workpiece.

See also

Variable measuring velocity: _VMS (Page 77)
Offset angle position: _CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

> Weighting factor for mean value calculation: _K (Page 83)

5.5.4.2 Programming example

1-point measurement in X axis with tool compensation

A surface parallel with the Y axis has been machined with milling tool T20, D1 on a set-up workpiece.
This surface should be positioned exactly 100.000 mm in the X axis from the defined workpiece zero and be measured.

If the absolute value of the difference determined is >0.01, the radius of this tool is to be automatically offset in the wear.

1 mm is assumed to be the maximum permissible deviation of the position of the surface.
To obtain a minimum measuring path of 1 mm , the measuring path is programmed as _FA= 1+1=2 mm
(max. total measuring path $=4 \mathrm{~mm}$).
The offset must take the empirical value in memory _EV[19] into consideration. Mean value calculation _MV[19] and inclusion in calculation are also to be used.

This tool offset will therefore affect the production of the next workpieces or possible remachining.

Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]

Workpiece probe 1 , used as tool T9, D1, is to be used.

The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.


```
%_N_ONE_POINT_MEASURE_MPF
N10 G54 G17 G90 T9 D1
N20 M6
N30 G0 G90 X120 Y150
N40 Z40
N50 _CHBIT[4]=1
N60 _TUL=0.03 _TLL=-0.03 _TNUM=20
_EVNUM=20_K=3 _TZL=0.01 _TMV=0.02
_TDIF=0.06 _TSA=1 _PRNUM=1 _VMS=0
_NMSP=1 _FA=2
N61 _MVAR=0 _SETVAL=100 _MA=1
_KNUM=2001
N70 CYCLE978 ;Measuring cycle for 1-point measurement in
N80 G0 Z160 ;Traverse up Z axis
N100 M2
```

```
;ZO, select tool as probe ...
```

;ZO, select tool as probe ...
;Insert probe,
;Insert probe,
;activate tool offset
;activate tool offset
;Position probe in X/Y plane in front of
;Position probe in X/Y plane in front of
;measuring surface
;measuring surface
;Position probe at measuring height
;Position probe at measuring height
;with mean value calculation
;with mean value calculation
;Set parameters for measuring cycle call
;Set parameters for measuring cycle call
;X axis
;X axis
; End of program

```
; End of program
```


Explanation of example

The difference calculated from the actual and setpoint value (position of surface) is compensated for by the empirical value in the empirical value memory _EV[19] and compared with the tolerance parameter.

- If it is more than 1 mm (_TSA), alarm "Safe area violated" is output and program execution cannot be continued.
- If it is more than 0.06 mm (_TDIF), no compensation is performed and alarm "Permissible dimensional difference exceeded" is output and the program continues.
- If $0.03 \mathrm{~mm}\left(_\right.$TUL/_TLL) is exceeded, the radius in T20 D1 is compensated 100% by this difference. Alarm "Oversize" or "Undersize" is displayed and the program is continued.
- If 0.02 mm (_TMV) is exceeded, the radius in T20 D1 is compensated 100% by this difference.
- If it is less than 0.02 mm ($_$TMV), the mean value is calculated from the mean value in mean value memory _MV[19] and inclusion of weighting factor _K=3 (only for _CHBIT[4]=1! with mean value memory).
- If the mean value obtained is >0.01 ($_$TZL), the reduced compensation of the radius for T20 D1 is the mean value/2 and the mean value is deleted in _MV[19].
- If the mean value is <0.01 (_TZL), the radius value in T20 D1 is not corrected, but if the mean value memory is active (_CHBIT[4]=1), it is saved in the mean value memory _MV[19].
The results are entered in result array _OVR[]. The wear of the radius of T20, D1 is included if a change is necessary.

5.6 CYCLE979 workpiece: Measure hole/shaft/groove/rib at an angle

5.6.1 Function overview

Function

With this measuring cycle you can measure the dimensions of the following contour elements on a workpiece using different measuring variants:

- Hole
- Shaft
- Groove
- Web

Measurement is performed at a specified starting angle to the abscissa of the workpiece coordinate system.

For hole, shaft, additional measurements are performed at an indexing angle, added to the previous angle.

This allows you to measure circle segments of a workpiece contour whose center points lie outside the machine.

CYCLE979 can

- measure the contour elements and additionally either
- perform an automatic tool offset
for a specified tool based on the differences in diameter or width, or
- correct a zero offset (ZO)
based on the differences between the center positions.

Workpiece probe types that can be used

- Multidirectional probe (_PRNUM=0xy)
- Monodirectional, bidirectional probe (_PRNUM=1xy)

When measuring contour elements hole, shaft, a 3- or 4-point measurement can be used.
Parameters for this selection are only set in this cycle, in the 4th digit of _PRNUM:
_PRNUM=0zxy \Rightarrow 3-point measurement
_PRNUM=1zxy $\Rightarrow 4$-point measurement
The 1st to 3rd digit of _PRNUM retains its significance depending on the illustration given in Section "Description of the most important defining parameters"!

Note

(_PRNUM) probes, which are calibrated with the calibration variant "Calibrate with calculation of positional deviation", must be used in conjunction with CYCLE979.

Exceptions: The probe is precision-adjusted mechanically and the positional deviation is less than $+/-1 \mu \mathrm{~m}$.

Programming

CYCLE9 99

Measuring variants

Measuring cycle CYCLE979 permits the following measuring variants which are specified via parameter _MVAR.

Value	Measuring variant
1	Measure hole with tool offset
2	Measure shaft with tool offset
3	Measure groove with tool offset
4	Measure web with tool offset
101	ZO calculation in hole with ZO compensation
102	ZO calculation on shaft with ZO compensation
103	ZO calculation in groove with ZO compensation
104	ZO calculation on web with ZO compensation

Result parameters

Depending on the measuring variant, measuring cycle CYCLE979 makes the following values available as results in data block GUD5:

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint diameter/width hole, shaft, groove, web
_OVR [1]	REAL	Setpoint center point/center in abscissa
_OVR [2]	REAL	Setpoint center point/center in ordinate
_OVR [4]	REAL	Actual value diameter/width hole, shaft, groove, web
_OVR [5]	REAL	Actual value center point/center in abscissa
_OVR [6]	REAL	Actual value center point/center in ordinate
_OVR [8] ${ }^{1)}$	REAL	Upper tolerance limit for diameter of hole, shaft or width of groove, web
_OVR [12$]^{1)}$	REAL	Lower tolerance limit for diameter of hole, shaft or width of groove, web
_OVR [16]	REAL	Difference diameter/width hole, shaft, groove, web
_OVR [17]	REAL	Difference center point/center in abscissa
_OVR [18]	REAL	Difference center point/center in ordinate
OVR [20$]^{1)}$	REAL	Compensation value
OVR [27$]^{1)}$	REAL	Zero offset area
OVR [28$]^{1)}$	REAL	Safe area
OVR [29$]^{1)}$	REAL	Permissible dimensional difference
_OVR [30] ${ }^{1 /}$	REAL	Empirical value
OVR [31$]^{1)}$	REAL	Mean value
_OVI [0]	INTEGER	D number or ZO number
_OVI [2]	INTEGER	Measuring cycle number
_OVI [4] ${ }^{1)}$	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
OVI [6] ${ }^{1}$	INTEGER	Mean value memory number
-OVI [7] ${ }^{1)}$	INTEGER	Empirical value memory number
_OVI [8]	INTEGER	Tool number
_OVI [9]	INTEGER	Alarm number
_OVI [11] ${ }^{2)}$	INTEGER	Status offset request
_OVI [13$]^{1)}$	INTEGER	DL number (from measuring cycles SW 6.3)
1) for workpiece measurement with tool offset only 2) for ZO correction only		

5.6.2 Measure shaft, groove, web

5.6.2.1 General information

Function

Using this measuring cycle and various _MVAR measuring variants the following contour elements can be measured at an angle:

- _MVAR=x01 \Rightarrow hole
- _MVAR=x02 \Rightarrow shaft
- _MVAR=x03 \Rightarrow groove
- _MVAR=x04 \Rightarrow web

If no tool offset or ZO correction is to be applied, _KNUM=0 should be set.
Detailed information on the parameters: see Parameter description section "Description of the most important defining parameters".

Measuring principle for hole or shaft

The measuring cycle measures points P1, P2, P3 and/or also P4 inside the hole and/or when outside the hole by passing the shaft.

The position of the points is determined by starting angle _STA1, indexing angles _INCA, the diameter and the set center point.
These four measured values are used to calculate the actual value of the diameter and position of the center point in the abscissa and ordinate relative to the workpiece zero.

Measurement is performed in the radial direction:

- toward the set center point in the case of shaft,
- away from the set center point in the case of a hole.

The sum of the starting angle plus all incremental angles must not exceed 360 degrees.

Measuring principle for groove or web

The measuring cycle measures points P1 and P2 inside the groove and outside the web.

The actual value of the groove width and web width and the position of the groove center and web center in relation to workpiece zero are calculated from the measured values.

Supplementary functions for hole and shaft diameter, groove or web width, and tool compensation.

- An empirical value from data block GUD5 can be included with the correct sign.
- A mean value can be derived from several workpieces, measurement calls.

Prerequisite

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type 5xy and _CBIT[14]=0.
The probe must have been calibrated with "Determine active probe ball diameter". Calibration with an additional "Determine position deviation" of the workpiece probe improves the measuring precision.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

5.6.2.2 Operational sequence

Specification of setpoints

The setpoint for diameter or width is specified in _SETVAL.
The setpoint for the center point of the hole, shaft, or for the measured center of the groove, web, is specified by

- _CPA for the abscissa and
- _CPO for the ordinate.

Measuring axes

Measuring axes are not specified. As a rule, both axes of the plane are included in the measurements, depending on the angle.

Position before measuring cycle call

In all measuring variants the probe must be positioned at the required measuring height in the applicate (tool axis) close to the first measuring point P1.

It must be possible to approach the first measuring point P1 via intermediate point P1' from this position without collision using linear interpolation.
Recommended distance from contour: >_FA.

Procedure for hole, shaft

Note

When measuring circle segments of < 90 degrees, it should be noted that, mathematically speaking, measuring points that deviate from the circular shape exert a particularly great influence on the accuracy of the results (center point, diameter).

For this reason, an especially high degree of care should be taken when measuring small circle segments. Good results can be attained if the following procedures are used:

The circle segment to be measured should be:

- Free from production deposits.
- Have as exact a circular form as possible, as guaranteed by the production technology used.
- Have as smooth a surface as possible, as guaranteed by the production technology used.
- Be measured with high-quality probes, i.e, the shape of the probe ball is as homogeneous as possible.
- Be measured with the 4-point-measurement measuring variant (_PRNUM=1xxx).
- Be measured with a recently calibrated probe.

The intermediate positions of the measuring points are approached along a circular path (G2, G3). The distance between the probe ball (ball circumference) and the hole or shaft is _FA. The travel direction G2 or G3 is derived from the sign of _INCA: G3 is angle is positive.

The velocity along the circular path is programmed with _RF.

Procedure for groove

The probe is in the groove and approaches both measuring points one after the other in the selected measuring height along an oblique straight line as defined by angle _STA1 and which travels through CPA, CPO.

Procedure for web

When using the measuring variants for the web _MVAR=4, _MVAR=104, additional details are needed for crossing the web with _ID.
_ID specifies the distance (with prefix) from the measuring height.

CAUTION

If _CBIT[14]=0, length 1 (L1) of the probe refers to the ball center. Radius R is then not taken into account in the length and must be included in _ID!

Measuring point P2 is approached via P2' along an oblique straight line according to angle _STA1 and which runts through _CPA, _CPO.

P1', P2' are both distance _FA (path) from the contour.

Position at end of measuring cycle

At the end of the measuring cycle, the probe (ball circumference) is distance _FA (path) from the last measuring point (setpoint) at measuring height.
Example: G 17

NOTICE

The range of positions of the center or diameter, or groove, web width, must be within the value specified in _FA for all workpieces to be measured.

Otherwise, there is danger of collision or the measurement cannot be performed!

5.6.3 Measuring and tool offset

5.6.3.1 General information

Function

Using this measuring cycle and various _MVAR=1... 4
measuring variants, the contour elements hole, shaft, groove, web, can be measured at an angle.

Automatic tool offset is also possible. This tool is specified in _TNUM and _TNAME. The D number and type of offset are specified in coded form in variable _KNUM.

From measuring cycles SW 6.3, extended tool offset is available. With this function a tool from a particular stored tool environment _TENV, and additive, setup offsets can be corrected by specifying the DL number in _DLNUM.

Detailed information on the parameters: see Parameter description section "Description of the most important defining parameters".

Empirical values and mean values

An empirical value stored in data block GUD5 in array _EV[] can be included in calculation of the result after measurement is completed.

Optionally, averaging is performed over a number of parts (array _MV[]) and the tolerance bands are checked.

Both are activated in _EVNUM (see Parameter description Section "Description of the most important defining parameters").

Parameter

Parameter	Data type	Meaning
-MVAR	1	Measure hole with tool offset
	2	Measure shaft with tool offset
	3	Measure groove with tool offset
	4	Measure web with tool offset
_SETVAL	REAL, >0	Setpoint diameter, width (acc. to drawing)
_CPA	REAL	Center point of abscissa (with reference to workpiece zero)
_CPO	REAL	Center point of ordinate (with reference to workpiece zero)
_STA1	$-360 \text { to }+360$ degrees	Start angle
_ID	REAL	Incremental lifting of applicate with prefix (only measure with web, lift for crossing)
_INCA	$-360 \text { to }+360$ degrees	Indexing angle (only for measuring hole or shaft) useful values for 3-point measurement: -120 ... +120 degrees useful values for four-point measurement: $-90 \ldots+90$ degrees
-RF	REAL, >0	Feed for circular interpolation ($\mathrm{mm} / \mathrm{min}$) (only measure for hole and/or shaft)
_KNUM	$0,>0$	0 : without automatic tool offset >0 : with automatic tool offset (Individual values: see Parameter description section "Description of the most important defining parameters", Parameter_KNUM)
_TNUM	INT, ≥ 0	Tool number for automatic tool offset
_TNAME	STRING[32]	Tool name for automatic tool compensation (alternative for _TNUM if tool management active)
_DLNUM	INT, ≥ 0	DL number for additive/setup offset
_TENV	STRING[32]	Name of tool surroundings for automatic tool offset

The following additional parameters are also valid:
_VMS, _CORA, _TZL, _TMV, _TUL, _TLL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM, _NMSP ${ }^{-}$and _- .
_CORA only relevant for monodirectional probe.
The other parameters must also be assigned if _KNUM=0 because they refer to the workpiece.

The diameter or width difference is monitored here with _TSA.

See also

5.6.3.2 Programming example

Measuring a hole with CYCLE979

The trueness of a circular segment in plane G17 (semi-circle, contour element "hole") is to be checked. Machining was performed with milling tool T20, D1.

With a variance of $>0.01 \mathrm{~mm}$ from the setpoint diameter _SETVAL $=130 \mathrm{~mm}$, the tool radius of this tool should be automatically offset in the wear. The maximum permissible deviation is taken as max. 1 mm . To obtain a minimum measuring path of 1 mm to the contour, the measuring path is specified as _FA = $1+1=2 \mathrm{~mm}$ (max. total measuring path $=4 \mathrm{~mm}$).

The center point of the circular segment (setpoint) is $X=180 \mathrm{~mm}, \mathrm{Y}=0 \mathrm{~mm}$ (_CPA, _CPO).
Measurement is to be performed with three-point measurement at a measuring height of $Z=20 \mathrm{~mm}$ at initial angle 15° and following angles 80°.

Traversing between points is carried out with a circular feed of _RF=900 mm/min.
The offset must take the empirical value in memory _EV[19] into consideration. Mean value calculation _MV[19] and inclusion in calculation are also to be used.

This tool offset will therefore affect the production of the next workpieces or possible remachining.

Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, ...
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]

Workpiece probe 1 , used as tool T9, D1, is to be used.
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): $\quad L 1=50.000$
Radius - geometry (DP6): $\quad R=3.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for
 calibration.
Careful when positioning! Radius R in length (L1) is ignored.

```
%_N_DRILL_SEGMENT_MPF
N10 G54 G17 G90 T9 D1
N20 M6
N30 G0 X210 Y-20
N40 Z20
N50 _CHBIT[4]=1
N60 _TUL=0.03 _TLL=-0.03 _EVNUM=20
_K=3 _TZL=0.01 _TMV=0.02 _TDIF=0.06
_TSA=1 _PRNUM=1 _VMS=0 _NMSP=1 _FA=2
N61 _MVAR=1 _SETVAL=130 _STA1=15
_INCA=80 _RF=900 _TNUM=20 _KNUM=2001
_CPA=180 _CPO=0
N70 CYCLE979 ;Call measuring cycle for hole measurement
N80 G0 z160
N100 M2
;zO, select tool as probe ...
;Insert probe,
;activate tool offset
;Position probe in X/Y plane close to
;P1
;Position probe at measuring height
;With mean value calculation
;Set parameters for measuring cycle call
;Three-point measurement with probe 1
;in X/Y plane
;Traverse up Z axis
;End of program
```


Explanation of example

The difference calculated from the actual and setpoint diameter is compensated for by the empirical value in the empirical value memory _EV[19] and compared with the tolerance parameter.

- If it is more than 1 mm (_TSA), alarm "Safe area violated" is output and program execution cannot be continued.
- If it is more than 0.06 mm (_TDIF), no compensation is performed and alarm "Permissible dimensional difference exceeded" is output and the program continues.
- If 0.03 mm is exceeded (_TUL/_TLL), the radius in T20 D1 is compensated 100% by this difference/2. Alarm "oversize" or "undersize" is displayed and the program continues.
- If $0.02 \mathrm{~mm}\left(_T M V\right)$ is exceeded, the radius in T20 D1 is compensated 100% by this difference/2.
- If it is less than 0.02 mm ($_$TMV), the mean value is calculated from the mean value in mean value memory _MV[19] and inclusion of weighting factor _K=3 (only for _CHBIT[4]=1! with mean value memory).
- If the mean value obtained is >0.01 (TZL), the reduced compensation of the radius for T20 D1 is the mean value/2 and the mean value is deleted in _MV[19].
- If the mean value is <0.01 (_TZL), the radius value in T20 D1 is not corrected, but if the mean value memory is active (_CHBIT[4]=1), it is saved in the mean value memory _MV[19].
The results are entered in result array _OVR[].

5.6.4 Measurement and ZO determination

5.6.4.1 General information

Function

Using this measuring cycle and the _MVAR=10x measuring variant, a hole, shaft, groove or a web can be measured at an angle. The zero offset (ZO) of the associated workpiece can also be determined and corrected. A possible rotation of the workpiece is kept without changing it.

The angular position cannot be determined with this cycle.
Compensation of the ZO is executed in such a way that the actual center (position of center on the machine, e.g.: MPX1, MPY1) includes the desired setpoint position in the workpiece coordinate system when the compensated ZO (frame) is applied.
Mirroring can be active in a frame of the frame sequence.
Dimension factors must never be active.
The ZO to be corrected is specified in coded form with variable _KNUM >0.

The ZO can be specified and corrected by various methods, e.g. in various settable frames, in various basic frames, system frames, fine offset, or coarse offset, etc.

For detailed information on specifying _KNUM for the zero offset: see Parameter description section "Description of the most important defining parameters".
The following applies to all measuring variants with ZO determination in CYCLE979:
The difference between the setpoint (_CPA and _CPO) and the actual value of the center point derived by the cycle determines the ZO correction (offset).
This value is monitored here with _TSA.

Parameter

Parameter	Data type	Meaning
-MVAR	101	ZO calculation in hole with ZO compensation
	102	ZO calculation on shaft with ZO compensation
	103	ZO calculation in groove with ZO compensation
	104	ZO calculation on web with ZO compensation
_SETVAL	REAL, >0	Setpoint diameter, width (acc. to drawing)
_CPA	REAL	Center point of abscissa (with reference to workpiece zero)
_CPO	REAL	Center point of ordinate (with reference to workpiece zero)
-STA1	$\begin{array}{\|l\|} \hline-360 \text { to } \\ +360 \\ \text { degrees } \\ \hline \end{array}$	Start angle
_ID	REAL	Incremental lifting of applicate with prefix (only measure with web, lift for crossing)
_INCA	$\begin{array}{\|l} -360 \text { to } \\ +360 \\ \text { degrees } \end{array}$	Indexing angle (only for measuring hole or shaft) useful values for 3-point measurement: -120 ... +120 degrees useful values for four-point measurement: -90 ... +90 degrees
-RF	REAL, >0	Feed for circular interpolation ($\mathrm{mm} / \mathrm{min}$) (only measure for hole and/or shaft)
_KNUM	$0,>0$	0: without automatic ZO correction >0 : with automatic ZO correction (Individual values: see Parameter description section "Description of the most important defining parameters", Parameter_KNUM)

The following additional parameters are also valid:
_VMS, _CORA, _TSA, _FA, _PRNUM and _NMSP
_CORA only relevant for monodirectional probe.
The center point difference is monitored here with _TSA.

See also

$\underline{\text { Variable measuring velocity: _VMS (Page 77) }}$
Offset angle position:_CORA (Page 78)

Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

5.6.4.2 Programming example

Measuring a groove and determining the ZO with CYCLE979

The groove width on a workpiece is to be measured in plane G17 and measuring height $Z=40 \mathrm{~mm}$. The groove lies at an angle of 70° in its width from the X axis (_STA1).

The resulting center of the slot in the measured path should lie in the corrected workpiece coordinate system at $X=150 \mathrm{~mm}, \mathrm{Y}=130 \mathrm{~mm}$ (_CPA, _CPO).
Any deviation from the selected ZO must be compensated for automatically in G55 by means of additive ZO.

Measurement is also performed with G55.

The maximum conceivable deviation of the groove center is taken as 1 mm . The measuring path is therefore specified as _FA= 2 mm (max. measuring path $=4 \mathrm{~mm}$) and ensures that there is still a minimum measuring path of 1 mm up to the edge of the groove.

A deviation of $<0.8 \mathrm{~mm}$ of the center is permitted. This should be monitored with _TSA.

Clamping for workpiece:
Zero offset, with settable ZO G55: NVx, NVy, \ldots (values before the correction [offset])


```
%_N_OFFSET_GROOVE_MPF
N10 G55 G17 G90 T9 D1
N20 M6
N30 G0 X150 Y130
N40 Z40
N60 _TSA=0.8 _PRNUM=1 _VMS=0 _NMSP=1
_FA=2
N61 _MVAR=103 _SETVAL=130 _CPA=150
_CPO=130 _STA1=70 _KNUM=2
N70 CYCLE979 ;Call measuring cycle for zO
N80 G0 Z160
N90 G55
N100 M2
```


Explanation of example

Automatic compensation is performed in G55, offset in X and Y by the calculated difference between the actual value and set position of the groove center point, should it be less than $1 \mathrm{~mm}\left(_T S A\right)$ in both axes. Otherwise, alarm "Safe area violated" is output and program execution cannot be continued. It must be interrupted with NC RESET.
The corrected ZO G55 is activated in block N90.
The results are entered in result array _OVR[].

5.7 CYCLE998 workpiece: Angle measurement and ZO determination

5.7.1 Function overview

Function

This measuring cycle enables you to determine the angular position of surfaces of a workpiece. This can be used to close the workpiece clamping and correct the ZO as regards angular position.

With 1-angle measurement:

- When a workpiece is clamped rotated in the plane:

The angular offset is applied in the rotation component of the geometry axis that is perpendicular to the measurement plane.

- If a workpiece is on a rotary table:

The angular offset is applied additively in the translation component of the rotary axis (table axis).

With 2-angle measurement:

- If a workpiece has a plane that is inclined in space:

The angular offsets are applied in the rotation part of the geometry axes.
The angular position is corrected, taking account of set angles in the specified frame (ZO).

Note

In this cycle, only the rotation components of the frame are determined and corrected (except for rotary table). To complete correction of the ZO (frame), a further measuring cycle is required to determine the translation component (e.g. CYCLE977 or CYCLE978).

An empirical value _EV[] stored in the GUD5 data block can be included in the measurement result with the correct sign. This is activated in _EVNUM (see Parameter description Section "Description of the most important defining parameters").
A special measuring variant permits differential measurement with the axes of the plane. The special procedure for this measurement permits use of an uncalibrated multidirectional probe.

Workpiece probe types that can be used

- Multidirectional probe (_PRNUM=0xy)
- Mono-directional, bi-directional probe (_PRNUM=1xy) (These probes should be used only with low accuracy requirements!)

NOTICE

A monodirectional or bi-directional probe must always be calibrated!
These probes cannot be used for the differential measurement!

Preconditions for differential measurement

- Spindle can be positioned between $0 . . .360$ degrees (at least every 90 degrees, with SPOS command)
- Multidirectional probe (all-round coverage)

Maximum measurement angle

The cycle is capable of measuring a maximum angle of $-45 \ldots+45$ degrees.

Programming

CYCLE998

Measuring variants

Measuring cycle CYCLE998 permits the following measuring variants which are specified via parameter _MVAR.

Value	Measuring variant
105	Angle measurement and ZO determination, positioning at an angle from measuring point to measuring point
1105	Angle measurement with differential measurement and ZO determination, positioning at an angle from measuring point to measuring point
100105	Angle measurement and ZO determination, paraxial positioning from measuring point to measuring point in the offset axis
106	2-angle measurement and ZO determination, positioning at an angle from measuring point to measuring point at height
100106	2-angle measurement and ZO determination, paraxial positioning from measuring point to measuring point at height

Result parameters

Measuring cycle CYCLE998 makes the following values available as results in the GUD5 data block:

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint angle or setpoint angle between workpiece area and 1st axis of the plane (abscissa) of the active WCS1)
_OVR [1$]^{1)}$	REAL	Setpoint angle between workpiece area and 2nd axis of the plane (ordinate) of the active WCS
_OVR [4]	REAL	Actual value angle or actual value angle between workpiece area and 1 st axis of the plane (abscissa) of the active WCS ${ }^{11}$
_OVR [5$]^{1)}$	REAL	Actual value angle between workpiece area and 2nd axis of the plane (ordinate) of the active WCS
_OVR [16]	REAL	Difference angle or difference angle about 1st axis of plane ${ }^{1)}$
_OVR [17] ${ }^{\text {1) }}$	REAL	Difference angle about 2nd axis of the plane

Parameter	Data type	Result
_OVR [20]	REAL	Offset value angle
_OVR [21] ${ }^{1)}$	REAL	Offset value angle about 1st axis of the plane
_OVR [22$]^{1)}$	REAL	Offset value angle about 2nd axis of the plane
OOVR [23$]^{1)}$	REAL	Offset value angle about 3rd axis of the plane
_OVR [28]	REAL	Safe area
-OVR [30]	REAL	Empirical value
_OVI [0]	INTEGER	ZO number
_OVI [2]	INTEGER	Measuring cycle number
_OVI [5]	INTEGER	Probe number
_OVI [7]	INTEGER	Empirical value memory number
_OVI [9]	INTEGER	Alarm number
_OVI [11] ${ }^{1)}$	INTEGER	Status offset request
1) for measuring variant _MVAR=x00106 only		

5.7.2 1-angle measurement

5.7.2.1 General information

Function

Using this measuring cycle and the _MVAR=x0x105 measuring variants, it is possible to determine the angular position of a surface in the plane of the workpiece coordinate system.

This can be used to determine and correct the rotation component in the zero offset (ZO, frame) of the workpiece in the plane.

The rotation is corrected in such a way that the real position of the surface (actual value) adopts the required set angle (_STA1) in the workpiece coordinate system when the corrected ZO (frame) is used.

The ZO to be corrected is specified in coded form with variable _KNUM >0.
The ZO can be specified and corrected by various methods, e.g. in various settable frames, in various basic frames, system frames.

If _KNUM=0, there is no ZO correction.
For detailed information on specifying _KNUM for the zero offset: see Parameter description section "Description of the most important defining parameters".

In addition to _KNUM, another item of data is required to determine the type of angular offset in parameter _RA needed:

- _RA=0:

Offset of rotation about 3rd axis that is not contained in _MA (neither measurement nor offset axis)

- _RA>0:

Channel axis number of the rotary table. The angular offset is undertaken in the translation component of the channel axis _RA.

Parameter for 1-angle measurement

Parameter	Data type	Meaning
_MVAR	105	Angle measurement and ZO determination, positioning at an angle from measuring point to measuring point
	1105	Angle measurement with differential measurement and ZO determination, positioning at an angle from measuring point to measuring point
	1001105	Angle measurement and ZO determination, paraxial positioning from measuring point to measuring point in the offset axis
_SETVAL	REAL, >0	Setpoint (axis position) at measuring point 1 in the meas. axis (for _MVAR=105 and _MVAR=1105 only)
_STA1	$\begin{array}{\|l} \text { REAL, } \\ -45 \text { to }+45 \\ \text { degrees } \\ \hline \end{array}$	Setpoint angle
- ${ }^{(1)}$	201	Measuring axis: 1 (abscissa), offset axis: 2 (ordinate)
	102	Measuring axis: 2 (ordinate), offset axis: 1 (abscissa)
	301	Measuring axis: 1 (abscissa), offset axis: 3 (applicate)
	302	Measuring axis: 2 (ordinate), offset axis: 1 (applicate)
	203	Measuring axis: 3 (applicate), offset axis: 2 (ordinate)
	103	Measuring axis: 3 (applicate), offset axis: 1 (abscissa)
_ID	REAL, >0	Distance between measuring points P1 and P2 in offset axis
- ${ }^{\text {RA }}$	0	Offset of rotation about axis that is not contained in _MA
	>0	Channel axis number of rotary table The angular offset is applied in the translation component of the channel axis number (rotary axis).

Parameter	Data type	Meaning
$-{ }^{\text {MD }}$	INT, 0 or 1	0: positive measuring direction 1: negative measuring direction (only for variants with paraxial intermediate positioning _MVAR=10x10x)
- KNUM	$0,>0$	0: without automatic ZO correction $>0:$ with automatic ZO correction (Individual values: see Parameter description section "Description of the most important defining parameters"., Parameter_KNUM)

The following additional parameters are also valid:
_VMS, _CORA, _TSA, _FA, _PRNUM, _EVNUM and _NMSP
_CORA only relevant for monodirectional probe.
With _TSA, the difference of the angle is monitored and this value is additionally traversed to _STA1 with intermediate positioning at an angle. _TSA has the dimension unit degrees in this case!

NOTICE

Precise angle definition requires a minimum surface finish at least at the measuring points.
The distances between the measuring points must be selected as large as possible.

See also
Variable measuring velocity: _VMS (Page 77)
Offset angle position: _CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

5.7.2.2 Programming example

1-angle measurement with CYCLE998

A rectangular workpiece ($60 \times 40 \mathrm{~mm}$) is clamped in the G17 plane on a rotary table. The intention is to orient it with its edges running parallel with axes X and Y .
An angular deviation detected is to be compensated automatically through additive ZO compensation of the rotary axes. The maximum possible angular deviation is taken as _TSA $=5^{\circ}$. The measuring path is programmed as _FA $=8 \mathrm{~mm}$ (max. total measurement path = 16 mm). The measuring points should be 40 mm apart. Intermediate positioning is to be at an angle.

The rotary table is the 4th axis in the channel (C axis).
Clamping for workpiece:
Zero offset, with settable ZO G54: NVx, NVy, NVz, NVc

Workpiece probe 1 , used as tool T9, D1, is to be used.

The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:

Tool type (DP1):	710
Length 1 - geometry (DP3):	$\mathrm{L} 1=50.000$

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration. Careful when positioning! Radius R in length (L1) is ignored.

```
%_N_ANGLEMEAS_MPF
N10 G54 G17 G90 T9 D1
N20 M6
N30 G0 C0
N40 X-20 Y-40
N50 Z40
N60 _PRNUM=1 _VMS=0 _NMSP=1 _EVNUM=0
N61 _MVAR=105 _SETVAL=-18 _MA=102
_FA=8
N70 CYCLE998
```

N80 G0 z160
N90 G54 C0
N100 M2

```
```

;Traverse up z axis
;Repeat call of ZO G54
;The changes thereby take effect!
;Position rotary table at 0}\mp@subsup{0}{}{\circ
;(edge is now setup).
;End of program

```

\section*{Explanation of example}

Measurement is performed in the Y direction, offset is in X direction, intermediate position at an angle. The cycle determines the measuring direction from the actual position in the Y direction and_SETVAL.
Automatic correction is performed in G54, offset in the \(C\) axis (4th channel axis) with the calculated angle (_STA1=0).

In block N90, the corrected ZO G54 is activated and the C axis is moved from position zero to position zero; the ZO difference is eliminated. The workpiece is then paraxial.
The results are entered in result array _OVR[ ].

\subsection*{5.7.2.3 Operational sequence}

\section*{General information}

\section*{Measurement axis _MA}

In this cycle, not only the measuring axis but also the offset axis are specified in _MA. The offset axis is the 2nd axis of the measuring plane. Intermediate positioning to the measuring point is performed in this axis for paraxial positioning; for positioning at an angle it is performed in both axes. It is also possible to specify the applicate as the measurement or offset axis.


Distance of measuring point 1 to measuring point 2 in the offset axis: ID
Parameter ID is used to define the distance between P1 and P2 in the offset axis. Only positive values are permissible for _ID. P1 must therefore be selected in the offset axis before the cycle begins.


\section*{_STA1 set angle}

The setting in _MA makes all 3 measurement planes possible. The set angle _STA1 therefore refers to the positive direction of the offset axis and is negative in the clockwise direction, positive in the counterclockwise direction.


The set angle _STA1 specifies the required angle between the edge and the positive direction of the offset axis. In the case of _STA1=0, the edge is aligned paraxially with regards to the offset axis after correction.

With measuring variants "Positioning at an angle" (_MVAR=00x105) _STA1 is also used for positioning. The positioning angle is formed together with _TSA. _STA1 should therefore deviate only a little from the measured angle.

\section*{Prerequisite}

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type \(5 x y\) and _CBIT[14]=0.

\section*{Procedure with MVAR=00x105: Intermediate positioning at an angle}

\section*{Position before measuring cycle call}


The probe is positioned with respect to the surface to be measured in such a way that during traversal of the measuring axis _MA specified in the direction of the setpoint _SETVAL measuring point 1 on the surface will be reached.
Recommended distance from _SETVAL: >_FA.
The measuring operation then starts with the measuring feed at distance _FA in front of _SETVAL.
The absolute value of the positional deviation from the setpoint must not be greater than the measuring path \(\qquad\) FA. Otherwise, no measurement will be performed.
In the other two axes, the positions are retained for the measurement in measuring point 1 at the beginning of a cycle.

\section*{Intermediate positioning at an angle}

The starting point for measurement 2 is approached at an angle. The angle comprises _STA1 and _TSA. _TSA contains the value for a permissible angle deviation and leads away \(\overline{\text { from the setpoint. }}\)

\section*{Procedure with MVAR=10x105: paraxial intermediate positioning}

\section*{Position before measuring cycle call}


The probe is positioned with respect to the surface to be measured in such a way that during traversal in the specified measuring axis _MA and direction of the measurement in _MD both measuring points on the surface within the total measurement path: 2 • _FA in mm is reached.

Otherwise, no measurement or complete measurement will result.
In the other two axes, the positions are retained for the measurement in measuring point 1 at the beginning of a cycle.

The starting point for measurement 2 is approached paraxially in the offset axis. Measuring point 2 is also approached with the measuring axis in direction _MD.

\section*{Position after end of measuring cycle}

After the end of measurement, the probe is at the last measuring point at distance _FA from the measuring surface.

\section*{NOTICE}

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

\section*{Special procedure for differential measurement}

The measuring point P1 is measured twice during differential measurement:
1. With spindle rotated through 180 degrees compared with the position at the beginning of the cycle (rotation of the probe by 180 degrees).
2. With the spindle position that applied at the beginning of the cycle

The tool radius of the probe +R or -R is defined as the trigger point defined for the axis direction.

A multidirectional probe does not have to be calibrated at the beginning of the cycle for measuring variant _MVAR=1105.
This measuring variant with differential measurement is only useful with the measuring axes _MA=x01 or _MA=x02.

\section*{NOTICE}

In the case of great measurement accuracy demands, differential measurement is not recommended!

\subsection*{5.7.3 2-angle measurement}

\subsection*{5.7.3.1 General information}

\section*{Function}

Using the measuring variants _MVAR=106 and _MVAR=100106, it is possible to calculate and correct the angular position of a plane oblique in space on a workpiece by measuring three points. The angles refer to rotation about the axes or the active plane G17 to G19.
Otherwise, the same conditions apply as for simple angle measurement.
Additional data are required for the setpoint input of the 2 nd angle. A ZO is implemented in the rotary part of the set ZO memory (coordinate rotation)

\section*{Parameter for 2-angle measurement}
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Meaning \\
\hline- MVAR & 106 & \begin{tabular}{l} 
2-angle measurement and ZO determination, \\
intermediate positioning at an angle
\end{tabular} \\
\hline & 1001106 & \begin{tabular}{l} 
2-angle measurement and ZO determination, \\
intermediate positioning paraxially
\end{tabular} \\
\hline -SETVAL & REAL, >0 & \begin{tabular}{l} 
Setpoint (axis position): Expected position on workpiece surface in \\
measuring point P1 in the applicate \\
(for_MVAR=106 only)
\end{tabular} \\
\hline -STA1 & REAL & Setpoint angle about 1st axis of the plane \\
\hline INCA & REAL & Setpoint angle about 2nd axis of the plane \\
\hline MD & 0,1 & \begin{tabular}{l} 
0: positive measuring direction \\
1: negative measuring direction \\
(for_MVAR=100106 only)
\end{tabular} \\
\hline- ID & REAL, >0 & \begin{tabular}{l} 
Distance between measuring points P1 and P2 in the 1st axis of the \\
plane (abscissa)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Meaning \\
\hline- SETV [ 0 ] & REAL, >0 & \begin{tabular}{l} 
Distance between measuring points P1 and P3 in the 2nd axis of \\
the plane (ordinate)
\end{tabular} \\
\hline- KNUM & \(0,>0\) & \begin{tabular}{l} 
0: without automatic ZO correction \\
\(>0:\) with automatic ZO correction \\
(Individual values: see Parameter description section "Description of \\
the most important defining parameters", Parameter_KNUM)
\end{tabular} \\
\hline
\end{tabular}

The following additional parameters are also valid:
_VMS, _CORA, _TSA, _FA, _PRNUM, _EVNUM and _NMSP
_CORA only relevant for monodirectional probe.
With _TSA, the difference of the angle is monitored and this value is additionally traversed to _STA1 with intermediate positioning at an angle. _TSA has the dimension unit degrees in this case!

\section*{See also}
```

Variable measuring velocity: _VMS (Page 77)
Offset angle position:_CORA (Page 78)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

```

\subsection*{5.7.3.2 Programming example 1}

\section*{2-angle measurement with CYCLE998}
(determining an oblique plane in space)
The task is to check the angular position of a machined oblique surface on a workpiece.
The result is taken from the result parameters _OVR[ ] for evaluation.
A measuring point 1 (P1) must be selected where \(P 2\) in the ordinate (with G17: \(Y\) axis) has the same value as P 1 and the abscissa value (_ID) is positive. P3 must still have the same value in the abscissa (X axis in G17) as P1. The ordinate value (_SETV[0]) must be positive.

Positioning in the applicate must be performed as far as possible parallel with the oblique plane (set angle).

The machined oblique plane has set angle about Y : 12 degrees (_INCA) and about X : 8 degrees (_STA1), maximum deviation _TSA= 5 degrees.

Workpiece probe 1, used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): \(\quad L 1=50.000\)
Radius - geometry (DP6): \(\quad R=3.000\)

Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.

```

```
%_N_INCLINEDMEAS_MPF
```

```
%_N_INCLINEDMEAS_MPF
N10 G54 G17 G90 T9 D1
N10 G54 G17 G90 T9 D1
N20 M6
N20 M6
N30 X70 Y-10
N30 X70 Y-10
N40 z40
N40 z40
N60 _MVAR=106 _SETV[0]=30 _ID=40
N60 _MVAR=106 _SETV[0]=30 _ID=40
_KNUM=0 _RA=0 _STA1=8 _INCA=12 _TSA=5
_KNUM=0 _RA=0 _STA1=8 _INCA=12 _TSA=5
_PRNUM=1 _VMS=0 _NMSP=1 _FA=5 _EVNUM=0
_PRNUM=1 _VMS=0 _NMSP=1 _FA=5 _EVNUM=0
-N520 CYCLE998
-N520 CYCLE998
N530 G0 z160
N530 G0 z160
N540 M30
```

```
N540 M30
```

```

\section*{Explanation of example}

Both measured angles are entered in result field _OVR[ ]. A ZO correction is not applied (_KNUM=0).

\subsection*{5.7.3.3 Programming example 2}

\section*{Orientation of an oblique workpiece surface for remachining using CYCLE800}

\section*{Initial state}
- The workpiece is clamped on the swivel table (swiveling workpiece holder) and aligned roughly paraxially to the machine axes.
- The swivel table is in its home position.
- The probe is in inserted as T9 and positioned in JOG approximately 20 mm above the front left corner of the workpiece to be set up.
- The scratch function is used to define the zero point of the ZO G56 at which the 2-angle measurement is to be performed and the G17 machining plane is defined as X0 Y0 Z20.


\section*{Exercise}

Remachining will be performed with G57 active. The workpiece should be aligned so that for G17, the tool is located vertically on the previously inclined surface, the workpiece zero (G57) is the left-hand corner and the workpiece edges run in parallel to axes \(X\) and \(Y\) (G57). CYCLE978 should be used to set the 3 edges. To determine the angle, CYCLE998 (1-and 2-angle measurement).
```

%_N_PLANE_SETUP_MPF
N500 G56 G17 G90 ;Select ZO and machining plane
N505 T9 D1 ;Select probe
N506 M6 ;Activate tool compensation for probe
N510
CYCLE800(1,""",0,57,0,0,0,0,0,0,0,0,
0,-1)
N520 \$P_UIFR[4] = \$P_UIFR[3] ;Copy the data of zo memory G56 to G57
N530 G1 F500 X20 Y25 ;Approach of the 1st MP for
N540 z40
N550 _VMS=0 _PRNUM=1 _TSA=20 _EVNUM=0
_NMSP=1 _FA=40__STA1=0 _INCA=0
_NMSP=1 __FA=40 __STA1=0 _INCA=0
_KNUM=4
N560 CYCLE998
N570 G57
N580 ;Align swivel table, probe is
CYCLE800(1,""",0,57,0,0,0,0,0,0,0,0,0,- ;perpendicular above oblique surface
1)
N590 X20 Y25 ;Approach 1st MP in the plane
N600 z20
N610 _MVAR=100 _SETVAL=0 _MA=3 _TSA=10
_FA=20 _KNUM=4
N620 CYCLE978
N625 G57
N630 X20 Y-20
N640 z-5
;Align swivel table
;2-angle measurement in the plane
;Positioning height in z, in which all 3 MPs
;can be approached
;Measuring velocity 300 mm/min, data field 1
;for probe, safe area 20',
;without empirical value, number of
;measurements at same position =1,
;measurement path 40 mm, angles 1 and 2 = 0,
;2-angle measurement with
;paraxial positioning, measurement
;in minus direction,
:distance in X between MP1 and MP2 50 mm,
;distance in Y between MP1 and MP3 35 mm,
;ZO correction in G57
;Call measuring cycle
;Activate zO G57
;Align swivel table, probe is
;Lower in Z' about 20 mm above surface
;ZO determination on surface, setpoint 0,
;meas. axis Z', safe area 10 mm,
;meas. path 20 mm before and after expected
;switching position, zO correction in G57
;ZO determination on surface in Z' axis for
; setting the zero in Z،
;Activate the changed zero offset
;Place in plane before the front edge
;Lower in Z' direction to align
;the front edge in the x' direction

```
```

N650_MVAR=105_MA=102_SETVAL=0_RA=0 \# ; Angle measurement measuring axis Y',

```

\section*{Comment about CYCLE800}

The swivel cycle CYCLE800 is used to measure and operate on any surface by converting the active workpiece zero and the active tool offset to the oblique surface in the cycle by calling the relevant NC functions, taking account of the kinematic chain of the machine, and positioning the rotary axes.
Cycle CYCLE800 is not part of the "measuring cycle package" but of the "standard cycles".

\section*{Explanation of example}
- CYCLE998 (2 angle measurement) measures the oblique workpiece surface and an offset is entered in the rotation part of the ZO memory G57.
- After CYCLE800 has been called, axes X, Y, and Z and the rotary axes involved are positioned such that the probe is perpendicular above the oblique workpiece surface.
- Subsequent measurement with ZO in the -Z' direction with CYCLE978 zeroes the workpiece surface in the \(Z\) ' direction.
- Determining the angular position of the front workpiece edge with respect to the X' direction and offset in the ZO memory G57 with CYCLE998 aligns the front edge paraxially with the \(\mathrm{X}^{\prime}\) direction.
- Then the workpiece zero is precisely defined in the plane by measuring with the ZO in the \(+\mathrm{X}^{\prime}\) direction and \(+\mathrm{Y}^{\prime}\) direction with CYCLE978.
- After that, remachining can begin on the setup surface.

\subsection*{5.7.3.4 Operational sequence}

\section*{Position before measuring cycle call}

Before the cycle is called, the probe must be positioned over the 1st measuring point (P1) in the plane and at the appropriate depth in the applicate. The measuring axis is always the applicate. Measuring point P1 must be selected in the plane such that _ID and _SETV[0] result in positive values.


\section*{Procedure for variant "intermediate positioning at an angle" (MVAR=106):}

After completion of the measurement in P1 the probe is positioned at P2 in the abscissa and applicate ( X and Z in G 17 ) taking angle _INCA and maximum deviation in _TSA into account. After the measurement has been performed in P2, repositioning to P 1 is performed by the same path. Then the probe is positioned from P 1 to P 3 in the ordinate and applicate ( Y and \(Z\) in G17) taking account of angle _STA1 and maximum deviation in _TSA and then measured.

Procedure for variant "intermediate positioning parallel to axis" (MVAR=100106):
Positioning from P 1 to P 2 is performed in the abscissa, from P 1 to P 3 in the ordinate.
It must also be possible to reach P2 and P3 from starting position P1 in the applicate (in Z in G17) without collision.

Position after end of measuring cycle
After completion of the measuring operation, the probe will always be amount _FA (MVAR=106) above the 3rd measuring point in the applicate or, if _ MVAR=100106, at the initial height (positioning height).

\subsection*{5.8 CYCLE961 workpiece: Setup inside and outside corner}

\subsection*{5.8.1 Function overview}

\section*{Function}

The cycle can measure the position of an internal or external corner of a workpiece in the selected plane with different measuring variants. The position of this corner can also be used as the workpiece zero in a defined zero offset (ZO).


In certain measuring variants an additional offset can be defined.
The measurements are performed with different specified values depending on the measuring variant used:

\section*{Specification of distances and angles}
- The workpiece is a rectangle:

3-point measurement
- Unknown workpiece geometry:

4-point measurement

\section*{Specification of 4 points}
- Unknown workpiece geometry:

4-point measurement

\section*{Prerequisite}

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
When using the cycle on a turning machine: set type \(5 x y\) and _CBIT[14]=0.

\section*{Compensation of the zero offset}

The ZO correction is applied in the coarse offset. If a fine offset is available (MD18600: MM_FRAME_FINE_TRANS=1), it is reset.
If _KNUM \(=0\), there is no zero offset (ZO).
When _KNUM 0 , the corresponding ZO for the abscissa and ordinate is calculated in such a way that the calculated corner point becomes the workpiece zero. The rotary component for the applicate (rotation about \(Z\) for \(G 17\) ) is offset in such a way that the workpiece coordinate system lies in the plane parallel to the reference edge.

\section*{Workpiece measuring probe type that can be used}

Multidirectional probe (_PRNUM=xy)

\section*{NOTICE}

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

\section*{Programming}

CYCLE961

\section*{Measuring variants}

Measuring cycle CYCLE961 permits the following measuring variants, which are specified via parameter _MVAR.
\begin{tabular}{|l|l|}
\hline Value & Measuring variant \\
\hline 105 & Setting-up an internal corner of a square/rectangle, specifying the angle and distances \\
\hline 106 & \begin{tabular}{l} 
Setting-up an external corner of a square/rectangle, specifying the angle and \\
distances
\end{tabular} \\
\hline 107 & Set up internal corner, specify angle and distances \\
\hline 108 & Set up external corner, specify angle and distances \\
\hline 117 & Set up internal corner, specify 4 points \\
\hline 118 & Set up external corner, specify 4 points \\
\hline
\end{tabular}

\section*{Result parameters}

Measuring cycle CYCLE961 makes the following values available as results in the GUD5 data block:
\begin{tabular}{|c|l|l|}
\hline Parameter & Data type & Result \\
\hline _OVR [4] & REAL & Angle to abscissa axis) in the workpiece coordinate system (WCS) \\
\hline _OVR [5] & REAL & Actual value for corner point in abscissa in WCS \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Result \\
\hline _OVR [6] & REAL & Actual value for corner point in abscissa in WCS \\
\hline _OVR [ 20] & REAL & Angle to abscissa axis in the workpiece coordinate system (WCS) \({ }^{1}\) ) \\
\hline _OVR [21] & REAL & Actual value for corner point in abscissa in MCS \({ }^{1}\) ) \\
\hline _OVR [22] & REAL & Actual value for corner point in ordinate in MCS \({ }^{1}\) ) \\
\hline _OVI [2] & INTEGER & Measuring cycle number \\
\hline _OVI [3] & INTEGER & Measuring variant \\
\hline _OVI [5] & INTEGER & Probe number \\
\hline _OVI [ 9] & INTEGER & Alarm number \\
\hline 1) Transformation deactivated, otherwise basic coordinate system \\
\hline
\end{tabular}

\subsection*{5.8.2 Setting up a corner with definition of distances and angles}

\subsection*{5.8.2.1 General information}

\section*{Function}

Using this measuring cycle and the _MVAR=105, _MVAR=106 measuring variants, the internal and external corner of a rectangle can be measured and set up while using the _MVAR=107, _MVAR=108 measuring variants, the internal and external corner of an unknown workpiece geometry can be measured and set up.



The cycle approaches either 3 (for a rectangle) or 4 measuring points (if workpiece geometry is not known) and calculates the point of intersection of the resulting straight lines and the angle of rotation to the positive abscissa axis of the current plane. If the workpiece geometry is known (rectangle), the corner to be calculated can be offset.
The result, the position of the corner, is stored as an absolute value in the specified ZO (offset and rotation) and in the result parameters _OVR[ ].

The measuring points are derived from the specified angle and distances. Measurement is performed paraxially to the existing workpiece coordinate system (WCS).

\section*{Note}

When setting up the internal corner, the cycle only traverses in the plane at measuring height.

When setting up the external corner, the corner can either be passed over using the shortest path (lift in applicate) or traveled around in the plane.

\section*{Parameter}
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Meaning \\
\hline \multirow[t]{4}{*}{-MVAR} & 105 & Set up internal corner of a rectangle (geometry known, 3 measuring points) \\
\hline & 106 & Set up external corner of a rectangle (geometry known, 3 measuring points) \\
\hline & 107 & Set up internal corner (geometry unknown, 4 measuring points) \\
\hline & 108 & Set up external corner (geometry unknown, 4 measuring points) \\
\hline _FA & REAL & Measuring path, only included if _FA larger than internally calculated \\
\hline _KNUM & \(0,>0\) & 0: without automatic ZO correction \(>0\) : with automatic ZO correction (Individual values: see Parameter description section "Description of the most important defining parameters", Parameter _KNUM) \\
\hline _STA1 & REAL & \begin{tabular}{l}
Approx. angle of posit. direction of the abscissa with respect to reference edge of the workpiece in MCS \({ }^{1)}\) (accuracy: <10 degrees): \\
- Negative value in clockwise direction \\
- Positive value in counterclockwise direction
\end{tabular} \\
\hline _INCA & REAL & \begin{tabular}{l}
Approximate angle between reference edge and 2nd edge of workpiece (precision: <10 degrees): \\
- Negative value in clockwise direction \\
- Positive value in counterclockwise direction
\end{tabular} \\
\hline _ID & REAL & Incremental retraction of applicate when measuring external corner, used to travel around the corner, especially _ID=0: The corner is traveled around - not passed over. \\
\hline _SETV[0] & REAL, >0 & Distance between starting point and measuring point 2 in direction _STA1 (P1 is at _SETV[0] / 2) \\
\hline _SETV[1] & REAL, >0 & Distance between starting point and measuring point 4 in direction STA1+ INCA (P3 is at _SETV[1] / 2) \\
\hline \multicolumn{3}{|l|}{For measuring variants 105 and 106 only (rectangle):} \\
\hline _SETV[ 2 ] & REAL & Offset of zero offset WCS (corrected) in abscissa \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Data type & \multicolumn{2}{|l|}{Meaning} \\
\hline _SETV[3] & REAL & \multicolumn{2}{|l|}{Offset of zero offset WCS (corrected) in ordinate} \\
\hline \multirow[t]{5}{*}{_SETV[4]} & \multirow[t]{5}{*}{REAL} & \multicolumn{2}{|l|}{Selection of offset:} \\
\hline & & \multirow[t]{4}{*}{Values:} & 1: Measured corner entered as zero point \\
\hline & & & 2: Measured corner is entered as zero point in abscissa offset by _SETV[2] \\
\hline & & & 3: Measured corner is entered as zero point in both axes offset by _SETV[2] (abscissa) and _SETV[3] (ordinate). \\
\hline & & & 4: Measured corner is entered as zero point in ordinate offset by _SETV[3]. \\
\hline \multicolumn{4}{|l|}{1) Transformation deactivated, otherwise basic coordinate system.} \\
\hline
\end{tabular}

The following additional parameters are also valid:
_VMS, _PRNUM and _NMSP.

\section*{See also}

Variable measuring velocity: _VMS (Page 77)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

\subsection*{5.8.2.2 Programming example}

\section*{Determination of the coordinates of an external corner of a workpiece}

The coordinates of the external corner of a workpiece with unknown geometry are to be determined.
Zero offset G55 is to be corrected in such a way that this corner is workpiece zero for G55.
The reference edge lies approximately at _STA1=-35 and the 2nd edge approximately at _INCA= 80 degrees in addition. The distance to measuring points 2 and 4 is 100 mm .
The corner is to be passed over from P1 to P 3 at distance _ID= 30 mm above measuring height.

The starting point opposite the corner that is to be set up is reached before the measuring cycle is called.

Workpiece probe 1 , used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): \(\quad L 1=50.000\)
Radius - geometry (DP6): \(\quad R=3.000\)


Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius \(R\) in length (L1) is ignored.
```

%_N_CORNER_SETUP_MPF
N10 G500 G17 G90 T9 D1 ; Select probe, offset active
N20 _PRNUM=1 _VMS=0 _NMSP=1 ;The probe is in the start position,
N21 _MVAR=108 _FA=20_KNUM=2 _STA1=-35 ; set parameters, e.g. by moving in JOG
INCA}=80_ID=30 _SETV[0]=100 - ;CYCLE961
_SETV[1]=100
N30 CYCLE961
N40 G55 ; Call corrected ZO G55

```

\subsection*{5.8.2.3 Operational sequence}

\section*{Defining distances and angles}


\section*{Position before measuring cycle call}

The probe is positioned at measuring depth opposite the corner to be measured. It must be possible to approach the measuring points from here without collision. The measuring points are derived from the programmed distance between the starting point and
_SETVAL[0] (measuring point 2) or
_SETVAL[1] (meas. point 4) in direction of angle _STA1, _INCA.
The starting points for measuring point 1 and 3 are each located at half the distance.
Measurement is performed paraxially with the existing workpiece coordinate system.
_STA1 refers to the machine coordinate system.
The measuring cycle generates the required traversing blocks and performs the measurements at the measuring points.

During travel an additional tolerance angle of 10 degrees is added to the programmed angles in the cycle.
First measuring point \(P 2\), then \(P 1, P 3\), and depending on parameterization, \(P 4\) is approached.

\section*{Traversing between P 1 and P 3 on outside edge:}

- _ID=0:

The corner is traveled around.
- _ID \(>0\) :

For P 1, after the measurement, is raised by _ID in the applicate and \(P 3\) is approached via corner.

\section*{Position after end of measuring cycle}

The probe is again positioned at the starting point (at measuring depth opposite the measured corner).

\section*{Selection of offset with _SETV[4]}


With measuring variants MVAR=105, =106 (rectangle) the measured corner can be selected offset as workpiece zero.

The offset is specified in _SETV[2] (abscissa) and _SETV[3] (ordinate).
_SETV[4] can assume values 1 to 4 .

\subsection*{5.8.3 Setting up a corner with 4 points}

\subsection*{5.8.3.1 General information}

\section*{Function}

Using this measuring cycle and the _MVAR=117, _MVAR=118
measuring variants, the internal and external corner of an unknown workpiece geometry can be measured and set up.


One after the other, points P2, P1, P3, P4 are traversed in the cycle with positioning feedrate at positioning height. At each of these points the probe is lowered to measuring depth and then traversed at measuring feedrate parallel to the axis against the workpiece corner.

The cycle uses the relative positions of points P1 to P4 to determine the approach directions and the measuring axis. The cycle calculates the corner point and the angle between the reference edge and the positive abscissa axis of the current plane from the results of measurement.

The angle is calculated by measuring P2 and P1 (reference edge).
The position of corner, corner point coordinates, and rotation are stored in result parameter _OVR[].

If _KNUM>0, absolute correction to the coarse offset in the specified ZO (translation and rotation) is performed.

The measuring points are derived from the specified 4 points. Measurement is performed paraxially to the existing workpiece coordinate system (WCS).

\section*{Parameter}
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Meaning \\
\hline \multirow[t]{2}{*}{_MVAR} & 117 & Set up internal corner, specify 4 points \\
\hline & 118 & Set up external corner, specify 4 points \\
\hline _FA & REAL & Measurement path \\
\hline -KNUM & \(0,>0\) & \begin{tabular}{l}
0: without automatic ZO correction \\
\(>0\) : with automatic ZO correction \\
(Individual values: see Parameter description section "Description of the most important defining parameters", Parameter _KNUM)
\end{tabular} \\
\hline _ID & REAL & Incremental infeed in applicate for measuring depth \\
\hline _SETV[0] & REAL & Abscissa P1 in active WCS \\
\hline _SETV[1] & REAL & Ordinate P1 in active WCS \\
\hline _SETV [ 2 ] & REAL & Abscissa P2 in active WCS \\
\hline _SETV[3] & REAL & Ordinate P2 in active WCS \\
\hline _SETV [ 4 ] & REAL & Abscissa P3 in active WCS \\
\hline _SETV[5] & REAL & Ordinate P3 in active WCS \\
\hline _SETV [ 6] & REAL & Abscissa P4 in active WCS \\
\hline _SETV[7] & REAL & Ordinate P4 in active WCS \\
\hline
\end{tabular}

The following additional parameters are also valid:
_VMS, _PRNUM, and _NMSP.

\section*{See also}

Variable measuring velocity:_VMS (Page 77)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

\subsection*{5.8.3.2 Programming example}

\section*{Determination of coordinates of the corner of a workpiece with subsequent ZO offset}

The coordinates of the corner of a workpiece are to be determined by outside measurement. ZO G55 must be corrected in such a way that the corner point is workpiece zero when G55 is selected.

Measurement is performed in plane G17 with active G54. The values in mm of the coordinates of points \(\mathrm{P} 1 \ldots \mathrm{P} 4\) from which the workpiece can be approached parallel to the axis are:
- P1. \(x=50 \quad P 1 . y=20\)
- P2. \(x=150 \quad P 2 . y=20\)
- P3.x=15 P3.y=40
- P4.x=15 P4.y=80

The probe is to be positioned at a height of 100 mm . The measuring depth is 60 mm lower. The workpiece corner is expected to be at a distance less than 200 mm at each point (_FA=100 [mm]).

Workpiece probe 1, used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): \(\quad 710\)
Length 1 - geometry (DP3): \(\quad \mathrm{L} 1=50.000\)
Radius - geometry (DP6): \(\quad R=3.000\)
Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.

```

%_N_CORNER_SETUP_1_MPF
N10 G54 G17 G90 T9 D1
N20 G0 Z100
N30 X100 Y70
N50 _MVAR=118 _SETV [0]=50 _SETV [1]=20
_SETV[2]=150 _SETV [3]=20 _SETV [4]=15
_SETV[5]=40 _SETV [6]=15 _SETV [7]=80
_ID=-60
N51 _VMS=0 _NMSP=1 _PRNUM=1 _FA=100
_KNUM=2
N60 Cycle961

```
```

;Select zo, plane, probe, ...

```
;Select zo, plane, probe, ...
;Position probe at positioning height
;Position probe at positioning height
;Position probe in X/Y plane above
;Position probe in X/Y plane above
;workpiece
;workpiece
;Measuring variant for external corner
;Measuring variant for external corner
;coordinates of P1 to P4
;coordinates of P1 to P4
;Measurement path 100 mm to expected edge
;Measurement path 100 mm to expected edge
;(max. measurement path =200 mm)
;(max. measurement path =200 mm)
;Cycle call
```

;Cycle call

```
```

N70 G55
N80 G0 X0 Y0

```
; Call corrected zo G55
;Position probe in \(\mathrm{X} / \mathrm{Y}\) plane above
;corner (new zero point)
;End of program

\subsection*{5.8.3.3 Operational sequence}

\section*{Defining the 4 points}

The position of points P1 and P2 in relation to each other determines the direction of the abscissa axis ( X axis in G17) of the new coordinate system. A negative offset between P1 and P 2 in the abscissa ( X axis in G 17 ) results in an additional rotation about \(180^{\circ}\) !


The position of the corner is selected with all 4 points. So for a rectangle, for example, different corners can be selected as the zero point depending on whether measuring variant internal or external corner is applied.

The individual points or _FA must be selected such that the contour is reached within a
Total measuring path: \(2 \cdot\) _FA in mm is reached.

Otherwise, no measurement will be performed.
A minimum total measurement path of \(2 \cdot 20 \mathrm{~mm}\) is produced within a cycle.

\section*{Position before measuring cycle call}


The probe is above the workpiece at positioning height. It must be possible to reach all points without collision.

The measuring cycle generates the traversing blocks and performs the measurements at the measuring points from points P1 to P4. The measuring depth is derived from the positioning height lowered by the value in _ID (negative prefix). After measurement at one point the probe is again raised to positioning height and traversed to the next point and then lowered again to measuring depth.
Point P2 is approached first, followed by P1, P3, and P4.

\section*{Position after end of measuring cycle}

The probe is at the positioning height at point P 4 .

\subsection*{5.9 CYCLE997 workpiece: Measuring a sphere and ZO determination}

\subsection*{5.9.1 Function overview}

\section*{Function}

With measuring cycle CYCLE997, different measuring variants can be used to measure
- a sphere or
- 3 equal sized spheres, fixed to a common base (workpiece).


Measurements can be performed paraxially with the workpiece coordinates system (WCS) or at an angle in the plane.
The center point (position of sphere) is derived from 4 or 5 measuring points around the circumference with a known diameter. With an additional measurement the diameter can also be determined.
Intermediate positioning for measuring points P 1 to P 3 and P 4 (determining circle in plane) is performed with measuring variant "at an angle" on a circular path, otherwise parallel with the axis.
Positioning in the infeed axis and between the spheres is always a linear movement.
CYCLE997 can measure the sphere and in addition automatically correct a zero offset (ZO) on the basis of the position of the center of the sphere.
With "Measure 3 spheres" the angles in space of the sphere grouping can also be determined.

The target of the ZO compensation can be selected with _KNUM.

\section*{Workpiece measuring probe type that can be used}

Multidirectional probe (_PRNUM=xy)


Measurement is performed in all three coordinate axes.
Different lengths can be specified for the probe in _CBIT[14]:
- _CBIT[14]=0: L1 referred to the probe ball center
- _CBIT[14]=1: L1 referred to circumference of probe ball center

In measurement the same setting as for calibration of the workpiece probe must be used.

\section*{NOTICE}

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane, orientation of the spindle in the plane and measuring velocity are the same for both measurement and calibration. Deviations can cause additional measuring errors.

\section*{Prerequisite}

The probe must be called as a tool with a tool length offset.
Tool type, preferably: 710
For "Measuring at an angle" (_MVAR=xx1109) the probe must have been calibrated with "Determine active probe ball diameter".
Calibration with an additional "Determine position deviation" improves the measuring precision.
In ZO (frame) the approximate values for the position of the spheres in offset and rotation are entered and activated.

Only small deviations are expected.
The sphere diameter must be much larger than the probe ball diameter.

\section*{Important}

The user must select measuring points for the particular measuring variant such that during measurement or intermediate positioning a collision with a sphere fixture or other obstacle is ruled out.

\section*{Programming}

CYCLE997

\section*{Measuring variants}

Measuring cycle CYCLE997 permits the following measuring variants which are specified via parameter _MVAR.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Digit \\
\hline 7 & 6 & 5 & 4 & \(\mathbf{3}\) & \(\mathbf{2}\) & \(\mathbf{1}\) & \multicolumn{1}{l|}{ Measuring variant } \\
\hline & & & & 1 & & 9 & Measuring a sphere and ZO determination \\
\hline & & & & & 0 & & No measurement repetition \\
\hline & & & & & 1 & & With measurement repetition (with derived values) \\
\hline & & & 0 & & & & Measurement paraxial (to axes of the WCS) \\
\hline & & & 1 & & & & \begin{tabular}{l} 
Measurement at an angle (intermediate positioning on circular \\
path)
\end{tabular} \\
\hline & & 0 & & & & & Measure 1 sphere \\
\hline & & 1 & & & & & Measure 3 spheres \\
\hline & 0 & & 1 & & & & 3 circular measuring points (for "Measuring at an angle" only) \\
\hline & 1 & & 1 & & & & 4 circular measuring points (for "Measuring at an angle" only) \\
\hline 0 & & & & & & & Without diameter determination (ball diameter known) \\
\hline 1 & & & & & & & With diameter determination \\
\hline
\end{tabular}

\section*{Result parameters}

Measuring cycle CYCLE997 makes the following values available as results in the GUD5 data block:
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Result \\
\hline _OVR [0] & REAL & Setpoint sphere diameter, 1st sphere \\
\hline _OVR [1] & REAL & Setpoint center point coordinate abscissa 1st sphere \\
\hline _OVR [ 2 ] & REAL & Setpoint center point coordinate ordinate 1st sphere \\
\hline _OVR [3] & REAL & Setpoint center point coordinate applicate 1st sphere \\
\hline _OVR [ 4 ] & REAL & Actual value sphere diameter 1st sphere \\
\hline _OVR [ 5] & REAL & Actual value center point coordinate abscissa 1st sphere \\
\hline _OVR [6] & REAL & Actual value center point coordinate ordinate 1st sphere \\
\hline _OVR [ 7] & REAL & Actual value center point coordinate applicate 1st sphere \\
\hline -OVR [ 8] & REAL & Difference sphere diameter 1st sphere \\
\hline -OVR [9] & REAL & Different center point coordinate abscissa 1st sphere \\
\hline _OVR [10] & REAL & Difference center point coordinate ordinate 1st sphere \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Result \\
\hline _OVR [11] & REAL & Difference center point coordinate applicate 1st sphere \\
\hline _OVR [12] & REAL & Actual value sphere diameter 2nd sphere \({ }^{1)}\) \\
\hline _OVR [13] & REAL & Actual value of center point coordinates for abscissa 2nd sphere \({ }^{1)}\) \\
\hline _OVR [14] & REAL & Actual value of center point coordinates for ordinate 2nd sphere \({ }^{1)}\) \\
\hline _OVR [15] & REAL & Actual value of center point coordinates for applicate 2nd sphere \({ }^{1}\) ) \\
\hline _OVR [16] & REAL & Difference for sphere diameter 2nd sphere \({ }^{1)}\) \\
\hline _OVR [17] & REAL & Difference for center point coordinates for abscissa 2nd sphere \({ }^{1)}\) \\
\hline _OVR [18] & REAL & Difference for center point coordinates for ordinate 2nd sphere \({ }^{1)}\) \\
\hline _OVR [19] & REAL & Difference for center point coordinates for applicate 2nd sphere \({ }^{1)}\) \\
\hline _OVR [20] & REAL & Actual value sphere diameter 3rd sphere \({ }^{1)}\) \\
\hline _OVR [21] & REAL & Actual value of center point coordinates for abscissa 3rd sphere \({ }^{1)}\) \\
\hline _OVR [22] & REAL & Actual value of center point coordinates for ordinate 3rd sphere \({ }^{1)}\) \\
\hline _OVR [23] & REAL & Actual value of center point coordinates for applicate 3rd sphere \({ }^{1}\) \\
\hline _OVR [24] & REAL & Difference for sphere diameter 3rd sphere \({ }^{1)}\) \\
\hline _OVR [25] & REAL & Difference for center point coordinates for abscissa 3rd sphere \({ }^{1)}\) \\
\hline _OVR [26] & REAL & Difference for center point coordinates for ordinate 3rd sphere \({ }^{1)}\) \\
\hline _OVR [27] & REAL & Difference for center point coordinates for applicate 3rd sphere \({ }^{1)}\) \\
\hline _OVR [ 28 ] & REAL & Safe area \\
\hline _OVI [0] & INTEGER & ZO number \\
\hline _OVI [2] & INTEGER & Measuring cycle number \(=997\) \\
\hline _OVI [5] & INTEGER & Probe number \\
\hline _OVI [9] & INTEGER & Alarm number \\
\hline _OVI [11] & INTEGER & Status offset request \\
\hline _OVI [12] & INTEGER & Additional error information on alarm output, internal measurement evaluation \\
\hline \multicolumn{3}{|l|}{1) for measuring variants _MVAR=x1x1x9, only, measure 3 spheres} \\
\hline
\end{tabular}

\section*{Parameter}
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Meaning \\
\hline _SETVAL & REAL & Setpoint sphere diameter \\
\hline _SETV[0] & REAL & Setpoint center abscissa - 1st sphere \\
\hline _SETV[1] & REAL & Setpoint center ordinate - 1st sphere \\
\hline _SETV[2] & REAL & Setpoint center applicate - 1st sphere \\
\hline _SETV[3] & REAL & Setpoint center abscissa - 2nd sphere \({ }^{1)}\) \\
\hline _SETV[4] & REAL & Setpoint center ordinate - 2nd sphere \({ }^{1)}\) \\
\hline _SETV[5] & REAL & Setpoint center applicate - 2nd sphere \({ }^{1)}\) \\
\hline _SETV[6] & REAL & Setpoint center abscissa - 3rd sphere \({ }^{1)}\) \\
\hline _SETV[7] & REAL & Setpoint center ordinate - 3rd sphere \({ }^{1)}\) \\
\hline _SETV[ 8 ] & REAL & Setpoint center applicate - 3rd sphere \({ }^{1)}\) \\
\hline -RF & REAL & Velocity for intermediate paths on circular path (G2 or G3) (for _MVAR=xx11x9, - "Measuring at an angle" only) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Meaning \\
\hline _KNUM & \(0,>0\) & 0 : without automatic ZO compensation \(>0\) : with automatic ZO compensation (Individual values: see Parameter description section "Description of the most important defining parameters", Parameter _KNUM) \\
\hline _STA1 & REAL & Starting angle (for_MVAR=xx11x9, - "Measuring at an angle" only) \\
\hline _INCA & REAL & Stepping angle (for_MVAR=xx11x9, - "Measuring at an angle" only) \\
\hline _TNVL & REAL & \begin{tabular}{l}
Limit value for distortion of triangle (sum of deviations) \\
ZO is only corrected if the calculated distortion is below this limit value. \\
(for _MVAR=x1x1x9 - "Measuring 3 spheres" and _KNUM>0 only)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{1) for measuring variant _MVAR=x1x1x9, only, measure 3 spheres} \\
\hline
\end{tabular}

The following additional parameters are also valid:
_FA, _TSA, _VMS, _PRNUM and _NMSP

\section*{See also}

Measurement path: _FA (Page 79)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Variable measuring velocity: _VMS (Page 77)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

\subsection*{5.9.2 Measurement and ZO determination}

\subsection*{5.9.2.1 General information}

\section*{Measurement and calculation strategy}

At the beginning of the cycle the probe must be in the infeed axis at safety height. It must be possible to reach all spheres from here without collision.


The cycle starts with measurement of the 1st sphere. Active G17 to G19 defines the plane with abscissa, ordinate. The applicate is the infeed axis.
4 or 3 measuring points are approached at the height of the center point setpoint of the applicate. The actual center point of the circle in the plane is calculated internally from these measured values (center of sphere in plane). For measurement "at an angle" the auxiliary cycle CYCLE 116 is used for calculation.
The last measuring point is located exactly above the calculated sphere center in the plane and is approached using the applicate as the measuring axis.

The actual sphere center point in abscissa, ordinate, applicate is calculated from all these measuring point.

If measuring variant "Measuring 3 spheres" is selected with _MVAR, these spheres are then measured in the order sphere 2 , sphere 3 in the same way.

\section*{Selecting the measuring variant}

With variant "Measure at angle" (_MVAR=0x1109) fast calculation of the sphere position is possible if the sphere diameter is known (low number of measuring points and few intermediate positioning actions)
"Paraxial measurement" (_MVAR=0x0109) always requires 5 measuring points with more intermediate positioning actions.

In both types of measurement it is possible to repeat measurement with the located sphere center point (_MVAR=xxx119). Repeating measurement improves the measuring result.

It is also possible to calculate the sphere diameter (_MVAR=10xx1x9). In this case an additional measurement is taken parallel to the axis in the plus direction of the abscissa at the height of the sphere center calculated in the first measurement. Calculation of the sphere diameter and measurement repetition can be combined (_MVAR=10xx119). Here the diameter is calculated after each position measurement.

\section*{Safe area}

All setpoint/actual differences are checked for compliance with the safe area (parameter _TSA). If this value is exceeded, alarm message "61303 safe area exceeded" appears and an NC-RESET is needed.
Measurement is then canceled.
If _CBIT[0]=1 the measurement is first repeated.

\section*{ZO compensation during measurement of one sphere only (_MVAR=x0x1x9):}


The actual value/setpoint differences of the center point coordinates are included the calculation of the translatory component of the ZO. The offset acts such that the calculated sphere center point in the offset ZO includes the specified setpoint position (workpiece coordinates, three axes).

The offset is applied to the ZO number as defined in _KNUM. When KNUM=0, there is no offset. No scaling factors must be active in the ZOs / frames.

Settings in _CHBIT[21]:
You can set whether a ZO compensation should be FINE or COARSE in the translation component.
- _CHBIT[21]=0:

Offset is additive in FINE (if FINE is available as set in the MD, otherwise in COARSE).
- _CHBIT[21]=1:

Offset is COARSE, FINE is included in calculation and then reset (if FINE is available as set in the MD).

\section*{ZO compensation during measurement of 3 spheres (_MVAR=x1x109):}


Compensation of the entire active frame with its translational and rotary components is performed after 3 spheres have been measured with cycle CYCLE119 (see following section).
No mirroring or scaling factor may be active.
The offset acts such that the triangle formed by the 3 sphere center points includes the specified setpoint center positions (workpiece coordinates). The sum of the deviations of the spheres in relation to each other (distortion) must lie within the value in _TNVL. Otherwise no offset is performed and an alarm is output.
Offset compensation is always performed in COARSE (as described for _CHBIT[21]=1).

\section*{Note}

In this measuring variant (Measure 3 spheres) compensation in an NCU-global basic frame is not possible (_KNUM=1051 to 1066). This frame has no rotation component.

\subsection*{5.9.2.2 Operational sequence}

\section*{Position before measuring cycle call}

Before measuring cycle CYCLE997 is called the probe must be positioned at safety height above the set sphere center point (setpoints in _SETV[...]) of the 1st sphere.

\section*{General}

The measuring cycle generates the travel movements for approaching the measuring points itself and executes the measurements according to the selected measuring variant.

\section*{Note}

The value selected for parameter_FA should be so large that all spheres can be reached within total measurement path 2 ._FA.

Otherwise, no measurement will be performed or they will be incomplete.

\section*{Next process for measuring variant "Paraxial measurement" (_MVAR=x01x9):}


All intermediate positioning actions and measurement movements are paraxial with the active workpiece coordinate system. The measuring points are approached at distance _FA from the sphere lateral surface (setpoint sphere diameter). Measuring point P1 is approached first. After positioning in the abscissa, ordinate, the applicate is lowered to the height of the center point setpoint and the 1st measurement is taken Then P2 to P4 are approached and measured parallel to the axis.

P2 is approached via positioning of the applicate at distance _FA above the sphere (setpoint diameter) and lowering to measuring height again (setpoint center point of applicate). P3 and P4 are approached in the same way.

P3 and P4 lie at the center derived from P1 and P2 (actual value center point of abscissa).
The applicate is positioned from P4 to a distance _FA above the sphere and then approached in the abscissa, ordinate of the calculated actual value point (P5). The last measurement is taken: in the minus direction of the applicate.

After this measurement, the applicate is positioned to safety height (height as beginning of the cycle).

When 3 spheres are measured, the abscissa, ordinate are positioned toward the set center point of the next sphere. Procedure continues as above.

No sphere fixture or other obstacle must be located in this entire traversing range. It may be necessary to select this measuring variant with intermediate positioning on a circular path (_MVAR=xx1109). The position and number of measuring points is then variable.

Next process for measuring variant "Measurement at an angle" (_MVAR=x11x9):


With _STA1 (starting angle) the angle position of P1 is defined, with _INCA, the incremental angle after P2 and then after P3. If the measuring variant is selected with 4 measuring points on a circle (_MVAR=1x1109), _INCA is also valid from P3 to P4.
The measuring points are approached at distance _FA from the sphere lateral surface (setpoint sphere diameter). Measuring point P1 is approached first. After joint positioning of abscissa and ordinate, the applicate is lowered to the height of the center point setpoint of the applicate and the 1st measurement is taken radially in the direction center point setpont abscissa/ordinate.

Then P2 to P3 and P4 are measured on a circular path with feedrate _RF and measured in the same way as P1.

The applicate is positioned from P4 or P3 to a distance _FA above the sphere and then approached in the abscissa and ordinate of the calculated actual value point (P5). The last measurement is taken: in the minus direction of the applicate.
After this measurement, the applicate is positioned to safety height (height as beginning of the cycle).

When 3 spheres are measured the abscissa and ordinate are positioned simultaneously toward measuring point P1 of the next sphere and continued as described above.

No sphere fixture or other obstacle must be located in this entire traversing range.
The sum of the starting angle _STA1 and all incremental angles _INCA may not exceed 360 degrees.

\section*{Position after end of measuring cycle}

At the end of the cycle the probe is located above the first calculated actual center point of the 3rd or only sphere at safety height (height same as at beginning of cycle).

\subsection*{5.9.3 Programming example CYCLE997}

\section*{Determining positional deviations in space}

Three spheres each with a diameter of 50 mm are measured. Sphere center points 1 to 3 are expected for \((X, Y, Z)=(100,100,100),(600,100,100)\) and (1100, 1100, 100).
ZO compensation of the active frame is to be performed in accordance with the measured values. The exact diameter of the sphere is known.

A measured sphere lateral surface with a maximum deviation of \(\pm 5 \mathrm{~mm}\) is expected ( --> _FA=5).
Fixture of workpiece (ZO) with G54: NVx, NVy, NVz

Workpiece probe 1, used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:
Tool type (DP1): 710
Length 1 - geometry (DP3): \(\quad L 1=50.000\)
Radius - geometry (DP6): \(\quad R=3.000\)
Length 1 (L1) must refer to the center of the probe ball (_CBIT[14]=0), as for calibration.
Careful when positioning! Radius R in length (L1) is ignored.

```

%_N_ DETERMINE_KS _MPF
N10 G17 G54 ;X-Y plane, active zo
N20 T20 D1 ;Select and activate
N30 G0 G90 z200
N40 X100 Y100
N50 _SETVAL=50
_SETV[0]=SET(100,100,100, 600, 100,
100,1100, 1100, 100)
N60 _MVAR=010109 _KNUM=9999 _TNVL=1.2 ;Measure 3 spheres parallel to axis
;Offset in active frame,
;The offset is applied only if
;calculated distortion is less than 1.2 mm
;Measuring velocity 200 mm/min
;Measurement at same measuring point
;Measurement path 5 mm in front of to 5 mm
;behind setpoint position (sphere lateral
;surface), probe array _WP[0.0....9]
N100 CYCLE997 ;Call measuring cycle
...
N200 M2 ;End of program

```

\subsection*{5.9.4 CYCLE119: Arithmetic cycle for determining position in space}

\subsection*{5.9.4.1 General information}

\section*{Function}

This auxiliary cycle calculates the deviations in position and angle to the active frame from 3 defined setpoint positions in space (reference triangle) and 3 actual positions, and corrects a selected frame if necessary.


CYCLE119 is called as a subroutine by measuring cycle CYCLE997.
To allow this cycle to be used universally, its data are transferred via parameters.

\section*{Programming}
```

CYCLE119(_SETPOINT,_MEASPOINT,_ALARM,_RES,_REFRAME,_COR,_RESLIM)

```

\section*{Parameter}
\begin{tabular}{|c|c|c|c|}
\hline Input data & Data type & \multicolumn{2}{|l|}{Meaning} \\
\hline _SETPOINT [ 3,3] & REAL & \multicolumn{2}{|l|}{\begin{tabular}{l}
Field for 3 setpoint positions in the sequence 1st, 2nd, 3rd geometry axis (X, Y, Z) \\
These points are the reference triangle.
\end{tabular}} \\
\hline _MEASPOINT [ 3, 3] & REAL & \multicolumn{2}{|l|}{Field for 3 setpoint positions measured in the sequence 1st, 2nd, 3rd geometry axis (X, Y, Z). This is the real position in space of the described triangle.} \\
\hline \multirow[t]{7}{*}{_COR} & INTEGER & \multicolumn{2}{|l|}{Offset} \\
\hline & & \multirow[t]{6}{*}{Values:} & 0: No compensation \\
\hline & & & 1...99: ZO compensation in G54...G57, G505..G599 \\
\hline & & & 1000: ZO compensation of last active channel basic frame according to MD 28081 \\
\hline & & & 1011 to 1026: ZO compensation in channel basic frame \\
\hline & & & 2000: ZO compensation in scratch system frame \$P_SETFR \\
\hline & & & 9999: ZO compensation in active frame, settable frame G54...G57, G505...G599 and/or with G500 in last active basic frame according to \$P_CHBFRMASK \\
\hline _RESLIM & REAL & \multicolumn{2}{|l|}{Limit value for distortion (only relevant, if _COR \(>0\) ) If _RES is below this limit value, \(O Z\) is corrected, otherwise an alarm is output.} \\
\hline
\end{tabular}

The results of calculation are stored in these transfer parameters.
\begin{tabular}{|c|c|c|c|}
\hline Output data & Data type & \multicolumn{2}{|l|}{Meaning} \\
\hline _ALARM & INTEGER & \multicolumn{2}{|l|}{Cycle alarm number for feedback (transfer value must be 0 on cycle call).} \\
\hline \multirow[t]{3}{*}{-RES} & \multirow[t]{3}{*}{REAL} & \multicolumn{2}{|l|}{Result of calculation} \\
\hline & & Values: & < 0 : No frame was calculated An alarm (_ALARM > 0 ) is returned. \\
\hline & & & \(\geqq 0\) : Calculation was successful. The size of the value a measure of the distortion of the triangle, for example, by measurement inaccuracies. It is the sum of the variances of the individual points in mm . \\
\hline _REFRAME & FRAME & Result fr If this res triangle setpoint & rame, difference from actual frame ult frame is linked to the active frame, the measured osition is given the desired position (workpiece coordinates). \\
\hline
\end{tabular}

\section*{Note}

\section*{Correction}

The frame to be corrected must not contain any mirroring or scaling factors. If no channel basic frame exists for G500, a cycle alarm (_ALARM>0) is output.
The new frame data with renewed programming of the G command of the associated settable frame is activated (G500, G54 to ...) outside this cycle by the user.

\subsection*{5.9.4.2 Programming example}

\section*{CYCLE119 application}
```

%_N_ Check _MPF
; Calculate new frame according to transferred points and correct in active frame
;Apply (_COR=9999) if distortion is _RES < 1.2 mm:
DEF REAL
_SETPOINT [3, 3],_MEASPOINT [3, 3]
DEF REAL _RES, _RESLIMIT
DEF INT _ALARM
DEF FRAME REFRAME
N10 G17 G54 T1 D1
N20 _SETPOINT[0,0]=SET(10,0,0) ; Setpoint coordinates 1st point (X1,Y1,Z1)
N30 _SETPOINT[1,0]=SET(0,20,0) ; Setpoint coordinates 2nd point (X2,Y2,Z2)
N40 _SETPOINT[2,0]=SET (0,0,30) ; Setpoint coordinates 3rd point (X3,Y3,Z3)
;Program section for determining actual workpiece coordinates of the 3 points:
..
;Assignment of derived values:
N100 MEASPOINT[0,0]=SET(11,0,0) ;Actual value coordinates 1st point
;(X1,Y1,Z1)
N110 MEASPOINT[1,0]=SET(1,20,0) ;Actual value coordinates 2nd point
;(X2,Y2,Z2)
N120 MEASPOINT[2,0]=SET(1,0,30) ;Actual value coordinates 3rd point
;(X3,Y3,Z3)
;Calculation with compensation in G54:
N200 CYCLE119(_SETPOINT,_MEASPOINT,
_ALARM,_RES,_REFRAME,9999,1.2)
IF (_ALARM==0) GOTOF _OKAY
MSG ("Error: " <<_ALARM)
M0 ;Alarm occurred
GOTOF END
_OKAY: G54 ;Activate corrected frame (ZO)
N400 G0 X...Y...Z... ;Traverse in corrected frame

```

```

N500 _END: M2

```

\subsection*{5.10 CYCLE996 workpiece: Measure kinematics}

\subsection*{5.10.1 General}

\section*{Function}

\section*{Note}

The "Measure kinematics" function is an option and is available from measuring cycles SW 7.5 onwards!

With the "Measure kinematics" function, it is possible to calculate the geometric vectors used to define the 5 -axis transformation (TRAORI and TCARR) by measuring the position of the ball in space.
The measurement is essentially carried out by means of workpiece probes, which scan three positions of a measuring ball on each rotary axis. The ball positions can be defined in accordance with user specifications so that they correspond to the geometric ratios on the machine. The only way of setting the ball positions is to reposition the rotary axis that is to be measured in each case.

Aside from the basic mechanics of the machine, no specific knowledge is required to use CYCLE996. No dimension drawings or machine location diagrams are necessary to carry out measuring.
References: /PGZ/ Programming Manual Cycles, CYCLE800

\section*{Application range}

The "Measure kinematics" function (CYCLE996) can be used to determine the data that is relevant to transformations in the case of kinematic transformations that involve rotary axes (TRAORI, TCARR).

\section*{Options:}
- Redetermination of swivel data records
- Machine startup
- Use of swivel-mounted workholders as TCARR
- Checking swivel data records
- Service following collisions
- Checking the kinematics during the machining process

Kinematics with manual axes (manually adjustable rotary tables, swivel-mounted workholders) can be measured in the same way as kinematics with NC-controlled rotary axes.

When CYCLE996 is started, a swivel data record with basic data (for kinematics type, see Programming Manual Cycles CYCLE800) must be parameterized. The measurement itself must be carried out without an active kinematic transformation.

\section*{Requirements}

The following requirements must be met in order to use CYCLE996 (Measure kinematics):
- SIEMENS measuring cycles package is installed
- Workpiece probe is calibrated
- Calibration ball is mounted
- Oriented tool carrier is initialized (MD 18088: MM_NUM_TOOL_CARRIER > 0)
- The basic geometry of the machine ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) ) is rectangular and referenced The right angle refers to the workpiece spindle and should be preferably checked using a test mandrel.
- Defined position of the rotary axes involved in the transformation
- Defined traverse directions in compliance with the standard of all axes involved in the transformation according to ISO 841-2001 and/or DIN 66217 (righthand rule)

\section*{See also}

Options (Page 432)

\subsection*{5.10.2 Measurement procedure}

\subsection*{5.10.2.1 Proceed as follows}

The "Measure kinematics" function involving the use of CYCLE996 is implemented by means of the following basic procedure:
1. Measure a rotary axis
2. Measure a second rotary axis (if this exists)
3. Calculate the swivel data records (calculate kinematics)
4. The calculated data is activated automatically or with the aid of the user

The user (preferably the machine manufacturer) should ensure compliance with the specified sequence.
If the position of the calibration ball within the machine can be specified as an inherent part of the design, then it will be possible to store the entire kinematic measurement process (carried out using CYCLE996) as a part program, which is extremely advantageous. As a result, the user can carry out measurement of the kinematics under a set of predefined conditions at any given point in time.

\subsection*{5.10.2.2 Measuring an individual rotary axis}

\section*{Process}

The following steps must be carried out in order to measure a rotary axis:
- Mount the calibration ball on the machine table (user)
- Define and approach the three ball positions with the rotary axis that is to be measured (user)
- Specify and approach the three ball positions with the probe in a linear movement/in linear movements (user)
- Using CYCLE996, scan all three ball positions of the calibration ball with the probe.

\section*{Mounting the calibration ball}

In the case of machinery, the calibration ball is to be installed on the machine table.
In order to measure swivel data records for swivel-mounted workholders, the ball must be incorporated into the appropriate workholder. In all cases it must be ensured that the probe can approach and bypass the mounted calibration ball without collision in all the selected rotary axis positions.

Considering the need to avoid collisions, the calibration ball should be mounted as far as possible from the center of rotation of the rotary axis that is to be measured.
If the three ball positions result in too small a triangle, this will negatively affect the accuracy of the procedure:

Calibration ball mounted sufficiently far from the center of rotation; large triangle can be clamped


Calibration ball mounted too near the center of rotation; clamped triangle is too small


\section*{Note}

While measuring a rotary axis, the mechanical hold-down of the calibration ball must not be altered. It is only with table and mixed kinematics that different calibration ball mounting positions are permissible for the purpose of measuring the first and subsequent rotary axes.

\section*{Defining the rotary axis positions}

Three measuring positions (ball position) must be defined for each rotary axis. Please note that the positions of the ball in space (resulting from the three defined rotary axis positions) should lead to as large a triangle as possible being clamped.

Rotary axis positions sufficiently far away from one another; large triangle clamped


Rotary axis positions poorly selected; clamped triangle is too small


\section*{Approaching the ball position}

First of all, the probe must be positioned above the calibration ball at each of the three rotary axis positions defined by the user. The position must only be approached by traversing the linear axes ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) ). The positions themselves must be entered (set up) by the user. They should be determined manually using an active probe.

When selecting approach positions, please bear in mind that, within the context of automatic calibration ball scanning, the probe always moves in its preferred direction. Particularly where head and mixed kinematics are concerned, the starting point should be selected in a way that ensures alignment of the probe with the center point of the calibration ball in the approach position.

Starting point selected directly above the calibration ball


Starting point selected laterally above the calibration ball


\section*{Note}

If the machine does not proceed as expected when the calibration ball is being scanned, the basic orientation and travel direction of the rotary axes should be checked (has DIN conformity been maintained when defining the axes?)

\subsection*{5.10.2.3 Measuring an individual ball position}

Once the probe has been positioned in accordance with user specifications above the ball, either manually or by the part program (starting point of CYCLE996), the calibration ball is scanned by calling CYCLE996 and the current ball position is measured.

To this end, the user should parameterize and call CYCLE996 separately for each ball position.

\subsection*{5.10.2.4 Calculating and activating the swivel data records}

After measuring the three ball positions that are required in each case for all the relevant rotary axes, the entire set of swivel data records can be calculated by means of CYCLE996. CYCLE996 should be parameterized and called for this purpose.
The swivel data records calculated using CYCLE996 can be activated as follows:
- Automatically or
- Manually

Activating tolerance limits when parameterizing CYCLE996 (compare output values and calculated values), allows conclusions to be drawn as regards unusual changes in the mechanical kinematic chain. The unintentional automatic overwriting of output values can be avoided by adjusting the tolerance limits.
\begin{tabular}{|l|}
\hline ! CAUTION \\
The rotary axis vectors \(\mathrm{V} 1 / \mathrm{N} 2\) (orientation of the rotary axes) are never automatically \\
overwritten.
\end{tabular}

Primarily, the calculated rotary axis vectors enable an assessment to be made regarding the mechanical desired/actual state of the kinematics. Depending on the kinematics configuration, even the smallest and corrected deviations in the position of the rotary axis vectors can result in large compensating movements.

\subsection*{5.10.3 Example of the procedure to measure the kinematics (CYCLE996)}

By way of illustration, the BC table kinematics measurement process (both rotary axes move the workpiece) is described below:
- The two rotary axes can only be adjusted mechanically (workholder with orientation capability)
- The computed values are archived in TCARR data.

\section*{General procedure}
- Create/check TCARR data:

MD 18088 MM_NUM_TOOL_CARRIER > = 1?
- Mount calibration ball on the clamping device
- Load and activate the probe in the spindle
- Calibrate the probe using CYCLE976 or "Calibrate probe". Measure in JOG mode

\section*{Procedure for approaching positions}


\subsection*{5.10.4 Activation of the function}

The screen form for CYCLE996 ("Measure kinematics") is activated via the global GUD6 variable _MZ_MASK[8] = 1
as follows:
\(\left|\begin{array}{l}\text { Commis- } \\
\text { sioning }\end{array}\right| \Rightarrow>\left|\begin{array}{l}\text { Measuring } \\
\text { cycles }\end{array}\right| \Rightarrow\)\begin{tabular}{l} 
Automatic \\
measuring
\end{tabular}

\subsection*{5.10.5 Measuring kinematics}

Starting from the kinematics initial state, the relevant rotary axes are measured individually.

\section*{Process}
- Rotary axes 1 or 2 can be measured in any order. If the machine kinematics only have one rotary axis, this is measured as rotary axis 1 . During the measurement procedure, no 5-axis transformations (TCARR or TRAORI) are active.
- The basic data for the kinematics are always the data of the tool carrier with orientation capability. If a dynamic 5-axis transformation is to be supported, it is preferable to use transformation type 72 (vectors from TCARR data).
- The linear and rotary axes must be prepositioned on the starting positions P1 to P3 (see programming example) before measuring cycle CYCLE996 is called in the NC program. The starting position is automatically accepted in CYCLE996 as the position setpoint for the "Measure ball" function.
- In each of the ball (rotary axis) positions selected, measuring is performed in accordance with the parameters and by calling CYCLE996.
- The kinematics are calculated via a separate, parameterized call of CYCLE996.
- The measuring results are written to the result parameter (OVR parameter) after the 3rd measurement has been completed and the CYCLE996 setting "Calculate kinematics" (refer to _MVAR). When the "Enter vectors" function is selected (refer to _MVAR, _TNUM), then data is output to the swivel data record that has been set-up (TCARR, TRAORI(1)).
- A protocol file with the measurement results in an appropriate data format (machine data or TCARR data) can be optionally output.

\subsection*{5.10.6 Programming via a screen form}

\subsection*{5.10.6.1 General}

Call "Measure kinematics" function - CYCLE996
Enter "Program" operating area in the part program editor
Press the following softkeys:


\section*{CYCLE996 screen forms}

Two screen forms are offered for CYCLE996:
- "1st, 2nd, 3rd measurement" screen form
- "Calculate kinematics" screen form

Vertical softkey (VSK) functions:

At the end of the 3rd measurement, a call calculates the vectors of the measured rotary axes. The prerequisite for this is that all three measurements have been carried out for the rotary axis concerned, and that the corresponding measurement results (center points of the calibration ball) have been saved. The vectors of the machine kinematics are then calculated in full when both rotary axes have been measured. The measurement counter, parameter OVR[40], is displayed in the result bit or in the protocol.

For "1st, 2nd, 3rd measurement" or "Calculate kinematics" coding, see parameter _MVAR.
The help displays show the three starting positions (P1, P2, P3) of the probe, based on the kinematics type of the swivel data record.

Measurement for kinematics with swivel head:


With the 2nd and 3rd measurements, the rotary axis to be measured is rotated around the largest possible angle. The position of the calibration ball must be stationary during measurement (1st, 2nd, 3rd).

\section*{Starting position}

The starting position of the probe must be approached by the user or from the user program (see example program).
The probe must be prepositioned in the direction of the tool orientation (ORI) above the highest point of the calibration ball (probe aligned with ball center point). After approaching the starting position, the distance ( D ) from the calibration ball should be as short as possible.


\subsection*{5.10.6.2 Parameters of "1st, 2nd, 3rd measurement" screen form}

\section*{Screen form}

```

Name (Name/number of the swivel data record)
Select the swivel data records set in MD 18088: MM_NUM_TOOL_CARRIER The basic
kinematics data can be entered with VSK1 "Swivel data".
Parameter: TNUM
Rotary axis (Name of rotary axis 1 or 2)
Select the name of the rotary axis of the swivel data record (\$TC_CARR35/36).
Parameter: _MVAR
Measuring angle (Measuring angle with manual or semi-automatic rotary axes)
The entry field is only displayed if manual or semi-automatic rotary axes are declared in the
swivel data record }->\mathrm{ see \$TC_CARR37.
Parameters:

- _SETV [3] with rotary axis 1
- _SETV [4] with rotary axis 2 or with swivel head with manual rotary axes
Calibration ball (Calibration ball diameter)
Parameter: _SETVAL
Measurement path (Measurement path factor)
Parameter: FA
_FA should be selected to be greater than the mechanical clearance (A) when pre-
positioning the probe.
Range (Safe area)
Parameter: _TSA
Probe number (Number of probe field)
Parameter: _PRNUM
Measuring feedrate (Measuring feedrate)
Input field for the measuring feedrate
Parameter: _VMS

```

Protocol file (Measurement data protocol file)
Selection:
- No (default)
- Yes

The protocol file is saved in the current NC data path (or workpiece) in which the measurement program is running. The file name is the same as that of the swivel data record plus "_M1". If the file name already exists, M1 is incremented (up to M99).
If the protocol file is activated, the intermediate results, i.e., the three center points of the calibration ball (corresponding to 1st, 2nd and 3rd measurements) are logged.

The user is responsible for all protocol file operations (deleting, unloading, saving, etc.)

\subsection*{5.10.6.3 Parameters of "Calculate kinematics" screen form}

Pressing VSK6, "Calculate kinematics" displays the following screen form:


Name (Name/number of the swivel data record)
Select the swivel data records set in MD 18088: MM_NUM_TOOL_CARRIER
Parameter: _TNUM

\section*{Measuring result}

Selection:
- Measure only (only "Measure" and "Calculate vectors")
- Enter ("Measure", "Calculate vectors" and "Enter vectors in swivel data record")

For coding, see _MVAR

The result parameters from _OVR[1] are calculated in both selections.
The "Enter" option is only displayed when the manufacturer password is set. When the option to "Enter" vectors is selected, the linear vectors (offset vectors) are entered in the swivel data record. If input fields of the tolerance values are not equal to zero and these are overwritten after measurement, then the linear vectors are not automatically entered.

\section*{CAUTION}

Rotary axis vectors V 1 and V 2 are not entered automatically.

Observe the machine manufacturer's instructions!

\section*{Result bit}

\section*{Selection:}
- No (no result bit)
- Yes (result bit of calculated vectors)
- Yes, can be edited (result bit and offset of calculated vectors)
- Only when manufacturer password and measuring result selection are "entered".
- If necessary, the user can round off the calculated vectors before accepting the data For the result bit, see Section "Result bit".

The following displays - "Rotary axis", "Normalizing" and, where applicable, "Position value" are all functionally associated with one another.

\section*{Rotary axis}

Displays the name of rotary axis \(1 /\) rotary axis 2 (if this exists) of the measured kinematics.

\section*{Normalizing (Normalizing the vertice of the calculated vectors)}
"Normalizing" refers to setting a component of a linear vector to a preferred value of a linear axis position (in X, Y or Z). Using normalizing, kinematic vectors that have been determined can be calculated with reference to mechanical fixed positions specific for a machine (e.g. Z position of the table surface). This allows comparable swivel data records to be written to within a machine series. The measured kinematic data are therefore independent of mechanically specified measuring conditions (mounting position of the calibration ball).
Example:
\(Z\) component of the linear vector of rotary axis \(C\) is always referred to the upper edge of the table at \(Z=0\).
i.e., rotary axis \(\mathrm{C} /\) normalizing \(\mathrm{Z} /\) position value 0

\section*{Selection:}
- No (default) (no normalizing)
- Z, Y, X (normalizing of axes \(\mathrm{X}, \mathrm{Y}\), or Z in line with an assigned position value)

For coding, see _MVAR

Position value (Normalizing position value)
Entry field can only be seen if "Normalizing" is shown on Z, Y, X.
Parameter:
- Rotary axis 1 normalizing _SETV[5]
- Rotary axis 2 normalizing _SETV [ 6]

Tolerance lin (Tolerance value of offset vectors I1 to I4)
The tolerance parameters should enable the user to make a "good" or "bad" assessment when the kinematics are measured. The prerequisite for this is that kinematics vectors have already been correctly entered. The tolerance values and the extensive normalizing associated with them must be specified by the machine manufacturer.

Parameter: _SETV [ 7 ]

Tolerance red (Tolerance value of rotary axis vectors \(\mathrm{V} 1, \mathrm{~V}\) 2)
Parameter: _SETV [ 8 ]
Effect of the tolerance parameters:
1. Tolerance value \(=0->\) no effect
2. Tolerance value <> 0 and tolerance exceeded \(\rightarrow\) Cancel alarm 62430, 62431 with display of the 1 st value and parameter (\$TC_CARR1, etc.) that has been exceeded.
If the result bit is active, the fields are displayed in which the tolerance value was found to be exceeded on comparison of the \$TC_CARR parameter and the _OVR result parameter.

Observe the machine manufacturer's instructions!

Protocol file (Protocol file for the calculated kinematics vectors)
Selection:
- No
- Yes
- Yes, TRAORI(1);

The protocol file is saved in the current NC data path (or workpiece) in which the measurement program is running. The file name of the protocol file is generated from the name of the swivel data record and a counting index:
\(\rightarrow\) e.g. swivel data name generated from \$TC_TCARR[x] = "SWIVEL"
Name of protocol file: "SCHWENK_M1.MPF"
If the file name already exists, M1 is incremented (up to M99). Once there are 99 protocol files, the process starts again from protocol file "_M1". The user is responsible for all protocol file operations.

The protocol file contains the syntax of the swivel data record parameters \(\rightarrow\) e.g. \$TC_CARR1[1]=-426.708853 \$TC_CARR2[1]=-855.050806 ... ;I1xyz.

In the settings "Yes, TRAORI(1)", a protocol file with the corresponding TRAORI machine data is generated.

For coding, see _MVAR

\subsection*{5.10.6.4 Result bit}

If the "Calculate kinematics" selection is active, a result bit can be selected in the screen form for CYCLE996 as follows:
- No: After calculating/measuring, the results are not displayed.
- Yes: After calculation/measuring, the message display appears; the individual values on this display cannot be edited.
- Yes, editable: The result parameters can be changed (and potentially rounded off).


If the tolerance parameters <> 0, the relevant fields are displayed in red when they are exceeded (comparison from \$TC_CARR1...with _OVR[1...]).

The calculated/measured _OVR-Parameter are always displayed in the result bit.

\subsection*{5.10.7 Programming using parameters}

\subsection*{5.10.7.1 Programming using parameters}

\section*{CYCLE996 programming with "1st, 2nd, 3rd measurement"}
_MVAR, _TNUM, _SETVAL, _FA, _TSA, _VMS, _PRNUM, _SETV[3], _SETV[4] CYCLE996

CYCLE997 is called internally within CYCLE996 for the purpose of measuring the calibration ball. Parameters _SETVAL, _FA, _TSA, _VMS and _PRNUM feed CYCLE997.

\section*{CYCLE996 programming with "Calculate kinematics"}
```

_MVAR, _TNUM, _SETV[5] , _SETV [6], _SETV [7] , _SETV [8]
CYCLE996

```

\section*{Basic kinematics data}

The functionality of CYCLE996 requires the NCK function "Tool carrier with orientation capability (TCARR)" (see also Programming Manual Cycles CYCLE800).
The number of tool carriers with orientation capability must be entered in machine data MD 18088: MM_NUM_TOOL_CARRIER.

If the dynamic 5 -axis transformation (TRAORI) is also to be set (or is the only function to be set), MD \(24 \times 00\) \$MC_TRAFO_TYPE_x = 72 ( \(x=1 \ldots 8\) ) should ideally be set, as should the number of the TOOLCARR swivel data record to be used in MD 24582 TRAFO5_TCARR_NO_1.
The following basic kinematics data must be known at the start of CYCLE996:
It is entered in either the "Swivel cycle" startup menu (CYCLE800) or in the screen form for the 1st measurement (SK swivel data record).
- Kinematics type: Swivel head ("T"), swivel table ("P") or mixed kinematics ("M")
- Name of swivel data record
- Approximate rotary axis vector V1xyz of rotary axis 1 (e.g, axis B swivels around Y V1 = 0, 1, 0)
- Approximate rotary axis vector V2xyz of rotary axis 2 (if this exists) (e.g, axis C swivels around Z V2 \(=0,0,1\) )
- Name of rotary axes
- Mode of rotary axes: automatic (NC rotary axes), manual or semi-automatic
- Travel range of rotary axes

\section*{"1st, 2nd, 3rd measurement" parameters}
\begin{tabular}{|l|l|l|}
\hline Parameter & Value/data type & Meaning \\
\hline _MVAR & Decimal 1...9 & \begin{tabular}{l} 
"Measure kinematics" mode (see the following measurement \\
variants)
\end{tabular} \\
\hline -TNUM & INTEGER & Number of swivel data record \\
\hline -SETVAL & REAL & Diameter of the calibration ball \\
\hline FFA & REAL & Measurement path factor \\
\hline _TSA & REAL & Safe area \\
\hline -VMS & REAL & Measuring feedrate \\
\hline -PRNUM & INTEGER & Number of probe (probe field) \\
\hline _SETV [ 3 ] & REAL & Position value of rotary axis 1 (manual or semi-automatic) \\
\hline- SETV [ 4 ] & REAL & Position value of rotary axis 2 (manual or semi-automatic) \\
\hline
\end{tabular}

\section*{"Calculate kinematics"parameters}
\begin{tabular}{|l|l|l|}
\hline Parameter & Value/data type & Meaning \\
\hline- MVAR & Decimal 1...9 & \begin{tabular}{l} 
"Measure kinematics" mode (see the following measurement \\
variants)
\end{tabular} \\
\hline- TNUM & INTEGER & Number of swivel data record \\
\hline- SETV [ 5 ] & REAL & Position value for normalizing rotary axis 1 \\
\hline _SETV [ 6 ] & REAL & Position value for normalizing rotary axis 2 \\
\hline _SETV [ 7 ] & REAL & Tolerance value of offset vectors I1...I4 \\
\hline- SETV [ 8 ] & REAL & Tolerance value of rotary axis vectors V1, V2 \\
\hline
\end{tabular}

\section*{Measurement variants}

Measuring cycle CYCLE996 permits the following measurement variants, which are specified via parameter _MVAR.
- "1st, 2nd, 3rd measurement" _MVAR

－＂Calculate kinematics＂＿MVAR
```

9}\frac{8}{1}\frac{7}{1}\frac{6}{1}\frac{5}{1}\frac{4}{1}\frac{3}{1}\frac{2}{1}\frac{1}{1
I I I I I I I I___MMVAR
l l l lll:l:l
l l l l l \longleftarrow_ - 9 kinematics" function -
| | | | | - - - CYCLE996_ - - - - - - - -
l I l I I Measuring result
| | | - 0 Measuring only
l l l l
lllll - l l - - - --------------
| | Result bit
I | | | - O No
I I I I 1 Yes
llll
1 I - V-----ーーーーーーーーー-
l 1 0 Vector chain closed
l 11 3 Vector chain open
l l I Axis number for normalizing rotary axis 1
L No normalizing
1 X axis normalizing
2 Y axis normalizing
3 Z axis normalizing

Axis number for normalizing rotary axis 2
0 No normalizing
1 X axis normalizing
2 Y axis normalizing
Z Z axis normalizing

Protocol file
No
1 Yes (protocol format as \$TC_CARR-Parameter)
2 Yes, TRAORI (1) (protocol format as \$TC_CARR-Parameter
and as TRAORI machine data)

```

\section*{5．10．7．2 Result parameters，intermediate results}

\section*{Result parameters}

When＂Measure kinematics＂is selected and both rotary axes（＿OVR［40］＝33）are measured，the CYCLE996 measuring cycle makes the following values available as results in data block GUD5：
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Result \\
\hline ＿oVR［ 1 ］ & REAL & Offset vector I1 \＄TC＿CARR1［n］，X component \\
\hline ＿OVR［ 2 ］ & REAL & Offset vector I1 \＄TC＿CARR2［n］，Y component \\
\hline ＿OVR［ 3 ］ & REAL & Offset vector I1 \＄TC＿CARR3［n］，Z component \\
\hline ＿OVR［ 4 ］ & REAL & Offset vector I2 \＄TC＿CARR4［n］，X component \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Result \\
\hline _OVR [ 5 ] & REAL & Offset vector I2 \$TC_CARR5[n], Y component \\
\hline _OVR [ 6 ] & REAL & Offset vector I2 \$TC_CARR6[n], Z component \\
\hline _OVR [ 7 ] & REAL & Rotary axis vector V1 \$TC_CARR7[n], X component \\
\hline _OVR [ 8 ] & REAL & Rotary axis vector V1 \$TC_CARR8[n], Y component \\
\hline _OVR [ 9 ] & REAL & Rotary axis vector V1 \$TC_CARR9[n], Z component \\
\hline _OVR [ 10 ] & REAL & Rotary axis vector V2 \$TC_CARR10[n], X component \\
\hline _OVR [ 11 ] & REAL & Rotary axis vector V2 \$TC_CARR11[n], Y component \\
\hline _OVR [ 12 ] & REAL & Rotary axis vector V2 \$TC_CARR12[n], Z component \\
\hline _OVR [ 15 ] & REAL & Offset vector I3 \$TC_CARR15[n], X component \\
\hline _OVR [ 16 ] & REAL & Offset vector I3 \$TC_CARR16[n], Y component \\
\hline _OVR [ 17 ] & REAL & Offset vector I3 \$TC_CARR17[n], Z component \\
\hline _OVR [ 18 ] & REAL & Offset vector I4 \$TC_CARR18[n], X component \\
\hline _OVR [ 19 ] & REAL & Offset vector I4 \$TC_CARR19[n], Y component \\
\hline _OVR [ 20 ] & REAL & Offset vector I4 \$TC_CARR20[n], Z component \\
\hline _OVI [ 2 ] & INTEGER & Measuring cycle number = 996 \\
\hline _OVI [ 3 ] & INTEGER & Measurement variant (_MVAR) \\
\hline _OVI [ 8 ] & INTEGER & Number of swivel data record (_TNUM) \\
\hline _OVI [ 9 ] & INTEGER & Alarm number \\
\hline
\end{tabular}

Measurement results (calculated vectors) depend on the type of kinematics
\begin{tabular}{|c|c|c|}
\hline Head kinematics & & \\
\hline 11 \$TC_CARR1...3[n] & \multirow[b]{3}{*}{Corresponds to} & _OVR[1]..._OVR[3] \\
\hline I2 \$TC_CARR4...6[n] & & _OVR[4]..._OVR[6] \\
\hline I3 \$TC_CARR15...17[n] & & _OVR[15]..._OVR[17] \\
\hline & & _OVR[18]..._OVR[20] = 0 \\
\hline \multicolumn{3}{|l|}{Closure of the I1 = - (13+12) vector chain; for fixed-mounted machine kinematics} \\
\hline
\end{tabular}

\section*{Table kinematics}
\begin{tabular}{|c|c|c|}
\hline 12 \$TC_CARR4...6[n] & \multirow{4}{*}{Corresponds to} & _OVR[4]..._OVR[6] \\
\hline I3 \$TC_CARR15...17[n] & & _OVR[15]..._OVR[17] \\
\hline \multirow[t]{2}{*}{14 \$TC_CARR18...20[n]} & & _OVR[18]..._OVR[20] \\
\hline & & _OVR[1]..._OVR[3] = 0 \\
\hline
\end{tabular}

\section*{Mixed kinematics}
\begin{tabular}{|c|c|c|}
\hline 11 \$TC_CARR1...3[n] & \multirow{4}{*}{Corresponds to} & _OVR[1]..._OVR[3] \\
\hline I2 \$TC_CARR4...6[n] & & _OVR[4]..._OVR[6] \\
\hline 13 \$TC_CARR15...17[n] & & _OVR[15]..._OVR[17] \\
\hline 14 \$TC_CARR18... \(20[\mathrm{n}\) ] & & _OVR[18]..._OVR[20] \\
\hline Closure of the I1 = -12 I4 & vector chain; & fixed-mounted machin \\
\hline
\end{tabular}

The result parameters that are not calculated \(=0\)

Intermediate results _OVR[32] to _OVR[71]
Intermediate results (center point of the calibration ball XYZ) and the status are saved in the fields from _OVR[33...].
\begin{tabular}{|l|l|l|}
\hline Parameters & Data type & Result \\
\hline _OVR \([32,33,34]\) & REAL & Linear vectors of 1st rotary axis are not normalized \\
\hline _OVR \([35,36,37]\) & REAL & Linear vectors of 2nd rotary axis are not normalized \\
\hline
\end{tabular}

The linear vectors are assigned to the concrete vectors of the kinematics (I1, I2, etc.) in accordance with the normalizing process.
\begin{tabular}{|c|c|c|}
\hline -OVR [40] & REAL & \begin{tabular}{l}
Measurement counter \\
\(x 0=1\) st measurement of 1st rotary axis begun \\
\(\mathrm{x} 1=1\) st measurement of 1 st rotary axis OK \\
\(\mathrm{x} 2=2 \mathrm{nd}\) measurement of 1st rotary axis OK \\
\(x 3=3\) rd measurement of 1st rotary axis OK \\
\(0 x=1\) st measurement of 2 nd rotary axis begun \\
\(1 \mathrm{x}=1\) st measurement of 2 nd rotary axis OK \\
\(2 \mathrm{x}=2 \mathrm{nd}\) measurement of 2 nd rotary axis OK \\
\(3 x=3\) rd measurement of 2nd rotary axis OK \\
\(33=\) Both rotary axes measured
\end{tabular} \\
\hline _OVR[41,42,43] & REAL & \(1^{\text {st }}\) measurement of 1st rotary axis \\
\hline -OVR[44,45,46] & REAL & \(2^{\text {nd }}\) measurement of 1st rotary axis \\
\hline _OVR[47,48,49] & REAL & \(3^{\text {rd }}\) measurement of 1 st rotary axis \\
\hline _OVR[51,52,53] & REAL & \(1{ }^{\text {st }}\) measurement of 2nd rotary axis \\
\hline _OVR[54,55,56] & REAL & \(2^{\text {nd }}\) measurement of 2nd rotary axis \\
\hline _OVR[57,58,59] & REAL & \(3{ }^{\text {rd }}\) measurement of 2nd rotary axis \\
\hline
\end{tabular}

When the 1st measurement is begun, the intermediate results (ball center points) of the rotary axis are deleted.
1st measurement of 1st rotary axis \(\rightarrow\) Delete _OVR[41] ... _OVR[49]
1st measurement of 2nd rotary axis \(\rightarrow\) Delete _OVR[51] ... _OVR[59]
\begin{tabular}{|l|l|l|}
\hline _OVR \([66,67,68]\) & REAL & Rotary axis vectors V1xyz \\
\hline- OVR \([69,70,71]\) & REAL & Rotary axis vectors V2xyz \\
\hline
\end{tabular}

\subsection*{5.10.8 Programming example}
```

%_N_HEAD_BC_MPF
;\$PATH=/_N_WKS_DIR/_N_ HEAD_BC_WPD
;Measure kinematics
;Starting positions for HEAD_BC (swivel head)
;Calibration ball D = 25mm
;P1...P3 rotary axis 1
;P4...P6 rotary axis 2
;P1,P4 kinematics initial state
DEF REAL _P1[5]=SET(27.5,-184.5,22.5,0,0) ;P1 xyz 1.RA 2.RA
DEF REAL _P2[5]=SET(83,-108,22.5,45,0) ;P2 xyz 1.RA 2.RA
DEF REAL _P3[5]=SET(-65,-200,22.5,-45,0) ;P3 xyz 1.RA 2.RA
DEF REAL _P4[5]=SET(27.5,-184.5,22.5,0,0) ;P4 xyz 1.RA 2.RA
DEF REAL _P5[5]=SET(124,-184.5,-17,0,45) ;P5 xyz 1.RA 2.RA
DEF REAL _P6[5]=SET(-68.8,-184.5,-17,0,- ;P6 xyz 1.RA 2.RA
45)
T99 D1 ;3D probe
G500
CYCLE800()
TRAFOOF
IF (NOT \$P_SEARCH) ;If no block search
_OVR[40]=0 ;reset measurement counter to zero
ENDIF
;--------------------- 1st measurement of rotary axis 1
G0 z100 ;Safely retract axis Z
BB=_P1[3] CC=_P1[4] ;kinematics initial state
X=_P1[0] Y=_P1[1] Z=_P1[2]
_MVAR=10010091 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 _VMS=500.000 __PRNUM=1
_SETV[3]=0.000 _SETV[4]=0.000
CYCLE996
M0
;--------------------- 2nd measurement of rotary axis 1
G0 z100
BB=_P2[3] CC=_P2[4]
X=_P2[0] Y=_P2[1] Z=_P2[2]
_MVAR=10092 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 _VMS=500.000 _PRNUM=1
_SETV[3]=0.000 _SETV[4]=0.000
CYCLE996
M0
;--------------------- 3rd measurement of rotary axis 1
G0 Z100
BB=_P3[3] CC=_P3[4]
X=_P3[0]
Y=_P3[1] Z=_P3[2]
_MVAR=10093 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 _VMS=500.000 _PRNUM=1
SETV[3]=0.000 _SETV[4]=0.000

```
```

CYCLE996
M0
;========================= 1st measurement of rotary axis 2
G0 Z100
BB=_P4[3] CC=_P4[4]
X=_P4[0]
Y=_P4[1] Z=_P4[2]
_MVAR=20091 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 _VMS=500.000 _PRNUM=1
_SETV[3]=0.000 _SETV[4]=0.000
CYCLE996
M0
;--------------------- 2nd measurement of rotary axis 2
G0 z100
BB=_P5[3] CC=_P5[4]
X=_P5[0]
Y=_P5[1] Z=_P5[2]
_MVAR=20092 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 __VMS=500.000 _PRNUM=1
_SETV[3]=0.000 _SETV[4]=0.000
CYCLE996
M0
;--------------------- 3rd measurement of rotary axis 2
G0 z100
BB=_P6[3] CC=_P6[4]
X=_P6[0]
Y=_P6[1] Z=_P6[2]
_MVAR=20093 _TNUM=1 _SETVAL=25.000 _FA=3.000 _TSA=6.000 _VMS=500.000 _PRNUM=1
_SETV[3]=0.000 _SETV[4]=0.000
CYCLE996
M0
;-------------------- Calculate kinematics; no normalizing
_MVAR=20001194 __TNUM=1 _SETV[5]=0.000 _SETV[6]=0.000 _SETV[7]=100.000000
_SETV[8]=10.000000
CYCLE996
MSG("Kinematics measurement, lst rotary
axis OK")
M0
M02

```

\section*{Measuring Cycles for Turning Machines}

6

\subsection*{6.1 General prerequisites}

\subsection*{6.1.1 General information}

The measuring cycles below are intended for use on turning machines.
To be able to run the measuring cycles described in this Chapter, the following programs must be stored in the part program memory of the control.

\subsection*{6.1.2 Overview of measuring cycles}
\begin{tabular}{|l|l|}
\hline Cycle & Function \\
\hline (CYCLE972 \(^{1)}\) & Calibrate tool probe, measure turning tools \\
\hline CYCLE973 & Calibrate workpiece probe in the reference groove or on surface \\
\hline CYCLE974 & 1-point measurement with automatic tool offset or ZO determination \\
\hline CYCLE982 & Calibrate tool probe, measure turning and milling tools \\
\hline CYCLE994 & 2-point measurement on diameter with automatic tool offset \\
\hline 1) CYCLE982 is the preferred cycle to use. CYCLE972 does not support graphic measuring cycles \\
\hline
\end{tabular}

\subsection*{6.1.3 Overview of the auxiliary programs required}
\begin{tabular}{|l|l|}
\hline Cycle & Function \\
\hline CYCLE100 & Log ON \\
\hline CYCLE101 & Log OFF \\
\hline CYCLE102 & Measurement result display selection \\
\hline CYCLE103 & Preassignment of input data \\
\hline CYCLE104 & Internal subroutine: Measuring cycle interface \\
\hline CYCLE105 & Generate log contents: Log \\
\hline CYCLE106 & Logging the sequential controller Log \\
\hline CYCLE107 & Output of message texts (up to measuring cycles SW 6.2) \\
\hline CYCLE108 & Output of alarm messages (up to measuring cycles SW 6.2) \\
\hline CYCLE109 & Internal subroutine: Data transfer \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Cycle & Function \\
\hline CYCLE110 & Internal subroutine: Plausibility checks \\
\hline CYCLE111 & Internal subroutine: Measuring functions \\
\hline CYCLE113 & Read system date and time Log \\
\hline CYCLE114 & Internal subroutine (tool offset) \\
\hline CYCLE115 & Internal subroutine (ZO compensation) \\
\hline CYCLE117 & Internal subroutine: Measuring functions \\
\hline CYCLE118 & Format real values: Log \\
\hline
\end{tabular}

The measuring cycle data are defined in the data blocks:
- GUD5.DEF
- GUD6.DEF

\section*{Note}

The measuring cycles with measuring cycles SW 6.2 can only be used with NCK-SW 6.3 and higher.

\subsection*{6.1.4 Call and return conditions}
- D compensation with the data of the calibration tool or the workpiece probe or the tool to be measured must be activated in accordance with the measuring variant before a measuring cycle is called.
- The permissible tool type for the workpiece probe is type \(5 x y\) with cutting edge positions SL 5 to 8. Lengths refer to the center of the probe ball.
- No scaling factors <>1 must be active in the frames. Mirroring is permissible in the workpiece measuring cycles except for calibration (condition: MD 10610: MIRROR_REF_AX =0).
- The G functions active before the measuring cycle call are reactivated at the end of the cycle.


\section*{Plane definition}

The measuring cycles work internally with the abscissa and ordinate of the current plane G17 to G19.

The default setting for turning machines is G18.

\section*{Note}

Spindle
Spindle commands in the measuring cycles always refer to the active master spindle of the control.

When using measuring cycles on machines with several spindles, the spindle concerned before the cycle call must be defined as the master spindle.

References: /PG/ "Programming Guide: Fundamentals"

\subsection*{6.2 CYCLE982, CYCLE972 Tool: Measure turning tools}

\subsection*{6.2.1 Function overview}

\section*{Function}

Cycles CYCLE982, CYCLE972 implement the
- Calibration of a tool probe
and
- Measuring turning tools
(machine-related, probe arrays _TP[ ]).
Tool lengths
L1, L2 of turning tools with cutting edge positions SL = 1 to 8 are measured.
It is only possible to measure tools with one calibrated tool probe.

Measure length L1 and L2 for turning tool

Example: Edge position SL = 3


\section*{Programming}

CYCLE982
CYCLE972

\section*{Note}

CYCLE982 is the preferred cycle to use.
CYCLE972 does not provide graphics measuring cycle support.
Measuring cycle CYCLE982 provides extended measuring and calibration features over CYCLE972.

These variations are described in Section "CYCLE982: Tool: Measure turning and milling tools".

Tolerance parameters _TSA, _TDIF and _TZL must be entered taking into account machine data
- MD 20360 TOOL_PARAMETER_DEF_MASK bit0 and bit1
in conjunction with the offset target
- geometry and wear.

\section*{Measuring variants}

Measuring cycles CYCLE982, CYCLE972 permit the following measuring variants which are specified via parameter _MVAR.
\begin{tabular}{|l|l|}
\hline Value & Measuring variant \\
\hline 0 & Calibrate tool probe (machine-related) \\
\hline 1 & Measure tool (machine-related) \\
\hline
\end{tabular}

\section*{Result parameters}

Measuring cycles CYCLE982, CYCLE972 return the following values in data block GUD5 for measuring variant calibration:
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Result \\
\hline _OVR [ 8] & REAL & Trigger point in minus direction, actual value, abscissa \\
\hline _OVR[10] & REAL & Trigger point in plus direction, actual value, abscissa \\
\hline -OVR [12] & REAL & Trigger point in minus direction, actual value, ordinate \\
\hline _OVR [14] & REAL & Trigger point in plus direction, actual value, ordinate \\
\hline _OVR [ 9] & REAL & Trigger point in minus direction, difference, abscissa \\
\hline _OVR[11] & REAL & Trigger point in plus direction, difference, abscissa \\
\hline -OVR [13] & REAL & Trigger point in minus direction, difference, ordinate \\
\hline _OVR[15] & REAL & Trigger point in plus direction, difference, ordinate \\
\hline _OVR [ 27\(]\) & REAL & Zero offset area \\
\hline -OVR [ 28] & REAL & Safe area \\
\hline _OVI [ 2 ] & INTEGER & Measuring cycle number \\
\hline -OVI [3] & INTEGER & Measuring variant \\
\hline _OVI [5] & INTEGER & Probe number \\
\hline _OVI [9] & INTEGER & Alarm number \\
\hline
\end{tabular}

Measuring cycles CYCLE982, CYCLE972 return the following values in data block GUD5 for measuring variant tool measurement:
\begin{tabular}{|c|c|c|}
\hline Parameter & Data type & Result \\
\hline _OVR [ 8] & REAL & Actual value length L1 \\
\hline -OVR [9] & REAL & Difference length L1 \\
\hline -OVR[10] & REAL & Actual value length L2 \\
\hline _OVR[11] & REAL & Difference length L2 \\
\hline _OVR [27] & REAL & Zero offset area \\
\hline _OVR [ 28] & REAL & Safe area \\
\hline -OVR [ 29] & REAL & Permissible dimensional difference \\
\hline _OVR [30] & REAL & Empirical value \\
\hline _OVI [0] & INTEGER & D number \\
\hline -OVI [ 2 ] & INTEGER & Measuring cycle number \\
\hline -OVI [3] & INTEGER & Measuring variant \\
\hline _OVI [5] & INTEGER & Probe number \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Parameter & Data type & Result \\
\hline _OVI [7] & INTEGER & Empirical value memory number \\
\hline _OVI [8] & INTEGER & Tool number \\
\hline _OVI [9] & INTEGER & Alarm number \\
\hline
\end{tabular}

\subsection*{6.2.2 Calibrate tool probe (machine-related)}

\section*{Function}

The cycle uses the calibration tool to ascertain the current distance dimensions between the machine zero and the probe trigger point and automatically loads them into the appropriate data area in data block GUD6 (_TP [ ]fields).

Values are corrected without empirical and mean values.

\section*{Note}

If no special calibration tool is available, a turning tool can be used instead for calibration of 2 sides of the probe (see Chapter "Determining dimensions of calibration").


\section*{Requirement}

Since no specific tool type is available for the calibration tool, the 8th digit of _MVAR indicates whether a calibration or turning tool is to be used for calibration (see CYCLE982, measuring variants).
Lengths 1 and 2 and the radius of the calibration/turning tool must be known exactly and stored in a tool offset data block.

This tool offset must be active when the measuring cycle is called. A turning tool must be specified as the tool type (type \(5 x y\) ). Calibration is possible with cutting edge positions SL1, SL2, SL3 or SL4
1. Calibrate with calibration tool


Calibration tool for tool probe on turning machine


Calibration tool for tool probe on turning machine

Tool type \(5 x y\), cutting edge position \(S L=4\)


Calibration tool for tool probe on turning machine

Tool type \(5 x y\), cutting edge position \(\mathrm{SL}=1\)


The calibration tool is shaped (bent) in such a way that the probe can be calibrated on all 4 sides with it.

\section*{2. Calibrate with turning tool}

When a turning tool is used for calibration, the probe can only be calibrated on 2 sides (see figure below).


\section*{Requirement}

The lateral surfaces of the probe cube must be aligned parallel to the machine axes \(\mathrm{Z1}, \mathrm{X} 1\) (abscissa and ordinate). The approximate coordinates of the tool probe PRNUM with respect to the machine zero must be entered in array _TP[_PRNUM-1,0] to _TP[_PRNUM-1,3].
These values are used for automatic approach of the probe with the calibration tool and their absolute value must not deviate from the actual value by more than the value in parameter _TSA. The probe must also be reached within the total measurement path \(2 \cdot\) _FA.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Parameters & Value/data type & Description \\
\hline- MVAR & 0 & \begin{tabular}{l} 
Calibrate tool probe (machine-related) with calibration tool \\
Calibrate tool probe (machine-related) with turning tool
\end{tabular} \\
\hline 10000000 & Measuring axis \\
\hline- MA & 1,2 & Probe number \\
\hline- PRNUM & INTEGER & Additional parameters _VMS , _TZL, _TSA, _FA and _NMSP also apply.
\end{tabular}

\section*{See also}

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

\section*{Sequence}

\section*{Position before measuring cycle call}

The calibration tool must be prepositioned as shown in the figure.

The measuring cycle calculates the center of the probe and the approach paths automatically and generates the necessary traverse blocks.

Calibrate tool probe with calibration tool, with the corresponding basic positions for both axes (machine-related)



\section*{Programming example}

\section*{Calibrate tool probe (machine-related)}

Tool probe 1 is stationary but provides a switching signal. The calibration tool is inserted in the turret as tool T7.

Values of the calibration tool T7 D1:
Tool type (DP1): 500
Cutting edge length (DP2): 3
Length 1 - geometry (DP3). \(\quad \mathrm{L} 1=10\)
Length 2 - geometry (DP4): \(\quad \mathrm{L} 2=40\)
Radius - geometry (DP6): \(\quad R=5\)
This radius must be taken into account in selecting the starting position for calibration of _TP[0,1], _TP [0,3] (increase distance from probe by \(2 \times R\) ).
Values of tool probe 1 in data block GUD6 which were determined manually to 5 mm accuracy beforehand (relative to the machine zero):
\(-\operatorname{TP}[0.0]=50, \quad-T P[0.1]=20\)
_TP[0.2] \(=70,{ }_{-} \mathrm{TP}[0.3]=40\)

To obtain a minimum measurement path of 1 mm , the measurement path is programmed with _FA \(=1+5=6 \mathrm{~mm}\) (max. total measurement path \(=12 \mathrm{~mm}\) ).
```

```
%_N_CALIBRATE_MTT_MPF
```

```
%_N_CALIBRATE_MTT_MPF
N05 G94 G90 DIAMOF
N05 G94 G90 DIAMOF
N10 T7 D1 ;Calibration tool
N10 T7 D1 ;Calibration tool
N15 G0 SUPA Z300 X240 ;Starting position in minus x direction,
N15 G0 SUPA Z300 X240 ;Starting position in minus x direction,
;procedure when zO is deactivated
;procedure when zO is deactivated
;Parameters for calibration cycle
;Parameters for calibration cycle
N20 _TZL=0.001 _PRNUM=1 _VMS=0 _NMSP=1
N20 _TZL=0.001 _PRNUM=1 _VMS=0 _NMSP=1
N21 _MVAR=0 _MA=2 _TSA=5 _FA=6
N21 _MVAR=0 _MA=2 _TSA=5 _FA=6
N30 CYCLE982
N30 CYCLE982
N35 G0 SUPA Z60
N35 G0 SUPA Z60
N38 _MA=1
N38 _MA=1
N40 CYCLE982
N40 CYCLE982
N45 G0 SUPA X20
N45 G0 SUPA X20
N48 _MA=2
N48 _MA=2
N50 CYCLE982 ;Calibration in plus x direction
N50 CYCLE982 ;Calibration in plus x direction
N55 G0 SUPA Z0 ;Approach new starting position
N55 G0 SUPA Z0 ;Approach new starting position
N58 _MA=1
N58 _MA=1
N60 CYCLE982 ;Calibration in plus z direction
N60 CYCLE982 ;Calibration in plus z direction
N65 G0 SUPA X240
N65 G0 SUPA X240
N70 SUPA Z300
N70 SUPA Z300
N99 M2
```

N99 M2

```
```

;Calibration in minus X direction

```
;Calibration in minus X direction
;Approach new starting position
;Approach new starting position
;Select another measuring axis
;Select another measuring axis
;Calibration in minus z direction
;Calibration in minus z direction
;Approach new starting position
;Approach new starting position
;Approach change position in each axis
```

;Approach change position in each axis

```

\subsection*{6.2.3 Determining dimensions of calibration}

\section*{Function}

If no special calibration tool is available, a turning tool with cutting edge position \(\mathrm{SL}=3\) can be used instead for calibration of two sides of the probe (_TP[i,0], _TP[i,2]).

With the following procedure it is possible to determine the dimensions as the calibration tool.

Example: X axis, probe PRNUM=1 (_TP[0,2])
1. Approximate probe data in the data block GUD6: Parameters _TP[0,0]..._TP[0,3]
2. Measure the turning tool at the presetting location.
3. Enter all tool data in the tool offset (incl. e.g.: \(\mathrm{L} 1=60.000\) ) and use the tool in the revolver.
4. Machine a test part (turn to \(X\) dimension), e.g.: setpoint diameter: 200.000 mm actual diameter: 200.100 mm .
5. Adapting tool correction \((\mathrm{L} 1=59.950)\).
6. Finish-turn the test part again, e.g.:
setpoint diameter: 195.000 mm actual diameter: 195.000 mm , setpoint must be equal to the actual value, then:
7. Calibrate tool probe in X axis (see sample program in section "Calibrate tool probe (machine-related)").
8. Measure tool (see section "Measure turning tool (machine-related)") The aim is to determine value \(\mathrm{L} 1=59.950\) (see Item 5.).

Another tool can then be measured and used as the calibration tool. Calibrate the probe; the subsequent tool measurement must result in the same tool length.

\subsection*{6.2.4 Measure turning tool (machine-related)}

\section*{Function}

The cycle determines the new tool length (L1 or L2) and checks whether the difference from the old tool length can be corrected within a defined tolerance range:

Upper limits: Safe area _TSA and dimensional deviation check _TDIF Lower limit: Zero offset range _TZL If this range is not violated, the new tool length is accepted, otherwise an alarm is output. Violation of the lower limit is not corrected.

Measure turning tool
Example: Cutting edge position \(\mathrm{SL}=3, \leqslant 2\)

X.

Specificat. of measurement axis _MA

Z- Movement in measuring and offset axes L1,L2 are known roughly

\section*{Compensation strategy}

The tool measuring cycle is provided for various applications:
- Initial measurement of a tool (_CHBIT[3]=0):

The tool offset values in geometry and wear are replaced.
The offset is applied in the geometry component of the length.
The wear component is deleted.
- Remeasurement of a tool (_CHBIT[3]=1):

The resulting difference is calculated into the wear component (length).
Empirical values may optionally be included. The mean value is not calculated.

\section*{Prerequisite}

The tool probe must be calibrated.
The approximate tool dimensions must be entered in the tool offset data:
Tool type \(5 x y\), cutting edge position, tool nose radius,
length 1, length 2.
The tool to be measured must be active with its tool offset values when the cycle is called.

\section*{Parameter}
\begin{tabular}{|l|l|l|}
\hline Parameter & Value & Meaning \\
\hline\(-{ }^{\text {MVAR }}\) & 1 & Measure tool (machine-related) \\
\hline\(-{ }^{\text {MA }}\) & 1,2 & Measuring axis \\
\hline
\end{tabular}

Additional parameters _VMS, _TZL, _TDIF, _TSA, _FA, _PRNUM,_EVNUM and _NMSP also apply.

\section*{See also}

Defining parameters (Page 65)
Result parameters (Page 67)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

\section*{Sequence}

\section*{Position before measuring cycle call}

Before the cycle is called, the tool must be moved to the tool tip starting position, as shown in the figure.
The measuring cycle calculates the center of the probe and the associated approach paths automatically. The necessary traverse blocks are generated.
The tool nose center (S) is positioned at the center of the probe.

Measure turning tool with different cutting edge positions and suitable starting positions for both axes


\section*{Position after measuring-cycle call}

On completion of the cycle, the tool nose is positioned facing the measuring surface and _FA from it.


\section*{Programming example}

\section*{Calibrating the tool probe with subsequent measurement of turning tool (machine-related)}

Calibration tool T7, D1 is to be used to calibrate all 4 sides of probe 1. After that, turning tool T3, D1 is to be remeasured in both lengths L1 and L2 (wear calculation). The dimensions of the calibration tool T7 are in lengths \(\mathrm{L} 1, \mathrm{~L} 2\) and the radius \(\mathrm{R}=5.0 \mathrm{~mm}\) are known precisely and entered in offset field D1.
The cutting edge position is \(\mathrm{SL}=3\).


The default values of probe 1 as applied in data block GUD6 with a tolerance of approx.
1 mm :
_TP[0,0] = 220
_TP[0,1] = 200
_TP[0,2] = 400
_TP[0,3] = 380
After calibration, the measured value (calibration value) is set.

The lengths for the tool to be measured T3, D1 are known, remeasurement in wear:
Tool type (DP1):
500
Cutting edge length (DP2): 3
Length 1 -geometry (DP3): L1 = 100.654
Length 2 - geometry (DP4): \(\quad L 2=60.321\)
Radius (DP6): \(\quad R=2.000\)
Length 1 - wear (DP12): 0
Length 2 - wear (DP13): 0

```

%_N_T3_MEAS_MPF
;Calibration:
N10 G0 G18 G94 G90 DIAMOF
N20 T7 D1 ;Call calibration tool
N30 SUPA z240 X420 ;Starting position for calibration
N40 _TZL=0.001 _PRNUM=1 _VMS=0 _NMSP=1 ;Parameter definition
N50 _MVAR=0 _FA=1 _TSA=1 _MA=2
N60 CYCLE982
N60 CYCLE982 N0 SUPA z240 FOClibration in minus X
N80 _MA=1
N90 CYCLE982
N100 G0 SUPA X350 ;New starting position
N110_MA=2
N120 CYCLE982
N130 G0 SUPA Z170
N140 _MA=1
N150 CYCLE982
N160 G0 SUPA X350
N170 SUPA z520
N180 SUPA X420
;Measurement:
N200 T3 D1
N210 G0 SUPA z240 X420
N220 _MVAR=1 _MA=2 _TDIF=0.8
N230 _CHBIT[3]=1
N240 CYCLE982
N250 G0 SUPA Z240
N260 _MA=1
N270 CYCLE982
N280 G0 SUPA X420
N290 SUPA z520
N300 M2
;Set other measuring axis (Z)
;Calibration in minus z direction
;Set other measuring axis (X)
;Calibration in plus x direction
;New starting position
;Set other measuring axis (Z)
;Calibration in plus z direction
;Go to tool change position in each axis
\$180 SUPA X420
;Traverse

```
;Selection of the tool to be measured
```

;Selection of the tool to be measured
;Starting position for measurement
;Starting position for measurement
;Change of parameter definition for
;Change of parameter definition for
;measurement, otherwise calibration
;measurement, otherwise calibration
;Offset in wear (remeasuring)
;Offset in wear (remeasuring)
;Tool measurement in minus x direction (L1)
;Tool measurement in minus x direction (L1)
;New starting position
;New starting position
;Set other measuring axis (Z)
;Set other measuring axis (Z)
;Tool measurement in minus z direction (L2)

```
;Tool measurement in minus z direction (L2)
```

```
;Retraction axis by axis
```

```
;Retraction axis by axis
```


Explanation N 10 to N 180 , calibrate

The "tip" of the calibration tool T7 is positioned in measuring axis X from the starting position at distance _FA=1 mm (dimension \rightarrow with reference to the radius) before the probe. In axis Z, the probe tip center is centered with respect to the probe.
The measuring process is initiated in the negative X direction (_MA=2, starting position) with measuring velocity $150 \mathrm{~mm} / \mathrm{min}$ (_VMS=0, _FA=1). The switching signal is expected by the probe 1 (_PRNUM=1) within a distance of $2 \cdot$ _FA=2 mm . Otherwise, an alarm will be triggered.

Measurement is performed once (_NMSP=1). After successful measurement, the "tip" of T7 is _FA=1 mm in front of the probe in the X direction.

The calculated probe value is entered in _TP[0,2]. Calibration with the measuring process has been completed in minus X.
Calibration is then performed in the other measuring directions/axes.

Explanation N200 to N300, measure

The probe is completely calibrated.
The "nose" of the turning tool T3 is positioned in measuring axis X from the starting position at distance _FA=1 mm (dimension \rightarrow with reference to the radius) in front of the probe. In axis Z, the center of the cutting edge is centered with respect to the probe. If the cutting edge radius $=0$, it is the tool nose.

The measuring process is initiated in the negative X direction (_MA=2, starting position) with measuring velocity $150 \mathrm{~mm} / \mathrm{min}\left(_\mathrm{VMS}=0, \ldots \mathrm{FA}=1\right)$. The switching signal is expected by the probe 1 (_PRNUM=1) within a distance of 2 . _FA $=2 \mathrm{~mm}$. Otherwise, an alarm will be triggered.
Measurement is performed once (_NMSP=1). After successful measurement, the "tip" of T3 is _FA=1 mm in front of the probe in the X direction.

The calculated length difference of L1 (tool type 5xy, _MA=2, _MVAR=1) is summated and entered in D1 from T3 in the wear (_CHBIT[3]=1).
Measurement and wear offset are then performed in $L 2$ in the minus Z direction.

Recommended parameters

The following parameters are recommended so that this programming example runs reliably:

- Calibration:
_TZL=0.001 zero offset area
-TSA=1 safe area
_FA=1 measurement path
- First-time measurement of a tool:
_TZL=0.001 zero offset area
_TDIF=3 dimension difference check
_TSA=3 safe area
_FA=3 measurement path
- Remeasure the tool:
_TZL=0.001 zero offset area
_TDIF=0.3 dimension difference check
_TSA=1 safe area
_FA=1 measurement path

6.3 CYCLE982 tool: Measure turning and milling tools

6.3.1 Function overview

Function

Cycle CYCLE982 permits

- calibration of a tool probe,
- measurement of tool lengths L1 and L2 for turning tools with cutting edge positions 1 to 8 ,
- the tool lengths for milling tools and drills on turning machines,
- the radius for milling tools.

NC software of at least SW 5 is needed for measuring milling cutters/drills.

Programming

CYCLE982

Note

Tolerance parameters _TSA, _TDIF and _TZL must be entered taking into account machine data

- MD 20360 TOOL_PARAMETER_DEF_MASK bit0 and bit1
in conjunction with the offset target
- geometry and wear.

The following measurement and calibration tasks are supported by CYCLE982:

- Calibrate as preparation for measurement/automatic measurement

The 4 switching positions of the probe are roughly known and entered in the array of the associated tool probe. Positioning of the calibration tool with respect to the probe is performed in the cycle. It is only possible to determine the switching position that is in the measuring axis _MA and measuring direction according to starting position.

- Calibrate in increments as preparation for incremental measurement

The switching positions of the probe are not known. The calibration tool must have been positioned in front of the probe manually (in JOG mode) before the cycle is called. It is only possible to determine the switching position that is in the measuring axis _MA and the stated measuring direction _MD. Only the probe switching position in which the axis and direction will subsequently be measured incrementally have to be calibrated.

- Measuring

Only measured values that are in the measurement axis _MA can be calculated. The geometry of the tool to be measured is roughly known and entered in the tool offset. Positioning of the tool with respect to the calibrated probe is performed in the cycle. The geometry must be determined precisely or wear (initial measurement or remeasurement of a tool).

- Incremental measurement

The geometry of the tool to be measured is not known. The tool must have been positioned in front of the probe manually before the cycle is called. The geometry is to be determined exactly. Only one measured value that is in the measurement axis _MA can be calculated. The cycle approaches the probe in the measuring axis in the specified measuring direction _MD.

- Automatic measurement

All values that can be determined are determined automatically according to the active tool type. The geometry of the tool to be measured is roughly known and entered in the tool offset. Positioning of the tool with respect to the calibrated probe is performed in the cycle. The geometry must be determined precisely or wear (initial measurement or remeasurement of a tool).

- Machine-related measurement, calibration

The switching positions of the tool probe refer to the machine zero. The data field for the tool probe _PRNUM is used: _TP[PRNUM-1,...].

Tool probe, machine-related

- Machine-related measurement, calibration

The switching positions of the tool probe refer to the workpiece zero. The data field for the tool probe _PRNUM is used:
_TPW[PRNUM-1,...].

Tool probe, workpiece-related
TPW[] data field (trigger values)
$\mathrm{X} 1 \uparrow$ for probe_PRNUM=i+1
in workpiece coordinates system

Special aspects with milling tools

The tool length correction is specific to the turning machine (SD 42950:TOOL_LENGTH_TYPE=2). The length assignment (L1, L2) is performed like for a turning tool.

Measurement is possible with a rotating (M3, M4) or with a stationary milling spindle (M5). If the milling spindle is stationary, it is positioned at the specified starting angle _STA1 at the beginning. For simple measuring tasks, this positioning with _STA1 can be suppressed _CHBIT[20]=1). If suppression is active, measurement not requiring an SPOS-capable milling spindle is possible.

To measure a second cutting edge, you can select "measurement with reversal". This involves calculating the mean value over both measured values.

Not all functions are available. Certain functions require a certain SW software version of the measuring cycles and NCK. This information is given with each function.

Note

Measuring drills

If the length of the drill (L2 for G18, radial position and/or L1 for G18, axial position) is measuring by approaching the probe from the side, ensure that for the drill to be measured, the probe is not deflected in the area of the twist groove or in the area of its drill tip. If this is not possible using the "Measurement" or "Automatic measurement" measuring processing, the "Incremental measurement" measuring variant should be used.
The drill radius must have been previously entered in the tool correction for this measurement variant, otherwise an alarm is triggered.

Note

Turning machines with Y axis

Before CYCLE982 is called, the Y axis (applicate in G18) must be put in a position corresponding to the center of the probing surface of the tool probe in this axis.
The Y axis is not positioned in the cycle itself.

Measuring variants

Measuring cycle CYCLE982 permits the following measuring variants which are specified via parameter _MVAR.

								Meaning
Digit								Significance for measuring milling tools only, also automatically:
				$\begin{aligned} & 0 \\ & 0 \end{aligned}$				Only correct length (for measuring only) or Measure milling cutter automatically
				1			1	Only correct radius (for measuring only)
				2			1	Only length and radius (for measuring only, not for measuring in increments)
				3			2	Measure upper tool edge automatically: Correct length and radius, travel round measuring cube opposite starting position side (for automatic measurement only, e.g.: groove mill)
				4			2	Measure upper tool edge automatically: Correct length and radius, measuring direction for determining length opposite to traversing direction, measuring sequence as for _MVAR=x3x02 but with different traversing motion (for automatic measurement only, e.g.: groove mill)
1) Tool measurement and calibration are undertaken in the basic coordinates system (machine coordinates system with kinematics transformation switched off).								
8	7	6	5	4	3	2	1	Significance for measuring milling tools only, also automatically:
			0					Axial position of milling tool/drill (radius in ordinate, for G18: X axis, SD 42950: value $=2$)
			1					Radial position of milling tool/drill (radius in abscissa, for G18: Z axis, SD 42950: value $=2$)
		0						Measurement and calibration
$\begin{array}{\|l\|l} 0 \\ 1 \end{array}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$					0 0 1	Incremental calibration With calibration tool With turning tool or Incremental measurement (limited variants, no automatic measurement)

- The following measuring variants are not possible for incremental measurement:

1xxxx2; 102xx1; 112xx1

- The following measuring variants are permitted if _CHBIT[20]=1 (suppression of the starting angle position with _STA1) on a milling tool:
xxx0x1 (with $x: 0$ or 1 , no other values)
- A measuring variant can also be impermissible if it cannot be performed with the specified measuring axis _MA, e.g. determining the milling cutter radius. However, with this position of the milling cutter it is not in the measuring axis.

Result parameters

The measuring cycle CYCLE982 returns the following values in the data block GUD5 for the measuring variant calibration:

Parameter	Data type	Result
_OVR [8]	REAL	Trigger point in minus direction, actual value, abscissa
_OVR [10]	REAL	Trigger point in plus direction, actual value, abscissa
_OVR [12]	REAL	Trigger point in minus direction, actual value, ordinate
_OVR [14]	REAL	Trigger point in plus direction, actual value, ordinate
_OVR [9]	REAL	Trigger point in minus direction, difference, abscissa
_OVR [11]	REAL	Trigger point in plus direction, difference, abscissa
_OVR [13]	REAL	Trigger point in minus direction, difference, ordinate
_OVR [15]	REAL	Trigger point in plus direction, difference, ordinate
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVI [2]	INTEGER	Measuring cycle number
_OVI [3]	INTEGER	Measuring variant
_OVI [5]	INTEGER	Probe number
_OVI [9]	INTEGER	Alarm number

Measuring cycle CYCLE982 returns the following values in the data block GUD5 for tool measurement:

Parameter	Data type	Result
_OVR [8]	REAL	Actual value length L1
_OVR [9]	REAL	Difference length L1
_OVR [10]	REAL	Actual value length L2
_OVR [11]	REAL	Difference length L2
_OVR [12]	REAL	Actual value for radius
-OVR [13]	REAL	Difference for radius
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVR [29]	REAL	Permissible dimensional difference
-OVR [30]	REAL	Empirical value
_OVI [0]	INTEGER	D number
-OVI [2]	INTEGER	Measuring cycle number
-OVI [3]	INTEGER	Measuring variant
-OVI [5]	INTEGER	Probe number
_OVI [7]	INTEGER	Empirical value memory
_OVI [8]	INTEGER	T number
_OVI [9]	INTEGER	Alarm number

Note

Tool types

During measurement or calibration, the tool type (tool parameter DP1 in the tool offset data) of the active tool is evaluated.

Type 5xy: Turning tool or calibrating tool
Type 1xy: Milling tool
Type 2xy: Drill
Use of tool types 711 to 799 is also possible. These are treated as a milling tool (type 1 xy).
From measuring cycles SW 6.3, drill (type 2xy) also with SD 42950:
TOOL_LENGTH_TYPE=0 can be gauged (refer to Chapter "Measuring drills - special applications"). Otherwise this is only possible for drills and milling tools with SD 42950: TOOL_LENGTH_TYPE=2.

6.3.2 Calibrating tool probes

Function

- Calibrating tool probes - machine-related

Measuring variant _MVAR=0 permits machine-related calibration of a tool probe with a calibrating tool.

This variant is already described in detail section "Calibrate tool probe automatically (machine-related)".

- Calibrating tool probes, workpiece-related (measuring cycle release SW 6.3 and higher)

Measuring variant _MVAR=10 permits calibration of a tool probe relative to the calibration tool relative to the workpiece. The switching positions of the tool probe refer to the workpiece zero. The data field for the tool probe _PRNUM is used: _TPW[PRNUM-1,...].

Transformations can be activated in workpiece-related measurement, calibration.
The requirements and procedures are as for machine-related calibration (see "Calibrate tool probe automatically (machine-related)").

Parameters

Parameters	Value/data type	Description
_MVAR	0	Calibrate tool probe (machine-related) with calibration tool Calibrate tool probe (machine-related) with turning tool Calibrate tool probe (workpiece-related) with calibration tool Calibrate tool probe (workpiece-related) with turning tool
	10000000	10
MA	1,2	Measuring axis
_PRNUM	INTEGER	Probe number
Additional parameters _VMS, _TZL, _TSA, _FA and _NMSP also apply.		

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

Programming example

Calibrate tool probe (workpiece-related)

Tool probe 1 is in the machining area and is oriented parallel to the axis of the workpiece coordinate system.

The calibration tool is inserted in the turret as tool T7.

Values of the calibration tool T7 D1:
Tool type (DP1): 500
Cutting edge position (DP2): 3
Length 1 - geometry (DP3): $\quad \mathrm{L} 1=10$
Length 2 - geometry (DP4): $\quad \mathrm{L} 2=40$
Radius - geometry (DP6): $\quad R=5$
This radius must be taken into account when selecting the starting position for calibration of _TPW[0,1], _TPW[0,3] (increase distance from probe by $2 \times \mathrm{R}$).

Values of the settable ZO G54:
Displacement: $X=0, Z=60.000 \mathrm{~mm}$, no rotation
Values of tool probe 1 in data block GUD6 which were determined manually to 5 mm accuracy beforehand (relative to the workpiece zero):

```
_TPW[0,0] = 50
_TPW[0,1] = 20
_TPW[0,2] = 70
_TPW[0,3] = 40
```

To obtain a minimum measurement path of 1 mm , the measurement path is programmed with _FA $=1+5=6 \mathrm{~mm}$ (max. total measurement path $=12 \mathrm{~mm}$).

```
%_N_CALIBRATE_MTT_WCS_MPF
N05 G54 G94 G90 DIAMOF
N10 T7 D1 ;Calibration tool
N15 G0 Z100 X120 ;Starting position in minus x direction,
    ;procedure when ZO is activated
N20 _TZL=0.001 _PRNUM=1 _VMS=0 _NMSP=1 ;Parameters for calibration cycle
N21 _MVAR=10 _MA=2 _TSA=5 _FA=6
N30 CYCLE982 ;Calibration in minus X direction
N35 G0 z80 ;Approach new starting position
N38 _MA=1 ;Select another measuring axis
N40 CYCLE982 ;Calibration in minus z direction
N45 G0 X10 ;Approach new starting position
N48 _MA=2
N50 CYCLE982 ;Calibration in plus x direction
N55 G0 Z-10 ;Approach new starting position
N58 _MA=1
N60 CYCLE982 ;Calibration in plus z direction
N65 G0 X10 ;Approach start position in each axis
N70 z100
N80 X120
N100 M2
;End of program
```


Explanation of example

The calibration tool moves out of the starting position of N15 (X120, Z100) in Z to the center of the probe with its "tool tip". An offset is applied to compensate for the calibration tool radius. This places the radius center point in the center of the probe. The tool tip position is shown: Z30 ((_TPW[0,0] + (_TPW[0,1]) / $2-R=(50+20) / 2-5=30))$. This is followed by traversal in measuring axis X (_MA=2, G18) to position X76 (_TPW[0,2] + _FA = 70 + 6 = 76). This is where actual calibration (like measurement) starts in the minus X direction. At the end the calibration tool is again at position X76.

The new trigger values in minus X are stored in the data of tool probe 1 (_PRNUM=1) _TP[0,2] if they deviate by more than $0.001 \mathrm{~mm}\left(_T Z L=0.001\right)$ from the old values. Deviations of up to 5 mm (_TSA=5) are permissible.

After that, the sides in the minus Z direction, plus X direction, and plus Z direction are approached, calibrated, and the values entered in array _TPW[0,...].

6.3.3 Measuring tool

Function

This cycle and its various measuring variants are for measuring:
_MVAR=1: Turning tools (machine-related)
This variant is described in detail section "Measure turning tool (machine-related)".
_MVAR=11: Turning tools (workpiece-related)
_MVAR=xxx01: Milling tools, drills (machine-related)
_MVAR=xxx11: Milling tools, drills (workpiece-related)
Workpiece-related or machine-related measurement require an appropriately calibrated tool probe (see section "Calibrating tool probes" or "Calibrating tool probes (machine-related)").
These measuring variants can only determine offset values that are in the measurement axis _MA.
The cycle determines the new tool length (L1 or L2), for milling tools the radius too, and checks whether the difference from the old tool length can be corrected within a defined tolerance range:
Upper limits: Safe area _TSA and dimensional deviation check _TDIF,
Lower limit: Zero offset range _TZL.
If this range is not violated, the new tool length is accepted, otherwise an alarm is output. Violation of the lower limit is not corrected.

Compensation strategy

The tool measuring cycle is provided for various applications:

- Initial measurement of a tool(_CHBIT[3]=0):
- The tool offset values in geometry and wear are replaced.
- The offset is applied in the geometry component of the length.
- The wear component is deleted.
- Remeasurement of a tool (_CHBIT[3]=1):

The resulting difference is calculated into the wear component (radius or length).
Empirical values may optionally be included. The mean value is not calculated.
If _CHBIT[20]=1, positioning of the milling spindle at the value of _STA1 can be suppressed.
That is possible with the following milling cutter measuring variants:
_MVAR=xxx001 (with x: 0 or 1, no other values).

Prerequisite

The tool probe must be calibrated.
The approximate tool dimensions must be entered in the tool offset data:
Tool type, cutting edge position on turning tools, radius, length 1, length 2.
The tool to be measured must be active with its tool offset values when the cycle is called.
For a milling cutter, the setting data SD 42950: TOOL_LENGTH_TYPE = 2 must be set (length calculation as for turning tool). For milling tools, the tool spindle must be declared the master spindle.

For a drill, SD 42950: TOOL_LENGTH_TYPE = 0 is also possible (refer to Chapter "Measuring drills - special applications").

Parameters

Parameters	Value/data type	Description
$-{ }^{\text {MVAR }}$	1 or $x x x 01$ 11 or $x x x 11$	Measure tool (machine-related) Measure tool (workpiece-related) More precise parameterization for milling tools is entered in the 3rd to 5th digits of _MVAR.
- MA	1,2	Measuring axis
-STA1	REAL	For milling tools: Start angle
-CORA	REAL	For milling tools: Correction angle setting after reversal (for measurement with reversal only _MVAR=xx1x1)

Additional parameters _VMS, _TZL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM and _NMSP also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

Sequence

Position before measuring cycle call

Before the cycle is called, the tool must be moved to the starting position, as shown in the diagram for turning tools. The measuring cycle then calculates the approach position automatically. This position determines the measuring direction in the measuring axis _MA. For milling tools, the measuring point on the tool is determined by entered lengths 1 and 2 (please note: SD 42950: TOOL_LENGTH_TYPE). If the radius value is not equal to zero, this is also a determining factor. The measuring point is then located on the side which the measuring probe faces (+R or -R). The axial or radial position of the tool must be specified (_MVAR). This starting position

Measure turning tool with different cutting edge positions and suitable starting positions for both axes

In the case of milling tools, length and radius can be selected as an alternative to length only to determine the cutter radius.

For length and radius, two measuring points are required. These are approached from different sides of the measuring probe. First the measuring point facing the measuring probe at the starting point is approached. Then, after travel round the probe (in the direction of the starting point), the 2 nd measuring point is measured in the opposite direction. If the spindle is stationary (M5) and measurement without reversal is selected, the 2nd measurement is performed with a spindle rotation of 180 degrees. The same cutting edge used for the 1 st measurement is now used.

The L1 or L2 offset values and the cutter radius are calculated from these two measurements.

Measurement with reversal can be selected separately with _MVAR: First the measuring point is measured in the selected axis and in a milling spindle position according to starting angle _STA1. Then the tool (spindle) is turned 180 degrees and measured again. The average value is the measured value. Measurement with reversal causes a second measurement at each measuring point P with a spindle rotation through 180 degrees from the starting angle.
The offset angle entered in _CORA is summated to these 180 degrees. That enables selection of a certain 2nd milling cutting edge that is offset from the 1st cutting edge by precisely 180 degrees. Measurement with reversal permits measurement of two cutting edges of one tool. The mean value is the offset value.
If _CHBIT[20]=1, selected measuring variants are possible for a milling cutter without taking the starting angle _STA1 into account (see Subsection "Milling cutter: Suppression of start angle positioning _STA1").

Note

Measurement with rotating spindle

If selection of a certain miller cutting edge is not possible, it is possible to measure with a rotating spindle. The user must then program the direction of rotation, speed, and feedrate very carefully before calling up CYCLE982 to prevent damage to the probe. A low speed and feedrate must be selected.

Position after end of measuring cycle

On completion of the cycle, the tool nose is positioned facing the last measuring surface and _FA from it.

Examples of measuring variants

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example: Axial position, $\mathrm{R}=0$, Measuring without reversal, calculate length only _MVAR=1 _MA=1	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=0 \end{aligned}$	L2	Drill (tool type: 2xy)

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example: Radial position, $\mathrm{R}=0 \text {, }$ Measuring without reversal, calculate length only $\begin{aligned} & \text { _MVAR=10001 } \\ & \text { _MA }=2 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=0 \end{aligned}$	L1	Drill (tool type: 2xy)
Example: Axial position, $R \neq 0,$ Measuring without reversal, calculate length only $\begin{aligned} & \text { _MVAR=1 } \\ & \text { _MA }=1 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L2	Milling cutter (tool type: $1 \times y$)
Example: Radial position, $R \neq 0$ Measuring without reversal, calculate length only $\begin{aligned} & \text { _MVAR=10001 } \\ & \text { _MA }=2 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L1	

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example: Axial position, $R \neq 0,$ measuring with reversal, calculate radius only $\begin{aligned} & - \text { MVAR=1101 } \\ & \text { _MA=2 } \end{aligned}$ L1 must be known	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P}-\mathrm{L} 1) \end{aligned}$	
Example: Radial position, $R \neq 0,$ measuring with reversal, calculate length only $\begin{aligned} & \text { _MVAR=10101 } \\ & \text { _MA=1 } \end{aligned}$ R must be known	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L2 L2=(P - R) Or other measuring direction: $\text { L2 }=(P+R)$	
Example: Radial position, $R \neq 0,$ Measuring without reversal, calculate length and radius, 2 measuring points necessary $\begin{aligned} & \text { _MVAR=12001 } \\ & \text { _MA }=1 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{L} 2 \\ \mathrm{R} \\ \mathrm{~L} 2=(\mathrm{P} 1+\mathrm{P} 2) / 2 \\ \mathrm{R}= \\ \mathrm{ABS}(\mathrm{P} 1-\mathrm{P} 2) / 2 \end{array}$	

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Notes: On starting, the measuring point must be outside the measurement cube coordinates in both coordinates. On the opposite side of the measuring cube (P2) measurement is performed with a rotated spindle (by 180 degrees). The same cutting edge is then measured. This only happens if the spindle is stationary and without reversal. In this example, L1 refers to the upper cutting edge. If L1 is to be calculated in another measurement, the starting position must be below the measuring cube.			
Example: Axial position, $R \neq 0,$ Measuring without reversal, calculate length and radius, 2 measuring points necessary _MVAR=2001 _MA=2 P 2 is measured with a rotated spindle (by 180 degrees), if measurement is performed with a stationary spindle.	$\begin{aligned} & \mathrm{L} 1=-. . \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{R} \\ & \mathrm{~L} 1=(\mathrm{P} 1+\mathrm{P} 2) / 2 \\ & \mathrm{R}= \\ & \mathrm{ABS}(\mathrm{P} 1-\mathrm{P} 2) / 2 \end{aligned}$	
Example: Radial position, $R \neq 0,$ Measurement with reversal at each measuring point, calculate length and radius, 2 measuring points necessary (4 measurements) _MVAR=12101 _MA=1	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 2 \\ & R \\ & \mathrm{~L} 2=(\mathrm{P} 1+\mathrm{P} 2) / 2 \\ & \mathrm{R}= \\ & \mathrm{ABS}(\mathrm{P} 1-\mathrm{P} 2) / 2 \end{aligned}$	

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example: Axial position, $\mathrm{R}=0,$ Measuring without reversal, calculate length only $\begin{aligned} & -M V A R=1 \\ & \text { _MA }=1 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=0 \end{aligned}$	L2	Drill (tool type: 2xy)

Programming example

Measure milling tool in the radial position (machine-related)

For the end miller T3, D1 should be determined in the radial position when first measuring length L2 and radius R. Measurements will be without reversal. The cutting edge to be measured is in the milling spindle position 15 degrees.

The lengths and radius of tool T3 to be measured are roughly known and entered in offset field D1:

Tool type (DP1): 120
Cutting edge position (DP2):
Length 1 - geometry (DP3): $\quad \mathrm{L} 1=60$
Length 2 - geometry (DP4): $\quad \mathrm{L} 2=10$
Radius - geometry (DP6): $\quad R=14$

Deviations from this value of less then 2.5 mm are expected.

The probe to be used is tool probe 1. This probe has already been completely calibrated (machine-related). The precise values are entered in array _TP[0,...] and are approximately:

```
_TP[0,0]=220, _TP[0,1]=200
_TP[0,2]=400, _TP[0,3]=380.
%_N_T3_MEAS_FR_MPF
N1 G0 G18 G90 G94 DIAMOF
N100 T3 D1 ;Selection of the tool to be measured
N110 G0 SUPA Z285 X450 ;Start position for measuring
N120 _TZL=0.001 _TSA=3 _FA=3 _PRNUM=1
_VMS=0 _NMSP=1
N121 _MA=1 _TDIF=2.5 _MVAR=12001 _STA1=15
N130 _CHBIT[3]=0 ;Offset in the geometry
N131 _CHBIT[20]=0 ;Do not suppress _STA1
N140 CYCLE982 ;Tool measurement L2, R
N180 G0 SUPA X450 ;Retraction axis by axis
N190 SUPA Z285
N200 M2 ;End of program
```


Explanation of example

The spindle is positioned at 15 degrees with SPOS. Measuring point P1 is approached first. The measuring process is initiated in the negative Z direction (_MA=1, starting position) with measuring velocity $300 \mathrm{~mm} / \mathrm{min}\left(_V M S=0\right.$, $F A>1$). The switching signal is expected by the probe 1 (_PRNUM=1) within a distance of $2 x_{_} \mathrm{FA}=2 \mathrm{~mm}$. Otherwise, an alarm will be triggered. Measurement is performed once (_NMSP=1). After successful measurement, tool T 3 is _FA=3 mm + tool radius in front of the probe.
The probe is then traveled around as shown in the figure. On the opposite side of the probe (P2) measurement is performed with a rotated spindle (by 180 degrees). The same cutting edge is then measured. Measurement is performed with the spindle stopped and without reversal. After successful measurement, tool T3 is _FA=3 mm + tool radius in front of the probe. The spindle remains in this position.

The radius and length L2 are determined precisely and tool parameters DP6 and DP4 of T3, D1 are entered. The values in result parameter array OVR[] are also entered.
In block N180, N190, the tool returns to the starting position and the program then ends.

6.3.4 Automatic tool measurement

Function

This cycle and its various measuring variants are for measuring tools automatically:
_MVAR=2: Turning tools (machine-related)
_MVAR=12: Turning tools (workpiece-related)
_MVAR=xxx02: Milling tools, drills (machine-related)
_MVAR=xxx12: Milling tools, drills (workpiece-related)
Workpiece-related or machine-related measurement require an appropriately calibrated tool probe (see section "Calibrating tool probes" or "Calibrate tool probe automatically (machine related)").

With milling tools/drills, the measurement is further specified in the 3rd to 5th digits of parameter _MVAR. Here, SD 42950: TOOL_LENGTH_TYPE must be $=2$

The function is as for non-automatic measurement.
In automatic measurement, all offsets are determined. These are then defined with the tool type:

- Turning tool:
- both lengths (2 measurements),
- for cutting edge positions $S L=5,6,7$, and 8 , only one length (1 measurement)
- Drill:

Length according to axial or radial position (1 measurement)

- Milling cutter:
both lengths and radius (4 measurements), if the radius is specified as $R=0$, only both lengths are established (2 measurements).
The calculated offsets are entered in the active D number of the active tool. The offset strategy is defined via _CHBIT[3] as for measurement.
The measuring cycle generates the approach blocks to the probe and the transverse motions to measure length 1 , length 2 and for the milling cutter, the radius too. A correctly selected start position is needed.

Prerequisite

As for non-automatic tool measurement

Parameter

Parameter	Value/data type	Meaning
- MVAR	2 or $x x x 02$ 12 or $x x x 12$	Measure tool automatically (machine-related) Measure tool automatically (workpiece-related) More precise parameterization for milling tools is entered in the 3rd to 5th digits of _MVAR.
- MA	1,2	Measuring axis
STA1	REAL	For milling tools: Start angle
_CORA	REAL	For milling tools: Correction angle setting after reversal (for measurement with reversal only _MVAR=xx1x1)

Additional parameters _VMS, _TZL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM and _NMSP also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number:_PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

Sequence

Position before measuring cycle call

Before the cycle is called, the tool must be moved to the starting position, as shown in the diagram for turning tools. The measuring cycle then calculates the approach position automatically. First the length (P1) in the abscissa (Z axis for $G 18$) and then (P 2) in the ordinate (X axis for G 18) is measured. For turning tools, the measuring probe travels round the measuring cube at distance _FA.

For milling tools, the measuring points on the tool are determined by entered lengths 1 and 2 (please note: SD 42950). If the radius value is not equal to zero, this is also a determining factor. The axial or radial position of the tool must be specified in _MVAR, and the starting position approached accordingly. First, the values in the abscissa (Z axis for G18) are measured. Measurement with reversal can be selected separately with _MVAR. The probe travels round the measuring cube at distance _FA or according to the starting point coordinate (see figs.).

Position after end of measuring cycle

When the cycle is complete, the tool nose is again located at the starting point. A movement to this point is automatically generated in the cycle.

Examples of measuring variants

Measuring variant	Specified geometry	Offset applied in	Milling tools
Example 1: Axial position, $R \neq 0$, Measuring without reversal, spindle stationary, 4 measurements necessary _MVAR=2	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{R} \\ & \mathrm{~L} 1= \\ & (\mathrm{P} 3 \mathrm{x}+\mathrm{P} 4 \mathrm{x}) / 2 \\ & \mathrm{~L} 2= \\ & (\mathrm{P} 1 \mathrm{z}+\mathrm{P} 2 \mathrm{z}) / 2 \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P} 3 \mathrm{x}- \\ & \mathrm{P} 4 \mathrm{x}) / 2 \end{aligned}$	Measurements P1 to P4

Note on example 1, process:

P1 is approached with the starting angle position _STA1 of the milling spindle and measured. As the spindle is stationary (M5) and reversal measurement is not selected, the spindle is rotated by 180 degrees and the same cutting edge is measured again after it has been positioned in the center of the measuring cube. The mean value of both measurements is L2.
Then P3 is approached and measured, after that the spindle is again rotated by 180 degrees and P4 is measured. L 1 and R are calculated from these two measurements. The probe is then retracted to the starting point in axis sequence abscissa/ordinate.

Measuring variant	Specified geometry	Offset applied in	Milling tools
Example 2: Radial position, $R \neq 0$ measuring with reversal, 8 measurements necessary (P1 to P4 each with reversal) _MVAR=10102	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & R \\ & \mathrm{~L} 1= \\ & (\mathrm{P} 3 \mathrm{x}+\mathrm{P} 4 \mathrm{x}) / 2 \\ & \mathrm{~L} 2= \\ & (\mathrm{P} 1 \mathrm{z}+\mathrm{P} 2 \mathrm{z}) / 2 \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P} 1 \mathrm{z}- \\ & \mathrm{P} 2 \mathrm{z}) / 2 \end{aligned}$	
Example 3: Axial position, $R \neq 0,$ Measuring without reversal, 4 measurements necessary _MVAR=3002 The probe travels around the measuring cube opposite the starting position side.	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{R} \\ & \mathrm{~L} 1= \\ & (\mathrm{P} 3 \mathrm{x}+\mathrm{P} 4 \mathrm{x}) / 2 \\ & \mathrm{~L} 2= \\ & (\mathrm{P} 1 \mathrm{z}+\mathrm{P} 2 \mathrm{z}) / 2 \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P} 3 \mathrm{x}- \\ & \mathrm{P} 4 \mathrm{x}) / 2 \end{aligned}$	Measurements P1 to P4

Note on example 3:

Length measurements for L2 (P1, P2) are performed here at the same measuring point 1, without rotating the spindle by 180 degrees. The same cutting edge is always measured (starting angle _STA1).

Note on example 4:

Length measurements for $\mathrm{L} 1(\mathrm{P} 3, \mathrm{P} 4)$ are performed here at the same measuring point 1 , without rotating the spindle by 180 degrees. The same cutting edge is always measured (starting angle STA1).

For measuring variants _MVAR=0x3xx2 and _MVAR=0x4xx2 (measure upper cutting edge automatically), the cutting mill must have suitable geometric dimension (end mill/cutter radius) for approaching the center of the probe with the cutting edge without collision.

No check is made for suitability of the milling cutter for this measuring variant. It is up to the user to ensure this.

Measuring variant	Specified geometry	Offset applied in	Milling tools
Example 5: Axial position, $R \neq 0,$ Measuring without reversal, 4 measurements necessary _MVAR=4002 Direction of measurement for determining length L2 opposite to traversing direction, measuring procedure as for _MVAR=x3002 but with different traversing motion Notes: Length measurements for L2 (P1, P2) are performed here at the same measuring point - without rotating the spindle by 180 degrees. The same cutting edge is always measured (starting angle _STA1). The width of the milling tool must be considered when selecting the starting position or dimension a!	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{R} \\ & \mathrm{~L} 1=(\mathrm{P} 3 \mathrm{x}+ \\ & \mathrm{P} 4 \mathrm{x}) / 2 \\ & \mathrm{~L} 2=(\mathrm{P} 1 \mathrm{z}+ \\ & \mathrm{P} 2 \mathrm{z}) / 2 \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P} 3 \mathrm{x}- \\ & \mathrm{P} 4 \mathrm{x}) / 2 \end{aligned}$	Start position of tool at start of cycle, to the right of the measuring probe Start position of tool at start of cycle, to the left of the measuring probe Start positions of cutting miller at start of cycle and different axial positions

Measuring variant	Specified geometry	Offset applied in	Milling tools
Example 6: Radial position, $R \neq 0,$ Measuring without reversal, 4 measurements necessary _MVAR=14002 Direction of measurement for determining length L1 opposite to traversing direction, measuring procedure as for _MVAR=x13002 but with different traversing motion Notes: Length measurements for L1 (P3, P4) are performed here at the same measuring point - without rotating the spindle by 180 degrees. The same cutting edge is always measured (starting angle _STA1). The width of the milling tool must be considered when selecting the starting position or dimension a!	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{R} \\ & \mathrm{~L} 1=(\mathrm{P} 3 \mathrm{x}+ \\ & \mathrm{P} 4 \mathrm{x}) / 2 \\ & \mathrm{~L} 2=(\mathrm{P} 1 \mathrm{z}+ \\ & \mathrm{P} 2 \mathrm{z}) / 2 \\ & \mathrm{R}=\mathrm{ABS}(\mathrm{P} 3 z- \\ & \mathrm{P} 4 \mathrm{z}) / 2 \end{aligned}$	Start position of tool at start of cycle, to the right of the measuring probe Start position of tool at start of cycle, to the left of the measuring probe
			Start positions of cutting miller at start of cycle and different radial positions

6.3.5 Incremental calibration

Function

A tool probe can be calibrated with measuring variant
_MVAR=100000 (machine related) or
_MVAR=100010 (workpiece-related)
incrementally with a calibration tool.
The switching positions of the probe are not known. The values entered in the array of the probe are not evaluated. The calibration tool must have been positioned in front of the probe manually (in JOG mode) before the cycle is called.

The cycle uses the calibration tool to ascertain the current distance dimensions between the zero and the probe trigger point and automatically loads them into the appropriate data area in data block GUD6 (field _TP [] or _TPW[]).

Values are corrected without empirical and mean values.

Prerequisite

The lateral surfaces of the tool probe must be aligned parallel to the relevant axes (machine or workpiece coordinate system in abscissa and ordinate).

Since no specific tool type is available for the calibration tool, the 8th digit of _MVAR indicates whether a calibration or turning tool is to be used for calibration (see CYCLE982, measuring variants).

Length 1 and 2 and the radius of the calibration tool must be known exactly and stored in a tool offset data block.

This tool offset must be active when the cycle is called. A turning tool must be specified as the tool type (type 5xy). Calibration is possible with cutting edge positions SL1, SL2, SL3 or SL4.

Before CYCLE982 starts, the position of the calibration tool (tool tip) must be such that it causes the probe to switch in the specified direction _MD for the measuring axis _MA within path $2 \times$ _FA.
Careful when positioning manually!
Damage to the probe must be prevented

Parameter

Parameter	Value	Description
$-{ }^{\text {MVAR }}$	100000	Calibrate tool probe incrementally (machine-related) with calibration tool
	10100000	Calibrate tool probe incrementally (machine-related) with turning tool
	100010	Calibrate tool probe incrementally (workpiece-related) with calibration tool
	10100010	Calibrate tool probe incrementally (workpiece-related) with turning tool
$-{ }^{\text {MA }}$	1,2	Measuring axis
- MD	0,1	Measuring direction: 0 - positive, 1 - negative

Additional parameters _VMS, _FA, _PRNUM and _NMSP also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Measurement path: _FA (Page 79)
Probe type, probe number:_PRNUM (Page 80)
Multiple measurement at the same location: _NMSP (Page 82)

Sequence

Position before measuring cycle call The calibration tool must be prepositioned as shown in the figure:

The "tip" of the calibration tool in the measuring axis _MA within distance 2 . _FA in front of the measuring surface.
The center of the calibration tool tip in the other axis (offset axis) must be in the center of the probe.
The measuring cycle starts measuring in the specified axis (_MA) and measuring direction (_MD) immediately on starting.

Position after end of measuring cycle

When the calibration procedure is completed the calibration tool is positioned on the starting position again.

Comments

A special tool is used as the calibration tool and is entered as a turning tool ($5 x y$) with cutting edge. Calibration is possible with cutting edge positions SL1, SL2, SL3 or SL4. It is usually shaped (bent) such that it is also possible to approach point P4 for calibration (_MA=1, _MD=0). Calibration tool: See section "Calibrate tool probe (machine-related)".
However, it is not necessary to calibrate all 4 sides for incremental measurement. The side that is used for incremental measurement is sufficient. That does not apply to automatic measurement. Here all 4 points must be calibrated or values entered for automatic central positioning of the tool to be measured.

Programming example

Calibrate tool probe incrementally

Tool probe 1 is in the machining area and is oriented parallel to the axis of the machine. Calibration is to be performed in the minus X direction and incrementally.

Calibrate in increments Movement only in measuring axis, switching values of probe unknown

The calibration tool is inserted in the turret as tool T7.

$$
\begin{array}{ll}
\text { Values of the calibration tool T7 D1: } \\
\text { Tool type (DP1): } & 500 \\
\text { Cutting edge position (DP2): } & 3 \\
\text { Length 1 - geometry (DP3): } & \mathrm{L} 1=10 \\
\text { Length 2 - geometry (DP4): } & \mathrm{L} 2=40 \\
\text { Radius - geometry (DP6): } & \mathrm{R}=5
\end{array}
$$

Values of tool probe 1 in data block GUD6 before calibration:

```
_TP[0,0] = ?, _TP[0,1] = ?
_TP[0,2] = ?, _TP[0,3] = ?
%_N_INCR_CALIBRATE_MPF
N10 T7 D1 G94 ;Calibration tool is active,
N20 _MVAR=100000 _MA=2 _MD=1 _FA=20 _PRNUM=1 ;Parameters for calibration cycle
_VMS=0 _NMSP=1
N30 CYCLE982 ;Calibration in minus x direction
N99 M2
```


Explanation of example

Before the program is started, the "tip" of the calibration tool $T 7$ is in measuring axis X in a range $2 \cdot$ _FA=40 (dimension with reference to radius) in front of the probe. In axis Z , the probe tip center is centered with respect to the probe.
When CYCLE982 is started, measurement starts in the negative X direction (_MA=2, MD=1) with measuring velocity $300 \mathrm{~mm} / \mathrm{min}\left(_V M S=0, \quad F A>1\right.$). The switching signal is expected by the probe 1 (_PRNUM=1) within a distance of $2 \cdot$ _FA $=40 \mathrm{~mm}$. Otherwise, an alarm will be triggered. Measurement is performed once ($_$NMSP=1).
After successful measurement, the "tip" of T7 is in the starting position again.
The calculated probe value is entered in _TP[0,2]. Calibration with the measuring process has been completed in minus X.

6.3.6 Incremental measurement

Function

This cycle and its various measuring variants are for measuring tools incrementally:
_MVAR=100001: Turning tools (machine-related)
_MVAR=100011: Turning tools (workpiece-related)
_MVAR=1xxx01: Milling tools, drills (machine-related)
_MVAR=1xxx11: Milling tools, drills (workpiece-related).
Workpiece-related or machine-related measurement require an appropriately calibrated tool probe (see Subsection "Incremental calibrating").

With milling tools/drills, the measurement is further specified in the 3rd to 5th digits of parameter _MVAR.
It is possible to measure single tool lengths, or alternatively for milling tools the cutter radius.
The calculated offsets are entered in the active D number. The offset is entered in the geometry data and the wear data are reset (irrespective of _CHBIT[3]).
Only the offset value that is in the measuring axis _MA and measuring direction _MD can be determined in a measurement.

If _CHBIT[20]=1, positioning of the milling spindle at the value of _STA1 can be suppressed (see Subsection "Milling tool": Suppression of start angle positioning _STA1").

This is possible for milling cutter measuring variants:
_MVAR= xxx001 (where x:0 or 1, no other values).

Requirements

For incremental measurement, the tool probe must be calibrated in the measuring axis and direction in which measuring will be performed.

The tool T to be measured must be called with tool offset (D number)
The tool type is entered in the offset data.
For a milling cutter, setting data SD 42950: TOOL_LENGTH_TYPE $=2$ must be set (length calculation as for turning tool).

For milling tools, the tool spindle must be declared the master spindle. For a drill, SD 42950: TOOL_LENGTH_TYPE $=0$ is also possible (refer to Chapter "Measuring drills - special applications").

Parameters

Parameters	Value/data type	Meaning
-MVAR	$1 \times x x 01$ $1 \times x \times 11$	Measure a tool incrementally - machine-related Measure a tool incrementally - workpiece-related More precise parameterization for milling tools/drills is entered in the 3rd to 5th digits of _MVAR.
_MA	1,2	Measuring axis
_MD	0,1	Measuring direction: 0 - positive, 1 - negative
_STA1	REAL	Only for milling tools and if_CHBIT[20]=0: Starting angle of the milling spindle
_CORA	REAL	Only for milling tools and measurement with reversal: Offset angle position of the milling spindle after reversal

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Multiple measurement at the same location:_NMSP (Page 82)

Sequence

Position before measuring cycle call

Before the cycle is called, the tool must be moved to the starting position, as is shown in the diagram for turning tools, e.g.: with traversal in JOG:
The "tip" of the calibration tool in the measuring axis _MA within distance 2 . _FA in front of the measuring surface. The center of the cutting edge radius on the turning tool in the other axisis in the center of the probe. If the cutting edge radius $=0$, it is the tool nose.

For milling tools the axial or radial position of the tool must be specified in _MVAR; as with Measure with reversal:

First the measuring point is measured in the selected axis and in a milling spindle position according to starting angle _STA1. The tool (milling spindle) is then rotated through 180 degrees plus the value in _CORA and measured again. The average value is the measured value.

If the milling spindle is activated when the cycle is started, measurement will be performed with a rotating spindle. In that case, the user must exercise special care when selecting the speed, direction of rotation, and feedrate!

If _CHBIT[20]=1, selected measuring variants are possible for a milling cutter without taking the starting angle _STA1 into account (see Subsection "Milling cutter: Suppression of start angle positioning _STA1").

Position after end of measuring cycle

When the cycle is complete, the tool nose is again located at the starting position.

Examples of measuring variant

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example 1: Axial position, Drill, $R=0$, incremental measurement without reversal, calculation of the length in Z $\begin{aligned} & \text { _MVAR=100001 } \\ & \text { _MA }=1 \end{aligned}$ Always position the drill tip in the center of the probe!	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=0 \end{aligned}$	L2	
Example 2: Radial position, Drill, R=0 Measuring without reversal, calculation of the length in X _MVAR=110001 _MA=2	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=0 \end{aligned}$	L1	

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example 3: Axial position, Milling cutter, $R \neq 0$, Measuring without reversal, calculation of the length in Z $\begin{aligned} & \text { _MVAR }=100001 \\ & \text { _MA }=1 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=-\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L2	
Example 4: Radial position, Milling cutter, $R \neq 0$, Measuring without reversal, calculation of the length in X $\begin{aligned} & \text { _MVAR=110001 } \\ & \text { _MA }=2 \end{aligned}$	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L1	
Example 5: Axial position, Milling cutter, $R \neq 0$, measuring with reversal, calculate radius $\begin{aligned} & \text { _MVAR=101101 } \\ & \text { _MA }=2 \end{aligned}$ In this case, L1 must be known.	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	R	

Measuring variant	Specified geometry	Offset applied in	Milling tools, drills
Example 6: Radial position, Milling cutter, $R \neq 0$, measuring with reversal, calculation of the length in Z _MVAR=110101 _MA=1 In this case, R must be known.	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	L2	
Example 7: Radial position, Milling cutter, $R \neq 0$, measuring with reversal, calculate radius $\begin{aligned} & \text { _MVAR=111101 } \\ & \text { _MA=1 } \end{aligned}$ In this case, L2 must be known.	$\begin{aligned} & \mathrm{L} 1=\ldots \\ & \mathrm{L} 2=\ldots \\ & \mathrm{R}=\ldots \end{aligned}$	R	

Programming example

With the turning tool T3, D1 with $\mathrm{SL}=3$, length L 1 is to be determined incrementally and machine-related.

The probe to be used is tool probe 1. This probe is already calibrated in the minus X direction (machine-related). The precise values are entered in probe array _TP[0,2].


```
%_N_INCR_MEAS_MPF
N10 T3 D1 G94
N20 _MVAR=100001 _MA=2 _FA=20_MD=1 _PRNUM=1 _VMS=0 ;Parameters for the measuring
_NMSP=1
N30 CYCLE982 ;Measurement in minus X
N99 M2
```


Explanation of example

The probe has been calibrated in minus X .
Before the program is started, the "tip" of the tool T3 is in measuring axis X in a range $2 \times$ _FA $=40 \mathrm{~mm}$ (dimension with reference to radius) in front of the probe. In axis Z, the center of the cutting edge is centered with respect to the probe. If the cutting edge radius $=0$, it is the tool nose.

When CYCLE982 is started, measurement starts in the negative X direction (_MA=2, MD=1) with measuring velocity $300 \mathrm{~mm} / \mathrm{min}$ ($\mathrm{VMS}=0$, _FA>1). The switching signal is expected by the probe 1 (_PRNUM=1) within a distance of 2 x _FA $=40 \mathrm{~mm}$. Otherwise, an alarm will be triggered. Measurement is performed once (_NMSP=1).
After successful measurement, the "tip" of T3 is in the starting position again.
The calculated length L1 (tool type 5xy, _MA=2, _MVAR=xx0xxx) is entered in D1 of T3 in the geometry. The associated wear component is reset.

6.3.7 Milling tool: Suppression of start angle positioning _STA1

Function

To apply the angular position of the milling spindle (cutting edge of the miller contacting the probe) unchanged in the cycle and thus suppress the starting angle positioning with the value in _STA1, you can set _CHBIT[20]=1 .
However, this only permits simple milling cutter measuring variants that do not have to use the starting angle in _STA1, e.g.: no 2nd measurement or no re-positioning after measurement with reversal. Otherwise milling cutter measuring variants are possible that are also permitted for incremental measurement.
If the machine does not feature an SPOS-capable milling spindle, it is also possible to measure milling cutters with these measuring variants and _CHBIT[20]=1.
Permissible measuring variants with milling cutter and _CHBIT[20]=1: $\mathrm{xxx0x} 1$ (with x : 0 or 1 , no other values)

Other measuring variants with a miller will be rejected with an alarm message.
For measurement with rotating spindle and _CHBIT[20]=1, only these measuring variants are permitted. Measurement with reversal is not permitted.

6.3.8 Measuring drills - Special applications

Prerequisite

The tool probe has been calibrated with G18 active as is usual for turning tools.

Function

If drills are used on lathes with a length correction (offset) as for milling machines (SD 42950: TOOL_LENGTH_TYPE=0), then a drill can also be measured (gauged) in this application.
Length L1 is always calculated in the applicate (tool offset axis) of the current plane G17 to G19. This also characterizes the position of the tool. The usual position definition in _MVAR (5th digit) is no longer relevant and is ignored.
G17: L1 in Z axis (corresponds to axial position)
G18: L1 in Y axis (no turning machine application)
G19: L1 in X axis (corresponds to radial position)

Length L1 is determined if the following conditions are satisfied:

- the active tool is of type $2 x y$ (drill)
- SD 42950: TOOL_LENGTH_TYPE=0
- G17 or G19 are active and
- a measuring variant is set:
- _MVAR=1: Measuring (relative to the machine)
- _MVAR=11: Measuring (relative to the workpiece)
- _MVAR=1000x1: Incremental measuring (relative to the machine or workpiece)

A measuring axis specified in _MA is ignored. The 3rd axis (applicate) is used within the cycle. Otherwise the description of the measuring variant applies.

6.3.9 Measuring a tool with orientational tool carriers -90° multiples of tool position (measuring cycle release SW 6.3 and higher)

6.3.9.1 Overview of the functions

The functionality is designed for a specific configuration on turning machines (turning/milling machines). As well as the linear axes (Z and X) and main spindle, the turning machines must have swivel axis about Y with accompanying tool spindle. The swivel axis can be used to align the tool on the X / Z level.

Requirement

- The lateral surfaces of the tool probe must be aligned parallel to the relevant axes (machine or workpiece coordinate system in abscissa and ordinate). The tool probe must be calibrated in the measuring axis and direction in which measuring will be performed.
- The tool to be measured must be called with tool offset.
- When measuring drilling and milling tools, the setting data

SD42950: TOOL_LENGTH_TYPE must = 2,
i.e., lengths are assigned to the axes in the same way as on turning tools. The active level must be G18.

Function

For the orientational tool carrier to be taken into account in measuring cycle CYCLE982, the _CBIT[7] must be set.
_CBIT[7] = 1 Support by means of orientational tool carrier, positioned probes/tools

It is possible to measure a tool (turning, milling and drilling tools) with orientational tool carriers for 90° multiples of the tool positions. This is monitored within the cycle.
The measuring variants Measure, Automatic Measure and Incremental Measure are supported for turning, milling and drilling tools.
In measuring cycle release SW 6.3 and higher, tool measurement is workpiece-related and in measuring cycle version SW 7.3 and higher it is machine-related.
The measuring cycle parameters for the individual measuring variants are set in the same way as when the tool carrier is in its basic position.

Sequence

Before CYCLE 982 is called, the tool must be aligned in the same way as it will eventually be measured.

Preferably, tool alignment should be performed with CYCLE800 (see Programming Manual "Cycles", function "Tool alignment").

Please note that the measuring cycle assumes that the tool has been aligned in advance.
From the position adopted by the tool, it must be possible to approach the probe in X, Z via the measuring cycle.
The measuring procedure that follows is the same as for the measuring variants when the tool carrier is in its basic position.

6.3.9.2 Measuring turning tools -90° multiples of the tool position

Requirement

When measuring turning tools with orientational tool carriers, the cutting edge position of the tool must be entered in the tool offset in accordance with the basic position of the tool carrier.

Programming example

Measuring the turning tool automatically (machine-related, measuring cycle release SW 7.3 and higher)

Approximate values for the lengths and radius of tool T1 are known and entered in offset field D1. The cutting edge position in the tool offset must be entered in accordance with the basic position of the tool carrier; in this case, cutting edge position 3.

The tool should be measured in cutting edge position 4; the tool is aligned in relation to this.

Values of the turning tool T1 D1:
Tool type (DP1): 500
Cutting edge length (DP2): 3
Length 1 - geometry (DP3): \quad L1 $=10$
Length 2 - geometry (DP4): L2 = 40
Radius - geometry (DP6): $\quad R=0.5$
Deviations from this value of less then 2.5 mm are expected.

The probe to be used is tool probe 1. This probe has already been completely calibrated (machine-related). The precise values are entered in data field _TP[0,...] and are:
$\begin{aligned}-\mathrm{TP}[0.0] & =220, \quad-\mathrm{TP}[0.1]=200 \\ -\mathrm{TP}[0.2] & =400, \quad \mathrm{TP}[0.3]=380\end{aligned}$

Basic position of the tool carrier:
Turning tool Cutting edge position 3

Aligned tool:
Turning tool Cutting edge position 4


```
%_N_AUTO_DREH_MPF
; $PATH=/_N_WKS_DIR/_N_WZ_MESSEN_WPD
N10 G0 G18 G40 G90 G94 DIAMOF
N20 _CHBIT[3]=0 ;Offset in the geometry
N30 T1 D1 ;Selection of the tool to be
    ;measured
N40 SUPA Z285 X450 ;Starting position for alignment
N50 CYCLE800(0,"TURN", 200,57,0,0,0,0,90,0,0,0,0,1,0) ;Tool alignment
N60 SUPA Z120 X450 ;Starting position for measurement
N70 _MVAR=2 _ID=0 _PRNUM=1 _FA=3 _TSA=3
_TDIF=2 _TZL=0 _VMS=0 _NMSP=1 _EVNUM=0
N80 CYCLE982 ;Measure tool L1 and L2
N90 M30
```


Explanation of example

After approaching the starting position for alignment, the tool is aligned with CYCLE800 (see Programming Manual "Cycles", function "Tool alignment"). This changes the cutting edge position from 3 (basic position of tool carrier) to 4 . The change in cutting position is detected within the cycle, i.e., no data entries need to be made. Following alignment, the starting position for measurement is approached. The measuring procedure and the offset strategy that follow are the same as for the measuring variants when the tool carrier is in its basic position.

6.3.9.3 Measuring milling/drilling tools -90° multiples of the tool position

Requirement

When measuring drilling and milling tools, the setting data
SD42950: TOOL_LENGTH_TYPE must = 2
i.e., lengths are assigned to the axes in the same way as on turning tools. The active level must be G18.

Programming example

Measure milling tool (workpiece-related)

The lengths and radius of tool T10 to be measured are known and entered in offset field D1. When the tool carrier is in its basic position, the position of the milling tool is radial. The length L1 of the tool needs to be adjusted in the axial position (offset in wear); for this purpose, the tool is aligned axially using CYCLE800 (see Programming Manual "Cycles", function "Tool alignment").
Values of the turning tool T10 D1:
Tool type (DP1): 120
Cutting edge length (DP2):
Length 1 - geometry (DP3): $\quad \mathrm{L} 1=60$
Length 2 - geometry (DP4): $\quad L 2=10$
Radius - geometry (DP6): $\quad R=20$
Length 1 - wear (DP12): 0
Length 2 - wear (DP12): 0
Deviations from this value of less then 2.5 mm are expected.
The probe to be used is tool probe 1. This probe has already been completely calibrated (workpiece-related). The precise values are entered in data field _TPW[0,...] and are:

$$
\begin{aligned}
& -T P W[0.0]=100, _ \text {TPW }[0.1]=60 \\
& -T P W[0.2]=120, _T P W[0.3]=80
\end{aligned}
$$

Basic position of the tool carrier:
Milling tool in radial position

Aligned tool:
Milling tool in axial position


```
%_N_MESSEN_FW_MPF
;$PATH=/_N_WKS_DIR/_N_WZ_MESSEN_WPD
N10 G0 G54 G18 G40 G90 G94 DIAMOF
N20 _CHBIT[3]=1 ;Offset in wear
N30 T10 D1 ;Selection of the tool to be
N40 z200 X200
N50 CYCLE800(0,"TURN",300,57,0,0,0,0,-
90,0,0,0,0,-1, )
N60 z200 X200
N70 _MVAR=11 _ID=0 _PRNUM=1 _FA=3 _TSA=3
_TDIF=2 _TZL=0 _VMS=0 _NMSP=1 _EVNUM=0
N80 CYCLE982 ;Measure tool L1
N90 M30
```


Explanation of example

After approaching the starting position for alignment, the tool is aligned with CYCLE800 (see Programming Manual "Cycles", function "Tool alignment"). The tool is aligned from the radial tool position when the tool carrier is in its basic position to an axial position. Following alignment, the starting position for measurement is approached. The measuring procedure and the offset strategy that follow are the same as for the measuring variants when the tool carrier is in its basic position.

Note

The following measuring variants are not supported when using an orientational tool carrier:

- Automatic measurement of milling tools, particularly of the upper cutting edge
- _MVAR=x3xx2 and
- _MVAR=x4xx2.

When this measuring variant is used, alarm 61307: "Incorrect measuring variant" is output.

6.4 CYCLE973 Calibrating workpiece probes

6.4.1 Function overview

Function

This cycle can calibrate a workpiece probe with various cutting edge positions in a

- reference groove or on a
- surface.

The surface for calibration on a "surface" is workpiece-related. It is only possible to calibrate in the selected axis and direction (perpendicular in front of the surface).

Calibration in a "reference groove" is relative to the machine. In this case, calibration is possible in one cycle call in both axis directions.
It is additionally possible select determining the position deviation of the probe in the idle position or determining the active probe ball diameter. The workpiece probe can only have cutting edge positions SL=7 or SL=8.

Calibration principle

The switching position of the workpiece probe in an axis is calculated into the measuring probe length. The trigger values calculated in this way (relative to ball center) is then entered in the corresponding array _WP[] of array GUD6.DEF for the associated probe _PRNUM (_WP[_PRNUM-1,..]).
For a complete description of the array _WP[] of a workpiece probe, refer to Chapter "Data description", "Central values".

Programming

CYCLE973

Measuring variants

Measuring cycle CYCLE973 permits the following calibration variants which are specified via parameter _MVAR.

Digit			Significance		
5	4	3	2	1	
-	-	-	-	0	Calibration on surface (workpiece-related)
			1	3	Calibrate in groove (machine-related)
0			1	3	Without determining position deviation of probe
1			1	3	With determining position deviation of probe
	1		1	3	1 axis direction (specify meas. axis _MA and axis direction_MD)
	2		1	3	2 axis directions (specify measuring axis _MA)
		0	1	3	Without determining diameter of probe ball
		1	1	3	Determining diameter of probe ball

Note

When _MVAR=x1x13 calibration is only performed in one direction. It is not possible to determine position deviation or calculate probe ball.
Tolerance parameters _TSA and _TZL must be entered taking into account machine data

- MD 20360 TOOL_PARAMETER_DEF_MASK bit0 and bit1
in conjunction with the offset target
- geometry and wear.

Result parameters

Measuring cycle CYCLE973 returns the following values in block GUD5 for calibration:

Parameters	Data type	Result
_OVR [4]	REAL	Actual value probe ball diameter
_OVR [5]	REAL	Difference probe ball diameter
_OVR [8]	REAL	Trigger point in minus direction, actual value, abscissa
_OVR [10]	REAL	Trigger point in plus direction, actual value, abscissa
_OVR [12]	REAL	Trigger point in minus direction, actual value, ordinate
_OVR [14]	REAL	Trigger point in plus direction, actual value, ordinate
_OVR [9]	REAL	Trigger point in minus direction, difference, abscissa
_OVR [11]	REAL	Trigger point in plus direction, difference, abscissa
_OVR [13]	REAL	Trigger point in minus direction, difference, ordinate
_OVR [15]	REAL	Trigger point in plus direction, difference, ordinate
_OVR [20]	REAL	Positional deviation abscissa
_OVR [21]	REAL	Positional deviation ordinate
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVI [2]	INTEGER	Measuring cycle number
_OVI [5]	INTEGER	Probe number
_OVI [9]	INTEGER	Alarm number

6.4.2 Calibrating in the reference groove

6.4.2.1 General information

Function

With this measuring cycle and the _MVAR=xxx13 measuring variant, it is possible to calibrate a workpiece probe with cutting edge position SL=7 or SL=8 in a reference groove machine-related in the axes of the plane (abscissa, ordinate).
Calibration is possible in one direction (_MVAR=x1x13) or in both directions of an axis (_MVAR=x2x13).

It is also possible to calibrate the position deviation of the probe and the active diameter of the probe ball in both directions.

The workpiece probe calibrated is selected with _PRNUM. The associated array _WP[] in data block GUD6.DEF is _WP[_PRNUM-1,...] (for a detailed description of the array, refer to Chapter "Data description", "Central values").

The reference groove is selected with _CALNUM. The associated array _KB[] in data block GUD6.DEF is _KB[_CALNUM-1,...].

Prerequisite

The dimensions of the reference groove must already be stored in array _KB[] of data block GUD6.DEF for the groove selected via _CALNUM.

The workpiece probe must be called as a tool with a tool offset.

Parameter

Parameter					Data type	Meaning
_MVAR						Calibratio
			1	3	Calibrate in groove (machine-related)	
0			1	3	Without determining position deviation of probe	
1			1	3	With determining position deviation of probe	
	1		1	3	1 axis direction (specify meas. axis _MA and axis direction _MD)	
	2		1	3	2 axis directions (specify measuring axis _MA)	
		0	1	3	Without determining diameter of probe ball	
		1	1	3	Determining diameter of probe ball	
- MA		1,2				Measurin
- MD		0 positive axis direction 1 negative axis direction				Measurin
_CALNUM					INTEGER	Number
_PRNUM					INTEGER	Probe nu

Additional parameters _VMS, _TZL, _TSA, _FA and _NMSP also apply.

Note

When _MVAR=x1x13 calibration is only performed in one direction. It is not possible to determine position deviation or calculate probe ball.

NOTICE

The first time calibration is performed the default setting in the array of the probe is still " 0 ". For that reason _TSA> probe ball radius must be programmed to avoid alarm "Safe area violated".

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location:_NMSP (Page 82)

6.4.2.2 Programming example

Calibrate workpiece probe in reference groove

The workpiece probe 1 with cutting edge position $\mathrm{SL}=7$ is to be calibrated in reference groove 1 in both axes and in both directions in X. The probe is inserted as tool T8, D1.

Probe lengths L1 and L2 always refer to the probe ball center and must be entered in the tool offset memory before the measuring cycle is called, T8, D1:

Tool type (DP1):	580
Cutting edge position (DP2):	7
Length 1-geometry (DP3):	$\mathrm{L} 1=40.123$
Length 2-geometry (DP4):	$\mathrm{L} 2=$
	100.456
Radius - geometry (DP6):	3.000

Calibrate workpiece probe in reference groove

The data for reference groove 1 have already been entered:

$$
_K B[0,0]=60.123, _K B[0,1]=50.054,
$$

$$
\mathrm{K} K[0,2]=15.021
$$

```
%_N_CALIBRATE_IN_GROOVE_MPF
N10 T8 D1 ;Tool offset of the probe
N20 G0 SUPA G90 DIAMOF z125 X95
```

```
;Position in front of cycle call
```

;Position in front of cycle call
;(start position),
;(start position),
;position without zO

```
;position without zO
```

```
N30 _TZL=0 _TSA=1 _VMS=0 _NMSP=1 _FA=3 _PRNUM=1 ; Set parameters for calibration,
N31 _MVAR=13 _MA=1 _MD=1 _CALNUM=1 ;minus z-direction
N40 CYCLE973 ;Cycle call
N50 _MVAR=02013 _MA=2 ;In X axis, both directions
N60 CYCLE973 ;Cycle call
N70 G0 SUPA Z125 ;Retraction in Z
N80 SUPA X95 ;Retraction in x
N100 M2 ;End of program
```


Explanation of example

The cycle automatically approaches reference groove 1 from the starting position and performs calibration in both axes and in the X axis in a double cycle call. The new trigger values are stored in the data of the workpiece probe 1 _WP[0,1], _WP[0,3], _WP[0,4].

At the end, result array _OVR[] contains the values of the 2nd cycle call.

6.4.2.3 Operational sequence

Position before measuring cycle call

The starting point must be selected such that the selected workpiece probe can be positioned in the cycle into the reference groove selected via _CALNUM by the shortest path with paraxial collision-free movements in accordance with the active cutting edge position.

Position after end of measuring cycle

On completion of calibration, the probe is positioned facing the calibration surface at distance _FA.

6.4.3 Calibration on surface

6.4.3.1 General information

Function

With this measuring cycle and the _MVAR=0 measuring variant, it is possible to calibrate a workpiece probe with cutting edge positions SL=5 to 8 on a surface (workpiece-related) and therefore determine the probe trigger points.

The position of the surfaces is defined in workpiece coordinates in _SETVAL.
The workpiece probe calibrated is selected with _PRNUM. The associated array _WP[] in data block GUD6.DEF is _WP[_PRNUM-1,...].

Prerequisite

The surface must be parallel to an axis of the workpiece coordinate system and have low surface roughness.
The workpiece probe is called as a tool with tool offset and positioned opposite the calibration surface. $5 x y$ should be entered as the tool type.

Parameter

Parameter	Data type	Meaning
- MVAR	0	Calibration on surface (workpiece-related)
_SETVAL	REAL	Setpoint referred to the workpiece zero, for facing axis in the diameter (DIAMON)
- MA	$1,2,3^{11}$	Measuring axis
$-{ }^{\text {MD }}$	0 positive axis direction 1 negative axis direction	Measuring direction
PRNUM	INT	Probe number
1) It is also possible to calibrate in the 3rd axis (Y in G18), provided that this axis exists.		

Additional parameters _VMS, _TZL, _TSA, _FA and _NMSP also apply.

NOTICE

The first time calibration is performed the default setting in the array of the probe is still "0". For that reason _TSA> probe ball radius must be programmed to avoid alarm "Safe area violated".

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Multiple measurement at the same location: _NMSP (Page 82)

6.4.3.2 Programming example

Calibration of probe 1 on a surface

Workpiece probe 1 with cutting edge position $\mathrm{SL}=7$ is to be calibrated on surface $\mathrm{Z}=-18 \mathrm{~mm}$ in direction minus Z. The probe is inserted as tool T9, D1.

Probe lengths L1 and L2 always refer to the probe ball center and must be entered in the tool offset memory before the measuring cycle is called, T9, D1:

Tool type (DP1):	580
Cutting edge position (DP2):	7
Length 1 - geometry (DP3):	$\mathrm{L} 1=40.123$
Length 2 - geometry (DP4):	$\mathrm{L} 2=$
Radius - geometry (DP6):	3.000

Zero offset, with settable ZO G54: NVz

```
%_N_CALIBRATE_IN_Z_MPF
N10 G54 G90 G0 X66 Z90 T9 D1 DIAMON ;Activate ZO, select the tool offset
N20 _MVAR=0 _SETVAL=-18 _MA=1 _MD=1 _TZL=0 ;Set parameters for calibration in
_TSA=1 _PRNUM=1 _VMS=0 _NMSP=1 _FA=3 ;minus z-direction, _SETVAL is
N30 CYCLE973
N40 G0 z90 ;Retraction in Z
N50 x146
N100 M2
```

```
;of probe position before cycle call
```

;of probe position before cycle call
;negative!
;negative!
;Cycle call
;Cycle call

```
;Retraction in x
```

;Retraction in x
;End of program

```
;End of program
```


Explanation of example

The surface with position $Z=-18$ is approached in the Z axis in the minus direction (_SETVAL=-18, _MA=1, _MD=1).
Actual calibration starts _FA=3 mm in front of the surface. The workpiece probe is then calibrated and ends up facing the surface again at distance _FA from it. The new trigger value in minus Z is entered in the data of probe $1 _W P[0,1]$ and in the result field _OVR[]. The original position is approached in block N40, N50.

6.4.3.3 Operational sequence

Position before measuring cycle call

The starting point must be a position facing the calibration surface.

Position after end of measuring cycle

On completion of calibration, the probe is positioned facing the calibration surface at distance _FA.

6.5 CYCLE974 workpiece: 1-point measurement

6.5.1 Function overview

Function

This measuring cycle can be used in various measurement variants to determine workpiece dimensions in a 1-point measurement.

It is also possible to determine a zero offset (ZO) or an automatic tool offset.

- 1-point measurement and ZO determination
- 1-point measurement and tool offset
- 1-point measurement with reversal and tool offset

The measuring cycle determines the actual value of the workpiece with respect to the workpiece zero in the selected measuring axis _MA and calculates the difference from a defined setpoint (setpoint-actual value).

An empirical value stored in data block GUD5 can be included. For variants "with tool offset" it is also possible to calculate a mean value over several parts.
The cycle checks that a set tolerance range for the measured deviation is not violated and automatically corrects the ZO memory or tool offset memory selected in _KNUM. If KNUM=0, there is no offset.

Programming

CYCLE974

Note

Tolerance parameters _TSA, _TDIF, _TZL, _TMV, _TLL and _TUL must be entered taking into account machine data

- MD 20360 TOOL_PARAMETER_DEF_MASK bit0 and bit1
in conjunction with the offset target
- geometry and wear.

Prerequisite

The probe must be calibrated in the measuring direction and as a tool with tool offset. The tool type is $5 x y$.

The cutting edge position can be 5 to 8 and must be suitable for the measurement task.

Measuring variants

Measuring cycle CYCLE974 permits the following measuring variants that are specified in parameter _MVAR.

Value	Significance
0	1-point measurement and tool offset
100	1-point measurement and ZO determination
1000	1-point measurement with reversal and tool offset

Result parameters

Depending on the measuring variant, measuring cycle CYCLE974 returns the following result values in the GUD5 block:

Parameters	Data type	Result
-OVR [0]	REAL	Setpoint value for measuring axis
_OVR [1]	REAL	Setpoint in abscissa \rightarrow only when _MA=1
_OVR [2]	REAL	Setpoint in ordinate \rightarrow only when _MA=2
_OVR [3]	REAL	Setpoint in applicate \rightarrow only when _MA $=3$
_OVR [4]	REAL	Actual value for measuring axis
_OVR [5]	REAL	Actual value in abscissa \rightarrow only when _MA $=1$
_OVR [6]	REAL	Actual value in ordinate \rightarrow only when _MA $=2$
-OVR [7]	REAL	Actual value in applicate \rightarrow only when _MA $=3$
_OVR [8 ${ }^{11}$	REAL	Upper tolerance limit for measuring axis
_OVR [12] ${ }^{\text {1) }}$	REAL	Lower tolerance limit for measuring axis
_OVR [16]	REAL	Difference for measuring axis
_OVR [17]	REAL	Difference in abscissa \rightarrow only when _MA=1
-OVR [18]	REAL	Difference in ordinate \rightarrow only when_MA=2
_OVR [19]	REAL	Difference in applicate \rightarrow only when _MA=3
-OVR [20] ${ }^{1 / 3)}$	REAL	Compensation value

Parameters	Data type	Result
OVR [$27{ }^{1 /}$	REAL	Zero offset area
_OVR [28]	REAL	Safe area
OVR [29] ${ }^{1)}$	REAL	Dimensional difference
_OVR [30]	REAL	Empirical value
OVR [31$]^{1)}$	REAL	Mean value
_OVI [0]	INTEGER	D number or ZO number
_OVI [2]	INTEGER	Measuring cycle number
OVI [4] ${ }^{1)}$	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
_OVI [6] ${ }^{1 /}$	INTEGER	Mean value memory number
_OVI [7]	INTEGER	Empirical value memory number
_OVI [8]	INTEGER	Tool number
_OVI [9]	INTEGER	Alarm number
_OVI [11] ${ }^{\text {2) }}$	INTEGER	Status offset request
1) for workpiece measurement with tool offset only 2) for ZO correction only 3) from meas. cycles SW 6.3: For "tool offset" the offset value always appears in _OVR[20] as radius dimension.		

Starting positions for various measuring tasks

The starting positions before cycle call depend on the measuring task, the value of the setpoint _SETVAL, the measuring axes, and the cutting edge position (SL) of the workpiece probe.

The probe must be positioned facing the point to be measured and is reached by traversing measuring axis _MA in the setpoint direction in the measuring cycle. The setpoint (position of the point) is defined by parameter _SETVAL.

Measurement is possible parallel to and in the direction of the axes permitted by the "cutting edge position" of the workpiece probe inserted.

6.5.2 1-point measurement and ZO determination

6.5.2.1 General information

Function

With this measuring cycle and the _MVAR=100 measuring variant, the actual value of a workpiece is determined with reference to the workpiece zero in the selected measuring axis _MA. An empirical value from data block GUD5 can be included with the correct sign.
The zero offset (ZO) is applied in such a way that the actual value adopts the required setpoint (_SETVAL) in the workpiece coordinate system when the corrected ZO (frame) is used. Mirroring can be active in a frame of the frame sequence. Dimension factors must never be active. The ZO to be corrected is specified in coded form with variable _KNUM >0.
The ZO can be specified and corrected by various methods, e.g. in various settable frames, in various basic frames, system frames, fine offset, or coarse offset, etc.
For detailed information on specifying _KNUM for the zero offset: see section "Description of the most important defining parameters".

Prerequisite

If necessary, the workpiece must be positioned in the correct angular spindle position with SPOS before the cycle is called.

Parameter

Parameter	Data type	Meaning
- MVAR	100	1-point measurement and ZO determination
- SETVAL	REAL ${ }^{1}$)	Setpoint, with reference to the workpiece zero
$-{ }^{\text {MA }}$	$\left.1,2,3^{1}\right)$	Measuring axis
_KNUM	$0,>0$	0: No automatic ZO correction >0 : With automatic ZO correction (individual values: see section "Description of the most important defining parameters", Parameter _KNUM)

[^0]Additional parameters _VMS, _TSA, _FA, _PRNUM, _EVNUM and _NMSP also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)

Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)

Measurement path: _FA (Page 79)

Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)

6.5.2.2 Programming example

ZO calculation at a workpiece

The intention is to determine the zero offset in the Z axis on a clamped workpiece with workpiece probe 1, inserted as tool T8, D1. The position determined should retain the value 60 mm in the new workpiece with G54. Measurement is also performed with G54.
The probe is already calibrated and the tool data are entered in T8, D1:

Zero offset, with settable ZO G54: NVz

```
%_N_ZO_DETERMINING_1_MPF
N10 G54 G90 G18 DIAMON T8 D1
N20 G0 X36 Z100
N30 _MVAR=100 _SETVAL=60 _MA=1 _TSA=1 _KNUM=1 ;Parameters for cycle call
_EVNUM=0 _PRNUM=1 _VMS=0 _NMSP=1 _FA=1
N40 CYCLE974
N50 G0 Z100 ;Retraction in Z
N60 X114 ;Retraction in X
N100 M2 ;End of program
```


Note

If parameter _VMS has value 0 , the default value of the measuring cycle is used for the variable measuring velocity:
if _FA=1: $150 \mathrm{~mm} / \mathrm{min}$
if _FA>1: $300 \mathrm{~mm} / \mathrm{min}$
(see section "Description of the most important defining parameters")

6.5.2.3 Operational sequence

Position before measuring cycle call

The probe must be positioned opposite the surface to be measured.

Position after end of measuring cycle

On completion of measurement, the probe is positioned facing the measuring surface at distance _FA.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane and measuring velocity are the same for both measurement and calibration. If the probe is used in the spindle for a powered tool, the spindle orientation must also be considered. Deviations can cause additional measuring errors.

6.5.3 1-point measurement and tool offset

6.5.3.1 General information

Function

With this measuring cycle and the _MVAR=0 measuring variant, the actual value of a workpiece is determined with reference to the workpiece zero in the selected measuring axis.

An offset can also be determined for a tool depending on that. This tool is specified in _TNUM and _TNAME. The D number and type of offset are specified in coded form in variable _KNUM.

From measuring cycles SW 6.3, extended tool offset is available. With this function a tool from a particular stored tool environment _TENV, and additive, setup offsets can be corrected by specifying the DL number in _DLNUM.

Detailed information on the parameters: see section "Description of the most important defining parameters".

Empirical values and mean values

An empirical value stored in data block GUD5 in array _EV[] can be included in calculation of the result after measurement is completed. Optionally, averaging is performed over a number of parts (array _MV[]) and the tolerance bands are checked.
Both are activated in _EVNUM (see Section "Description of the most important defining parameters").

Prerequisite

If necessary, the workpiece must be positioned in the correct angular spindle position with SPOS before the cycle is called.

Parameter

Parameter	Data type	Meaning
- MVAR	0	1-point measurement and tool offset
- SETVAL	REAL²)	Setpoint (according to drawing) (in the case of facing axis (X) and diameter programming, this is a diameter dimension)
- MA	$1,2,3^{1)}$	Measuring axis
- KNUM	$0,>0$	0: Without automatic tool offset >0 : With automatic tool offset (individual values: see section "Description of the most important defining parameters", Parameter _KNUM)
- TNUM	INTEGER, ≥ 0	Tool number for automatic tool offset

1) Measurement in the 3rd axis of the plane (with G18 in Y) is also possible, provided this axis exists.
2) By setting _CHBIT[19]=1 in the GUD6 block, the same parameterization regarding the setpoint can be used when measuring in the Y axis (3rd axis of the plane) for active G18 as when measuring in the X axis (transverse axis). In this case, the tool offset is also applied to L 1 (effective length in X) if nothing different is specified by _KNUM.

Additional parameters _VMS, _TZL, _TMV, _TUL, TLL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM, _NMSP and _K also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)

Measurement path: _FA (Page 79)
Probe type, probe number:_PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)
Weighting factor for mean value calculation: _K (Page 83)

6.5.3.2 Programming example

1-point measurements at outside and inside diameters with tool offsets

An outside diameter with tool T7, D1 and an inside diameter with tool T8, D1 has been machines on a workpiece. The set diameters have the dimensions shown in the figure.
If the absolute value of the difference determined is $>0.002 \mathrm{~mm}$, the length (in measuring axis _MA) of the tool is to be automatically offset in the wear. The maximum permissible deviation is taken as max. 0.5 mm . Max. 0.04 mm is permissible. To obtain a minimum measuring path of 0.5 mm , the measuring path is programmed as _FA=0.5+0.5=1 mm (max. total measuring path $=2 \mathrm{~mm}$).

The offset must take the empirical value in memory _EV[12] into consideration for T 7, or _EV[13] for T 8. Mean value calculation _MV[12] or _MV[13] and inclusion in calculation are also to be used. This tool offset will therefore affect the production of the next workpieces or possible remachining.

Clamping for workpiece:
Zero offset, with settable ZO G54: NVz
Workpiece probe 1, used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:


```
%_N_ONE_POINT_MEAS_MPF
N10 G54 G18 G90 T9 D1 DIAMON
N20 G0 Z30 X90 ;Preposition probe
N25 _CHBIT[4]=1 ;With mean value calculation
N30 _TZL=0.002 _TMV=0.005 _TDIF=0.04 _TSA=0.5 ;Parameters for cycle call
_PRNUM=1 _VMS=0 _NMSP=1 _FA=1
N31 _MVAR=0 _SETVAL=45 _TUL=0 _TLL=-0.01
_TNUM=7 _KNUM=1 _EVNUM=13 _K=2 _MA=2
N40 CYCLE974 ;Measurement on the outside diameter
N50 G0 Z60 ;Place probe facing P2
N60 x0
N70 Z40
N80 _SETVAL=35 _TUL=0.015 _TLL=0 _TNUM=8
_EVNUM=14
N90 CYCLE974 ;Measurement on the inside diameter
N100 G0 Z110 ;Retraction in Z
N110 x90 ;Retraction in x
N200 M2
;Call zo, tool = probe
; End of program
```


Explanation of example

Measurement of outside diameter and offset T7

The difference calculated from the actual value and setpoint is compensated for by the empirical value in the empirical value memory _EV[12] and compared with the tolerance parameter:

- If it is more than 0.5 mm (_TSA), alarm "Safe area violated" is output and program execution cannot be continued.
- If it is more than 0.04 mm (_TDIF), no compensation is performed and alarm "Permissible dimensional difference exceeded" is output and the program continues.
- If values _TUL= $0.01, \ldots$ TLL=0 are violated upward or downward, the length of T7 D1 is compensated 100% by this difference. Alarm "Oversize" or "Undersize" is displayed and the program is continued.
- If $0.005 \mathrm{~mm}\left(_T M V\right)$ is exceeded, the length in T7 D1 is compensated 100% by this difference.
- If it is less than 0.005 mm (_TMV), the mean value is calculated (only if_CHBIT[4]=1! with mean value memory) with the mean value in mean value memory _MV[12] and by including weighting factor (_K=2).
- If the mean value obtained is >0.002 (_TZL), the reduced compensation of the length 1 for T7 D1 is the mean value/2 and the mean value is deleted in _MV[12].
- If the mean value is <0.002 (_TZL), there is no offset but it is stored in the mean value memory _MV[12] if mean value storage (_CHBIT[4]=1) is active.
The results are entered in result array _OVR[]. The wear of the length 1 of T7, D1 is included if a change is necessary.

Measurement of inside diameter and offset T8

Procedure as described for "Measurement output diameter".
Offset of T8 with appropriate modified values _EV[13], _MV[13] (EVNUM=14), _TUL, _TLL, _SETVAL.

Note

The values of the workpiece tolerance parameters _TUL, _TLL were selected asymmetrically in the example. The result is then made symmetrical (see Section "Tolerance parameters:
_TZL, _TMV, _TUL, TLL, _TDIF and _TSA").

6.5.3.3 Operational sequence

Position before measuring cycle call

The probe must be positioned opposite the surface to be measured.

Position after end of measuring cycle

On completion of measurement, the probe is positioned facing the measuring surface at distance _FA.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane and measuring velocity are the same for both measurement and calibration. If the probe is used in the spindle for a powered tool, the spindle orientation must also be considered. Deviations can cause additional measuring errors.

6.5.4 1-point measurement with reversal and tool offset

6.5.4.1 General information

Function

With this measuring cycle and the _MVAR=1000 measuring variant, the workpiece actual value is ascertained with reference to the workpiece zero in the measuring axis by acquiring two opposite points on the diameter.

Before taking the first measurement, the workpiece is positioned at the angular position programmed in parameter _STA1 with SPOS and the 180° reversal is automatically generated by the cycle before the second measurement.

The mean value is calculated from both measured values.
Otherwise, the same conditions and tool offset options apply as for measuring variant _MVAR=10 "1-point measurement and tool offset".

Parameter

Parameter	Data type	Meaning
_MVAR	1000	1-point measurement with reversal and tool offset
_SETVAL	REAL ${ }^{2)}$	Setpoint (according to drawing) (in the case of facing axis (X) and DIAMON, this is a diameter dimension)
_MA	1, 2, 31)	Measuring axis
_STA1	REAL, >=0	Starting angle (spindle position)
-KNUM	$0,>0$	0 : Without automatic tool offset >0 : With automatic tool offset (individual values: See Section 2.3, parameter_KNUM)
_TNUM	INTEGER, ≥ 0	Tool number for automatic tool offset
-TNAME	STRING[32]	Tool name for automatic tool offset (alternative to _TNUM with tool management active)
-DLNUM	INTEGER, ≥ 0	DL number for additive and setup offset (from meas. cycles SW 6.3)
_TENV	STRING[32]	Name of tool environment for automatic tool compensation (from measuring cycles SW 6.3)

1) Measurement in the 3rd axis of the plane (with G18 in Y) is also possible, provided this axis exists.
2) By setting _CHBIT[19]=1 in the GUD6 block, the same parameterization regarding the setpoint can be used when measuring in the Y axis (3rd axis of the plane) for active G18 as when measuring in the X axis (transverse axis). In this case, the tool offset is also applied to L1 (effective length in X) if nothing different is specified by _KNUM.

Additional parameters _VMS, _TZL, _TMV, _TUL, TLL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM, _NMSP and _K also apply.

See also

Defining parameters (Page 65)
Result parameters (Page 67)

Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)
Weighting factor for mean value calculation: _K (Page 83)

6.5.4.2 Programming example

1-point measurement at outside diameter, measuring with reversal
An outside diameter with tool T7, D1 has been machined on a workpiece. The set diameter has the dimension shown in the figure.

This outside diameter is to be measured with reversal. The spindle is SPOS-capable.
If the absolute value of the difference determined is >0.002, the length (in measuring axis _MA) of the tool is to be automatically offset in the wear.

The maximum permissible deviation is taken as max. 1 mm . Max. 0.4 mm is permissible.
To obtain a minimum measuring path of 1 mm , the measuring path is programmed as _FA=1+1=2 mm (max. total measuring path $=4 \mathrm{~mm}$).

The offset is not to consider an empirical value and no mean value is calculated or used.
Clamping for workpiece:
Zero offset, with settable ZO G54: NVz
Workpiece probe 1, used as tool T9, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T9, D1 in the tool offset memory:

| Tool type (DP1): | 580 |
| :--- | :--- | :--- |
| Cutting edge position (DP2): | 7 |
| Length 1 - geometry (DP3): | $\mathrm{L} 1=40.123$ |
| Length 2 - geometry (DP4): | $\mathrm{L} 2=$ |
| Radius - geometry (DP6): | 3.000 |

```
%_N_REVERSALMEAS_MPF
N10 G54 G90 G18 T9 D1 DIAMON ;Call zO, tool = probe
N20 G0 Z30 X90
N30 _MVAR=1000 _SETVAL=45 _TUL=0 _TLL=-0.01
_MA=2 _STA1=0 _KNUM=1 _TNUM=7 _EVNUM=0
_TZL=0.002 _TDIF=0.4 _TSA=1 _PRNUM=1 _VMS=0
_NMSP=1 _FA=2
N40 CYCLE974 ;Measuring cycle call
N50 G0 z110 ;Retraction in Z
N60 x90 ;Retraction in x
N100 M2 ;End of program
```


Note

The values of the workpiece tolerance parameters _TUL, _TLL were selected asymmetrically in the example. The result is then made symmetrical (see Section "Tolerance parameters: _TZL, _TMV, _TUL, TLL, _TDIF and _TSA").

6.6 CYCLE994 workpiece: 2-point measurement

6.6.1 Function overview

6.6.1.1 General information

Function

This measuring cycle can be used to determine workpiece dimensions in 2-point measurements with various measuring variants.

Automatic tool offsetis also possible.
The measuring cycle determines the actual value of the workpiece with respect to the workpiece zero in the selected measuring axis _MA and calculates the difference from a defined setpoint (setpoint-actual value). An empirical value stored in data block GUD5 can be included. It is also possible to calculate a mean value over several parts.
The cycle checks that a set tolerance range for the measured deviation is not violated and automatically corrects the tool offset memory selected in _KNUM. If KNUM=0, there is no offset.

Two opposite measuring points in measuring axis _MA are approached symmetrically to the workpiece zero at the distance of the setpoint _SETVAL.
Order: 1st measuring point positive, 2nd measuring point negative.
A safety zone is programmed in parameters _SZA and _SZO. This is considered in traversal with the measuring variant. The probe ball radius must also be considered by the user.

Programming

Note

Tolerance parameters _TSA, _TDIF, _TZL, _TMV, _TLL and _TUL must be entered taking into account machine data

- MD 20360 TOOL_PARAMETER_DEF_MASK bit0 and bit1
in conjunction with the offset target
- geometry and wear.

Prerequisite

The probe must be calibrated in the measuring direction (if _CHBIT[7] = 0) and called as a tool with tool offset. The tool type is $5 x y$. The cutting edge position can be 5 to 8 and must be suitable for the measurement task. The measuring cycle can be used for measurement without previous calibration.

Instead of the trigger values in _WP[], the probe ball diameter entered in the probe array _PRNUM (_WP[_PRNUM-1,0]) is used in the calculation.

The function is controlled via bit:

- _CHBIT[7]=1: Probe not calibrated, (without use of the trigger values), use of the probe ball diameter _WP[_PRNUM-1,0])
- _CHBIT[7]=0: Probe is calibrated, use of trigger values in _WP[_PRNUM-1,...])

Tool offset

An offset can be applied for the tool that machined the workpiece. This tool is specified in _TNUM and _TNAME. The D number and type of offset are specified in coded form in variable _KNUM.
From measuring cycles SW 6.3, extended tool offset is available. With this function a tool from a particular stored tool environment _TENV, and additive, setup offsets can be corrected by specifying the DL number in _DLNUM.
Detailed information on the parameters: see section "Description of the most important defining parameters".

Empirical values and mean values

An empirical value stored in data block GUD5 in array _EV[] can be included in calculation of the result after measurement is completed.
Optionally, averaging is performed over a number of parts (array _MV[]) and the tolerance bands are checked.

Both are activated in _EVNUM (see Section "Description of the most important defining parameters").

Measuring variants

Measuring cycle CYCLE994 permits the following measuring variants that are specified in parameter _MVAR.

Value	Meaning
1	2-point inside measurement with programmed safety zone
2	2-point measurement:
	• Outside measurement with programmed safety zone

Result parameters

The measuring cycle CYCLE994 supplies the following values as results in the GUD5 block:

Parameter	Data type	Result
_OVR [0]	REAL	Setpoint diameter or setpoint as radius dimension (note _MA)
_OVR [1]	REAL	Setpoint for diameter/radius in abscissa \rightarrow only when _MA=1
_OVR [2]	REAL	Setpoint for diameter/radius in ordinate \rightarrow only when _MA=2
_OVR [3]	REAL	Setpoint for diameter/radius in applicate \rightarrow only when _MA=3
_OVR [4]	REAL	Actual value for diameter/radius
_OVR [5]	REAL	Actual value for diameter/radius in abscissa \rightarrow only when _MA=1
_OVR [6]	REAL	Actual value for diameter/radius in ordinate \rightarrow only when _MA=2
_OVR [7]	REAL	Actual value for diameter/radius in applicate \rightarrow only when _MA=3
_OVR [8]	REAL	Upper Tolerance limit for diameter/radius
_OVR [12]	REAL	Lower tolerance limit for diameter/radius

Parameter	Data type	Result
_OVR [16]	REAL	Difference for diameter
_OVR [17]	REAL	Difference for diameter/radius in abscissa \rightarrow only when _MA $=1$
_OVR [18]	REAL	Difference for diameter/radius in ordinate \rightarrow only when _MA=2
_OVR [19]	REAL	Difference for diameter/radius in applicate \rightarrow only when _MA=3
-OVR [20] ${ }^{1)}$	REAL	Compensation value
_OVR [27]	REAL	Zero offset area
_OVR [28]	REAL	Safe area
_OVR [29]	REAL	Dimensional difference
_OVR [30]	REAL	Empirical value
_OVR [31]	REAL	Mean value
_OVI [0]	INTEGER	D number
_OVI [2]	INTEGER	Measuring cycle number
_OVI [4]	INTEGER	Weighting factor
_OVI [5]	INTEGER	Probe number
_OVI [6]	INTEGER	Mean value memory number
_OVI [7]	INTEGER	Empirical value memory number
-OVI [8]	INTEGER	Tool number
_OVI [9]	INTEGER	Alarm number
1) from meas. cycles SW 6.3: For "tool offset" the offset value always appears in _OVR[20] as radius dimension, regardless of DIAMON or DIAMOF.		

When measuring in the traverse axis and for diameter programming (DIAMON), all of the dimensioned parameters are diameter dimensions, otherwise radius dimensions.

Parameter

Parameter	Data type	Meaning
_MVAR	1 or 2	1: Inside measurement, 2-point measurement with safety zone 2: 2-point measurement, safety zone only for outside measurement
_SETVAL	REAL ${ }^{2}$	Setpoint If measurement is made in the transverse axis and diameter programming (DIAMON) is active, then _SETVAL is a diameter dimension, otherwise a radius dimension around the workpiece zero.
_MA	1, 2, 31)	Measuring axis
_SZA	REAL	Protection zone at the workpiece in the abscissa²) If the abscissa is a transverse axis and diameter programming (DIAMON) is active, then _SZA is a diameter dimension, otherwise a radius dimension around the workpiece zero.
_SzO	REAL	Protection zone at the workpiece in the ordinate ${ }^{2}$) If the ordinate is a transverse axis and diameter programming (DIAMON) is active, then _SZO is a diameter dimension, otherwise a radius dimension around the workpiece zero.
_KNUM	$0,>0$	0 : Without automatic tool offset >0 : With automatic tool offset (individual values: See Section 2.3, parameter _KNUM)

Parameter	Data type	Meaning
- TNUM	INTEGER, ≥ 0	Tool number for automatic tool offset
- TNAME	STRING[32]	Tool name for automatic tool offset (alternative to _TNUM with tool management active)
- DLNUM	INTEGER, ≥ 0	DL number for additive and setup offset (from measuring cycles SW 6.3)
- TENV	STRING[32]	Name of tool environment for automatic tool compensation (from measuring cycles SW 6.3)

1) Measurement in the 3rd axis of the plane is also possible, provided this axis exists (_MA=3: if G18 is in the Y axis).
2) For measurement in the 3rd axis (in G18 in Y _SZO applies in this axis. _SZA still applies in the 1st axis in the plane (Z axis in $G 18$). Travel around is performed in the 1st axis of the plane (Z axis in G18). Setting _CHBIT[19]=1 in block GUD6 enables the same setpoint and safety zone parameterization to be used for measurement in the 3rd axis (measurement in the Y axis) with active G18 as for measurement in the X axis (facing axis). The tool offset is then also in L1 if not specified differently in _KNUM.

Additional parameters _VMS, _TZL, _TMV, _TUL _TLL, _TDIF, _TSA, _FA, _PRNUM, _EVNUM, _- NMSP and _K also apply.
See also
Defining parameters (Page 65)
Result parameters (Page 67)
Variable measuring velocity: _VMS (Page 77)
Tolerance parameters: _TZL, _TMV, _TUL, _TLL, _TDIF and _TSA (Page 78)
Measurement path: _FA (Page 79)
Probe type, probe number: _PRNUM (Page 80)
Empirical value, mean value: _EVNUM (Page 81)
Multiple measurement at the same location: _NMSP (Page 82)
Weighting factor for mean value calculation: _K (Page 83)

6.6.1.2 Programming example

Two-point measurement, outside and inside

An outside diameter with tool T8, D1 and an inside diameter with tool T9, D1 has been machines on a workpiece. The set diameters have the dimensions shown in the figure.

If the absolute value of the difference determined is $>0.002 \mathrm{~mm}$, the length (in measuring axis _MA) of the tool is to be automatically offset in the wear. The maximum permissible deviation is taken as max. 0.5 mm . Max. 0.04 mm is permissible. To obtain a minimum measuring path of 0.5 mm , the measuring path is programmed as _FA=0.5+0.5=1 mm (max. total measuring path $=2 \mathrm{~mm}$).

The offset must take the empirical value in memory _EV[2] into consideration for T 8, or _EV[3] for T 9. Mean value calculation _MV[2] or _MV[3] and inclusion in calculation are also to be used. This tool offsets will therefore affect the production of the next workpieces or possible remachining.

Clamping for workpiece:
Zero offset, with settable ZO G54: NVz
Workpiece probe 1, used as tool T1, D1, is to be used.
The probe is already calibrated. Arrays for workpiece probe 1: _WP[0, ...]
The following is entered under T1, D1 in the tool offset memory:

| Tool type (DP1): | 580 |
| :--- | :--- | :--- |
| Cutting edge position (DP2): | 7 |
| Length 1 - geometry (DP3): | $\mathrm{L} 1=40.123$ |
| Length 2 - geometry (DP4): | $\mathrm{L} 2=$ |
| Radius - geometry (DP6): | 3.000 |

```
%_N_TWO_POINT_MEAS_MPF
N10 T1 D1 DIAMON ;Call tool = probe (MT)
N20 G0 G54 Z30 X60 ;ZO selection,
;Position probe facing P1
N25 _CHBIT[4]=1 _CHBIT[7]=0
;With mean value calc., calibrated MT
N30 _TLL=-0.01 _MA=2 _SZA=55 _SZO=55
_KNUM=1 _K=3 _TZL=0.002 _TMV=0.005
_TDIF=0.04 _TSA=0.5 _VMS=0 _NMSP=1 _FA=1
_MVAR=2
N31 _SETVAL=45 _TUL=0 _TNUM=8 _EVNUM=3
```

```
N40 CYCLE994
N50 G0 z55
N60 x20
N70 z30
N80 _SETVAL=35 _TUL=0.015 _TNUM=9 _EVNUM=4 ;Parameter change for 2nd cycle call
N90 CYCLE994
N100 G0 Z110
N110 X60
N200 M2
```

```
;2-point measurement outside
```

;2-point measurement outside
;with protection zone (P1)
;with protection zone (P1)
;Position probe facing P2
;Position probe facing P2
;(inside measurement)
;(inside measurement)

```
;2-point measurement inside
```

;2-point measurement inside
;without protection zone (P2)
;without protection zone (P2)
;Retraction in z
;Retraction in z
;Retraction in X
;Retraction in X
;End of program

```
;End of program
```


Explanation of example

Measurement of outside diameter and offset T8

The difference calculated from the actual value and setpoint is compensated for by the empirical value in the empirical value memory _EV[2] and compared with the tolerance parameter:

- If it is more than 0.5 mm (_TSA), alarm "Safe area violated" is output and program execution cannot be continued.
- If it is more than 0.04 mm (_TDIF), no compensation is performed and alarm "Permissible dimensional difference exceeded" is output and the program continues.
- If values _TUL= 0.01 , _TLL=0 are violated upward or downward, the length of T8 D1 is compensated 100% by this difference. Alarm "Oversize" or "Undersize" is displayed and the program is continued.
- If $0.005 \mathrm{~mm}\left(_T M V\right)$ is exceeded, the length in T8 D1 is compensated 100% by this difference.
- If it is less than 0.005 mm (_TMV), the mean value is calculated (only if _CHBIT[4]=1! with mean value memory) with the mean value in mean value memory _MV[2] and by including weighting factor (_K=3).
- If the mean value obtained is >0.002 (_TZL), the reduced compensation of the length 1 for T8 D1 is the mean value/2 and the mean value is deleted in _MV[2].
_ - If the mean value is <0.002 (_TZL), there is no offset but it is stored in the mean value memory _MV[2] if mean value storage (_CHBIT[4]=1) is active.

The results are entered in result field _OVR[]. The wear of the length L1 (KNUM=1, _MA=2) of T8, D1 is included if a change is necessary.
Measurement of inside diameter and offset T9
Procedure as described for "Measurement output diameter".
Offset of T8 with appropriate modified values _EV[3], _MV[3] (EVNUM=4), _TUL, _SETVAL.

Note

The values of the workpiece tolerance parameters _TUL, _TLL were selected asymmetrically in the example. The result is then made symmetrical (see Section "Tolerance parameters:
_TZL, _TMV, _TUL, TLL, _TDIF and _TSA").

6.6.1.3 Operational sequence

Position before measuring cycle call

The probe must be positioned opposite the positive measuring point.

Position after end of measuring cycle

After the end of measurement, the probe is facing the negative measuring point at distance _FA.

NOTICE

Precise measurement is only possible with a probe calibrated under the measurement conditions, i.e. working plane and measuring velocity are the same for both measurement and calibration.

If the probe is used in the spindle for a powered tool, the spindle orientation must also be considered. Deviations can cause additional measuring errors.

Procedure for outside measurement with _MVAR=2, _MA=2:

(safety zone _SZA, _SZO active)
1: Approach path outside diameter (user)
2 to 7: Traverse paths generated by the cycle for measuring on the outside diameter taking the safety zone _SZA, _SZO (4 to 6) into account
8 to 9: Retraction to the original point (user)

Procedure for inside measurement with _MVAR=2, _MA=2:

(no safety zone active)
1, 2: Approach paths inside diameter (user)
3 to 5: Traverse paths generated by the cycle for measuring on the inside diameter
6: Retraction paths to the original point (user)

6.7 Complex example for tool measurement

Exercise

The workpiece shown in the figure is to be measured with workpiece probe 1 with cutting edge position 7, inserted as tool T8, D1, in CYCLE974.
This tool master is previously calibrated with CYCLE973 in reference groove 1 in both axes in the negative direction.

Measuring points P1 to P4 were machined with different tools T1 D1 to T4 D1. These tools are to be automatically corrected in the length (according to measuring axis _MA) without empirical and mean values.

Calibration with workpiece probe CYCLE973, measurement of workpiece with CYCLE974

\%_N_PART_1_MEAS_MPF	
N10 T8 D1 DIAMON	;Select tool = probe
N20 SUPA G0 X300 z150	;Approach starting position in X and Z , ;from which it is possible to approach ;the reference groove ; for calibration without collision
N30 _MVAR=13 _MA=1 _MD=1 _CALNUM=1 _TZL=0 _TSA=1 _PRNUM=1 _VMS=0 _NMSP=1 _FA=1	; Parameters for calibration in ref. ; groove
N40 CYCLE973	; Calibrate probe in the minus z direction
N50 _MA=2	; Another measuring axis
N60 CYCLE973	; Calibrate probe in the minus X direction
N70 G54 G0 z40	;Select work offset, traverse to ;measuring point in the Z axis
N80 X220	; Position probe facing P 1
EVNUM $=0$ _TDIF $=0.2$ TSA $=0.3$ PRNUM $=1$	
_MVAR $=0$ _SETVAL=200 _MA=2 _TNUM=1 _KNUM=1	
N110 CYCLE974	;Measure P1
N120 G0 Z70	; Position probe facing P2
N130 X175	
$\begin{aligned} & \text { N140 _MA=1 _SETVAL=50 _TUL=0.01 _TNUM=2 } \\ & \text { _KNUM=1 } \end{aligned}$; Define parameters for measurement in ;another axis
N150 CYCLE974	;Measure P2
N160 G0 z80	; Position probe opposite P3
N170 _MA=2 _SETVAL=150 _TUL=0.005 _TLL=-0.003 _TNUM=3 _KNUM=1	; Change parameters for measurement
N180 CYCLE974	;Measure P3
N190 G0 Z110	; Position probe opposite P4
N200 X50	
$\begin{aligned} & \text { N } 210 \text { _MA }=1 \text { _SETVAL= } 100 \text { _TUL }=0.01 \\ & \text { _TLL=-0.01 _TNUM=4_KNUM=1 } \end{aligned}$; Change parameters for measurement
N220 CYCLE974	;Measure P4
N230 G0 SUPA Z250	; Retraction in z
N240 SUPA X280	;Retraction in X
N300 M2	; End of program

Miscellaneous functions

7.1 Log measurement results

The measuring cycles support measuring cycle logging into a file on the control.
There are no special hardware requirements for logging measurement results. It is executed solely by the software.

7.1.1 Overview of the logging cycles

CYCLE100	Log ON
CYCLE101	Log OFF
CYCLE105	Generate log contents
CYCLE106	Log sequential controller
CYCLE113	Internal subroutine: Log
CYCLE118	Format real values

7.1.2 Log file

Function

The log file is stored in the directory where the calling program is located. You can specify the file name for the log file. The restrictions that apply to program names also apply here. Only letters, numbers and underscores are permitted, and the name must commence with two letters or a letter followed by an underscore. The file always has the extension "MPF".

The maximum length of the log file is limited in MD 11420: LEN_PROTOCOL_FILE. If the system detects during writing that a data record is too long, another log file is automatically created. Underscore and a digit are added to the name specified in _PROTNAME[1] and the following message is output: "New log file has been created".

In this way, up to 9 subsequent logs can be stored in the control.
After the 10th log operation is halted and the following message is output: "Please specify new log name".

After restart, operation is continued. If a log file with the same name already exists before logging is started, then it is deleted before writing is started.

7.1.3 Handling the log cycles

7.1.3.1 General information

Function

- The log is enabled and disabled via the program (CYCLE100/CYCLE101). This requires a cycle call without setting any parameters.
- After disabling the log function, the log files can be exported from the part program memory to diskette (HMI Advanced only) or via V.24.

Operational sequence

When used with the measuring cycles, it is sufficient to activate and deactivate the logging with CYCLE100 and CYCLE101 respectively. Logging is undertaken under the parameters described in Sections "Selection of log content", "Log format" and "Log header".
Logging is executed by CYCLE105, CYCLE106, CYCLE113, and CYCLE118. These cycles are called up in conjunction with measuring cycles.

The log cycles may be used independently of the measuring cycles. CYCLE100 and CYCLE101, and CYCLE105 and CYCLE106 are called explicitly in this context. CYCLE113 and CYCLE118 are called internally. You can also be called separately, if necessary.

See also

Selection of the log content (Page 394)
Log format (Page 396)
$\underline{\text { Log header (Page 397) }}$

7.1.3.2 CYCLE100 Logging ON

After the log is enabled, an existing file with the specified name is automatically deleted in the control. All follow-up logs with _PROTNAME[1]_digit are only deleted when the preceding logs overflow. The log is reopened and the header is entered. The internal status variables are set.

7.1.3.3 CYCLE101 Logging OFF

Disables the logging function and resets the internal flag.

7.1.3.4 CYCLE105(PAR1) Creating log content

This cycle generates up to 4 lines of log contents (lines of values) according to the entries in the variables of the data block (GUD6). It allows you to generate only value lines or only the log header depending on the setting for PAR1.

Parameter	Data type	Value	Meaning
PAR1	INTEGER	0	Output block of values
		1	Output header

7.1.3.5 CYCLE106(PAR1) Logging sequence control

This cycle controls how logging is executed.

Parameter	Data type	Value	Meaning
PAR1	INTEGER	1	Output header
		2	Output block of values

The CYCLE106 cycle is called by CYCLE100 automatically when the log is activated. CYCLE106 deletes all old log files with the same name as required, creates follow-up log files and monitors the page layout of the log.

7.1.3.6 CYCLE113(PAR1,PAR2) Read system date and time

Parameter	Data type	Value	Meaning
PAR1	INTEGER	1	Read date and return in PAR2
		2	Read time and return in PAR2
PAR2	STRING[10]		Specify the length with the STRING type

7.1.3.7 CYCLE118(PAR1,PAR2,PAR3,PAR4,PAR5)

The CYCLE118 cycle formats real numbers (data type REAL) for a set number of decimal places.

It can be called to format just one number of to format several numbers.

Formatting one number:

- The input and output values are specified directly in the first 3 parameters passed on cycle call, i.e. the number to be formatted (PAR1), the number of digits (PAR2), and the name of a string variable for the formatted string that is returned.
- For the return value, up to 12 characters are provided, i.e. the return variable is of type STRING[12].

Formatting more than one number:

- Up to 10 numbers can be formatted; the actual number of numbers to be formatted is passed to the cycle in PAR4.
- The cycle takes the numbers from consecutive R parameters, e.g. R11 to R20.
- It is possible to start with any R parameter. It is passed to the cycle on calling (PAR5).
- The number of decimal places is specified in the same way as for formatting one number (PAR2).
- The return values are in the predefined variables _TXT[0] up to _TXT[9] (variable field data block GUD6).

Parameter

Parameter	Data type	Value	Meaning
PAR1	REAL		Number to be formatted
PAR2	INTEGER	≥ 0	Number of decimal places
PAR3	STRING[12]		Formatted return as STRING
PAR4	INTEGER	≥ 1	Number of numbers to be formatted
PAR5	INTEGER	≥ 0	Number of the first R parameter only relevant if PAR4>1

7.1.3.8 Programming example for formatting a single number

The value of one variable of type REAL is to be formatted for 2 decimal places and displayed:

```
DEF STRING[ 12] TEXTVAR
DEF REAL VAR1
VAR1=100/$PI ;$PI - circle constant
CYCLE118(VAR1,2,TEXTVAR)
MSG("VAR1:"<<VAR1<<" TEXTVAR="<<TEXTVAR)
M0
;Stop - view values:
;"TEXTVAR=31.83"
M30
;PI = 3,1415927
```


7.1.3.9 Programming example for formatting three numbers

The intention is to format the values of R parameters R11 to R13 for the decimal places in _DIGIT and display them.
_DIGIT is a variable in data block GUD6 for setting the decimal places in the measuring cycles. The value in the default setting is _DIGIT=3.
\$PI circle constants $\mathrm{PI}=3.1415927$. The results in STRING format are supplied in _TXT[0] to _TXT[2]; the value for the last parameter (R13) also in TEXTVAR.

```
DEF STRING[ 12] TEXTVAR
R11=0.1/$PI R12=1/$PI R13=10/$PI
CYCLE118(0,_DIGIT,TEXTVAR,3,11)
MSG("_TXT[0]="<<_TXT[0]<<" _TXT[1]="_TXT[1]<<" _TXT[2]="<<TXT[2])
M0
    ;Stop - view values:
    ;"_TXT[0]=0.032 _TXT[1]=0.318 _TXT[2]=3.183"
M30
```


7.1.4 Variables when logging

Function

With these parameters you can:

- select the content of the log.
- format the log.
- determine the content of the log header.

In the measuring cycle, data logging is controlled via the following data bit:

Variable	Value	Meaning
CBIT $[6]=$	0	With measuring cycle name and measuring variant
	1	Without measuring cycle name and measuring variant
$\operatorname{CBIT}[11]=$	0	Standard log header
	1	User-defined log header

The following variables (data block GUD6) describe the contents of the measuring log:

Variable	Type	Default Value	Contents
_PROTNAME [2]	STRING[32]	Blank string	_PROTNAME[0] = Name of the main program from which the log is written
			_PROTNAME[1] = Name of the log file
_HEADLINE[10]	STRING[80]	Blank string	_HEADLINE[0] ... _HEADLINE[9] The user can enter customized texts in these STRINGs; they are included in the log
_PROTFORM[6]	INTEGER	60	_PROTFORM[0] = Number of lines per page
		80	_PROTFORM[1] = Number of characters per line
		1	_PROTFORM[2] = First page number
		3	$\begin{aligned} & \text { PROTFORM[3] = Number of customized header } \\ & \text { lines } \end{aligned}$
		1	_PROTFORM[4] = Number of value lines in the log
		12	$\begin{aligned} & \text {-PROTFORM[5] = Number of characters per } \\ & \text { column } \end{aligned}$
_PROTSYM [2]	CHAR	"; "	_PROTSYM[0] = Separators between the values in the log
		" \# "	$\begin{aligned} & \text { PPROTSYM[1] = Special characters for } \\ & \text { identification when tolerance limits are exceeded } \end{aligned}$
_PROTVAL[13]	STRING[80]		$\begin{aligned} & \text { _PROTVAL[0] = Contents of the header line } \\ & \text { (line 9) } \end{aligned}$
			_PROTVAL[1] = Contents of the header line (line 10)
			_PROTVAL[2]...[5] = Specification of the values to be logged in successive lines
_TXT[100]	STRING[12]		Field for formatted STRINGs

7.1.5 Selection of the log content

Function

The measurement result log contains parts that are fixed and some that can be set. It always contains:

- Measuring cycle (cycle name)
- Measuring variant (value of _MVAR)

Output of the measuring cycle and measuring variant can be suppressed by setting _CBIT[6].

The following additional data can be included in a log:

- Time (specification _TIME)
- Axis name of associated measuring axes
- Specification _AXIS:

The axis name is entered automatically according to the measuring axis entered in _MA.

- or specification _AXIS1... 3:
_AXIS1: Axis name of abscissa in the selected plane
_AXIS2: Axis name of ordinate in the selected plane
_AXIS3: Axis name of applicate in the selected plane
- All result data provided by the measuring cycle in the _OVR [].
- R parameters
- Comment texts and
- STRINGs stored in _TXT[] (GUD6)

The logging values to be selected must correspond to the measuring cycle and the selected measuring variant. This makes for versatile adaptation of the contents of the log to meet your requirements.

Specification of the log contents is conducted via the variable _PROTVAL []. The strings stored in _PROTVAL [0], _PROTVAL [1] are used as header lines for the log (see Section "Example: Creating a measurement result log", line 8-10).
_PROTVAL [2]... [5] specify the line contents of the individual log lines. If you change the measuring cycle or the measuring variant, you may have to adapt_PROTVAL [2]...[5] (see Section "Example: Creating a measurement result log").

The comma is used as the separator between variables.

Note

If only one header line is needed, _PROTVAL[1] (second header line) should be described using a string of blanks. If this requirement is not observed, the content of an earlier log may be displayed in the second header line.

Example:

_PROTVAL[2]="R27,_OVR[0],_OVR[4],_OVR[8],_OVR[12],_OVR[16],_TIME"
_PROTVAL[3]="_AXIS,_OVR[1],_OVR[5],_OVR[9],_OVR[13],_OVR[17], INCH"
_PROTVAL[4]="_AXIS,_OVR[2],_OVR[6],_OVR[10],_OVR[14],_OVR[18], Metr"

R27 is just an example of an R parameter. The texts "INCH" and "Metro" at the end of the second and third line are examples for comment texts. This makes it easy, for example, to append dimensions after the measurement results.

7.1.6 Log format

Programming
The following values can be specified for the log format:

Variable	Data type	Meaning
_PROTFORM[0]	INTEGER	Number of characters per page including log header
_PROTFORM[1]	INTEGER	Number of characters per line
_PROTFORM[2]	INTEGER	First page number
_PROTFORM[3]	INTEGER	Number of customized log header lines
_PROTFORM[4]	INTEGER	Number of value lines in the log
_PROTFORM[5]	INTEGER	Column width/variable column width
_PROTSYM [0]	CHAR	Separators between the values in the log
_PROTSYM [1]	CHAR	Special characters for identification when tolerance limits are exceeded
_DIGIT	INTEGER	Number of decimal places

Explanation

The value set in parameter _PROTFORM[0] determines when a log header with title lines is output again. If this parameter is set to zero, the log only contains a header at the beginning.

The value of parameter _PROTFORM [5] determines the column width of the log. If the parameter $=0$, the column width of each column is derived from the string lengths (number of characters between the commas) of the 1st header line (_PROTVAL[0]). This makes it possible to individually define the width of each column. If the value >0, each column is formatted to this value if the string length allows it. Logging of variables always has priority, i.e. when specified format limits are exceeded they are modified and an alarm without terminating execution is generated.

The _PROTSYM [1] parameter can be used to define the special characters used to identify when tolerance limits are exceeded (_TSA,_TDIF,_TUL,_TLL) in the log.
Identification takes the form of the addition of the special character to the relevant actual value and associated measurement difference if these values are logged.
The number of decimal places can be set via the variable _DIGIT in GUD6 data block (display precision).

7.1.7 Log header

Function

The log header can be customized by the operator or a log header prepared by the standard measuring cycles can be used.

The selection is made via measuring cycle data bit_CBIT [11]
_CBIT[11]=0: Default log header
_CBIT[11]=1: User-defined log header
The contents of the header are stored in an array of string variables _HEADLINE [10], which are automatically output when logging (CYCLE100) is enabled. The maximum number of header lines can be changed during measuring cycle start-up (_PROTFORM[3]).

Each field element contains a line for the log header.

User-defined log header

The content of the string array _HEADLINE [] is entered in line 1 ff . The number of header lines can be defined by the user (according to the length of the _HEADLINE).

Default log header

The default log header contains fixed and variable components.
All variable components are in bold formatting, that is:
Line 1 page number,
Line 3 program name,
Line 5, 6, 7 (_HEADLINE [0-2]) ff. and
Line 9 (_PROTVAL[0])
Line 10 (_PROTVAL[1])
Line 1 is fixed and predefined.

```
Line 1 Date: 98/09/15 Time: 10:05:30 Page: 1
Line 2
Line 3 Program: MEASPROGRAM_1
Line 4
Line 5 Part number: 123456789
Line 6 Job number: 6878
Line 7 Supervisor: Müller Phone: 1234
Line 8
Line 9 Meas. , Axis , Set , , Time
    Actual Differen
value ce
Line 10 point value
Line 11
```

When filling in the standard log header shown above the following program lines must be inserted in the main program before the measuring cycle is called:

```
DEF INT PARTNUM, JOBNUM
_CBIT[11]=0 ;Log with default header
PARTNUM=123456789 JOBNUM=6878 _LOGNAME[0]="MEASPROGRAM_1"
_PROTNAME[1] ="MY_LOG1"
_HEADLINE[0]="Part number: "<<PARTNUM
_HEADLINE[1]="Job number:"<<JOBNUM
_HEADLINE[2]="Supervisor: Müller Phone: 1234"
_PROTVAL[0]="Meas. , Axis , Set , Act. value, Difference , Time"
_PROTVAL[1]="point , , value
```


7.1.8 Example: Creating a measurement result log

Log view

```
%N_LOG_1_MPF
```


Programming

The log with the default log header shown above is created using the following program. The example shows the user how to handle the log.

```
%_N_MEASPROGRAM_1_MPF
; $PATH=/_N_MPF_DIR
;Measure shaft with measuring log
DEF INT PARTNUM, JOBNUM, MP_COUNTER
; ----------- Set parameters for log --------------------
_CBIT[11]=0 ;Log with default header
; --------------------------- Log header ---
PARTNUM=123456789 JOBNUM=6878 ;Name of calling program
_LOGNAME[0]="MEASPROGRAM_1"
_PROTNAME[1]="LOG_1" ;Name of log file
_HEADLINE[0]="Part number: "<<PARTNUM
_HEADLINE[1]="Job number:"<<JOBNUM
_HEADLINE[2]="Supervisor: Müller Phone: 1234"
; ---------------------- Log format _------- Formats: Default values from GUD6
---------------
_PROTSYM[0]="," _PROTSYM[1]="*" ;Define separators and special
_PROTFORM[0]=60 ;60 lines per page
_PROTFORM[1]=80 ;80 characters per line
_PROTFORM[2]=1 ;Start of page 1
_PROTFORM[3]=3 ;Three customized
;log header lines
_PROTFORM[4]=1 ;One value line
PROTFORM[5]=12 ; ;12 characters per line
; ---------------------- Log contents ------
; Header lines
_PROTVAL[0]="Meas. , Axis , Set , Act. value, Difference , Time"
_PROTVAL[1]="point , , value"
; ---------------- Other value assignments -
----------------
MP_COUNTER=1 _TXT[0]=<<MP_COUNTER ;Assign counter for measurement log
; -------- Perform measurements with log ---
----------
N100 G0 G17 G90 T3 D1 Z100 F1000 ;Approach start position for
                                    ;measurement
N110 X70 Y90
```

```
_MVAR=100 _SETVAL=80 _MA=3 _TSA=2 _FA=2
...
; Contents of the value lines
_PROTVAL[2]="_TXT[0],_AXIS,_OVR[0],_OVR[4],_OVR[16],_TIME"
N150 CYCLE100 ;Activate log
N160 CYCLE978 ;Measure surface
N170 z200 ;Retraction in z
N180 X64 Y38 ;Position above shaft center
N185 Z130 ;Lower in Z
;
_MVAR=102 _SETVAL=70 _FA=2 _TSA=2 _ID=-20 ;Set measuring cycle parameters
...
_PROTFORM[4]=2 ;two value lines
_PROTVAL[2]="_TXT[0],_AXIS1,_OVR[1],_OVR[5],_OVR[17],_TIME"
_PROTVAL[3]=" ,_AXIS2,_OVR[2],_OVR[6],_OVR[18]"
MP_COUNTER=MP_COUNTER+1 _TXT[0]=<<MP_COUNTER ;Increase user-def. counter for
    ;measurements
N190 CYCLE977 ;Measure shaft
N210 CYCLE101 ;Deactivate log
N220 z200 ;Retraction in Z
N290 M2
```


7.2 Measuring cycle support in the program editor (up to measuring cycles SW 5.4)

Function

In SW 4.3 and higher, cycle support for measuring cycles in the ASCII editor is provided as for the standard cycles.
With this support function, the parameters described as mandatory parameters are input for each measuring cycle. For the additional parameters the last values input are retained. Furthermore, it is possible to change the additional parameters.
The measuring cycles are selected in the editor by using the vertical softkeys. The softkey menu is divided up according to measuring tasks, e.g. "Calibration" and then "Calibration in hole" or "Tool probe". This results in a one-to-one assignment between softkeys and measuring cycles.

As of SW 5 of MMC100/100.2, MMC102/103 and HMI Advanced/Embedded, measuring cycle support is reached using the softkeys

from the extended menu of the editor.
In the edited program there are calls with parameter list, e.g.

- CYCLE_PARA(...) for the provision of additional parameters
- CYCLE_976(...) for calibrating in hole,
- CYCLE_CAL_TOOLSETTER(...) for calibrating the tool probe.

7.2.1 Measuring cycle support files

Function

Measuring cycle support requires the following files:

- cov.com

Configuring the softkeys for cycle selection

- sc.com

Configuring the input screens for the individual parameters

- Auxiliary cycle*.spf

Additional cycles with parameter list that transfer the input parameters to the data blocks (GUD) of the measuring cycles and call the measuring cycles.

These files are combined in the following two archives on the measuring cycle diskette:

- MCSUPP_1.COM
- MCSUPP_2.COM

7.2.2 Load the measuring cycle support

Function

The files mcsupp_1.com and mcsupp_2.com are loaded from diskette or via RS-232-C with "Data in" into the "Services" menu.

With the MMC 102/103 the auxiliary cycle programs (see list Subsection "Assigning calls and measuring cycles") must be transferred to the NCU with "Load".

The Power ON is executed.

7.2.3 Assigning calls and measuring cycles

Function

The following table provides an overview of:

- Measurement task
- Measuring cycle
- Start

Measuring task, function	Measuring cycle	Call in the program
Auxiliary parameters	-	CYCLE_PARA(...)
Calibrating tool probes	CYCLE971, CYCLE972, CYCLE982	CYCLE_CAL_TOOLSETTER(...)
Calibrate workpiece probe on surface	CYCLE973, CYCLE976	CYCLE_CAL_PROBE(...)
Calibrate workpiece probe in reference groove	CYCLE973	CYCLE_973(...)
Calibrate workpiece probe in hole	CYCLE976	CYCLE_976(...)
Measure milling tool on milling machines	CYCLE971	CYCLE_971(...)
Measure turning tool	CYCLE972	CYCLE_972(...)
Measure hole/shaft parallel to axis/at an angle	CYCLE977, CYCLE979	CYCLE_977_979A(...)
Measure groove/web parallel to axis/at an angle	CYCLE977, CYCLE979	CYCLE_977_979B(...)
Measure rectangle inside/outside parallel to axis	CYCLE977	CYCLE_977_979C(...)
Single-point measurement milling machine	CYCLE978	CYCLE_978(...)
Angle measurement	CYCLE998	CYCLE_998(...)
Measure corner, specifying angles	CYCLE961	CYCLE_961_W
Measure corner, specifying points	CYCLE961	CYCLE_961_P
Single-point measurement turning	CYCLE974	CYCLE_974(...)
Two-point measurement	CYCLE994	CYCLE_994(...)

7.2.4 Description of the parameterizing cycles

7.2.4.1 General information

The individual parameterization cycles of the measuring cycles together with their input parameters are described below.

The parameter names in the table directly refer to the defining parameters of the measuring cycle in question in the GUD variables. If no parameter is given, it is a selection field in the input screen form for particular functions.

7.2.4.2 Setting additional parameters - CYCLE_PARA

With CYCLE_PARA, you can program all generally valid parameters of the measuring cycles. These parameters do not depend on the individual measuring variant. If an entered parameter has the value 0 , the target parameter is not overwritten, i.e. its previous value is retained.

Parameter

Parameter	Type	Value	Meaning
_FA	REAL	>0	Measurement path in mm
_VMS	REAL	≥ 0	Variable measuring speed
_NMSP	INTEGER	>0	Number of measurements at the same location
_RF	REAL	>0	CYCLE979 only: Feedrate in circular-path programming
_PRNUM	INTEGER	>0	Probe number
_CORA	REAL		Only if mono probe is used: Offset angle position
_TZL	REAL	≥ 0	Tolerance range for zero offset
-TMV	REAL	≥ 0	Select range for offset with mean value calculation, greater than _TZL
_TUL	REAL		Upper tolerance range workpiece, oversize acc. to drawing
-TLL	REAL		Lower tolerance range workpiece, undersize acc. to drawing
_TSA	REAL	>0	Safe area for measuring result
-EVNUM	INTEGER	≥ 0	Number of empirical value memory that is calculated
-K	INTEGER	≥ 1	Weighting factor for mean value calculation
_TDIF	REAL	>0	Tolerance range for dimensional difference check

7.2.4.3 Calibrate tool probe - CYCLE_CAL_TOOLSETTER

With CYCLE_CAL_TOOLSETTER

Softkeys \begin{tabular}{l}
Measurem.

milling

\rightarrow

Calibrate

TL probe
\end{tabular} (CYCLE971)

or

measuring cycles CYCLE971 and CYCLE972 can be parameterized to calibrate a tool measuring probe.

Parameter

Parameter	Type	Value	Meaning
	INTEGER		Selection: Cycle number $971 \ldots$ for CYCLE971 (milling machine), $972 . . . f o r ~ C Y C L E 972 ~(t u r n i n g ~ m a c h i n e) ~$
- MA	INTEGER	>0	Number of measuring axis and for CYCLE972 also the offset axis
- PRNUM	INTEGER	>0	Probe number
	INTEGER		For CYCLE971 only Selection: Measuring variant 0...absolute calibration/1...incremental calibration
- FA	REAL	>0	Measurement path

7.2.4.4 Calibration on surface - CYCLE_CAL_PROBE

With CYCLE_CAL_PROBE

or

measuring cycles CYCLE973 and CYCLE976 can be parameterized to calibrate a surface.

Parameter

Parameter	Type	Value	Meaning
	INTEGER		Selection: Cycle number $976 . . . f o r ~ C Y C L E 976 ~(m i l l i n g ~ m a c h i n e), ~$ $973 . . . f o r ~ C Y C L E 973 ~(t u r n i n g ~ m a c h i n e) ~$
- SETVAL	REAL		Calibration setpoint with respect to workpiece zero
- MA	INTEGER	$1 \ldots .3$	Number of the measuring axis
- MD	INTEGER	0,1	Measuring direction
- PRNUM	INTEGER	>0	Probe number
- MVAR	INTEGER	≥ 0	Selection: Measuring variant (for CYCLE976 only) $0:$ Calibration on any surface $10000:$ Calibrating in the 3rd axis with calculation of probe length

7.2.4.5 Calibration in groove - CYCLE_973

With CYCLE_973

Softkeys \begin{tabular}{l}
Measurem.

turning

\rightarrow

Probe

calibrat.
\end{tabular}

CYCLE973 can be parameterized to calibrate a reference groove.

Parameter

Parameter	Type	Value	Meaning
$_$SETVAL	REAL		Setpoint
	INTEGER		Selection: Positional deviation $0 \ldots$. without / 1...with specification of positional deviation
	INTEGER		Selection: Number of axes Number of axes to be calibrated, 1, 2
	INTEGER		Selection: Ball calculation $0 . .$. without / 1...with calculation of probe ball diameter
MA	INTEGER	>0	Number of measuring axis 1, 2
MD	INTEGER	≥ 0	Determines measuring direction $0 . .$. in positive direction / 1...in negative direction
- CALNUM	INTEGER	≥ 0	Selection of calibration groove with number
- PRNUM	INTEGER	>0	Probe number

7.2.4.6 Calibration in hole - CYCLE_976

With CYCLE_976
Softkeys $\begin{aligned} & \text { Measurem. } \\ & \text { milling }\end{aligned} \rightarrow \begin{aligned} & \text { Probe } \\ & \text { calibrat. }\end{aligned}$
CYCLE976 can be parameterized to calibrate a hole.

Parameter

Parameter	Type	Value	Meaning
_SETVAL	REAL		Setpoint
	INTEGER		Selection: Angular position 0...paraxial calibration/1...calibration at an angle
	INTEGER		Selection: Positional deviation 0 ...without / $1 \ldots$ with specification of positional deviation
	INTEGER		Selection: Number of axes Number of axes to be calibrated, 1, 2 or 4
	INTEGER		Selection: Ball calculation $0 . .$. without / 1...with calculation of probe ball diameter
_MA	INTEGER	>0	Number of measuring axis 1, 2
-MD	INTEGER	≥ 0	Determines measuring direction 0 ...in positive direction / 1...in negative direction
_STA1	REAL		Angle (for calibration at an angle only)
-PRNUM	INTEGER	>0	Probe number
			Selection: Hole type 0...hole center known / 1...unknown

7.2.4.7 Measuring milling tools - CYCLE_971

With CYCLE_971
Softkeys $\begin{aligned} & \text { Measurem. } \\ & \text { milling }\end{aligned} \rightarrow \xrightarrow{\text { Measurem. }}$ tool
CYCLE971 can be parameterized for tool measurement.

Parameter

Parameter	Type	Value	Meaning
- MVAR	INTEGER	>0	Measuring variant
- MA	INTEGER	>0	Number of the measuring axis
- ID	REAL	>0	Offset
- PRNUM	INTEGER	>0	Probe number
- MFS [0]	REAL	>0	Feed 1st probing (only with _CBIT[12]=1)
- MFS [1]	REAL	>0	Speed 1st probing (only with _CBIT[12]=1)
- MFS [2]	REAL	≥ 0	Feed 2nd probing (only with _CBIT[12]=1)
- MFS [3]	REAL	≥ 0	Speed 2nd probing (only with _CBIT[12]=1)
- MFS [4]	REAL	≥ 0	Feed 3rd probing (only with _CBIT[12]=1)
- MFS [5]	REAL	≥ 0	Speed 3rd probing (only with _CBIT[12]=1)

7.2.4.8 Measuring turning tools - CYCLE_972

CYCLE_972 can be used to parameterize CYCLE972 to gauge tools.

Parameter

Parameter	Type	Value	Meaning
- MA	INTEGER	>0	Number of the measuring axis
$_$PRNUM	INTEGER	>0	Probe number

7.2.4.9 Hole, measure shaft - CYCLE_977_979A

With CYCLE_977_979A

measuring variants $x x x 1$ and $x x x 2$ of measuring cycles CYCLE977 and CYCLE979 can be parameterized.

Parameter

Parameter	Type	Valu e	Meaning
	INTEGER		Selection: Angular position 977...paraxial measurement / 979...measurement at an angle
-MVAR	INTEGER	>0	Measuring variant
_SETVAL	REAL		Setpoint
_ID	REAL		Infeed path
_SZA	REAL		Safety zone (for paraxial measurement only)
_TNUM	INTEGER	≥ 0	Tool number for automatic offset
-TNAME	STRING		Tool name with active tool management
_KNUM	INTEGER	≥ 0	Offset number D number for measurement/ZO number for calculating zero offset
_CPA	REAL		Center point hole, shaft 1st axis
_CPO	REAL		Center point hole, shaft 2nd axis
_STA1	REAL		Start angle
-INCA	REAL		Incrementing angle
-PRNUM	INTEGER	>0	Probe number Only CYCLE979: the number of measuring points is provided using the thousands digit; $0 \ldots 3$ measuring points, $1 \ldots 4$ measuring points

7.2.4.10 Groove, measure web - CYCLE_977_979B

With CYCLE_977_979B

measuring variants xxx3 and xxx4 of measuring cycles CYCLE977 and CYCLE979 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
	INTEGER		Selection: Angular position 977...paraxial measurement / 979...measurement at an angle
_MVAR	INTEGER	>0	Measuring variant
_SETVAL	REAL		Setpoint
- ID	REAL		Infeed path
_MA	INTEGER	>0	Number of measuring axis 1, 2
_TNUM	INTEGER	≥ 0	Tool number for automatic offset
- TNAME	STRING		Tool name with active tool management
_KNUM	INTEGER	≥ 0	Offset number D number for measurement/ZO number for calculating zero offset
_CPA	REAL		Center groove, web 1st axis
CPO	REAL		Center groove, web 2nd axis
_STA1	REAL		Start angle
-SZA	REAL		Safe area (for paraxial measurement only)
- PRNUM	INTEGER	>0	Probe number

7.2.4.11 Measure rectangle - CYCLE_977_979C

With CYCLE_977_979C

measuring variants $\mathrm{xxx5}$ and $\mathrm{xxx6}$ of measuring cycle CYCLE977 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
$-{ }^{\text {MVAR }}$	INTEGER	>0	Measuring variant
- SETV [0]	REAL		Setpoint length
- SETV [1]	REAL		Setpoint width
- ID	REAL		Infeed path
$-_^{\text {SZA }}$	REAL		Protection zone length
- SZO	REAL		Protection zone width

Parameter	Type	Value	Meaning
- TNUM	INTEGER	≥ 0	Tool number for automatic offset
- TNAME	STRING		Tool name with active tool management
- KNUM	INTEGER	≥ 0	Offset number D number for measurement/ZO number for calculating zero offset

7.2.4.12 Single-point measurement - CYCLE_978

With CYCLE_978
Softkeys $\begin{aligned} & \text { Measurem. } \\ & \text { milling }\end{aligned} \rightarrow \begin{aligned} & \text { Workpiece } \\ & \text { measure }\end{aligned} \rightarrow$ \square
CYCLE978 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
- MVAR	INTEGER	≥ 0	Measuring variant
- SETVAL	REAL		Setpoint
- MA	INTEGER	>0	Measuring axis 1, 2, 3
-TNUM	INTEGER	≥ 0	Tool number for automatic offset
-TNAME	STRING		Tool name with active tool management
-KNUM	INTEGER	≥ 0	Offset number D number for measurement/ZO number for calculating zero offset

7.2.4.13 Angle measurement - CYCLE_998

With CYCLE_998

CYCLE998 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
- MVAR	INTEGER	>0	Measuring variant
-SETVAL	REAL		Setpoint
- ID	REAL		Distance
_RA	INTEGER	≥ 0	Number of rotary axis
- MA	INTEGER	>0	Number of measuring axis and offset axis 102...302
- KNUM	INTEGER	≥ 0	ZO number
_STA1	REAL		Angle
- PRNUM	INTEGER	>0	Probe number

7.2.4.14 Corner measurement with specification of angles - CYCLE_961_W

With CYCLE_961_W
Softkeys $\begin{aligned} & \text { Measurem. } \\ & \text { milling }\end{aligned} \rightarrow \begin{aligned} & \text { Workpiece } \\ & \text { measure }\end{aligned} \rightarrow$ Corner measuring variants 105 to 108 for CYCLE961 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
	INTEGER		Selection: Outside or inside corner 0...inside corner / 1...outside corner
	INTEGER		Selection: Number of measuring points, 3 or 4
_SETV [0]	REAL	>0	Distance between starting point and measuring point 2 , without sign
_SETV [1]	REAL	>0	Distance between starting point and measuring point 4, without sign
_ID	REAL	>0	Retraction path in 3rd axis (applicate), for outside corner only, without prefix
_STA1	REAL		Enter approx. angle between 1st axis (abscissa) and 1st edge, clockwise with negative prefix
_INCA	REAL	<>0	Enter angle from 1st edge to 2nd edge of the workpiece, clockwise with negative prefix
_KNUM	INTEGER	≥ 0	ZO number
_SETV[4]	REAL		For 3 measuring points only: Selection: Offset
			1 measured corner entered as zero point
			2 $\begin{array}{l}\text { measured corner is offset in 1st axis by the value from } \\ \text { SETV[2] and entered as zero point }\end{array}$ 3 SETV
			3$\begin{array}{l}\text { measured corner is offset in both axes and entered as zero } \\ \text { point }\end{array}$
			4 $\begin{array}{l}\text { measured corner is offset in 2nd axis by the value from } \\ \text { _SETV[3] and entered as zero point }\end{array}$
_SETV [2]	REAL		For 3 measuring points only: Offset of coordinate origin in 1st axis (abscissa)
_SETV [3]	REAL		For 3 measuring points only: Offset of coordinate origin in 2nd axis (ordinate)
_PRNUM	INTEGER	>0	Probe number

7.2.4.15 Corner measurement with specification of points - CYCLE_961_P

With CYCLE_961_P
Softk Measurem.
measuring variants 117 to 118 for CYCLE961 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
	INTEGER		Selection: Outside or inside corner $0 . .$. inside corner / 1...outside corner
- ID	REAL	>0	Infeed path of measuring probe to measuring height, without sign
- SETV [0]	REAL		Starting position for measuring the 1st point in the 1st axis (abscissa)
-SETV [1]	REAL		Starting position for measuring the 1st point in the 2nd axis (ordinate)
-SETV [2]	REAL		Starting position for measuring the 2nd point in the 1st axis (abscissa)
-SETV [3]	REAL		Starting position for measuring the 2nd point in the 2nd axis (ordinate)
- SETV [4]	REAL		Starting position for measuring the 3rd point in the 1st axis (abscissa)
- SETV [5]	REAL		Starting position for measuring the 3rd point in the 2nd axis (ordinate)
-SETV [6]	REAL		Starting position for measuring the 4th point in the 1st axis (abscissa)
- SETV [7]	REAL		Starting position for measuring the 4th point in the 2nd axis (ordinate)
- KNUM	INTEGER	≥ 0	ZO number
- PRNUM	INTEGER	>0	Probe number

7.2.4.16 Single-point measurement - CYCLE_974

With CYCLE_974

CYCLE974 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
- MVAR	INTEGER	≥ 0	Measuring variant
_SETVAL	REAL		Setpoint
-MA	INTEGER	>0	Number of measuring axis 1, 2, 3
-TNUM	INTEGER	≥ 0	Tool number for automatic offset
- TNAME	STRING		Tool name with active tool management
_KNUM	INTEGER	>0	Offset number D number for measurement/ZO number for calculating zero offset
-PRNUM	INTEGER	>0	Probe number
- STA1	REAL		Start angle

7.2.4.17 Two-point measurement - CYCLE_994

With CYCLE_994
Softkeys

$\begin{array}{l}\text { Measurem. } \\ \text { turning }\end{array} \rightarrow \begin{array}{l}\text { Workpiece } \\ \text { measure }\end{array} \rightarrow \begin{array}{l}\text { Two point } \\ \text { measurem. }\end{array}$

CYCLE994 can be parameterized.

Parameter

Parameter	Type	Value	Meaning
-MVAR	INTEGER	1,2	Measuring variant
SETVAL	REAL		Setpoint
-MA	INTEGER	>0	Number of measuring axis 1, 2, 3
-TNUM	INTEGER	≥ 0	Tool number for automatic offset
-TNAME	STRING		Tool name with active tool management
-KNUM	INTEGER	≥ 0	Offset number D number for measurement/ZO number for calculating zero offset
-SZA	REAL		Protection zone on workpiece, 1st axis (abscissa)
SZO	REAL		Protection zone on workpiece, 2nd axis (ordinate)
- PRNUM	INTEGER	>0	Probe number

7.3 Measuring cycle support in the program editor (from measuring cycles SW 6.2)

From measuring cycles SW 6.2, the program editor provides extended measuring cycle support for inserting measuring cycle calls into the program.

Prerequisite

HMI Advanced/Embedded as from SW 6.2 required.

Function
This measuring cycle support provides the following functionality:

- Measuring cycle selection via softkeys
- Input screen forms for parameter assignment with help displays
- Retranslatable program code is generated from the individual screen forms.

7.3.1 Menus, explanation of the cycles

7.3.1.1 General information

Explanation

The input screens for the measuring cycles are selected depending on the technology being used via horizontal softkeys.

Measurem. turning

Input screen forms for measuring cycles for turning technology.

Measurem.
 milling

Input screen forms for measuring cycles for milling technology.

7.3.1.2 Softkey bars for turning

Vertical softkey menu for turning technology

Probe calibrat.

Call screen form for CYCLE973 Calibrate workpiece probe for turning machines.

Workpiece

 measureCall new vertical softkey menu for "measure workpiece".

Call screen form for CYCLE982 Calibrate tool probe for turning machines.

Measurem.

 toolCall screen form for CYCLE982 Gauge turning and milling tools for turning machines

Vertical softkey menu for measure workpiece, turning

1- point measurem.

Two point measurem.

Call screen form Workpiece measurement for turning machines CYCLE974 1 point measurement.

Call screen form Workpiece measurement for turning machines CYCLE994 2-point measurement.

Back to selection menu turning.

7.3.1.3 Softkey bars for milling

Vertical softkey menu for milling technology

Probe calibrat.

Back

Vertical softkey menu for workpiece measuring, milling

Call screen form for workpiece measurement for milling machines CYCLE977/CYCLE979 hole/shaft.

Hole/shaft and paraxial/at an angle switchover are performed in the screen form.

Call screen form automatic setup corner internal/external CYCLE961.
Switchover between corner setup specifying distances and angle or points is performed within the form.

Call vertical advancement menu.
\square
Call screen form for workpiece measurement for milling machines CYCLE977/CYCLE979 groove/web.
Slot/web and paraxial/at an angle switchover are performed in the screen form.

Call screen form for workpiece measurement for milling machines CYCLE978 1-point measurement.

Call screen form for zero measurement for milling machines CYCLE998 angle measurement 1 angle/2 angle switchover is performed in the screen form.

Back to selection menu milling.

Vertical advancement menu for workpiece measurement milling

Rectangle Call screen form for workpiece measurement for milling machines CYCLE977 rectangle internal/external.

Call screen form for workpiece measurement for milling machines CYCLE997 measure ball and ZO determination (from measuring cycles SW 6.3).

Back to selection list measure workpiece milling.

7.3.1.4 Programming example

Measuring a hole parallel to the axis with protection zone
(generated with measuring cycle support)

```
N100 G17 G0 G90 Z20 F2000 S500 M3
    ;Main block
N110 T7 M6 ;Insert probe
N120 G17 G0 G90 X50 Y50 ;Position probe in X/Y
    ;plane on hole center
    ;point
N130 Z20 D1
    ;Position Z axis in hole
; from the measuring cycle support using the
; NC code _MZ_MASK[0]=1 generated using the input screen
```

```
N130 _MVAR=1001 _SETVAL=100.000 _PRNUM=101 ;Parameter transfer to
    _KNUM=2002 _FA=2 _TSA=0.23 ;measuring cycle
    _VMS=0 _NMSP=1 _ID=-20.000 _SZA=50.000 ;call measuring cycle
    _CORA=0.03 _TZL=0.01 _TDIF=0.2 _TUL=0.065
    _TLL=-0.065 _CHBIT[4]=0 _K=1 _EVNUM=2 -TNUM=1
    CYCLE977
;* end of NC code generated by measuring cycle support
N200 M30
;End of program
```


Input screen for measuring a hole, parallel with the axis, with protection zone (CYCLE977)

7.3.2 Pre-setting of the measuring cycle support

General information

A field _MZ_MASK is declared in the data block (GUD6) in which the screen forms can be adapted:

- technological measuring conditions
- to measuring variants

The settings in the data block for the _MZ_MASK field can be changed in a screen form in "Setup" operating area.

Setting

Variable	Value	Default:	Meaning
-MZ_MASK [0]	0	-	An indirect measuring cycle call is inserted in the NC code. Example: CYCLE977/drill-hole CYCLE_PARA(. \qquad CYCLE_977_979A(977,........)
	1	1	A direct measuring cycle call is inserted in the NC code. Example: CYCLE977/drill-hole _MVAR=1 _KNUM=1 _PRNUM=1 CYCLE977
-MZ_MASK[1]	0	0	The workpiece screen forms contain the following selection options for zero offset and tool offset: - Zero offset - default: - Settable zero offsets - Last channel-specific basic frame - Tool offset - default: - Milling: Tool radius is corrected - Turning: Length offset in the measuring axis

Variable	Value	Default:	Meaning
	1	-	The workpiece screen forms contain the following selection options for zero offset and tool offset: - Zero offset - extended: - Settable zero offsets - Last channel-specific basic frame - Offset in system frame - Offset in active frame - Offset in any basic frame (global or channel-specific) - Tool offset - extended: - Offset radius, length, or length selection (L1, L2, or L3) - Calculation of measurement results normal or inverted - Offset in setup/additive offset
-MZ_MASK [2]	0	0	Forms without input fields for parameters: - _VMS: Measuring velocity - _NMSP: Number of measurements at the same location. The following default values are entered in the NC code for the parameters: - _VMS $=0$: Corresponds to $150 \mathrm{~mm} / \mathrm{min}$ or $5.9055 \mathrm{inch} / \mathrm{min}$ - _NMSP=1: Number of measurements = 1
	1	-	Forms with input fields for parameters: - _VMS: Measuring velocity - _NMSP: Number of measurements at the same location
-MZ_MASK [3]	0	0	Screen forms for workpiece measurement with automatic tool offset and tool measurement do not contain an input field for the following parameters: - _EVNUM: Number of empirical value memory The following default value is entered in the NC code: - _EVNUM=0: No empirical value memory is taken into account.
	1	-	Screen forms for workpiece measurement with automatic tool offset and tool measurement contain an input field for the following parameters: - _EVNUM: Number of empirical value memory
- ${ }^{\text {MZ_MASK [} 4 \text {] }}$	0	0	Screen forms without input fields for the following parameters for mean value calculation with automatic tool offset: - _TMV: Select range for offset with mean value calculation - _K: Weighting factor for mean value calculation - EVNUM: Mean value memory number The following default values are entered in the NC code: - _TMV=ABS(_TUL-_TLL)/3 - _K=1 - _EVNUM=0 - _CHBIT[4]=0

Variable	Value	Default:	Meaning
	1	-	Screen forms with input fields for the following parameters for mean value calculation with automatic tool offset: - _TMV: Select range for offset with mean value calculation - _K: Weighting factor for mean value calculation - _EVNUM: mean value memory number The following is also entered in the NC code: - _CHBIT[4]=1
-MZ_MASK [5]	0	0	Probe type for workpiece measurement is a multi probe
	1	-	Probe type for workpiece measurement is a mono probe The relevant screen forms show an input field for the offset angle _CORA.
_MZ_MASK [6]			Reserved
-Mz_MASK [7]	0	0	Screen form for CYCLE971 - tool measurement/milling does not contain input fields for feedrate and spindle speed. F and S are calculated within the cycle. The following is also entered in the NC code: - _CBIT[12]=0
	1	-	Screen form for CYCLE971 - tool measurement/milling contains input fields for feedrate and spindle speed. The following is also entered in the NC code: - _CBIT[12]=1

References:

/BEM/, HMI Embedded Operator's Guide
/IAM/, Installation \& Start-Up Guide, IM2 "Commissioning HMI Embedded"

Recompiling

Recompilation of programs allows you to change existing programs using the cycle support.
When recompiling measuring cycle calls, please note that a field of defaults for programming is active (_MZ_MASK) in addition to the screen forms. If there has been a change in this settings between program creation and recompilation, the changes will also be included in the program.

Programs with measuring cycle calls cannot be recompiled after a change in the type of tool programming, i.e. change in the machine data setting

- MD 18102: MM_TYPE_OF_CUTTING_EDGE
- MD 18080: MM_TOOL_MANAGEMENT_MASK

7.4 Measuring result screens

Function

Measurement result displays will be shown automatically during measuring cycle runtime if _CHBIT[10]=1. If _CHBIT[10]=0 (default setting), the measurement result displays are now shown.

Depending on the setting in _CHBIT[11] and _CHBIT[18]

- the measurement result displays are automatically deselected at the end of measuring cycle (_CHBIT[11]=0, _CHBIT[18]=0)
or
- the measurement result displays must be acknowledged with the NC start key (_CHBIT[11]=1, _CHBIT[18]=0). In this case, the measuring cycle outputs the message:
"Please acknowledge measurement result screen with NC start" or
- the measurement result displays are retained until the next measuring cycle call (_CHBIT[11]=0,_CHBIT[18]=1).

The measuring cycles can display different measuring result screens depending on the measuring variant:

- Calibrating tool probes
- Measuring the tool
- Calibrating workpiece probes
- Workpiece measurement

Display result displays

The result displays contain the following data:

Calibrating tool probes

- Measuring cycle and measuring variant
- Trigger values of axis directions and differences
- Probe number
- Safe area

Measuring the tool

- Measuring cycle and measuring variant
- Actual values and differences for tool offsets
- Safe area and permissible dimensional difference
- T-, D-number

Calibrating workpiece probes

- Measuring cycle and measuring variant
- Trigger values of axis directions and differences
- Positional deviation during calibration in the plane
- Probe number
- Safe area

Workpiece measurement

- Measuring cycle and measuring variant
- Setpoints, actual values and their differences
- Tolerance upper and lower limits (for tool offset)
- Compensation value
- Probe number
- Safe area and permissible dimensional difference
- T number, D number, and DL number or ZO memory number for automatic offset

Example of measurement result display

Hardware/software

8.1 Hardware requirements

8.1.1 General hardware prerequisites

Axis assignment

For correct execution of the measuring cycles the machine axes must be assigned according to DIN 66217.

Probes that can be used

Switching probes should be connected up for the measuring cycles.
For an explanation of these, refer to descriptions in Section 1.6 "Probes that can be used".

8.1.2 Measuring probe connection

8.1.2.1 General information

Only the main situation regarding the connections assigned to the probe signal are shown below in the cable distributor and on the control units.
8.1.2.2 SINUMERIK 810D, 840D powerline, 840Di

The probe for SINUMERIK 810D, 840D powerline or 840 Di is generally connected up via the additional "cable distributor" module!

The cable distributor is universally connected to the peripheral interface X121.
For more detailed information on contact routing, electric characteristics, and additional material needed, see:
References:
/PHC/ SINUMERIK 810D HW Configuration Manual
/PHD/ SINUMERIK 840D NCU Configuration Manual /HBi/ SINUMERIK 840Di Manual

Cable distributor

Figure 8-1 View of the opened cable distributor

- Connecting up the probe
- Probe 1 to X10
- Probe 2 to X5
- The X10 and X5 connector type is a DU-BOX plug connector
- The cable connector's X11 is plugged on to X121 of the corresponding control unit

SINUMERIK 810D

Probe connection to $\mathrm{X} 121,810 \mathrm{D} / \mathrm{CCU}$ module

Figure 8-2 Front view of 810D/CCU module

Hardware/software
8.1 Hardware requirements

SINUMERIK 840D
Probe connection to $\mathrm{X} 121,840 \mathrm{D} / \mathrm{NCU}$ module

Figure 8-3 Front view of 840D/NCU module

SINUMERIK 840Di

Probe connection to X121, 840Di/PCU50
The additional MCI board extension, slot variant module, which is located on interface X 121 , is needed to connect probes up to SINUMERIK 840Di using cable distributors.

Side view of PCU50 with MCI board extension slot variation

8.1.2.3 SINUMERIK 840D sl (solution line) probe connection to X122, NCU 7x0

Probe connection to X122, NCU 7x0

The prerequisite for measuring on X 122 is set machine data MD 13210: MEAS_TYPE $=0$.

For more detailed information on contact routing, electric characteristics, commissioning using configuration macros, and additional material needed, see:

References:
/GDsI/ SINUMERIK 840D sI NCU Manual
/IDsl/ SINUMERIK 840D sI/SINAMICS S120 CNC Commissioning, Part 1 (NCK, PLC, Drive)

Figure 8-4 Example of probe connection to NCU 720

8.1.3 Measuring in JOG

Measuring in JOG is only possible with:

- SINUMERIK 840D sI \rightarrow in conjunction with HMI Advanced (PCU 50)
- SINUMERIK 840Di \rightarrow in conjunction with HMI Advanced (PCU 50)
- SINUMERIK 840D \rightarrow in conjunction with HMI Advanced (PCU 50) or MMC 103
- SINUMERIK 810D \rightarrow in conjunction with HMI Advanced (PCU 50) or MMC 103

8.2 Software requirements

8.2.1 How the measuring cycles are supplied

The measuring cycle software is supplied on diskette.

8.2.2 Software versions NC and MMC/HMI

NC software version

The measuring cycles can be used with NCK SW 6.3 and higher.

MMC SW

The measuring cycles require an MMC/HMI software version as from SW 4.4.

PLC program

No adaptation of the PLC user program is required to run the measuring cycles and use the probe switching signals.

8.2.3 Options

SINUMERIK 840D/840Di:

Measuring in automatic mode
$\rightarrow \quad$ No options are needed!
Measuring in JOG
\rightarrow The "Inter-modal actions" option (ASUP's and synchronized actions in all modes) is needed

Order No.: 6FC5800-0AM43-0YB0 Order code: M43

SINUMERIK 840D sl:

Measuring in automatic mode
\rightarrow The "Measuring cycles" option is needed! Order No.: 6FC5800-0AP28-0YB0

Order code: P28
Measure kinematics
\rightarrow The "Measuring kinematics" option is needed!
Order No.: 6FC5800-0AP18-0YB0
Order code: P18
Measuring in JOG
\rightarrow The "Inter-modal actions" option (ASUP's and synchronized actions in all modes) is needed
Order No.: 6FC5800-0AM43-0YB0
Order code: M43

See also

General (Page 276)

8.3 Function test

Measure command

The control has the command MEAS for generating a measuring block.
The measuring input number is set in the command parameters.

Saving measurement results

The results of the measurement command are stored in the system data of the NCK and can be accessed from the program.

These steps include:

System data	Meaning
\$AC_MEA[<No.>]	Software switching signal for the probe no. stands for measuring input number
\$AA_MW[<axis>]	Measured value of the axis in workpiece coordinatesAxis stands for the name of the measuring axis
\$AA_MM[<axis>]	Measured value of the axis in machine coordinates

References: /PG/, Programming Guide

PLC service display

The functional test for the probe is conducted via an NC program.
The measuring signal can be controlled via the diagnostics menu "PLC status".

Table 8-1 Status display for measurement signal

Probe	Display
Probe 1 deflected	DB10 DB X107.0
Probe 2 deflected	DB10 DB X107.1

Example of functional check

```
%_N_PRUEF_MESSTASTER_MPF
;$PATH=/_N_MPF_DIR
;Testing program probe connection
N05 DEF INT MTSIGNAL ;Flag for trigger status
N10 DEF INT ME_NR=1 ;Measurement input number
N30 G17 T1 D1 ;Select tool offset for probe
N40 G0 G90 X0 F150 ;Starting position and meas. velocity
N50 MEAS=ME_NR G1 X100 ;Measurement at measuring input 1 in
N60 STOPRE
N70 MTSIGNAL=$AC_MEA[ME_NR] ;Read software switching signal at
N80 IF MTSIGNAL == 0 GOTOF FEHL1
N90 R1=$AA_MW[X] ;Read in measured value in workpiece
;coordinates
N95 M0
;View measured value in R1
N100 M2
N110 _FEHL1: MSG ("Probe not switching!")
N120 M0
N130 M2
```


Data description

9.1 Machine data for machine cycle runs

9.1.1 Machine data that configure the memory

9.1.1.1 General information

The measuring cycles use separate GUD and LUD variables (Global User Data and Local User Data).

The memory areas needed for this are configured using NC machine data.
The amount of memory needed for GUD variables is determined when loading data modules GUD5 and GUD6!

If the "Measure in JOG" function is installed, data module GUD7 (as of measuring cycles SW 6.3: GUD7_MC) will also have to be loaded.

For more details on "Measuring in JOG": see the the following chapter.
LUD variables are only generated during program and cycle runtime. The memory needed for them (DRAM) is therefore used during program processing.
This LUD memory should be configured with a sufficient reserve because the NC may have vastly differing memory requirements in different phases of program processing.

Note

Memory of the measuring cycles

The memory needed directly for the system frames, GUDs and LUDs functions in relation to measuring cycles is ensured by the parameter settings shown in sections 9.1.1.2, 9.1.1.3, and 9.1.2.
Future versions of the measuring cycles
Future versions of the measuring cycles may possibly need different parameter settings from those described here. For current data, see files SIEMENSD.TXT or SIEMENSE.TXT in the measuring cycle software supplied.

NOTICE

The following details in the machine data only refer to the use of SIEMENS measuring cycles and are valid up to NCK software version 59.xx.yy

As of NCK software version 63.xx.yy, the standard machine data setting should be such that the memory configuration requires no further adjustments when only SIEMENS measuring cycles are installed for automatic mode and measuring in JOG.
If using applications requiring ShopMill, ShopTurn or another NC memory, the requirements of these products must also be taken into account.

NOTICE

Machine data whose name starts "_MM" are memory configuring data. Changing these data reallocates the memory. Data it contains will be lost.
If this memory is in the non-volatile memory range of the control (SRAM), the user data (loaded programs and definitions, R-parameters, tool offsets, zero offsets, etc.) it contains will be lost.

Therefore:

When first starting up the system, the following machine data should already be set at the start of commissioning.
If user data is already present in SRAM, proceed as follows:

- Alarm 4400 (reorganization of the buffered memory) is displayed after changes to the memory-configured MD.
- In order to prevent the loss of data in this situation, the start-up archive MUST be read (in the "SERVICES" menu area)!
- If this archive is then loaded into the NCU, the SRAM is configured and the archived data and programs are then installed at the same time!

9.1.1.2 Memory configuring machine data, SRAM

18118 MD number	MM_NUM_GUD_MODULES Number of data blocks			
Default setting: ${ }^{11)}$ Default setting: ${ }^{72}$ When using measuring cycles: 7		Min. input limit: 1		Max. input limit: 9
Changes effective after POWER ON			Protection level: $2 / 7$	Units: -
Data type DWORD				Applies as of SW 2
Significance:	Number of GUD files in the active file system (SRAM)			
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy				

18120 MD number	MM_NUM_GUD_NAMES_NCK Number of GUD variable names in the control		
Default setting: 101) Default setting: 50²) When using measuring cycles: 30		Min. input limit: 0	Max. input limit: plus
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type DWORD			Applies as of SW 1
Significance:	Memory reservation for GUD variable names, NCK (SRAM) range Note: The number of GUDs may also be limited by MD 18150.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

18130 MD number	MM_NUM_GUD_NAMES_CHAN Number of GUD variable names per channel		
Default setting: 401) Default setting: 1502) When using measuring cycles: 100 with measurement in JOG: 130		Min. input limit: 0	Max. input limit: plus
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type DWORD			Applies as of SW 1
Significance:	Memory reservation for GUD variable names in each channel, CHAN (SRAM) range Note: The number of GUDs may also be limited by MD 18150.		
1) up to NCK software version $59 . x x$.yy 2) as of NCK software version 63.xx.yy			

18150 MD number	MM_GUD_VALUES_MEM Memory for values of the GUD variables		
Default setting: 12/161) Default setting: 32 ${ }^{2 \text {) }}$ When using measuring cycles: 28/32 ${ }^{1 \text {) }}$ (see table below)		Min. input limit: 0	Max. input limit: plus
Changes effective after POWER ON		Protection level: 2/7	Units: KB
Data type DWORD			Applies as of SW 1
Significance:	Memory for user variables (SRAM): Provides indication of the number of GUD variables that can be created. The FRAME data type requires almost 1 KB . It is the largest data type. The BOOLEAN data type needs just 1 byte; REAL type 8 bytes. An array of variables requires only one name (MD 18120, MD 18130) - but memory for all elements. The memory needed for all GUD variables is entered here; for the NCK area and for all channels together. Note: The number of GUDs may also be limited by MD 18120 or MD 18130.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

9.1 Machine data for machine cycle runs

Memory requirement of GUD variables for meas. cycles

The machine data settings recommended above provide overall values that enable work with measuring cycles. Deviating settings may be required for particular applications. The memory requirement of each measuring cycle is therefore specified here (approximate values). It may be higher in future measuring cycle versions.
The resulting memory requirement must be added to other user memory requirements.
The number of measuring programs "loaded" in the CNC, including the internal measuring programs, are also added to the user's loaded NC programs!

If necessary, the general machine data MD 18280: MM_NUM_FILES_PER_DIR and MD 18320: MM_NUM_FILES_IN_FILESYSTEM has to be adapted!

Area	Number of names	Memory in KB MD 18150
NCK	MD 18120: 20	7
CHAN (GUD5, GUD6 only)	MD 18130: 60	Two channels: 8 (number of channels * 4)
CHAN (from GUD7, also for "Measuring in JOG")	MD 18130: 30	Two channels: 1 (number of channels *0.5)
		Example: Measuring cycles with 2 channels and "measuring in JOG": 16

28082 MD number	MM_SYSTEM_FRAME_MASK Configuration screen form for channel-specific system frames		
Default setting: 21 $\mathrm{Hex}^{1)}$ Default setting: $21 \mathrm{Hex}^{2}{ }^{2}$ When using measuring cycles: 21 Hex Bit $5=1$		Min. input limit: 0	Max. input limit: 7Fhex
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type:INTEGER			Applies as of SW 6.2
Significance:	The following applies to measuring cycles: Bit 0: 1 system frames for preset mode and scratching, recommended ${ }^{3)}$ Bit 5: 1 system frames for cycles (must always be available for measuring cycles)		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy 3) If bit $0=0$, then corrections cannot be made in the basic frame in "Measuring in JOG" and the parameterization variant KNUM=2000 cannot be used when measuring in automatic mode!			

28083 MD number	MM_SYSTEM_DATAFRAME_MASK System frames (SRAM)		
Default setting: $21 \mathrm{Hex}^{1)}$ Default setting: 21Hex ${ }^{2}$ When using measuring cycles: 21 Hex Bit $5=1$		Min. input limit: 0	Max. input limit: 7Fhex
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type:INTEGER			Applies as of SW 6.3
Significance:	The following applies to measuring cycles: Bit 0: 1 system frames for preset mode and scratching, recommended ${ }^{3)}$ Bit 5: 1 system frames for cycles (must always be available for measuring cycles)		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy 3) If bit $0=0$, then corrections cannot be made in the basic frame in "Measuring in JOG" and the parameterization variant KNUM=2000 cannot be used when measuring in automatic mode!			

9.1.1.3 Memory configuring machine data, DRAM

28020 MD number	MM_NUM_LUD_NAMES_TOTAL Number of LUD variable names (in total in all program levels)		
Default setting: 2001) Default setting: 4002) When using measuring cycles: 200		Min. input limit: 0	Max. input limit: plus
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type DWORD			Applies as of SW 3.2
Significance:	Number of local user variables - for each channel (DRAM) Note: The number of LUDs may also be limited by MD 28040.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

$\mathbf{2 8 0 4 0}$MD number	MM_NUM_LUD_VALUES_MEM Memory for values of the LUD variables (DRAM)	
Default setting: $12 / 25^{1)}$ Default setting: 50^{22} When using measuring cycles: 16/291)	Min. input limit: 0	Max. input limit: plus
Changes effective after POWER ON	Protection level: 2/7	Units: KB
Data type DWORD	Applies as of SW 3.2	
Significance:	Provides indication of the number of LUD variables that can be created. The FRAME data type requires almost 1 KB. It is the largest data type. The BOOLEAN data type needs just 1 byte. An array of variables requires only one name (MD 18120, MD 18130) - but memory for all elements. Note: The number of LUDs may also be limited by MD 28020.	

9.1.2 Other machine data

Machine data for adapting the probe

13200 MD number	MEAS_PROBE_LOW_ACTIVE[n] Switching characteristics of probe ($\mathrm{n}=0$: Measuring input $1, \mathrm{n}=1$: Measuring input 2)				
Default setting: FALSE ${ }^{1)}$ Default setting: FALSE ${ }^{2)}$ When using measuring cycles: FALSE		Min. input limit: FALSE			Max. input limit: TRUE
Changes effective after POWER ON			Protection level: 2/7		
Data type BOOLEAN					Applies as of SW 2.2
Significance:	Value 1 (TRUE):			not deflected status deflected status	$\begin{array}{\|l\|} \hline 0 \mathrm{~V} \text { (low) } \\ 24 \mathrm{~V} \text { (high) } \\ 24 \mathrm{~V} \text { (high) } \\ 0 \mathrm{~V} \text { (low) } \\ \hline \end{array}$
	Note: When programming MEAS, the data always refers to "not deflected", "deflected" - but not to the voltage level. The voltage level is set with this MD. 1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy				

Machine data for adapting MMC commands in cycles

10132 MD number	MMC_CMD_TIMEOUT Monitoring time for MMC command in part program		
Default setting ${ }^{11)}$ Default setting 3^{22} When using measuring cycles: 3.0		Min. input limit: 1.0	Max. input limit: 100.0
Changes effective after POWER ON		Protection level: 2/7	Units: s
Data type DOUBLE			Applies as of SW 3.2
Significance:	Monitors the time until the MMC acknowledges a command from the part program.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

Data description
9.1 Machine data for machine cycle runs

Machine data for logging

11420 MD number	LEN_PROTOCOL_FILE File size for log files		
Default settin Default settin When using	ring cycles: 5	Min. input limit: 1	Max. input limit: 1000000
Changes effective after POWER ON		Protection level: 2/7	Units: KB
Data type DWORD			Applies as of SW 4.3
Significance:	Maximum size of protocol files that are created with WRITE command.		
1) up to NCK software version $59 . x x$.yy 2) as of NCK software version 63.xx.yy			

9.2 Cycle data

9.2.1 Data blocks for measuring cycles

9.2.1.1 General information

The measuring cycle data are stored in two separate definition blocks:

- GUD5.DEF: Data block for measuring cycle users
- GUD6.DEF: Data module for machine manufacturers

9.2.1.2 Data block GUD5.DEF

The input and output parameters for measuring cycles are stored in the data block GUD5.DEF; their status flags and arrays for the empirical and mean values are also defined here.

The sizes of the fields for the empirical and mean values must also be configured by the machine manufacturer at measuring cycle start-up.
The preset values, however, are defined by the measuring cycle operator. In the as-delivered state, for example, the following settings are active:

Data arrays	Data type	Meaning
EV[20]	REAL	Number of empirical values
_MV[20]	REAL	Number of mean values

9.2.1.3 Data block GUD6.DEF

The general, global, and channel-specific measuring cycle data are configured in the GUD6.DEF data block.

This block is supplied with the measuring cycles in its standard configuration and must be adapted to the specific requirements of the machine by the machine manufacturer.

In the as-delivered state, the following settings are active:

Global data	Data type	Meaning
_CVAL[4]=(3,3,3,3)	INTEGER	3 arrays each for • tool probe, machine-related (_TP[3,10]) • workpiece probe (_WP[3,11])
		• gauging block (_KB[3,7]) • tool probe, workpiece-related (_TPW[3,10])
TP[3,10]	REAL	3 arrays for tool probes, machine-related
_WP[3,11]	REAL	3 arrays for workpiece probes
KB $[3,7]$	REAL	3 arrays for gauging blocks
TPW[3,10]	REAL	3 data arrays for tool probes, machine-related

Global data	Data type	Meaning	
$\begin{aligned} & \text { CM[9]=(100,1000,1, } \\ & 0.005,20,4,10,0,0.5) \end{aligned}$	REAL		_CBIT[12]=0 ta for tool measurement with rotating spindle and cyclic th CYCLE971: pheral speed $100 \mathrm{~m} / \mathrm{min}$ $1000 \mathrm{rev} / \mathrm{min}$ m/min accuracy 0.005 mm robing $20 \mathrm{~mm} / \mathrm{min}$ of rotation M4 wice with feed factor 10 on first probing active if _CBIT[7]=1 rameter for tool measurement with orientational tool carriers - of the tool positions with CYCLE982 olerance parameter of rotary axis positions 0.5 degrees
_MFS[6]	REAL	Only active if _CBIT[12]=1	
$\begin{aligned} & \text { CCBIT[16]=(0,0,0,1,0,0, } \\ & 0,0,1,0,0,0,0,0,0,0) \end{aligned}$	BOOL	Values	Central bits
		[0]: 0:	Measurement repetition after violation of dimensional difference and safe area
		[1]: 0:	No M0 on measurement repeat
		[2]: 0:	No M0 on "oversize", "undersize", "dim. difference"
		[3]: 1:	Metric basic system
		[4]: 0:	Internal data item
		[5]: 0:	Tool measurement and calibration with CYCLE982 are undertaken in the basic coordinates system (machine coordinates system with kinematics transformation is switched off)
		[6]: 0 :	Logging with information about the measuring cycle and measuring variant
		[7]: 0:	No support for orientational tool carriers
		[8]: 1:	Offset for mono probe setting with _CORA
		[9]: 0:	Log OFF
		[10]: 0:	Internal data item
		[11]: 0:	Use of standard log header
		[12]: 0:	Internal cycle calculation of speed and feedrate during tool measurement with rotating spindle
		[13]: 0:	Without deleting fields _TP[], _TPW[], _WP[], _KB[], _EV[] and _MV[]
		[14]: 0:	Length of workpiece probe relative to center of probe ball
		[15]: 0:	Internal data item
_SI[3]=("', "6","')	STRING[8]	Central strings (system information) - Internal data item - software version of the control - Internal data item	

Global data	Data type	Meaning	
_PROTNAME[2]	STRING[32]	- name of main program the log is from, - name of log file	
_HEADLINE[10]	STRING[80]	Strings for log header	
$\begin{aligned} & \text {-PROTFORM[6]=(60,80, } \\ & \text { 1,3,1,12), } \end{aligned}$	INTEGER	Log formatting - 60 lines per page - 80 characters per line - first page number is 1 - number of header lines is 3 - number of value lines in the log is 1 - number of characters per column is 12	
_PROTSYM[2]=(";","\#")	CHAR	- Separator in the log is ";" - Special character for identification of tolerance limits being exceeded is "\#"	
_PROTVAL[13]	STRING[100]	Values	Title line in log; Specification of the values to be logged
		0...1:	two title lines
		2...5:	up to 4 value lines
		6...12:	internal fields
_PMI[4]	INTEGER	Field for internal flags for logging	
_SP_B[20]	INTEGER	Variable column width	
_TXT[100]	STRING[12]	Field for formatted strings	
DIGIT=3	INTEGER	Number of decimal places is 3	
$\begin{array}{\|l\|} \hline \text { MZ_MASK[20] } \\ =(1,0,0,0,0,0,0,0) \end{array}$	INTEGER	Setting data for measuring cycle support - generation of a direct measuring cycle call - without extended ZO/tool offset - without input field for measuring speed and measuring feed - without empirical values - without mean value calculation - workpiece probe is a multidirectional probe - Internal data item - cycle-internal calculation of feedrate and spindle rotation for tool measurement with rotating spindle (CYCLE971)	

Channel-specific data	Data type	Meaning	
_EVMVNUM[2]=(20,20)	INTEGER	Number of empirical values and mean values - 20 memories for empirical values - 20 memories for mean values	
_SPEED[4] $=(50,1000,1000,900)$,	REAL	Traversing velocities for intermediate positioning - 50% rapid traverse velocity - positioning feedrate in the plane $1000 \mathrm{~mm} / \mathrm{min}$ - positioning feedrate in infeed axis $1000 \mathrm{~mm} / \mathrm{min}$ - fast measurement feedrate $900 \mathrm{~mm} / \mathrm{min}$	
$\begin{aligned} & \text { _CHBIT[30] } \\ & =(0,1,1,0,0,0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 \\ & 0) \end{aligned}$	BOOL	Values	
		[0]: 0:	Measuring input 1 for connecting a workpiece probe
		[1]: 1 :	Measuring input 2 for connecting a tool probe
		[2]: 1:	Collision monitoring active for traversing blocks generated by measuring cycles
		[3]: 0 :	Tool data are entered into the geometry memory when the tool is measured
		[4]: 0 :	No mean value storage
		[5]: 0 :	The empirical value is subtracted from the measured actual value
		[6]: 0 :	When measuring workpieces with automatic tool offset, an additive offset/correction is made in the wear memory
		[7]: 0:	CYCLE994 uses the trigger values for offset
		[8]: 0 :	When measuring workpieces with automatic tool offset, an additive offset is made in the total offset
		[9]: 0:	Internal data item
		[10]: 0:	No measurement result display
		[11]: 0:	Measurement result display is deselected at the end of cycle
		[12]: 0:	Internal data item
		[13]: 0:	No coupling of the spindle position with coordinate rotation in the plane
		[14]: 0:	Spindle positioning acc. to default
		[15]: 0:	Up to 5 measurement attempts
		[16]: 0:	Retraction from meas. point at same velocity as intermediate positioning
		[17]: 0:	Measurement feed only defined by _VMS
		[18]: 0:	Automatic de-selection of the measuring result screen with cycle end
		[19]: 0:	Normal handling of the Y axis for rotating meas. cycles
		[20]: 0:	Spindle positioning with measurement with CYCLE982
		[21]: 0:	Internal data item
		[22]: 0:	Last measurement at reduced speed for tool measurement with rotating spindle (CYCLE971)
		[23]: 0:	Internal data item
		[24]: 1:	Metric basic system
		[25...29]: 0:	Internal data item

Channel-specific data	Data type	Meaning
_TP_CF=0	INTEGER	No tool probe manufacturer specified (type)
_MT_COMP=0	INTEGER	No additional offset of the measurement result display on tool measurement with rotating spindle (CYCLE971)
_MT_EC_R[6,5]=(0,..., 0)	REAL	User-defined array for offsetting the measurement result on tool radius measurement and rotating spindle (CYCLE971)
_MT_EC_L[6,5]=(0,..., 0	REAL	User-defined array for offsetting the measurement result on tool length measurement and rotating spindle (CYCLE971)
$\begin{aligned} & \hline \text { JM_I[10] }= \\ & (0,1,1,17,100,0,0,0,0,0) \end{aligned}$	INTEGER	INTEGER value field for JOG measurement - no set array number for probes like in ShopMill - number of array for workpiece probe is 1 - number of array for tool probe is 1 - working plane for measurement in JOG is G17 - active ZO number on measurement in JOG is 0 (G500)
$\begin{array}{\|l\|} \hline \text { JM_B[10] }= \\ \hline(0,1,0,0,0,0,0,0,0,0) \end{array}$	BOOL	BOOL value field for JOG measurement - offset in geometry on tool measurement - 1 measurement attempt - retraction from meas. point at same velocity as intermediate positioning - no fast measurement feed
$\begin{aligned} & \hline \text { MC_MTL[3]= } \\ & (33.3,33.3,33.3) \end{aligned}$	INTEGER	Probe offset during sphere measuring (only relevant in CYCLE997 for the measurement variant with "determining the sphere diameter") Ratio between the tracer length/pin-sphere (ball) radius (\$TC_DP6) Pre-assignment (default) for 3 measuring probes: 100/3 If this variable is not available, then the trigger values are not corrected. [Array index]: _PRNUM-1
_MC_SIMSIM=1	INTEGER	0 : Skip measuring cycles during simulation 1: Run measuring cycles during simulation
_MC_SIMDIFF=0	REAL	Value for simulated measuring difference

9.2.2 Data adjustment to a specific machine

General information

There are two main steps for adapting the data to a specific machine:

1. Adapting the data definitions in the GUD blocks and loading them in the PLC.
2. Subsequent adaptation of certain values in part program.

1. Adapting the data definitions

The following example shows how to adapt the data blocks GUD5.DEF and GUD6.DEF to a machine with SINUMERIK 840D with the characteristics described below:

- 2 data fields (data arrays) for using tool probes
- 2 data fields (data arrays) for using workpiece probes
- without calibration groove pair,
- only 10 empirical and mean values

The following example only shows the lines to be changed!

Example:

```
%_N_GUD6_DEF
; $PATH=/_N_DEF_DIR
;(date) adaptation to a machine_1
N10 DEF NCK INT _CVAL[4]=(2,2,0,0) 1)
N11 DEF NCK REAL _TP[2,10]=(0,0,0,0,0,0,0,133,0,2) ()
N12 DEF NCK REAL _WP[2,11] 1)
;N13 DEF NCK REAL _KB[3,7]')
N40 DEF CHAN INT _EVMVNUM[2]=(10,10) }\mp@subsup{}{}{1)
...
M17
1) Characters and digits in bold (highlighted) have been changed with respect to
the status when first supplied
```


2. Subsequence adaptation of specific values

Value adaptation is achieved by loading a part program in the PLC and running it in AUTOMATIC mode.

The following adaptations are to be achieved:

- A tool probe with a disk in the XY plane is being used with an active disk diameter of 20 mm for tool length measurement.
- Measurement repetition when the permissible dimensional difference or the safe area are exceeded, but without M0.
- Length of workpiece probe relative to end of probe ball.
- Static measurement result display.
- No repeat of an unsuccessful attempted measurement.
- Retraction of the probe from the measuring point at 80% of rapid traverse velocity.

Example:

```
%_N_MZ_VALUE ASSIGNMENT_MPF
;$PATH=/_N_MPF_DIR
;(date) pre-assignment of meas. cycle data to machine_1
N10 _TP[0,6]=20 _TP[1,6]=20 _TP[0,8]=101 ;Specification of disk diameter and
_TP[1,8]=101 ;type of tool probe
N20 _CBIT[0]=1 ;Preset measurement repeat bit
N30 _CBIT[14]=1 ;Length of workpiece probe relative to
    ;end of probe ball
N40 _CHBIT[10]=1 _CHBIT[11]=0 _CHBIT[18]=1 ;Bits for static
    ;display of meas. result.
N50 _CHBIT[15]=1 ;Measurement abort after unsuccessful
    ;attempt
N60 _CHBIT[16]=1 ;Retraction from measuring point at
    ;% ;rapid traverse velocity defined in
    ;_SPEED[0]
N65 _SPEED[0]=80 ;Reduction of rapid traverse to 80 %
N99 M2
```


9.2.3 Central values

Data block GUD6.DEF

	_CVAL[] Number of elements, arrays				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: -	
Data type INTEGER				Applies as of SW 3.2/6.3	
Significance:					Preset default
	_CVAL[0]	Number of arrays for tool probes _TP[] (machine-related)			3
	_CVAL[1]	Number of arrays for workpiece probes _WP[]			3
	_CVAL[2]	Number of arrays for gauging blocks _KB[]			3
	_CVAL[3]	Number of arrays for tool probes _TPW[] (workpiece-related)			3

	_TP[] Array for tool probes (machine-related)				
	Min. input limit: -				Max. input limit: -
Changes valid after value assignment			Protection level: -		Units: -
Data type:REAL					Applies as of SW 3.2
Significance:	Index "k" stands for the number of the current data field (_PRNUM-1)				Preset default
	Assignment for milling				
	_TP[k,0]	Trigger point in minus direction		X (1st geometry axis)	0
	_TP[k,1]	Trigger point in plus direction		X (1st geometry axis)	0
	_TP[k,2]	Trigger point in minus direction		Y (2nd geometry axis)	0
	_TP[k,3]	Trigger point in plus direction		Y (2nd geometry axis)	0
	_TP[k,4]	Trigger point in minus direction		Z (3rd geometry axis)	0
	_TP[k,5]	Trigger point in plus direction		Z (3rd geometry axis)	0
	_TP[k,6]	Edge length/disk diameter			0
	_TP[k,7]	Axes and directions for "automatic calibration"			133
	_TP[k,8]	Probe type		Cube	0
				101: disk in XY	
				01: disk in ZX	
				301: disk in YZ	
	_TP[k,9]	Distance between upper edge of tool probe and lower edge of tool probe (= depth of calibration, depth of measuring for milling cutter radius)			2
	Assignment for turning (probe type: primarily cube)				
	_TP[k,0]	Trigger point in minus direction of abscissa			0
	_TP[k,1]	Trigger point in plus direction of abscissa			0
	_TP[k,2]	Trigger point in minus direction of ordinate			0
	_TP[k,3]	Trigger point in plus direction of ordinate			0
	$\begin{aligned} & \hline \text { TP[k,4] to } \\ & \text { _TP[k,9] } \end{aligned}$	irrelevant			0

- Tool probe on milling machine

Example: Probe type disk in XY (_TP[k,8]=101)

- Tool probe on turning machine

Example: G18 plane, values machine-related

	_TPW[] Array for tool probes (workpiece-related)				
	Min. input limit: -				Max. input limit: -
Changes valid after value assignment			Protection level: -		Units: -
Data type REAL					Applies as of SW 6.3
Significance:	Index "k" stands for the number of the current data field (_PRNUM-1)				Preset default
	_TPW[k,0]	Trigger point in minus direction		X (1st geometry axis)	0
	_TPW[k,1]	Trigger point in plus direction		X (1st geometry axis)	0
	_TPW[k,2]	Trigger point in minus direction		Y (2nd geometry axis)	0
	_TPW[k,3]	Trigger point in plus direction		Y (2nd geometry axis)	0
	_TPW[k,4]	Trigger point in minus direction		Z (3rd geometry axis)	0
	_TPW[k,5]	Trigger point in plus direction		Z (3rd geometry axis)	0
	_TPW[k,6]	Edge length/disk diameter			0
	_TPW[k,7]	Axes and directions for "automatic calibration"			133
	_TPW[k,8]	Probe type		Cube	0
				01: Disk in XY	
				201: Disk in ZX	
				01: Disk in YZ	
	_TPW[k,9]	Distance between upper edge of tool probe and lower edge of tool probe (= depth of calibration, depth of measuring for milling cutter radius)			2
	Assignment for turning (probe type: primarily cube)				
	_TPW[k,0]	Trigger point in minus direction of abscissa			0
	_TPW[k,1]	Trigger point in plus direction of abscissa			0
	_TPW[k,2]	Trigger point in minus direction of ordinate			0
	_TPW[k,3]	Trigger point in plus direction of ordinate			0
	_TPW[k,4] to _TPW[k,9]	irrelevant			0

For illustration, see analogous explanation of _TP[]

Tool probe types

Overview of workpiece probe data

Example: G17, milling, _CBIT[14]=0
Position deviation of a real probe in rest position and trigger point Tp in -Z

Position deviation and trigger points $T p$ in X and Y (magnified illustration):

Overview of reference groove pairs for calibration (for turning only)
The representation refers to the working plane defined by G18.

For tool measurement with CYCLE971 only

For tool measurement with CYCLE971 only

	_MFS[] Feeds and speeds for tool measurement with rotating spindle, only active if _CBIT[12]=1				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Unit: -	
Data type REAL				Applies as of SW 4.3	
Significance:					Preset default
	_MFS[0]	Speed			0
	_MFS[1]	Feed			0
	_MFS[2]	Spee			0
	_MFS[3]	Feed			0
	_MFS[4]	Speed			0
	_MFS[5]	Feed			0

9.2.4 Central bits

9.2.4.1 In data block GUD6.DEF

	_CBIT[]Central bits		
	_CBIT[11]	Selection of log header for logging 0 : standard 1: user-defined	0
	_CBIT[12]	Feed and speed in CYCLE971 0 : calculation by measuring cycle itself 1: set by user in array _MFS[]	0
	_CBIT[13]	Deletion of the measuring cycle arrays in the GUD6 0 : no deletion 1: delete _TP[], _TPW[], _WP[], _KB[], _EV[], _MV[], _CBIT[13]	0
	_CBIT[14]	Length reference of the workpiece probe in milling measuring cycles 0 : length relative to probe ball center 1: length ref. to ball circumference	0
	_CBIT[15]	Transfer of workpiece probe data into the tool offset in CYCLE976 0 : no acceptance 1: result of probe ball calculation on calibration will be entered in the geometry memory of the workpiece probe (radius)	0
	_CBIT[16]	Calibration monitoring for "Measuring in automatic mode" can be activated/deactivated with this! 0 : no calibration monitoring 1: Calibration monitoring active	1

9.2.4.2 Detailed description

Measurement repetition after violation of dimensional difference and safe area

$_$CBIT[0]=0:	When the parameters for the dimensional difference (_TDIF) and safe area (_TSA) are exceeded, the measurement is not repeated. An appropriate alarm is displayed.
$_$CBIT[0$]=1:$	When the parameters for the dimensional difference (_TDIF) and safe area (_TSA) are exceeded, a measurement is repeated. An alarm is also displayed in the repeat measurements if _CBIT[1] is set.

Alarm and M0 for measurement repeat with _CBIT[0]=1

$_$CBIT[1]=0:	No alarm, no measurement repetitions in M0
$_$CBIT[1]=1:	If the limits of the parameters for the dimensional difference and safe area are exceeded, M0 is generated and the repeat measurement must be started with NC-START. An alarm that does not have to be acknowledged is displayed in the alarm line.

M0 for tolerance alarms "oversize", "undersize", or "permissible dimensional difference exceeded"

_CBIT[2]=0:	When the alarms "oversize", "undersize", or "permissible dimensional difference exceeded" occur, no M0 is generated.
$_$CBIT[2]=1:	M0 is generated when these alarms occur.

Central marker for basic dimension system of the control

_CBIT[3]=0:	Basic system is based on inches
$_$CBIT[3]=1:	The basic system is metric

When starting up the measuring cycles, this bit has to be set according to the basic settings of the PLC MD 10240: SCALING_SYSTEM_IS_METRIC must be set.

If modifying the basic settings of the control results in _CBIT[3] no longer matching MD 10240, arrays _TP[], _WP[],_KB[] and _EV[] will be converted the first time a measuring cycle is called after the modification and a message will be output.
The data for tool measurement with rotating spindle (_CM[], _MFS[]) are also converted as are the data in the _SPEED[] field.

Tool measurement and calibration in the WCS in CYCLE982

_CBIT[5]=0:	The tool is measured and the tool measuring probe is calibrated in the machine coordinate system. The tool probe data are stored in the _TP[] field.
_CBIT[5]=1:	lhe tool can be measured and the tool probe calibrated in the active WCS. In this case, when calibrating and measuring, the same prerequisites must exist regarding the actual WCS. This means that tools with active transformation can also be measured, e.g. TRAANG. Notice: When calibrating and measuring, the _TP[] field is also used here.

Note

From measuring cycles SW 6.3, function switchover via _MVAR is available. A separate tool probe array is used there, the _TPW[] field, for calibration/measurement in the WCS.

Logging without output of the measuring cycle name and measuring variant

$-\mathrm{CBIT}[6]=0:$	When logging, the measuring cycle name and the measuring variant are written into the log.
$_$CBIT[6]=1:	When logging, the measuring cycle name and the measuring variant are not output into the log.

Support for turning machines with orientational tool carriers

$_$CBIT[7]=0:	No support for orientational tool carriers.
$-\mathrm{CBIT}[7]=1:$	Support for a probe or tool positioned using orientational tool carrier (kinematics type "T"), with reference to the special carrier positions $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°.

Offset for mono probe setting

$_$CBIT $[8]=0:$	No compensation
$_\mathrm{CBIT}[8]=1:$	If the workpiece measuring probe is a mono probe, its position (spindle position) is corrected by the angular value in _CORA.

Selection of log header for logging

$_$CBIT[11] $=0:$	The standard \log header is used.
$_$CBIT[11] $=1:$	A user-defined \log header is used.

Feed and speed in CYCLE971

_CBIT[12] $=0:$	When measuring milling tools with the spindle rotating, the measuring cycle calculates the feed and speed.
CBIT[12] $=1:$	The user enters the feed and speed in data field (data array) _MFS[].

Deletion of the measuring cycle arrays in the GUD6

$_$CBIT[13]=0:	No deletion
$_$CBIT[13]=1:	For the following measuring cycle call, the data fields (data arrays) _TP[], _TPW[],_WP[], _KB[], _EV[],_MV[] and _CBIT[13] are set to zero.

Length reference of the workpiece probe in milling measuring cycles

$_$CBIT[14]=0:	The length 1 of the measuring probe referred to the center of the probe sphere (ball) should be entered into the tool offset..
$_$CBIT[14]=1:	The length 1 of the measuring probe referred to the circumference of the probe sphere (ball) should be entered into the tool offset..

Transfer of workpiece probe data into the tool offset in CYCLE976

$_$CBIT[15]=0:	No transfer
$-\mathrm{CBIT[15]=1:}$	When using the "Calibrate with probe sphere calculation" measuring variant, the determined "effective probe sphere diameter" (_WP $[\mathrm{k}, 0])$ converted as radius value is entered into the radius geometry memory of the active workpiece measuring probe as tool offset.

Activate calibration monitoring during "Measuring in automatic mode"

$_$CBIT[16]=0:	No calibration monitoring
$_$CBIT[16]=1:	Calibration monitoring active The monitoring checks whether the calibration plane, mono/multi probe calibration or calibration at the probe center point/probe end point between calibrating and measuring is identical. Note: When measuring cycles are called up from "Measuring in JOG" or "ShopMill", these monitoring checks are always active and cannot be deactivated.

9.2.5 Central strings

Data block GUD6.DEF

	_SI[] Central strings (only up to measuring cycle version SW 6.2)				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: -	
Data type STRING				Applies as of SW	
Significance:					Preset default
	SI[0]	currently not assigned			
	_SI[1]	Software Version			"6"
	_SI[2]	currently not assigned			

Software Version

Here you have to enter the first digit of the version of the NCU software on the control, e.g. for SW 05.xx.xx, enter 5 .

9.2.6 Channel-oriented values

Data block GUD5.DEF

	_EV[] Empirical values				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: -	
Data type REAL				Applies as of SW 3.2	
Significance:	Index " k " stands for the number of the current array -1				Preset default
	_EV[k]	Number of empirical values			0

	_MV[] Mean values				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: -	
Data type REAL				Applies as of SW 3.2	
Significance:	Index " k " stands for the number of the current array				Preset default
	_MV[k]	Number of empirical values			0

Data block GUD6.DEF

	_ SPEED[] Traversing velocities for intermediate positioning				
	Min. input limit: 0			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: -	
Data type REAL				Applies as of SW 3.2	
Significance:					Preset default
	_SPEED[0]	Interim positioning in measuring cycle with rapid traverse velocity as \% during inactive collision monitoring (values between 1 and 100)			50 \%
	_SPEED[1]	Interim positioning in measuring cycle in the plane with collision monitoring active			1000 [mm/min]
	_SPEED[2]	Interim positioning in measuring cycle with positioning in the feed axis with collision monitoring active			1000 [mm/min]
	_SPEED[3]	Fast measuring feed			900 [mm/min]
	Note: If necessary, adjust values to the probe and machine used! Excessive values can result in probe damage!				

Explanations relating to SPEED[]

Traverse velocities for intermediate positioning _SPEED[0] to [2]

Intermediate positions before the actual measuring block are calculated in the measuring cycles. This positions can

- be approached with collision monitoring (_CHBIT[2]=1, default) or
- without collision monitoring (_CHBIT[2]=0).

The appropriate velocities are used for approach as specified in these settings:

- With collision monitoring (_CHBIT[2]=1):

With _SPEED[1] the feedrate is applied to traversing in the plane and with _SPEED[2] to traversing in the infeed axis (applicate).
If the probe switches while approaching these intermediate positions, the movement is interrupted and the alarm "probe collision" is output.

- Without collision monitoring (_CHBIT[2]=0):

The intermediate positions are approached with the percentage maximum axis velocity (rapid traverse) specified in _SPEED[0]. With _SPEED[0]=0 and _SPEED[0]=100 the maximum axis velocity applies.

CAUTION

The user must ensure that collisions are ruled out.

Measuring feed _VMS, fast measuring feed _SPEED[3]

Measurement is performed with the measuring feed of _VMS.

- If_VMS=0 and _FA=1: $150 \mathrm{~mm} / \mathrm{min}$
- If_VMS=0 and _FA>1: $300 \mathrm{~mm} / \mathrm{min}$

If _CHBIT[17]=1 and _FA>1 probing is performed twice. The fast measuring feed_SPEED[3] is used for the first probing. After the probe has switched, it is retracted by 2 mm . This is followed by actual measurement with the feedrate programmed in _VMS.

Measurement retraction velocity

Retraction from the measuring point is usually performed with the same speed (_SPEED[1], [2]) or percentage of the rapid traverse as approach to the intermediate position (see above). However, while collision monitoring (_CHBIT[2]=1) is active, it is possible with CHBIT[16]=1 to switch to the percentage of rapid traverse in _SPEED[0].

	_TP_CF Tool probe type (manufacturer)					
			Min. input limit: 0		Max. input limit: 2	
Changes valid after value assignment				Protection level: -	Units: -	
Data type INTEGER					Applies as of SW 6.2	
Significance:	Applies to tool measurement with rotating spindle (CYCLE971 only)					Preset default
	0	No data				0
	1	TT130 (Heidenhain)				
	2	TS27R (Renishaw)				

	Offset table for measurement result offset for tool length measurement with rotating spindle (CYCLE971 only)				
	Min. input limit: -			Max. input limit: -	
Changes valid after value assignment			Protection level: -	Units: mm	
Data type REAL				Applies as of SW 6.2	
Significance:	Measurement result offset for tool measurement with rotating spindle (CYCLE971 only)				Preset default
	_MT_EC_L[0,1]..._MT_EC_L[0,4] 4 tool lengths from small to large are specified				
	_MT_EC_L[1,0]..._MT_EC_L[5,0] 5 peripheral velocities from low to high are specified				
	_MT_EC_L[i,k] where i=1...5, k=1... 4				20 offset values
	When _MT_COMP=2, actual length = measured length - _MT_EC_R[i,k] when $i=1$... 5 next lowest table value for circumference speed and $K=1 . . .4$ next lowest table value for tool radius				

9.2.7 Channel-oriented bits

9.2.7.1 In data block GUD6.DEF

	_CHBIT Channel bits		
	_CHBIT[10]	Measuring result display 0 : OFF 1: ON	0
	_CHBIT[11]	Acknowledgment measurement result screen with NC start 0 : OFF (If_CHBIT[18]=0, the display is automatically deselected at end of cycle.) 1: ON (M 0 is generated in the cycle.)	0
	CHBIT[12]	currently not assigned	0
	_CHBIT[13]	Coupling spindle position with coordinate rotation in active plane for workpiece measurement with multi probe 0: OFF 1: ON	0
	_CHBIT[14]	Adapt spindle positioning, if _CHBIT[13]=1 0 : following standard 1: adapted angle values	0
	_CHBIT[15]	Number of measurements on failure to switch 0 : up to 5 measurements 1: only 1 measurement	0
	_CHBIT[16]	Retraction velocity from the measuring point 0 : velocity as for intermediate positioning 1: with percentage of rapid traverse velocity (_SPEED[0]) (only active with collision monitoring ON: _CHBIT[2]=1)	0
	_CHBIT[17]	Feed during measurement 0 : with feed in _VMS 1: during 1st measurement feed in _SPEED[3] During 2nd measurement with feed in _VMS	0
	_CHBIT[18]	Static measurement result display 0 : effect as set in _CHBIT[11] 1: only active if _CHBIT[11]=0: Measuring result display remains until next measuring cycle is called	0
	_CHBIT[19]	Only active for CYCLE974 or CYCLE994! Special treatment of Y axis with G18 0: no special treatment 1: setpoint setting and parameterization (_SETVAL, _TUL, _TLL, SZO) for the Y axis (applicate) as for the parameterization of the ordinate (X axis). The tool offset is applied in the length that is active in the ordinate (X axis) (usually L1), as long as no other length has been set in _KNUM. The ZO compensation is applied in the specified ZO memory in the ordinate component (X axis).	0
	_CHBIT[20]	Only active for CYCLE982! Measuring milling tools Suppression of the starting angle positioning _STA1 0: suppression OFF 1: suppression ON	0

	_CHBIT Channel bits		
	_CHBIT[21]	Only active for CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE9997! ZO compensation mode 0 : offset additive in FINE 1: offset in COARSE, delete FINE	0
	_CHBIT[22]	Only active for CYCLE971! with rotating spindle and multiple measurement with rotating spindle and multiple measurement 0 : last measurement with reduced speed at _CBIT[12] = 0 1: no speed reduction	0
	_CHBIT[23]	Only active for CYCLE982! Recoding of tool point direction during tool measurement 0 : no recoding 1: internal recoding (tool point direction mirroring about X)	0
	_CHBIT[24]	Channel-oriented flag for basic dimension system (on deviation from MD 10240, cycle parameters are converted internally and this bit is reset.) 0 : the basic system is inch 1: the basic system is metric	1

9.2.7.2 Detailed description

Measurement input for workpiece measurement

$_$CHBIT[0] $=0:$	Meas. input 1 is used for workpc. measurement.
$_$CHBIT[0]=1:	Meas. input 2 is used for workpc. measurement.

Measurement input for tool measurement

$_$CHBIT[1]=0:	Meas. input 1 is used for tool measurement.
$_$CHBIT[1]=1:	Meas. input 2 is used for tool measurement.

Collision monitoring for intermediate positioning

- CHBIT[2] $=0:$	OFF
- CHBIT[2]=1:	ON Intermediate positions that are calculated and approached by the measuring cycles are interrupted as soon as the measuring probe supplies a switching signal. When aborted/interrupted (collision), an alarm message is generated.

Tool offset mode with tool measurement

$_$CHBIT[3] $=0:$	First-time measurement The determined tool data (length and radius) are written into the geometry data of the tool. The wear is deleted.
$-\mathrm{CHBIT}[3]=1:$	Remeasurement The difference that is determined is entered into the appropriate wear data of the tool. The geometry data remains unchanged.

Mean value for workpiece measurement with automatic tool correction (_EVNUM >0)

$_$CHBIT[4] $=0:$	No mean value derivation over several parts For the formula used to calculate the mean value, 0 is used as the old mean value. The calculated mean value is not saved.
CHBIT[4]=1:	When calculating the mean value, the value from the mean value memory _MV[] programmed using_EVNUM, is used for the calculation and then the new mean value is saved in this mean value memory.

Inclusion of empirical value (_EVNUM >0)

$_$CHBIT[5]=0:	The empirical value _EV $[$] is subtracted from the measured actual value.
$_$CHBIT $[5]=1:$	The empirical value _EV[] is added to the measured actual value.

Tool offset mode for workpiece measurement with automatic tool offset

- CHBIT $[6]=0:$	The determined offset value is added in the wear memory (length and radius) of the specified tool and is incorporated in the D number specified using _KNUM.
$-\mathrm{CHBIT}[6]=1:$	The length and the radius of the specified tool is corrected by the determined offset value and entered into the appropriate geometry memory. The corresponding wear memory is calculated and then set to zero.

From measuring cycles SW 6.3, an offset in the set-up/additive offset can also be programmed. The type of calculation is also defined by _CHBIT[6] and also _CHBIT[8]:

$\begin{aligned} & \text { CHBIT[6] }=0: \\ & \text { CHBIT[8] }=0 \text { : } \end{aligned}$	The offset value calculated is included (added) in the corresponding total offset value memory.
$\begin{aligned} & \mathrm{CHBIT}[6]=1: \\ & \text { CHBIT[8] }=0 \end{aligned}$	The offset value calculated is included in the set-up offset memory taking the corresponding total offset value memory into account and the total offset memory is deleted.
_CHBIT[8]=1:	Independent of _CHBIT[6], the determined offset value is additively incorporated into the appropriate setting-up offset memory.

Measured value offset in CYCLE994

_CHBIT[7]=0:	In order to determine the actual value, the trigger values of the measuring probe, saved in the _WP[_PRNUM-1,1...4) are used.
$_$CHBIT[7]=1:	In order to determine the actual value, the effective diameter of the measuring probe, saved in the _WP[_PRNUM-1,0] is used.

Offset mode for workpiece measurement with automatic tool offset

$_$CHBIT $[8]=0:$	Explanation $-->$ see _CHBIT[6]
$_$CHBIT[8]=1:	Explanation $-->$see _CHBIT[6]

Measuring result display

_CHBIT[10]=0:	OFF
CHBIT[10] $=1:$	ON After measuring or calibrating, a measurement result screen is automatically displayed.

Acknowledgment measurement result screen with NC start

$_$CHBIT[11]=0:	The measurement result screen is automatically de-selected at the end of the cycle. Also_CHBIT[18] must be $=0$, otherwise the effect as described for _CHBIT[18]=1 is obtained.
CHBIT[11]=1:	After the measurement result screen is displayed, the cycle generates M0. The measurement cycle is continued and the screen is de-selected after the NC start.

Static measurement result display

_CHBIT[18]=0:	Effect is defined by _CHBIT[11].
_CHBIT[18]=1:	The measurement result screen display is kept until the next measuring cycle is called. NC program processing is not interrupted. _CHBIT[10] must be set, _CHBIT[11] must be $0!$

Coupling spindle position with coordinate rotation in active plane for workpiece measurement with multi probe

- CHBIT[13]=0:	OFF There is no coupling between the spindle position and active coordinate rotation in the plane.
- CHBIT[13]=1:	ON When multi-probes are being used, the spindle is positioned depending on the active coordinate rotation in the plane (rotation around the applicate (feed axis)) so that the same positions of the probe sphere are probed when calibrating and measuring. Note: Pay attention to _CHBIT[14]!

NOTICE

If additional rotations are active in the other planes/axes, then this function is not effective!
The coupling between the coordinate rotation and spindle position is generally not executed:

- Rotations around abscissa or ordinates between calibrating and measuring are not identical
- There is no position-controlled machining spindle
- Monoprobes are used (_PRNUM = x1xx)

Adapt spindle positioning, if _CHBIT[13]=1

- CHBIT $[14]=0:$	Spindle positioning is undertaken acc. to the default. Angle of coordinate rotation in the plane $0^{\circ}:$ Spindle positioning 0° Angle of coordinate rotation in the plane $90^{\circ}:$ Spindle positioning 270°
$_$CHBIT[14] $=1:$	Spindle positioning is undertaken in reverse. Angle of coordinate rotation in the plane $0^{\circ}:$ Spindle positioning 0° Angle of coordinate rotation in the plane $90^{\circ}:$ Spindle positioning 90°

Note

A coordinate rotation in the active plane is:

- one rotation around the Z axis with G 17 ,
- one rotation around the Y axis with G 18 or
- one rotation around the X axis with G 19 .

Number of measurements on failure to switch

$_$CHBIT[15]=0:	A max. of 5 measuring attempts are undertaken before the fault "measuring sensor does not switch" is generated.
$_$CHBIT[15]=1:	After one unsuccessful measurement attempt, the fault "measuring sensor does not switch" is generated.

Retraction velocity from the measuring point

$_$CHBIT[16]=0:	The retraction from the measuring point is realized with the same velocity as for an intermediate positioning operation.
- CHBIT[16]=1:	The retraction velocity is realized with the percentage rapid traverse velocity, defined in SPEED (_CHBIT[2]=1) and is only effective when collision monitoring is active

Feed during measurement

$_$CHBIT[17]=0:	Measurement is performed with the feed programmed in _VMS. Note peculiarities with_VMS $=0$!
- CHBIT[17]=1:	Initially, the axis traverses with the measuring feed _SPEED[3], after switching, there is a retraction of 2 mm from the measuring position and the actual measurement starts with the feed from _VMS. Measurement with the feed from _SPEED[3] is only realized for a measurement distance/travel $>2 \mathrm{~mm}$

Static measurement result display

$_$CHBIT[18]=0:	For explanation, see _CHBIT[10], _CHBIT[11]
$_$CHBIT[18]=1:	For explanation, see _CHBIT[10],_CHBIT[11]

Special treatment of Y axis with G18in CYCLE974 or CYCLE994

_CHBIT[19]=0:	No special treatment for Y axis (applicate)
_CHBIT[19]=1:	Setpoint setting and parameterization (SETVAL,_TUL,_TLL, SZO) for the Y axis (applicate) as for the parameterization of the ordinate (X axis). The tool offset is applied to the length that is active in the ordinate (X axis) (usually L1), as long as other lengths are not specified by_KNUM. The ZO compensation is applied in the specified ZO memory in the ordinate component (X axis).

Suppression of the starting angle positioning _STA1 in CYCLE982

_CHBIT[20]=0:	For certain measuring variants, the milling spindle is positioned with _STA1.
_CHBIT[20]=1:	When measuring milling tools, for basic measuring variants, it is possible to suppress positioning of the milling spindle to the value of the starting angle STA1. This is possible for the following measuring variants to measure milling tools: _MVAR $=x x \times 001$ (with $\mathrm{x}: 0$ or 1, no other values)

ZO compensation mode in CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE997

_CHBIT[21]=0:	The offset is applied additively in FINE, if MD 18600: MM_FRAME_FINE_TRANS=1, otherwise in COARSE.
CHBIT[21]=1:	The offset is applied in COARSE. FINE is taken into account and is then subsequently deleted.

Speed reduction in tool measurement in CYCLE971

$_$CHBIT $[22]=0:$	When measuring tools with rotating spindle and when the speed (_CBIT[12]=0) is calculated in the cycle, for multiple measurements, the last measurement is carried out at a reduced speed.
- CHBIT[22] $=1:$	For multiple measurements with the spindle rotating and calculation in the cycle, the speed remains constant.

Recoding of tool point direction during tool measurement in CYCLE982

$_$CHBIT[23] $=0:$	Standard setting, no recoding
- CHBIT[23]=1:	Internal recoding, tool point direction mirroring about X axis (tool revolver -180 degrees, Z not mirrored

Channel-oriented marker for basic dimension system

CHBIT[24]=0:	Basic system is based on inches
$_$CHBIT[24]=1:	The basic system is metric

When starting up the measuring cycles, this bit has to be set according to the basic settings of the PLC (MD 10240: SCALING_SYSTEM_IS_METRIC) must be set.

If modifying the basic settings of the control results in _CBIT[24] no longer matching MD 10240, the channel-specific dimensioned values are converted in each channel the first time a measuring cycle is called.

9.3 Data for measuring in JOG

9.3.1 Machine data for ensuring operability

11602 MD number	ASUP_START_MASK Ignore stop conditions for ASUB			
Default setting: 0^{1} Default setting: 02) For measuring in (Bit $0=1$)	G: 1, 3	Min. input limit: 0		Max. input limit: 3
Changes effective after POWER ON			Protection level: 2/7	Units: -
Data type DWORD				Applies as of SW 4.1
Significance:	Bit 0: 1 ASUB start possible in JOG.			
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy				

11604 MD number	ASUP_START_PRIO_LEVEL Priorities for "ASUP_START_MASK" effective		
Default setting: ${ }^{11)}$ Default setting: 02) For measuring in JOG: 1-64H		Min. input limit: 0	Max. input limit: 64H
Changes effective after POWER ON		Protection level: 2/7	Units: HEX
Data type INTEGER			Applies as of SW 4.1
Significance:	"ASUP_START_MASK" included from ASUB priority "64H" to ASUB priority 1.		
1) up to NCK software version $59 . x x$.yy 2) as of NCK software version 63.xx.yy			

20050 MD number	AXCONF_GEOAX_ASSIGN_TAB[i] Assignment of geometry axes to channel axes [i = Geometry axis index]: 0 ... 2		
Default setting: 1, 2, $3^{1)}$ Default setting: 1, 2, ${ }^{2}$) For measuring in JOG: all 3 geometry axes must be present		Min. input limit: 0	Max. input limit: 15
Changes effective after POWER ON		Protection level: 2/7	Units: -
Data type BYTE			Applies as of SW 1
Significance:	The MD specifies channel axes onto which the axes of the Cartesian coordinate system (WCS) are mapped. Index i assumes values 0, 1, 2 and refers to the 1st, 2nd and 3rd geometry axis.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

20110 MD number	RESET_MODE_MASK Define control default setting after power-up and RESET		
Default setting: $0^{1)}$ Default setting: ${ }^{2)}$ For measuring in JOG: at least 4045H (Bit $0=1$, Bit $2=1$, Bit $6=1$, Bit $14=1$)		Min. input limit: 0	Max. input limit: 07FFFH
Changes effective after RESET		Protection level: 2/7	Units: HEX
Data type DWORD			Applies as of SW 2
Significance:	Bit 0: 1 tool length offset active. Bit 2: 1 The tool length correction last selected is active after POWER ON. Bit 6: 1 The tool length correction last selected is active after POWER ON. Bit 14: 1 The current setting of the basic frame is retained.		
1) up to NCK software version $59 . x x$.yy 2) as of NCK software version 63.xx.yy			

20112 MD number	START_MODE_MASK Define control default setting after part program start		
Default setting: 400H ${ }^{1)}$ Default setting: $400 \mathrm{H}^{2}$ For measuring in JOG: 400H (Bit $6=0$)		Min. input limit: 0	Max. input limit: 07FFFH
Changes effective after RESET		Protection level: 2/7	Units: HEX
Data type DWORD			Applies as of SW 3.2
Significance:	Bit 6: 0 active tool length correction is retained.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

20310 MD number	TOOL_MANAGEMENT_MASK Channel-specific activation of tool management Note: MD only relevant if tool management is active (bit $0=1$)		
Default setting: $0^{1)}$ Default setting: 02) For measuring in JOG: at least 4001H $\text { (Bit } 0=1 \text {, Bit } 14=1 \text {) }$		Min. input limit: 0	Max. input limit: OFFFFH
Changes effective after POWER ON		Protection level: 2/7	Units: HEX
Data type DWORD			Applies as of SW 2
Significance:	Bit 0: 1 tool management active. Bit 14: 1 Automatic tool change on RESET and START according to MD 20110: RESET_MODE_MASK.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

24007 MD number	CHSFRAME_RESET_CLEAR_MASK Clear system frames on RESET Note: MD only relevant if frames are configured (MD 28082 SYSTEM_FRAME_MASK)		
Default setting: $0^{1)}$ Default setting: 02) For measuring in JOG: Bit $0=0$		Min. input limit: 0	Max. input limit: 07FFFH
Changes effective after RESET		Protection level: 2/7	Units: HEX
Data type DWORD			Applies as of SW 2
Significance:	Bit 0: 0 system frame for PRESET and scratching (basis reference) is not deleted at RESET.		
1) up to NCK software version 59.xx.yy 2) as of NCK software version 63.xx.yy			

9.3.2 Modifying the GUD7 data block

General information

Measurement in JOG requires data definitions in data block GUD7.DEF.
Different procedures are followed depending on the configuration of the overall system.

1. If the "ShopMill" programming interface is installed on the control, then all of the required GUD data are already active. No reloading or additional modification of definition blocks is required.
2. From SW 6.02.17 of the measuring cycle package, the definition files GUD7.DEF and SMAC.DEF are split-up. Now a differentiation is made between basis definition files and application-specific definition files. All applications, measuring cycles, technology cycles, ShopMill etc. only incorporate their own application-specific definitions. For this purpose, new cycle files GUD7_xxx.DEF and SMAC_xxx.DEF have been introduced, and are located in the HMI data management, in the definition directory DEF.DIR. This means, when measuring in JOG, from measuring cycles SW 6.02.17, the data block GUD7_MC.DEF supplied must be used. A secondary condition/limitation is that file GUD7.DEF must be used - also for measuring cycles from SW 6.02.17

Commissioning "measuring in JOG" for the first time, up to measuring cycles SW 6.2.16

1. In this case, definition block GUD7.DEF must be modified. Select definition file GUD7.DEF in menu "Services" in directory "Definitions" with the arrow keys and unload it by pressing the softkey "Unload". Before modifying data in GUD7, the "old" data should be backed-up (archived). Then open file GUD7.DEF by pressing the Enter key. In the section "Measure", remove the semicolons at the beginning of each definition line with the DEL key. This affects the definition lines as from the comment "Definitions for measurement in JOG and ShopMill" (starting with data item E_MESS_IS_METRIC).

DEF CHAN INT	E_MESS_IS_METRIC=1
DEF CHAN INT	E_MESS_IS_METRIC_SPEZ_VAR=1
DEF CHAN BOOL	E_MESS_MS_IN=0
DEF CHAN BOOL	E_MESS_MT_IN=1
DEF CHAN REAL	E_MESS_D=5
DEF CHAN REAL	E_MESS_D_M=50
DEF CHAN REAL	E_MESS_D_L=2
DEF CHAN REAL	E_MESS_D_R=1
DEF CHAN REAL	E_MESS_FM=300
DEF CHAN REAL	E_MESS_F=2000
DEF CHAN REAL	E_MESS_FZ=2000
DEF CHAN REAL	E_MESS_MAX_V=100
DEF CHAN REAL	E_MESS_MAX_S=1000
DEF CHAN REAL	E_MESS_MAX_F=20
DEF CHAN REAL	E_MESS_MIN_F=1
DEF CHAN REAL	E_MESS_F_FAK1=10
DEF CHAN REAL	E_MESS_F_FAK2
DEF CHAN REAL	E_MESS_MIN_D=0.01
DEF CHAN INT	E_MESS_MS_SOUTH=1
DEF CHAN INT	E_MESS_MS_MONO=0
DEF CHAN INT	E_MESS_MT_TYP[3]=SET $(0,0,0)$
DEF CHAN INT	E_MESS_MT_AX[3]=SET(133.133.133)
DEF CHAN REAL	E_MESS_MT_DL[3]
DEF CHAN REAL	E_MESS_MT_DR[3]
DEF CHAN REAL	E_MESS_MT_DZ[3]=SET(2,2,2)
DEF CHAN INT	E_MESS_MT_DIR[3]=SET(-1,-1,-1)
DEF CHAN REAL	E_MESS_MT_D=10
DEF CHAN REAL	E_MESS_MT_FM=100
DEF CHAN INT	E_MESS_MT_CF
DEF CHAN INT	E_MESS_MT_COMP
DEF CHAN REAL	E_MESS[3]
DEF CHAN REAL	E_MEAS
DEF CHAN BOOL	E_MESS_SETT[10]

Possibility of minimizing the memory requirements

The number of available data fields (data arrays) regarding the measuring probes that can be connected, can be adapted by the machinery manufacturer to the specific relationships and situations. When supplied, 3 data fields (data arrays) are available for tool measuring probes (MCS-WCS-related), workpiece measuring probes and calibration gauging blocks. If, for example, in the specific application case, only one data field (data array) is required for the workpiece and the tool measuring probe, and there is no gauging block available, then the appropriate parameters can be adapted in data block GUD6 and in GUD7.DEF and GUD7_MC.DEF. The details can be taken from the following example.

Example:

There is only one tool and workpiece measuring probe on a specific milling machine. The tool is to be only gauged in the interpolation plane G17.

In order to minimize the NC memory requirement in the SINUMERIK, the following changes are required:

- GUD7.DEF or GUD7_MC.DEF

DEF CHAN INT	E_MESS_MT_TYP[1]=SET(0)
DEF CHAN INT	E_MESS_MT_AX[1]=SET(133)
DEF CHAN REAL	E_MESS_MT_DL[1]
DEF CHAN REAL	E_MESS_MT_DR[1]
DEF CHAN REAL	E_MESS_MT_DZ[1]=SET(2)
DEF CHAN INT	E_MESS_MT_DIR[1]=SET(-1)
DEF CHAN INT	E_MESS_CALL_D[1]=SET(0)
DEF CHAN INT	E_MESS_CALL_L[1]=SET(0)

- GUD6.DEF

```
N10 DEF NCK INT _CVAL[4]=(1,1,0,3) ;1x tool and 1x workpiece probe data set
N11 DEF NCK REAL _TP[1,10]=(0,0,0,0,0,0,0,133,0,2)
N12 DEF NCK REAL _WP[1,11]
;N111 DEF NCK REAL _TPW[3,10]
```

The definition blocks should be opened in the HMI area Services\Definitions using the operator panel "INPUT key" and after editing, re-closed using the vertical softkey "Close editor"; i.e. to save and to activate.

Basic settings of GUD7_MC.DEF

Note

For HMI with ShopMill

If the settings for "Measuring in JOG" or "Measuring in manual" need changing, this should preferably be done in the display machine data for ShopMill. The corresponding crossreferences between the ShopMill display machine data and the GUD7_MC parameters can also be seen in the following table!

MD ShopMill	Date	Data type	Meaning	
	E_MESS_IS_METRIC=1 E_MESS_IS_METRIC_SPEZ_VAR=1	INTEGER	All dimensioned data are metric	
9750	E_MESS_MS_IN=0	BOOL	Work piece probe connected to measuring input 1	
9751	E_MESS_MT_IN=1	BOOL	Tool probe connected to measuring input 2	
9752	E_MESS_D=5	REAL	Internal data for measuring in JOG not relevant	
9753	E_MESS_D_M=50	REAL	Measuring path for manual measuring [mm] (in front of and behind meas. point)	
9754	E_MESS_D_L=2	REAL	Measuring path for length measurement [mm] for tool measurement (in front of and behind the measuring point)	
9755	E_MESS_D_R=1	REAL	Measuring path for radius measurement [mm] for tool measurement (in front of and behind the measuring point)	
9756	E_MESS_FM=300	REAL	Measuring feedrate [$\mathrm{mm} / \mathrm{min}$] for workpiece measurement and calibration	
9757	E_MESS_F=2000	REAL	Plane feedrate for collision monitoring [$\mathrm{mm} / \mathrm{min}$]	
9758	E_MESS_FZ=2000	REAL	Infeed feedrate for collision monitoring [$\mathrm{mm} / \mathrm{min}$]	
	E_MESS_CAL_D=[3]	REAL	Diameter, calibration ring [mm]	0
	E_MESS_CAL_L=[3]	REAL	Calibration height in the feed axis (referred to the WCS) [mm]	0
9759	E_MESS_MAX_V=100	REAL	Max. peripheral speed for measuring with rotating spindle [$\mathrm{m} / \mathrm{min}$]	
9760	E_MESS_MAX_S=1000	REAL	Max. spindle speed for measuring with rotating spindle [rpm]	
9771	E_MESS_MAX_F=20	REAL	Max. feedrate for measuring with rotating spindle [mm/min]	
9761	E_MESS_MIN_F=1	REAL	Min. feedrate for measuring with rotating spindle on 1st probing [$\mathrm{mm} / \mathrm{min}$]	
9769	E_MESS_F_FAK1=10	REAL	On tool measurement with rotating spindle, traversal with 10 times measuring feed is performed in the 1st probing (limitation by E_MESS_MAX_F)	
9770	E_MESS_F_FAK2=0	REAL	For tool measurement with rotating spindle, 2nd probing is performed with measuring feed. There is no 3rd probing.	
9762	E_MESS_MIN_D=0.01	REAL	Measuring accuracy for measuring with rotating spindle [mm/min]	
9763	E_MESS_MT_TYP[3]=SET(0,0,0)	INTEGER	3 arrays for tool measuring probe; tool measuring probe type; cube	
9764	E_MESS_MT_AX[3]=SET(133.133.133)	INTEGER	Permissible axis directions for tool probes in X and Y in plus and minus direction, in Z in minus direction only	
9765	E_MESS_MT_DL[3]	REAL	Active diameter of tool measuring probe for length measurement	0
9766	E_MESS_MT_DR[3]	REAL	Active diameter of tool measuring probe for radius measurement	0
9767	E_MESS_MT_DZ[3]=SET $(2,2,2)$	REAL	Distance between upper edge of tool probe and lower edge of tool probe [mm] when measuring the tool radius	2

| 9768 | E_MESS_MT_DIR[3]=SET(-1,-1,-1) | INTEGER | Approach direction in plane of tool measuring
 probe for tool measurement (minus direction in
 1st plane axis) |
| :--- | :--- | :--- | :--- | :---: |
| 9772 | E_MESS_MT_D=10 | REAL | Calibrate measurement path for tool probe and tool
 measurement with motionless spindle (before and after
 expected switching position) |
| 9773 | E_MESS_MT_FM=100 | REAL | Calibrate measuring feed for tool probe and tool
 measurement with motionless spindle |
| 9774 | E_MESS_MT_CF=0 | INTEGER | No tool probe make (manufacturer) specified |
| 9775 | E_MESS_MT_COMP=0 | INTEGER | No offset of the measurement result on tool
 measurement with rotating spindle |
| | E_MESS[3] | REAL | Internal values |
| 9776 | E_MEAS | REAL | Internal values |
| | E_MESS_SETT[10] | FRAME | Internal values |
| 9778 | E_MESS_AM | BOOL | Field for settings |
| 9779 | E_MESS_MS_MONO=0 | BOOL | Internal values |

NOTICE

Arrays E_MESS_MT_DL[] and E_MESS_DR[] (active diameter, width of tool measuring probe for length/radius measurement) must be assigned.

9.3.3 Settings in data block GUD6

The channel specific arrays _JM_I[], and _JM_B[] in data block GUD6 are used for adaptation to the requirements of the machine
N92 DEF CHAN INT _JM_I[10]=SET(0,1,1,17,100,0,0,0,0,0)

9.3.4 Loading files for measuring in JOG

File transfer from software supplied

The following files located in the JOG_MEASICYCLESISPFFILES directory on the software supplied are transferred to the control into directory "Standard cycles" from the diskette in menu "Services" after selection of softkey "Data in", "Diskette" and selection of the file in question and then pressing the "Start" softkey. They must then be loaded into the NC memory by pressing the softkey "Load". After the next Power on, they are known to the control.

File	Description
CYC_JM.SPF	Auxiliary cycle for measuring
CYC_JMA.SPF	Aux. cycle for activation
CYC_JMC.SPF	Aux. cycle for calculation
E_MS_CAL.SPF	For calibrating a workpiece measuring probe
E_MS_CAN.SPF	To measure a corner
E_MS_HOL.SPF	To measure a hole

File	Description
E_MS_PIN.SPF	To measure a spigot/shaft
E_MS_POC.SPF	To measure a rectangular pocket
E_MS_SPI.SPF	To measure a rectangular spigot
E_MT_CAL.SPF	For calibrating a tool measuring probe
E_MT_LEN.SPF	For length measurement of a tool
E_MT_RAD.SPF	For radius measurement of a tool
E_SP_NPV.SPF	Auxiliary cycle for activating the ZO that is active during measurement

When performing a software upgrade, make sure the variable values in the existing DEF files are kept. Back them up first, if necessary!

Transfer other files

The following files must also be transferred to the control.

File	Description
JOG_MEAS.COM (up to meas. cycles SW 6.2)	Configuring file for measuring in JOG user interface
COM_FILE.COM (from meas. cycles SW 6.3)	Configuring file for the softkeys for measuring in JOG in the JOG basic display
MA_JOG.COM (up to meas. cycles SW 6.2)	Help displays for measuring in JOG
COM_FILE.COM (from meas. cycles SW 6.3)	All screens/displays
BMP_FILE.ARC (up to measuring cycles SW 6.2) BMP_FILE.EXE	MC_CST0.ARC or MC_CST1.ARC (from measuring cycles SW 6.3)

BMP_FILE.EXE contains:

File	Description
BMPJ640.EXE	Aux. displays, resolution $640 \cdot 480$
BMPJ800.EXE	Aux. displays, resolution $800 \cdot 600$
BMPJ1024.EXE	Aux. displays, resolution $1024 \cdot 768$

Note

Up-to-date information is provided in the file SIEMENSD.TXT or SIEMENSE.TXT of the software being supplied.

Data description
9.3 Data for measuring in JOG

Start-up (hardware)

10.1 Commissioning measuring cycles for the first time

10.1.1 Requirements

- The hardware and software requirements of the measuring cycle version have been fulfilled (see chapter 8 "Hardware, software and installation").
- The probe is functional (Functional check probe connection \rightarrow see chapter 8 "Hardware, software and installation").
- Before beginning start-up, the existing state should be archived; if necessary now export series start-up archive.

NOTICE

Heed the information on measuring cycle start-up in connection with ShopMill / ShopTurn in file SIEMENSD.TXT / SIEMENSE.TXT!

10.1.2 Overview of diskette in delivery form

Below you will find an overview of the folder structure of diskettes when delivered for measuring cycles as of SW 6.3. The content of the individual folders is not detailed. More information in the content can be found in the SIEMENSD.TXT / SIEMENSE.TXT file.

The folder structure shown is not a statement on the assignment of specific diskettes.
However, you can generally assume an ascending order, beginning with "Diskette 1".
lcycles
lcycles\cyp_file
lcycles\deu
lcyclesleng
lcycleslspf_file
\define
Idemo

Measuring cycle programs (turning and milling)
Files for version display in HMI
User cycles program - comments in German
User cycles program - comments in English
Individual cycle programs
Data blocks, definitions for measuring cycles
Example programs: measuring cycles in simulation

ljog_meas	Files for measuring in JOG
log_meas\cycleslcyp_file	Files for version display in HMI
\jog_meas\cycles\spf_file	ndividual cycle programs
ljog_meas\define	Data blocks, definitions for measuring cycles
ljog_meas\hmi_adv	Files, images - zipped
\hmi_adv	Files for HMI Advanced
\hmi_emb	Files for HMI Embedded
Vhmi_emblmcresult	Files for measurement result display
\hmi_emblmcsupp	Files for measuring cycle support, images
Vhmi_embltext	Current texts (alarm, reporting texts)
\hmi_embltextld	German
\hmi_embltextle	Spanish
\hmi_embltextlf	French
\hmi_embltextlg	English
\hmi_embltextli	Italian
\hmi_embltools	Tools for incorporating in HMI Embedded

10.2 Steps for commissioning measuring cycles for the first time

10.2.1 General information

Manufacturer password must be set! (HMIICommissioning\Password)

10.2.2 Step 0.1 - set up memory configuring machine data

- Set memory configuring machine data for measuring cycles (for data see Section 9.1 "Machine data for executing measuring cycles" and the up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT included with the delivered software).
- The following machine data must be observed:

MD18118: MM_NUM_GUD_MODULES
MD18120: MM_NUM_GUD_NAMES_NCK
MD18130: MM_NUM_GUD_NAMES_CHAN
MD18150: MM_GUD_VALUES_MEM
MD18280: MM_NUM_FILES_PER_DIR
MD18320: MM_NUM_FILES_IN_FILESYSTEM
MD28082: MM_SYSTEM_FRAME_MASK
The following alarm is displayed after changes to the memory-configured parameters:
" 4400 MD change results in reorganization of the buffered memory (loss of data!)"
The following operating sequences are needed to prevent data from being lost:

1. Read out NCK series machine start-up archive into the archive. (HMIIServices\>1Series start-up)
2. Read the read out NCK series machine back in.

10.2.3 Step 0.2 - set up other machine data

- Set other machine data for measuring cycles
(for data see Section 9.1 "Machine data for executing measuring cycles" and the up-todate information in SIEMENSD.TXT / SIEMENSE.TXT included with the delivered software).
- The following machine data must be observed:

MD18170: MM_NUM_MAX_FUNC_NAMES
MD18180: MM_NUM_MAX_FUNC_PARAM
MD28020: MM_NUM_LUD_NAMES_TOTAL
MD28040: MM_NUM_LUD_VALUES_MEM
MD10132: MMC_CMD_TIMEOUT
MD11420: LEN_PROTOCOL_FILE
MD13200: MEAS_PROBE_LOW_ACTIV

- Then perform an NC reset. (HMIICommissioning\NC reset)

10.2.4 Step 0.3 - set up machine data for measuring in JOG

- The following machine data should only be parameterized for the "Measuring in JOG" function (for details, see section 9.3 "Data for measuring in JOG")
- The following machine data must be observed:

MD11602: ASUP_START_MASK
MD11604: ASUP_START_PRIO_LEVEL
MD20110: RESET_MODE_MASK
MD20112: START_MODE_MASK
MD20050: AXCONF_GEOAX_ASSIGN[i]
Then perform an NC reset. (HMIICommissioningINC reset)

HMI variants

The next steps of commissioning depend on the HMI hardware and software used.

HMI version (HMIIDiagnosis\Service displays\Version\HMI)

1. HMI-Advanced PCU50 powerline up to SW 06.03.18 or up to SW 06.04.08 as of SW 06.03.19 or as of SW 06.04.10
2. HMI-Advanced PCU50 solution line
3. HMI-Embedded PCU20 powerline
4. HMI-Embedded TCU solution line SW 1.x \rightarrow continue with section 10.6

10.3 Commissioning measuring cycles for HMI-Advanced PCU50 powerline up to SW 06.03.18 and/or SW 06.04.08

10.3.1 Requirements

Successful execution of steps $0.1,0.2$ and optionally step 0.3 from chapters 10.2.2, 10.2.3 and 10.2.4.

10.3.2 Step 1 - load definition files

10.3.2.1 General

Variant 1

Modules GUD5.DEF and GUD6.DEF are not active in the NCU (HMI/Services/Manage data).

- Transfer GUD5.DEF and GUD6.DEF from the subdirectory "define" (supplied on floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using RS-232-C.
- Select the DEF modules singly (HMI/Services/Manage data) and press softkey "Activate".

Variant 2

Modules GUD5.DEF and GUD6.DEF are active in the NCU (HMI/Services/Manage data).

- Save data to the archive or floppy disk using "Services", "Data out", folder "NC-active data", "User data".
- Select definition files GUD5.DEF and GUD6.DEF individually in the menu "Services", directory "Definitions" and unload by pressing the softkey "Unload".
- Transfer GUD5.DEF and GUD6.DEF from the subdirectory "define" (supplied on floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- Select the DEF modules singly (HMI/Services/Manage data) and press softkey "Activate".

Note

Without measuring in JOG

Without this function, commissioning continues from step 2 in chapter 10.3.3.

10.3.2.2 Only for measuring in JOG up to measuring cycle release SW 6.02.16

Only for measuring in JOG up to measuring cycles SW 6.02.16

Variant 1

The GUD7.DEF is not active in the NCU. (HMI/Services/Manage data)

- Transfer GUD7.DEF from the subdirectory "define" (supplied on a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- Adjust GUD7.DEF (refer to Subsection 9 "Modifying the GUD7 data block").
- Select the DEF module (HMI/Services/Manage data) and press softkey "Activate".

Variant 2

The GUD7.DEF is already active in the NCU. (HMI/Services/Manage data)

- Save data to the archive or floppy disk using "Services", "Data out", folder "NC-active data", "User data".
- Select definition file GUD7.DEF in menu "Services" in directory "Definitions" with the arrow keys and unload it by pressing the softkey "Unload".
- Transfer GUD7.DEF from the subdirectory "define" (supplied on a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- The DEF module then has to be adjusted (you will find more details in Subsection 9.3.2 "Modifying the GUD7 data block").
- Once the DEF module has been adjusted, select it (HMI/Services/Manage data) and press softkey "Activate".
- Read the data saved at the beginning back in again via "Services", "Data in".

Only when measuring in JOG from measuring cycles SW 6.3 (also from patch measuring cycles SW 6.02.17) with HMI Advanced from SW 6.3

Variant 1

Modules GUD7.DEF and GUD7_MC.DEF are not active in the NCU. (HMI/Services/Manage data)

- Transfer GUD7.DEF and GUD7_MC.DEF from the subdirectory "define" (supplied as a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- Select the GUD7_MC.DEF module in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Load HD \rightarrow NC". Then select module GUD7.DEF and press softkey "Activate".

Variant 2.1

The GUD7.DEF is already active in the NCU, the GUD7_MC.DEF is not active.
(HMI/Services/Manage data)

- Save data to the archive or floppy disk using "Services", "Data out", folder "NC-active data", "User data".
- Select definition file GUD7.DEF in menu "Services" in directory "Definitions" with the arrow keys and unload it by pressing the softkey "Unload".
- Transfer GUD7.DEF and GUD7_MC.DEF from the subdirectory "define" (supplied as a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- Select the GUD7_MC.DEF module in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Load HD \rightarrow NC". Then select module GUD7.DEF and press softkey "Activate".
- Read the data saved at the beginning back in again via "Services", "Data in".

Variant 2.2

The GGUD7.DEF and GUD7_MC.DEF are not active in the NCU. (HMI/Services/Manage data)

- Save data to the archive or floppy disk using "Services", "Data out", folder "NC-active data", "User data".
- Select definition files GUD7.DEF and GUD7_MC.DEF individually in the menu "Services", directory "Definitions" and unload by pressing the softkey "Unload".
- Transfer GUD7.DEF and GUD7_MC.DEF from the subdirectory "define" (supplied as a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.
- Select the GUD7_MC.DEF module in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Load HD \rightarrow NC". Then select module GUD7.DEF and press softkey "Activate".
- Read the data saved at the beginning back in again via "Services", "Data in".

10.3.3 Step 2 - load cycle programs

- Read in the cycles from the subdirectory "cycles" (supplied as a floppy disk) from the floppy disk or using V. 24.
The cycles can be read in individually or as a package depending on the technology. The following packages are available in the software supplied:
- mcycles.spf $\quad \rightarrow$ all measuring cycles for milling and turning
- mcycmill.spf $\quad \rightarrow$ all measuring cycles for milling technology
- mcycturn.spf \rightarrow all measuring cycles for turning technology
- If new cycles are added, load these in the NCU if necessary.
- Run NC reset to update the cycle interface (HMI/Commissioning/NC reset)

10.3.4 Step 3 - load measuring cycle text files

When using measuring cycles, the measuring cycle text files have to be loaded afterward.

- The file mc_text.com out of directory "hmi_adv" is loaded from the floppy disk or via V.24. It contains the measuring cycle text files in the five standard languages.

If you require languages other than the standard languages, please order the appropriate HMI language versions.

10.3.5 Step 4 - load files for measurement result display

- The following files are loaded via V. 24 or from the floppy disk out of directory "hmi_adv"
- MCRESULT.COM
- BMP_RESU.ARC
- After loading the files for the measurement result displays, check and adjust the entry for the text format in system file HMI MMC2\MBDDE. INI if necessary. The entry for indicating the measurement result displays must be changed from
- MEASURE_CYCLES_RESULT=DOS
to
- MEASURE_CYCLES_RESULT= (delete DOS!).

10.3.6 Step 5 - load measuring cycle support

- The following files are needed from the software supplied from subdirectory "hmi_adv":
- hmi_advlbmp_xxx.exe (displays for measuring cycle support, xxx stands for the screen resolution)
- hmi_adv\mcsupp.com
hmi_advlaeditor.com hmi_adv\startup.com
- Handling the EXE file:
- This file is not loaded into the control, but initially has to be loaded onto a PC. When this file is started, it is unpacked automatically and the following archive is produced: MZ_BMP01.ARC ... MZ_BMPxx.ARC
- These must be copied onto floppy disk and downloaded into the HMI or via V. 24 (binary format). These archives contain the bitmaps for measuring cycles support.
- Handling the COM file:
- Load MCSUPP.COM, AEDITOR.COM, and STARTUP.COM from floppy disk or via RS-232-C, then restart HMI.

10.3.7 Step 6 - activate measuring cycle support, configure

The entry softkeys "Measure turning" and "Measure milling" for measuring cycle support are activated in the file AEDITOR.COM ("Services" are in the directory "Standard cycles") by deleting the semicolons in front of the following lines:

```
;HS14=($83530,,se1)
;PRESS(HS14)
;LS("D_mess","MZ_SKL.COM",1)
;END_PRESS
; HS15=($83531, ,se1)
;PRESS(HS15)
;LS("F_mess","MZ_SKL.COM",1)
;END_PRESS
```

The entry softkey "Measuring cycles" in the "Commissioning" area is activated in the file STARTUP.COM ("Services" are in the directory "Standard cycles") by deleting the semicolons in front of the following lines:

```
;HS15=($83070,,se1)
;PRESS(HS15)
;LS("Meas. c")
|;END_PRESS
```

Press the etc. key ">" in the "Commissioning" area, then press the softkeys "Measuring cycles", "Automatic measuring". A start-up screen in which the settings for the measuring cycle screens can be undertaken is then displayed. The settings for the start-up screen are saved in an integer type GUD field "_MZ_MASK". This is located in the GUD6 under NCK global data.

10.3.8 Step 7 - load and activate measuring in JOG

- Load the files for measurement in JOG (see Subsection 9.3.4 "Loading files for measurement in JOG").
- Activate softkeys for measurement in JOG in file "MA_JOG.COM" by deleting semicolons. The semicolons before the following lines must be deleted:

```
; HS4=($83358,ac7,se1)
;PRESS(HS4)
;LM("Messen1","jog_meas.com")
;END_PRESS
;HS5=($83359,ac7,se1)
;PRESS(HS5)
;LM("Messen2"," jog_meas.com")
;END_PRESS
```


10.3.9 Step 8 - set measuring cycle data

- Check default values of the GUD variables and set other values, if necessary.
- That is done by selecting and changing the variables in "Parameters", "User data" ... or using a program (see Section 9.3).
- Data description (see Section 9.2 "Cycle data", Section 9.3 "Data for measuring in JOG" and up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT included with the software delivered).

10.4 Commissioning measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or SW 06.04.10 and HMI-Advanced PCU50 Solutionline

10.4.1 Requirements

Successful execution of steps $0.1,0.2$ and optionally step 0.3 from chapters 10.2.2, 10.2.3 and 10.2.4

10.4.2 Step 1 - load definition files

Load the archive specified for each measuring cycle release using "Services", "Data in", "Archive", "Cycles archive", "Measuring cycles" (\ARCICYCIMCYC.DIR):

For measuring cycles SW6.2

DEFINES.ARC Archive with definition files (GUD5.DEF, GUD6.DEF) JOGDEF.ARC Archive with definition file (GUD7_MC.DEF)

NOTICE
Only load the JOGDEF.ARC archive if ShopMill is not installed!

For measuring cycles SW6.3

DEFINES.ARC Archive with definition files (GUD5.DEF, GUD6.DEF, GUD7_MC.DEF)
JOGDEF.ARC Empty archive which does not have to be loaded.
Select the GUD5.DEF and/or GUD6.DEF modules singly in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Activate".

Only for measuring in JOG measuring cycles SW 6.2 and SW 6.3
Select the GUD7_MC.DEF module in the area "Services", "Manage data", in the folder
"Definitions".
Press softkey "Load HD \rightarrow NC".
Then select module GUD7.DEF and press softkey "Activate".
10.4 Commissioning measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or SW 06.04. 10 and HMI-Advanced PCU50 Solutionline

The following questions:
"Do you want to activate the definitions from file GUD7.DEF?" and if required "Should the previous values for the definitions be retained?" on HMI
should be answered with "Yes".

Note

The GUDs of the measuring cycles are therefore activated and can if necessary be viewed in the "Parameter" area, "User data".

10.4.3 Step 2 - load other archive

Load the archive files needed using the "Start" softkey using "Services", "Data in", "Archive", "Cycles archive", "Measuring cycles" (\ARCICYCIMCYC.DIR).

Overview of the archive:

CYCCUST_GR.ARC
CYCCUST_UK.ARC JOGMCYC.ARC MCSUPP.ARC MCYCLES.ARC MCYCMILL.ARC MCYCTURN.ARC MC_TEXT.ARC SIEMENSD.ARC

SIEMENSE.ARC

VERSION.ARC

Archive for user cycles (CYCLE198, CYCLE199) German Archive for user cycles (CYCLE198, CYCLE199) English Archive with cycles for measuring in JOG Archive with files for measuring result display and MZU Archive with all measuring cycles (milling and turning) Archive with all milling measuring cycles Archive with all turning measuring cycles Archive with reporting and alarm texts Archive with info on commissioning and using measuring cycles in German

Archive with info on commissioning and using measuring cycles in English

For meas. cycles SW 6.2:
MCRESULT.ARC Files for measurement result display (com files)
For meas. cycles SW 6.3:
MCRESULT.ARC

Empty archive which does not have to be loaded

The following archives must be loaded:

- for milling machines (with measuring in JOG):
- CYCCUST_GR.ARC
- JOGMCYC.ARC
- MC_TEXT.ARC
- MCSUPP.ARC
- MCYCMILL.ARC
- for turning machines:
- CYCCUST_GR.ARC
- MC_TEXT.ARC
- MCSUPP.ARC
- MCYCTURN.ARC.

Once loaded, run a NC reset to update the cycle interface.

10.4.4 Step 3 - activate entry softkeys "Measure turning" and "Measure milling" for measuring cycle support

Use the Enter key to open AEDITOR.COM in the "Services" operating area in the "Standard cycles" directory

The semicolons before the following lines must be deleted:

```
;HS14=($83530, ,se1)
;PRESS(HS14)
;LS("D_mess","MZ_SKL.COM",1)
;END_PRESS
;HS15=($83531, ,se1)
;PRESS(HS15)
;LS("F_mess","MZ_SKL.COM",1)
;END_PRESS
```


10.4.5 Step 4 - activate softkey "Measuring cycles" in the "Commissioning" area

Use the Enter key to open STARTUP.COM in the "Services" operating area in the "Standard cycles" directory and delete the semicolons in front of the following lines:

```
;HS15=($83070,,se1)
;PRESS(HS15)
;If SYSTEM ==1
;LS("Messz","mz_einst.com")
;Else
;LS("Messz1","mz_einst.com")
;EndIf
;END_PRESS
```

10.4 Commissioning measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or SW 06.04.10 and HMI-Advanced PCU50 Solutionline

10.4.6 Step 5 - activate entry softkeys "Measure workpiece" and "Measure tool" for measuring in JOG in the machine's "JOG" area

Use the Enter key to open MA_JOG.COM in the "Services" operating area in the "Standard cycles" directory.
The semicolons before the following lines must be deleted:

```
;HS4=($83358,ac7,se1)
;PRESS(HS4)
;LM("Messen1","jog_meas.com")
;END_PRESS
;HS5=($83359,ac7,se1)
;PRESS(HS5)
;LM("Messen2","jog_meas.com")
;END_PRESS
```


10.4.7 Step 6 - set measuring cycle data

- Check default values of the GUD variables and set other values, if necessary.
- That is done by selecting and changing the variables in "Parameters", "User data" ... or using a program (see Section 9.3).
- Data description (see Section 9.2 "Cycle data", Section 9.3 "Data for measuring in JOG" and up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT included with the software delivered).

10.5 Commissioning measuring cycles for HMI-Embedded PCU20 powerline

10.5.1 Requirements

- Successful execution of steps 0.1 and 0.2 from chapters 10.2.2 and 10.2.3.
- As of V06.03.30 of HMI-Embedded, the measuring cycles are integrated in the software.
- Only the following steps 1 to 5 are needed for further commissioning.

10.5.2 Step 1 - load definition files

- Transfer GUD5.DEF and GUD6.DEF from the subdirectory "define" to the NCU using "Services", "Data in" (e.g. using V. 24 or floppy disk).
- Select blocks singly and press softkey "Activate".

10.5.3 Step 2 - load cycle programs

- Load SPF files for the cycles into NCU from the directory "cycles" (or individual cycles from the directory \cycleslspf_file).
- Run NC reset to update the cycle interface

10.5.4 Step 3 - set measuring cycle data

- Check default values of the GUD variables and set other values, if necessary.
- That is done by selecting and changing the variables in "Parameters", "User data"

Data description (see Section 9.2 "Cycle data" and up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT included with the software delivered).

10.5.5 Step 4 - menu tree for extending measuring cycles

- Adjust file common.com and then load the following file in NCU:
- hmi_emblmcsupplcommon.com
- Adaptation: Remove semicolon in front of SC617, SC326, and SC327
- Then load the file in the NCU and perform an NC reset.

10.5.6 Step 5 - configure measuring cycle support

The measuring cycle screen forms can be set via GUD field _MZ_MASK. It is of type integer and is located in the GUD6 under NCK global data. In the "Start-up" operating area under softkey "Meas. cycles", "Measure automatic", a start-up screen form appears allowing you to make the settings.

Note

For additional commissioning steps:
The following steps are only needed if HMI-Embedded does not yet contain a cycle release or the existing software release is to be upgraded.

10.5.7 Step 6 - incorporate text files

When using measuring cycles with HMI up to measuring cycle version 6.2, the measuring cycle text files have to be loaded afterward.

Newer versions already contain the text files of the measuring cycles in the standard languages.
If you require languages other than the standard languages, please order the appropriate HMI language versions.

- The text files(almc.txt, alz.txt) are supplied individually in the following directories. More information can be found in SIEMENSD.TXT / SIEMENSE.TXT.
\hmi_embltext
\hmi_embltextld Text files German
Vhmi_embltextle Text files Spanish
Uhmi_embltextlf Text files French
Vhmi_embltextlg Text files English
\hmi_embltextli Text files Italian
- Out of the language-specific files ALMC.TXT and ALZ.XT, select the files of the required language path.
- Incorporate the text files in the HMI-Embedded software (see HMI-Embedded Upgrading Instructions).

10.5.8 Step 7 - incorporate files for measurement result display

- The following files must be incorporated in the HMI-Embedded software for the measurement result display.
- HMI_EMB\MCRESULT\MZBILD01.COM
- HMI_EMB\MCRESULT\MZBILD02.COM
- HMI_EMBIMCRESULT\MZBILD03.COM
- HMI_EMB\MCRESULT\MZBILD04.COM
- The MZBILDnn.COM files are incorporated packed as MZBILDnn.CO_.

Commands for packing:

- arj a MZBILD01.CO_ MZBILD01.COM
- arj a MZBILD02.CO_ MZBILD02.COM
- arj a MZBILD03.CO_ MZBILD03.COM
- arj a MZBILD04.CO_ MZBILD04.COM

10.5.9 Step 8 - incorporate measuring cycle support

- A tool make_com.bat is supplied for packing the COM files for the measuring cycle support.
- Sequence

Set-up an empty directory and copy the following files there:

- hmi_emblmcsuppl*.com
- hmi_embltoolslarj.exe
- hmi_embltools\make_com.bat
- Start make_com.bat
- Incorporate the *.co_ files in the HMI-Embedded software (see HMI-Embedded Upgrading Instructions).

10.5.10 Step 9 - incorporate displays for measuring cycle support

- The tools make_cst.bat, mcst_800.bat and mcst1024.bat for three screen sizes (OP10, OP12, OP15) are supplied for packing the Bitmap files for the measuring cycle support.
- Sequence:

Set-up an empty directory with two subdirectories and copy the following files there: In the 1st subdirectory which should be set up with the name "mcsupp":

- hmi_emblmcsuppl*.exe and *.arj

In the 2nd subdirectory which can be set up with any name:

- hmi_embltoolslarj.exe
- hmi_embltoolslarj_idx.exe
- hmi_embltools\bmp2bin.exe
- hmi_embltools\make_cst.bat or mcst_800.bat or mcst1024.bat
- hmi_embltoolslsys_conv.col
- Start the Batch file depending on screen size. Another directory called "bmp_file" is produced in the 2nd subdirectory.
- Incorporate the files "cst.arj" and "cst_idx.arj" from the directory "bmp_file" in the HMIEmbedded software (see HMI-Embedded Upgrading Instructions).

10.5.11 Step 10 - produce image file and program on a Flash card

Once the measuring cycle files from the previous steps have been incorporated in the HMIEmbedded software, a "PCU_20.ABB" image file now has to be produced.
This file should be programmed on a corresponding Flash.
For a precise description of this process, see the HMI-Embedded Upgrading Instructions.

10.6 Commissioning measuring cycles, HMI-Embedded TCU solution line SW 1.x

10.6.1 Requirements

The software release of the measuring cycles to be started up must be present on the CF card.

Up to NCK 63.xx.xx, the following machine data from steps 0.1 and 0.2 from chapters 10.2.2 and 10.2.3 should be checked:

- MD18130: MM_NUM_GUD_NAMES_CHAN
- MD18180: MM_NUM_MAX_FUNC_PARAM
- MD11420: LEN_PROTOCOL_FILE
- MD28082: MM_SYSTEM_FRAME_MASK

10.6.2 Step 1 - load archive

Load the archive files needed:

CYCCUST_GR.ARC	Archive for user cycles German
CYCCUST_UK.ARC	Archive for user cycles English
MCYCLES.ARC	Archive with all measuring cycles (milling and turning)
MCYCMILL.ARC	Archive with all milling measuring cycles
MCYCTURN.ARC	Archive with all turning measuring cycles
DEFINES.ARC	Archive with definition files (GUD5.DEF, GUD6.DEF,
	GUD7_MC.DEF)
JOGMCYC.ARC	Archive with all measuring cycles for measuring in JOG

In the "Services" area, softkey "Program data", use the cursor keys to change to "Cycle storage" and use the Input key to open.
In the "Cycle storage" area, use the cursor keys to change to "Measuring cycles" and use the Input key to open. Load the archive files needed using the 1st vertical softkey "Load archive". It should be noted that the archive files have to be selected and loaded individually. Once all the archive files needed have been loaded, an NC reset should be run via the operating area "Commissioning" softkey "NC reset".

10.6.3 Step 2 - activate definition files

In the "Program" operating area, use the etc. key ">" to change to the 3rd level. Press the softkey "Definition files", then individually select the definitions GUD5.DEF, GUD6.DEF, and GUD7.DEF and press the softkey "Activate".

10.6.4 Step 3 - activate entry softkeys "Measure turning" and "Measure milling" for measuring cycle support

Use the Enter key to open the file "common.com" in the "Program", "Standard cycles" operating area and delete the semicolons in the following lines:

```
;SC326 = AEDITOR.COM ;* SK "Measure turning"
;SC327 = AEDITOR.COM ;* SK "Measure milling"
```

Then close the file using the "Close editor" softkey.
An NC reset should then be run via the operating area "Commissioning" softkey "NC reset".

10.6.5 Step 4 - activate softkey "Measuring cycles" in the "Commissioning" area

Use the Enter key to open the file "common.com" in the "Program", "Standard cycles" operating area and delete the semicolons in the following line:
; SC617 = STARTUP.COM
Then close the file using the "Close editor" softkey.
Then perform an "NC reset" using the "Commissioning" operating area softkey.

10.6.6 Step 5 - set measuring cycle data

- Check default values of the GUD variables and set other values, if necessary.
- That is done by selecting and changing the variables in "Parameters", "User data" ... or using a program (see Section 9.3).
- Data description (see Section 9.2 "Cycle data", Section 9.3 "Data for measuring in JOG" and up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT included with the software delivered).

10.7 Upgrading measuring cycles

10.7.1 General information

Upgrading measuring cycles is basically performed in the same order as initial installation.
Special notes:

- Only use files with the same measuring cycle software version. Do not mix files with different versions!
- Always heed the up-to-date information in SIEMENSD.TXT / SIEMENSE.TXT.
- Whether you need to increase the memory configuring machine data depends on the state of the machine and the previous measuring cycle version.
- When performing a software upgrade, make sure the variable values in the existing DEF files are preserved. These should first be saved if necessary.
- The measuring cycle data usually only has to be adjusted when upgrading an initial release of $5 . x$ (or 4.x). When upgrading within measuring cycles SW 6, only the values set by previously archiving the NC-active data need be reconstructed (unless other settings are specified specifically in the SIEMENSD.TXT / SIEMENSE.TXT).

The next steps of upgrading depend on the HMI hardware and software used.

HMI version (HMIIDiagnosis\Service displays\Version\HMI)

1. HMI-Advanced PCU50 powerline
up to SW 06.03.18 or up to SW 06.04.08
as of SW 06.03.19 or as of SW 06.04.10
2. HMI-Advanced PCU50 solution line
3. HMI-Embedded PCU20 powerline
\rightarrow continue with section 10.7.2
\rightarrow continue with section 10.7 .3
\rightarrow continue with section 10.7 .3
\rightarrow continue with section 10.7 .4

10.7.2 Upgrading measuring cycles for HMI-Advanced PCU50 powerline up to SW 06.03.18 and/or SW 06.04.08

Note

Refer to Chapter 10.3.

10.7.3 Upgrading measuring cycles for HMI-Advanced PCU50 powerline as of SW 06.03.19. and/or as of SW 06.04.10 and HMI-Advanced PCU50 solution line

10.7.3.1 Requirements

For meas. cycles SW 6.2

Transfer the following archive from the subdirectory "hmi_adv" (supplied on a floppy disk) to the HMI using "Services", "Data in" from the floppy disk or using V.24.

CYCCUST_GR.ARC Archive for user cycles (CYCLE198, CYCLE199) German
CYCCUST_UK.ARC Archive for user cycles (CYCLE198, CYCLE199) English
JOGMCYC.ARC Archive with cycles for measuring in JOG
MCSUPP.ARC Archive with files for measuring result display and MZU
MCYCLES.ARC
MCYCMILL.ARC
MCYCTURN.ARC
MC_TEXT.ARC
SIEMENSD.ARC

VERSION.ARC Archive with files for the version display

MC_CSTO.ARC
MC_CST1.ARC

SIEMENSE.ARC Archive with info on commissioning and using measuring cycles in English

MCRESULT.ARC Files for measurement result display (com files)
Displays for measuring cycle support in the new design
Archive with all measuring cycles (milling and turning)
Archive with all milling measuring cycles
Archive with all turning measuring cycles
Archive with reporting and alarm texts
Archive with info on commissioning and using measuring cycles in German

Displays for measuring cycle support in the old design

With meas. cycles SW 6.3

Copy the following files from the directory "hmi_adv" in "Services" to the directory "Archive" (\ARC):

- MC63ARC1.ARC
- MC63ARC2.ARC
- MC_CSTO.ARC
- MC_CST1.ARC

Individually select and load the four archives using "Services", "Data in", "Archive" (softkey "Start").

When loading the files MC63ARC1.ARC and MC63ARC2.ARC, the MC archive is unpacked and the existing MC archive overwritten under $\backslash A R C I C Y C \backslash M C Y C . D I R$.

When the files MC_CST0.ARC and MC_CST1.ARC are loaded, the displays are unpacked in the new and old design.

10.7.3.2 Step 1 - load definition files

Save data to the archive or floppy disk using "Services", "Data out", folder "NC-active data", "User data". Select the GUD5.DEF, GUD6.DEF and if necessary GUD7_MC.DEF modules singly in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Unload NC \rightarrow HD".

Load the archive specified for each measuring cycle release using "Services", "Data in", "Archive", "Cycles archive", "Measuring cycles" (\ARCICYCIMCYC.DIR):

- With meas. cycles SW 6.2:
$\begin{array}{ll}\text { DEFINES.ARC } & \text { Archive with definition files (GUD5.DEF, GUD6.DEF) } \\ \text { JOGDEF.ARC } & \text { Archive with definition file (GUD7_MC.DEF) }\end{array}$

NOTICE

Only load the JOGDEF.ARC archive if ShopMill is not installed!

- With meas. cycles SW 6.3

DEFINES.ARC Archive with definition files (GUD5.DEF, GUD6.DEF, GUD7_MC.DEF)
JOGDEF.ARC Empty archive which does not have to be loaded.
Select the GUD5.DEF and/or GUD6.DEF modules singly in the area "Services", "Manage data", in the folder "Definitions" and press softkey "Activate".

- Only for measuring in JOG

Select the GUD7_MC.DEF module in the area "Services", "Manage data", in the folder "Definitions".

Press softkey "Load HD \rightarrow NC".
Then select module GUD7.DEF and press softkey "Activate".
The following questions:
"Do you want to activate the definitions from file GUD7.DEF?" and if required "Should the previous values for the definitions be retained?" on HMI should be answered with "Yes".

Load the saved user data again via "Services", "Data in".

10.7.3.3 Step 2 - load other archive

Note

Refer to Chapter 10.4.3 Step 2.

10.7.3.4 Step 3 - update Bitmaps

Selection "Commissioning", "Machine data", "Display MD"
Set display machine data MD 9021 LAYOUT_MODE $=1$.
Turn HMI-Adv off and on again.
Set display machine data MD 9021 LAYOUT_MODE $=0$.
Turn HMI-Adv off and on again.
Remark:
If the MD 9021 is set to 1 ("previous design"), then firstly set to 0 ("new design") and then reset to $1 ; \Rightarrow$ all bitmaps for measuring cycle support and for measuring JOG are updated.

10.7.4 Upgrading measuring cycles for HMI-Embedded PCU20 powerline

Note

Refer to Chapter 10.5.

10.8 Sequence for probe installation

10.9 Example of calculating the repeat accuracy

Test program

This program allows the measuring scatter (repeat accuracy) of the entire measuring system (machine-probe-signal transmission to NC) to be calculated.

In the example, ten measurements are taken in the X axis and the measured value recorded in the workpiece coordinates.

It is therefore possible to determine the so-called random dimensional deviations which are not subject to any trend.

Example

```
%_N_CHECK_ACCURATE_MPF
;$PATH=/_N_MPF_DIR
NO5 DEF INT SIGNAL, KK ;Variable definition
N10 DEF REAL MESSWERT_IN_X[10]
N15 G17 T1 D1 ;Start conditions, preselect tool offset
    ;for probe
N20 ANF: G0 X0 F150 ;Prepositioning in the measured axis
N25 MEAS=+1 G1 X50 ;Measurement at lst measurement
    ;input with switching signal from "not
    ;deflected" to "deflected" in the x axis.
    ;Probe switching expected between X0 and X50.
N30 STOPRE ;Stop decoding for subsequent
    ;evaluation of result (pre-processing stop)
N35 SIGNAL= $AC_MEA[1] ;Read software switching signal at
;1st measurement input
N37 IF SIGNAL == 0 GOTOF_FEHL1 ;Check switching signal
N40 MESSWERT_IN_X[kk]=$AA_MW[X] ;Read measured value in workpiece
;coordinates
N50 KK=KK+1
N60 IF KK<10 GOTOB ANF ;Repeat 10 times
N65 M0
N66 STOPRE ; preprocessing stop
N70 M2
N80 _FEHL1: MSG ("Probe not switching")
N90 M0
N95 M2
```


Alarm, error, and system messages

11.1 General notes

If faulty states are detected in the measuring cycles, an alarm is generated and execution of the measuring cycle is aborted.
In addition, the measuring cycles issue messages in the dialog line of the PLC. These message will not interrupt the program execution.

11.2 Error rectification in the measuring cycles

Alarms with numbers between 61000 and 62999 are generated in the measuring cycles. This range of numbers, in turn, is divided again with regard to alarm responses and cancel criteria.

The error text that is displayed together with the alarm number gives you more detailed information on the error cause.

Alarm number	Clearing criterion	Alarm Response
$61000 \ldots 61999$	NC_RESET	Block preparation in the NC is aborted
$62000 \ldots 62999$	Clear key	Program execution is not interrupted; display only.

11.3 Overview of measuring cycle alarms

The measuring cycle alarms are listed below:
References: /DA/ Diagnostics Manual

Adaptation of the Measuring Cycles to Previous Software Versions

12.1 General information

Parameter _SI[1] in data block GUD6 is used to adapt measuring cycle versions up to SW 5 to previous NC software versions.
In the delivery status of the measuring cycles, the current software status of the control is entered in parameter _SI[1], i.e. 5 for SW 5 . This parameter must be changed to match the measuring cycles <SW 6 to older software releases.

Example:

When using measuring cycles status 5.x.x on a control with SW $4 \rightarrow$ _SI[1] $=4$

Precondition:

To use the measuring cycles, the software status of the control must be ≥ 3.

12.2 Measuring cycle subroutines

General information

These measuring cycle subroutines are called directly by the cycles. With the exception of CYCLE100, CYCLE101, and CYCLE116, these subroutines cannot be executed by a direct call.

Programming

| Cycle | Function | As of SW 4 | As of SW 4.5 | As of SW 6.2 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| CYCLE100 | Activate logging | X | | |
| CYCLE101 | Deactivate logging | X | | |
| CYCLE102 | Measuring result display | | | |
| CYCLE103 | Parameter setting in interactive mode | | | |
| CYCLE104 | Internal subroutine: Measuring cycle interface | | | |
| CYCLE105 | Internal subroutine: Log | X | | |
| CYCLE106 | Internal subroutine: Log | X | | |
| CYCLE107 | Output of measuring cycle messages | only up to measuring cycles - SW 6.2 | | |
| CYCLE108 | Output of measuring cycle alarms | | X | |
| CYCLE109 | Internal subroutine: Data transfer | | | |
| CYCLE110 | Internal subroutine: Plausibility checks | | | |
| CYCLE111 | Internal subroutine: Measuring functions | | | |
| CYCLE112 | Internal subroutine: Measuring functions | | | |
| CYCLE113 | Internal subroutine: Log | | | |
| CYCLE114 | Internal subroutine: Load ZO memory, | | | |
| | load WCS wear | | | |
| | Internal subroutine: Load WCS wear | | | |
| CYCLE115 | Internal subroutine: Load ZO memory | | | |
| CYCLE116 | Calculation of center point and radius of a circle | | | |
| CYCLE117 | Internal subroutine: Measuring functions | | | |
| CYCLE118 | Internal subroutine: Log | | | |

If the operating area is switched over during the course of the input dialog, the dialog can be selected again at a later stage with "Cycles" softkey in the extended menu.
Programming is undertaken using CYCLE103.
Programming example: Workpiece probe calibration

```
CALIBRATE_IN_X_Y
N10 G54 G17 G0 X100 Y80 ;Position probe at the center of the hole
;and select ZO
;Selection of length correction,
;position probe in hole
;The operator can assign the parameters for
;calibration cycle CYCLE976 in interactive mode
N25 CYCLE976
N50 M30
CALIBRATE_IN_X_Y
;Measuring cycle call for calibration in
;the X-Y plane
;End of program
;Position probe at the center of the hole and
;select zO
```


Appendix

A

A. $1 \quad$ Overview of measuring cycle parameters

Parameter definition

Illustration in the table (cell)	Meaning
	Parameter must be defined and/or the parameter's definition depends on the measuring variant, other parameters or the machine configuration.
----	Parameter is not used in the cycle

Overview

CYCLE961		Workpiece measurements					
Parameter GUD5	Type	Automatic setup of inside and outside corner for G17: in XY plane for G18: in ZX plane for G19: in YZ plane					
		Specifying distances and angles				Specifying 4 points	
		Corner inside	Corner outside	Corner inside	Corner outside	Corner inside	Corner outside
		3 measuring points		4 measuring points			
_CALNUM	INT	----	----	----	-----	----	----
_CORA	REAL	----	----	----	----	----	----
_CPA	REAL	----	----	----	----	----	----
_CPO	REAL	----	----	----	----	----	----
_EVNUM	INT	----	----	----	----	----	----
-FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm					
		Only included if calculated larger than internal value					
-ID	REAL	----	Retraction in infeed axis, incremental for overtravel of corner if _ID=0 travels around the corner	-	Retraction in infeed axis, incremental for overtravel of corner if _ID=0 travels around the corner	Infeed of p measuring	tioning depth to th (incremental)

CYCLE961		Workpiece measurements					
_INCA	$\begin{array}{\|l\|} \hline \text { REAL } \\ 179.5 \\ . .179 .5 \\ \text { degrees } \end{array}$	Angle from 1st edge to 2nd edge of the workpiece (clockwise negative)				----	----
_K	INT	----	----	----	----	--	----
_KNUM	$\begin{aligned} & \text { INT } \\ & >=0 \end{aligned}$	Without/with automatic offset of the ZO memory 0 : Without offset					
		1...99: automatic offset in ZO G54...G57 G505...G599 1000: automatic offset in basic frame G500 1011... 1026: automatic ZO correction in 1st to 16th basic frame 2000: automatic ZO in system frame					
_MA	INT	----	----	----	----	----	----
_MD	INT	---	----	----	----	----	----
-MVAR	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Measuring variant					
		105	106	107	108	117	118
_NMSP	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Number of measurements at the same location					
_PRNUM	$\begin{array}{\|l} \hline \text { INT } \\ >0 \end{array}$	Probe number (number of the data field assigned to the workpiece probe GUD6:_WP[_PRNUM-1])					
_RA	INT	----	----	----	----	----	----
_RF	REAL	----	----	----	----	--	----
_SETVAL	REAL	---	----	----	----	--	----
_SETV[0]	REAL	Distance between starting point and measuring point 2 (positive only)				Coordinates of point P1 in the active workpiece coordinate system (abscissa)	
_SETV [1]	REAL	Distance between starting point and measuring point 4 (positive only)				Coordinates of point P1 in the active workpiece coordinate system (ordinate)	
_SETV [2]	REAL	Distance between measured and required corner point in abscissa only active if SETV[4]>1		----	----	Coordinates of point P2 in the active workpiece coordinate system (abscissa)	
_SETV [3]	REAL	Distance between measured and required corner point in ordinate only active if _SETV[4]>1		----	----	Coordinates of point P2 in the active workpiece coordinate system (ordinate)	
_SETV [4]	REAL	1: Measured corner 2: Offset in abscissa 3: Offset in abscissa and ordinate 4: Offset in ordinate		----	----	Coordinates of point P3 in the active workpiece coordinate system (abscissa)	
_SETV[5]	REAL	----	----	----	----	Coordinates of point P3 in the active workpiece coordinate system (ordinate)	
_SETV[6]	REAL	----	----		----	Coordinate workpiece (abscissa)	in the active tem

CYCLE961		Workpiece measurements					
_SETV[7]	REAL	----	--	----	----	Coordinate workpiece (ordinate)	oint P4 in the active inate system
_STA1	REAL 0... 360 degrees	Approx. angle of posit. direction of the abscissa with respect to 1st edge of the workpiece (reference edge), clockwise negative				----	----
_SZA	REAL	----	----	----	-	----	----
- SzO	REAL	----	----	----	----	----	----
-TDIF	REAL	----	----	----	----	----	----
$-^{\text {TMV }}$	REAL	----	----	----	----	----	----
- TNAME	STRING[]	----	----	----	----	----	----
-TNUM	INT	----	----	----	----	----	----
_TUL	REAL	----	----	----	----	----	----
_TLL	REAL	----	----	----	----	----	----
-TSA	REAL	----	----	----	----	----	----
- ${ }^{\text {TZL }}$	REAL	----	----	----	----	----	---
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if_FA $=1$); $300 \mathrm{~mm} / \mathrm{min}$ (if_FA>1))					

CYCLE971		Tool measurement of milling tools on milling machines			
Parameter GUD5	Type	Possible axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) / applicate (_MA=3) } \\ & \text { for } G 17: X=1 / Y=2 / Z=3 \\ & \text { for } G 18: Z=1 / X=2 / Y=3 \\ & \text { for } G 19: Y=1 / Z=2 / X=3 \end{aligned}$			
		Calibrating tool probe		Measuring tool	
		Machine-related	Workpiece-related	Machine-related	Workpiece-related
_CALNUM	INT	----	----	----	----
_CORA	REAL	----	----	----	----
_CPA	REAL	----	----	----	----
_CPO	REAL	----	----	----	----
-EVNUM	INT	--	----	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]	
- FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm			
		For incremental calibration, the direction of travel is specified by the sign of _FA.		----	
_ID	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	----	----	Normally 0 , on m the highest po length for radius leng	utters the offset between cutting edge and the rement (or the radius for surement).
_INCA	REAL			----	--
-K	INT	----	----	----	---
_KNUM	INT	----	----	----	----

CYCLE971		Tool measurement of milling tools on milling machines			
- MA	INT	Measuring axis 1... 3			
		1: Calibration in +/- direction in 1 (abscissa) 2: Calibration in $+/$ - direction in 2 (ordinate) 3: Calibration in +/- direction in 3 (applicate) Also possible for calibration in plane: 102: a) Calculation of center in 1 (abscissa) b) Calibrate in 2 (ordinate) 201: a) Calculation of center in 2 (ordinate) b) Calibrate in 1 (abscissa) not for incremental calibration!		1: Meas. of radius in direction 1 (abscissa) 2: Meas. of radius in direction 2 (ordinate) 3: Meas. of length at center point of the tool probe 103: Meas. of the length, offset about radius 1 (abscissa) 203: Meas. of the length, offset about radius 2 (ordinate)	
_ ${ }^{\text {MD }}$	INT	----	----	----	----
_MVAR	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { INT } \end{array}$	Measuring variant			
		Calibration in measurement axis acc. to previous positioning on center of measurement cube		Measure of length of radius with motionless spindle	
		0	10	1	11
		Incremental calibration, traverse motion in measuring axis only		Measurement with rotating spindle; direction of rotation before cycle call, if spindle is already rotating. For motionless spindle direction in _CM[5]	
		10000	10010	2	12
		from meas. cycles SW 6.3: Calibrate automatically		----	----
		100000	100010	----	----
_NMSP	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Number of measurements at the same location			
-PRNUM	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Tool probe number(number of the data field assigned to the workpiece probeGUD6:			
		_TP[_PRNUM-1,i])	_TPW[_PRNUM-1,i]	_TP[_PRNUM-1,i])	_TPW[_PRNUM-1,i]
_RA	INT	----	----	----	----
_RF	REAL	----	----	----	----
_SETVAL	REAL	----	----	--	----
_SETV[8]	REAL	----	----		
_STA1	REAL 0... 360 degrees	----	----	----	----
_SZA	REAL	----	---	--	--
_SzO	REAL	--	----	----	----
_TDIF	REAL	---	----	Dimension	erence check
_TMV	REAL	----	----	----	----
_TNAME	$\begin{array}{\|l\|} \hline \text { STRING } \\ \text { [32] } \\ \hline \end{array}$	----	----	----	----
_TNUM	INT	----	----	----	----

CYCLE972		Tool measurement of turning tools with cutting edge position 1-8 on turning machines (machine-related)	
Parameter GUD5	Type	Possible axesAbscissa (_MA=1) / ordinate (_MA=2)for $G 17: X=1 / Y=2$for $G 18: Z=1 / X=2$for $G 19: Y=1 / Z=2$	
		Calibrating tool probes	Measuring tool
_CALNUM	INT	----	----
_CORA	REAL	----	----
_CPA	REAL	----	----
_CPO	REAL	----	----
-EVNUM	INT	----	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm	
_ID	REAL	----	---
_INCA	REAL	----	---
- ${ }^{\text {K }}$	INT	--	--
_KNUM	INT	----	---
_MA	INT	Measuring axis 1... 2	
-MD	INT	----	---
-MVAR	INT	Measuring variant	
	>0	0	1
- NMSP	$\begin{array}{\|l\|} \hline \text { INT } \\ \gg=1 \end{array}$	Number of measurements at the same location	
-PRNUM	$\begin{aligned} & \text { INT } \\ & >=1 \end{aligned}$	Tool probe number (number of the data field assigned to the tool probe GUD6:_TP[_PRNUM-1])	
_RA	INT	----	----

Appendix

A. 1 Overview of measuring cycle parameters

CYCLE972		Tool measurement of turning tools with cutting edge position 1-8 on turning machines (machine-related)	
_RF	REAL	----	----
_SETVAL	REAL	----	----
_SETV[8]	REAL	----	----
_STA1	REAL	----	----
_SZA	REAL	----	----
_SzO	REAL	----	----
_TDIF	REAL	----	Dimension difference check
_TMV	REAL	----	----
_TNAME	STRING []	----	----
_TNUM	INT	----	----
_TUL	REAL	----	----
_TLL	REAL	----	----
_TSA	REAL	Safe area	
_TZL	REAL	Zero offset area	
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if _FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if _FA>1))	

CYCLE973		Workpiece measurements	
Parameter GUD5	Type	Possible axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) / applicate (_MA=3) } \\ & \text { for } G 17: X=1 / Y=2 / Z=3 \\ & \text { for } G 18: Z=1 / X=2 / Y=3 \\ & \text { for } G 19: Y=1 / Z=2 / X=3 \end{aligned}$	
		Calibrating tool probes	
		Machine-related	Workpiece-related
		Reference groove	Area
_CALNUM	INT	Number of the gauging block (number of the data field assigned GUD6: _KB[_CALNUM-1])	----
_CORA	REAL	----	----
_CPA	REAL	----	----
_CPO	REAL	----	----
_EVNUM	INT	----	----
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm	
_ID	REAL	----	----
_INCA	REAL	----	----
_K	INT	----	----
_KNUM	INT	----	----
_MA	INT	Measuring axis 1... 2	Measuring axis 1... 3
_MD	INT	Measuring direction ($0=$ positive / $1=$ negative)	

CYCLE973		Workpiece measurements			
_MVAR	$\begin{aligned} & \hline \text { INT } \\ & >0 \end{aligned}$	\square Measuring variant			
			oove e ball in calculation be ball in calculation n in groove only) n (specify measuraxis direction) ns (specify is) ion calculation calibration (for groove only)		
- NMSP	$\begin{array}{\|l\|} \hline \text { INT } \\ >0 \\ \hline \end{array}$	Number of measurements at the same location			
_PRNUM	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Tool probe number (number of the data field assigned to the tool probe GUD6:_TP[_PRNUM-1])			
		_TP[_PRNUM-1,i])	_TPW[_PRNUM-1,i]	_TP[_PRNUM-1,i])	_TPW[_PRNUM-1,i]
_RA	INT	----		----	
_RF	REAL	----		----	
_SETVAL	REAL	----		----	
_SETV[8]	REAL	----		Calibration setpoint	
_STA1	REAL	----		----	
_SZA	REAL	----		----	
_SzO	REAL	----		----	
_TDIF	REAL	----		----	
_TMV	REAL	----		----	
_TNAME	STRING [32]	----		----	
_TNUM	INT	----		----	
_TUL	REAL	----		----	
_TLL	REAL	----		----	
_TSA	REAL	Safe area			
_TZL	REAL	Zero offset area			
-VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity(for_VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if_FA $=1$); $300 \mathrm{~mm} / \mathrm{min}$ (if_FA>1))			

CYCLE974 CYCLE994		Workpiece measurements			
Parameter GUD5	Type	Possible axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) / applicate (_MA=3) } \\ & \text { for } G 17: X=1 / Y=2 / Z=3 \\ & \text { for } G 18: Z=1 / X=2 / Y=3 \\ & \text { for } G 19: Y=1 / Z=2 / X=3 \end{aligned}$			
		Meas. with automatic ZO correction		easuring with	tool offset
		CYCLE974			CYCLE994
		1 point	1 point	1 point with reversal	2 point with reversal
_CALNUM	INT	----	----	----	
_CORA	REAL	----	----	----	----
_CPA	REAL	----	----	----	
_CPO	REAL	----	----	----	----
_EVNUM	$\begin{aligned} & \text { INT } \\ & >=0 \end{aligned}$		Empir mber of	ue memory n d GUD5:_EV	
		----		Mean value of data field Only active if	number MV[_EVNUM-1] HBIT[4]=1
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$			ment path in m	
_ID	REAL	--	----	----	----
_INCA	REAL	----	----	----	----
_K	INT	----		ting factor k for	value calculation

CYCLE974 CYCLE994		Workpiece measurements			
_SZO	REAL	----	----	----	
_TDIF	REAL	----	Dimension difference check		
_TMV	REAL	----	Tool name (alternative for "_TNUM" if tool management active)		
_TNAME	STRING [32]	----	Name of tool environment for automatic tool compensation (from measuring cycles SW 6.3)		
_TNUM	INT	----	Tool number for automatic tool offset		
_TUL	REAL	----	Offset range with mean value calculation only active if GUD6:_CHBIT[4]=1		
_TLL	REAL	----	Upper tolerance limit (according to drawing)		
_TSA	REAL	Safe area			
_TZL	REAL		Zero offset area		
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for_VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if_FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if_FA>1))			

CYCLE976		Workpiece measurements		
Parameter GUD5	Type	Possible axes$\begin{gathered} \text { Abscissa (_MA=1) / ordinate (_MA=2) / applicate (_MA=3) } \\ \text { for } G 17: X=1 / Y=2 / Z=3 \\ \text { for } G 18: Z=1 / X=2 / Y=3 \\ \text { for } G 19: Y=1 / Z=2 / X=3 \\ \hline \end{gathered}$		
		Calibrating workpiece probes		
		Hole with known center	Hole with unknown center	Area
_CALNUM	INT	----	----	----
_CORA	REAL	Offset angular position (only active if mono probe)		
_CPA	REAL	----	----	----
_CPO	REAL	----	----	----
_EVNUM	INT	----	----	----
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm		
_ID	REAL	----	----	----
_INCA	REAL	----	----	----
_K	INT	----	----	----
_KNUM	INT	----	----	----
_MA	INT	Measuring axis		
_ MD	INT	Measuring direction ($0=$ positive / $1=$ negative)		

CYCLE977		Workpiece measurements							
Parameter GUD5	Type	$\begin{aligned} & \text { Possible measuring axes } \\ & \text { Abscissa (_MA=1) / ordinate (_MA=2) } \\ & \text { for } G 17: X=1 / Y=2 \\ & \text { for } G 18: Z=1 / X=2 \\ & \text { for } G 19: Y=1 / Z=2 \end{aligned}$							
		Measuring with automatic tool offset				Measuring with automatic ZO correction			
		Hole	Shaft	Groove	Web	Hole	Shaft	Groove	Web
_CALNUM	INT	----	----	----	----	----	----	---	----
_CORA	REAL	Offset angular position (only active if mono probe)							
_CPA	REAL	----	----	----		----	----	----	----
_CPO	REAL	----	----	----	----	----	----	----	----
_EVNUM	INT	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]				----			
		Mean value memory number number of data field GUD5:_MV[_EVNUM-1] Only active if GUD6:_CHBIT[4]=1				----	----	----	----
-FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm							
_ID	REAL	Infeed applicate							
_INCA	REAL 0... 360 degrees	----	----	----	----	----	----	----	----
_K	INT	----	----	----	----	----	----	----	----
_KNUM	$\begin{aligned} & \text { INT } \\ & >=0 \end{aligned}$	without / with automatic tool offset (D number) 0 without tool offset				without/with automatic offset of the ZO memory 0 without offset			
		Normal D number structure		Flat D number structure					

CYCLE9		Workpiece measurements				
_TENV	STRING[]	Name of tool surroundings for automatic tool offset				
_TNUM	INT	Tool number for automatic tool offset	----	----	----	----
_TUL	REAL	Upper tolerance limit (according to drawing)	----	----	----	----
_TLL	REAL	Lower tolerance limit (according to drawing)	----	----	----	----
-TSA	REAL	Safe area				
_TZL	REAL	Zero offset area	----	----	----	----
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if_FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if _FA>1))				

CYCLE978		Workpiece measurements	
Parameter GUD5	Type	Possible measuring axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) } \\ & \text { for } G 17: X=1 / Y=2 \\ & \text { for } G 18: Z=1 / X=2 \\ & \text { for } G 19: Y=1 / Z=2 \\ & \hline \end{aligned}$	
		Measuring with automatic tool offset	Measuring with automatic ZO correction
_CALNUM	INT	----	----
_CORA	REAL $0 \ldots 359.5$	Offset angular position only active if mono probe	
_CPA	REAL	----	----
_CPO	REAL	----	----
_EVNUM	$\begin{aligned} & \text { INT } \\ & >=0 \end{aligned}$	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]	
		Mean value memory number number of data field GUD5:_MV[_EVNUM-1] Only active if GUD6:_CHBIT[4]=1	----
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm	
_ID	REAL	----	--
_INCA	REAL	----	----
_K	INT	Weighting factor k for mean value calculation	----

CYCLE978		Workpiece measurements			
_KNUM	INT	without / with automatic tool offset (D number) 0 without tool offset			without/with automatic offset of the ZO memory 0 without offset
				mber structure D number ${ }^{2}$ Length correction in the measuring axis or set-up and/or additive correction Radius correction or correction and/or additive correction Correction normal Correction inverted Correction relates to 6th position Correction of L1 Correction of L2 Correction of L3 Radius correction Correction in length/radius Correction in setup and/or additive correction Correction in length and/or radius acc. to _TENV Correction in setup and/or additive correction acc. to also va also valid er structure	0 without offset 1... 99 automatic correction in ZO G54...G57 G505...G599 1000 automatic correction in basic frame G500 1011... 1026 automatic ZO correction in 1st to 16th channel basic frame 1051... 1066 automatic ZO correction in 1st to 16th global basic frame 2000 automatic ZO correction in system frame 9999 automatic ZO correction in active frame G54...G57,G505...G599 or with active G500 in the last active channel-specific basic frame
-MA	INT		Measurin	ing axis 1... 3	
_MD	INT				----
-MVAR	INT		Measuri	ring variant	
	$>=0$				100
		(Difference measurem	00 nt not with mon	o probe)	1100 (Difference measurement not with mono probe)
_NMSP	INT	Numbe	r of measureme	ents at the same local	ocation
_PRNUM	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Probe ther	ype/workpiece pr 21 \qquad 2-digit nu \qquad 1 Mono p 0 Multi pr of the data field GUD6:_WP[_P	robe number umber probe robe d assigned to the RNUM(2-digit)-1])	ool probe
_RA	INT	----			----
_RF	REAL	----			----
_SETVAL	REAL	Setpoint (acc. to draw	ing)		Setpoint
_STA1	REAL	----			----
_SZA	REAL	----			----
_Szo	REAL	----			----

CYCLE978		Workpiece measurements	
_TDIF	REAL	Dimension difference check	----
_TMV	REAL	Offset range with mean value calculation only active if GUD6:_CHBIT[4]=1	----
_TNAME	STRING []	(alternative for "_TNUM" if tool managementTool name active)	----
_TENV	STRING []	Name of tool surroundings for automatic tool offset	----
_TNUM	INT	Tool number for automatic tool offset	----
_TUL	REAL	Upper tolerance limit (according to drawing)	----
_TLL	REAL	Lower tolerance limit (according to drawing)	----
_TSA	REAL	Safe area	
_TZL	REAL	Zero offset area	
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS=0: $150 \mathrm{~mm} / \mathrm{min}$ (if _FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if _FA>1))	

CYCLE979		Workpiece measurements							
Parameter GUD5	Type	Possible measurements G17: X-Y plane G18: Z-X plane G19: Y-Z plane							
		Measuring with automatic tool offset				Measuring with automatic ZO correction			
		Hole	Shaft	Groove	Web	Hole	Shaft	Groove	Web
_CALNUM	INT	----	----	----	----	----	----	----	----
_CORA	REAL	Offset angular position (only active if mono probe)							
_CPA	REAL	Center abscissa (with reference to the workpiece zero)							
_CPO	REAL	Center ordinate (with reference to the workpiece zero)							
_EVNUM	INT	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]				----			
		Mean value memory number number of data field GUD5:_MV[_EVNUM-1] Only active if GUD6:_CHBIT[4]=1				----	----	----	----
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm							
_ID	REAL	----	----	----	Infeed applicate	----	----	----	Infeed applicate
_INCA	REAL 0... 360 degrees	Incrementing angle		----	----	Incrementing angle		----	----
_K	INT	Weighting factor k for mean value calculation				----	----	----	----

CYCLE979		Workpiece measurements						
-KNUM	$\begin{aligned} & \hline \text { INT } \\ & >=0 \end{aligned}$	without / with automatic tool offset (D number) 0 without tool offset			without/with automatic offset of the ZO memory 0 without offset			
		Normal D number structure	Flat D number structure					
					1... 99 automatic correction in ZO G54...G57 G505...G599 1000 automatic correction in basic frame G500 1011... 1026 automatic ZO correction in 1st to 16 th channel basic frame 1051... 1066 automatic ZO correction in 1st to 16th global basic frame 2000 automatic ZO correction in system frame 9999 automatic ZO correction in active frame G54...G57, G505...G599 or with active G500 in the last active channel-specific basic frame			
- MA	INT	---- ----			----	----		
- MD	INT	---- ----	----	----	----	----	----	
- MVAR	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Measuring variant1xxx measurement traveling around or taking account of a safety zone						
		1 1-2	3	- 4	101	102	103	104
- NMSP	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Number of measurements at the same location						
- PRNUM	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Number of n 4321 $1 T 1$ 11 1 4 (number	measuring 2 -digit 11 Mo 0 Mu 03 M 14 M of the GU	oints/probe type/w umber probe robe suring points suring points field assigned :_WPLPRNUM	orkpiece p to the wo (2-digit)-1	number ce prob		
$-^{\text {RA }}$	INT	---- ----	----	----	----	----	----	----
-RF	REAL	Velocity for circular interpolation	----	----	Velocity for circular interpolation		----	----
-SETVAL	REAL	Setpoint (according to drawing)			Setpoint			
-SETV[8]	REAL	---- -----	----	-----	----	----	----	----
_STA1	REAL 0... 360 degrees	Start angle						

CYCLE9		Workpie	urem						
_SZA	REAL	----	----	----	----	----	----	----	----
_SzO	REAL	----	----	----	----	----	----	----	----
_TDIF	REAL	Dimension difference check				----	----	----	----
-TMV	REAL	Offset range with mean value calculation only active if GUD6:_CHBIT[4]=1				----	----	----	----
_TNAME	STRING[]	Tool name (alternative for "_TNUM" if tool management active)				----	----	----	----
_TENV	STRING[]	Name of tool surroundings for automatic tool offset				----	----	----	----
_TNUM	INT	Tool number for automatic tool offset				----	----	----	----
-TUL	REAL	Upper tolerance limit (according to drawing)				----	----	----	----
_TLL	REAL	Lower tolerance limit (according to drawing)				----	----	----	----
_TSA	REAL	Safe area							
_TZL	REAL	Zero offset area				----	----	----	----
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if _FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if _FA>1))							

CYCLE982		Workpiece measurements					
Parameter GUD5	Type	Possible measuring axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) } \\ & \text { for } G 17: X=1 / Y=2 \\ & \text { for } G 18: Z=1 / X=2 \\ & \text { for } G 19: Y=1 / Z=2 \\ & \hline \end{aligned}$					
		Calibrating tool probe		Measuring tool		Automatic tool measurement	
		Machinerelated	Workpiecerelated	Machinerelated	Workpiecerelated	Machinerelated	Workpiecerelated
_CORA	$\begin{aligned} & \text { REAL } \\ & 0 . . .359 .5 \end{aligned}$	----	----	Offset angle after reversal when measuring milling tools			
_CPA	REAL	----	----	----	----	----	
_CPO	REAL	----	----	----	----	----	----
_EVNUM	INT, ≥ 0	----	----	Empirical value memory number number of data field GUD5:_EV[_EVNUM-1]			
_FA	REAL >0	Measurement path in mm					
_ID	REAL	----		----		----	
_INCA	REAL 0... 360 degrees	----		----		----	
_K	INT	----		----		----	
_KNUM	INT	----		----		----	
_MA	INT	----		----		----	
_MD	INT	----		----		----	

CYCLE982		Workpiece measurements					
-MVAR	INT >0	Measuring variant					
		0	10	xxxx01	xxxx11	xxxx02	xxxx12
- NMSP	INT >0	Number of measurements at the same location					
-PRNUM	INT >0	Tool probe number (number of the data field assigned to the workpiece probe GUD6:					
		_TP [_PRNUM-1,i]	_TPW [_PRNUM-1,i]	_TP [_PRNUM-1,i]	TPW [PPRNUM-1,i]	$\begin{gathered} \text {-TP } \\ {[\text { _PRNUM-1,i] }} \end{gathered}$	TPW [_PRNUM-1,i]
_RA	INT	----	----	----	----	----	----
_RF	REAL	----	----	----	----	----	----
_SETVAL	REAL	----	----	----	----	----	----
_SETV[8]	REAL	----	----	----	----	----	----
-STA1	REAL 0... 360 degrees			Starting angle when measuring milling tools			
_SZA	REAL	----	----	----	----	----	----
_SzO	REAL	----	----	----	----	----	----
_TDIF	REAL >0	----	----	Dimension difference check			
_TMV	REAL	----	----	----	----	----	----
_TNAME	STRING[]	----	----	----	----	----	----
_TNUM	INT	----	----	----	----	----	----
_TUL	REAL	--	----	----	----	----	----
_TLL	REAL	----	----	----	----	----	----
_TSA	REAL	Safe area					

CYCLE982		Workpiece measurements
-TZL	REAL	
-VMS	REAL, ≥ 0	Zero offset area
		(for_VMS=0: $150 \mathrm{~mm} / \mathrm{min}$ (if_FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if_FA>1))

CYCLE996		Workpiece measurements	
Parameter GUD5	Type	Possible measurements G17: X-Y plane G18: Z-X plane G19: Y-Z plane	
		1st, 2nd, 3rd measurements	Calculate kinematics
_FA	REAL	Measuring distance factor \rightarrow Transfer to CYCLE997	----
_MVAR	INT		
_TNUM	INT	Number of swivel data record	
_SETVAL	REAL	Diameter of the calibration ball \rightarrow Transfer to CYCLE997	----
_TSA	REAL	Confidence range \rightarrow Transfer to CYCLE997	----
-VMS	REAL	Measuring feedrate	----
_PRNUM	INT	Number, probe (field) \rightarrow Transfer to CYCLE997	----
_SETV [3]	REAL	Position value of rotary axis 1 (manual or semi-automatic)	----
_SETV[4]	REAL	Position value of rotary axis 2 (manual or semi-automatic)	----
_SETV [5]	REAL	-----	Position value for normalizing rotary axis 1
_SETV[6]	REAL	----	Position value for normalizing rotary axis 2

CYCLE996		Workpiece measurements	
SETV [7]	REAL	----	Tolerance value of offset vectors I1...I4
- SETV [8]	REAL	---	Tolerance value of rotary axis vectors V1, V2

CYCLE997		Workpiece measurements	
Parameter GUD5	Type	Possible measurements G17: X-Y plane G18: Z-X plane G19: Y-Z plane	
		Measuring with automatic ZO correction	
		1 sphere	1 sphere
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm	
_INCA	REAL	Incremental angle (for _MVAR=xx1109 only, measuring at an angle)	
_KNUM	INT	without/with automatic offset of the ZO memory 0 without offset	
		$1 . .99$ automatic offset in ZO G54...G57 G505...G599 1000. automatic offset in basic frame G500 1011... 1026 automatic ZO correction in 1st to 16th channel basic frame 1051... 1066 automatic ZO correction in 1st to 16th global basic frame 2000 automatic ZO correction in system frame 9999 automatic ZO correction in active frame G54...G57,G505...G599 or with active G500 in the last active channel-specific basic frame	$1 . .99$ automatic offset in ZO G54...G57 G505...G599 1000 automatic offset in basic frame G500 1011... 1026 automatic ZO correction in 1st to 16th channel basic frame 2000 automatic ZO correction in system frame 9999 automatic ZO correction in active frame G54...G57,G505...G599 or with active G500 in the last active channel-specific basic frame
_MVAR	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Measuring variant	
		x0xxxx	x1xxxx

CYCLE997		Workpiece measurements
_NMSP	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Number of measurements at the same location
_PRNUM	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Workpiece probe number (for multi probe only) Values: 1 to maximum 99 (number of the data field assigned to the workpiece probe GUD6:_WP[_PRNUM-1]
_RF	REAL	Velocity for intermediate paths on circular path (G2 or G3) (or_MVAR=xx1109 only, measuring at an angle)
_SETV[8]	REAL	Setpoints, center point of the spheres (balls)
_STA1	REAL	Starting angle (for_MVAR=xx1109 only, measuring at an angle)
_TNVL	REAL	Limit for triangle distortion (for _MVAR=x1x109 only, measure 3 spheres and ZO correction)
_TSA	REAL	Safe area
_VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS $=0: 150 \mathrm{~mm} / \mathrm{min}$ (if _FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if _FA>1))

CYCLE998		Workpiece measurements		
Parameter GUD5	Type	Possible measuring axes$\begin{aligned} & \text { Abscissa (_MA=1) / ordinate (_MA=2) / applicate (_MA=3) } \\ & \text { for } G 17: X=1 / Y=2 / Z=3 \\ & \text { for } G 18: Z=1 / X=2 / Y=3 \\ & \text { for } G 19: Y=1 / Z=2 / X=3 \end{aligned}$		
		Measuring with automatic ZO correction		
			1 angle	1 angle
_CALNUM	INT	----		
_CORA	REAL 0... 359.5	Offset angular position (only active if mono probe)		
_CPA	REAL	----		
_CPO	REAL	----		
_EVNUM	INT	----		
_FA	$\begin{aligned} & \text { REAL } \\ & >0 \end{aligned}$	Measurement path in mm		
_ID	REAL	Distance between measuring points P1 and P2 in offset axis		Distance between measuring points P1 and P2 in abscissa
_INCA	REAL	----		Setpoint or angle in ordinate
_K	INT	----		
-KNUM	INT	without/with automatic offset of the ZO memory 0 without offset		
		1... 99	automatic offset in ZO G54...G57 G505...G599	
		1000	automatic offset in basic fra	me G500
		1011... 1026	automatic ZO correction in	st to 16th basic frame

CYCLE998		Workpiece measurements		
		2000	automatic ZO in system frame	
		9999	automatic ZO correction in active frame G54...G57, G505...G599 or with active G500 in the last active channel-specific basic frame	
-MA	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$	Offset axis/measuring axis 102: Offset axis 301: Measuring axis		----
- MD	INT	for _MVAR=1xx10x only		for _MVAR=1xx10x only
-MVAR	$\begin{aligned} & \text { INT } \\ & >0 \end{aligned}$	Measuring variant		
			105	106
			1105 asurement not with mono probe)	----
- NMSP	INT	Number of measurements at the same location		
-PRNUM	$\begin{aligned} & \mathrm{INT} \\ & >0 \end{aligned}$			
-RA	INT	```_RA=0: Coordinate system is rotated _RA>0: Number of round axis in which the correction is undertaken```		----
-RF	REAL	----		----
_SETVAL	REAL	Setpoint at measuring point 1 in the measuring axis (not for _MVAR 1xx10x)		Setpoint at measuring point P1 in the applicate (not for _MVAR 1xx10x)
_SETV[0]	REAL	----		Distance between measuring points P1 and P3 in ordinate
_STA1	REAL	Setpoint angle		Setpoint for angle about the abscissa
-SZA	REAL	----		
-SzO	REAL	----		
_TDIF	REAL	-		
_TMV	REAL	----		
-TNAME	$\begin{aligned} & \text { STRING } \\ & \text { [] } \end{aligned}$	----		
_TNUM	INT	----		
-TUL	REAL	----		
-TLL	REAL	----		
-TSA	REAL	Safe area angle		
_TZL	REAL	----		
-VMS	$\begin{aligned} & \text { REAL } \\ & >=0 \end{aligned}$	Variable measuring velocity (for _VMS=0: $150 \mathrm{~mm} / \mathrm{min}$ (if_FA=1); $300 \mathrm{~mm} / \mathrm{min}$ (if_FA>1))		

Result parameters calibration										
						CYCLE:	971	$\begin{array}{\|l\|} \hline 972 \\ 982 \end{array}$	973	976
GUD5	Data type	Meaning								
_OVR [0]	REAL						----	----	----	----
_OVR [1]	REAL						----	----	----	----
_OVR [2]	REAL						----	----	----	----
_OVR [3]	REAL						----	----	----	----
_OVR [4]	REAL	Actual value	Probe	ball diamete			----	----		
_OVR [5]	REAL	Difference	Probe bal	bll diamete			----	----		
_OVR [6]	REAL	Center of hole				Abscissa	----	----	----	
_OVR [7]	REAL	Center of hole				Ordinate	----	----	----	
_OVR [8]	REAL	Trigger point	Minus	Direction	Actual value	Abscissa				
_OVR [9]	REAL	Trigger point	Minus	Direction	Difference	Abscissa				
_OVR [10]	REAL	Trigger point	Plus	Direction	Actual value	Abscissa				
_OVR [11]	REAL	Trigger point	Plus	Direction	Difference	Abscissa				
_OVR [12]	REAL	Trigger point	Minus	Direction	Actual value	Ordinate				
_OVR [13]	REAL	Trigger point	Minus	Direction	Difference	Ordinate				
_OVR [14]	REAL	Trigger point	Plus	Direction	Actual value	Ordinate				
_OVR [15]	REAL	Trigger point	Plus	Direction	Difference	Ordinate				
_OVR [16]	REAL	Trigger point	Minus	Direction	Actual value	Applicate		----	----	
_OVR [17]	REAL	Trigger point	Minus	Direction	Difference	Applicate		----	----	
_OVR [18]	REAL	Trigger point	Plus	Direction	Actual value	Applicate		----	----	
_OVR [19]	REAL	Trigger point	Plus	Direction	Difference	Applicate		----	----	
_OVR [20]	REAL	Positional deviation				Abscissa	----	----		
_OVR [21]	REAL	Positional deviation				Ordinate	----	----		
_OVR [22]	REAL	Probe length of the w	rkpiece	probe			----	----	----	
_OVR [23]	REAL						----	----	----	----
_OVR [24]	REAL	Angle at which the tri	ger poin	s were dete	mined		----	----	----	
_OVR [25]	REAL						----	----	----	----
_OVR [26]	REAL						---	--	----	----
_OVR [27]	REAL	Zero offset area								
_OVR [28]	REAL	Safe area								
_OVR [29]	REAL						----	----	----	----
_OVI [0]	INT						----	----	----	----
_OVI [1]	INT						----	----	----	----
_OVI [2]	INT	Measuring cycle num								
_OVI [3]	INT	Measuring variant							----	----

Result parameters measurement (turning machines)					
GUD5	Data type	Meaning	CYCLE974	CYCLE994	CYCLE972 CYCLE982
_OVR [0]	REAL	Setpoint	Measuring axis	Diameter/radius	----
_OVR [1]	REAL	Setpoint	Abscissa	Abscissa	----
_OVR [2]	REAL	Setpoint	Ordinate	Ordinate	----
_OVR [3]	REAL	Setpoint	Applicate	Applicate	----
-OVR [4]	REAL	Actual value	Measuring axis	Diameter/radius	----
_OVR [5]	REAL	Actual value	Abscissa	Abscissa	----
_OVR [6]	REAL	Actual value	Ordinate	Ordinate	----
_OVR [7]	REAL	Actual value	Applicate	Applicate	----
-OVR [8]	REAL	Tolerance top limit ${ }^{1)}$	Measuring axis	Diameter/radius	----
		Actual value	--	----	Length L1
_OVR [9]	REAL	Difference	----	----	Length L1
_OVR [10]	REAL	Actual value	----	----	Length L2
_OVR [11]	REAL	Difference	----	----	Length L2
_OVR [12]	REAL	Tolerance lower limit ${ }^{1}$	Measuring axis	Diameter/radius	----
		Actual value	----	----	Radius only CYCLE982
_OVR [13]	REAL	Difference	----	----	Radius only CYCLE982
_OVR [14]	REAL		----	--	----
_OVR [15]	REAL		----	----	----
_OVR [16]	REAL	Difference	Measuring axis	Diameter/radius	----
_OVR [17]	REAL	Difference	Abscissa	Abscissa	----
_OVR [18]	REAL	Difference	Ordinate	Ordinate	----
_OVR [19]	REAL	Difference	Applicate	Applicate	----
_OVR [20]	REAL	Compensation value			

Result parameters measurement (turning machines)					
GUD5	Data type	Meaning	CYCLE974	CYCLE994	CYCLE972 CYCLE982
_OVR [21]	REAL		----	----	--
_OVR [22]	REAL		----	----	----
_OVR [23]	REAL		--	----	----
_OVR [24]	REAL		----	----	--
_OVR [25]	REAL		----	----	----
_OVR [26]	REAL		----	----	----
_OVR [27]	REAL	Zero offset range ${ }^{\text {1) }}$			
_OVR [28]	REAL	Safe area			
_OVR [29]	REAL	Permissible dimension difference ${ }^{1)}$			
_OVR [30]	REAL	Empirical value			
_OVR [31]	REAL	Mean value ${ }^{1)}$			----
_OVI [0]	INT	D number / ZO number			----
_OVI [1]	INT		----	----	----
_OVI [2]	INT	Measuring cycle number			
_OVI [3]	INT	Measuring variant	--	----	----
_OVI [4]	INT	Weighting factor ${ }^{1}$)			----
-OVI [5]	INT	Probe number			
_OVI [6]	INT	Mean value memory no. ${ }^{1)}$			----
_OVI [7]	INT	Empirical value memory no.			----
_OVI [8]	INT	Tool number			
_OVI [9]	INT	Alarm number			
_OVI [11]	INT	Status offset request ${ }^{2}$)	----	----	----
_OVI [12]	INT	Internal error number	----	----	----
1) for automatic tool offset only 2) for automatic ZO correction only					

Result parameters measurement (milling and machining centers)						
GUD5	Type	Meaning	CYCLE961	CYCLE997	CYCLE998	
					1 angle	2 angles
-OVR [0]	REAL	Setpoint	----	Sphere diameter 1st sphere	Angle	Angle about abscissa
_OVR [1]	REAL	Setpoint	----	Center point coordinates for abscissa 1st sphere	--	Angle about ordinate
-OVR [2]	REAL	Setpoint	----	Center point coordinates for ordinate 1st sphere	----	----
_OVR [3]	REAL	Setpoint	----	Center point coordinates for applicate 1st sphere	----	---
-OVR [4]	REAL	Actual value	Angle with abscissa axis (WCS)	Sphere diameter 1st sphere	Angle	Angle about abscissa

Result parameters measurement (milling and machining centers)						
					CYCLE9	
-OVR [5]	REAL	Actual value	Corner point in abscissa (WCS)	Center point coordinates for abscissa 1st sphere	----	Angle about ordinate
-OVR [6]	REAL	Actual value	Corner point in ordinate (WCS)	Center point coordinates for ordinate 1st sphere	----	----
-OVR [7]	REAL	Actual value	----	Center point coordinates for applicate 1st sphere	----	----
-OVR [8]	REAL	Difference	----	Sphere diameter 1st sphere	----	----
_OVR [9]	REAL	Difference	----	Center point coordinates for abscissa 1st sphere		
_OVR [10]	REAL	Difference	----	Center point coordinates for ordinate 1st sphere		
_OVR [11]	REAL	Difference	----	Center point coordinates for applicate 1st sphere		
_OVR [12]	REAL	Actual value	----	Sphere diameter 2nd sphere ${ }^{1)}$	----	
_OVR [13]	REAL	Actual value	----	Center point coordinates for abscissa 2nd sphere ${ }^{\text {1) }}$	----	
_OVR [14]	REAL	Actual value	----	Center point coordinates for ordinate 2nd sphere ${ }^{1)}$	----	
_OVR [15]	REAL	Actual value	----	Center point coordinates for applicate 2nd sphere ${ }^{1)}$	----	
_OVR [16]	REAL	Difference	----	Sphere diameter 2nd sphere ${ }^{1)}$	Angle	Angle about abscissa
-OVR [17]	REAL	Difference	----	Center point coordinates for abscissa 2nd sphere ${ }^{\text {1) }}$	-	Angle about ordinate
_OVR [18]	REAL	Difference	----	Center point coordinates for ordinate 2nd sphere ${ }^{1)}$	----	----
-OVR [19]	REAL	Difference	----	Center point coordinates for applicate 2nd sphere ${ }^{1)}$	-	----
-OVR [20]	REAL	Actual value	Angle with abscissa axis (MCS)	Sphere diameter 3rd sphere ${ }^{1)}$	----	----
		Compensation value	----	----	Angle	----
- OVR [21]	REAL	Actual value	Corner point in abscissa (MCS)	Center point coordinates for abscissa 3rd sphere ${ }^{1)}$	----	----
		Compensation value	----	----		Angle about abscissa
_OVR [22]	REAL	Actual value	Corner point in ordinate (MCS)	Center point coordinates for ordinate 3rd sphere ${ }^{1)}$	----	----
		Compensation value	----	----		Angle about ordinate
_OVR [23]	REAL	Actual value	----	Center point coordinates for applicate 3rd sphere ${ }^{1)}$	--	----
		Compensation value	----	----	----	Angle about applicate

Appendix

A. 1 Overview of measuring cycle parameters

Result parameters measurement (milling and machining centers)						
					CYCLE998	
_OVR [24]	REAL	Difference	----	Sphere diameter 3rd sphere ${ }^{1)}$	----	----
_OVR [25]	REAL	Difference	----	Center point coordinates for abscissa 3rd sphere ${ }^{1)}$	----	----
_OVR [26]	REAL	Difference	--	Center point coordinates for ordinate 3rd sphere ${ }^{1)}$	----	----
_OVR [27]	REAL	Difference	----	Center point coordinates for applicate 3rd sphere ${ }^{1)}$	----	----
_OVR [28]	REAL	Safe area	----			
_OVR [30]	REAL	Empirical value	----	----		
_OVR [31]	REAL	Mean value	----	----	----	-
			----	----	----	----
_OVI [0]	INT	ZO number	----			
_OVI [1]	INT		----	----	----	----
_OVI [2]	INT	Measuring cycle number				
_OVI [3]	INT	Measuring variant		----	----	----
-OVI [4]	INT	Weighting factor	----	----	----	----
_OVI [5]	INT	Probe no.				
-OVI [6]	INT	mean value memory number	----	----	----	----
-OVI [7]	INT	Empirical value memory number	----	----		
_OVI [8]	INT	Tool number	----	----	----	----
_OVI [9]	INT	Alarm number				
_OVI[10			----			
_OVI [11]	INT	Status offset request	----			
_OVI12]	INT	internal error no.	----	Internal measurement evaluation	----	----
1) for measuring variants _MVAR=x1x109 only, measure 3 spheres						

Result para	s mea	rement (milling and mach	g centers)			
GUD5	Type	Meaning	CYCLE977		CYCLE978	CYCLE979
			$\begin{aligned} & \text { _MVAR }=x x x 1 \\ & \text { to } \\ & \text { _MVAR }=x x x 4 \end{aligned}$	$\begin{aligned} & \text { _MVAR=xxx5 } \\ & \text { _MVAR=xxx6 } \end{aligned}$		
_OVR [0]	REAL	Setpoint	Hole	----	Measuring	Hole
			Shaft	----		Shaft
			Groove	----		Groove
			Web	----		Web
		Setpoint rectangle length	----	Abscissa	----	----

Result parameters measurement (milling and machining centers)						
			CYCLE977		CYCLE978	CYCLE979
-OVR [1]	REAL	Setpoint center point/center	Abscissa	----	Abscissa	Abscissa
		Setpoint rectangle length	----	Ordinate	----	----
-OVR [2]	REAL	Setpoint center point/center	Ordinate	----	Ordinate	Ordinate
		Setpoint for rectangle center point	----	Abscissa	----	----
-OVR [3]	REAL	Setpoint	----	----	Applicate	----
		Setpoint for rectangle center point	----	Ordinate	----	----
-OVR [4]	REAL	Actual value for diameter/width	Hole	-----------	Measuring axis	Hole
			Shaft			Shaft
			Groove			Groove
			Web			Web
		Actual value rectangle length	----	Abscissa	----	----
-OVR [5]	REAL	Actual value center point/center	Abscissa	--	----	Abscissa
		Actual value rectangle length	----	Ordinate	----	----
-OVR [6]	REAL	Actual value	Ordinate	----	----	Ordinate
		Actual value rectangle center point	----	Abscissa	----	----
-OVR [7]	REAL	Actual value	----	----	----	----
		Actual value rectangle center point	----	Ordinate	----	----
-OVR [8] ${ }^{1 /}$	REAL	Upper tolerance limit diameter/width	Hole	$\begin{aligned} & \hline-----------1 ~ \\ & ---1 \end{aligned}$	Measuring axis	Hole
			$\begin{array}{\|l\|} \hline \text { Shaft } \\ \hline \text { Groove } \\ \hline \end{array}$			Shaft
						Groove
			Web			Web
		Upper tolerance limit rectangle length	----	Abscissa	----	----
_OVR [9] ${ }^{1 /}$	REAL	Upper tolerance limit rectangle length	----	Ordinate	----	----
_OVR [10]	REAL		----	----	----	----
_OVR [11]	REAL		----	----	----	----
-OvR [12] ${ }^{1 /}$	REAL	Lower tolerance limit diameter/width	Hole	-----	Measuring axis	Hole
			Shaft			Shaft
			Groove	$\begin{gathered} ------ \\ \hline \end{gathered}$		Groove
			Web			Web
		Lower tolerance limit rectangle length	----	Abscissa	----	----
-OVR [13]) ${ }^{1)}$	REAL	Lower tolerance limit rectangle length	---	Ordinate	----	---
_OVR [14]	REAL		----	----	----	----
_OVR [15]	REAL		----	----	----	----

Result parameters measurement (milling and machining centers)						
			CYCLE977		CYCLE978	CYCLE979
_OVR [16]	REAL	Difference diameter/width	Hole	-------------	Measuring axis	Hole
			Shaft			Shaft
			Groove			Groove
			Web			Web
		Difference rectangle length	----	Abscissa	----	----
_OVR [17] ${ }^{\text {1) }}$	REAL	Difference center point/center	Abscissa	----	----	Abscissa
		Difference rectangle length	----	Ordinate	----	----
_OVR [18])	REAL	Difference center point/center	Ordinate	----	----	Ordinate
		Difference of rectangle center point	----	Abscissa	----	----
_OVR [19] ${ }^{1)}$	REAL	Difference of rectangle center point	-	Ordinate	----	----
OVR [20$]^{1)}$	REAL	Compensation value	1)	1)	1)	1)
OVR [21$]^{1)}$	REAL		----	----	----	----
OOVR [22$]^{1)}$	REAL		----	----	--	----
OVR [23$]^{1)}$	REAL		----	----	----	----
OVR [24$]^{1)}$	REAL		--	----	----	----
_OVR [25$]^{1)}$	REAL		-	----	----	----
_OVR [26] ${ }^{1)}$	REAL		----	----	----	----
_OVR [27] ${ }^{1)}$	REAL	Zero offset area	1)	1)	1)	1)
OVR [28] ${ }^{1)}$	REAL	Safe area				1)
_OVR [29$]^{1)}$	REAL	Permissible dimensional difference	1)	1)	1)	1)
_OVR [30] ${ }^{1)}$	REAL	Empirical value	1)	1)		1)
OOVR [31$]^{1)}$	REAL	Mean value	1)	1)	1)	1)
_OVI [0] ${ }^{1)}$	INT	D no./ZO no.				
_OVI [1] ${ }^{1)}$	INT		----	----	---	--
OVI [2] ${ }^{1)}$	INT	Measuring cycle number				
_OVI [3] ${ }^{1)}$	INT	Measuring variant				
_OVI [4] ${ }^{1)}$	INT	Weighting factor	1)	1)	1)	1)
_OVI [5] ${ }^{1)}$	INT	Probe number				
_OVI [6] ${ }^{1)}$	INT	Mean value memory number	1)	1)	1)	1)
_OVI [7$]^{1)}$	INT	Empirical value memory no.	1)	1)		1)
_OVI [8] ${ }^{1)}$	INT	Tool number				
_OVI [9] ${ }^{1)}$	INT	Alarm number				
_OVI [11] ${ }^{1)}$	INT	Status offset request (for ZO compensation only)				
_OVI12] ${ }^{1 /}$	INT		----	----	----	----

Result parameters measurement (milling and machining centers)						
			CYCLE97		CYCLE978	CYCLE979
_OVI13] ${ }^{1 /}$	INT	DL number (from measuring cycles SW 6.3)	1)	1)	1)	1)
1) for workpiece measurement with tool offset only						

Result parameters measurement (milling and machining centers, CYCLE996)		
GUD5	Type	Meaning
-OVR [0]	REAL	----
-OVR[1]	REAL	Offset vector I1 \$TC_CARR1[n], X component
_OVR[2]	REAL	Offset vector I1 \$TC_CARR2[n], Y component
_OVR[3]	REAL	Offset vector I1 \$TC_CARR3[n], Z component
_OVR[4]	REAL	Offset vector I2 \$TC_CARR4[n], X component
-OVR [5]	REAL	Offset vector 12 \$TC_CARR5[n], Y component
-OVR[6]	REAL	Offset vector I2 \$TC_CARR6[n], Z component
_OVR[7]	REAL	Rotary axis vector V1 \$TC_CARR7[n], X component
_OVR [8]	REAL	Rotary axis vector V1 \$TC_CARR8[n], Y component
_OVR [9]	REAL	Rotary axis vector V1 \$TC_CARR9[n], Z component
-OVR[10]	REAL	Rotary axis vector V2 \$TC_CARR10[n], X component
_OVR[11]	REAL	Rotary axis vector V2 \$TC_CARR11[n], Y component
_OVR [12]	REAL	Rotary axis vector V2 \$TC_CARR12[n], Z component
_OVR[15]	REAL	Offset vector I3 \$TC_CARR15[n], X component
_OVR[16]	REAL	Offset vector I3 \$TC_CARR16[n], Y component
_OVR [17]	REAL	Offset vector I3 \$TC_CARR17[n], Z component
_OVR [18]	REAL	Offset vector 14 \$TC_CARR18[n], X component
_OVR [19]	REAL	Offset vector 14 \$TC_CARR19[n], Y component
_OVR [20]	REAL	Offset vector I4 \$TC_CARR20[n], Z component
_OVI [0]	INT	----
-OVI [1]	INT	----
_OVI [2]	INT	Measuring cycle number $=996$
-OVI [3]	INT	Measurement variant (_MVAR)
_OVI [4]	INT	- ----
-OVI [5]	INT	----
_OVI [6]	INT	----
-OVI [7]	INT	----
_OVI [8]	INT	Number of swivel data record (_TNUM)
_OVI [9]	INT	Alarm number

NC machine data					
MD number	Identifier	Description	Max. input value	Default value	Value for meas. cycles
10132	MMC-CMD-TIMEOUT	Monitoring time for MMC command in part program	100	1	3
11420	LEN_PROTOCOL_FILE	File size for log files	100	1	5
13200	MEAS_PROBE_LOW_ACTIV	Switching characteristics of probe $0=0 \mathrm{~V} \rightarrow 24 \mathrm{~V} ; 1=24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	TRUE	0	0
18118	MM_NUM_GUD_MODULES	Number of data blocks	9	7	7
18120	MM_NUM_GUD_NAMES_NCK	Number of GUD variable names in the control	plus	10	30
18130	MM_NUM_GUD_NAMES_CHAN	Number of GUD variable names per channel	plus	40	130
18150	MM_GUD_VALUES_MEM	Memory for values of the GUD variables	plus0	12/161)	28/32 ${ }^{1)}$
18170	MM_NUM_MAX_FUNC_NAMES	No. of miscellaneous functions (cycles, DRAM)	plus	40	70
18180	MM_NUM_MAX_FUNC_PARAM	No. of miscellaneous functions (cycles, DRAM)	plus	300	600
28020	MM_NUM_LUD_NAMES_TOTAL	Number of LUD variables in total (in all program levels)	plus	200	200
28040	MM_NUM_LUD_VALUES_MEM	Memory for values of the LUD variables	plus	12/251)	14/27 ${ }^{1)}$
28082	MM_SYSTEM_FRAME_MASK (as from measuring cycle SW 6)	Channel-specific system frames	7FH	21H	$\begin{aligned} & 21 \mathrm{H} \\ & \text { (Bit0, } 5=1 \text {) } \end{aligned}$
1) for hardware NCU 3					

NC machine data for measuring in JOG

11602	ASUP_START_MASK	Ignore stop conditions for ASUB	3	0	1,3 Bit0=1
11604	ASUP_START_PRIO_LEVEL	Priority for "ASUP_START_MASK effective"	64 H	0	From 1 to 64 H
20110	RESET_MODE_MASK	Define control default setting after power-up and RESET	$07 F F F H$	0	min. 4045 H (Bit0, 2,6, $14=1)$
20112	START_MODE_MASK	Define control default setting after part program start	$07 F F F H$	400 H	400 H (Bit6=0)

Cycle data

The measuring cycle data are stored in blocks GUD5 and GUD6.

Central values			
Block	Identifier	Description	As-delivered value
	_CVAL[]	Number of elements	
GUD6	_CVAL[0]	Number of data fields for tool probe, machine-related	3
GUD6	_CVAL[1]	Number of data fields for workpiece probe	3
GUD6	_CVAL[2]	Number of data fields for gauging block	3
GUD6	_CVAL[3]	Number of data fields for tool probe, tool-related (from measuring cycles SW 6.3)	
	_TP[]	Tool probe (machine-related)	
	Assignment for milling		
GUD6	_TP[k,0]	Trigger point in minus direction X (1st geometry axis)	0
GUD6	_TP[k,1]	Trigger point in plus direction X (1st geometry axis)	0
GUD6	_TP[k,2]	Trigger point in minus direction Y (2nd geometry axis)	0
GUD6	_TP[k,3]	Trigger point in plus direction Y (2nd geometry axis)	0
GUD6	_TP[k,4]	Trigger point in minus direction \mathbf{Z} (3rd geometry axis)	0
GUD6	_TP[k,5]	Trigger point in plus direction \mathbf{Z} (3rd geometry axis)	0
GUD6	_TP[k,6]	Edge length/disk diameter	0
GUD6	_TP[k,7]	Assigned internally	133
GUD6	_TP[k,8]	Probe type 0: Cube 101: Disk in $X Y$ 201: Disk in ZX 301: Disk in YZ	0
GUD6	_TP[k,9]	Distance between upper edge of tool probe and lower edge of tool	2
	Assignment for turning		
GUD6	_TP[k,0]	Trigger point in minus direction, abscissa	0
GUD6	_TP[k,1]	Trigger point in plus direction, abscissa	0
GUD6	_TP[k,2]	Trigger point in minus direction, ordinate	0
GUD6	_TP[k,3]	Trigger point in plus direction, ordinate	0
GUD6	_TP[k,4]	irrelevant	0
	to		
GUD6	_TP[k,9]	irrelevant	0
	_TPW[]	Tool probe (workpiece-related)	
	Assignment for milling		
GUD6	_TPW[k,0]	Trigger point in minus direction X (1st geometry axis)	0
GUD6	_TPW[k,1]	Trigger point in plus direction X (1st geometry axis)	0
GUD6	_TPW[k,2]	Trigger point in minus direction Y (2nd geometry axis)	0
GUD6	_TPW[k,3]	Trigger point in plus direction Y (2nd geometry axis)	0
GUD6	_TPW[k,4]	Trigger point in minus direction \mathbf{Z} (3rd geometry axis)	0
GUD6	_TPW[k,5]	Trigger point in plus direction \mathbf{Z} (3rd geometry axis)	0
GUD6	_TPW[k,6]	Edge length/disk diameter	0

Cycle data

The measuring cycle data are stored in blocks GUD5 and GUD6.

Central values			
Block	Identifier	Description	As-delivered value
GUD6	_TPW[k,7]	Assigned internally	133
GUD6	_TPW[k,8]	Probe type 0: Cube 101: Disk in XY 201: Disk in ZX 301: Disk in YZ	0
GUD6	_TPW[k,9]	Distance between upper edge of tool probe and lower edge of tool	2
	Assignmen		
GUD6	_TPW[k,0]	Trigger point in minus direction, abscissa	0
GUD6	_TPW[k,1]	Trigger point in plus direction, abscissa	0
GUD6	_TPW[k,2]	Trigger point in minus direction, ordinate	0
GUD6	_TPW[k,3]	Trigger point in plus direction, ordinate	0
GUD6	_TPW[k,4]	irrelevant	0
	to		
GUD6	_TPW[k,9]	irrelevant	0
	_WP[]	Workpiece probe	
GUD6	_WP[k,0]	Ball diameter	6
GUD6	_WP[k,1]	Trigger point in minus direction of abscissa	3
GUD6	_WP[k,2]	Trigger point in plus direction of abscissa	-3
GUD6	_WP[k,3]	Trigger point in minus direction of ordinate	3
GUD6	_WP[k,4]	Trigger point in plus direction of ordinate	-3
GUD6	_WP[k,5]	Trigger point in minus direction of applicate	3
GUD6	_WP[k,6]	Trigger point in plus direction of applicate	-3
GUD6	_WP[k,7]	Position deviation abscissa	0
GUD6	_WP[k,8]	Position deviation ordinate	0
GUD6	_WP[k,9]	Calibration status, coded	0
GUD6	_WP[k,10]	Calibration status, coded	0

Central values			
Block	Identifier	Description	As-delivered value
	_KB[]	Gauging block	
GUD6	_KB[k,0]	Groove edge in plus direction, ordinate	0
GUD6	_KB[k,1]	Groove edge in minus direction, ordinate	0
GUD6	_KB[k,2]	Groove base in abscissa	0
GUD6	_KB[k,3]	Groove edge in plus direction, abscissa	0
GUD6	_KB[k,4]	Groove edge in minus direction, abscissa	0
GUD6	_KB[k,5]	Upper edge groove in ordinate	0
GUD6	_KB[k,6]	Groove base in ordinate	0

Central values			
Block	Identifier	Description	As-delivered value
	_CM[]	Monitoring functions _CM[k,0] to _CM[k,7] only active if_CBIT[12] = 0 _CM[k,8] only active if _CBIT[7]=1	
GUD6	_CM[k,0]	Max. permissible peripheral speed [m/min]/[feet/min]	60
GUD6	_CM[k,1]	Max. permissible speed [rpm]	2000
GUD6	_CM[k,2]	Minimum feedrate for probing [$\mathrm{mm} / \mathrm{min}$]	1
GUD6	_CM[k,3]	Required measuring accuracy [mm]	0,005
GUD6	_CM[k,4]	Max. permissible feedrate for probing	20
GUD6	_CM[k,5]	Direction of spindle rotation	4
GUD6	_CM[k,6]	Feed factor 1	10
GUD6	_CM[k,7]	Feed factor 2	0
GUDS6	_CM[k,8]	Field for tolerance parameter of rotary axis positions	0.5
	_MFS[]	Speed and feedrate _CBIT[12] = 1	
GUD6	_MFS[k,0]	Speed 1st probing	0
GUD6	_MFS[k,1]	Feed 1st probing	0
GUD6	_MFS[k,2]	Speed 2nd probing	0
GUD6	_MFS[k,3]	Feed 2nd probing	0
GUD6	_MFS[k,4]	Speed 3rd probing	0
GUD6	_MFS[k,5]	Feed 3rd probing	0

Central value for logging			
GUD6	_PROTFORM	Int field for formatting for log	
GUD6	_PROTFORM[0]	Number of line per page	60
GUD6	_PROTFORM[1]	Number of characters per line	80
GUD6	_PROTFORM[2]	First page number	1
GUD6	_PROTFORM[3]	Number of header lines	5
GUD6	_PROTFORM[4]	Number of value lines in the log	1
GUD6	_PROTFORM[5]	Number of characters per column	12
GUD6	_PROTSYM	Separator in the log	";"
GUD6	_PROTSYM[0]	Separators between the values in the log	";""
GUD6	_PROTSYM[1]	Special characters for identification when tolerance limits are exceeded	0
GUD6	_PMI	Int field for internal flags for logging	0
GUD6	_PMI[0]	Current line number	0
GUD6	_PMI[1]	Flag for interim output of log header $1:$	Log header output

Central bits			
Block	Identifier	Description	As-delivered value
	_CBIT[]	Central bits	
GUD6	_CBIT[0]	Measurement repetition after violation of dimensional difference and safe area 0 : no measurement repeat 1: measurement repeat, up to 4	0
GUD6	_CBIT[1]	Alarm and MO for measurement repeat with _CBIT[0]=1 0: no alarm, no M0 generated 1: M0 and an alarm are generated before each repeat	0
GUD6	_CBIT[2]	M0 for tolerance alarms "oversize", "undersize", "permissible dimensional difference exceeded" 0 : no generation of MO for the above alarms 1: generation of MO for the above alarms	0
GUD6	_CBIT[3]	Central marker for basic dimension system of the control 0 : basic system setting is inches 1: basic system setting is metric Note. If _CBIT[3] and MD 10240 are not equal, the value in fields TP[], _TPWW[], _KB[], _MV[], _CM, and _MFS are converted.	1
GUD6	_CBIT[4]	currently not assigned	0
GUD6	_CBIT[5]	Tool measurement and calibration in the WCS in CYCLE982 (from measuring cycles SW 5.4) 0 : machine-related measurement and calibration 1: workpiece-related measurement and calibration Note: In both cases, the _TP[] field of the probe is used. From measuring cycles SW 6.3, function switchover via _MVAR is available.	0
GUD6	_CBIT[6]	Logging without output of the measuring cycle name and measuring variant (from measuring cycles SW 6.2) 0 : measuring cycle name and measuring variant will be output. 1: these outputs will be suppressed.	0
GUD6	_CBIT[7]	currently not assigned	0
GUD6	_CBIT[8]	Offset of the mono probe setting 0: no compensation 1: offset of spindle by angle _CORA,	0
GUD6	_CBIT[9]	Assigned internally	0
GUD6	_CBIT[10]	currently not assigned	0
GUD6	_CBIT[11]	Selection of log header for logging 0 : standard 1: user-defined	0
GUD6	_CBIT[12]	Feed and speed in CYCLE971 0 : calculation by measuring cycle itself 1: set by user in array _MFS[]	0

Central bits	Identifier	Description	As-delivered value
Block	_CBIT[13]	Deletion of the measuring cycle arrays in the GUD6 0: No deletion 1: delete_TP[],_TPW[], _WP[], _KB[], _EV[],_MV[], _CBIT[13]	0
GUD6	_CBIT[14]	Length reference of the workpiece probe in milling measuring cycles (from measuring cycles SW 4.5) 0: length relative to probe ball center 1: length relative to end	0
GUD6	_CBIT[15]	Transfer of workpiece probe data into the tool offset in CYCLE976 (from measuring cycles SW 4.5) 0: No transfer 1: result of probe ball calculation on calibration will be entered in the geometry memory of the workpiece probe (radius)	0

Central strings

Block	Identifier	Description	As-delivered value
	_SI	Central strings	0
GUD6	_SI[0]	currently not assigned	6
GUD6	_SI[1]	Software Version	
Central strings for logging	_PROTNAME (32 chars)		
	_PROTNAME [0]	Name of the main program to log from (for log header)	
GUD6	Name of the log file to be created		
GUD6	_PROTNAME [1]	Strings for log header (80 chars)	
GUD6	_HEADLINE (80 chars)	The user can enter customized texts in these strings; they are included in the log	
GUD6	_HEADLINE[0...9]	Strings for log content	
GUD6	_PROTVAL (80 chars)	Content of the header line (line 9)	
GUD6	_PROTVAL[0]	Content of the header line (line 10)	
GUD6	_PROTVAL[0]	Specification of the values to be logged in successive lines	
GUD6	_PROTVAL[2..5]	String field for formatted strings (12 characters)	
GUD6	_TXT[100]		

Appendix

A. 1 Overview of measuring cycle parameters

Channel-oriented values			
Block	Identifier	Description	
	_EVMVNUM	Number of empirical values and mean values	
GUD6	_EVMVNUM[0]	Number of empirical values	20
GUD6	_EVMVNUM[1]	Number of mean values	20
	_SPEED	Traversing velocities for intermediate positioning	100
GUD6	_SPEED[0]	Max. rapid traverse in \% (only active with collision monitoring switched off, max 100 \%)	
GUD6	_SPEED[1]	Positioning velocity in the plane with collision monitoring active	1000
GUD6	_SPEED[2]	Positioning velocity applicate	1000
GUD6	_SPEED[3]	Fast measuring feed	900
	EEV	Empirical values	
GUD5	_EV[x]	Empirical value	0
	Mean values	0	
GUD5	_MV[x]	Mean value	

Channel-specific values (for measuring in JOG)			
Block	Identifier	Description	As-delivered value
	_JM_I		
GUD6	_JM_I [0]	Setting for the workpiece probe number 0 : Specification by JM[1] 1: Set by tool parameters (ShopMill)	0
GUD6	_JM_I [1]	Probe number for workpiece measurement (_PRNUM) only if $J M[0]=0$	1
GUD6	_JM_I [2]	Probe number for tool measurement (_PRNUM)	1
GUD6	_JM_I [3]	Plane 17: G17 18: G18 19: G19 Every other value for working plane is defined in the machine data.	17
GUD6	_JM_I [4]	Definition of the active ZO on measurement 0: G500 1: G54 4: G57 5...: G505... 100: active ZO is defined in machine data	0
GUD6	_JM_I [5] (as from meas. cycle SW 6.3)	Compensation 0 : Standard compensation (measuring only, basic reference, settable ZO) 1: Extended compensation (additional global and channel-specific basis frame)	0

Channel-specific values (for measuring in JOG)						
Block	Identifier	Description	As-delivered value			
GUD6	JM_I [6] (as from meas. cycle SW 6.3)	Internal copy of_JM_I[4]	0			
GUD6	JM_I [7] to _JM_I [9] (as from meas. cycle SW 6.3)	Reserved	-			

Channel-specific values (for measuring in JOG, from measuring cycles SW6.3, GUD7_MC)

Block	Identifier	Description	As-delivered value
GUD7	$\begin{array}{\|l\|} \hline \text { E_MESS_IS_METRIC } \\ \text { E_MESS_IS_METRIC_SP } \\ \text { EZ_VAR=1 } \\ \hline \end{array}$	All dimensioned data are metric	1
GUD7	E_MESS_MS_IN	Measurement input 1 for workpiece measurement	0
GUD7	E_MESS_MT_IN	Measurement input 2 for tool measurement	1
GUD7	E_MESS_D	Internal data item	5
GUD7	E_MESS_D_M	Measuring path for manual measuring [mm] (in front of and behind meas. point)	50
GUD7	E_MESS_D_L	Measuring path for length measurement [mm] (in front of and behind the measuring point) for tool measurement	2
GUD7	E_MESS_D_R	Measuring path for radius measurement [mm] (in front of and behind the measuring point) for tool measurement	1
GUD7	E_MESS_FM	Measuring feed [mm/rev]	300
GUD7	E_MESS_F	Plane feedrate for collision monitoring [$\mathrm{mm} / \mathrm{min}$]	2000
GUD7	E_MESS_FZ	Infeed feedrate for collision monitoring [$\mathrm{mm} / \mathrm{min}$]	2000
GUD7	E_MESS_CAL_D (from measuring cycles SW 6.3)	Diameter, calibration ring	0
GUD7	E_MESS_CAL_L (from measuring cycles SW 6.3)	Calibration dimension in the feed axis (referred to WCS)	0
GUD7	E_MESS_MAX_V	Max. peripheral speed for measuring with rotating spindle [$\mathrm{m} / \mathrm{min}$]	100
GUD7	E_MESS_MAX_S	Max. spindle speed for measuring with rotating spindle [rpm]	1000
GUD7	E_MESS_MAX_F	Max. feedrate for measuring with rotating spindle [mm/min]	20
GUD7	E_MESS_MIN_F	Min. feed for measuring with rotating spindle for the 1st probing [$\mathrm{mm} / \mathrm{min}$]	1
GUD7	E_MESS_MIN_F_FAK1	On tool measurement with rotating spindle, traversal with 10 times measuring feed is performed in the 1st probing (limitation by E_MESS_MAX_F) [mm/min]	10

Channel-specific values (for measuring in JOG, from measuring cycles SW6.3, GUD7_MC)			
Block	Identifier	Description	As-delivered value
GUD7	E_MESS_MIN_F_FAK2	For tool measurement with rotating spindle, 2nd probing is performed with measuring feed. There is no 3rd probing [mm/min]	0
GUD7	E_MESS_MIN_D	Measuring accuracy for measuring with rotating spindle [mm/min]	0.01
GUD7	E_MESS_MS_MONO	Probe is treated as multi probe	0
GUD7	E_MESS_MS_SOUTH	Probe is used with reference to the probe sphere end	1
GUD7	E_MESS_MT_TYP[3]	Type of tool probe	0
GUD7	E_MESS_MT_AX[3]	Permissible axis directions for tool probe	133
GUD7	E_MESS_MT_DL[3] 1)	Diameter of tool probe for length measurement	0
GUD7	E_MESS_MT_DR[3] ${ }^{1)}$	Diameter of tool probe for radius measurement	0
GUD7	E_MESS_MT_DZ[3]	Infeed for measurement tool probe diameter	2
GUD7	E_MESS_MT_DIR[3]	Approach direction in the plane tool probe	-1
GUD7	E_MESS_MT_D	Calibrate measurement path for tool probe and tool measurement with motionless spindle (before and after expected switching position)	10
GUD7	E_MESS_MT_FM	Calibrate measuring feed for tool probe and tool measurement with motionless spindle	100
GUD7	E_MESS_MT_CF	No tool probe make (manufacturer) specified	0
GUD7	E_MESS_MT_COMP	No offset of the measurement result on tool measurement with rotating spindle	0
GUD7	E_MESS[3]	Internal data item	
GUD7	E_MEAS	Internal data item	
GUD7	E_MESS_RETT	Internal data item	
GUD7	E_MESS_SETT[10]	Field for settings	
GUD7	E_MESS_AM	Internal data item	
1) During installation value input is mandatory here!			

Channel-oriented bits	Description	As-delivered value	
Block	Identifier	CHBIT	Channel bits
GUD6	CHBIT[0]	Measurement input for workpiece measurement $0:$ measurement input 1 1: measurement input 2	0
GUD6	_CHBIT[1]	Measurement input for tool measurement: $0:$ measurement input 1 1: measurement input 2	1
GUD6	CCHBIT[2]	Collision monitoring for intermediate positioning $0:$ OFF 1: ON	1

Channel-oriented bits			
Block	Identifier	Description	As-delivered value
	CHBIT	Channel bits	
GUD6	_CHBIT[3]	Tool offset mode with tool measurement 0 : first-time measurement (determining geometry) 1: remeasuring (determining wear)	0
GUD6	_CHBIT[4]	Mean value for workpiece measurement with automatic tool correction (_EVNUM>0) 0 : no mean value derivation over several parts 1: with mean value formation and calculation	0
GUD6	_CHBIT[5]	Inclusion of empirical value (_EVNUM>0) 0 : subtraction of actual value 1: addition to actual value	0
GUD6	_CHBIT[6]	Tool offset mode for workpiece measurement with automatic tool offset 0 : offset in wear 1: offset in geometry, delete wear From meas. cycles SW 6.3: For additive and setup offset and _CHBIT[8]=0: 0 : offset in additive offset 1: offset in set-up offset, delete additive offset	0
GUD6	_CHBIT[7]	Measured value offset in CYCLE994 0 : use of trigger values of the probe _WP[k,1] ... 1: use of the active ball diameter of the probe _WP[k,0]	0
GUD6	_CHBIT[8]	From meas. cycles SW 6.3: Offset mode for workpiece measurement with automatic tool offset 0 : additive, setup offset according to _CHBIT[6] 1: offset additive in set-up offset, irrespective of _CHBIT[6]	0
GUD6	_CHBIT[9]	currently not assigned	0
GUD6	_CHBIT[10]	Measuring result display $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$	0
GUD6	_CHBIT[11]	Acknowledgment measurement result screen with NC start 0 : OFF (If _CHBIT[18]=0, the display is automatically deselected at end of cycle.) 1: ON (M0 is generated in the cycle.)	0
GUD6	_CHBIT[12]	currently not assigned	0
GUD6	_CHBIT[13]	Coupling spindle position with coordinate rotation in active plane for workpiece measurement with multi probe $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$	0
GUD6	_CHBIT[14]	Adapt spindle positioning, if _CHBIT[13]=1 0 : according to default 1: adapted angle values	0

Channel-oriented bits			
Block	Identifier	Description	As-delivered value
	_CHBIT	Channel bits	
GUD6	_CHBIT[15]	Number of measurements on failure to switch 0 : up to 5 measurements 1: only 1 measurement	0
GUD6	_CHBIT[16]	Retraction velocity from the measuring point 0 : velocity as for intermediate positioning 1: with percentage of rapid traverse velocity (_SPEED[0])(only active with collision monitoring ON) _CHBIT[2]=1)	0
GUD6	_CHBIT[17]	Feed during measurement 0 : with feed in _VMS 1: during 1st measurement feed in _SPEED[3] during 2nd measurement with feed in _VMS	0
GUD6	_CHBIT[18]	Static measurement result display 0: effect as set in _CHBIT[11]. 1: only active if _CHBIT[11]=0: Measuring result display remains until next measuring cycle is called	0
GUD6	_CHBIT[19]	(CYCLE974 and CYCLE994 only): Special treatment of Y axis with G 18 0 : no special treatment 1: setpoint setting and parameterization (_SETVAL, _TUL, _TLL, SZO) for the Y axis (applicate) as for the parameterization of the ordinate (X axis). The tool offset is applied in the length that is active in the ordinate (X axis) (usually L1), as long as no other length has been set in _KNUM. The ZO compensation is applied in the specified ZO memory in the ordinate component (X axis).	0
GUD6	_CHBIT[20]	(CYCLE982 only): Suppression of the starting angle positioning _STA1 0 : suppression OFF 1: suppression ON	0
GUD6	_CHBIT[21]	```(CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE9997 only) Mode of ZO compensation 0: offset additive in FINE 1: offset in COARSE, delete FINE```	0
GUD6	_CHBIT[22]	(CYCLE971 only): with rotating spindle and multiple measurement with rotating spindle and multiple measurement 0 : last measurement with reduced speed if _CBIT[12]=0 1: no speed reduction	0
GUD6	_CHBIT[23]	From measuring cycles SW 6.3 (CYCLE982 only) Recoding of tool point direction during tool measurement 0 : no recoding 1: internal recoding (tool point direction mirroring about X)	0

Channel-oriented bits			
Block	Identifier	Description	As-delivered value
	CHBIT	Channel bits	
GUD6	CHBIT[24]	Channel-oriented marker for basic dimension system (On deviation from MD 10240, cycle parameters are converted internally and this bit is reset.) 0: The basic system is inch 1: The basic system is metric	1

Channel-specific bits (for measuring in JOG)

Block	Identifier	Description	Value for meas. cycles
	JM_B		0
GUD6	JM_B[0]	Tool offset mode for tool measurement 0: offset in geometry, wear is deleted	0
GUD6	_JM_B[1]	Number of measurement attempts	0
GUD6	JM_B[2]	Retraction from measuring point in rapid traverse	0
GUD6	_JM_B[3]	Fast measuring feed	0
GUD6	_JM_B[4]	Selection offset frame	0
GUD6	-JM_B[5]	currently not assigned	0
GUD6	JM_B[6]	Internal data item	0

List of abbreviations

ASUB	Asynchronous subroutine
CNC	Computerized Numerical Control Computerized numerical control
CPU	Central Processing Unit Central processing unit
DIN	Deutsche Industrie Norm (German Industry Standard)
DOS	Disk Operating System
DRF	Differential Resolver Function: Differential function for handwheel signaling
FM-NC	Function module - numerical control
GUD	Global User Data Global user data
I/O	Input/Output
IBN	Start up
JOG	JOGging: Setup mode
LUD	Local User Data
MCS	Machine coordinate system
MD	Machine data programming and simulation MMC Microsoft (software manufacturer) MS Numerical Control: Numerical Control
NC	Numerical Control Kernel: NC kernel with block preparation, traversing range, etc.
NCK	Numerical Control Unit: NCK hardware unit
NCU	Name of the SW for data exchange with the control systems for operator control,
PCIN	Programming device
PG	Programmable Logic Control Controller
PLC	Subprogram
SR	Software
SW	Tool Offset Tool offset
TO	Tool offset
TO	Tool Offset Active: Identifier (file type) for tool offsets
TOA	Serial interface (definition of the exchange lines between DTE and DCE)
UI	Workpiece coordinate system
V.24	Zero point offset
WCS	ZO

Parameter

List of input/output variables for cycles

Name	Meaning in English	
_CALNUM	Calibration groove number	Number of the gauging block
_CBIT [30]	Central Bits	Field for NCK global bits
-CHBIT[16]	Channel Bits	Field for channel-specific bits
_CM[8]		Field: Monitoring functions for tool measurement with rotating spindle each with eight elements
_CORA	Correction angle position	Offset angle position
_CPA	Center point abscissa	Center point of abscissa
-CPO	Center point ordinate	Center point of ordinate
_CVAL [4]		Field: Number of elements each with e elements
-DIGIT		Number of decimal places
-DLNUM		DL number for setup or additive offset
-EV[20]		20 empirical value memories
_EVMVVNUM [2]		Number of empirical values and mean values
_EVNUM		Number of empirical value memory
_FA	Factor for multipl. of measurem. path	Measurement path in mm
_HEADLINE[10]		10 strings for protocol headers
-ID	Infeed in applicate	Incremental infeed depth/offset
_INCA	Indexing angle	Following angle
-K	Weighting factor for averaging	Weighting factor
_KB[3, 7]		Field: Gauging block data each with 7 elements
_KNUM		Compensation number
_ MA	Number of measuring axis	Measuring axis
-MD	Measuring direction	Measuring direction
-MFS[]		Field: Feeds and speeds with measuring tools with rotating spindles each with 6 elements
-MV[20]		20 mean value memories
- MVAR	Measuring variant	Measuring variant
_NMSP	Number of measurements at same spot	Number of measurements at the same location
_OVI [20]		Field: Output values INT
_OVR [32]		Field: Output values REAL
-PRNUM	Probe type and probe number	Probe number
_PROTFORM[6]		Log formatting
-PROTNAME [2]		Name of log file
_PROTSYM [2]		Separator in the log
-PROTVAL[13]		Log header line

Name	Meaning in English	
_RA	Number of rotary axis	Number
_RF	Feedrate for circular interpolation	Feedrate in circular-path programming
_SETVAL	Setpoint value	Setpoint
_SETV[9]		Measure setpoints for square-rectangle
_SI[3]	System information	System information
_SPEED[4]		Field: Feed values
_STA1	Starting angle	Start angle
_SZA	Safety zone on workpiece abscissa	Protection zone in abscissa
_Szo	Safety zone on workpiece ordinate	Protection zone in ordinate
_TDIF	Tolerance dimensional difference check	Dimension difference check
_TENV		Name of tool environment
_TLL	Tolerance lower limit	Tolerance lower limit
_TMV		Mean value generation with compensation
_TNAME	Tool name	Tool name when using tool manager
_TNUM	Tnumber for automatic tool offset	T number
_TNVL		Limit value for distortion of triangle
_TP [3,10]		Field: Tool measuring probe data each with 6 elements
_TPW[3,10]		3 data arrays for tool probes, machine-related
-TSA	Tolerance safe area	Safe area
_TUL	Tolerance upper limit	Tolerance upper limit
_TZL	Tolerance zero offset range	Zero offset
_VMS	Variable measuring speed	Variable measuring speed
_WP [3,11]		Field: Workpiece measuring probe data each with 9 elements

Glossary

Actual/set difference

Difference between measured and expected value.

Asynchronous subroutine

Part program that can be started asynchronously to (independently of) the current program status using an interrupt signal (e.g., "Rapid NC input" signal).

Blank measurement

The blank measurement ascertains the position, deviation, and zero offset of the workpiece in the result of a -> workpiece measurement.

Calibrating tool

Is a special tool (usually a cylindrical stylus), whose dimensions are known and that is used for precisely determining the distances between the machine zero and the probe trigger point (of the workpiece probe).

Calibration

During calibration, the trigger points of the probe are ascertained and stored in the measuring cycle data in block GUD6.

Collision monitoring

In the context of measuring cycles, this is a function that monitors all intermediate positions generated within the measuring cycle for the switching signal of the probe. When the probe switches, motion is stopped immediately and an alarm message is output.

Data blocks for measuring cycles

Data blocks GUD5.DEF, GUD6.DEF, GUD7DEF and GUD7.MC.DEF contain data required for configuration and execution of the measuring cycles.

These blocks must be loaded into the control during start-up. They must then be adapted according to the characteristics of the relevant machine by the machine manufacturer.
They are stored in the nonvolatile storage area of the control such that their setting values remain stored even when the control is switched off and on.

Delete distance-to-go

If a measuring point is to be approached, a traverse command is transmitted to the position control loop and the probe is moved towards the measuring point. A point behind the expected measuring point is defined as setpoint position. As soon as the probe makes contact, the actual axis value at the time the switching position is reached is measured and the drive is stopped. The remaining "distance-to-go" is deleted.

Differential measurement

Differential measurement means that the 1 st measuring point is measured twice, once with a 180 degree spindle reversal (rotation of the probe), i.e. opposite the cycle start position and once with the spindle position assumed at the start of the cycle. This procedure allows uncalibrated probes to be used without imposing less stringent precision requirements!

Dimension difference check

Is a tolerance window. On reaching a limit (_TDIF) the tool will probably be worn and have to be replaced. The dimension difference check has no effect on generation of the compensation value.

Empirical value

The empirical values are used to suppress constant dimensional deviations that are not subject to a trend.

Log measurement results

Measurement results can optionally be logged in a file located in the part program memory. The log can be output from the control either via RS-232-C or on a diskette.

Mean value

The mean value calculation takes account of the trend of the dimensional deviations of a machining series. The -> weighting factor k from which the mean value is derived is selectable.

Mean value calculation alone is not enough to ensure constant machining quality. The measured dimensional deviation can be corrected for constant deviations without a trend by an -> empirical value.

Measure workpiece

For workpiece measurement, a measuring probe is moved up to the clamped workpiece in the same way as a tool. The flexibility of measuring cycles makes it possible to perform nearly all measurements required on a milling or turning machine.

Measurement path

Measurement path _FA defines the distance between the starting position and the expected switching position (setpoint) of the probe. Always specify _FA in mm.

Measurement result display

Measurement result displays can be shown automatically during measuring cycle runtime. Activation of this function depends on the settings in the measuring cycle data.

Measuring a workpiece at an angle

A measurement variant used to measure a drill-hole, shaft, groove, or web at random angles. The measurement path is traveled at a certain set angle defined in the WCS.

Measuring accuracy

The measurement accuracy that can be obtained is dependent on the following factors:

- Repeat accuracy of the machine
- Repeatability of the probe
- Resolution of the measuring system

The repeat accuracy of the controls for "on-the-fly measurement" is $\pm 1 \mu \mathrm{~m}$.

Measuring in JOG

It contains the following functions:

- Semi-automatic calculation of tool lengths and storage in tool offset memory
- Semi-automatic calculation and setting of reference points and storage in zero offset memory
The function is operated with softkeys and input displays.

Measuring tool

To perform tool measurement, the changed tool is moved up to the probe which is either permanently fixed or swiveled into the working range. The automatically derived tool geometry is entered in the relevant tool offset data record.

Measuring variant

The measuring variant of each measuring cycle is defined in parameter_MVAR. The parameter can have certain integer values for each measuring cycle, which are checked for validity within the cycle.

Measuring velocity

The measuring speed can be freely selected by means of parameter _VMS. The maximum measuring velocity must be selected to ensure safe deceleration within the measuring probe deflecting path.

Mono probe

A mono(directional) probe is a probe that can only deflect in one direction. It can only be used for workpiece measurement on milling machines and machining centers with slight limitations.

Multi probe

A multi(directional) probe is one that can deflect in three dimensions.

Multiple measurement at the same location

Parameter _NMSP can be used to determine the number of measurements at the same location. The actual/set difference is determined arithmetically.

Offset angle position

If a -> mono probe is used, the position of the probe can also be corrected for machinespecific reasons using the parameter _CORA.

Offset axis

With some measuring variants, for example, in CYCLE998, positioning in another axis that must be defined, also called offset axis can be performed between measurements in the measuring axis. This must be defined in parameter _MA with offset axis/measuring axis.

on-the-fly measurement

This method processes the probe signal directly in the NC.

Paraxial measurement

A measuring variant used for paraxial measurement of a workpieces, such as a drill-hole, shaft, rectangle, etc. The measuring path is traveled paraxially.

Positional deviation

The positional deviation (skew) describes the difference between the spindle center and the probe tip center ascertained by calibration. It is compensated for by the measuring cycles.

Probe ball diameter

The active diameter of the probe ball. It is ascertained during calibration and stored in the measuring cycle data.

Probe type

In order to measure tool and workpiece dimensions, a touch-trigger probe is required that supplies a constant signal (rather than a pulse) when deflected.

Probes are therefore classified in three groups according to the number of directions in which they can be deflected.

- Multidirectional
- Bidirectional
- Monodirectional (mono probe)

Reference groove

A groove located in the working area (permanent feature of the machine) whose precise position is known and that can be used to calibrate workpiece probes.

Safe area

The safe area _TSA does not affect the offset value; it is used for diagnosis. If this limit is reached, there is a defect in the probe or the set position is incorrect.

Setpoint

In the measuring procedure "inprocess measurement", a position is specified as the setpoint value for the cycle at which the signal of the touch-trigger probe is expected.

Tolerance bottom limit

When measuring a dimensional deviation as the lower tolerance limit (_TLL) ranging between " $2 / 3$ tolerance of workpiece" and "Dimensional difference control", this is regarded 100% as tool compensation. The previous average value is erased.

Tolerance top limit

When measuring a dimensional deviation as the upper tolerance limit (_TUL) ranging between " $2 / 3$ tolerance of workpiece" and "Dimensional difference control", this is regarded 100% as tool compensation. The previous average value is erased.

Tool environment

As from NCK SW 6.3, you can save the operating environment of a particular tool you are using. This is to allow you to correct the tool used to measure a workpiece taking into account the operating conditions (environment: G commands, setting data,...).

You then no longer have to specify the T, D, DL number in the offset explicitly. These are included in the stored tool environment. The name of a tool environment can have up to 32 characters.

Tool name

If tool management is active, the name of the tool can be entered in parameter _TNAME as an alternative to the $->$ tool number.

The tool number is derived from it within the cycle and entered in _TNUM.

Tool number

The parameter _TNUM contains the tool number of the tool to be automatically offset after workpiece measurement.

Trigger point

The trigger points of the probe are ascertained during calibration and stored in block GUD6 for the axis direction.

Variable measuring speed

The measuring velocity can be freely selected by means of _VMS. The maximum measuring velocity must be selected to ensure safe deceleration within the probe deflecting path. -> Measuring velocity

Weighting factor for mean value calculation

The weighting factor k can be applied to allow different weighting to be given to an individual measurement.

A new measurement result thus has only a limited effect on the new tool offset as a function of k.

Zero offset area

This tolerance range (lower limit _TZL) corresponds to the amount of maximum accidental dimensional deviations. If the absolute value of the actual/set difference is less than the zero offset range, the offset is not applied.

ZO determination

In the result of a measurement, the actual-setpoint value difference is stored in the data set of any settable zero offset.

Index

1

1-point measurement, 209, 365, 368, 370
1-point measurement with reversal, 375

2

2-point measurement, 378

A

Angle measurement, 409
Automatic tool measurement, 331
Auxiliary parameters, 66

C

Calculating the repeat accuracy, 511
Calculation of center point and radius of a circle, 88
Calculation of the deceleration path, 38
Calibrate tool probe (machine-related), 302
Calibrate workpiece probe in hole, 164
Calibrating groove pair, 455
Calibrating in the reference groove, 358
Calibrating tool, 29, 34
Calibrating tool probes, $144,300,319,404$
Calibrating tool probes automatically, $1 \overline{50}$
Calibrating workpiece probes, 163, $35 \overline{5}$
Calibration in groove, 405
Calibration in hole, 405
Calibration of a workpiece probe on a surface, 174
Calibration on surface, 361, 404
Channel-oriented bits, 468
Compensation strategy, 141
Compensation value calculation, 41
Corner measurement
with specification of angles, 410
with specification of points, $\overline{411}$
Creating a measurement result log, example, 398
Cycle data, 443

CYCLE_961_P, 411
CYCLE_961_W, 410
CYCLE_971, 406
CYCLE_972, $\overline{407}$
CYCLE_974, $\overline{411}$
CYCLE_976, $\overline{405}$
CYCLE_977_979A, 407
CYCLE_977_979B, $\overline{408}$
CYCLE_977_979C, $\overline{408}$
CYCLE_978, 409
CYCLE_994, $\overline{412}$
CYCLE_998, $\overline{409}$
CYCLE_CAL_PROBE, 404
CYCLE_CAL_TOOLSETTER, 404
CYCLE_PARA, 403
CYCLE113, 391
CYCLE116, $\overline{88}$
CYCLE119, $\overline{27} 3$
CYCLE198, 90
CYCLE199, $\overline{90}$
CYCLE961, $\overline{248}$
CYCLE971, 138
CYCLE973, $\overline{355}$
CYCLE974, $\overline{365}$
CYCLE976, $\overline{163}$
CYCLE977, $\overline{181}$
CYCLE978, 202
CYCLE979, $\overline{213}$
CYCLE982, $\overline{313}$
CYCLE994, 378
CYCLE996, 276
CYCLE997, $\overline{261}$
CYCLE998, $\underline{229}$

D

Data block for the measuring cycles, 443
Determining dimensions of calibration, 307
Dimension difference check, 45
Dimensional deviations, 41

E

Effect of empirical value, mean value, and tolerance parameters, 49
Example of functional check, 434
Example of tool measurement, $\underline{387}$

F

Function test, 433

G

Gauging block, 29

H

Handling the log cycles, 390
Hardware requirements, $\overline{425}$

I

Incremental calibration, 337
Incremental measurement, 341
Input parameters, 65

L

Log content of measurement results, 394
Log format of measurement results, $3 \overline{96}$
Log header of measurement results, 397
Logging the measurement results, $38 \overline{9}$

M

Machine data for adapting the probe, 441
Mandatory parameters Measuring cycles, 65, 67
Mean value, 41
Mean value calculation, 41
Measure groove, 216
Measure groove, $\overline{\mathrm{web}}, 408$
Measure hole, 216
Measure hole, shaft, 407
Measure kinematics, $\overline{276}$
Measure rectangle, $4 \overline{08}$
Measure shaft, 216
Measure tool (machine-related), 307
Measuring cycle support in the program editor (from SW 6.2), 413
Measuring a surface, $\underline{202}$

Measuring a web, 216
Measuring accuracy, 40
Measuring axis, number, 69
Measuring cycle support in the program editor (up to SW 5.4), 401
Measuring cycle support, files, 401
Measuring cycle support, loading, 402
Measuring cycle user programs, 90
Measuring cycles, call, 402
Measuring in JOG
Function, 91
Workpiece measurement, 94
Workpiece measurement: Measure edge, 101
Workpiece measurement: measuring hole, $\overline{111}$
Workpiece measurement: orienting a plane, 120
Workpiece measuring: measuring corner, 107
Workpiece measuring: measuring pocket, $\overline{111}$
Workpiece measuring: measuring spigot, $\overline{111}$
Measuring milling tools, 406
Measuring strategy, 41, $\overline{140}$
Measuring tool, $154, \overline{322}$
Measuring turning tools, 300, 407
Measuring variant, 69
Measuring velocity, $\overline{38}, \underline{77}$
Mono probe, 27
Monodirectional probe, $\underline{27}$

N

Number of the measuring axis, $\underline{69}$

0

Offset for mono probe setting, 71
Offset number with flat D number structure, 73
On-the-fly measurement, 36

P

Package structure of the measuring cycles, 85
Parameter overview, 65
Parameters for checking the measurement result and offset, 44
Probe number, 80
Probe type, 80
Probes that can be used, $\underline{27}$

R

Reference points at machine and workpiece, 22
Result parameters, 67

S

Safe area, 44
Selecting log content, 394
Setting additional parameters, 403
Setting up a corner with definition of distances and angles, 248
Single-point measurement, 409, 411
Software requirements, 432
Starting position/Setpoint position, 37
Switching edge probe, 467

T

Tolerance bottom limit, 45
Tolerance parameters, $\overline{78}$
Tolerance top limit, 45
Tool
Measure turning and milling tools, 313
Tool measurement for drills, 138
Tool measurement for milling tools, 138
Tool measurements, 18
Tool name, 70
Tool number, 70
Two-point measurement, 412

U

Upgrading measuring cycles, $\underline{505}$
User Program
after the end of the measurement, 90 before undertaking measurement, $\underline{\overline{90}}$

V

Variable measuring speed, 77
Variables when logging, 393

W

Workpiece

Angle measurement and ZO determination, 229
Measure groove paraxially, 181
Measure hole paraxially, $18 \overline{1}$
Measure rectangle paraxially, 181
Measure shaft paraxially, 181
Measure web paraxially, $\overline{181}$
Measuring a sphere and $\overline{\mathrm{ZO}}$ determination), 261
Measuring a surface parallel to the axis, $\underline{202}$
Setting up a corner with 4 points, 256
Setup inside and outside corner, $\underline{248}$
Workpiece measurement, 365
Groove, 213
Hole, 213
Shaft, 213
Web, 213
Workpiece measurements, 17
Workpiece probe, 29

Z

Zero offset area, 46

[^0]: 1) Measurement in the 3rd axis of the plane (with G18 in Y) is also possible, provided this axis exists. Moreover, for measurement in the 3rd axis of the plane with active G18 (measurement in the Y axis), the same setpoint parameterization can be used as for measurement in the X axis (facing axis), if _CHBIT[19]=1 is set in block GUD6. The offset is then stored in the X-component of the selected ZO memory.
