

https://support.industry.siemens.com/cs/ww/en/view/67655405

FAQ January 2013

Migration of STL Programs
to S7-1500
STEP 7 (TIA Portal)

https://support.industry.siemens.com/cs/ww/en/view/67655405

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 2

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

This entry is from the Siemens Industry Online Support. The general terms of use
(http://www.siemens.com/terms_of_use) apply.

Security
informa-
tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.industry.siemens.com.

Caution
The functions and solutions described in this article confine themselves
predominantly to the realization of the automation task. Furthermore, please take
into account that corresponding protective measures have to be taken in the
context of Industrial Security when connecting your equipment to other parts of the
plant, the enterprise network or the internet. Further information can be found in
Entry ID: !50203404!.
http://support.automation.siemens.com/WW/view/de/50203404

http://www.siemens.com/terms_of_use
http://www.siemens.com/industrialsecurity
http://support.industry.siemens.com/
http://support.automation.siemens.com/WW/view/de/50203404

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 3

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

Table of contents
1 Migration of STL Programs to S7-1500 ... 4

1.1 Information on Migrating STL Programs .. 4
1.2 Passing Values Using Registers in Case of Language Change 6
1.3 Passing Values Using Registers or the Status Word with a

Block Call ... 7
1.4 Passing Values Using Registers with the CC and UC

Instructions ... 8
1.5 Fully Qualified Addresses in STL ... 9
1.6 Partially Qualified Addresses in STL .. 10
1.7 Access to the Instance DB in STL .. 12

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 4

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

1 Migration of STL Programs to S7-1500
1.1 Information on Migrating STL Programs
Passing values using registers or the status word

In order to achieve the highest program processing performance in CPUs of the S7-1500 series,
the transfer of values between blocks is only possible using the block interface, global data
blocks or PLC tags.

In LAD and FBD you do not have the option of passing values using registers (accumulators,
AR1, AR2, DB, DI, for example) or the status word. Value passing is possible but restricted in
STL. However, please be aware that the program processing slows down if you use these areas
to pass values between different blocks.

The rules below apply for STL.

• The contents of the registers, accumulators and the status word are available only in
STL networks. If a LAD or FBD network follows an STL network, you cannot access the
register contents previously set in STL from the LAD or FBD network. The register
contents become available again in a subsequent STL network.

The RLO bit is an exception: with a language change it is set to "undefined" and is no
longer available in subsequent networks.

• The values from registers, accumulators and the status word are generally not

transferred to called blocks. The "CC" and "UC" instructions are the only exceptions. If
you use "UC" or "CC" and would like to pass parameters to the called block using
registers, the status word or accumulators, you must enable the "Supply parameters
using registers" option in the Properties of the called block. Note that this option is only
available for STL blocks with standard access and the block must not have any formal
parameters. When the option is enabled, you can pass register contents between
blocks.

The RLO bit is an exception here too: with a language change it is set to "undefined"
and is no longer available in subsequent networks.

• You can use the BIE bit to pass an error message to the calling block. You must first

use the "SAVE" instruction in the called block to save the error message in the BIE bit.
Then you can read the BIE bit in the calling block. There are also jump commands like
SPBNB that set the BIE.

• The data block register DB is set to "0" after each access to the data block with the

specification of a fully qualified address (%DB10.DBW10, "MyDB.Component", for
example). A subsequent partially qualified access leads to an error during compiling.

• In S7-1500, if you address a local formal parameter from the block interface of an FB

(with the L #myIn instruction, for example), you always access the data block that you
specified as instance when calling the block. The AUF DI, L AR2, +AR2, TDB and TAR
instructions change the content of the DI or address register AR2, but the registers are
no longer evaluated with the addressing of local formal parameters.

Programming examples are given in the following.

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 5

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

Master Control Relay
The Master Control Relay is not available in the S7-1500. Migration reports a fault. Change the
program manually. Define the conditions in the form of block parameters, for example, to
execute the instructions or networks.

LEAVE and ENT
The "LEAVE" and "ENT" instructions are not provided in the S7-1500 because only two
accumulators are available. Migration reports a fault. Change the program manually. Use
temporary variables, for example, to store interim results.

Block parameters of the "Block_DB" type
The "Block_DB" parameter type is not available in the S7-1500. Migration changes these
parameters and assigns them the "DB_Any" data type instead. However, in the S7-1500 it is not
possible to assign library instructions when called an instance in the form of a parameter of the
"DB_Any" type. The example below shows how a library block is called with a variable instance
on a CPU of the S7-300/400 family. This sequence cannot be migrated to S7-1500.

STL Explanation
CALL GET, #myBlock_DB // The "GET" library block is called with the

instance block
that is currently at the
"myBlock_DB" block parameter.

 REQ:= <Operand>
 ID:= <Operand>
 NDR:= <Operand>
 Error:= <Operand>

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 6

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

1.2 Passing Values Using Registers in Case of Language
Change

Introduction
The contents of the registers, accumulators and the status word are available only in STL
networks. If a LAD or FBD network follows an STL network, you cannot access the register
contents previously set in STL from the LAD or FBD network. The register contents become
available again in a subsequent STL network. The RLO bit is an exception: with a language
change it is set to "undefined" and is no longer available in subsequent networks.

Migration of passing values using registers in case of language change
If registers are accessed in a migrated LAD or FBD network, a fault is reported during
compilation. Change the program so that registers can only be set and read in STL networks.

Example
The example below shows the migration of an accumulator access. The first two figures show
the program before migration.

Network 1: The "myIN1" operand is loaded into Accu 1. Then "myIN2" is loaded into Accu 1,
which transfers "myIN1" to Accu 2. Now both values are added. The result is stored in Accu 1
and from there it is assigned to the "myOUT" operand.

Network 2: The "myIN3" operand is loaded into Accu 1. This transfers the "myOUT" operand
that is still there to Accu 2 and can be added immediately to the "myIN3". The "myOUT"
operand does not have to be reloaded explicitly.

After migration Network 2 is defective, because no more values can be written to the
accumulators through the LAD network. You must change the program manually so that both
values are loaded into the accumulators explicitly in STL. The figure below shows Network 2
after the fault has been cleared.

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 7

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

Network 2: Both values are loaded into the accumulators in STL before they are added.

1.3 Passing Values Using Registers or the Status Word
with a Block Call

Migration of passing values using registers or the status word with a block call

The values from registers, accumulators and the status word are set to "0" upon change of
block or receive the "undefined" status. This prevents them from being passed to called blocks.
The "CC" and "UC" instructions are the only exceptions. If you use "UC" or "CC" and would like
to pass parameters to the called block using registers, the status word or accumulators, you
must enable the "Supply parameters using registers" option in the Properties of the called block.
Note that this option is only available for STL blocks with standard access and the block must
not have any formal parameters. When the option is enabled, you can pass register contents
between blocks. The RLO bit is an exception: Upon block transfer "undefined" is always set and
is no longer available after a block call. You can use the BIE bit to pass an error message to the
calling block. You must first save the error message initially in the BIE bit of the called block.
You use the "SAVE" or "SPBNB" instruction for this. Then you can read the BIE bit in the calling
block. Migration reports a fault if after a block call you access register content that has been set
in the called block. Change the program manually. Use tags in data blocks or PLC tags, for
example, to return values to the calling block.

Example
The example below shows how to change your program to pass values to a calling block using
registers.

The first two tables show the program before migration.

STL Explanation
CALL "MyFB", "MyFB_DB" The RLO of the "MyFB" block is assigned to

the "MyBit" operand after processing. = #MyBit

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 8

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

The second table shows how you must change the program.

STL Explanation
CALL "MyFB", "MyFB_DB" In the called block "MyFB" you use the "SAVE"

instruction to write the current RLO at any
point into the BIE bit.

U BIE The BIE bit is read in the calling block.
= #MyBit The value of the BIE bit is assigned to the

"MyBit" operand.

1.4 Passing Values Using Registers with the CC and UC
Instructions

Introduction

With the S7-300/400 you can use the UC and CC instructions to program block calls. The
parameters are transferred to the calling block in this case not over the interface but by using
registers (like AR1, AR2, DB, DI, for example), the accumulators or the status word.

These calls slow down the program processing and are therefore no longer possible as
presettings. The CALL instruction is used instead in the S7-1500. However, using the CALL
instruction means that you cannot have any indirect block calls. If you want to use UC or CC for
indirect block calls, you must enable the "Supply parameters using registers" option in the
Properties of the called block. You then have the possibility of passing register contents
between different blocks. The RLO bit is an exception: with a block transfer it is set to
"undefined" and is no longer available after a block call.

Note that this option is only available for STL blocks with standard access and the block must
not have any formal parameters. When the option is enabled, you can pass register contents
between blocks. The RLO bit is an exception here too: with a block transfer it is set to
"undefined" and is no longer available after a block call.

Migration of block calls using "UC" or "CC"

Migration handles block calls using "UC" or "CC" as follows.

• The "UC FC" instruction with specification of a block number is replaced by the "CALL"
instruction.

• The "CC FC" instruction with specification of a block number is replaced by the "CALL"

instruction. A jump command that implements the conditional call is inserted in addition.

• The "UC FC" and "CC FC" instructions with indirect specification of the block numbers
remain unchanged.

• The "UC FB" and "CC FB" instructions with direct or indirect specification of a block

number remain unchanged.

Example
The example below shows the migration of block calls using "UC".

The first two tables show the program before migration.

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 9

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

STL
UC FC 10
UC FC [#temp0]
UC FB 10
UC FB [temp0]

The table below shows the program after migration.

STL Explanation
CALL FC 10

UC FC [#temp0]

The "Supply parameters using registers" option
must be set on the called block.

UC FB 10

The "Supply parameters using registers" option
must be set on the called block.

UC FB [#temp0]

The "Supply parameters using registers" option
must be set on the called block.

1.5 Fully Qualified Addresses in STL
Introduction

The addressing of DB variables with specification of the DB name or the DB number is called
fully qualified addressing. The DB register is set to "0" after each access to a DB with
specification of a fully qualified address. If you want to access the DB register again after a fully
qualified address access, you must first give it a value again using the AUF DB instruction.

Migration of fully qualified addresses
If necessary, migration inserts the "AUF" instruction after a qualified address access in order to
load the current data block once again into the data block register.

Example
The example below shows the migration of a fully qualified address.

The first two tables show the program before migration.

STL Explanation
AUF "MyDB" "MyDB" is loaded into the data block register.
L %DBW1 Data elements from "MyDB" are addressed

partially qualified.

L "Global_DB".Data1

Elements from a global DB are then addressed
fully qualified. This loads the "Global_DB"
implicitly into the data block register.

L "Global_DB".DBW2
T DBW[AR1, P#0.0] A subsequent access addresses the

"Global_DB", because it is in the DB register.

The table below shows the program after migration.

STL Explanation
AUF "MyDB"
L "MyDB".DBW1 The partially qualified access is converted into

a fully qualified access.
L "Global_DB".Data1

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 10

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

L "Global_DB".DBWord2

The DB register is reset after a fully qualified
access.

AUF "Global_DB" The "Global_DB" must be loaded again with
AUF into the DB register.

T DBW[AR1, P#0.0]

1.6 Partially Qualified Addresses in STL
Introduction

The addressing of DB variables without specification of the DB name or the DB number is called
partially qualified addressing. Partially qualified addressing accesses a defined value in the data
block that is currently in the DB register.

The following restrictions hold for partially qualified addresses in S7-1500:

• In S7-1500 partially qualified addresses are permitted only if the DB register has been
set explicitly in the current block. You set the DB register with the "AUF" instruction, for
example. You can partially address only variables in data blocks with standard access.

• When the block is called, the data block register is set to "0" in S7-1500. It is thus not

possible to open a data block in a block and partially qualified address data elements
from the data block in a lower-level block. Set the DB register in the current block before
you address partially qualified a DB variable.

• The data block register DB is set to "0" also after each fully qualified access

(%DB10.DBW10, for example). After a fully qualified access set the DB register again
before you address partially qualified a DB variable.

Migration of partially qualified addresses
Migration handles partially qualified addresses in STL as follows.

• The partially qualified address is converted as far as possible into a fully qualified
address.

• If the data block has been opened in the calling code block and the DB cannot be

specified uniquely, the migration inserts a parameter of the "DB_Any" data type in the
interface of the called block. The data block name is transferred to this parameter.
Migration inserts the "AUF" instruction in the called block in order to open the data
block.

Example
The example below shows the migration of a partially qualified address.

The first two tables show the program before migration.

STL Explanation
L DBW10 A data block has been opened in the calling

block and transferred to the DB register. In the
current block the values "DBW10", "DBW12"
and "DBW14" are transferred from the data

L DBW12
+I
T DBW14

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 11

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

block that is currently in the DB register.

The table below shows the program after migration.

STL Explanation
AUF "PlcmigTempBlockDB"
L DBW10 Migration inserts a parameter of the "DB_Any"

data type in the interface of the called block.
The data block name is transferred to this
parameter.
Migration inserts the "AUF" instruction in the
called block in order to open the data block
transferred at the interface.

L DBW12
+I
T DBW14

Note

Migration of partially qualified block parameters

Migration also converts partially qualified DB parameters into fully qualified parameters. Note
that this can change the type of parameter transfer to the called block: It might be that using the
fully qualified address the called block no longer accesses the actual parameter directly, but
works with a copy transferred when the block is called. Therefore you must check that the
semantics of the migrated program still match that of the initial program.

For more information, go to: Access to block parameters during processing of the program. If
you do not want this change, you can use a parameter with a structured data type, for example,
instead of an elementary block parameter. Define the PLC data type (UDT) as formal parameter
and transfer a variable of this type or a DB derived from the PLC data type (UDT).

Examples:
CALL "MyFC"
InStruct :="DBofUDT"
or
CALL "MyFC"
InStruct := "DBArrayOfUDT".a[#i]

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 12

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

1.7 Access to the Instance DB in STL
Introduction

The "AUF DI" and "TDB" instructions create a data block in the DI register. In S7-300/400 the
block opened there is an instance data block. The subsequent symbolic addressing of a local
formal parameter from the block interface of an FB (IN, OUT, InOut or Static) no longer
addresses the data block that was specified as instance when the block was called, but the data
block that is in the DI register. The instance DB must be loaded into the DI register in order
subsequently to address a local formal parameter symbolically from the block interface.

Also after the "L AR2", "+ AR" and "TAR" instructions it is not possible to address a formal
parameter symbolically from the block parameter, because the access base for parameter
access has been destroyed by the instructions.

This behavior has been corrected in S7-1500. In S7-1500, if you address a local formal
parameter from the block interface (with the L #myIn instruction, for example), you always
access the data block that you specified as instance when calling the block. The AUF DI, L AR2,
+AR2, TDB and TAR instructions change the content of the DI or address register, but the
registers are no longer evaluated with the addressing of local formal parameters.

Migration of access to local variables in the instance DB

Migration does not change the programmed access. If you have used the AUF DI, L AR2,
+AR2, TDB, TAR, etc. instructions in the initial program, the semantics of the program might
however change. You must change the program manually in order to regain the original
semantics. If is often no longer necessary to address data using registers. Instead you can use
the option of using ARRAYs in the instance DB and indirectly indexing the ARRAY elements.

Example 1
The example below shows the changed semantics of the "AUF DI" instruction.

STL Explanation
L #MyIn1
L #MyIn2
+I
T #MyOut3

The "L" and "T" instructions address local
variables declared in the block interface. The
values of the variables are in the instance DB
specified when the block was called.

AUFDI "MyDB"
L #MyIn1
L #MyIn2
+I
T #MyOut3

The global data block "MyDB" is written into the
DI register.
Prior to migration the "L" and "T" instructions
address variables declared in "MyDB". After
migration, the "L" and "T" instructions address
variables declared in the block interface. The
DI register is not evaluated for the access in
S7-1500.

Example 2
The example below shows the changed semantics of the "LAR2" instruction.

STL Explanations
L P#M23.0

LAR2

L #MyIn1

Prior to migration, the assignment to AR2
destroys the access base for parameter
access.

Prior to migration, it is not possible to access

1 Migration of STL Programs to S7-1500

Migration of STL Programs to S7-1500
Entry-ID: 67655405, , 01/2013 13

 S

ie
m

en
s

AG
 C

op
yr

ig
ht

 2
01

5
Al

l r
ig

ht
s

re
se

rv
ed

L EW [AR2, P#1.0]

U [AR2, P#0.4]

"MyIn1" or an error occurs.

After migration, access to the formal parameter
"MyIn1" is executed correctly.

L EW [AR2. P#1.0] Access to %EW24.0

U [AR2, Ü#0.4] Access to %EW23.4

Example 3
The example below shows how you can address a DB variable directly in S7-1500 without using
the address register.

STL Explanations
AUF "MyDB"

L #index

LAR1

L %DBW [AR1, P#10.0]

Prior to migration, the addressing used is
indirect to the register and internal to the area.
This loads a variable value (#index) into the
address register 1. Depending on this value, a
data word is loaded from "MyDB" into the
accumulator 1.

L "MyDB".MyArray1[#index]

After migration, you can store the data values
in "MyDB" in an ARRAY. The individual
ARRAY elements can be indexed variably
using the "#index" input parameter.

	1 Migration of STL Programs to S7-1500
	1.1 Information on Migrating STL Programs
	1.2 Passing Values Using Registers in Case of Language Change
	1.3 Passing Values Using Registers or the Status Word with a Block Call
	1.4 Passing Values Using Registers with the CC and UC Instructions
	1.5 Fully Qualified Addresses in STL
	1.6 Partially Qualified Addresses in STL
	1.7 Access to the Instance DB in STL

