

SINAMICS S120 web
server - Creating user-
defined web pages

SINAMICS S120 / V2.1

https://support.industry.siemens.com/cs/ww/en/view/68691599

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/68691599

Legal information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 2

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are
non-binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.

The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with Industrial Security functions that support the secure
operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of contents

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 3

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of contents
Legal information ... 2

1 Introduction .. 5

1.1 Overview... 5
1.2 Mode of operation .. 6
1.3 Components used .. 8

2 Basic information .. 9

2.1 Hypertext Markup Language (HTML) ... 9
2.1.1 Structure of an HTML file ... 9
2.1.2 Basic elements ... 10
2.1.3 IFrames .. 13
2.1.4 Canvas elements .. 14
2.2 MiniWeb Server Language (MWSL) .. 15
2.2.1 Principle of operation .. 15
2.2.2 Structure of an MWSL file .. 15
2.2.3 Variable types ... 16
2.2.4 Script variables ... 16
2.2.5 Global variables .. 18
2.2.6 User access .. 20
2.2.7 Operators ... 20
2.2.8 Overview of MWSL functions ... 21
2.2.9 Overview of SINAMICS process variables ... 22
2.2.10 MWSL functions ... 22
2.3 JavaScript ... 33
2.3.1 Integrating JavaScript into HTML ... 33
2.3.2 The Document Object Model (DOM) .. 34
2.3.3 getElementById .. 35
2.3.4 Event handler ... 36
2.3.5 Functions .. 36
2.3.6 Libraries .. 36
2.3.7 Variable types ... 37
2.4 Cascading Style Sheets (CSS) .. 39
2.4.1 Integrating CSS in HTML ... 39
2.4.2 Defining formats for classes ... 39
2.4.3 Defining individual formats ... 40

3 Engineering .. 42

3.1 Project planning and configuration ... 42
3.1.1 Concept .. 42
3.1.2 Files used ... 44
3.1.3 Structure and content ... 45
3.2 Creating a parameter source.. 48
3.3 Creating the content of the web page .. 54
3.3.1 Displaying parameter values .. 54
3.3.2 Updating parameter values .. 58
3.3.3 Using the callback function... 60
3.3.4 Initializing and updating canvas elements .. 61
3.4 Loading the content of the web page ... 64
3.5 Sample pages .. 65
3.5.1 diagAxis.html (main page 1) ... 65
3.5.2 diagStatusAxis.html (main page 2) .. 67
3.5.3 axisRedLoader.html (load page) .. 69
3.6 Uploading files to the web server ... 71
3.7 Uploading new pages ... 75
3.8 Loading and commissioning the sample pages 76

Table of contents

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 4

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8.1 …via a CF card reader ... 76
3.8.2 …via the webserver .. 78
3.9 Operation .. 82
3.10 Changing the name of the axes ... 85

4 Appendix .. 86

4.1 Service and Support ... 86
4.2 Application support ... 87
4.3 Links and Literature .. 87
4.4 Change documentation .. 87

1 Introduction

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 5

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

1.1 Overview

Introduction

The web server provides information on a SINAMICS device via its web pages.
The access is realized using a standard web browser (e.g. Internet Explorer or
Mozilla Firefox). The basis configuration of the web server can be realized via
STARTER or the web server itself, e.g. by loading a configured project.

Users have the option to complement the standard web pages by their own web
pages. The own created web pages ("user-defined web pages") can be
subsequently uploaded to the SINAMICS S120 web server. Drive parameters can
be read – and therefore the widest range of scenarios visualized – using these web
pages, for example.

Description of the automation task

The following states of a drive are to be visualized using a user-defined web page:

 Enable signals (e.g. OFF1, ramp-function generator enable, etc.) using color-
coded status displays

 Speed and torque using graphics (e.g. tachometer display)

 Drive parameters (e.g. output voltage, motor temperature, etc.) in
the form of a table

 Control- and status words using colorcoded status displays

The displayed data is updated at specific intervals; this means that changes to the
drive state can be visualized.

The web page can be designed to address the user's own specific requirements
and ideas.

Figure 1-1

1 Introduction

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 6

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.2 Mode of operation

Display

The following figure displays the most important components of the solution:

Figure 1-2

Based on a sample web page, the procedure to create user-defined web pages for
the SINAMICS S120 web server is explained in more detail in this application
description.

The data to be displayed on the web page are read from the drive using the script
language MiniWeb Server Language (MWSL) (see Chapter 2.2: MiniWeb Server

Language (MWSL)).

Using JavaScript, the properties of the web page and its content can be accessed;
for example, this allows data to be updated at specific intervals, i.e. read out of the
drive again.

Cascading Style Sheets (CSS) are used for the design. The web page formatting

is centrally saved in these sheets.

TCP/IP
connection

PC with development
environment and web

browser

SINAMICS S120
CU320-2 PN
FW >=V4.7

1 Introduction

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 7

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages

The application described here offers you the following advantages:

 Drive parameters and data can be accessed via MWSL and a standard web
browser – an engineering system is not required!

 The displayed data can be updated and accessed using JavaScript

 The web page is designed using HTML and CSS – so that users can freely
implement their ideas and requirements

Delimitation

This application does not contain a description of

 the functions of the SINAMICS S120 web server

Basic knowledge of this topic is assumed.

Note You can find basic information on SINAMICS S120 in the function manual of the
drive functions at the following link:

https://support.industry.siemens.com/cs/ww/en/view/109740020

Required knowledge

Basic know-how about creating web pages using HTML, JavaScript and CSS is
assumed.

Supplementary conditions

1. Access to drive parameters

Currently only the MWSL script language of SINAMICS S120 is supported to
access drive parameters.

2. Total memory size of user data

The total amount of data stored on the drive via the web server must not
exceed 100 MB. The total memory size of the saved data influences the
backup times, and after a change on the CF card, also influences the time
when rebooting, but only once. The more data there is, the longer it takes to
back up.

https://support.industry.siemens.com/cs/ww/en/view/109740020

1 Introduction

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 8

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.3 Components used

This application example has been created with the following hardware and
software components:

Table 1-1

Component Number Article number Note

SINAMICS training case incl.
CU320-2 PN

1 6ZB2480-0CM00 /
6ZB2480-0CN00

FW V4.8 HF 4

STARTER 1 6SL3072-0AA00-0AG0 V4.5

Mozilla Firefox 1 --- Download

Internet Explorer

(as alternative to Mozilla Firefox)

 --- Download

Microsoft Visual Studio Express
2012 for the web

 --- Download
(test version)

This application example consists of the following components:

Table 1-2

Component Note

68691599_S120_Userdefined_Webpages_V2_0.zip ZIP archive with finished
example pages

68691599_S120_Userdefined_Webpages_V2_0_en.pdf This document

http://www.mozilla.org/en-US/firefox/new/
http://windows.microsoft.com/en-US/internet-explorer/download-ie
http://www.microsoft.com/visualstudio/eng/downloads

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 9

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Basic information

2.1 Hypertext Markup Language (HTML)

The Hypertext Markup Language (HTML) is a text-based markup language to
structure content, such as text, graphics and hyperlinks in documents.
HTML documents represent the basis of the World Wide Web, and displayed using
a web browser. In addition to the content of a web page, displayed by the browser,
HTML also includes additional data in the form of meta information. This
summarizes the language used in the text, information about the author or the
content of the text.

2.1.1 Structure of an HTML file

Every HTML document comprises three parts:

 The document type declaration

 The HTML head (<head>)

 The HTML body (<body>)

The document type declaration includes data on the markup language used and its
version.

The head data of the page are noted in the HTML head. In addition to optional
meta data (for example, information about the author), the page title is specified, as
it will be subsequently displayed in the title line of the web browser.

The content of the web page to be displayed is in the HTML body itself, i.e. text
passages with headers, references, tables and forms.

The basic framework of an HTML file generally looks like this:

<html>
 <head>
 <title>
 <!--title of the website-->
 </title>
 </head>
 <body>
 <!--content of the website-->
 </body>
</html>

All HTML elements are marked using tags. These are located in angle brackets

(< and >) and comprise an opening and closing part; the closing part only differs

from the opening part by a preceding slash. <html> and </html>).

Two tags <html> and </html> mark the HTML code and limit it. This area is

again subdivided into a head and body area. The page title is noted between the

<title> and </title> tags. The HTML body contains the actual page content.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 10

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.1.2 Basic elements

Several basic elements are used to structure an HTML page, which will be
described in more detail in the following section.

Areas (div / span)

A general block element is opened with <div>, which can encompass several

other block elements.

Everything that is located between this tag and the closing </div> tag is

interpreted as part of this area.

Several elements, such as text, graphics, tables etc. can be included in a common
area. This general element always starts with a new line of the continuous text. It is
intended that this is formatted using CSS (Cascading Style Sheets).

Analogous to the <div> element, there is also what is known as a

element.

 opens a general, inline area (within one line), this area is closed with

. It is also intended that this is formatted using CSS.

This means that by using elements, it is possible to color individual lines or

words of a text, for example.

Tables (table)

The table is one of the most important elements for HTML.
Using a table, a complete page can be subdivided, or also just a couple of points
can be displayed in a structured fashion.

The <table> and </table> tags are used to create a table in HTML. A table

comprises one or several table rows (<tr> or </tr>. In turn, a line comprises one

or several cells (<td> or </td>, table data). The individual cells of a table include

the content to be displayed and can themselves comprise tables.

Example:

<table>
 <tr>
 <td>
 <!--first row, first data cell-->
 </td>
 <td>
 <!--first row, second data cell-->
 </td>
 </tr>

</table>

This HTML code creates a single-row table with two columns.
The content of each cell describes its position in the table (e.g. "first row, first
column"). The table can be continued as required, both regarding the number of
rows as well as also the number of columns per row.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 11

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Text fields and buttons (input)

The Input fields are another important element.

These can be used to create input fields or buttons. The input fields are mostly
used to enter text, which, for example by pressing an adjacent button, can be
further processed using JavaScript.

In principle, the structure of both of these elements is identical; the type attribute

represents the decisive difference. Here, to mark a text field, the type attribute is

assigned the value text, for buttons, the value button.

In addition, buttons also require an onclick event handler (see Chapter 2.3.4:

Event handler), which defines what should happen when clicking the button.

Example:

<input type="text" name="text" value="content" size="15"/>

<input type="button" id="button" value="Send" onclick="get()"/>

This HTML code creates a single-row input field, which is pre-assigned the word
"content". This is followed by a button with the label "Send".

While the value attribute for text fields results in a pre-assignment, for a button,

value is written to that button.

If this attribute is omitted, then the text field remains empty and the button is not

labeled. The size attribute defines the display width of the field.

Using the name specified in the name attribute, elements can be referenced, for

example to be able to access them using JavaScript.
This internal reference name is only used to access HTML elements using scripts,
however without having any effect on the layout of a web page. Alternatively (or

additionally), an ID can be assigned to an element (attribute id), which can be

used to reference the element (see Chapter 2.3.3: getElementById).

In the onclick event handler of the button, it is specified that when clicking the

button, a JavaScript function named get() should be called.

Contrary to other HTML elements, Input elements have no closing </input> tag

– it is simply closed using />.

Selection lists (select)

Users can be provided with lists with fixed selection options in the form of selection
lists. One or several entries can then be selected from this list.

The selection lists are marked using the <select> and </select> HTML tags. If

event handlers are noted within these select tags, a response can be made to

the selection using JavaScript.

The actual list entries are written using <option> tags in the selection list. The

size attribute can be used to specify how many of the entries should be displayed

at once.

If the list has more entries than marked for display in the size attribute, then a

scrollbar is automatically inserted, which can be used to navigate through all of the
entries.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 12

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

If only one entry is to be displayed (size=“1“), a drop-down menu is created from

the selection list.

Example:

<select id="selectList" size="1" onchange="switch()">
 <option value="0">Off</option>
 <option value="1">On</option>

</select>

This HTML code creates a selection list (drop-down menu) with the "Off" and "On"
entries.

In the onchange event handler of the selection list, it is specified that when

changing the selection, a JavaScript function named switch() should be called.

In order to be able to access the elements of the selection list using JavaScript, the

selection list must be assigned an ID (attribute id) and the individual entries, an

internal value (attribute value) which can be used to reference the entry selected

using "getElementById" in JavaScript.

Lists (ul / ol)

In HTML, the tag opens an enumeration list (ul = unsorted list), the

tag closes this list.

For an enumeration list, all of the list entries have an enumeration character

(bullet). A list entry such as this is opened with the tag and is closed with

.

Example

 ...
 ...

This HTML code generates an unsorted list, which has two list entries.
The list entries can be continued as required.

Contrary to the tag, using the tag, a numbered list can be created (ol =

numbered list). The list is closed using the tag.

For a numbered list, all of the list entries are automatically numbered. A list entry

such as this is opened with the tag, and is closed with .

Note You can find further information on the topic of "lists" under the following link:

http://www.w3schools.com/html/html_lists.asp

http://www.w3schools.com/html/html_lists.asp

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 13

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.1.3 IFrames

IFrames (inline frame = embedded frame) is a layout resource that allows
developers to embed third-party sources – especially other HTML pages – in their
own web page.

Different than normal frames, in this case, the web page is not subdivided. Instead,
an area is defined in the page, which is reserved to display a source (such as
graphics or other web pages.

IFrames are marked using the <iframe> and </iframe> HTML tags. An

explanatory text can be specified between these IFrame tags, which is displayed if
the browser does not support IFrames (i.e. if the embedded source cannot be
displayed).

The source itself – or more precisely its URL – is assigned the src attribute in the

opening <iframe> tag.

The dimensions of the embedded frame are not aligned according to the size of the

source, but are defined, e.g. in the attributes width and height of the associated

stylesheet (CSS).
If the dimensions of the referenced source are larger than the area provided to the
IFrame, then scroll bars are automatically inserted.

Using the name or id, attribute, which is also noted in the opening tag, it is

possible to access the object properties of the IFrame using JavaScript, for
instance to modify the dimensions or the source of the IFrame.

Example

<iframe src="picture1.jpg" id="iframe">
 Your browser does not support IFrames.

</iframe>

In this example, if the web browser supports IFrames, a graphic is displayed,
otherwise "Your browser does not support IFrames" is displayed.

In order to be able to change additional attributes of the Iframe using CSS, the id

attribute is noted in the opening <iframe> tag.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 14

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.1.4 Canvas elements

In the HTML language, a canvas element is an area with a defined height and
width which can be drawn into using JavaScript.

A canvas element is marked using the <canvas> and </canvas> HTML tags. An

explanatory text can be specified between these canvas tags, which informs the
user if the browser does not support canvas functionality.

In addition to being able to draw lines and squares, canvas also allows the
following to be drawn:

 Circular arcs

 Bézier curves (quadratic and cubic)

 Color graduations

 Graphics (formats: PNG, GIF, JPEG), which can be scaled, positioned and cut

 Transparency (with several graduations)

 Text

Objects and object groups can be shifted, rotated and scaled.
Animation is possible using JavaScript time functions.

Example

<canvas id="canvas" width="160" height="160">
 Canvas is not supported by your browser.

</canvas>

In the example, a canvas element is created with a width and height of 160 pixels.
If the web browser does not support canvas elements, the text is displayed, located
between the canvas tags.

In order to be able to access the object properties of the canvas element using

JavaScript, the id attribute is noted in the opening <canvas> tag.

This can be used, for example, to enter the content of the canvas element.

Note Canvas elements are supported by the following web browsers:

 Internet Explorer from Version 9.0

 Mozilla Firefox from Version 3.6

 Opera from Version 11.0

 Google Chrome from Version 14.0

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 15

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 MiniWeb Server Language (MWSL)

The MiniWeb Server Language (MWSL) is a script language that is interpreted on
the web server of the drive. It is rather similar to the JavaScript language but
represents only a small part of the language scope.

2.2.1 Principle of operation

The MWSL enables a client (e.g. a PC) to be operated with a simple browser
without scripting, as the web server generates the pages to be displayed
dynamically.

MWSL enables variables to be accessed and processed. Among other things, it
allows access to process variables (e.g. drive parameters) that are present on the
basis web server system. These can be appropriately evaluated using MWSL.

When accessing variables, the client requests a URL on the web server. An MWSL
file is on this; a temporary HTML file is generated from this on the web server using
the MWSL service.
This is subsequently sent to the client where it is displayed.

2.2.2 Structure of an MWSL file

An MWSL file is a file with any format that also contains MWSL tags.

Example:

<html>
 <head>
 [...]
 </head>
 <body>
 <table>
 <tr>
 [...]
 <td>
 <MWSL>
 <!--
 //MWSL code
 -->
 </MWSL>
 </td>
 [...]
 </tr>
 </table>
 </body>

</html>

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 16

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

If the MWSL functionality is needed, the following tags are added:

 the <MWSL> tag opens the area that contains the MWSL code

 the </MWSL> closes this area

The HTML comment characters that follow the <MWSL> tag are not mandatory.

However they are recommended because they protect the MWSL code from the
HTML interpreter, thus preventing possible incorrect outputs.

2.2.3 Variable types

MWLS always makes a distinction between script variables and global variables:

 Script variables are defined within the area that contains the MWSL code

 Global variables are provided by variable sources

Note Global variables are sources of information from the web service environment.
Variables are exclusively accessed using access functions.
Global variables are grouped in variable sources according to their origin.

2.2.4 Script variables

Script variables are variables that are only valid in the page in which they have
been declared.

The variables are applicable beyond MWSL tags, i.e. they can be generated in one
MWSL area, and first used in the next MWSL area.
A distinction is not made between data types, for instance, there is no explicit data
type for "Integer" or "Char".

A variable is created as follows:

var <variable name> = <value>;

The data type is determined internally by the variable assignment.

Example 1:

<MWSL>
<!--

 var string1 = "Hello";
 var string2 = "World";
 write(string1 + " " + string2);

-->
</MWSL>

In the example above, two variables are created, string1 and string2.

The two strings (with spaces) are connected with one another using the plus

character. The result is output using the write command (output: Hello World).

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 17

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example 2:

<MWSL>
<!--

 var num1 = 5;
 var num2 = 7;
 var result;
 result = num1 + num2;
 write(result);

-->
</MWSL>

Two variables are created in the example above, num1 and num2.

The two numbers are added, and the result is saved in the result variable. The

result is output using the write command (output: 12).

Keyword ‘var‘

A variable declaration is opened using the var keyword.

var varName1 = InitialValue1,
 varName2 = InitialValue2,
 ... ;

Several variables are declared and (optionally) pre-assigned initial values.
Several declarations can be specified, separated with a comma.
The declaration is terminated using a semicolon.

Visibility and validity areas

For MWSL, the visibility and validity of variables must be observed.

Example 1:

<MWSL>
<!--

 var myVar = 10;
 {
 myVar = 20;
 write("Inner: " + myVar + ",");
 }
 write("Outer: " + myVar);

-->
</MWSL>

In this example, in the instruction block (in brackets), the myVar variable of the

outer level (outside the brackets) is accessed; this is because no variable with the

myVar name was declared at the instruction block level. As a result, the myVar =

20; instruction changes the value of the variables of the outer level (output: Inner:

20, outer: 20).

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 18

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example 2:

<MWSL>
<!--

 var myVar = 10;
 {
 var myVar = 20;
 write("Inner: " + myVar + ",");
 }
 write("Outer: " + myVar);

-->
</MWSL>

Contrary to example 1, within the instruction block, a myVar variable was also

declared. The write command in the instruction block now accesses the variable

of the inner level, the write command outside the instruction block, accesses the

variable of the outer level.
(Output: Inner: 20, outer: 10)

Note As a result of the higher risk of making mistakes, double declarations involving
variables of the same name (for example, in example 2) should be avoided.

2.2.5 Global variables

Global variables enable access to the variable management area of the web
server. There are three types of global variables:

 PROCESS variables enable access to normal variables of the web server (e.g.
drive parameters). This is the standard access.

 URL variables provide access to variables contained in a URL.

 HTTP variables return the content of variables in the HTTP header.

PROCESS variables

PROCESS variables can be accessed using the following command:

 GetVar("1.Params.2", "PROCESS");

The first number "1" defines the drive object number (Control unit).

".Params." is mandatory.

The second number "2" corresponds to the parameter number.

The variable source PROCESS must be written in uppercase letters.

For instance, if the Color variable does not exist, then a "zero" is returned.

PROCESS is the standard variable source, which means that PROCESS can also be

omitted:

 GetVar("1.Params.2");

Note An overview of the functions provided in MWSL is listed in Chapter
2.2.8:Overview of MWSL functions

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 19

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

URL variables

Using the functions WriteVar, GetVar and MWSL offers the possibility of

processing URL parameter values.

Example of a URL with appended parameters

http://localhost/MWSL/StringOperationTest.mwsl?
Parameter1=Hello&Parameter2=World!&StartValue=2&EndValue=5

The URL points to the page ‘StringOperationTest.mwsl‘ and transfers parameters

Parameter1, Parameter2, StartValue and EndValue.

For example, the URL variable Parameter1 can now be output using the following

command:

 WriteVar(“Parameter1”, “URL”);

URL must be written in uppercase letters.

If a URL variable that does not exist in the URL is requested, an empty string ("") is
always returned. This return does not represent a script error.

In a URL, the parameter transfer begins after the "?" character. Individual
parameters are separated by "&" characters. The value is assigned after the '='
character.

Note Certain characters require a coding in order to be transferred correctly.

An overview of the most frequently used characters and their associated coding
is provided in the "SIMOTION IT Programming and Web Services“ programming
manual (Chapter 3.1.8.9) at the following link:

https://support.industry.siemens.com/cs/ww/en/view/109744613

HTTP variables

A wide range of general information can be saved in the <head> tag of an HTML

page.

The header can be read and written to using the MWSL functions GetVar and

WriteVar.

Example

<html>
 <head>
 [...]
 <META http-equiv="Accept-Language" content="de">
 [...]
 </head>
 <body>
 [...]
 </body>

</html>

https://support.industry.siemens.com/cs/ww/en/view/109744613

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 20

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In the above example, in the <META> tag, the HTTP variable Accept-Language is

defined using the http-equiv=”Accept-Language“ command. Using the content

attribute, it is initialized with the value de.

Note You can find further information on META data at the following link:

https://www.w3schools.com/tags/tag_meta.asp

These variables are accessed in a similar way as for URL variables.

The difference is that the variable source is HTTP and not URL.

The variable specified in the example can be accessed with the following
command:

 GetVar(“Accept-Language“, “HTTP“);

The variable source HTTP must be written in uppercase letters.

2.2.6 User access

Both the user: "Administrator" and the user: "SINAMICS" have access to the user
defined pages, thus it is possible to distinguish between the users via MWSL.

The logged in user is returned with the following command:

 GetVar("Username", "HTTP");

(SINAMICS or Administrator)

Alternatively the command Table 2-25 ShareRealm can be used.

2.2.7 Operators

Table 2-1 Comparison operators

Operator Description

< or <= This operator returns TRUE if the left variable is less (or less or equal) to
the right variable.

> or >= This operator returns TRUE if the left variable is greater (or greater or
equal) to the right variable.

== This operator returns TRUE if the left variable is equal to the right variable.

Table 2-2 Logical operators

Operator Description

! This operator returns TRUE if the subsequent parameter is FALSE (logical
NOT).

&& This operator returns TRUE if a TRUE value is present on the left side and
right side (logical AND).

|| This operator returns TRUE if a TRUE value is present on the left side or
right side (logical OR).

Table 2-3 Mathematics operators

Operator Description

+ or - This operator adds the left and right variable or subtracts the value of the
right variable from the value of the left variable.

* or / This operator multiplies the left variable with the right variable or divides
the left variable by the right variable.

https://www.w3schools.com/tags/tag_meta.asp

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 21

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Operator Description

++ or -- This operator increments (+1) or decrements (-1) the prefixed variable.

% This operator returns the remainder of a division (modulo).

2.2.8 Overview of MWSL functions

 Table 2-4 Overview of all MWSL functions

Function Description

AddHTTPHeader

Table 2-6 AddHTTPHeader

Insert <Http-Header> in a page.

CreateGUID

Table 2-7 CreateGUID

Generates a unique alphanumeric ID in the system.

DecodeString

Table 2-8 DecodeString

Converts a string encoded with EncodeString back

to its original.

die

Table 2-9 die

Abort program execution.

EncodeString

Table 2-10 EncodeString

Replaces special characters by their URL-coded

hex value (%hh).

ExistFile

Table 2-11 ExistFile

Checks whether a file with the name <file name> exists.
The function returns the file length as returned value.

ExistVariable

Table 2-12 ExistVariable

Query of the existence of a variable.

GetLanguage

Table 2-13 GetLanguage

Returns the currently set language.

GetVar

Table 2-14 GetVar

Return the value of a variable of the corresponding
variable source.

InsertFile

Table 2-15 InsertFile

Import of a <File>. A path can be specified.

isFinite

Table 2-16 isFinite

Returns false if the passed value is NaN or infinite.

isNaN

Table 2-17 isNaN

Checks whether the passed value is an invalid Double.

IsSSL

Table 2-18 IsSSL

Returns true if the client is connected to the server via an
SSL connection

parseFloat

Table 2-19 parseFloat

Conversion of a string to a double value.

parseInt

Table 2-20 parseInt

Conversion of a string to an integer value.

ProcessXMLData

Table 2-21 ProcessXMLData

Generation of dynamic HTML files with special XML files.

ReadFile

Table 2-22 ReadFile

Returns the content of the file as the return value.

ReplaceString

Table 2-23 ReplaceString

Replacement of strings matching the search pattern.

SetVar

Table 2-24 SetVar

Sets values of parameters.

ShareRealm

Table 2-25 ShareRealm

Indicates whether the current user is a member of the
group that is passed as a parameter. The return value can

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 22

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Function Description

be true or false.

write

Table 2-26 write

Writes <text> strings to the HTML page. <Text> can also
be the return value of functions.

WriteVar

Table 2-27 WriteVar

Output of a variable value. The syntax is identical to the
GetVar() function.

WriteXMLData

Table 2-28 WriteXMLData

Outputs the data directly in contrast to ProcessXMLData().

2.2.9 Overview of SINAMICS process variables

Table 2-5 SINAMICS variables

Variable name Description

SINAMICS.CU Returns the drive system: "SINAMICS S120"

SINAMICS.FirmwareVersion Returns the firmware version

e.g. "V05.10.23.00"

SINAMICS.IsFailSafe Returns whether the CF card has a failsafe update.

Possible values: "Yes" or "No"

SINAMICS.Status Returns whether the device must be commissioned
for the first time.

Possible values:

0 = Yes

2 = No

SINAMICS.SysTime Returns the current system time in [ms]

2.2.10 MWSL functions

AddHTTPHeader

Table 2-6 AddHTTPHeader

Syntax AddHTTPHeader(<http-header>)

This command can be used to add HTTP headers from MWSL . These are then not
transmitted as part of the document but rather in the protocol portion of HTTP.

The AddHTTPHeader command must therefore come before the HTML tag of a page.

However, it is important to make sure that no MWSL functions that result in output into
the page are used before the HTML tag.

Parameter <http-header> Character string that ends with \r\n.

If multiple HTTP headers are to be entered (only possible with
Set-cookie), the individual headers must be separated by \r\n.

Example <MWSL>

var strCookie;

strCookie = "Set-cookie: siemens_automation_language=de";

AddHTTPHeader(strCookie);

</MWSL>

<html>

<head>

<title> MWSL Function AddHTTPHeader </title>

</head>

<body>

<h2> Testpage </h2>

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 23

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

</body>

</html>

CreateGUID

Table 2-7 CreateGUID

Syntax CreateGUID()

Generates a unique alphanumeric ID in the system

Parameter

Example <MWSL>

write(CreateGUID());

</MWSL>

Output 5022420B-02A7-0000-B362-3B7F4E87148D

DecodeString

Table 2-8 DecodeString

Syntax DecodeString(<string>)

Converts a string encoded with EncodeString back to its original.

Parameter <string> String in which URL-coded special characters are converted back to
normal characters.

Example <MWSL>

var tmpString = "Straße Flüsse Gelände Vögel";

write("Original: " + tmpString + "
");

var tmpEncodedString = EncodeString(tmpString);

write("Encoded: " + tmpEncodedString + "
");

var tmpDecodedString = DecodeString(tmpEncodedString);

write("Decoded: " + tmpDecodedString);

</MWSL>

Output Original: Straße Flüsse Gelände Vögel

Encoded:

Straße Flüsse Gelände Vögel

Decoded: Straße Flüsse Gelände Vögel

die

Table 2-9 die

Syntax die(<Param0>,<Param1>,…)

Break program execution

Parameter <Param0>,<Param1>,… Concatenation and output of the parameters

Example <MWSL>

function dieTest(){

write("Is there a life after die?");

die("--- ",123," ---");

};

dieTest();

write("There is a life after die");

</MWSL>

Output Is there a life after die?--- 123 ---

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 24

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

EncodeString

Table 2-10 EncodeString

Syntax EncodeString(<string>)

Replaces special characters by their URL-coded hex value (%hh).

Parameter <string> String in which the replacement will be performed

Example <MWSL>

var tmpString = "Straße Flüsse Gelände Vögel";

write("Original: " + tmpString + "
");

var tmpEncodedString = EncodeString(tmpString);

write("Encoded: " + tmpEncodedString + "
");

var tmpDecodedString = DecodeString(tmpEncodedString);

write("Decoded: " + tmpDecodedString);

</MWSL>

Output Original: Straße Flüsse Gelände Vögel

Encoded:

Straße Flüsse Gelände Vögel

Decoded: Straße Flüsse Gelände Vögel

ExistFile

Table 2-11 ExistFile

Syntax ExistFile(<file name>)

Checks whether a file with the name <file name> exists.

The function returns the file length as the returned value.

Files that are associated with the MWSL compiler (*.mwsl, *.js, *.css, …) the ExistFile - call
should always be made to the compiled file (*.cms).

Parameter <file name> Name of the sought file.

The file path refers to the root directory of the user:
OEM/SINAMICS/HMI.

Example <MWSL>

var tmpLength = ExistFile("/USERFILES/test.mwsl.cms");

write("File length:"+ tmpLength);

</MWSL>

Output File length: 38

ExistVariable

Table 2-12 ExistVariable

Syntax ExistVariable(<variable name>,<variable source>)

This function queries the presence of a variable. It returns true or false.

Parameter <variable name> Name of the variable.

<variable source> Name of the variable source.

Possible values:

 URL

 HTTP

 COOKIE

Example <MWSL>

ExistVariable("Variable1","URL")

</MWSL>

Output Returns true if the URL variable "Variable1" exists, otherwise false.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 25

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

GetLanguage

Table 2-13 GetLanguage

Syntax GetLanguage()

Returns the currently set language.

Parameter

Example <MWSL>

write("The currently set language is '" + GetLanguage() + "'");

</MWSL>

Output The currently set language is 'en'

GetVar

Table 2-14 GetVar

Syntax GetVar(<variable name>,<variable source>,<format string>)

This function returns the value of a variable from a variable source.

Parameter <variable name> Name of the variable

<variable source> Name of the variable source

Possible values:

 URL

 HTTP

 PROCESS

 COOKIE

 DEFAULT

The default setting is PROCESS

If no source is stated DEFAULT is selected, that is, the variable

provider.

<format string> The handling of the format string depends on the variable
source.

Thus, this property is not possible for the variable sources
COOKIE and URL.

Example GetVar("Parameter","URL");

Returns the content of the URL – variable: Parameter.

GetVar("Username", "HTTP");

Returns the content of the HTTP – variable: Username.

GetVar("Accept-Language", "HTTP", "?-");

Returns the content of the HTTP – variable: Accept-Language.

The format string "?-" indicates that all characters up to the first occurrence of the "-"

character are returned.

GetVar("SINAMICS.FirmwareVersion")

Returns the firmware version. See also: Table 2-5 SINAMICS variables

GetVar("1.Params.18","PROCESS")

or alternative, because PROCESS is the default variable source:

GetVar("1.Params.18")

Returns the value of the parameter 18 of the drive object with the number 1.

GetVar("2.Params.63","PROCESS","%3.2f");

Returns the value of the parameter: 63 of the drive object with the number 2.

The format string "%3.2f" outputs the variable interpreted as Float. The 3 indicates that 3

total places are output. The 2 indicates that, of the 3 places, 2 places after the decimal

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 26

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

point will be displayed.

The variable source ("PROCESS") is mandatory if the format string parameter is used.

InsertFile

Table 2-15 InsertFile

Syntax InsertFile(<file name>)

This command allows an existing text file to be imported individually.

The text file is interpreted before insertion with MWSL and embedded into the existing
source text at the insertion point in the target file.

If the file has an ending associated with the MWSL compiler (*.mwsl, *.msl, *.xsl,

*.js, *.xmlf, *.css) the MWSL scripts it contains will be run.

URL parameters can be passed with usual syntax (<file name>?<parameter>=<value>).

Parameter <file name> Name of text file, including path

Example <HTML>

<BODY>

[...]

<MWSL>

if(ExistFile("/USERFILES/TMPL/Output.mwsl.cms") > 0){

InsertFile("/USERFILES/TMPL/Output.mwsl?myparam=123");

}

</MWSL>

 [...]

</BODY>

</HTML>

Output In the html page the content of the file Output.mwsl is inserted and displayed in HTML
format.

isFinite

Table 2-16 isFinite

Syntax isFinite(<value>)

Returns false if the passed value is NaN or infinite.

Parameter <value> Value to check

Example <MWSL>

write("Test of the number 123456 - isFinite: ");

write(isFinite(123456) + "
");

write("Test of NaN - isFinite: ");

write(isFinite(parseInt(2147483647)));

</MWSL>

Output Test of the number 123456 - isFinite: 1

Test of NaN - isFinite: 0

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 27

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

isNaN

Table 2-17 isNaN

Syntax isNaN(<value>)

Checks whether the passed value is an invalid double.

Parameter <value> Value to check

Example <MWSL>

write("Test of 123456 - isNaN: ");

write(isNaN(123456) + "
");

write("Test of NaN - isNaN: ");

write(isNaN(parseInt(2147483647)));

</MWSL>

Output Test of 123456 - isNaN: 0

Test of NaN - isNaN: 1

IsSSL

Table 2-18 IsSSL

Syntax IsSSL()

Returns true if the client is connected to the server via an SSL connection

Parameter

Example <MWSL>

write("Is the client connected via a SSL connection: ");

write(IsSSL());

</MWSL>

Output Is the client connected via a SSL connection: 1

parseFloat

Table 2-19 parseFloat

Syntax parseFloat(<string>)

Conversion of a string to a double value

Parameter <string> String to be converted

Example <MWSL>

var a = parseFloat("10") + "
";

var b = parseFloat("10.00") + "
";

var c = parseFloat("10.33") + "
";

var d = parseFloat("34 45 66") + "
";

var e = parseFloat(" 60 ") + "
";

var f = parseFloat("40 years");

write(a + b + c + d + e + f);

</MWSL>

Output 10

10

10.33

34

60

40

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 28

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

parseInt

Table 2-20 parseInt

Syntax parseInt(<value>,<base>)

Conversion of a string to an integer value

Parameter <value> String to be converted

If a value starts with 0x, it will be interpreted as hexadecimal.

Values starting with 0 will be interpreted as octal.

All other values are interpreted in decimal format.

Maximum value: 2147483646 (0x7FFFFFFE)

Minimum value: -2147483647 (-0x7FFFFFFF)

If values exceed the upper limit NaN will be returned. If the value
shall be interpreted as a negative number a "-" has to be put in front.

<base> Basis to which the string shall be converted. Values: "2" = binary, "8"

= octal, "16" = hexadecimal. No value = decimal interpretation.

Example <MWSL>

 var tmpVar0 = "101";

 var tmpVar1 = "100";

 var tmpSum = tmpVar0 + tmpVar1;

 write(tmpSum + "
");

 var tmpVarInt0 = parseInt(tmpVar0,"2");

 var tmpVarInt1 = parseInt(tmpVar1,"2");

 tmpSum = tmpVarInt0 + tmpVarInt1;

 write(tmpSum + "
");

 tmpVar0 = "A";

 tmpVar1 = "B";

 tmpSum = tmpVar0 + tmpVar1;

 write(tmpSum + "
");

 tmpVarInt0 = parseInt(tmpVar0,"16");

 tmpVarInt1 = parseInt(tmpVar1,"16");

 tmpSum = tmpVarInt0 + tmpVarInt1;

 write(tmpSum + "
");

 tmpVar0 = "ABC";

 tmpVarInt0 = parseInt(tmpVar0,"16");

 write(tmpVarInt0 + "
");

 tmpVarInt0 = parseInt(tmpVar0);

 write(tmpVarInt0 + "
");

 tmpVar0 = "0x7FFFFFFF";

 write(parseInt(tmpVar0));

</MWSL>

Output 201
9
AB
21
2748
NaN

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 29

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

ProcessXMLData

Table 2-21 ProcessXMLData

Syntax ProcessXMLData(<DATA>,<TEMPLATE>)

With this command, dynamic HTML files can be generated based on a data and template
file. The parameter <DATA> contains the data that is interpreted with the template in
parameter <TEMPLATE>.

ProcessXMLData combines the two files into one HTML file. The data nodes of the data
file are evaluated by the template file to be displayed.

This produces a separation of the data from the content. With a subsequent change to the
template file, the appearance of the pages can be altered without changing the data.

This makes it easier to add to data. Using different templates, it is possible to generate
pages with the same data but completely different appearances.

Additional information about the template mechanism you can find in the SIMOTION IT
Programming and Web Services Documentation:

https://support.industry.siemens.com/cs/ww/en/view/109757319

Parameter <DATA> Data for the dynamic HTML file
A file or a variable containing the data can be passed as a
parameter.
File:
"<EXTERNAL SRC=\"/datafile.xml \"/>", in which

datafile.xml is the file containing the data.

Variable:
<variable name>

Specifies the variable name.

<TEMPLATE> Template (data format)

A file or a variable containing the templates can be passed
as a parameter.

File:

"<TEMPLATES><EXTERNAL SRC=\"/Template.xml\"/> </

TEMPLATES>", in which "Template.xml" is the file that

contains the templates.

Variable:

<variable name>

Specifies the variable name.

Example ProcessXMLData("<EXTERNAL SRC=\"/USERFILES/variables.xml \"/>",

"<TEMPLATES><EXTERNAL SRC=\"/USERFILES/variablesTemplate.xml\"/></

TEMPLATES>");

ReadFile

Table 2-22 ReadFile

Syntax ReadFile(<file name>)

This function is similar to the function InsertFile, except that the content of the file is

not written, but only returned as a return value.

Parameter <file name> Name of the file including path

Example <MWSL>

var tmpFile = ReadFile("/USERFILES/File.txt");

write(tmpFile);

</MWSL>

Output The content of file include.mwsl is written to the variable tmpFile and then written into

the output

https://support.industry.siemens.com/cs/ww/en/view/109757319

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 30

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

ReplaceString

Table 2-23 ReplaceString

Syntax ReplaceString(<variable name>,<search pattern>,<replacement

string>)

Replacing strings.

Parameter <variable name> Variable in which the characters shall be replaced

<search pattern> Search pattern for replacing the characters

<replacement string> String that is inserted

Example <MWSL>

var tmpString = "SINAMICS S120";

var tmpOutString;

tmpOutString = ReplaceString(tmpString,"I","i");

write("Result: " + tmpOutString);

</MWSL>

Output Result: SiNAMiCS S120

SetVar

Table 2-24 SetVar

Syntax SetVar(<variable name>,<value>)

This functions sets process parameters.

Parameter <variable name> Name of the variable

For syntax see: GetVar with "PROCESS" source

<value> New parameter value

Example SetVar("1.Params.3",3);

Sets the parameter: "3" of the drive object with the number: "1" (Control Unit) to the

value: "3".

SetVar("CU_S.Params.977",1);

Sets the parameter: "977" of the drive object with the name: "CU_S" (Control Unit) to the

value: "1".

SetVar("2.Params.10",2);

Sets the parameter: "10" of the drive object with the number: "2" to the value: "2".

SetVar("Drive_2.Params.10",0);

Sets the parameter: "10" of the drive object with the name: "Drive_2" to the value:
"2".

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 31

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

ShareRealm

Table 2-25 ShareRealm

Syntax ShareRealm(<group>)

Indicates whether the current user is a member of the group that is passed as a parameter.
The return value can be true or false

Parameter <group> Following parameters are valid:

 NO_REALM

No group association

 ANY_REALM

Any group association

 Sinamics

Group SINAMICS

 Administrator

Group Administrator

Example <MWSL>

if (ShareRealm("Administrator")){

write("Successfully logged in as Administrator");

}

</MWSL>

Output If the user is logged in as Administrator, the instruction in brackets is executed

write

Table 2-26 write

Syntax write(<text>)

The write function writes text to the output of a HTML page.

Parameter <text> Text, return values of functions, or variable contents can
be passed

Example <MWSL>

write("Hello World!");

Output: Hello World

write(GetVar("Parameter","URL"));

Outputs the content of the URL variable "Parameter"

var string="123";

write(string);

Outputs the variable "string": 123

</MWSL>

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 32

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

WriteVar

Table 2-27 WriteVar

Syntax WriteVar(<variable name>,<variable source>,<format string>)

The function WriteVar is similar to GetVar but writes the content of a variable directly to

the output.
WriteVar is equivalent to the call: write(GetVar(…))

Parameter <variable name> Name of the Variable

<variable source> See Table 2-14 GetVar

<format string> See Table 2-14 GetVar

Example <MWSL>

WriteVar("Parameter","URL");

Outputs the content of the URL variable "Parameter"

WriteVar("1.Params.2")

Outputs the value of the parameter 2 of the drive object with the number: 1 (Control
Unit)

</MWSL>

WriteXMLData

Table 2-28 WriteXMLData

Syntax WriteXMLData(<DATA>,<TEMPLATE>)

WriteXMLData outputs the data in contrast to ProcessXMLData directly.

write(ProcessXMLData(…)); is equivalent to WriteXMLData(…);

Parameter <DATA> See Table 2-21 ProcessXMLData

<TEMPLATE> See Table 2-21 ProcessXMLData

Example WriteXMLData("<EXTERNAL SRC=\"/USERFILES/variables.xml \"/>",

"<TEMPLATES><EXTERNAL SRC=\"/USERFILES/variablesTemplate.xml\"/></

TEMPLATES>");

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 33

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 JavaScript

JavaScript is a script language that is predominantly used for dynamic web pages.

JavaScript makes it possible to evaluate user actions and change, reload or
generate the content of a web page, therefore expanding the options of HTML.
As a result of the functionality provided by JavaScript, a dynamic page can be
generated from basic, static HTML pages, which then responds more like an
application rather than just displaying text.
All of the actions executed by JavaScript are purely restricted to accessing data,
which the web page contains. This prevents that JavaScript applications access
data on the user's hard disk and possibly manipulate this data. This technique is
also referred to as "sandbox".

2.3.1 Integrating JavaScript into HTML

In order to be able to integrate JavaScript into an HTML page, for the code, a script
area must be defined.

This area is limited by the <script> tags. In order that the interpreter knows the

script type involved, in the opening <script> tag, the type attribute must be

given the information "text/JavaScript" for JavaScript. Everything, that is located in
this area, is interpreted as JavaScript.

The script area can either be located in the head area of the HTML file (between

<head> and </head>), or at any location in the body area of the web page

(between <body> and </body>).

It is possible to define several script areas in one HTML page. From a script area, it
is also possible to access functions from other script areas, as long as these areas
are located on the same HTML page.

Example

<html>
 <head>
 <script type="text/javascript">
 function double(item) {
 return (item * 2);
 }
 </script>
 </head>
 <body>
 <script type="text/javascript">
 document.write(double(3));
 </script>
 </body>

</html>

This HTML code returns a web page with the content "6".

The JavaScript instruction document.write() in the body area of the page, calls

a double() function (see Chapter 2.3.5: Functions) with the transfer parameter

"3", which was defined in another script area of the page. This function doubles the
transferred parameters, and returns the result. The supplied value is written to the

document using the document.write() instruction.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 34

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.2 The Document Object Model (DOM)

JavaScript is used in HTML pages to access HTML elements, and to manipulate
these in some form or another.

These HTML objects are accessed using the Document Object Model (DOM).

In DOM, all objects of an HTML document are classified according to a hierarchic
tree-like structure and are seen as nodes.
Each of these nodes provides certain access methods to secure access to its
elements and attributes.

In JavaScript, the "window" object represents the uppermost node.
From this object, the browser window can be accessed as well as all of the objects
contained in it.

The "document" object – the HTML file itself – is located below this "window".
Via this object, all of the elements contained in the web page can be accessed, as

long as these have been assigned the id or name attribute.

Example

<input type="text" name="input" value="">

<input type="button" value="write"
onclick="window.document.input.value = 'Hello'">

In the example above, a text field with the name "input" is created, whose content
is not pre-assigned. Further, a button is created with the "write" label.

When clicking this button, using JavaScript the <input> element is accessed, and

its content ("value") is modified (see Chapter 2.3.4: Event handler). The word
"Hello" can then be seen in the text field.

The tree-like structure is then scanned until the selected element is reached –
starting at the "window" object, through "document", "input" up to "value" object.
The addressed object refers to the name, which was assigned to the element in the

name attribute.

When accessing elements in an HTML page, addressing can either use absolute or
relative path data.
This means that each element can be directly addressed from the root of the DOM
tree (absolute path data) or relative with respect to itself.
If a part of the DOM tree is accessed from elements, which are located on the
same "branch", then the access to the target object can also only be realized from
the nodes, which serve both elements as the lowest common node.
Absolute addressing of elements in a web page is possible at any time and from
any element. In so doing, the path from the root of the DOM train – from the
"window" or "document" object – is referenced along the nodes up to the selected
target object.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 35

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.3 getElementById

Using getElementById it is possible to access HTML elements, if these were

first assigned the id attribute.

For example, this allows that their size, alignment or even content can be changed.

In this case, it must be noted that the assigned id name must be unique in the

particular HTML page, i.e. any id must only occur once per page.

Example

<input type="text" value="" id="text" size="15" />
<table>

<tr>
<td>The value is:</td>
<td id="valueColumn"></td>

</tr>
</table>
<input type="button" value="Copy" onclick="copy()" />
<script type="text/javascript">

function copy() {
document.getElementById('valueColumn').innerHTML =
document.getElementById('text');

}
</script>

In the example above, an input field is allocated the id-attribute, which is assigned

the "text" value. This is followed by a single-row table, in which the first field is

assigned the text "The value is:". The id="valueColumn" is assigned to the second

field that is still empty. Finally, a button is created, which when clicked, calls the

JavaScript function copy(). In this function, the content of the input field is copied

into the empty table cell using getElementById.

Note Please observe the different modes of access to the content of the particular
element!

For <input> elements, their display values can be accessed using the value

(document.getElementById(…).value) attribute, while for table cells, the

innerHTML attribute must be addressed

(document.getElementById(…).innerHTML).

Note You can find further information on this topic at the following links:

https://www.w3schools.com/jsref/met_document_getelementbyid.asp

https://www.w3schools.com/jsref/met_document_getelementbyid.asp

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 36

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3.4 Event handler

Event handlers handle events.

Events can include mouse clicks, entries into text fields, clicking buttons or similar.
Using event handlers, a JavaScript technique can be called, which correspondingly
responds to an event.
As a consequence, event handlers form the interface between HTML and
JavaScript.

These can be identified at their prefix "on". They are noted as attributes in HTML
elements, which should respond to a specific event.
A reaction is assigned to the event handler. These can either comprise individual
JavaScript instructions, or a function defined in JavaScript – if several JavaScript
instructions are to be executed one after the other.

For HTML programming, the following event handlers are most frequently used:

 onload When loading a file

 onclick When clicking (e.g. a button)

 onchange When a change has been made (e.g. selecting an entry of a

 selection list or changing the value of a text field)

Note You can find a detailed list of all of the available event handlers, including
examples, at the following link:

https://www.w3schools.com/tags/ref_eventattributes.asp

2.3.5 Functions

Using JavaScript, it is possible to define functions.

JavaScript instructions can be noted in these functions, whose execution is started
when calling the function.

A function only starts with the function keyword and a function name, which the

user can freely allocate.
This function name must be unique within an HTML document.
The function is called using a previously defined name.

Function calls can also be located in event handlers, for example to respond to
user inputs; they can also be noted in other functions, in order to act as help
function. It is always possible to access functions in other script areas, as long as
these areas are located on the same HTML page. Just the same as in other
programming languages, it is always possible to transfer parameters to JavaScript
functions – or to have values returned from these.

All JavaScript instructions in an HTML file, which are not located in a function, are
immediately executed by the JavaScript interpreter of the web browser as soon as
the file is loaded.

Note You can find further information on this topic at the following link:

https://www.w3schools.com/js/js_functions.asp

 2.3.6 Libraries

Collections of JavaScript functions can be integrated in HTML pages using

JavaScript libraries. The functions defined in the libraries can then be called in

script areas of the web page.

https://www.w3schools.com/tags/ref_eventattributes.asp
https://www.w3schools.com/js/js_functions.asp

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 37

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The advantage of this technique is that frequently used functions can be
encapsulated in a file, which then only have to be integrated once in the
appropriate HTML document. As a consequence, when these functions are used a
multiple number of times in different HTML pages, they do not have to be redefined
each time.

Integrating JavaScript libraries in HTML is realized in almost precisely the same
way as when integrating JavaScript. A script area must also be defined in this
case.

This area is limited using the <script> tags. In order that the interpreter knows

the script type involved, in the opening <script> tag, the type attribute must be

given the information "text/JavaScript" for JavaScript. Everything, that is located in
this area, is interpreted as JavaScript.

The difference to standard script areas is the fact that no functions can be defined

in this area, but using the src attribute, the interpreter is told the path under which

the library can be found.
The path should be specified either relative or absolute to the HTML document.

Example:

<head>
 <script src="scripts/Library.js" type="text/javascript">
 </script>

</head>

In the example above, in an HTML document, the JavaScript library "Library.js" is

integrated in the opening <script> tag using the src attribute.

The path is specified, relative to the document.

It is now possible to access the functions that are saved in the "Library.js" library in
every other script area of this HTML page.

2.3.7 Variable types

Different than in many other programming languages, variables in JavaScript are

not rigidly linked to a particular variable type.

Although a distinction is made between several basic types, for example numbers,
character strings or truth values, this assignment does not have to be maintained
across the board.

For example, a variable that was initialized with a numerical value, in the course of
a function, can be assigned a character string without previous conversion being
required.

The value must be transferred in quotation marks in order to assign a variable a
character string. These quotation marks must be omitted if numerical values are
assigned. The keywords "false" or "true" are available for truth values.

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 38

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

<script type="text/javascript">
 var item1 = 0;
 var item2 = "string";
 var item3 = false;

 item1 = item2; //item1: string
 item2 = item3; //item2: false
 item3 = 0; //item3: 0

</script>

In this script area, three variables are defined and each immediately initialized with
a number, a character string and a truth value. After this, the contents of the
variables are exchanged between one another, without it being necessary to
explicitly convert the variables.

The fact that the type of a variable can be interpreted differently, can, under certain
circumstances, result in unpredictable results. This is because, for example, a
variable read-in via a text field can be interpreted as character string as well as
number depending on the particular processing function.

If a number is doubled using the mathematical function "* (multiply)" (i.e. its value is
multiplied by two), then this is interpreted as numerical value, and twice the value
of the number is output as result.
If a number is doubled using the mathematical function "+ (add)" (i.e. its value is
added to itself), then the number is also interpreted as numerical value, and twice
the value of the number is output as result
(e.g. 15 + 15 = 30).

If a character string is used instead of a number, then it cannot be doubled using
multiplication as it does not involve a numerical value. In this case, "NaN" would
appear as result, which means "Not a Number".
For a character string, if adding is used to double it, then the character string is
shown twice one after the other as result
(e.g. “15“ + “15“ = “1515“).

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 39

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) represent an indirect supplement for HTML.

These involve a language to define format properties of individual HTML elements.

An important CSS function is the possibility of defining central formats.
This means that central definitions can be noted in an external file regarding the
appearance of an element, and this stylesheet can then be integrated into many
HTML pages in parallel. All elements of the corresponding HTML files will then be
allocated format properties, that were defined once at a central location.
Using this procedure, design and functionality can be separated from one another.

2.4.1 Integrating CSS in HTML

In many cases, standard formats are used for several HTML files of a project.
These formats can be defined in a separate text file, and this file can be integrated
into any required HTML file.
If the format definition is modified in a separate file, then the modifications are
implemented as standard in all files in which the separate CSS file has been
integrated.

Using the <link> tag, a CSS file, which contains CSS format definitions, can be

referenced in the file header of an HTML file.

rel=“stylesheet“ and type=“text/css“ must be located within the <link>

tags. The path of the required file is specified using the href attribute.

The referenced file must be a pure text file, which should have the extension .css.

Note Other options for integrating CSS in HTML files are described at the following
link:

https://www.w3schools.com/css/css_howto.asp

2.4.2 Defining formats for classes

Formats for classes can be defined in CSS files, which can be accessed in HTML

elements via the class attribute.

There are two ways of noting HTML element classes:

 for one specific HTML element type, or

 for no specific HTML element type.

Format definitions for a class always start with a point, followed by a name for the
particular class.

https://www.w3schools.com/css/css_howto.asp

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 40

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The names after the point can be freely assigned, however they may not include

 spaces and German umlaut characters,

 not start with a digit or a hyphen,

 and should not contain an underscore and not be too long.

Example:

h1 {
 font-family : Arial;
 font-size : 2em;
 font-weight : normal;

}
h1.back {

 background-color : #FFFF00
}

*.back {
 background-color : #00FFFF

}

In the example above, using h1.back a class called "back" is addressed, which is

only applicable for HTML elements, type h1 (title, 1st order). Therefore, this can

also be used on elements such as <h1 class=“back“>.

Used with *., a format definition can be noted for a class, which can be applied to
all elements. Here, the star is applicable as a universal selector, however it can
also be completely omitted.

2.4.3 Defining individual formats

Just as formats can be defined for classes that are addressed in an HTML file

using the class attribute, formats can also be defined that are addressed using

the id attribute.

As the value assignment at such an attribute should involve a unique name
throughout the complete document, it therefore involves a central format definition

for the one element with this id.

However, in CSS the id names are not only considered, for example in JavaScript

as unique identifiers, but also as unique element type identifiers.

Example:

#redArea {
 position : absolute;
 top : 130px;
 left : 30px;
 width : 320px;
 padding : 10px;
 margin : 0px;
 border : 4px solid #EE0000;

}

2 Basic information

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 41

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

An individual format is defined in the example above.

Such an individual format starts with the hash sign #, followed by a name allocated

by the user.

An HTML element, which uses this name as value assignment at the id attribute,

is then allocated the appropriate formatting.

Note You can find further information on "defining formats" at the following link:

https://www.w3schools.com/css/css_syntax.asp

https://www.w3schools.com/css/css_syntax.asp

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 42

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Engineering

3.1 Project planning and configuration

The procedure to generate a user-defined web page for the SINAMICS S120
Webserver is shown in the following.

As example, a web page is created, which is structured as a pure diagnostics
page. This displays the actual state of an axis of a SINAMICS S120 drive.

In addition to the sequence when creating the page, its structure is explained in
more detail. An explanation is also given as to how such a user-defined web page
must be converted in order to display this at the drive.

The web page is created for the virtual company "Pick and Place Master" and its
machine "Pick and Place Master S120".

3.1.1 Concept

The concept used here to create a user-defined web page for the SINAMICS S120
Webserver means that the following files must be created for each new page:

 Parameter source
The parameter source includes all of the drive parameters, which are to be
displayed on the corresponding web page.
The parameter source has a fixed structure, and under no circumstances may
it the changed.

All of the parameters are read out of the drive using MWSL functions. Every

parameter must be allocated a unique ID. Via this ID, access can be realized

from the actual web page so that the parameter value can be displayed there.

Depending in which form the parameter value is to be displayed on the web

page, the assigned IDs must be allocated corresponding "groups" in the

parameter source.
In this case, a distinction is made between the following groups:

– plainTextVariables

For IDs that are assigned the plainTextVariables group, the

parameter values are read out of the drive and written to the web page 1:1.
This means that the value is not formatted according to a certain number of
decimal places.

– numericVariables

For IDs that are assigned the numericVariables group, the parameter

values from the drive are limited to a corresponding number of decimal
places before being transferred to the web page.
In addition, for each of these parameter values, when creating the web

page, a warningLimit and a criticalLimit can be optionally

specified. If the value exceeds one of these limits, then this is indicated
e.g. using a yellow or red background.

– indicatorVariables

For IDs that are assigned the indicatorVariables group, the

parameters from the drive are displayed on the web page as color-coded
status displays. These status displays change their color, depending on the
value of the corresponding parameter.

Therefore, the group of indicatorVariables is used to display

individual bits of a parameter or generally, boolean values.

– gaugeVariables

For IDs that are assigned the gaugeVariables group, the parameter

values from the drive are displayed on the web page as round instrument

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 43

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

(Canvas element). This type of display is suitable, for example, to display

the actual drive speed.
Labeling as well as the start and end of the round instrument scale can be
specified by the user when creating the web page.

– barVariables

For IDs that are assigned the barVariables group, the parameter

values from the drive are displayed on the web page as bars (Canvas

element).
Labeling as well as the start and end of the bar scale can be specified by
the user when creating the web page.

 Main page
The complete content of the web page is defined on the main page.

Here, the user can create, e.g. tables, Canvas elements can be inserted and

also status displays created.

By assigning the id attribute, a parameter, previously defined in the parameter

source, can be transferred to the individual HTML elements. To do this, the id

attribute of the HTML element must correspond to the ID of the corresponding

parameter from the parameter source. This means that the value of the
corresponding parameter is displayed at precisely this location on the web
page.

Further, using JavaScript functions defined by the user, it is possible to make
the web page dynamic. Therefore, depending on the selection, it is possible to
hide or display certain areas of the web page.
Further, the JavaScript function to cyclically update the parameters is called on
the main page; this means that all parameters of the parameter source are
cyclically updated at an interval that can be defined by the user.

 Load page
The load page only includes static content, for example the page title and an

IFrame, via whose attribute src the path of a page can be specified, that is to

be loaded into this area (in this particular case, the main page).

This page must always be created as a result of the inherent system
properties. This is because, when directly displaying the main page in the
SINAMICS S120 Webserver, scripting is not supported. If the load page is not
used, then, for example it is not possible to make the web page dynamic using
JavaScript. Further, it is also not possible to cyclically update the parameters of
the parameter source and display these on the main page.

 JavaScript file
All of the JavaScript functions defined by the user are encapsulated in a
JavaScript file, and this is integrated in the head area on the main page in an

opening <script> tag. This procedure ensures that the main page and the

JavaScript functions used remain transparent.

 Stylesheet (optional)
A CSS file can be optionally created, which contains the complete formatting of
the web page. Depending on the defined format type (format for a class or
individual format), the individual HTML elements can be assigned their format

in this way using the class or id attribute. This is precisely the advantage if

several HTML elements should have the same formatting, as the format
properties only have to be defined once at a central location.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 44

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.2 Files used

The following files were created for the web page sample. They will be described in
more detail in the following:

 configuration

- axis1.doName

- axis1.title

 css

– diagAxis.css

– diagStatus.css

– pickAndPlaceMaster.css

– pickAndPlaceMasterHeader.css

 images

– indicatorCritical.png

– indicatorOff.png

– indicatorOn.png

– indicatorNeutral.png

 scripts

– diagAxis.js

– diagStatusAxis.js

– libByMichael.js

 axisRedLoader.mwsl

 diagAxis.mwsl

 diagStatusAxis.mwsl

 variablesDiagAxis.mwsl

 variablesDiagStatusAxis.mwsl

Note The files used for this example are included in the ZIP archive

68691599_S120_Userdefined_Webpages_V2_0.zip, as MWSL files which

must be uploaded to the drive web server.

Please note that the sample page supplied is based on the drive object with the

name which is specified in the file "axis1.doName". Default is "SERVO_02".

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 45

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.3 Structure and content

Figure 3-1 axisRedLoader.mwsl

Table 3-1

File Description Type

axisRedLoader.mwsl This page contains an IFrame, which is filled,

depending on what the user selects, with the
content of the diagAxis.mwsl or

diagStatusAxis.mwsl page.

Therefore, this page is only used to load
another page.

Load page

diagAxis.mwsl This page contains a display of the actual axis
enables. The enables are visualized using
status displays with different colors.

Further, using two Canvas elements, the

actual speed and torque of the axis is
displayed.

In addition, important parameters of the axis
and their actual value are displayed in a
tabular form.

Main page

diagStatusAxis.mwsl This page includes an overview of the actual
control and status words for the sequence
control, faults and alarms as well as the speed
controller.

They are also visualized using status displays
with different colors.

Main page

pickAndPlaceMaster-
Header.css

The stylesheet includes the layout or the
formatting for the texts displayed in the
axisRedLoader.mwsl file.

Stylesheet

axisRedLoader.mwsl

diagAxis.mwsl

diagStatusAxis.mwsl

pickAndPlaceMasterHeader.css

<<include>>

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 46

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-2 diagAxis.mwsl

Table 3-2

File Description Type

diagAxis.mwsl See Table 3-1 Main page

variablesDiag-
Axis.mwsl

This source contains all of the parameters of the
axis that are to be cyclically updated, and which are
used in the HTML page diagAxis.mwsl

Parameter
source

libByMichael.js The JavaScript library includes a series of functions,
which also allow parameters to the cyclically
updated. Canvas elements are also provided.

After the parameters have been updated, the
parameter values are automatically written to the
corresponding location in the HTML page
diagAxis.mwsl using the library.

This library can be universally used!

JavaScript
library

diagAxis.js The JavaScript library includes all of the functions
defined by the user, which are used to dynamically
layout the HTML page diagAxis.mwsl.

This library is specific to a certain page!

JavaScript
library

diagAxis.css The stylesheet includes the specific formatting for

the HTML page diagAxis.mwsl

Stylesheet

pickAndPlace-
Master.css

The stylesheet includes additional formatting types,
which are used across various pages; this means
that these formatting types can be used for
additional user-specific web pages.

Stylesheet

diagAxis.mwsl

libByMichael.js

diagAxis.css

<<include>>

diagAxis.js

variablesDiagAxis.mwsl

pickAndPlaceMaster.css

<<uses>>

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 47

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-3 diagStatusAxis.mwsl

Table 3-3

File Description Type

diagStatusAxis.mwsl See Table 3-1 Main page

variablesDiagStatus-
Axis.mwsl

This source contains all of the parameters of
the axis that are to be cyclically updated, and
which are used in the HTML page
diagStatusAxis.mwsl

Parameter
source

libByMichael.js See Table 3-2 JavaScript
library

diagStatusAxis.js The JavaScript library includes all of the
functions defined by the user, which are used
to dynamically layout the HTML page
diagStatusAxis.mwsl

This library is specific to a certain page!

JavaScript
library

diagStatus.css The stylesheet includes the specific formatting

for the HTML page diagStatusAxis.mwsl

Stylesheet

pickAndPlaceMaster.css See Table 3-2 Stylesheet

diagStatusAxis.mwsl

libByMichael.js

diagStatus.css

<<include>>

diagStatusAxis.js

pickAndPlaceMaster.css

<<uses>>

variablesDiagStatusAxis.mwsl

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 48

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 Creating a parameter source

Every parameter of the drive, which is to be subsequently displayed in the web
page, must first be added to the parameter source.

The parameter source has the following, fixed structure; it is not permissible that
this is changed, with the exception of the content of individual groups:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<root>

<versions>
<document>1</document>
<minInterpreter>1</minInterpreter>

</versions>
<variables>
<user>

<MWSL><!--
var PREFIX_DO_PARAMS = "",
doName = GetVar("doName", "URL");
PREFIX_DO_PARAMS = doName + ".Params.";
--></MWSL>

</user>
<plainTextVariables>
<!-- if no plainTextVariables are defined,
this section has to be deleted-->
</plainTextVariables>
<numericVariables>
<!-- if no numericVariables are defined,
this section has to be deleted-->
</numericVariables>
<indicatorVariables>
<!-- if no indicatorVariables are defined,
this section has to be deleted-->
</indicatorVariables>
<gaugeVariables>
!-- if no gaugeVariables are defined,
this section has to be deleted-->
</gaugeVariables>
<barVariables>
<!-- if no barVariables are defined,
this section has to be deleted-->
</barVariables>

</variables>
</root>

Between the <variables> or </variables> tags, groups are created, in which the IDs
for the drive parameters are defined.
Here, it must be noted that the groups that are not required, must be completely
deleted if no IDs were defined in these for drive parameters.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 49

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

plainTextVariables or numericVariables

In order to add a new parameter of the group plainTextVariables or

numericVariables, proceed as follows:

Table 3-4

No. Action

1. Assign a new ID, which is unique for the page, for the parameter that

should be read out of the drive. Insert this ID into the

plainTextVariables or numericVariables group of the parameter

source.

<plainTextVariables>
<valActualSpeed>

<!-- MWSL code for reading parameter value-->
</valActualSpeed>

</plainTextVariables>

2. To read the parameter from the drive, the corresponding MWSL command
must be called. Insert the MWSL code between the previously defined tags
of the parameter ID.

<plainTextVariables>
<valActualSpeed>

<MWSL><!--
var PREFIX_DO_PARAMS = "",
doName = GetVar("doName", "URL");
PREFIX_DO_PARAMS = doName + ".Params.";
var ActualSpeed;
ActualSpeed=GetVar(PREFIX_DO_PARAMS+"22","PROCESS");
write(ActualSpeed);

--></MWSL>
</valActualSpeed>

</plainTextVariables>

The <MWSL> or </MWSL> tags contain the MWSL code to be executed.

In this particular example, a temporary variable with the name

tmpActualSpeed was created, which is written to using the GetVar()

command.

In the brackets of the command, initially the path must be specified, under
which the corresponding drive parameter can be found.

SERVO_02 is the name of the drive object, this can vary.

The second part of path ".Params." is for all SINAMICS S120 drives for

all drive objects identical.

In this case, the number 22 specifies that parameter number 22 should be

read out of the drive object (speed actual value in rpm, smoothed).

Finally, the parameter value must be written to the parameter source. This

is done using the MWSL command write().

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 50

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3. Alternatively, the parameter value can be directly written to the parameter
source, without having to create a temporary variable:

<MWSL><!--
//first alternative
write(GetVar(PREFIX_DO_PARAMS+"22","PROCESS"));

//second alternative
WriteVar(PREFIX_DO_PARAMS+"22","PROCESS");

--></MWSL>

These two MWSL commands are equal options to the first solution.

The parameter value is now located at precisely this location in the
parameter source, and can therefore be displayed in the web page using
the previously assigned parameter ID.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 51

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

indicatorVariables

In order to add a new parameter of the group indicatorVariables, proceed as

follows:

Table 3-5

No. Action

1. Assign a new ID, which is unique for the page, for the parameter that

should be read out of the drive. Insert this ID into the group

indicatorVariables of the parameter source.

<indicatorVariables>
<indicatorOff1Enable>

<!-- MWSL code for reading parameter value -->
</indicatorOff1Enable>

</indicatorVariables>

2. To read the parameter from the drive, the corresponding MWSL command
must be called. Insert the MWSL code between the previously defined tags
of the parameter ID.

<indicatorVariables>
<indicatorOff1Enable>

<MWSL><!--
var PREFIX_DO_PARAMS = "",
doName = GetVar("doName", "URL");
PREFIX_DO_PARAMS = doName + ".Params.";

if (_accessLevel > ACCESS_LEVEL_NONE) {

write((GetVar(PREFIX_DO_PARAMS + "898") & 0x0001));
}

--></MWSL>
</indicatorOff1Enable>

</indicatorVariables>

The <MWSL> or </MWSL> tags contain the MWSL code to be executed.

In this example, a variable PREFIX_DO_PARAMS was created, which

contains the generally valid part of the path for all drive parameters of the

drive object SERVO_02. This type of variable declaration is especially

practical, if several parameters are to be read out of one drive object, which
have the same path.

In the brackets of the GetVar() command, the previously defined path

must be specified, under which the corresponding drive parameter can be
found.

In this case, the number 898 specifies that parameter number 898 should

be read out of the drive object (CO/BO: control word sequence control).

Using hexadecimal code 0x0001 this parameter is masked using an AND

operator, i.e. here only the state of the 1st bit (bit 0) is evaluated.

Finally, the parameter value must be written to the parameter source. This

is realized using the MWSL command write().

The parameter value is now located at precisely this location in the
parameter source, and can therefore be displayed in the web page using
the previously assigned parameter ID.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 52

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

gaugeVariables

In order to add a new parameter of the group gaugeVariables, proceed

as follows:

Table 3-6

No. Action

1. Assign a new ID, which is unique for the page, for the parameter that

should be read out of the drive. Insert this ID into the group

gaugeVariables of the parameter source.

<gaugeVariables>
<gaugeSpeed>

<!-- MWSL code for reading parameter value -->
</gaugeSpeed>

</gaugeVariables>

2. To read the parameter from the drive, the corresponding MWSL command
must be called. Insert the MWSL code between the previously defined tags
of the parameter ID.

<gaugeVariables>
<gaugeSpeed>

<value>
<MWSL><!--

WriteVar(PREFIX_DO_PARAMS + "22");
--></MWSL>

</value>
<setValue>

<MWSL><!--
WriteVar(PREFIX_DO_PARAMS + "20");

--></MWSL>
</setValue>

</gaugeSpeed>

</gaugeVariables>

For parameter IDs, which belong to the parameter group

gaugeVariables it should be noted, that a distinction can again be made

between an actual value and setpoint.

The <value> and </value> tags therefore contain the MWSL code for

the actual value of the parameter ID; the <setValue> and </setValue>

tags, the MWSL code for the setpoint of the parameter ID (optional).

It is not permissible to change the name of the tags!

The defined parameter ID gaugeSpeed therefore has two parameter

values of the drive object, which will be subsequently displayed in the web
page using two pointers in the corresponding round instruments.

In this example, the two parameter values are read out of the drive object

using the function WriteVar() and are simultaneously written to the

parameter source.

In the brackets of the command, the path is specified under which the
corresponding drive parameter can be found (see: PREFIX_DO_PARAMS).

In this case, the number 22 specifies that parameter number 22 should be

read out of the drive object (speed actual value rpm, smoothed).
In addition, the value of parameter number 20 is read out of the drive object
(speed setpoint, smoothed).

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 53

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

barVariables

Proceed as follows to add a new parameter of the barVariables

group:

Table 3-7

No. Action

1. Assign a new ID, which is unique for the page, for the parameter that

should be read out of the drive. Insert this ID into the group

barVariables of the parameter source.

<barVariables>
<barTorque>

<!-- MWSL code for reading parameter value -->
</barTorque>

</barVariables>

2. To read the parameter from the drive, the corresponding MWSL command
must be called. Insert the MWSL code between the previously defined tags
of the parameter ID.

<barVariables>
<barTorque>

<value>
<MWSL><!--

WriteVar(PREFIX_DO_PARAMS + "31");
--></MWSL>

</value>
</barTorque>

</barVariables>

For parameter IDs, which belong to the parameter group barVariables,

it should be observed that the MWSL code must be noted here, to read out

the parameters between the <value> and </value> tags.

It is not permissible to change the name of the tag!

In this example, the parameter value is read out of the drive object using

the function WriteVar() and is simultaneously written to the parameter

source.

In the brackets of the command, the path is specified under which the
corresponding drive parameter can be found (see: PREFIX_DO_PARAMS).

In this case, the number 31 specifies that parameter number 31 should be

read out of the drive object (torque actual value, smoothed).

Note Please take additional examples for parameter IDs of the groups shown above

from the source, variablesDiagAxis.mwsl (WEBSITES folder) in the ZIP

archive 68691599_S120_Userdefined_Webpages_V2_0.zip.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 54

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Creating the content of the web page

The complete content of the subsequent web page is saved in the main page.
In order that the values of the parameters, which were previously defined in the
parameter source, are also displayed, linking via the assigned parameter IDs must
be realized here.

Note The individual steps are explained using the following example of the
diagAxis.mwsl page.

 3.3.1 Displaying parameter values

plainTextVariables

Table 3-8

No. Action

1. The link between the parameter source and the main page is realized using the
parameter ID defined in the parameter source.

Main page Parameter source

<div>
 <table>
 <tr>
 <td>Actual Speed</td>
 <td id="valActualSpeed">---</td>
 <td>1/min</td>
 </tr>
 </table>

</div>

<plainTextVariables>
 <valActualSpeed>
 <MWSL><!--
 ...
 --></MWSL>
 </valActualSpeed>

</plainTextVariables>

2. In order to visualize the drive parameter in the main page, the id attribute of an HTML

element must be assigned the corresponding parameter ID (here: valActualSpeed).

The HTML element can be, for example, a table cell (see above), in which the
parameter value is then displayed.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 55

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

numericVariables

Table 3-9

No. Action

1. The link between the parameter source and the main page is realized using the
parameter ID defined in the parameter source.

Main page Parameter source

<div>
 <table>
 <tr>
 <td>Output Voltage</td>
 <td id="valOutputVoltage">

 300
 320
 </td>
 <td>Vrms</td>
 </tr>
 </table>

</div>

<numericVariables>
 <valOutputVoltage>
 <MWSL><!--
 ...
 --></MWSL>
</valOutputVoltage>

</numericVariables>

2. In order to visualize the drive parameter in the main page, the id attribute of an HTML

element must be assigned the corresponding parameter ID (here:

valOutputVoltage).

The HTML element can be, for example, a table cell (see above), in which the
parameter value is then displayed.

For parameter IDs that belong to the numericVariables group, it should be noted,

that to display the values in the main page, an additional element with the

class="value" attribute is required.

For example, if a column of the table is to have a color background as soon as the value
exceeds a specific limit, then this can be optionally implemented using additional

 elements with the class=“warningLimit“ as well as

class=“criticalLimit“ attributes. The limit values are noted between the

appropriate tags.

If the parameter value exceeds the limit that was defined for warningLimit, then the

corresponding table column has a yellow background and for criticalLimit red.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 56

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

indicatorVariables

Table 3-10

No. Action

1. The link between the parameter source and the main page is realized using the
parameter ID defined in the parameter source.

Main page Parameter source

<div>
 <div>
 <img id="indicatorOff1Enable"
 src="images/indicatorOff.png"
 alt="off" />
 <p>OFF1 Enable</p>
 </div>

</div>

<indicatorVariables>
 <indicatorOff1Enable>
 <MWSL><!—
 ...
 --></MWSL>
 </indicatorOff1Enable>

</indicatorVariables>

2. In order to visualize the drive parameter in the main page, the id attribute of an HTML

element must be assigned the corresponding parameter ID

 (here: indicatorOff1Enable).

In this case, the HTML element must be an image (see above), i.e. in this particular
case, a status display whose color changes depending on the parameter value.

The src attribute is used to define which image is displayed if the main page is

subsequently called in the drive. The text, which should be displayed if the appropriate

image is not available, is transferred to the alt attribute.

The text, which should be subsequently located next to the status display, is noted

between the <p> and </p> tags.

3. Normally, individual bits of a parameter can be evaluated using status displays, so that
the value of the corresponding bit is visualized using different colors.

If the bit has a value of "0", then a red status displays is shown.
If the bit has a value of "1", then a green status display is shown.

4. With appropriate configuration a blue status display can be shown in the application.

To do this, in the relevant parameter source, the actual value of the corresponding bit is
read out ("0" or "1"), and depending on this the value "3" is written to the HTML page.

Example:

<controlWordAxisCommandOpenBrake>
 <MWSL><!--
 if (_accessLevel > ACCESS_LEVEL_NONE) {
 if (((controlWordAxis & 0x0080) >> 7) == 0){
 write(INDICATOR_NEUTRAL);
 }
 else{
 write(INDICATOR_ON);
 }
 }
 --></MWSL>

</controlWordAxisCommandOpenBrake>

In the example above, bit 7 of the status word (ZSW1) of the axis is checked for its
value. If it is "0", the value "3" is written to the HTML page, thus creating a blue status
display.

If bit 7 has a value of "1", then its value is written to the HTML page, and therefore a
green status display is shown.

In this particular example, the INDICATOR_NEUTRAL is pre-assigned with the value "3",

the INDICATOR_ON variable with "1".

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 57

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

gaugeVariables

Table 3-11

No. Action

1. The link between the parameter source and the main page is realized using the
parameter ID defined in the parameter source.

Main page Parameter source

<div>
 <div>
 <canvas id="gaugeSpeed"
 width="160"
 height="160">
 </canvas>
 </div>

</div>

<gaugeVariables>
 <gaugeSpeed>
 <value>
 <MWSL><!--
 ...
 --></MWSL>
 </value>
 <setValue>
 <MWSL><!--
 ...
 --></MWSL>
 </setValue>
 </gaugeSpeed>

</gaugeVariables>

2. In order to visualize the drive parameter in the main page, the id attribute of an HTML

element must be assigned the corresponding parameter ID

 (here: gaugeSpeed).

In this case, the HTML element must be a Canvas element (see above), where the

required size in the web page is specified using the width and height attributes.

barVariables

Table 3-12

No. Action

1. The link between the parameter source and the main page is realized using the
parameter ID defined in the parameter source.

Main page Parameter source

<div>
 <div>
 <canvas id="barTorque"
 width="160"
 height="160">
 </canvas>
 </div>

</div>

<barVariables>
 <barTorque>
 <value>
 <MWSL><!--
 ...
 --></MWSL>
 </value>
 </barTorque>

</barVariables>

2. In order to visualize the drive parameter in the main page, the id attribute of an HTML

element must be assigned the corresponding parameter ID

 (here: barTorque).

In this case, the HTML element must be a Canvas element (see above), where the

required size in the web page is specified using the width and height attributes.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 58

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3.2 Updating parameter values

There are two options for updating parameter values:

 Single update
For a single update, after calling the web page, the required parameter values
are read out of the drive once using a JavaScript function and written into the
web page.
This type of update only makes sense for parameters whose values do not
change during operation (e.g. configuration data of interfaces).

Table 3-13

No. Action

1. To update parameter values once (i.e. the parameter source), two JavaScript functions

are available, which are defined in the JavaScript library libByMichael.js.

function updateValues() {
 /* first function for updating values */
 updateDocument.updateValues('variablesDiagAxis.mwsl');

 /* second function for updating values */
 updateDocument.updateValuesEx('variablesDiagAxis.mwsl', null,
null);

}

Both function calls are shown in the example above.

The updateValues() function can be executed, e.g. after calling the particular web

page, which means that the parameter values are updated once. To achieve this, the

function call must be noted in the onload event handler of the <body> tag of the web

page.

<body onload="updateValues()">
 ...

</body>

2. The name of the parameter source is transferred as parameter to the

updateDocument.updateValues() or updateDocument.updateValuesEx()

function

(in this case: variablesDiagAxisRed.mwsl).

The difference between the two functions is that the function

updateDocument.updateValuesEx() can transfer two additional parameters.

The second transfer parameter is used to update Canvas elements, the third transfer

parameter is used to call what is known as a callback function, which checks as to
whether the parameter values have been successfully updated.

If these transfer parameters are pre-assigned the value zero – as is the case in the

example above – then the particular functionality is not executed.

Note For additional information on updating canvas elements, please observe the
information in Chapter 3.3.4: Initializing and updating canvas elements.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 59

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

 Cyclic update
For a cyclic update, after calling the web page, the required parameter values
are cyclically read out of the drive using a JavaScript function, and written to
the web page. Users can specify the update interval at the JavaScript function.
As a consequence, this type of update makes sense for parameters whose
values change in operation (e.g. control/status words of the drive).

Table 3-14

No. Action

1. To cyclically update parameter values (i.e. the parameter source), the already known

function updateDocument.updateValues() or

updateDocument.updateValuesEx() can be noted in the function

setInterval() provided by JavaScript.

function updateValues() {
 /* first function for updating values */
 setInterval(function (){ updateDocument.updateValues(…)},3000);

 /* second function for updating values */
 setInterval(function (){ updateDocument.updateValuesEx(…)},3000);

}

Both function calls are shown in the example above.

The updateValues() function can be executed, e.g. after calling the particular

web page, which means that the parameter values are cyclically updated. To

achieve this, the function call must be noted in the onload event handler of the

<body> tag of the web page.

<body onload="updateValues()">
 ...

</body>

2. The difference to the single update of parameter values is the fact that a time in

milliseconds can be specified at the setInterval() function; after this time

expires, the updateDocument.updateValues() or

updateDocument.updateValuesEx() function can be called again.

As a consequence, the parameter values are read out of the drive again and written
to the web page.

Note Depending on the number of parameters to be read out of the drive, as well as
the actual system conditions, the time should be selected, which is specified

using the setInterval() function.

The time should not be less than 1000ms, as otherwise, errors can occur when
updating the parameter values.

Note You can find additional information on the setInterval() JavaScript function

at the following link:

https://www.w3schools.com/jsref/met_win_setinterval.asp

https://www.w3schools.com/jsref/met_win_setinterval.asp

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 60

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3.3 Using the callback function

The callback function can be used to identify whether the parameter values were
successfully updated. If this is the case, then an additional JavaScript function can
be called (e.g. to format these parameter values).

Table 3-15

No. Action

1. The name of the callback function can be freely selected, and must be transferred as

third parameter to the updateDocument.updateValuesEx() function (in this

case: checkUpdate).

function updateValues() {
updateDocument.updateValuesEx('variablesDiagAxis.mwsl', null,
checkUpdate);

}

2. The callback function checkupdate is automatically called as soon as the

updateDocument.updateValuesEx() function was executed.

function checkUpdate(finishStateofRequest) {
 var STATES_REQUEST_CALLBACK = {
 REQUEST_NOT_SUCCESSFUL: 0,
 REQUEST_SUCCESSFUL: 1,
 REQUEST_ABORTED: 2
 };

 if (finishStateofRequest ===
 STATES_REQUEST_CALLBACK.REQUEST_SUCCESSFUL) {
 formatValues();
 updateValues();
 }

}

In doing so, the JavaScript library libByMichael.js is internally evaluated, as to

whether the parameter values were successfully updated – or not.

The result is then located in finishingStateOfRequest transfer parameter.

If this parameter has a value of 1 (REQUEST_SUCCESSFUL), then another JavaScript

function, defined by the user, can be called

(in this case: formatValues()).

This procedure ensures that valid parameter values are available, if these are then
to be subsequently processed.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 61

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3.4 Initializing and updating canvas elements

In order that Canvas elements can always be displayed, these must be initialized

using JavaScript after calling the appropriate web page.

Table 3-16

No. Action

1. The JavaScript function to initialize Canvas elements must be called after loading

the web page.

<body onload="setupPage()">
 ...

</body>

This can be done using the onload event handler, which is noted in the <body>

tag, and is called via the appropriate function after loading the web page (in this

case: initCanvas()).

if (moduleCanvasHelpers.isCanvasSupported()) {
 gauges = initGauges();
 bars = initBars();
 canvasControls = gauges.concat(bars);

}

2. It is recommended that the initialization of the particular types of Canvas elements

(i.e. round instruments (Gauge) as well as bars (Bar)) are again encapsulated in

separate functions, and these can then be called in the initCanvas() function.

Especially if several elements of the same type are used in an HTML page, these
can be simply and quickly added in the corresponding function.

function initGauges() {
 var gaugeSpeed = new canvasControls.Gauge('gaugeSpeed', 0,
 3000, 'Rotation speed', 'rpm');
 gaugeSpeed.addDefaultColoredSections(0, 2400, 2700, 3000);
 gaugeSpeed.refresh(null, null);

 return [gaugeSpeed];
}

3. The variable gaugeSpeed is initialized using the canvasControls.Gauge()

function as new Canvas element, type Gauge.

The parameters in brackets have the following functions:

 gaugeSpeed
parameter ID, which was defined in the parameter source, and assigned a

Canvas element in the HTML page.

 0 and 3000

Minimum and maximum value of the scale of the Canvas element

 Rotation speed

Title of the Canvas element

 rpm

Unit in which the scale of the Canvas element is shown

4. Using the command gaugeSpeed.addDefaultColoredSections(...), the

scale of the Canvas element can be subdivided into colored sectors:

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 62

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

- Between the first and second value, which are noted in the brackets, the

scale of the Canvas element is displayed in green.

- Between the second and third value, the scale of the Canvas element is

displayed in yellow.

- Between the third and fourth value, the scale of the Canvas element is

displayed in red.

5. The command gaugeSpeed.refresh(null, null) only means that at the start

(i.e. after calling the website), a pointer is not displayed at the Canvas element.

6. The function initGauges() returns, using the command

return[gaugeSpeed]an array, which as index contains the variable

gaugeSpeed, which previously was initialized as new Canvas element, type

Gauge.

If several Canvas elements of this type are to be initialized, then the code above

can be copied, and again inserted in the function initGauges(). In this case, only

the variable name of the new element, e.g. in gaugeSpeed2, has to be renamed,

and the corresponding parameter ID inserted.

The command return[...] then contains, as additional index, the variable

gaugeSpeed2:

return[gaugeSpeed, gaugeSpeed2];

Note

The function initBars() shows an example on how to initialize canvas

elements, type Bars.

The only difference to the function initGauges() is that for the command

canvasControls, the expression .Bar is used instead of .Gauge.

Otherwise, the procedure is analogous to the steps described above.

function initBars() {
 var barTorque = new canvasControls.Bar('barTorque', 0,
 0.3, 'Torque', 'Nm');
 barTorque.addDefaultColoredSections(0, 0.1, 0.2, 0.3);
 barTorque.refresh(null);

 return [barTorque];
}

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 63

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

7. The canvas elements can now be updated using the initCanvas() function.

/* Change to cyclic updating mode with a period of 3000ms */
setInterval(function () {
 updateDocument.updateValuesEx('variablesDiagAxis.mwsl?doName='
 + doName, canvasControls, null);

}, 3000);

In this case, the previously defined functions initGauges() and initBars() are

called, and the particular return values (i.e. arrays) are transferred to variables

gauges and bars.

gauges = initGauges();

bars = initBars();

8. Using the JavaScript function concat(), both arrays are then combined to create

one array, and saved in variable canvasControls.

The variable canvasControls then contains all array elements that should be

updated.

canvasControls = gauges.concat(bars);

9. In turn, the elements are updated using the function

updateDocument.updateValuesEx(...), which – noted in the JavaScript

function setInterval() – is cyclically called.

The variable canvasControls is transferred to the function as second parameter,

which means that the individual Canvas elements of the HTML page are supplied

with new values.

Note If only type (Gauge or Bar) canvas elements are contained in an HTML page,

then the variable, which is written to with the return array of the particular
initialization function, can also be directly transferred to the

updateDocument.updateValuesEx() function.

The route via the JavaScript function concat() is then not necessary.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 64

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4 Loading the content of the web page

A second HTML page must be created in order that the web page can be
subsequently displayed in the drive web server. This is necessary, as scripting
would otherwise not be supported as a result of the inherent system. The page

contains an IFrame, which is used to load the actual web page.

Note The individual steps are explained using the following example of the

diagAxis.mwsl page.

Table 3-17

No. Action

1. <iframe src="USERFILES/WEBSITES/diagAxis.mwsl?doName=
<MWSL><!--write(doNameAxis);--></MWSL>"
id="contentOneAxis" class="fullContentWindowIframe">
<p>Unfortunately your browser is not able to display embedded
IFrames</p>

</iframe>

The path, from the perspective of the load page, under which the main page is

saved, must be transferred to the attribute src in the opening <iframe> tag

(in this case: USERFILES/WEBSITES/diagAxisRed.mwsl).

The size of the display area is saved in the format fullContentWindowIframe in

the stylesheet pickAndPlaceMasterHeader.css using the two attributes

width and height, which is accessed using the class attribute.

If the browser is not able to display IFrames, then a text can be noted between the

<iframe> and </iframe> tags, which is then displayed to inform the user.

Note You can also find additional information on IFrames under the following link:

https://www.w3schools.com/html/html_iframe.asp

https://www.w3schools.com/html/html_iframe.asp

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 65

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Sample pages

3.5.1 diagAxis.html (main page 1)

Note The structure and content of the sample page diagAxisRed.html is explained

in more detail in the following section.

Please note that the content of the page-specific sources – the stylesheet

diagAxis.css and the JavaScript library diagAxis.js – are not discussed in

any detail here.

You can find basic information on the topics of "JavaScript" and "CSS" in the
chapters 0: JavaScript as well as 2.4: Cascading Style Sheets (CSS).

Table 3-18

HTML code Web page

Using the above HTML code an area (<div>) is created in the <body> area of the page in

which individual status displays can be inserted using additional <div> elements. Explanatory

text is added to each status display using its <p> element. The status displays are formatted

using the class="indicatorItem" attribute. The indicatorItem format is saved in the

pickAndPlaceMaster.css stylesheet.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 66

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-19

HTML-Code Web page

An additional area of the web page contains the two Canvas elements.

The height (height) and width (width) of each element is directly specified here; additional

formatting information is saved in the diagAxis.css stylesheet; this can be accessed using

the class="canvasControl" attribute.

Table 3-20

HTML-Code Web page

The web page also includes a table (<table>), which lists several important drive parameters.

Attributes class="warningLimit" and class="criticalLimit" are assigned to the

parameters. If the parameter value falls below one of these limits, then the corresponding table
cell has a colored background.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 67

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note To improve the readability, in some instances, the complete HTML code is not
shown, and line breaks inserted. Points mark the missing locations.

 3.5.2 diagStatusAxis.html (main page 2)

Note The structure and content of the sample page diagStatusAxis.html is

explained in more detail in the following section.

Please note that the content of the page-specific sources – the stylesheet

diagStatus.css and the JavaScript library diagStatusAxis.js – are not

discussed in any detail here.

You can find basic information on the topics of "JavaScript" and "CSS" in the
chapters 0: JavaScript as well as 2.4: Cascading Style Sheets (CSS).

Table 3-21

HTML-Code Web page

Using the above HTML code, an area (<div>) is created in the <body> area of the page in

which a selection list is inserted using the <select> tag.

The list includes a total of four selection options (option). However, using the attribute

size="1", only one option is directly displayed, which means that the list becomes a drop-down

menu.

When changing the value, the setPageContents() JavaScript function is called each time.

Using the value attributes, the individual options are assigned internal values; these are used

to query the user's selection and dynamically adapt the content of the web page.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 68

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-22

HTML-Code Webseite

The other HTML code of the page comprises areas, which contain status displays for the
following control and status words:

 Sequence control

 Faults/alarms 1

 Faults/alarms 2

 Speed controller

Depending on what the user has selected from the selection list, the relevant areas are
displayed or hidden (control and status words).

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 69

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5.3 axisRedLoader.html (load page)

Note The structure and content of the sample page axisRedLoader.html is

explained in more detail in the following section.

Please note that the content of the page-specific source – the stylesheet

pickAndPlaceMasterHeader.css – is not discussed in any detail here.

You can find basic information on the topic of "CSS" in Chapter 2.4: Cascading
Style Sheet (CSS).

Table 3-23

HTML-Code

Webseite

Using the above HTML code, an area (<div>) is created in the <body> area of the page which

contains the header (i.e. the titles) of the various pages.

Using the two buttons (Diagnostics and Status) in the (<div

id="headerNavigationTabs">) you can determine which content of the web page is to be

displayed, i.e. the content of page diagAxis.html or diagStatusAxis.html).

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 70

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-24

HTML-Code Web page

The IFrame contains the actual content of the web page.

Depending on what the user has selected (Diagnostics or Status), the path of the required

page is assigned to the attribute src of the IFrame, and therefore its content is displayed.

The size of the display area is saved in the format fullContentWindowIframe in the

stylesheet pickAndPlaceMasterHeader.css, and is accessed using the class attribute.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 71

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Uploading files to the web server

Note The following preconditions must be observed in order that web pages created
can be uploaded to the drive web server:

 A functioning TCP/IP connection must exist between the PG/PC and the
SINAMICS drive, via which the drive can be accessed.

 The basic commissioning of the drive must have been completed, i.e. all of
the drive objects are available and ready for operation.

 During the basic commissioning, the user must have been set up as
"Administrator" in STARTER. Only this user has the rights to upload user-
defined pages into the web server.

Also refer to the SINAMICS S120 Function Manual, Chapter 6.28.3:
Configuring the web server.
https://support.industry.siemens.com/cs/ww/en/view/109740020

Table 3-25

No. Action

1. Call the web server of the SINAMICS drive by entering its
IP address (e.g. the default IP address of the commissioning interface
X127: 169.254.11.22) in the address line of your web browser, and confirm
your input by pressing the enter key.

2. In the start page, enter the "Administrator" user name as well as the
password you assigned to this user when commissioning the system and
click on "Login".

3. After you have successfully logged on, change to the "Files" menu.

https://support.industry.siemens.com/cs/ww/en/view/109740020

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 72

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

4. New folders/directories can be created using the "Create Directory"
button. To do this, enter the appropriate folder name in the text box, which
is located to the right of the button.

Create the folder "WEBSITES" first. In this folder all user-defined pages will
be saved.

To use the example pages create following subfolders in the folder
"WEBSITES":

 css

 images

 scripts

A single file can be uploaded using the "Send selected file" button. To do
this, select the appropriate file using the folder symbol, located to the right
of the button.

Upload all of the files that are required to display the sample pages. To do
this, extract the zip archive supplied
68691599_S120_Userdefined_Webpages_V2_0.zip.

Ensure that all of the files are saved in the following (folder) structure
in the web server!

 WEBSITES

 css

– diagAxis.css

– diagStatus.css

– pickAndPlaceMaster.css

– pickAndPlaceMasterHeader.css

 configuration

– axis1.doName

– axis1.title

 images

– indicatorCritical.png

– indicatorOff.png

– indicatorOn.png

– indicatorNeutral.png

 scripts

– diagAxis.js

– diagStatusAxis.js

– libByMichael.js

 axisRedLoader.mwsl

 diagAxis.mwsl

 diagStatusAxis.mwsl

 variablesDiagAxis.mwsl

 variablesDiagStatusAxis.mwsl

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 73

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

Note Alternatively, all of the files can be directly loaded to the CF card of the
SINAMICS drive using a CF card reader.

To do this, extract the zip archive supplied

68691599_S120_Userdefined_Webpages_V2_0.zip.

Then copy the files of the MBS folder – including all of the subdirectories – into

the target folder "OEM/SINAMICS/HMI/USERFILES" on the CF card.

No. Action

5. Then change to the "Files" menu and switch to the "Settings for User's
Area" tab.

6. Here you can select which web pages are to be displayed in the web server
and how this is to be done:

 Embedded
This setting should be selected, if more than one web page is to be
displayed in the web server.
The web pages are listed in the "User’s Area" menu and can be
individually called as part of the web server.

 Embedded simple
This setting can only be selected if only one web page is to be displayed

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 74

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

in the web server.
The web page is then directly displayed as part of the web server, as
soon as the user changes into the "User’s Area" menu.

 Standalone
This setting can also only be selected if only one web page is to be
displayed in the web server.
The web page is then displayed as independent page (i.e. not as part of
the web server), as soon as the user changes into the "User’s Area"
menu.

The sample pages are implemented as "embedded".

Using the "Add row" button you can insert a new row here.
Here, enter the path of the required web page (i.e. the file name of the load
page) as well as a name via which the web page will be subsequently
called and displayed in the "User’s Area" menu.

Then save your settings using the "Save settings" button.

7. Then change into the "User’s Area" menu.

Depending on which display settings you have selected (embedded,
embedded simple, standalone), the web pages are either directly displayed,
or can be called using the previously assigned name.

This is what the user area looks like if the pages are integrated as
"embedded". For each row entry in the "Files > Settings" menu, a new tab
is created in the "User’s Area".

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 75

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7 Uploading new pages

Tabelle 3-26

No. Action

1. Check all of the path data that was used in the individual sources.
Paths must always be specified from the perspective of the source, just as
they will be subsequently saved in the drive.
Ensure that all source names in the path data, which refer to other pages
that you create, have the .mwsl extension (with the exception of JavaScript
files, CSS files and images)!

Example:

2. Afterwards the files can be uploaded to the web server.

Existing older files may be overwritten automatically.

NOTE Existing older files are only getting overwritten if the used control unit has at
least following hardware version:

 CU310-2 DP / CU310-2 PN from HW-version E

 CU320-2 DP from HW-version G

 CU320-2 PN from HW-version D,

And the uploaded files have a newer creation date than the existing files and the
CF card is 2GB in size.

No. Action

3. On first use the MWSL files will be compiled automatically.

.mwsl .mwsl.cms

Example:

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 76

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Loading and commissioning the sample pages

The startup of the completed sample pages of the zip archive

68691599_S120_Userdefined_Webpages_V2_0.zip, which was supplied

with this application example, is explained in this chapter.

Chapter: Basic information as well as Chapter: Project planning and configuration
do not have to be necessarily observed here, but they do help to understand how
the web pages are created and to understand the structure of the configured
sample pages.

3.8.1 …via a CF card reader

Table 3-27

No. Action

1. Load all files from the zip-archive

68691599_S120_Userdefined_Webpages_V2_0.zip directly to the

CF card of the SINAMICS drive using a CF card reader.

Copy the folder "WEBSITES" including all files and subfolders to the target
folder "OEM/SINAMICS/HMI/USERFILES" on the CF card.

2. Turn on the SINAMICS drive with the inserted CF card.

3. Call the web server of the SINAMICS drive by entering its IP address (e.g.
the default IP address of the commissioning interface X127: 169.254.11.22)
in the address line of your web browser, and confirm your input by pressing
the Enter key.

4. In the start page, enter the "Administrator" user name as well as the
password you assigned to this user when commissioning the system and
click on "Login".

Note

The "Administrator" user must have been enabled on carrying out the
basic commissioning of the drive.

The basic commissioning of the drive must have been completed.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 77

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

5. After successful login change to the "Files" menu.

6. Your folder "WEBSITES" should then look like this:

7. Change to the "Files" menu under the "Settings for User's Area" tab.

Either select the "Embedded" or "Embedded simple" setting, and insert a
new line using the "Add line" button:

Path: WEBSITES/axisRedLoader.mwsl
Name: Diagnostics

Save your settings using the "Save settings" button.

8. The application can now be used.

NOTE The correct operation of the loaded page can be checked as per chapter 3.9:
Operation.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 78

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8.2 …via the webserver

Table 3-28

No. Action

1. Call the web server of the SINAMICS drive by entering its IP address (e.g.
the default IP address of the commissioning interface X127: 169.254.11.22)
in the address line of your web browser, and confirm your input by pressing
the Enter key.

2. In the start page, enter the "Administrator" user name as well as the
password you assigned to this user when commissioning the system and
click on "Login".

Note

The "Administrator" user must have been enabled on carrying out the
basic commissioning of the drive.

The basic commissioning of the drive must have been completed.

3. After successful login change to the "Files" menu.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 79

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4. New folders can be created by pressing the "Create Directory" button.
Assign the appropriate folder names in the entry field, which is located to
the right of the button.

Create the folder "WEBSITES" first. In this folder all userdefined webpages
are saved.

Create the following subfolders in the folder "WEBSITES" to use the sample
pages:

 configuration

 css

 images

 scripts

A single file can be uploaded using the "Send selected file" button. To do
this, select the appropriate file using the folder symbol, located to the right
of the button.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 80

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5. Upload all of the files that are required to display the required sample
pages. To do this, extract the ZIP archive

68691599_S120_Userdefined_Webpages_V2_0.zip supplied.

The files required for the sample pages are located in the folder
"WEBSITES".

Ensure that all files of the sample pages are saved in the web server in
the following (folder) structure in the web server of your drive:

 WEBSITES

 configuration

– axis1.doName

– axis1.title

 css

– diagAxis.css

– diagStatus.css

– pickAndPlaceMaster.css

– pickAndPlaceMasterHeader.css

 images

– indicatorCritical.png

– indicatorOff.png

– indicatorOn.png

– indicatorNeutral.png

– indicatorWarning.png

 scripts

– diagAxis.js

– diagStatusAxis.js

– libByMichael.js

 axisRedLoader.mwsl

 diagAxis.mwsl

 diagStatusAxis.mwsl

 variablesDiagAxis.mwsl

 variablesDiagStatusAxis.mwsl

6. Your folder "WEBSITES" should then look like this:

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 81

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7. Change to the "Files" menu under the "Settings for User's Area" tab.

Either select the "Embedded" or "Embedded simple" setting, and insert a
new line using the "Add line" button:

Path: WEBSITES/axisRedLoader.mwsl
Name: Diagnostics

Save your settings using the "Save settings" button.

8. The application can now be used.

NOTE The correct operation of the loaded page can be checked as per chapter 3.9:
Operation.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 82

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Operation

Table 3-29

Nr. Aktion

1. After you have successfully commissioned the application, go to the web server of the
SINAMICS drive in the "User’s Area" menu.

2. The user-defined web page is divided into two parts:

 Diagnostics page with important parameters, as well as enables and speed/torque of
a drive axis

 Status page for control and status words of a drive axis

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 83

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Nr. Aktion

3. The diagnostics page is always displayed, if the user-defined web page is called using
the "Diagnostics" entry.

Set enables are shown in green, while missing enables are shown in red.
The actual speed as well as the torque of the axis are visualized using the two canvas
elements in the form of pointers or bars.
If a parameter of the parameter table exceeds a limit value defined in the HTML source,
then its value has a colored background (warning: yellow, critical value: red).

The corresponding data (i.e. parameter values) are then read out of the drive in a 3
second time grid.

4. You can toggle between the diagnostics page and the status page using the
"Diagnostics" or "Control- / Status words" entries.

5. The status page displays various control and status words of a drive axis.

You can select one of the following views from the drop-down menu:

Control and status word...

 …of the sequence control (sequence control)

 …faults/alarms 1 (Faults / Alarms 1)

 …faults/alarms 2 (Faults / Alarms 2)

 …of the speed controller (speed controller)

6. The most important bits of the control and/or status word, which have the value TRUE,
are shown in green on the status page. Important bits with the value FALSE, are
correspondingly shown in red.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 84

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Nr. Aktion

Bits of the particular control and status word that are not so important are shown in blue,
i.e. are shown in a neutral form (see also indicatorVariables).The corresponding data (i.e.
parameter values) are then read out of the drive in a 3 second time grid.

3 Engineering

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 85

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10 Changing the name of the axes

You can change the name and the displayed title of the axis under
"USERFILES/WEBSITES/configuration".

Figure 3-4

Here you find 2 files for the axis:

In the file with the ending ".doName" you can assign the actual name of the drive.

In this example:

"SERVO_02"

In the file with the ending ".title" you can assign the name of the axis that is
displayed on the web pages.

In this example:

"Red axis"

4 Appendix

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 86

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Appendix

4.1 Service and Support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:
https://support.industry.siemens.com/

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts. Please send queries
to Technical Support via Web form:
https://www.siemens.com/industry/supportrequest

SITRAIN – Training for Industry

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:
https://www.siemens.com/sitrain

Service offer

Our range of services includes the following:

 Plant data services

 Spare parts services

 Repair services

 On-site and maintenance services

 Retrofitting and modernization services

 Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for Apple iOS, Android and Windows
Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
https://www.siemens.com/industry/supportrequest
https://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

4 Appendix

Creating user-defined web pages
Entry-ID: 68691599, V2.1, 09/2018 87

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Application support

Siemens AG
Digital Factory Division
Factory Automation
Production Machines
DF FA PMA APC
Frauenauracher Str. 80
91056 Erlangen, Germany

mailto: profinet.team.motioncontrol.i-dt@siemens.com

4.3 Links and Literature

Table 4-1

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to this entry page of this application example

https://support.industry.siemens.com/cs/ww/en/view/68691599

\3\ SINAMICS S120 Function Manual

https://support.automation.siemens.com/WW/view/en/68042590

\4\ SIMOTION IT Programming Manual

https://support.automation.siemens.com/WW/view/en/61148084

\5\ w3schools

https://www.w3schools.com/

\6\ Other user-defined pages

https://support.automation.siemens.com/WW/view/en/78388880

\7\ Protection with Industrial Security

https://support.industry.siemens.com/cs/ww/en/view/50203404

4.4 Change documentation

Table 4-2

Version Date Modifications

V1.0 06/2013 First version

V2.0 08/2017 Revision (new format .mwsl)

V2.1 08/2018 Added all MWSL functions

mailto:profinet.team.motioncontrol.i-dt@siemens.com
https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/68691599
https://support.automation.siemens.com/WW/view/en/68042590
https://support.automation.siemens.com/WW/view/en/61148084
https://www.w3schools.com/
https://support.automation.siemens.com/WW/view/en/78388880
https://support.industry.siemens.com/cs/ww/en/view/50203404

	SINAMICS S120 web server - Creating user-defined web pages
	Legal information
	1 Introduction
	1.1 Overview
	1.2 Mode of operation
	1.3 Components used

	2 Basic information
	2.1 Hypertext Markup Language (HTML)
	2.1.1 Structure of an HTML file
	2.1.2 Basic elements
	2.1.3 IFrames
	2.1.4 Canvas elements

	2.2 MiniWeb Server Language (MWSL)
	2.2.1 Principle of operation
	2.2.2 Structure of an MWSL file
	2.2.3 Variable types
	2.2.4 Script variables
	2.2.5 Global variables
	2.2.6 User access
	2.2.7 Operators
	2.2.8 Overview of MWSL functions
	2.2.9 Overview of SINAMICS process variables
	2.2.10 MWSL functions

	2.3 JavaScript
	2.3.1 Integrating JavaScript into HTML
	2.3.2 The Document Object Model (DOM)
	2.3.3 getElementById
	2.3.4 Event handler
	2.3.5 Functions
	2.3.6 Libraries
	2.3.7 Variable types

	2.4 Cascading Style Sheets (CSS)
	2.4.1 Integrating CSS in HTML
	2.4.2 Defining formats for classes
	2.4.3 Defining individual formats

	3 Engineering
	3.1 Project planning and configuration
	3.1.1 Concept
	3.1.2 Files used
	3.1.3 Structure and content

	3.2 Creating a parameter source
	3.3 Creating the content of the web page
	3.3.1 Displaying parameter values
	3.3.2 Updating parameter values
	3.3.3 Using the callback function
	3.3.4 Initializing and updating canvas elements

	3.4 Loading the content of the web page
	3.5 Sample pages
	3.5.1 diagAxis.html (main page 1)
	3.5.2 diagStatusAxis.html (main page 2)
	3.5.3 axisRedLoader.html (load page)

	3.6 Uploading files to the web server
	3.7 Uploading new pages
	3.8 Loading and commissioning the sample pages
	3.8.1 …via a CF card reader
	3.8.2 …via the webserver

	3.9 Operation
	3.10 Changing the name of the axes

	4 Appendix
	4.1 Service and Support
	4.2 Application support
	4.3 Links and Literature
	4.4 Change documentation

