How can two limit switches be implemented to shut down equipment when an end stop is reached?

SINAMICS G120/G120D/G120P (from FW V4.5)
FAQ • March 2013

Service \& Support

Answers for industry.

This entry is from the Siemens Industry Online Support. The general terms of use (http://www.siemens.com/terms of use) apply.

Clicking the link below directly displays the download page of this document. http://support.automation.siemens.com/WW/view/en/71106927

Caution

The functions and solutions described in this article confine themselves to the realization of the automation task predominantly. Please take into account furthermore that corresponding protective measures have to be taken up in the context of Industrial Security when connecting your equipment to other parts of the plant, the enterprise network or the Internet. Further information can be found under the Content-ID 50203404.
http://support.automation.siemens.com/WW/view/en/50203404

Question

SINAMICS G120/G120D/G120P (CU 2x0x-2): How can two limit switches be implemented to shut down equipment when an end stop is reached?

Answer
 The instructions and notes listed in this document provide a detailed answer to this question.
 NOTE
 This FAQ is only valid for SINAMICS G120/G120D/G120P from FW V4.5

Table of contents

1 Task. 4
Description 4
2 Solution versions to implement two limit switches to shut down equipment when an end stop is reached 5
2.1 Version1: Control via terminals 5
Parameter settings 5
2.2 Version 2: Control via PROFIBUS / PROFINET 6
Parameter settings 7
3 Running scripts in STARTER 4.x 9
3.1 Procedure 9

1 Task

For small, basic applications with a limited number of limit switches, these can be monitored by the inverter. To do this, limit switches are wired to the inverter digital inputs. The monitoring can be realized using free function blocks in the inverter.

Description

If the limit switch is actuated, then the inverter receives the OFF command and decelerates down to standstill along the down ramp. In this case, the limit switch is passed (not actuated) and the drive is started in the direction it was previously traveling with the next ON command. This means that the drive moves against the limit (end stop).
As a consequence, measures must be taken to maintain the limit switch signal active until the drive has passed over the limit switch again in the opposite direction.
Example:
For transport conveyor belts with light barriers as limit switch, the goods transported on the conveyor belts are equipped with corresponding markings, which keep the light barriers "active" until the drive comes to a standstill.

NOTICE The limit switch states are not saved in the inverter, therefore appropriate measures must be taken to save the signals

2 Solution versions to implement two limit switches to shut down equipment when an end stop is reached

2.1 Version 1: Control via terminals

Description of the terminals and signals:

Command in travel direction, right: Terminal 5 (DIO), ON/OFF1 signal (r722.0)
Command in travel direction, left: Terminal 6 (DI1), ON/OFF1 signal + reversing (r722.1)

Signal "limit switch in travel direction right", terminal 7 (DI2), (r722.2)
Signal "limit switch in travel direction left", terminal 8 (DI3), (r722.3)

Function:

In the example, the drive is started in travel direction "right" via digital input 0 (DIO) and via digital input 1 (DI1) in the travel direction "left". The limit switches are wired with digital inputs 2 and 3 .
After the limit switch is actuated, the drive is stopped via OFF1 with the down ramp (p1121). From this position the drive can only be started in the opposite direction. The down ramp should be set as short as possible.

Note

The limit switches must remain active until they are "passed in the opposite direction"!

Parameter settings.

Table 2-1

Function	Parameter	Description	Value	Description
Setting the parameter filter to commission a drive	p0010	Drive commissioning parameter filter	1	Quick commissioning
Macro selection	p0015	Macro drive device	18	Macro $18^{\text {1) }}$
Setting the parameter filter to commission a drive	p0010	Drive commissioning parameter filter	0	Ready
Signal source AND 0	p20030.0	AND 0 input 0	r722.0	Terminal 5, DI0, ON/OFF1, right
Signal source AND 0	p20030.1	AND 0 input 1	r722.2	Terminal 7, DI2, limit switch, right
Signal source AND 0	p20030.2	AND 0 input 2	1	Input permanently set
Signal source AND 0	p20030.3	AND 0 input 3	1	Input permanently set

2 Solution versions to implement two limit switches to shut down equipment when an end stop is reached

Function	Parameter	Description	Value	Description
Runtime group of AND 0	p20032	AND 0 runtime group	6	Runtime group 6
Signal source AND 1	p20034.0	AND 1 input 0	r722.1	Terminal 6, DI1, ON/OFF1 + reversing (ON/OFF1 left)
Signal source AND 1	p20034.1	AND 1 input 1	r722.3	Terminal 8, DI3, limit switch, left
Signal source AND 1	p20034.2	AND 1 input 2	1	Input permanently set
Signal source AND 1	p20034.3	AND 1 input 3	1	Input permanently set
Runtime group of AND 1	p20036	AND 1 runtime group	6	Runtime group 6
"ON/OFF1" command	p0840.0	ON/OFF1	r3333.02)	2-wire control, control word: Bit 00: ON
Negative direction	p1110	Inhibit/enable negative direction	0	Enable negative direction
Sets the signal source to invert the setpoint	p1113	Setpoint inversion	r3333.1	

2.2 Version 2: Control via PROFIBUS / PROFINET

Description of the terminals and signals

Command in travel direction, right: "ON/OFF1" signal (r2090.0)
Command in travel direction, left: "ON/OFF1+reversing" signal (r2090.0 + r2090.11)

Input via PROFIBUS / PROFINET

Signal "limit switch in travel direction right", terminal 7 (DI2), (r722.2)
Signal "limit switch in travel direction left", terminal 8 (DI3), (r722.3)

Function:

In the example, the drive is started in the travel direction "right" and "left" via PROFIBUS / PROFINET. The limit switches are wired to digital inputs 2 and 3 (the option of entering the signals through I/O modules is not considered here).
After the limit switch is actuated, the drive is stopped via OFF1 with the down ramp (p1121). From this position the drive can only be started in the opposite direction. The down ramp should be set as short as possible.

Note

The limit switches must remain active until they are "passed in the opposite direction"!

Parameter settings.

Table 2-2

Function	Parameter	Description	Value	Description
Setting the parameter filter to commission a drive	p0010	Drive commissioning parameter filter	1	Quick commissioning
Macro selection	p0015	Macro drive device	18	Macro $18{ }^{1)}$
Setting the parameter filter to commission a drive	p0010	Drive commissioning parameter filter	0	Ready
Sets the send and receive telegram	p0922	PROFIdrive telegram selection	1	Standard telegram 1, PZD-2/2
Sets the send and receive telegram	p0922	PROFIdrive telegram selection	999	Free telegram configuration with BICO
Signal source AND 0	p20030.0	AND 0 input 0	r722.2	Terminal 7, DI2, limit switch, right
Signal source AND 0	p20030.1	AND 0 input 1	r2090.0	ON/OFF1 signal from the bus
Signal source AND 0	p20030.2	AND 0 input 2	r20079.0	NOT 0 inverted output
Signal source AND 0	p20030.3	AND 0 input 3	1	Input permanently set
Runtime group of AND 0	p20032	AND 0 runtime group	6	Runtime group 6
Signal source AND 1	p20034.0	AND 1 input 0	r722.3	Terminal 8, DI3, limit switch, left
Signal source AND 1	p20034.1	AND 1 input 1	r2090.0	ON/OFF1 signal from the bus
Signal source AND 1	p20034.2	AND 1 input 2	r2090.11	Reversing signal from the bus
Signal source AND 1	p20034.3	AND 1 input 3	1	Input permanently set
Runtime group of AND 1	p20036	AND 1 runtime group	6	Runtime group 6
Signal source NOT 0	p20078.0	NOT 0 input I	r2090.11	Reversing signal from the bus
Runtime group of NOT 0	p20080	NOT 0 runtime	6	Runtime group 6

2 Solution versions to implement two limit switches to shut down equipment when an end stop is reached

Function	Parameter	Description	Value	Description
		group		
"ON/OFF1" command	p0840.0	ON/OFF1	r3333.0	2-wire control, control word: Bit 00: ON
Negative direction	p1110	Inhibit/enable negative direction	0	Enable negative direction
Sets the signal source to invert the setpoint	p 1113	Setpoint inversion	r3333.1	2-wire control, control word: Bit 01: Reversing
2-wire control, command 1	p3330.0	ON command	r20031.0	AND 0 output Q
2-wire control, command 2	p 3331.0	ON command + reversing	r20035.0	AND 1 output Q
Ramp-down time	p1121	Ramp-function generator, ramp- down time	x	If possible set the down ramp shorter

Footnotes for the previous tables

Table 2-3

No.	Text
1)	The detailed description of macro 18 is provided in the operating instructions "SINAMICS G120 inverters with Control Units CU240B-2 and CU240E-2" FW4.5 article ID: 61618946 in sections:
	3.4.6.2 Pre-assignment and wiring of the inverter with CU240E-2 Control Unit 8.2.5 Two-wire control, method 3
2)	Factory setting in macro 18
3)	In macro 18, the analog setpoint from analog input AIO is used as setpoint. If another setpoint is required, parameter p1000 - and possibly other parameters - must be adapted for the setpoint input.
4)	In macro 18, digital input DI2 is used as signal for the fault acknowledgment. This is used as "limit switch right" (r722.2) in this example; this means that another source must be set for the fault acknowledgment in parameter p2103.

3 Running scripts in STARTER 4.x

You can use the attached script files to quickly change parameters.

Before you use a script, reset your inverter to the factory settings by pressing the button "Restore factory settings" 4 .

3.1 Procedure

1. Select and save the appropriate script file in a folder on your computer's hard disk.
2. Create a script folder for the drive in your STARTER project by clicking on the drive (Control Unit) with the right-hand mouse key, and then on "Expert" (lefthand mouse key) and then on "Insert script folder.

A new folder "SCRIPTS" appears at the lower end of the tree.

Diagram 3-1 Inserting a script folder

3. Import your script file from your folder into STARTER as shown in the following:

- Right click on the "Scripts" tab;
- Click on "ASCII Import..." and open the required script file;
- Allocate a name to the opened file, and confirm with "OK".

Diagram 3-2 ASCII import

$\dagger-\gg$ Messages and monitoring	8	r20	Speed setpoint sm...
\pm - > Technology controller	9	r21	CO: Actual speed ...
†-> Commissioning	10	r22	Speed actual value... 1
†-> Communication	11	r24	Output frequency ... I
$\dagger-\gg$ Diagnostics	12	r25	CO: Output voltage... 1
(SCRIPT5	13	r26	CO: DC link voltage... 1
Documentat Insert new object	14	r27	CO: Absolute actu...
\pm SINAMICSLIBRt Cut	15	r31	Actual torque smo...
\pm MONITOR	16	r32	CO: Active power ... 1
	17	r34	CO: Motor utilization
Paste	18	r35	CO: Motor temperat... 1
Delete	19	r36	CO: Power unit ov...
	20	(r39[0]	Energy display, En...
ASCII import...	21	p40	Reset energy cons... 1
Import object	22	r41	Energy consumptio... I
Import object	23	p45	Display values smo...
	24	円r46	CO.BO: Missing en...

4. Go online with the inverter, by pressing on the button "Connect with selected target devices" ${ }^{\text {문․ }}$.
5. Run the script by right clicking on the script in the project tree and selecting "Accept and execute"; or open the script with a double-click and press on
"Accept and execute" 㗊㻮.

Diagram 3-3 Accepting and executing the script

6. Set other parameters when required. Then save the settings in the EEPROM of the inverter by pressing the button "Copy RAM to ROM" ${ }_{\sigma}$.

Additional information on the topic

FAQ: "MICROMASTER 4 (MM4): How can I transfer projects from DriveMonitor to STARTER?" Article ID: $\underline{32582476 .}$

