

Application Description • 12/2014

Faceplates and Function Blocks for the Visualization of a SITOP UPS1600

WinCCflexible, WinCC (TIA Portal), WinCC

Warranty and Liability

Note

The Application Examples are not binding and do not claim to be complete with regard to configuration, equipment or any contingencies. The Application Examples do not represent customer-specific solutions. They are only intended to provide support for typical applications. You are responsible for the correct operation of the described products. These Application Examples do not relieve you of the responsibility of safely and professionally using, installing, operating and servicing equipment. When using these Application Examples, you recognize that we cannot be made liable for any damage/claims beyond the liability clause described. We reserve the right to make changes to these Application Examples at any time and without prior notice. If there are any deviations between the recommendations provided in this Application Example and other Siemens publications – e.g. catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this application example will be excluded. Such an exclusion will not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The compensation for damages due to a breach of a fundamental contractual obligation is, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change in the burden of proof to your disadvantage.

Any form of duplication or distribution of these Application Examples or excerpts hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security information

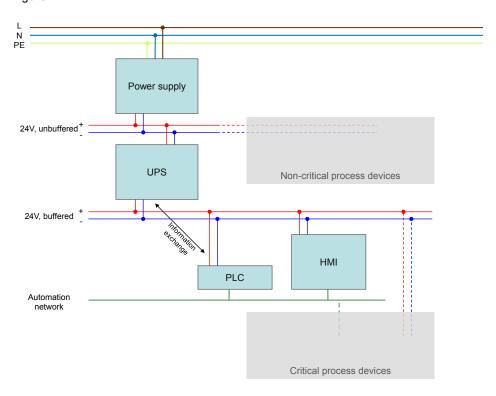
Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific newsletter. For more information, visit http://support.automation.siemens.com.

Table of Contents

Wai	ranty and	d Liability	2				
1	Task		5				
2	Structu	ucture					
	2.1 2.2 2.3	Solution overview Description of the core functionality Hardware and software components used	8				
3	Function	on Blocks for the UPS1600	11				
	3.1 3.1.1 3.1.2 3.2	Function and task of the function block Task description and application Function description Operating conditions	11 11				
4	Applica	ation of the Function Block under STEP 7 V5.5	13				
	4.1 4.2 4.3 4.4 4.5	Preconditions Content of the library for STEP 7 V5.5 Interfaces of the function block Data block DB161 Integrating the function block	13 16 17				
5	Applica	ation of the Function Block under STEP 7 V12	29				
	5.1 5.2 5.3 5.4 5.5 5.5.1 5.5.2	Preconditions Content of the library for STEP 7 V12	29 35 37				
6	Facepl	ates for the UPS1600	60				
	6.1 6.2 6.2.1 6.2.2 6.2.3	Faceplate "Faceplate_UPS1600_State" Faceplate "Faceplate_UPS1600" "State" tab "Trends" tab "Alarms" tab	62 63 66				
7	Applica	ation of the Faceplates in WinCC flexible	68				
	7.1 7.2 7.3 7.4	Preconditions Library for WinCC flexible Integrating the faceplates Interface description	70				
8	Applica	ation of the Faceplates in WinCC Comfort/Advanced V12	82				
	8.1 8.2 8.3 8.4	Preconditions Library for WinCC Comfort/Advanced Integrating the faceplates Interface description	83 84				
9	Applica	Application of the Screen Windows in WinCC V7.2					
	9.1 9.2 9.3 9.4	Preconditions Library for WinCC V7.2 Integrating the screen windows Interface description	99 100				


10	Application of the Faceplates in WinCC Professional V12			
	10.1	Preconditions	114	
	10.2	Library for WinCC Professional	114	
	10.3	Integrating the screen windows	116	
	10.4	Interface description	128	
		Internal tag	128	
11	Relate	ed Literature	131	
12	Histor	v	131	

1 Task

Overview of the automation task

The figure below provides an overview of the automation task.

Figure 1-1

Description of the automation task

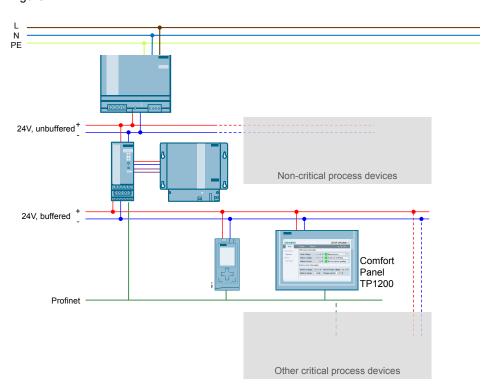
Your task is to equip your automation plant with uninterruptible power supply. In the event of a power failure, critical process participants are to be protected.

In the event of a power failure of the automation plant, process values are to be maintained and plant components be safeguarded against mechanical damage by means of a defined stop.

Uninterruptible power supply is to be communication-capable and integrated into the automation network via PROFINET.

The status and diagnostic information of the uninterruptible power supply is to be displayed in the individual HMI stations.

2.1 Solution overview


2 Structure

2.1 Solution overview

Structure

The figure below shows a schematic overview of the most important components of the solution:

Figure 2-1

Scope of this application example

This application example provides function blocks (FB160) for communication between the controller and SITOP UPS 1600.

Moreover, it provides faceplates and screen windows for monitoring and operation.

Structure/function of the hardware components

Table 2-1

Name	Function
SITOP Power Supply	Central 24V power supplyfor all process devices
Non-critical process devices	Symbol for other uncritical process devices (which can, for example, be switched off such as a compressor if there is sufficient pressure)
SITOP UPS 1600 and SITOP UPS 1100	Uninterruptible power supplywith buffer (e.g., battery module)
S7-1516	Automation controller
Comfort Panel TP1200	Control panel for process visualization

2.1 Solution overview

Name	Function		
Other critical process devices	Symbol for other critical process devices		
PROFINET	Central process bus of all automation devices		

Advantages

This application offers the following advantages:

- Time and cost saving by means of provided function blocks (FB160) and HMI faceplates and screen windows.
- Easy and comprehensive introduction to the topic of integrating a SITOP UPS1600 within a PROFINET network.

Scope

This application does not include a description of

- the creation of program blocks in STEP7 V5 / STEP7 V12,
- the creation of screens and objects in WinCC flexible / WinCC TIA Portal / WinCC,
- the configuration of communication between the described terminal devices,
- the handling of all described SIMATIC terminal devices.

Assumed knowledge

The following knowledge is assumed:

- Knowledge of using STEP7 V5, STEP7 V12, WinCC flexible, WinCC, and WinCC TIA Portal.
- Knowledge of operating, handling, and configuring SIMATIC S7 controllers (S7-300/400; S7-1200/1500).
- Knowledge of operating, handling, and configuring HMI control panels (Multi Panels, Comfort Panels) and Runtime systems (WinCC flexible Runtime, WinCC Runtime Advanced, WinCC Runtime, WinCC Runtime Professional).
- Knowledge of handling and operating SITOP UPS1600.

2.2 Description of the core functionality

2.2 Description of the core functionality

Sequence of the core functionality


Communication between the UPS1600 and controller runs via PROFINET. The UPS1600 is connected with the controller as PROFINET IO node. Thus, the entire SITOP UPS1600 information (voltage, power, possible buffer time, battery state) is available in the controller.

In this application example, two scenarios are thus realized.

- Upon occurrence of a power failure, this is recognized by the PLC. Via the supplied program block FB160, this information is available in the control program and can be evaluated.
 This allows your process to respond and switch off your process devices in
 - This allows your process to respond and switch off your process devices in a defined manner.
- Via the supplied faceplates and screen windows, the relevant information and important parameters can be displayed on the HMI control panel.

Overview and description of the user interface

Figure 2-2

The application example provides the following views in the faceplate:

- UPS state
 - General overview
 - Device information
- Voltage and power trend curves
- SITOP alarms
 - Currently pending alarms / alarm history

2.3 Hardware and software components used

2.3 Hardware and software components used

The application was created with the following components:

Hardware components

Table 2-2

Component	No.	Article number	Note
SITOP UPS1600 24V/10A (Ethernet/PROFINET)	1	6EP4134-3AB00-2AY0	
SITOP UPS1600 24V/20A (Ethernet/PROFINET)	or	6EP4136-3AB00-2AY0	
SITOP UPS1600 24V/40A (Ethernet/PROFINET)	or	6EP4137-3AB00-2AY0	
MP277 8" Touch	1	6AV6643-0CB01-1AX5	See Requirements
Comfort Panel TP1200	1	6AV2124-0MC01-0AX0	See Requirements
CPU 1516-3 PN/DP	1	6ES7516-3AN00-0AB0	Or other S7-1500 CPU
CPU 317-2 PN/DP	1	6ES7317-2EK14-0AB0	Or other S7-300 CPU

Standard software components

Table 2-3

Component	No.	Article number	Note
WinCC flexible 2008 SP3 Advanced	1	6AV6613-0AA51-3CA5	Alternatively WinCC flexible 2008 SP3 Standard
WinCC Advanced V12	1	6AV2102-0AA02-0AA5	Alternatively WinCC Comfort V12
STEP7 Professional V5.5	1	6ES7810-4CC10-0YA5	-
STEP7 Professional V12	1	6ES7822-1AA02-0YA5	-
WinCC Professional V12	1	6AV2102-0AH02-0AA5	-
WinCC V7.2	1	6AV6381-2BS07-2AX0	-

Sample files and projects

The following list includes all files and projects that are used in this example. Table 2-4

Component	Note
78817848_UPS1600_lib_TIAP_V12_SP1.zip	This zip file contains the library for TIA Portal V12 and the master copies for STEP 7 V12 and WinCC V12.

2.3 Hardware and software components used

Component	Note
78817848_UPS1600_STEP7_V5_5.zip	This zip file contains the library of the function blocks for STEP 7 V5.5.
78817848_UPS1600_lib_WinCC_flexible_2008.zip	This zip file contains the library of the faceplates for WinCC flexible 2008 SP3.
78817848_UPS1600_lib_WinCC _V7_2.zip	This zip file contains the library of the screen windows for WinCC V7.2.
78817848_Faceplates_SITOP_DC_USV_de.pdf	This document.

3.1 Function and task of the function block

3 Function Blocks for the UPS1600

This chapter informs about the options and functions provided by the supplied function block FB160. Moreover, this chapter describes the application and requirements of the function block FB160 and its integration into a STEP 7 project.

3.1 Function and task of the function block

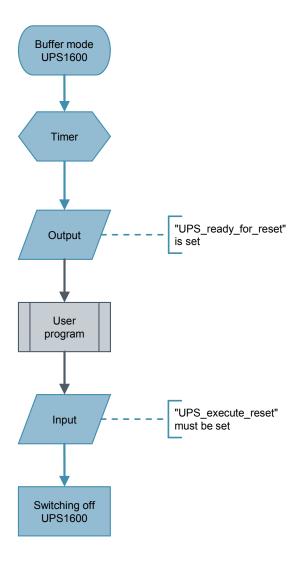
3.1.1 Task description and application

In the event of a plant power failure it is essential to safeguard certain machine components against damage and to back up process-relevant data in order to prevent data loss.

The application of the function block FB160 provides you with the option to bring your plant into a safe state and switch it off in a program-controlled manner while a SITOP UPS1600 buffers the voltage.

3.1.2 Function description

The function block FB160 cyclically monitors the operating mode of the SITOP UPS1600. If the SITOP UPS1600 is in buffer mode, a 10s timer within the function block starts to run. This timer prevents a plant from being brought into a safe state in the event of just a short voltage dip/drop.


If after expiry of the timer the UPS is still in buffer mode, the parameter "UPS_ready_for_reset" is set from "FALSE" to "TRUE".

In the further course of the program, this parameter can be used to bring plant components into a safe state (maintenance mode).

When the plant has been brought into a safe state, the parameter "UPS_execute_reset" must be set from "FALSE" to "TRUE". The function block then sends a command to the UPS1600, which then switches off autonomously.

The following figure displays the program sequence of the function block.

3.2 Operating conditions

Notes regarding the function

- If the SITOP UPS1600 returns to normal mode while the timer is running, the parameter "UPS_ready_for_reset" is not set.
 The timer is then reset.
- After the parameter "UPS_execute_reset" has been set, the further program sequence must absolutely be executed until the UPS1600 is switched off via the function block.
- The buffer time of the SITOP UPS1600 must be set such that there is sufficient time to bring the plant into a safe state and switch off the UPS via the function block.

3.2 Operating conditions

The function block is approved for the following constellations:

- STEP 7 V5.5 and application of a CPU 300/400
- STEP 7 V12 and application of a CPU 300/400 or CPU 1200/1500

4.1 Preconditions

4 Application of the Function Block under STEP 7 V5.5

4.1 Preconditions

The following requirements must be met in order to use the function block in combination with a SITOP UPS1600 and STEP 7 V5.5.

- The GSD file of the SITOP UPS1600 is installed in the hardware configuration of STEP 7 V5.5 and the UPS is configured as PROFINET node in the HW configuration of the SIMATIC S7 controller.
- Already existing S7 communication between the SITOP UPS1600 and SIMATIC S7 controller.
- The library "UPS1600 STEP 7 V5_5" is available on the computer.

Note regarding the installation of the GSD file

The required information about the installation of the GSD file of the SITOP UPS1600 in STEP 7 V5.5 is available in the <u>SITOP UPS1600 User Manual</u> in Chapter 3.4.1.

Note regarding the S7 communication

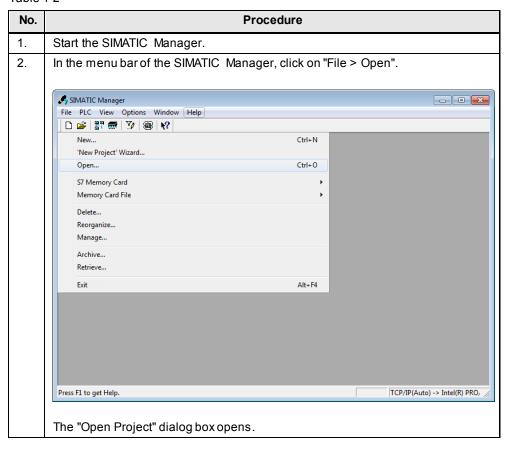
The required information about establishing communication between a SITOP UPS1600 and a SIMATIC S7 controller is available in the <u>SITOP UPS1600 User</u> Manual in Chapter 3.4.

4.2 Content of the library for STEP 7 V5.5

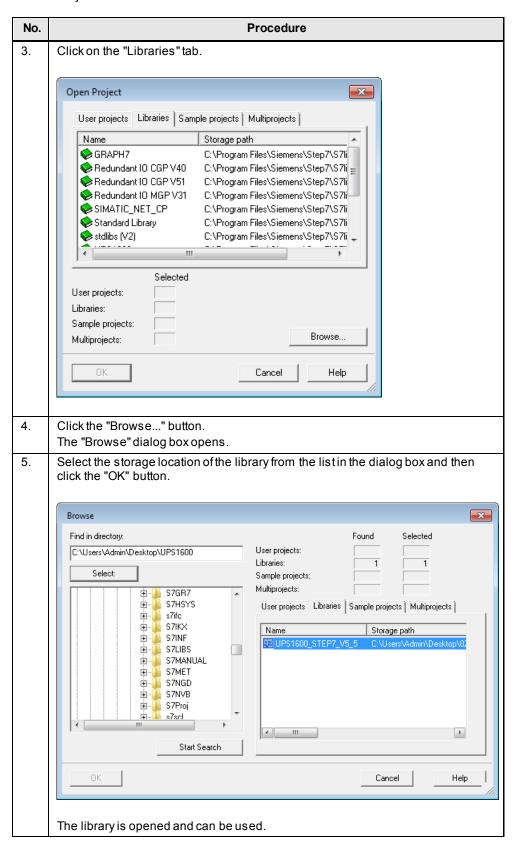
The library "UPS1600 STEP 7 V5 5" comprises the following:

- Blocks (FB160, DB160, DB161)
- Symbol table "Symbols _UPS1600"
- SCL source file of the code block FB160

The following table shows the blocks contained in the library. Table 4-1


Block	Name	Description
FB160	UPS1600	Function block for program-controlled switch-off of the UPS1600
DB160	UPS1600_iDB	Instance data block of the FB160
DB161	UPS1600_Infos	The data block contains all parameters of the SITOP UPS1600 displayed within the HMI faceplate.

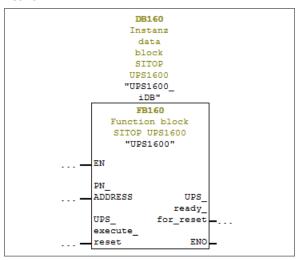
4.2 Content of the library for STEP 7 V5.5


Opening the library in STEP 7 V5.5

Follow the instructions in the table below to open the library in a STEP 7 V5.5 project.

Table 4-2

4.2 Content of the library for STEP 7 V5.5



4.3 Interfaces of the function block

4.3 Interfaces of the function block

Block diagram

The following figure shows the block diagram of the function block FB160 within a network.

Interface description

Table 4-3

Parameter	Declaration	Data type	Description		
PN_ADDRESS	Input	DWORD	PROFINET diagnostic address of the SITOP UPS1600 within the project. The diagnostic address must be specified in hexadecimal format.		
UPS_execute_reset	Input	BOOL	Switch-off signal to the SITOP UPS1600		
UPS_ready_for_reset	Output	BOOL	Signal for plantshut-down		

4.4 Data block DB161

4.4 Data block DB161

The data block contains all parameters of the SITOP UPS1600 displayed within the HMI faceplate.

The following table lists all parameters of the SITOP UPS1600 contained in DB161. Table 4-4

Parameter	Data type	Offset	Remarks
Battery_capacity	Int	0.0	[0.1Ah]
End_of_charge_voltage	Int	2.0	[0.01V]
Charge_current	Int	4.0	[mA]
HW_revision	Int	6.0	-
SW_revision	Int	8.0	-
Max_output_current	Byte	10.0	[A]
Padding	Byte	11.0	-
Order_number	Array [0 29] Of Char	12.0	[30 characters]
Serial_number	Array [0 29] Of Char	42.0	[30 characters]
Device_name	Array [0 29] Of Char	72.0	[30 characters]
Version_number	Array [0 49] Of Char	102.0	[50 characters]
Input_voltage	Int	152.0	[0.01V]
Input_current	Int	154.0	[5mA]
Output_voltage	Int	156.0	[0.01V]
Load_current	Int	158.0	[5mA]
Measured_charge_current	Int	160.0	[mA]
Battery_voltage	Int	162.0	[0.01V]
Output_current	Int	164.0	[5mA]
Charge_voltage	Int	166.0	[0.01V]
Buffer_mode	Byte	168.0	(active=255 / inactive=0); undefined = 127
Ready_for_buffering	Byte	169.0	(yes or no – 255/0)
New_alarms_pending	Byte	170.0	(yes or no – 255/0)
Battery_charge_level	Byte	171.0	(0100%); 255 – unknown battery)
Total_calculated_battery_capacity	Int	172.0	[0.1Ah]
Total_calculated_battery_health	Byte	174.0	[%]
Buffer_time	Int	176.0	[s]
Buffer_threshold	Int	178.0	[s]
Buffering_allowed	Byte	180.0	[0/255]
CommandID	Int	182.0	Remote reset=8195
Parameter	Byte	184.0	[s]
Padding_command	Byte	185.0	[s]

4.4 Data block DB161

Parameter	Data type	Offset	Remarks
Order_number_string	String [254]	186.0	char to string > Order_number
Serial_number_string	String [254]	442.0	char to string > Serial_number
Device_name_string	String [254]	698.0	char to string > Device_name
Version_number_string	String [254]	954.0	char to string > Version_number

Note

Further information about the system parameters is available in the $\underline{\text{UPS1600}}$ $\underline{\text{User Manual}}.$

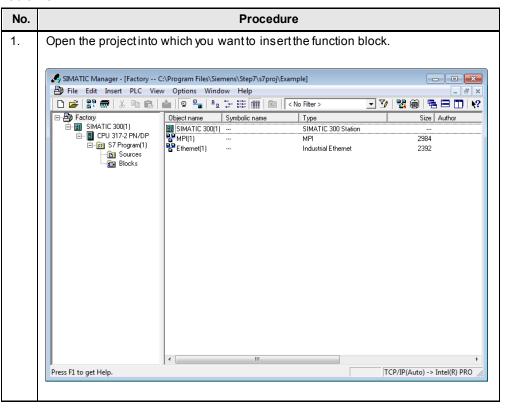
4.5 Integrating the function block

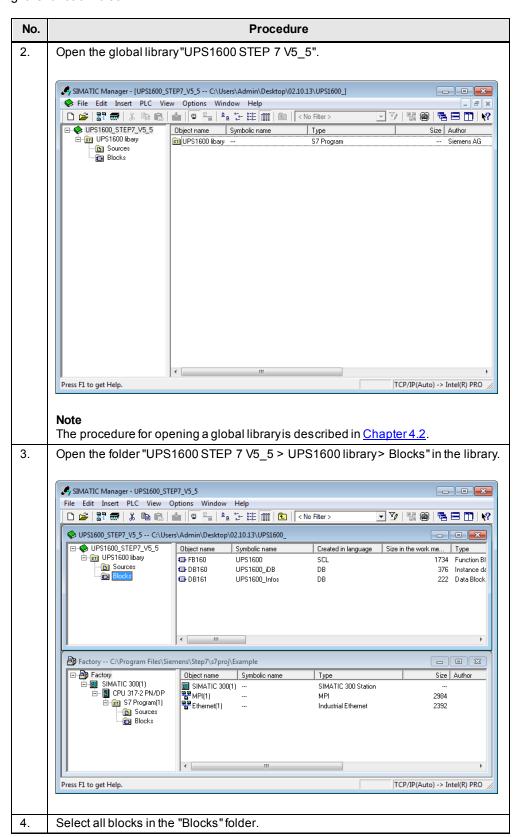
The following sections describe all steps required to integrate the function block FB160 into a STEP 7 V5.5 project.

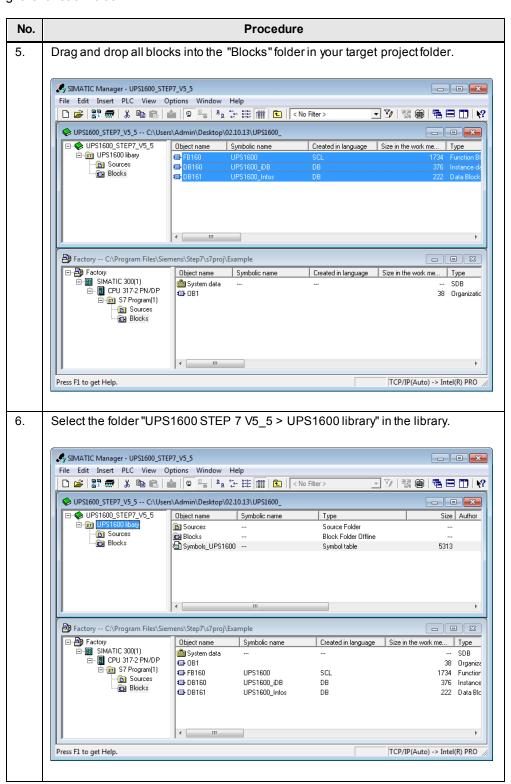
Hardware used in this description:

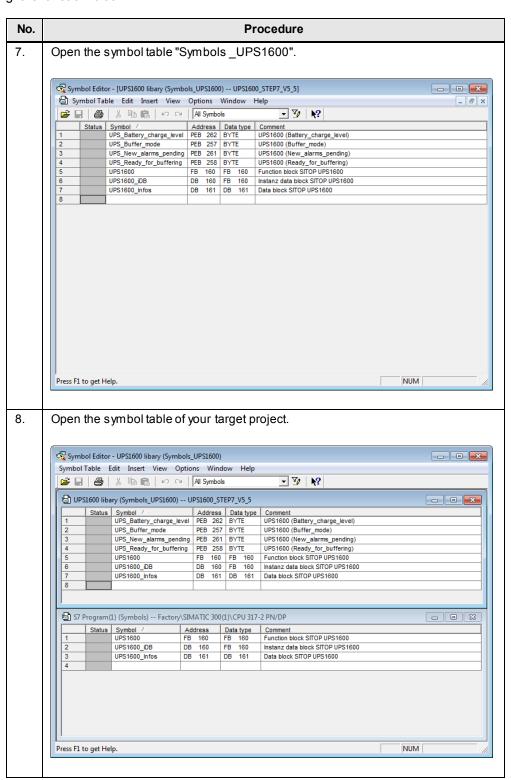
- CPU 317-2 PN/DP
- SITOP UPS1600 24V/10A

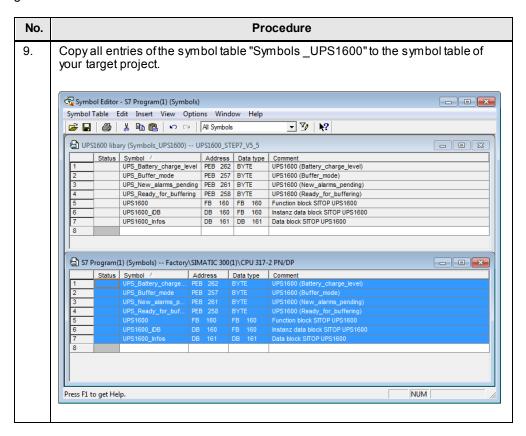
The procedure for other SIMATIC S7 controllers is identical.


Note


Please make sure that all requirements for the integration of the function block are met. The requirements are described in Chapter 4.1.


Inserting blocks from the library into the program


The following table describes all steps for integrating the function block FB160 and the associated data blocks into a STEP 7 V5.5 project.


Table 4-5

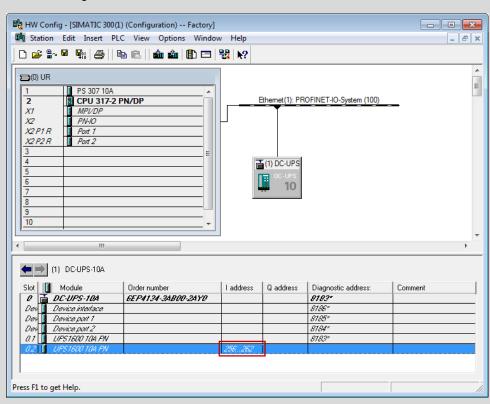
Adapting the address ranges in the symbol table

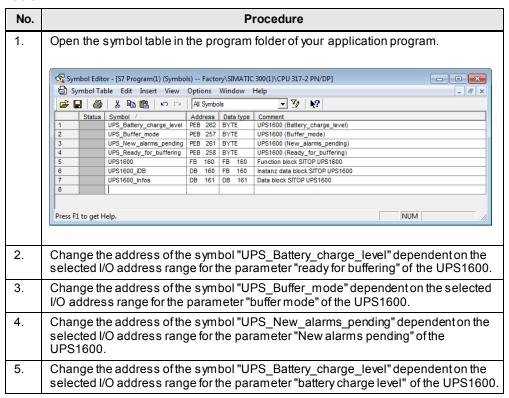
Within the program sequence of the function block FB160, the cyclic data of the address range of the SITOP UPS1600 are accessed. In this case, the required address ranges are transferred to the function block via four tags. It is therefore necessary to adapt the addresses of these tags in the symbol table dependent on the selected I/O address range of the SITOP UPS1600.

The following table shows the I/O address range (length: 7 bytes) of the SITOP UPS1600. The function block evaluates the parameters "buffer mode", "ready for buffering", "new alarms pending", and "battery charge level".

Note

The settings of the I/O address range of the SITOP UPS1600 are described in the HW configuration.

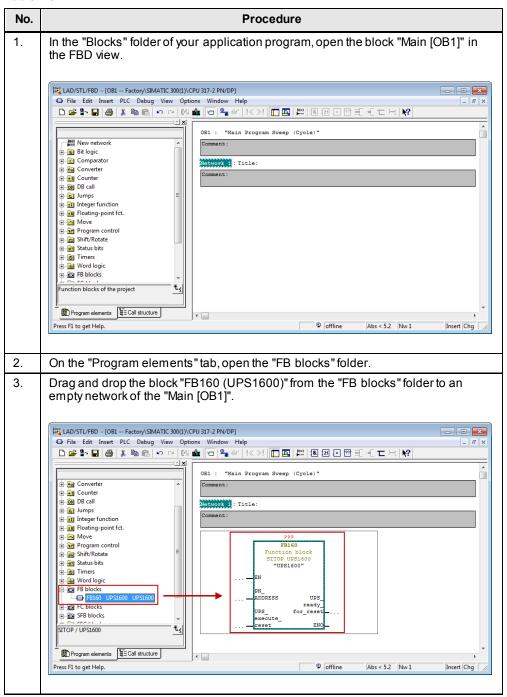


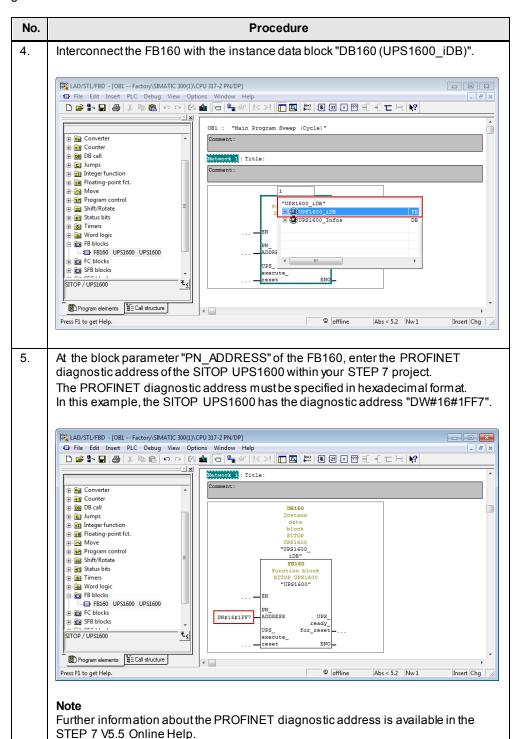

Table 4-6

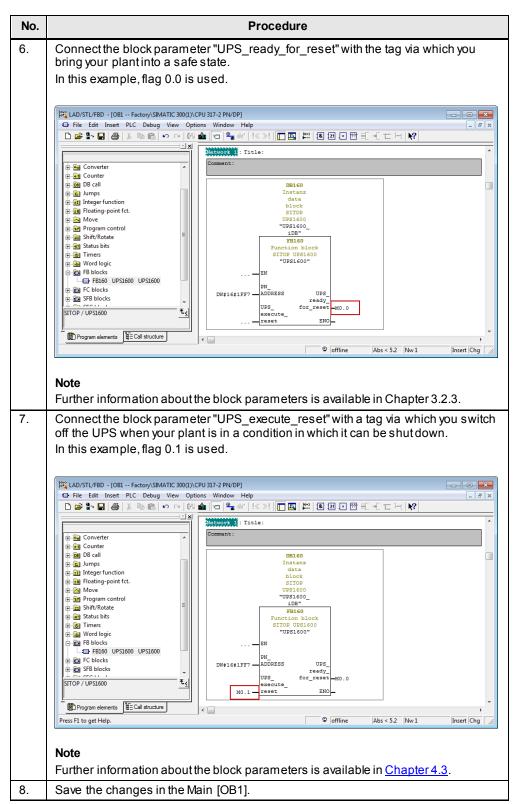
Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	Input voltage	1	PEB 256
UPS_Buffer_mode	buffer mode	Buffer mode / Normal mode	PEB 257
UPS_Ready_for_buffering	ready for buffering	Ready / Not ready for buffering	PEB 258

Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	charge sufficient	_	PEB 259
-	battery change recommended	-	PEB 260
UPS_New_alarms_pending	new alarms pending	New / No new alarms pending	PEB 261
UPS_Battery_charge_level	battery charge level	Charge state of the battery	PEB 262

The following table describes the procedure for changing the address ranges of the symbol table contained in the library.


Table 4-7




Calling the function block

This section describes the procedure for calling the function block within an organization block. In this description, the function block "FB160" is called within "OB1".

Table 4-8

The integration of the function block is thus completed.

5.1 Preconditions

5 Application of the Function Block under STEP 7 V12

5.1 Preconditions

The following requirements must be met in order to use the function block in combination with a SITOP UPS1600 and STEP 7 V12:

- The Hardware Support Package for the SITOP UPS1600 is installed in STEP 7 V12.
- Already existing S7 communication between the SITOP UPS1600 and SIMATIC S7 controller.
- The library with the function blocks is available.

Note regarding the installation of the Hardware Support Package

The required information about the installation of the Hardware Support Package of the SITOP UPS1600 in STEP 7 V12 is available in the <u>SITOP UPS1600 User Manual</u> in Chapter 3.3.1.

Notes regarding the S7 communication

The required information about establishing communication between a SITOP UPS1600 and a SIMATIC S7 controller is available in the <u>SITOP UPS1600 User Manual</u> in Chapter 3.3.

5.2 Content of the library for STEP 7 V12

The library "UPS1600 Function blocks (STEP7 V12)" contains the following library elements:

- STEP 7 Function blocks (S7-300/400)
- STEP 7 Function blocks (S7-1200/1500)
- STEP 7 Tag table
- PLC data types

The following sections describe in detail the library elements and how to open a library in STEP 7 V12.

Library element "STEP 7 Function blocks (S7-300/400)"

The following code blocks are contained in this library element:

Table 5-1

Code block	Name	Description
FB160	UPS1600	Function block for program-controlled switch-off of the SITOP UPS1600
DB160	UPS1600_iDB	Instance data block of the FB160
DB161	UPS1600_Data	The data block contains all parameters of the SITOP UPS1600 displayed within the HMI faceplate.

5.2 Content of the library for STEP 7 V12

Library element "STEP 7 Function blocks (S7-1200/1500)"

The following code blocks are contained in this library element:

Table 5-2

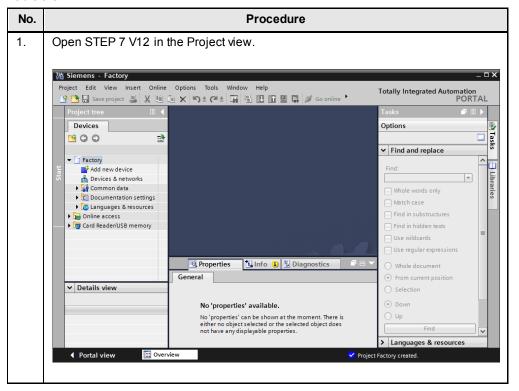
Code block	Name	Description
FB160	UPS1600	Function block for program-controlled switch-off of the UPS1600
DB160	UPS1600_iDB	Instance data block of the FB160
DB161	UPS1600_Data	The data block contains all parameters of the SITOP UPS1600 displayed within the HMI faceplate.

Library element "STEP 7 Tag table"

This library element contains the tag folder "UPS1600 Tag table".

The tags within this folder are required for the transfer of the values of the I/O address range of the SITOP UPS1600 to the function block FB160.

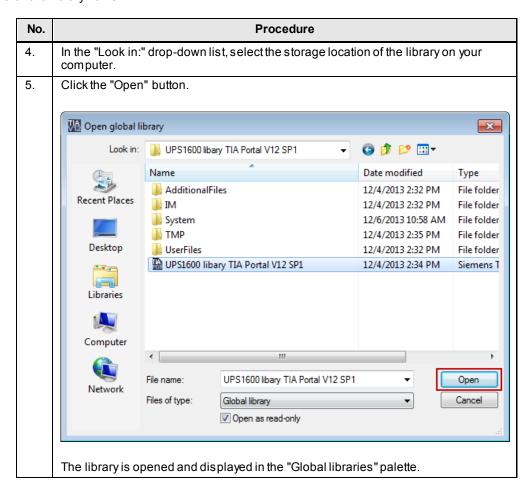
Library element "PLC data types"


This library element contains the data types "tUPS1600 mixed" und "tUPS1600 strings".

Both data types are building the data block DB161. This DB is used for data exchange to the HMI faceplates.

Opening the library in STEP 7 V12

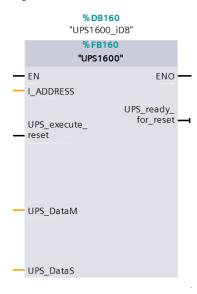
Follow the instructions in the table below to open the library in a STEP 7 V12 project.


Table 5-3

5.2 Content of the library for STEP 7 V12

5.2 Content of the library for STEP 7 V12

5.3 Interfaces of the function block FB160


5.3 Interfaces of the function block FB160

Function block FB160 for S7-300/400

Block diagram

The following figure shows the block diagram of the function block FB160 within a network.

Figure 5-1

Interface description

Table 5-4

Parameter	Declaration	Data type	Description
I_ADDRESS	Input	DWORD	PROFINET diagnostic address of the SITOP UPS1600 within the project
			The diagnostic address must be specified in hexadecimal format.
UPS_execute_reset	Input	BOOL	Switch-off signal to the SITOP UPS1600
UPS_ready_for_reset	Output	BOOL	Signal for plant shut-down
UPS_DataM	Input	tUPS1600 mixed	Data area of DB161 for data exchange to the HMI faceplate.
UPS_DataS	Input	tUPS1600 strings	Data area of DB161 for data exchange to the HMI faceplate.

5.3 Interfaces of the function block FB160

Function block FB160 for S7-1200/1500

Block diagram

The following figure shows the block diagram of the function block FB160 within a network.

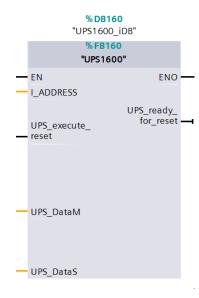


Figure 5-2

Interface description

Table 5-5

Parameter	Declaration	Data type	Description
HW_IO	Input	HW_IO	Hardware ID of the SITOP UPS1600 within the project
UPS_execute_reset	Input	BOOL	Switch-off signal to the SITOP UPS1600
UPS_ready_for_reset	Output	BOOL	Signal for plant shut-down
UPS_DataM	Input	tUPS1600 mixed	Data area of DB161 for data exchange to the HMI faceplate.
UPS_DataS	Input	tUPS1600 strings	Data area of DB161 for data exchange to the HMI faceplate.

Note to the use of more as one UPS1600 devices

Are more than one UPS1600 device used in one STEP 7 (TIA Portal) project, you have to use an individual instance data block and an separate data block for data exchange for each UPS1600 device.

So the function blocks are able to use in multible instances. You can create data blocks with the PLC data types of the library.

5.4 Data block DB161

5.4 Data block DB161

The data block contains all parameters of the SITOP UPS1600 displayed within the HMI faceplate.

The following table lists all parameters of the SITOP UPS1600 contained in DB161. Table 5-6

Parameter	Data type	Offset	Remarks
UPS_DataS	tUPS1600 strings	0.0	-
Order_number_string	String [20]	0.0	Order number (String)
Serial_number_string	String [20]	22.0	Serial number (String)
Device_name_string	String [20]	44.0	Device name (String)
Version_number_string	String [30]	66.0	Version number (String)
UPS_DataM	tUPS1600 mixed	98.0	-
Battery_capacity	Int	0.0	[0.1Ah]
End_of_charge_voltage	Int	2.0	[0.01V]
Charge_current	Int	4.0	[mA]
HW_revision	Int	6.0	-
SW_revision	Int	8.0	-
Max_output_current	Byte	10.0	[A]
Padding	Byte	11.0	-
Order_number	Array [0 29] Of Char	12.0	[30 characters]
Serial_number	Array [0 29] Of Char	42.0	[30 characters]
Device_name	Array [0 29] Of Char	72.0	[30 characters]
Version_number	Array [0 49] Of Char	102.0	[50 characters]
Input_voltage	Int	152.0	[0.01V]
Input_current	Int	154.0	[5mA]
Output_voltage	Int	156.0	[0.01V]
Load_current	Int	158.0	[5mA]
Measured_charge_current	Int	160.0	[mA]
Battery_voltage	Int	162.0	[0.01V]
Output_current	Int	164.0	[5mA]
Charge_voltage	Int	166.0	[0.01V]
Buffer_mode	Byte	168.0	(active=255 / inactive=0); undefined = 127
Ready_for_buffering	Byte	169.0	(yes or no – 255/0)
New_alarms_pending	Byte	170.0	(yes or no – 255/0)
Battery_charge_level	Byte	171.0	(0100%); 255 – unknown battery)
Total_calculated_battery_capacity	Int	172.0	[0.1Ah]

5.4 Data block DB161

Parameter	Data type	Offset	Remarks
Total_calculated_battery_health	Byte	174.0	[%]
Buffer_time	Int	176.0	[s]
Buffer_threshold	Int	178.0	[s]
Buffering_allowed	Byte	180.0	[0/255]
CommandID	Int	182.0	Remote reset=8195
Parameter	Byte	184.0	[s]
Padding_command	Byte	185.0	[s]
Order_number_string	String [20]	0.0	Order number (String)
Serial_number_string	String [20]	22.0	Serial number (String)
Device_name_string	String [20]	44.0	Device name (String)
Version_number_string	String [30]	66.0	Version number (String)

Note to the use of more as one UPS1600 devices

Are more than one UPS1600 device used in one STEP 7 (TIA Portal) project, you have to use an individual instance data block and an separate data block for data exchange for each UPS1600 device.

The structure of the data blocks must be the same of the data block DB161.

The library contains the PLC data types "tUPS mixed" and "tUPS strings". With this you are able to build you own structures.

Note

Further information about the system parameters is available in the <u>UPS1600</u> <u>User Manual</u>.

5.5 Integrating the function block

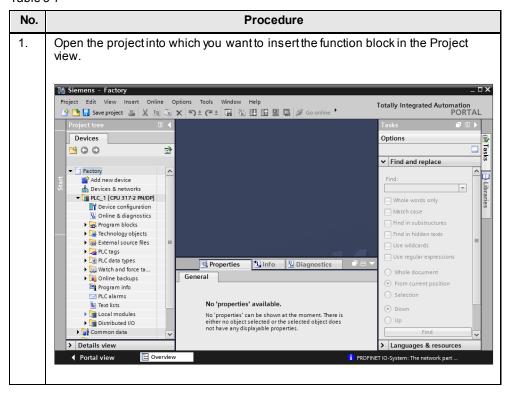
The following sections describe all steps required to integrate the function block FB160 into a STEP 7 V12 project.

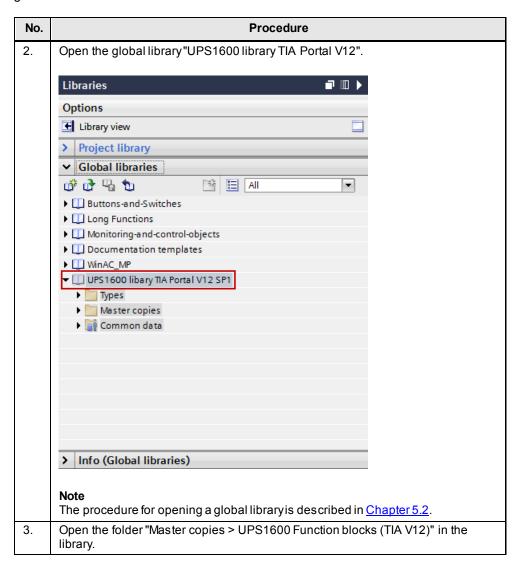
5.5.1 Procedure when using an S7-300/400

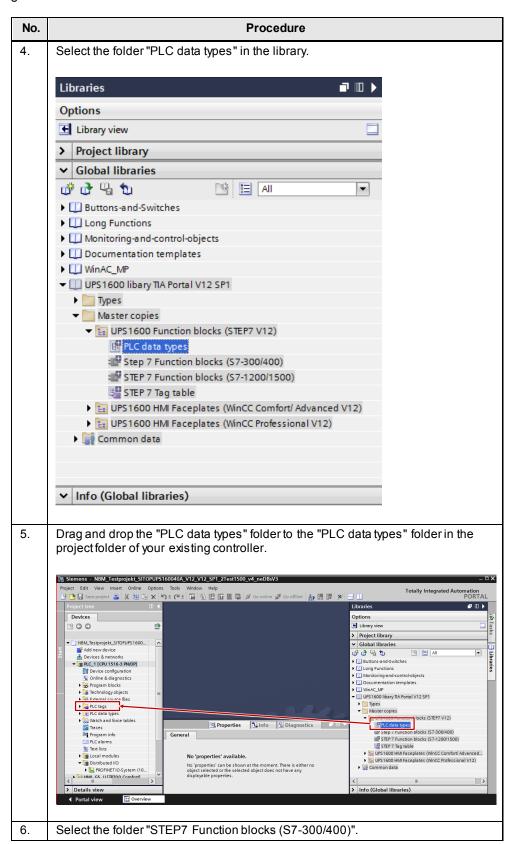
Hardware used in this description:

- CPU 317-2 PN/DP
- SITOP UPS1600 24V/10A

The procedure for other SIMATIC S7-300/400 controllers is identical.


Note


Please make sure that all requirements for the integration of the function block are met. The requirements are described in Chapter 5.1.


Inserting blocks from the library into the program

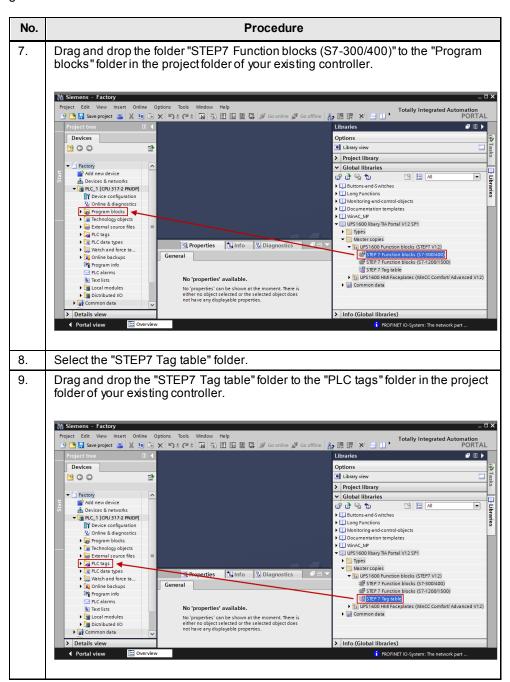

The following table describes all steps for integrating the function block and the associated data blocks into a STEP 7 V12 project.

Table 5-7

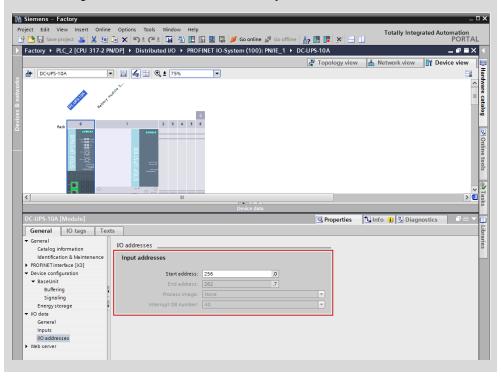
Adapting address ranges

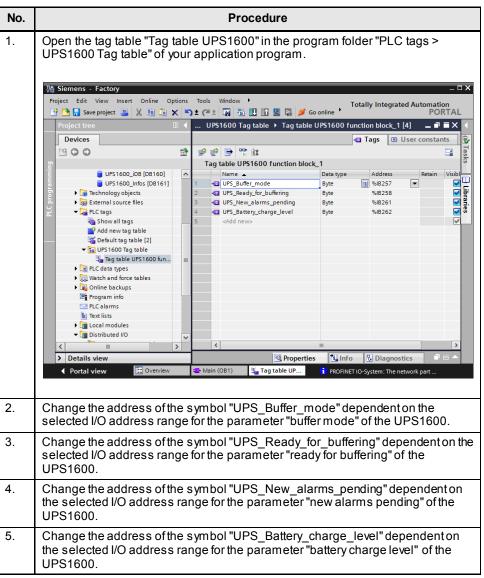
Within the program sequence of the function block FB160, the cyclic data of the address range of the SITOP UPS1600 are accessed. In this case, the required address ranges are transferred to the function block FB160 via four tags. It is therefore necessary to adapt the addresses of these tags in the symbol table dependent on the selected I/O address range of the SITOP UPS1600.

The following table shows the I/O address range (length: 7 bytes) of the SITOP UPS1600. The function block evaluates the parameters "buffer mode", "ready for buffering", "new alarms pending", and "battery charge level".

Note

The setting of the I/O address range for the SITOP UPS1600 is specified in the device configuration of the SITOP UPS1600 you created in STEP 7 V12.

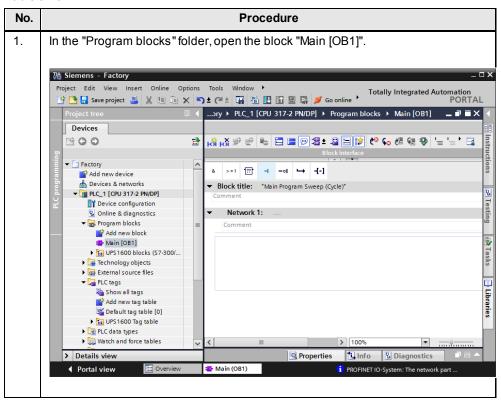


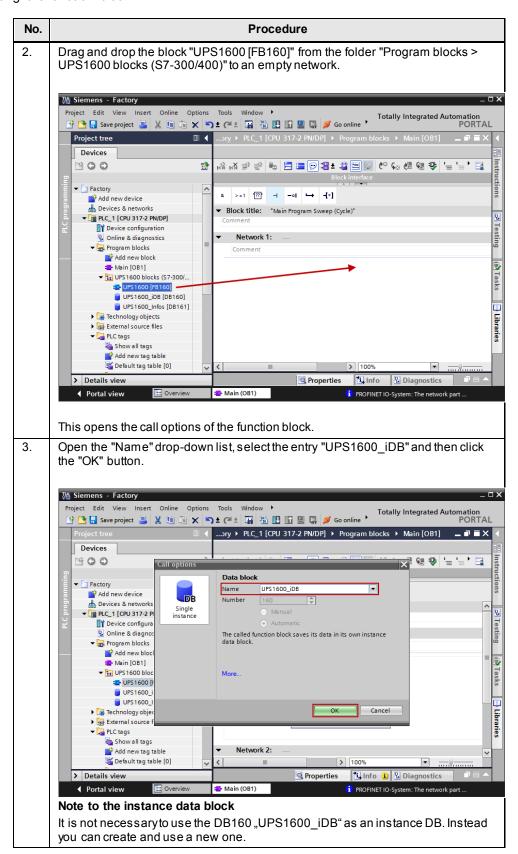

Table 5-8

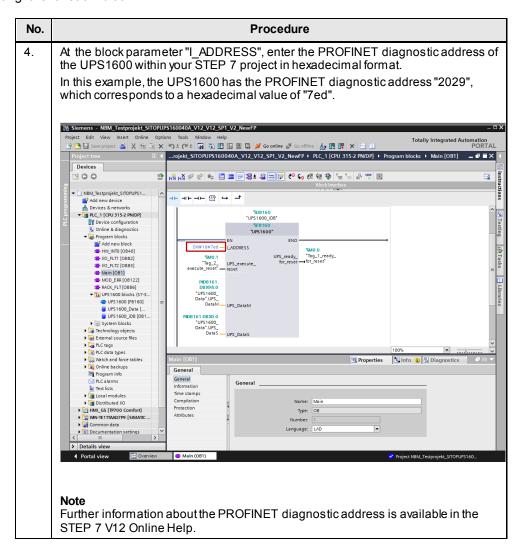
Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	Input voltage	-	%IB 256
UPS_Buffer_mode	buffer mode	Buffer mode / Normal mode	%IB 257
UPS_Ready_for_buffering	ready for buffering	Ready / Not ready for buffering	%IB 258
-	charge sufficient	-	%IB 259

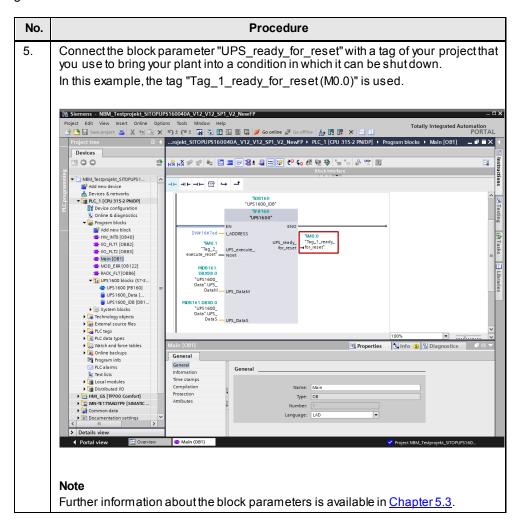
Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	battery change recommended	-	%IB 260
UPS_New_alarms_pending	new alarms pending	New / No new alarms pending	%IB 261

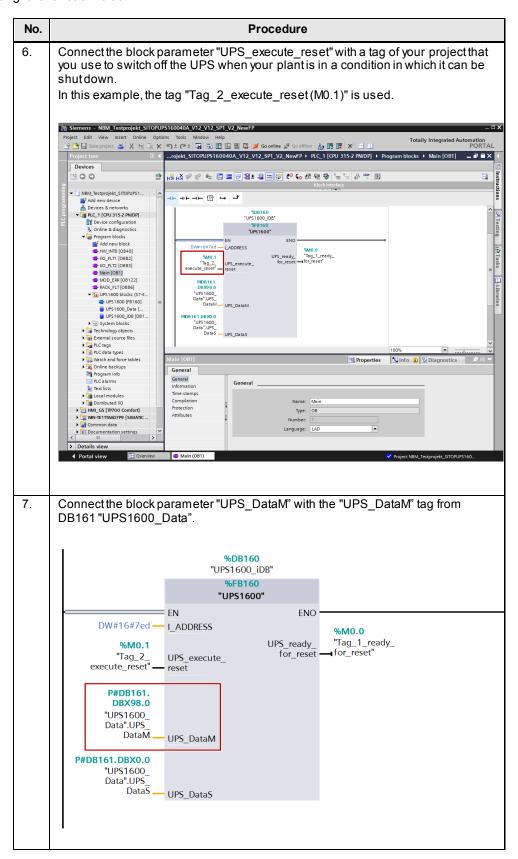
The following table describes the procedure for changing the address ranges of the symbol table contained in the library.

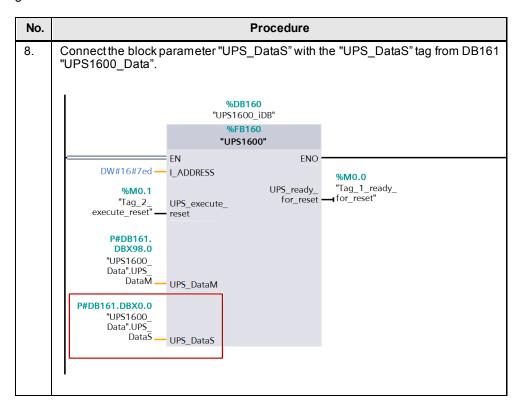

Table 5-9




Calling the function block


This section describes the procedure for calling the function block within an organization block. In this description, the function block "FB160" is called within "OB1".


Table 5-10

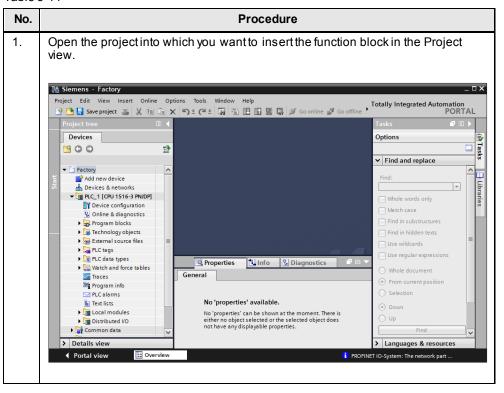


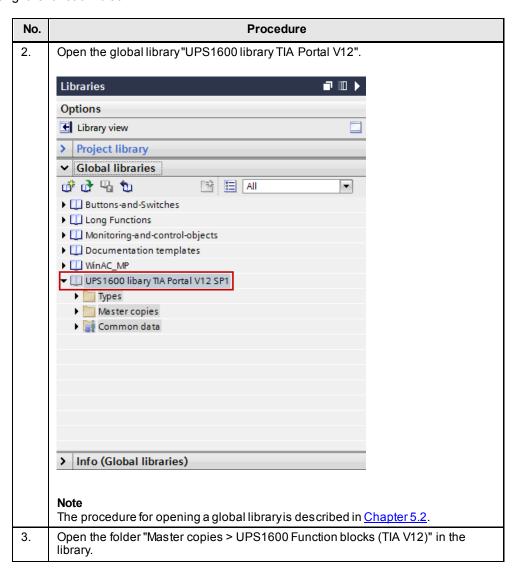
5.5.2 Procedure when using an \$7-1200/1500

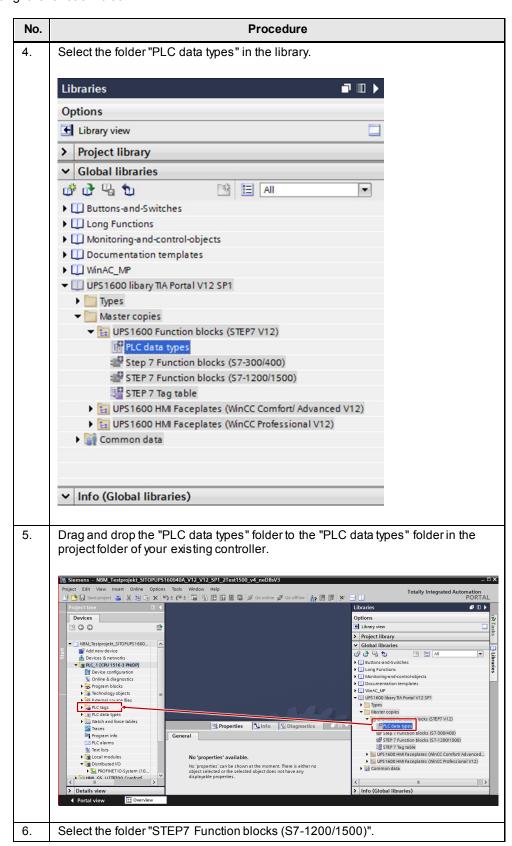
Hardware used in this description:

- CPU 1516-3 PN/DP
- SITOP UPS1600 24V/10A

The procedure for other SIMATIC S7-1200/1500 controllers is identical.


Note


Please make sure that all requirements for the integration of the function block are met. The requirements are described in Chapter 5.1.


Inserting blocks from the library into the program

The following table describes all steps for integrating the function block and the associated data blocks into a STEP 7 V12 project.

Table 5-11

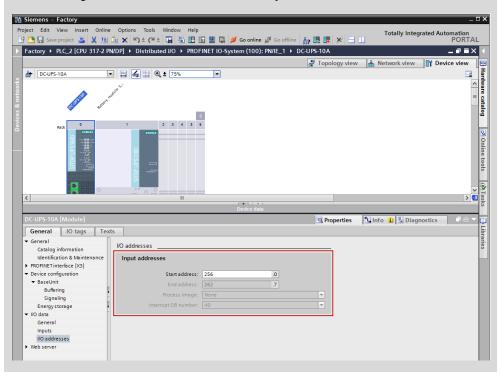
Adapting address ranges

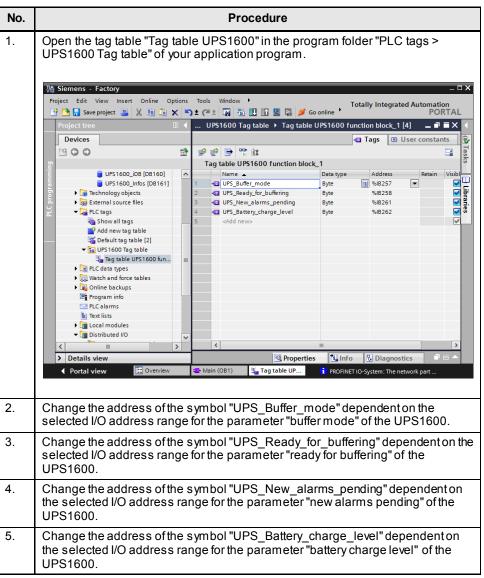
Within the program sequence of the function block FB160, the cyclic data of the address range of the SITOP UPS1600 are accessed. In this case, the required address ranges are transferred to the function block FB160 via four tags. It is therefore necessary to adapt the addresses of these tags in the symbol table dependent on the selected I/O address range of the SITOP UPS1600.

The following table shows the I/O address range (length: 7 bytes) of the SITOP UPS1600. The function block evaluates the parameters "buffer mode", "ready for buffering", "new alarms pending", and "battery charge level".

Note

The setting of the I/O address range for the SITOP UPS1600 is specified in the device configuration of the SITOP UPS1600 you created in STEP 7 V12.

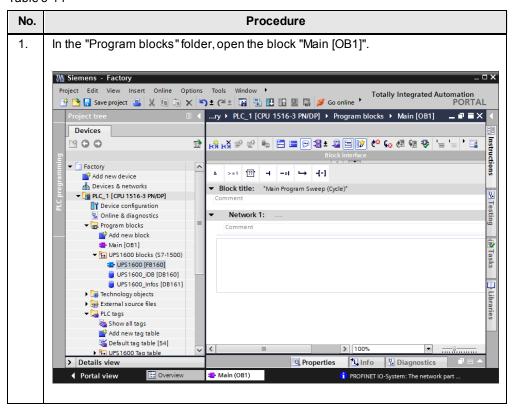


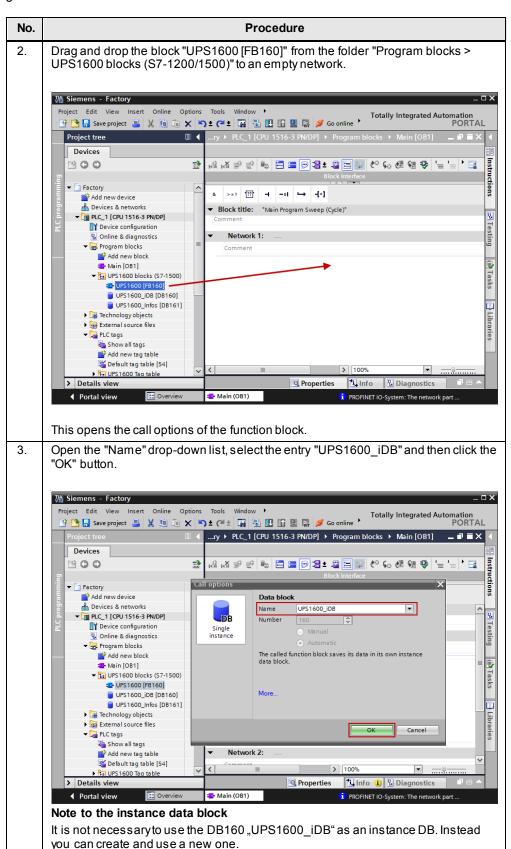

Table 5-12

Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	Input voltage	-	%IB 256
UPS_Buffer_mode	buffer mode	Buffer mode / Normal mode	%IB 257
UPS_Ready_for_buffering	ready for buffering	Ready / Not ready for buffering	%IB 258
-	charge sufficient	-	%IB 259

Tag in the symbol table	Parameter of the UPS1600	Information	Address range in this example
-	battery change recommended	-	%IB 260
UPS_New_alarms_pending	new alarms pending	New / No new alarms pending	%IB 261

The following table describes the procedure for changing the address ranges of the symbol table contained in the library.


Table 5-13



Calling the function block

This section describes the procedure for calling the function block within an organization block. In this description, the function block "FB160" is called within "OB1".

Table 5-14

No. **Procedure** 4. At the block parameter "HW_IO", enter the hardware ID of the UPS1600 within your STEP 7 project. In this example, the UPS1600 has the hardware ID "287". NBM_Testprojekt_SITOPUPS160040A_V12_V12_SP1_2Test1500_v4_neDBsV3 Totally Integrated Automation PORTAL Insert Online Options Tools Window Help ■ X 1 1 X X 5 Go offline 900 28 (전 글) 문 등 등 등 등 28 ± 28 등 등 (C 66 전 전 후 '= '= 6 약 만 INBM_Testprojekt_SITOPUPS160040A_V12_V12_SP1_2_

Add new device

Devices & networks

PC_1 (CU S156-2 PAUDP)

**Device configuration

**U. Online & diagnostics

**U. Device Configuration

**U. U. Online & diagnostics

**U. Online & diagnostics

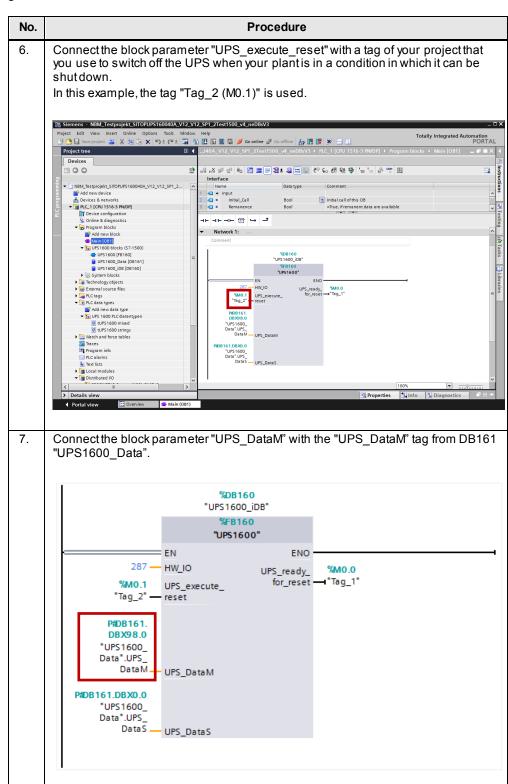
**U. Online & diagnostics

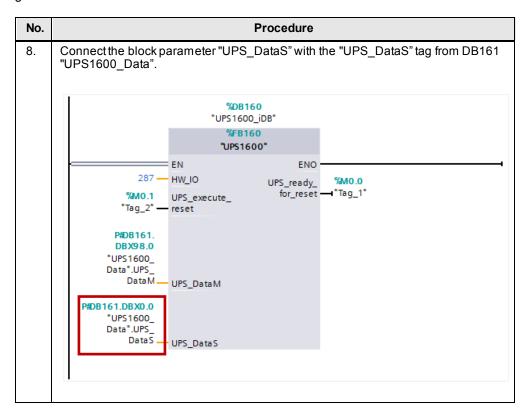
**U. U. Online & diagnostics

**U. Online & dia ▼ Network 1: %DB160 "UPS1600_iDB" %FB160 "UPS1600" UPS_ready_ %M0.0 for_reset — "Tag_1" Note Further information about the hardware ID is available in the STEP 7 V12 Online Help. 5. Connect the block parameter "UPS_ready_for_reset" with a tag of your project that you use to bring your plant into a condition in which it can be shut down. In this example, the tag "Tag_1 (M0.0)" is used. Siemens - NBM_Testprojekt_SITOPUPS160040A_V12_V12_SP1_2Test1500_v4_neDBsV3 <u>■ X = 1 X → 2 (- ± 1 3 0 11 11 2 3 0 Go online Ø G</u> Project tree 900 NBM_Testprojekt_SITOPUPS16

Add new device

Devices & networks


The LC_1 [CPU 1516-3 PN/DP]


Y Device configuration

V. Online & diagnostics

→ Program blocks Initial call of this OB

True, if remanent data are available -- -- <u>-</u>-- -- -- --- ---▼ Network 1: %FB160 "UPS1600" Further information about the block parameters is available in Chapter 5.3.

6.1 Faceplate "Faceplate_UPS1600_State"

6 Faceplates for the UPS1600

The HMI faceplates' task is to display various actual values and states of the SITOP UPS1600 on an HMI control panel / runtime system.

6.1 Faceplate "Faceplate_UPS1600_State"

Description of the faceplate

The faceplate "Faceplate UPS1600 State" provides the following functions:

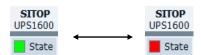
- Activation of the visibility of the faceplate "Faceplate_UPS1600"
- Status indication of the SITOP UPS1600

The functions are described in detail in the following sections.

Activation of the visibility of the faceplate "Faceplate_UPS1600"

A click on the faceplate "Faceplate_UPS1600_State" activates the visibility of the faceplate "Faceplate_UPS1600".

Note


The visibility of the faceplate "Faceplate_UPS1600" can just be activated via the faceplate "Faceplate_UPS1600_State". Deactivation of the visibility is only possible in the faceplate "Faceplate_UPS1600".

Status indication of the SITOP UPS1600

The faceplate "Faceplate_UPS1600_State" evaluates the following parameters of the SITOP UPS1600:

- New_alarms_pending
 (No new alarms pending / New alarms pending)
- Buffer_mode (Normal mode / Buffer mode)
- Ready_for_buffering (Ready for buffering / Not ready for buffering)

The status indication is evaluated via a script.

The following table shows all parameter states with the corresponding color dynamization of the rectangle.

Table 6-1

Color of	Buffer_	_mode	New_alarn	ns_pending	Ready_for	_buffering
rectangle	Normal mode	Buffer mode	No new alarms	New alarms	Ready for buffering	Not ready for buffering
Green	х		х		Х	
Red	х		Х			х
Red	х			Х	х	

6.1 Faceplate "Faceplate_UPS1600_State"

Color of	Buffer_	_mode	New_alarn	ns_pending	Ready_for	_buffering
rectangle	Normal mode	Buffer mode	No new alarms	New alarms	Ready for buffering	Not ready for buffering
Red	Х			Х		х
Red		х	Х		х	
Red		х	Х			х
Red		х		х	х	
Red		х		Х		Х

Interface description

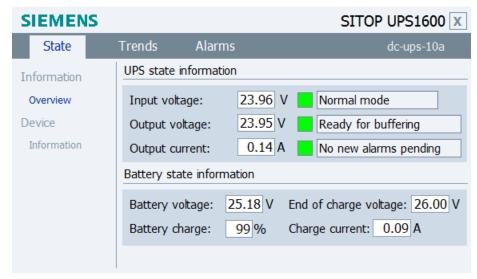
The following chapter describes the design of the dynamic interface of the faceplate.

Note

If you do not use the faceplates as master copy from the project library, the dynamic interface must be connected separately with the respective WinCC flexible tags.

The "Visibility" section of the dynamic interface contains all tags used to control the visibility of the faceplate.

Table 6-2


Dynamic interface faceplate	WinCC flexible tag
Faceplate_intern_button_alarms	Faceplate_intern_visibility_alarms
Connection	Internal tag
Data type	Integer
Faceplate_intern_button_headline	Faceplate_intern_visibility_headline
Connection	Internal tag
Data type	Integer
Faceplate_intern_button_state	Faceplate_intern_visibility_state
Connection	Internal tag
Data type	Integer
Faceplate_intern_button_trends	Faceplate_intern_visibility_trends
Connection	Internal tag
Data type	Integer
Faceplate_intern_visibility_main	Faceplate_intern_visibility_main
Connection	Internal tag
Data type	Integer
Faceplate_intern_visibility_min	Faceplate_intern_visibility_min
Connection	Internal tag
Data type	Integer

6.2 Faceplate "Faceplate_UPS1600"

Description of the faceplate

The faceplate "Faceplate_UPS1600" visualizes parameters of the SITOP UPS1600 on an HMI control panel.

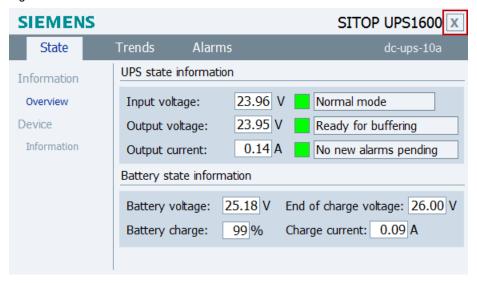
Figure 6-1

The parameters of the SITOP UPS1600 are distributed over three tabs, which can be opened in the faceplate by clicking on the relevant tab:

- Status
- Trends
- Alarms

The contents of the tabs and the parameters displayed there are described in detail in the following sections.

Visibility of the faceplate "Faceplate UPS1600"

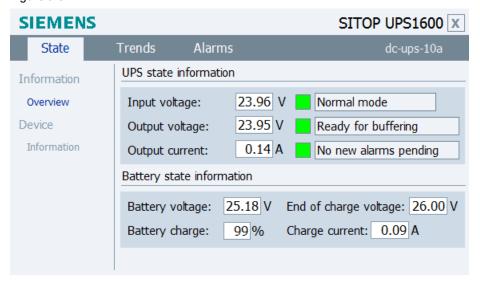

The visibility of the faceplate "Faceplate_UPS1600" is activated via the faceplate "Faceplate_UPS1600_State".

Note

Further information on the faceplate "Faceplate_UPS1600_State" is available in $\underline{\text{Chapter 6.1}}$.

For deactivation of the visibility of the "Faceplate_UPS1600", an "X" button is provided in the top right corner of the faceplate. By pressing this button the visibility is deactivated.

Figure 6-2


6.2.1 "State" tab

The "State" tab provides the menu items "Information > Overview" and "Device > Information".

Information > Overview

Under this menu item, information about the operating state and battery state of the SITOP UPS1600 is displayed.

Figure 6-3

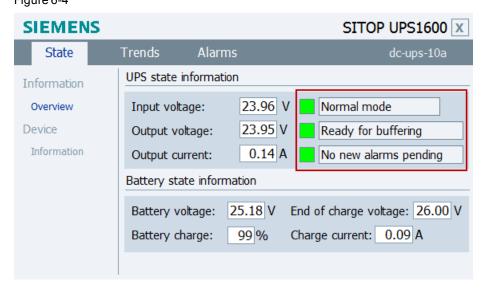

The following parameters are displayed under this menu:

Table 6-3

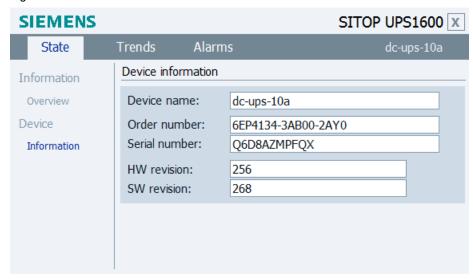
Display name	isplay name Parameter of the UPS	
Input voltage	Input_voltage	
Output voltage	Output_voltage	
Output current	Output_current	

Display name	Parameter of the UPS
Battery voltage	Battery_voltage
Battery charge	Battery_charge_level
End-of-charge voltage	End_of_charge_voltage
Charge current	Measured_charge_current
Normal mode / Buffer mode	Buffer_mode
Ready for buffering/ Not ready for buffering	Ready_for_buffering
No new alarms pending/ New alarms pending	New_alarms_pending

The values of the parameters "Buffer_mode", "Ready_for_buffering", and "New_alarms_pending" are output via symbolic I/O fields. In addition to this output, a rectangle is displayed in front of each symbolic I/O field, which is subject to color dynamization dependent on the parameter value. Figure 6-4

The following table shows the possible parameter states with the corresponding color dynamization of the rectangle.

Table 6-4


Parameter	State / display name	Color of rectangle
Normal mode	Normal mode	Green
	Buffer mode	Yellow
Ready for buffering	Ready for buffering	Green
	Not ready for buffering	Red
No new alarms pending	No new alarms pending	Green
	New pending alarms	Yellow

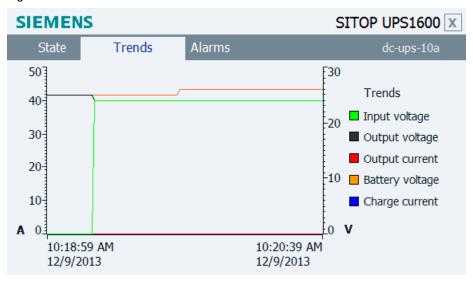
Note

All I/O fields within the faceplate just output values. It is not possible to input values.

Device > Information

Under this menu, general information about the SITOP UPS1600 is displayed. Figure 6-5

The following table shows all parameters displayed under this menu: Table 6-5


Display name	Parameter of the UPS
Device name	Device_name
Order number	Order_number
Serial number	Serial_number
HW revision	HW_revision
SW revision	SW_revision

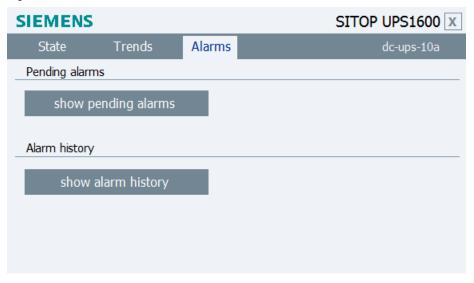
6.2.2 "Trends" tab

On the "Trends" tab, the following parameters of the SITOP UPS1600 are displayed in a trend curve.

- Input voltage
- Output voltage
- Output current
- Battery voltage
- Charge current

Figure 6-6

The time range of the X axis of the trend curve is 200 seconds. The trend variables used have an acquisition cycle of 1 second and are refreshed cyclically.


Table 6-6

Display name	Parameter of the UPS	Color	Unit
Input voltage	Input_voltage	Green	Volt
Output voltage	Output_voltage	Black	Volt
Output current	Output_current	Red	Ampere
Battery voltage	Battery_voltage	Orange	Volt
Charge current	Measured_charge_current	Blue	Ampere

6.2.3 "Alarms" tab

On the "Alarms" tab, it is possible to display the PROFINET diagnostic messages of the SITOP UPS1600.

Figure 6-7

When clicking the "show pending alarms" and "show alarm history" buttons, two separate message windows are opened.

The message window for the "Pending alarms" allows for displaying all currently pending PROFINET diagnostic messages of the SITOP UPS1600. The message window for the "Alarm history" allows for displaying all PROFINET diagnostic messages of the SITOP UPS1600 stored in the internal message buffer of the used HMI control panel.

Prerequisites for displaying the PROFINET diagnostic messages

In order to display the PROFINET diagnostic messages of the SITOP UPS1600 within the faceplate, the respective WinCC flexible / WinCC TIA Portal project must already be configured for the display of PROFINET diagnostic messages.

A list of the PROFINET diagnostic messages of the SITOP UPS1600 is available in the <u>SITOP UPS1600 User Manual</u> in Chapter 3.2.1.

7.1 Preconditions

7 Application of the Faceplates in WinCC flexible

7.1 Preconditions

The following requirements must be met to use the faceplates in WinCC flexible 2008 SP3.

- The GSD file of the SITOP UPS1600 is installed in STEP 7 V5.5 and the UPS is configured as PROFINET node in the HW configuration of the CPU.
- Already configured S7 communication between the SITOP UPS1600 and CPU.
- All program blocks from the library "UPS1600 STEP 7 V5_5" are integrated into the STEP 7 application program and executable.
- The library "UPS1600 library WinCC flexible 2008" for WinCC flexible 2008
 SP3 is available.

Supported control panels

The use of the faceplates is approved for the following control panels:

- TP270 10"
- OP270 10"
- MP270 10" Touch
- MP277 8" Touch / Key
- MP277 10" Touch / Key
- MP377 Touch / Key
- WinCC flexible Runtime 2008 SP3

Supported languages

The faceplates support the following languages:

- English (USA)
- German (Germany)
- Chinese (PR China)

Note regarding the application

The faceplates "Faceplate_UPS1600" and "Faceplate_UPS1600_State" can only be used in combination. Using just one of the faceplates separately is not possible.

7.2 Library for WinCC flexible

7.2 Library for WinCC flexible

The library "UPS1600 library WinCC flexible 2008" for WinCC flexible 2008 SP3 comprises the following objects:

Table 7-1

Name	Туре	Description
HMI Faceplates (WinCC flexible 2008)	Faceplates	Comprises the two faceplates "Faceplate_UPS1600" and "Faceplate_UPS1600_State".
HMI VB-Script	VB script	-
HMI Tag table	Tag folder	Separate tag folder with all required tags
HMI Alarm views	Message window	Comprises two message windows for displaying the diagnostic messages of the UPS1600.

The contents of the objects are described in detail in the following sections.

HMI Faceplates (WinCC flexible 2008)

This object comprises the two faceplates "Faceplate_UPS1600" and "Faceplate_UPS1600_State". The two faceplates are combined to one master copy in the library. Therefore, subsequent connection of the symbolic interfaces of the faceplates is not necessary.

HMI VB-Script

This object comprises the VB script "UPS1600 Faceplate state min".

This script controls the status indication of the SITOP UPS1600 in the faceplate "Faceplate_UPS1600_State".

HMI Tag table

This object in the library contains the tag folder "HMI Tag table".

This folder comprises all tags required for the use of the faceplates.

The control tags in this folder are already equipped with a connection to the data block DB161. The default connection name is "Connection 1".

After having integrated the tags from the library it might be necessary to adapt this connection name in your project.

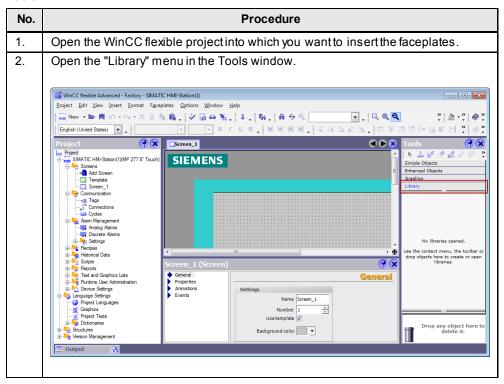
HMI Alarm views

This object comprises two message windows which can be used to display the PROFINET diagnostic messages of the SITOP UPS1600.

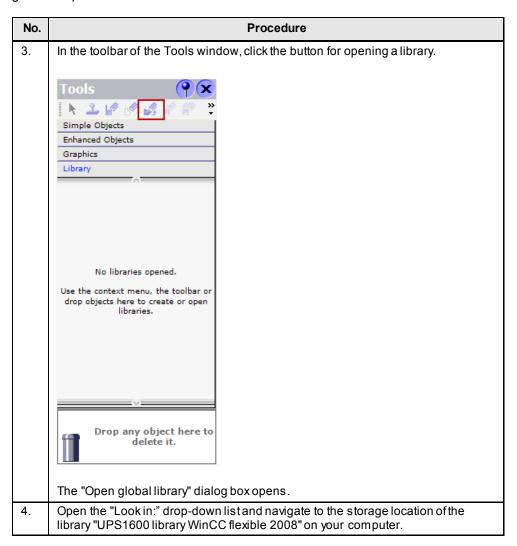
7.3 Integrating the faceplates

7.3 Integrating the faceplates

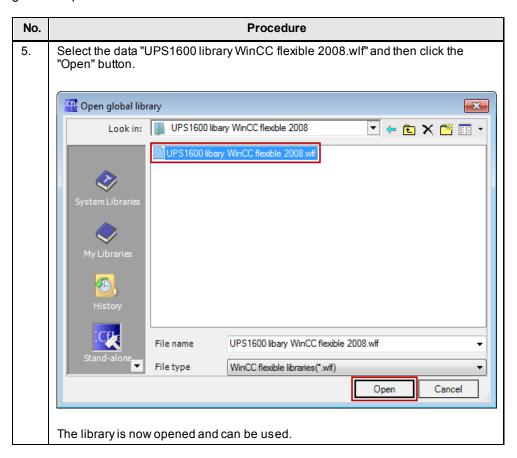
The following sections describe all steps required to integrate the faceplates into a WinCC flexible 2008 SP3 project.


Hardware used in this description:

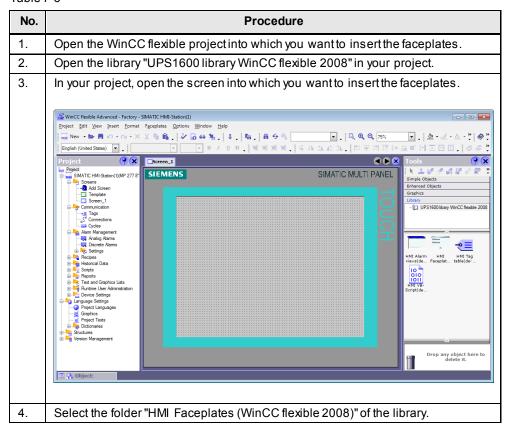
MP277 8" Touch

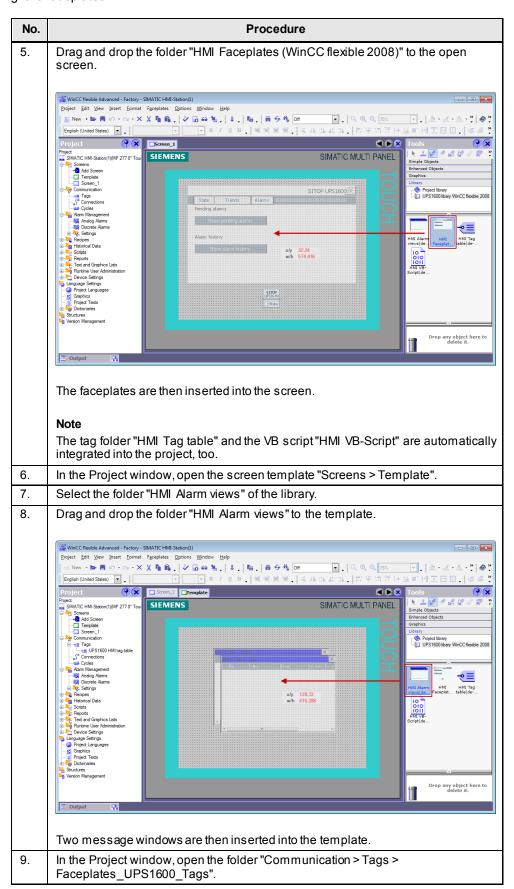

An overview of the supported HMI control panels is available in Chapter 7.1.

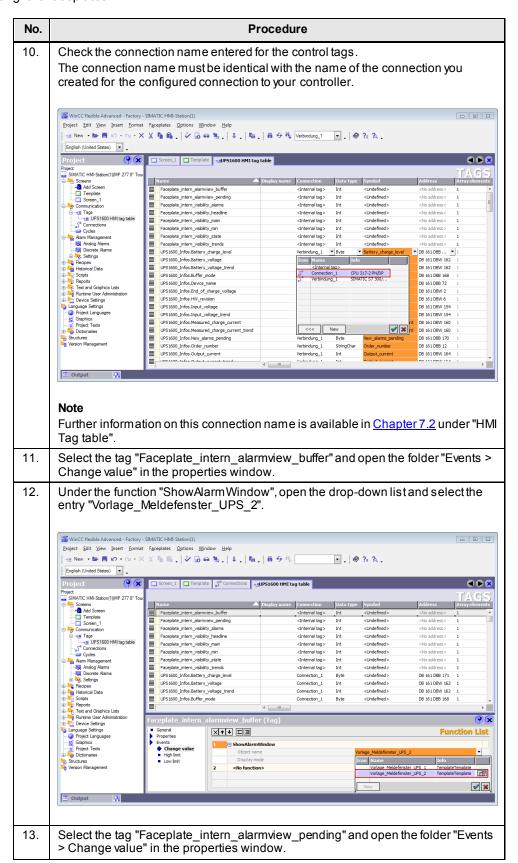
Opening the library


The following steps describe how to open a library in WinCC flexible 2008 SP3. Table 7-2

7.3 Integrating the faceplates


7.3 Integrating the faceplates




Inserting faceplates into a project

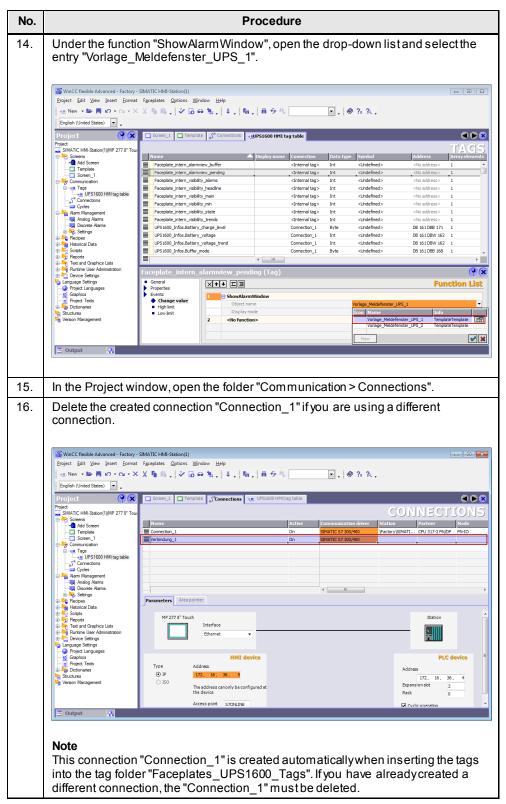

The following table describes the procedure for integrating the faceplates from the library "UPS1600 library WinCC flexible 2008" into an existing WinCC flexible project.

Table 7-3

The integration of the faceplates is thus completed.

Displaying the PROFINET diagnostic messages

In order to display the PROFINET diagnostic messages of the SITOP UPS1600 within the faceplate, the respective WinCC flexible project must already be configured for the display of PROFINET diagnostic messages.

Information on the display and configuration of diagnostic messages in WinCC flexible is available under the entry ID: 22533916.

Further notes regarding the PROFINET diagnostic messages of the SITOP UPS1600 are available in the SITOP UPS1600 User Manual in Chapter 3.2.1.

7.4 Interface description

The following chapter describes the design of the dynamic interface of the faceplate. The interface is subdivided into the sections "Visibility" and "Values UPS1600".

Note

If you do not use the faceplates as master copy from the project library, the dynamic interface must be connected separately with the respective WinCC flexible tags.

Visibility

This section of the dynamic interface comprises all tags used to control the visibility of the faceplate.

Figure 7-1

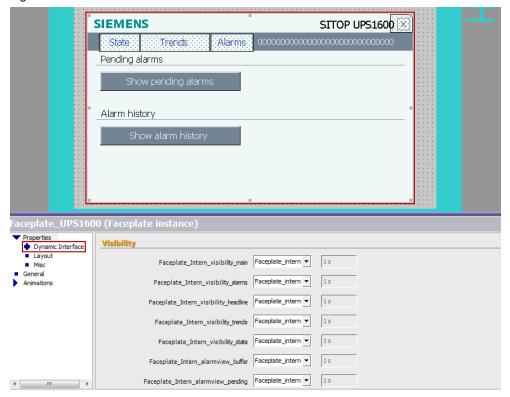


Table 7-4

Dynamic interface faceplate	WinCC flexible tag	
Faceplate_intern_visibility_alarm	Faceplate_intern_visibility_alarm	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_headline	Faceplate_intern_visibility_headline	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_main	Faceplate_intern_visibility_main	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_state	Faceplate_intern_visibility_state	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_trends	Faceplate_intern_visibility_trends	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_alarmview_buffer	Faceplate_intern_alarmview_buffer	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_alarmview_pending	Faceplate_intern_alarmview_pending	
Connection	Internal tag	
Data type	Int	

Values UPS1600

This section of the dynamic interface comprises all tags used to display the parameters of the SITOP UPS1600 within the faceplate.

Figure 7-2

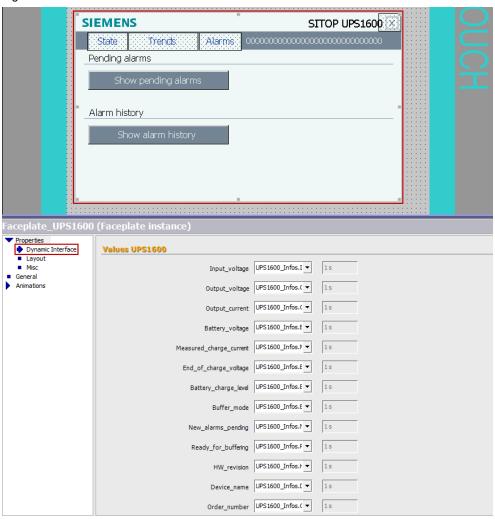


Table 7-5

Dynamic interface faceplate	WinCC flexible tag	
Battery_charge_level	UPS1600_Infos.Battery_charge_level	
Data type	Byte	
Address	DB 161 DBB 171	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	

Dynamic interface faceplate	WinCC flexible tag	
Battery_voltage	UPS1600_Infos.Battery_voltage	
Data type	Int	
Address	DB 161 DBW 162	
Length	2	
Acquisition cycle	- 1s	
Acquisition mode	Cyclic on use	
Buffer_mode	UPS1600_Infos.Buffer_mode	
Data type	Byte	
Address	DB 161 DBB 168	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Device_name	UPS1600_Infos.Device_name	
Data type	StringChar	
Address	DB 161 DBB 72	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
End_of_charge_voltage	UPS1600_Infos.End_of_charge_voltage	
Data type	Int	
Address	DB 161 DBW 2	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
HW_revision	UPS1600_Infos.HW_revision	
Data type	Int	
Address	DB 161 DBW 2	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Input_voltage	UPS1600_Infos.Input_voltage	
Data type	Int	
Address	DB 161 DBW 154	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Measured_charge_current	UPS1600_Infos.Measured_charge_current	
Data type	Int	
Address	DB 161 DBW 160	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Linearscaling	10:1	

Dynamic interface faceplate	WinCC flexible tag	
New_alarms_pending	UPS1600_Infos.New_alarms_pending	
Data type	Byte	
Address	DB 161 DBB 170	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Order_number	UPS1600_Infos.Order_number	
Data type	StringChar	
Address	DB 161 DBB 12	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Output_current	UPS1600_Infos.Output_current	
Data type	Int	
Address	DB 161 DBW 164	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Linearscaling	10:5	
Output_voltage	UPS1600_Infos.Output_voltage	
Data type	Int	
Address	DB 161 DBW 156	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Ready_for_buffering	UPS1600_Infos.Ready_for_buffering	
Data type	Byte	
Address	DB 161 DBB 169	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Serial_number	UPS1600_Infos.Serial_number	
Data type	StringChar	
Address	DB 161 DBB 42	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
SW_revision	UPS1600_Infos.SW_revision	
Data type	Int	
Address	DB 161 DBW 8	
Length	2	
Acquisition cycle	- 1s	
Acquisition mode	Cyclic on use	
1:		

8.1 Preconditions

8 Application of the Faceplates in WinCC Comfort/Advanced V12

8.1 Preconditions

The following requirements must be met to use the faceplates in WinCC Comfort/ Advanced V12 SP1.

- The Hardware Support Package for the SITOP UPS1600 is installed in STEP 7 V12.
- Already existing S7 communication between the SITOP UPS1600 and SIMATIC S7 controller.
- All program blocks for STEP 7 V12 from the library "UPS1600 library TIA Portal V12 SP1" are integrated into the application program and executable.
- The library "UPS1600 library TIA Portal V12 SP1" is available.

Supported control panels

The use of the faceplates is approved for the following control panels:

- TP700 Comfort / KP700 Comfort
- TP900 Comfort / KP900 Comfort
- TP1200 Comfort / KP1200 Comfort
- TP1500 Comfort / KP1500 Comfort
- TP1900 Comfort
- TP2200 Comfort
- MP277 8" Touch / MP277 8" Key
- MP277 10" Touch / MP277 10" Key
- MP377 Touch / Key
- WinCC RT Advanced V12

Supported languages

The faceplates support the following languages:

- English (USA)
- German (Germany)
- Chinese (PR China)

Note regarding the application

The faceplates can only be used in combination. Using just one of the faceplates separately is not possible.

8.2 Library for WinCC Comfort/Advanced

8.2 Library for WinCC Comfort/Advanced

The following objects are part of the master copy "UPS1600 HMI Faceplates (WinCC Comfort/Advanced V12)" in the library "UPS1600 library TIA Portal V12". Table 8-1

Name	Туре	Description
HMI Faceplates (WinCC Comfort/Advanced V12)	Faceplates	Comprises the two faceplates "Faceplate_UPS1600" and "Faceplate_UPS1600_State".
HMI VB-Script	VB script	-
HMI Tag table	Tag folder	Separate tag folder with all required tags
HMI Alarm views	Message window	Comprises two message windows for displaying the diagnostic messages of the UPS1600.

The contents of the objects are described in detail in the following sections.

HMI Faceplates (WinCC Comfort/Advanced V12)

This object comprises the two faceplates "Faceplate_UPS1600" and "Faceplate_UPS1600_State". The two faceplates are combined to one master copy in the library. Therefore, subsequent connection of the symbolic interfaces of the faceplates is not necessary.

HMI VB-Script

This object comprises the VB script "UPS1600_Faceplate_state_min". This script controls the status indication of the SITOP UPS1600 in the faceplate "Faceplate_UPS1600_State".

HMI Tag table

This object in the library contains the tag folder "HMI Tag table". This folder comprises all tags required for the use of the faceplates.

The control tags in this folder are already equipped with a connection to the data block DB161 and a controller connection. The default connection name is "Connection 1".

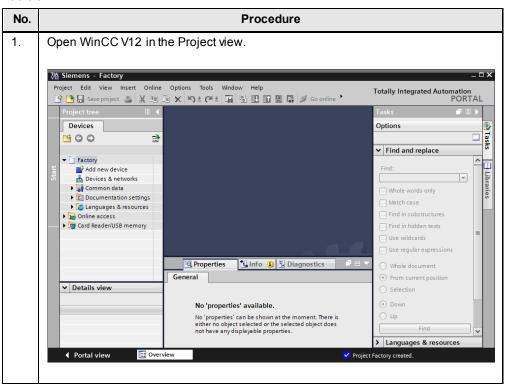
After having integrated the tags from the library it might be necessary to adapt this connection name in your project.

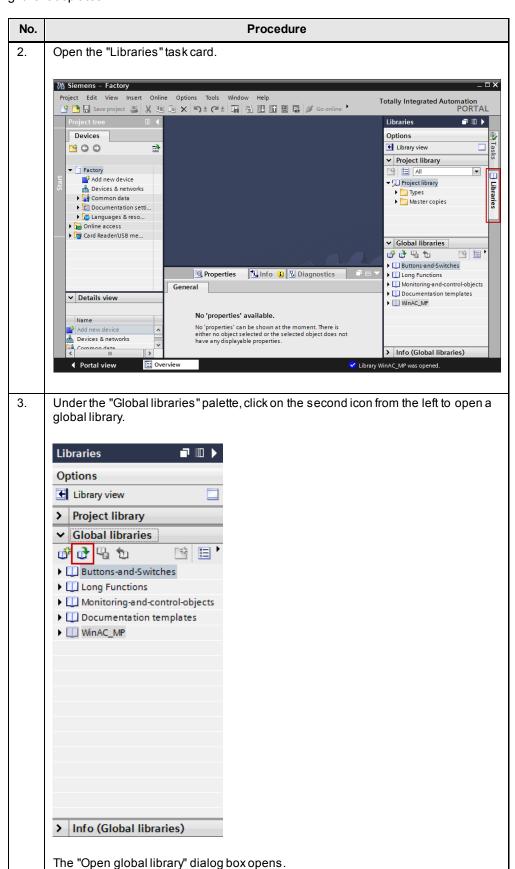
HMI Alarm views

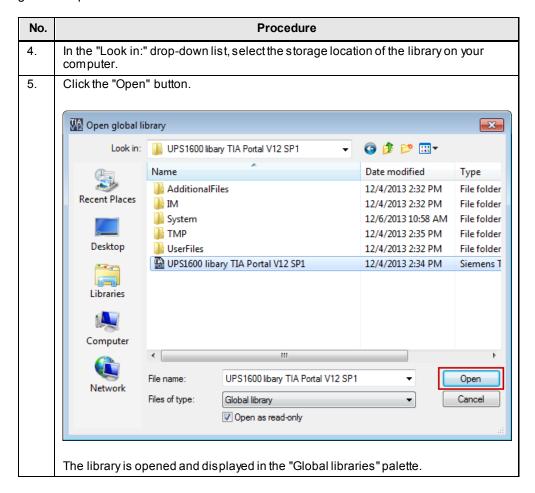
This object comprises two message windows which can be used to display the PROFINET diagnostic messages of the SITOP UPS1600.

8.3 Integrating the faceplates

The following sections describe all steps required to integrate the faceplates into a WinCC Comfort/Advanced V12 project.

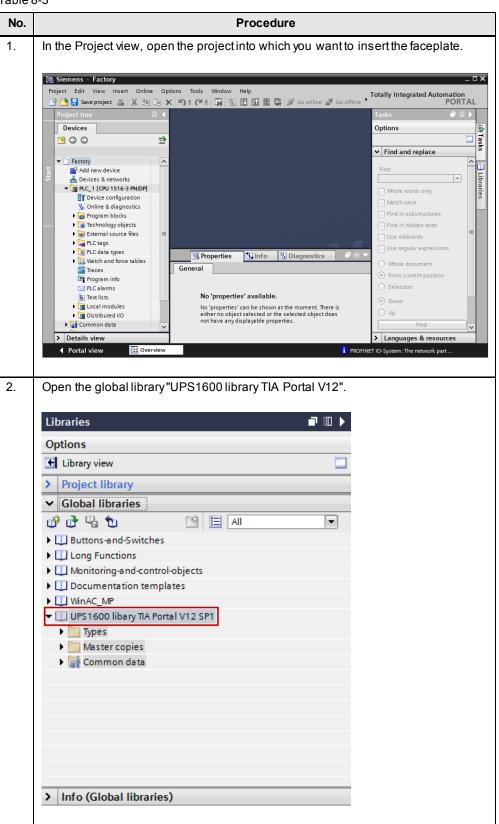

Hardware used in this description:

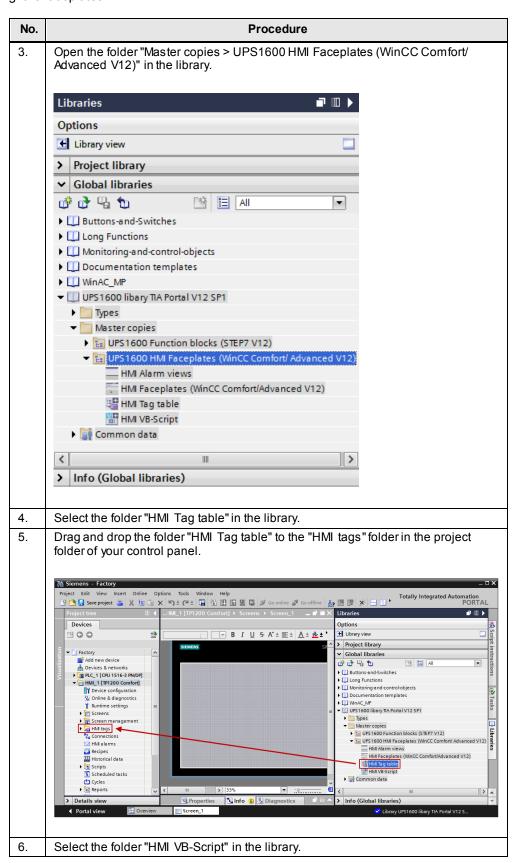

• TP1200 Comfort

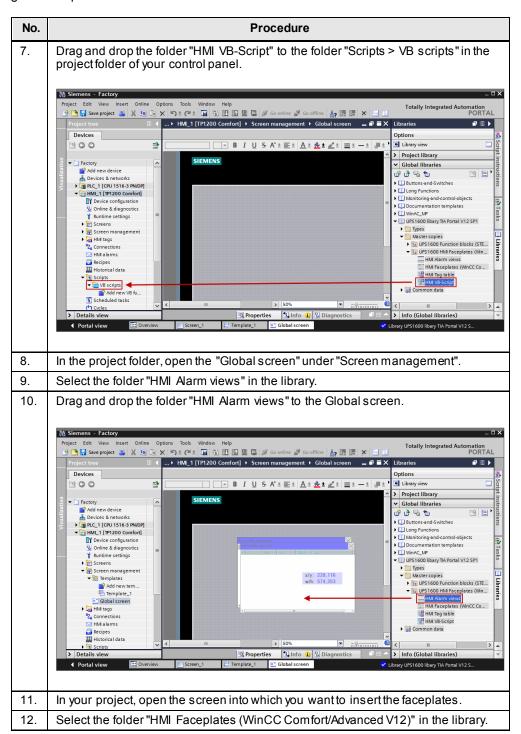

An overview of the supported HMI control panels is available in Chapter 8.1.

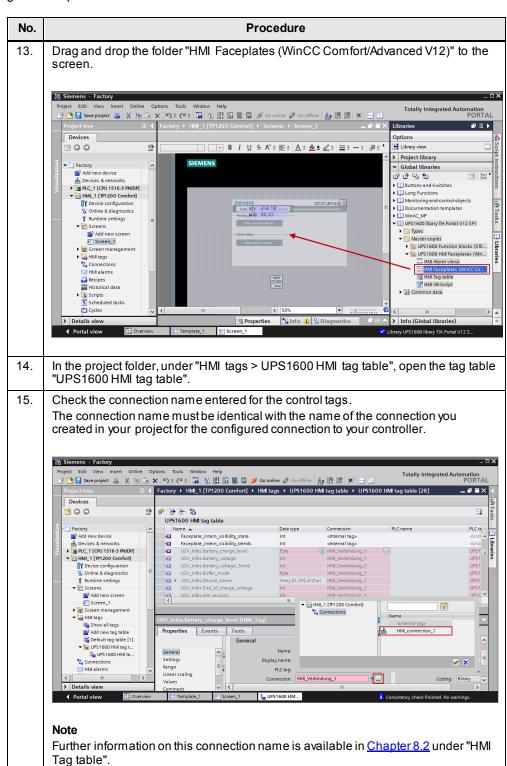
Opening the library in WinCC V12

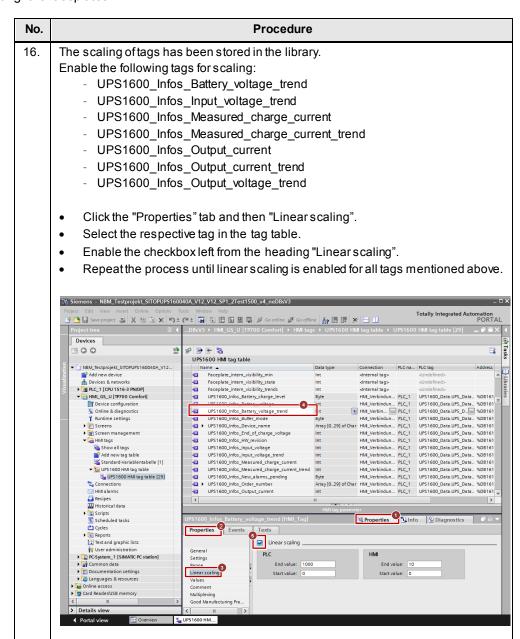
The following steps describe how to open a library in WinCC Professional V12. Table 8-2

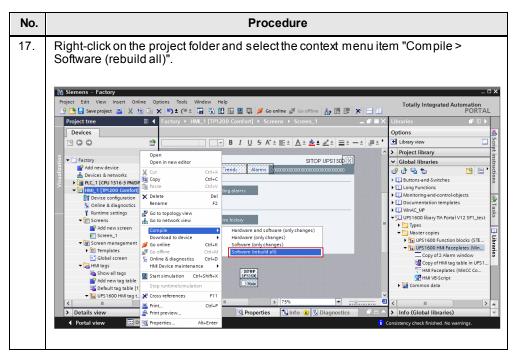


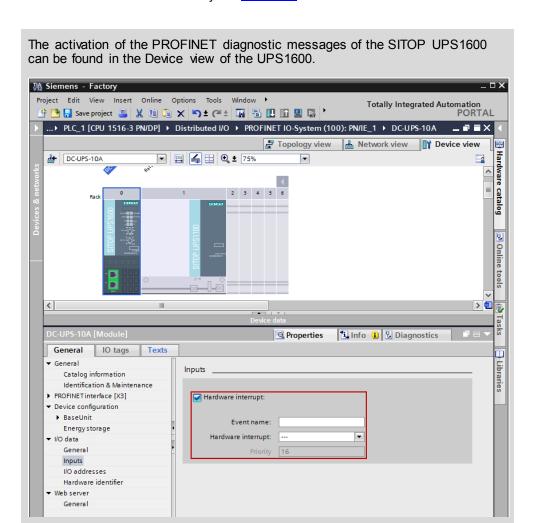



Inserting faceplates into a project


The following table describes the procedure for integrating the faceplates from the master copy "UPS1600 HMI Faceplates (WinCC Comfort/Advanced V12)" of the library "UPS1600 library TIA Portal V12" into an existing WinCC V12 project.


Table 8-3




The integration of the faceplates is thus completed.

Displaying the PROFINET diagnostic messages

In order to display the PROFINET diagnostic messages of the SITOP UPS1600 within the faceplate, the respective WinCC TIA Portal project must already be configured for the display of PROFINET diagnostic messages.

Information on the display and configuration of diagnostic messages in WinCC TIA Portal is available under the entry ID: <u>62121503</u>.

Note

Further notes regarding the PROFINET diagnostic messages of the SITOP UPS1600 are available in the SITOP UPS1600 User Manual in Chapter 3.2.1.

8.4 Interface description

The following chapter describes the design of the dynamic interface of the faceplates.

Note

If you do not use the faceplates as master copy from the project library, the dynamic interface must be connected separately with the respective WinCC (TIA Portal) tags.

Faceplate "Faceplate_UPS1600"

This section of the dynamic interface comprises all tags used to display the parameters of the SITOP UPS1600 within the faceplate.

Figure 8-1

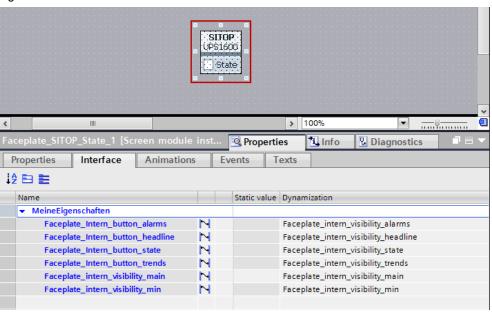


Table 8-4

Dynamic interface faceplate	WinCC TIA Portal tag	
Faceplate_intern_visibility_alarm	Faceplate_intern_visibility_alarm	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_headline	Faceplate_intern_visibility_headline	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_main	Faceplate_intern_visibility_main	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_state	Faceplate_intern_visibility_state	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_trends	Faceplate_intern_visibility_trends	

Dynamic interface faceplate WinCC TIA Portal tag		
Connection	Internal tag	
Data type	Int	

Faceplate "Faceplate_UPS1600"

This section of the dynamic interface comprises all tags used to display the parameters of the SITOP UPS1600 within the faceplate.

Figure 8-2

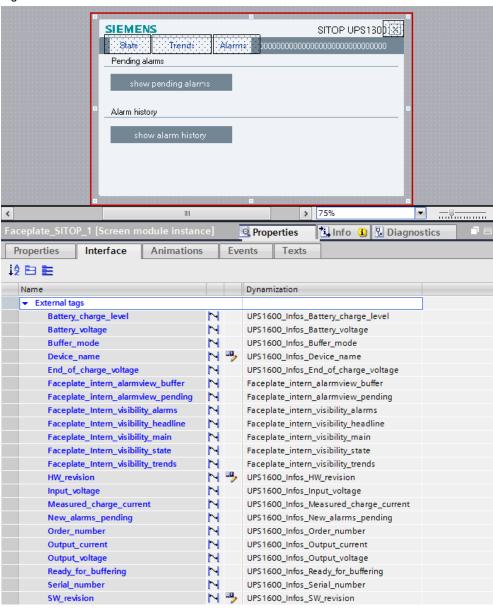


Table 8-5

Dynamic interface faceplate	WinCC TIA Portal tag	
Battery_charge_level	UPS1600_Infos.Battery_charge_level	
Data type	Byte	
Address	DB 161 DBB 269	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Battery_voltage	UPS1600_Infos.Battery_voltage	
Data type	Int	
Address	DB 161 DBW 260	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Buffer_mode	UPS1600_Infos.Buffer_mode	
Data type	Byte	
Address	DB 161 DBB 266	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Device_name	UPS1600_Infos.Device_name	
Data type	StringChar	
Address	DB 161 DBB 170.0	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
End_of_charge_voltage	UPS1600_Infos.End_of_charge_voltage	
Data type	Int	
Address	DB 161 DBW 100	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
HW_revision	UPS1600_Infos.HW_revision	
Data type	Int	
Address	DB 161 DBW 104	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	

Dynamic interface faceplate	WinCC TIA Portal tag	
Input_voltage	UPS1600_Infos.Input_voltage	
Data type	Int	
Address	DB 161 DBW 250	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Measured_charge_current	UPS1600_Infos.Measured_charge_current	
Data type	Int	
Address	DB 161 DBW 258	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Linearscaling	10 : 1	
New_alarms_pending	UPS1600_Infos.New_alarms_pending	
Data type	Byte	
Address	DB 161 DBB 268	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Order_number	UPS1600_Infos.Order_number	
Data type	StringChar	
Address	DB 161 DBB 110.0	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Output_current	UPS1600_Infos.Output_current	
Data type	Int	
Address	DB 161 DBW 262	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Linearscaling	10:5	
Output_voltage	UPS1600_Infos.Output_voltage	
Data type	Int	
Address	DB 161 DBW 254	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	

Dynamic interface faceplate	WinCC TIA Portal tag	
Ready_for_buffering	UPS1600_Infos.Ready_for_buffering	
Data type	Byte	
Address	DB 161 DBB 267	
Length	1	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Serial_number	UPS1600_Infos.Serial_number	
Data type	StringChar	
Address	DB 161 DBB 140.0	
Length	30	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
SW_revision	UPS1600_Infos.SW_revision	
Data type	Int	
Address	DB 161 DBW 106	
Length	2	
Acquisition cycle	1s	
Acquisition mode	Cyclic on use	
Faceplate_intern_visibility_alarm	Faceplate_intern_visibility_alarm	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_headline	Faceplate_intern_visibility_headline	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_main	Faceplate_intern_visibility_main	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_state	Faceplate_intern_visibility_state	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_visibility_trends	Faceplate_intern_visibility_trends	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_alarmview_buffer	Faceplate_intern_alarmview_buffer	
Connection	Internal tag	
Data type	Int	
Faceplate_intern_alarmview_pending	Faceplate_intern_alarmview_pending	
Connection	Internal tag	
Data type	Int	

9.1 Preconditions

9 Application of the Screen Windows in WinCC V7.2

9.1 Preconditions

The following requirements must be met to use the screen windows in WinCC V7.2.

- The GSD file of the SITOP UPS1600 is installed in STEP 7 V5.5 and the UPS is configured as PROFINET node in the HW configuration of the CPU.
- Already configured S7 communication between the SITOP UPS1600 and CPU.
- All program blocks from the library "UPS1600 STEP 7 V5_5" are integrated into the STEP 7 application program and executable.
- The library "UPS1600 library WinCC V7" for WinCC V7.2 is available.
- Existing WinCC OS (PC station) with already configured and active communication connection.

Supported control panels

The use of the screen windows is approved for the following control panels:

WinCC V7.2 Runtime

Supported languages

The screen windows support the following languages:

- English (USA)
- German (Germany)
- Chinese (PR China)

9.2 Library for WinCC V7.2

The library "UPS1600 library WinCC V7" for WinCC V7.2 comprises the following file folders:

Table 9-1

Name	Туре	Description
HMI Windows (WinCC V7.2)	Library (projectlibrary)	Comprises the screen windows "UPS1600" and "UPS1600_State".
HMI Tag table (WinCC V7.2)	Tags	Files for tag import
HMI Screens (WinCC V7.2)	Screens	Comprises the screens "UPS1600.pdl" and "UPS1600_State.pdl".

HMI Windows (WinCC V7.2)

This folder contains the WinCC V7.2 library "library.pxl". This library comprises the screen windows "UPS1600" and "UPS1600_State".

These screen windows display the screens "UPS1600.pdl" and "UPS1600_State.pdl" in WinCC V7.2.

HMI Tag table (WinCC V7.2)

This folder contains the files "UPS1600_Tags_cex.csv", "UPS1600_Tags_dex.csv", and "UPS1600_Tags_vex.csv".

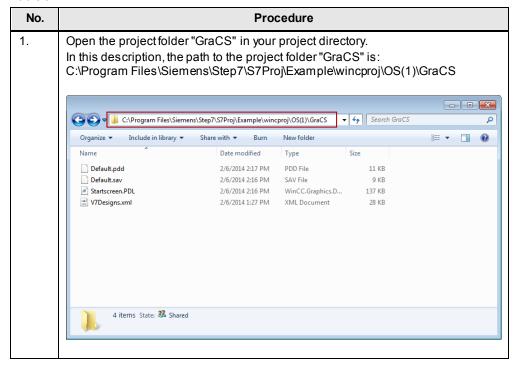
These files comprise all tags required for the functioning of the screen windows. They are imported into a WinCC V7.2 project using the smart tool "Tag Export Import".

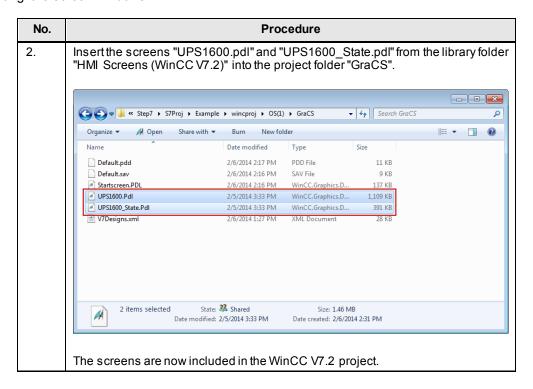
HMI Screens (WinCC V7.2)

This folder contains the screens "UPS1600.pdl" and "UPS1600_State.pdl". These screens are displayed in the screen windows "UPS1600" and "UPS1600_State".

9.3 Integrating the screen windows

The following sections describe all steps required to integrate the screen windows into a WinCC V7.2 project.

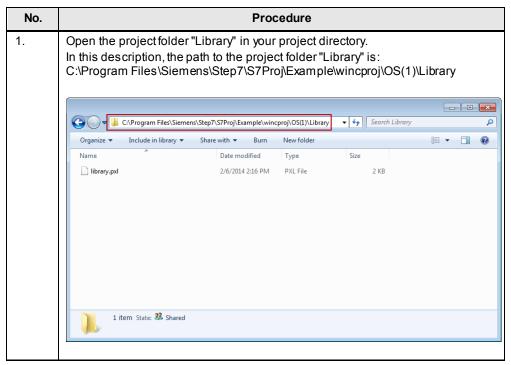

Target system used in this description:

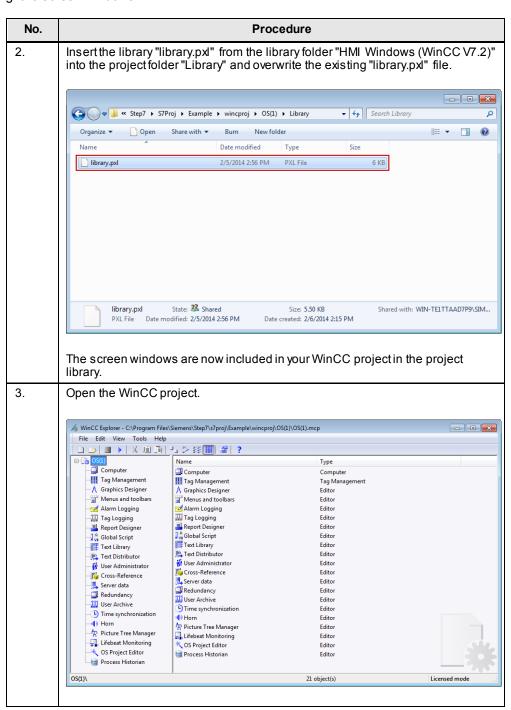

WinCC V7.2 Runtime

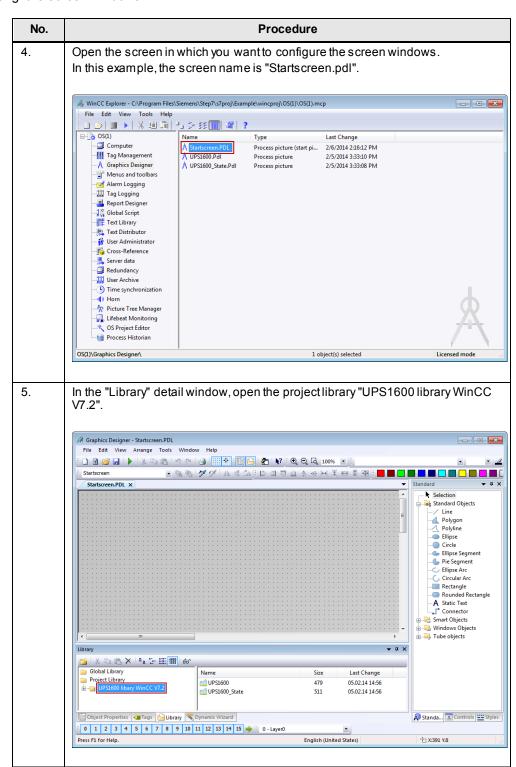
Inserting the project screens

The following steps describe how to copy the screens "UPS1600.pdl" and "UPS1600_State.pdl" from the library folder "HMI Screens (WinCC V7.2)" to the project directory GraCS of your WinCC project.

Table 9-2






Configuring screen windows

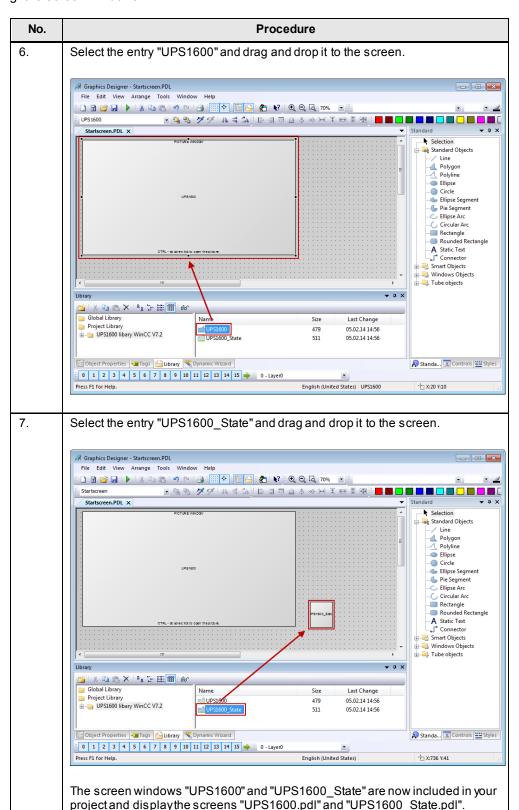
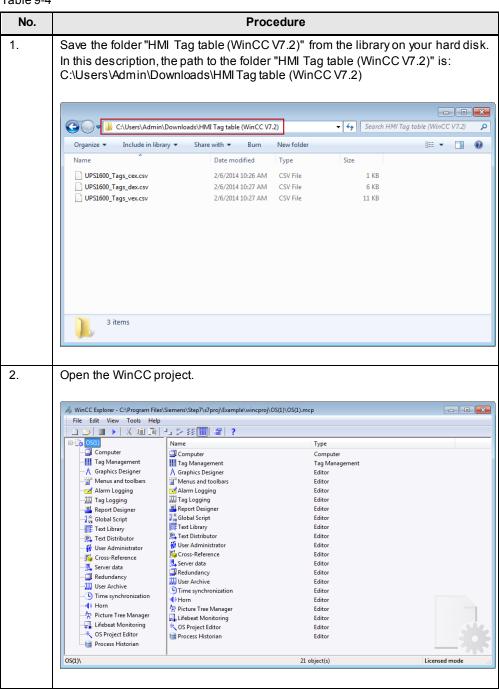
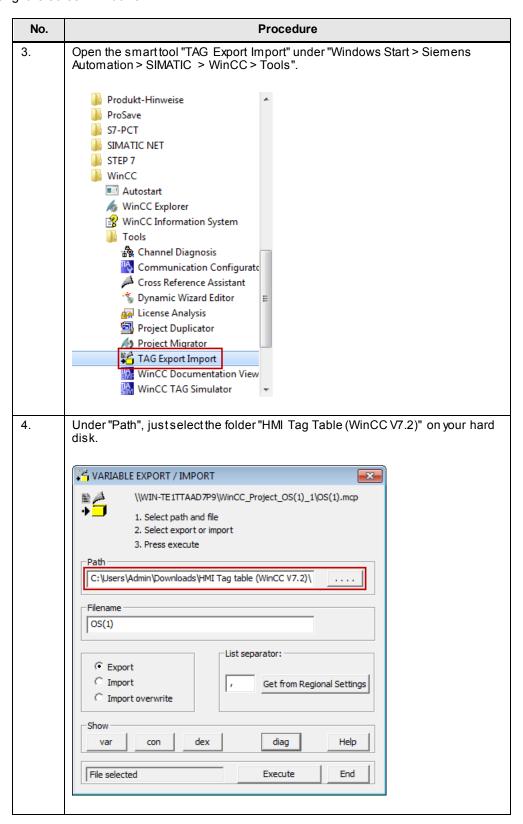
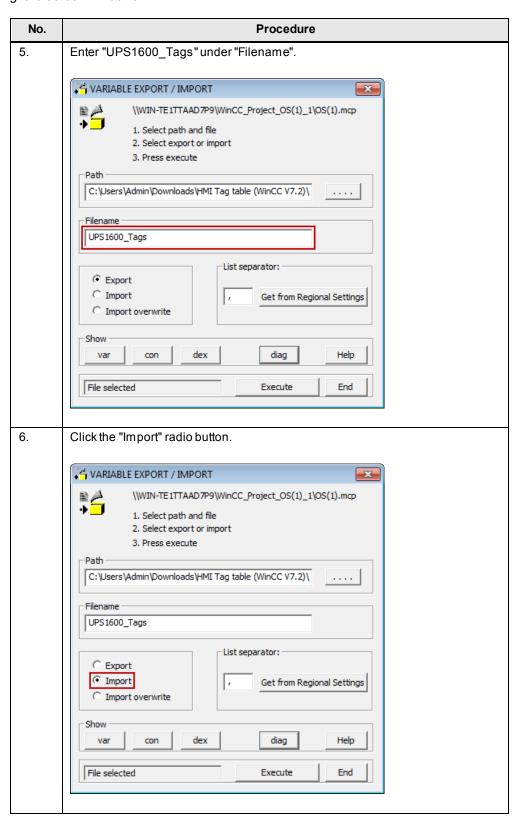
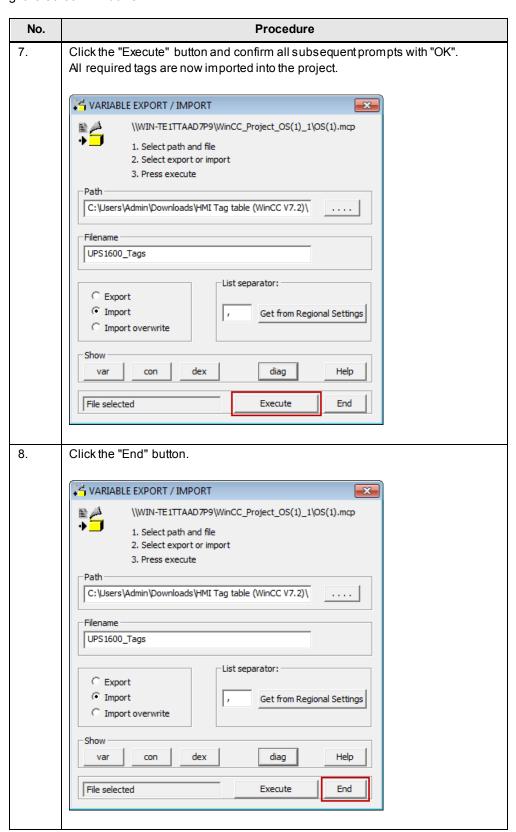

The following steps describe how to copy the library "library.pxl" from the library folder "HMI Windows (WinCC V7.2)" to the project directory "Library" of your WinCC project.

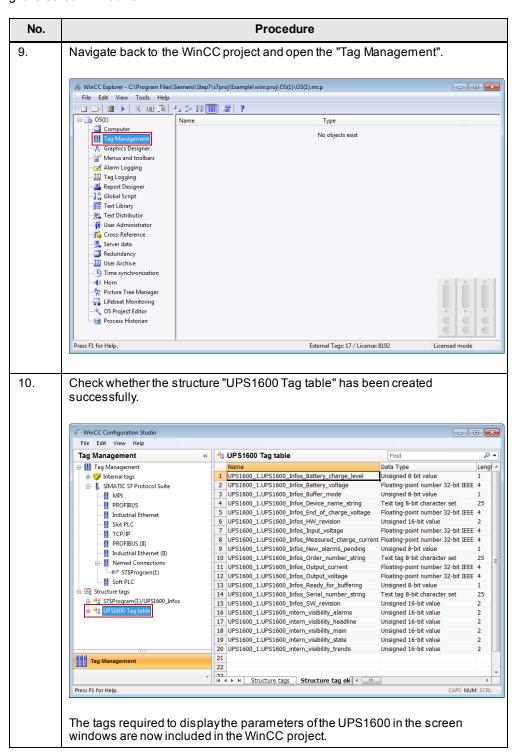
Table 9-3






Importing tags

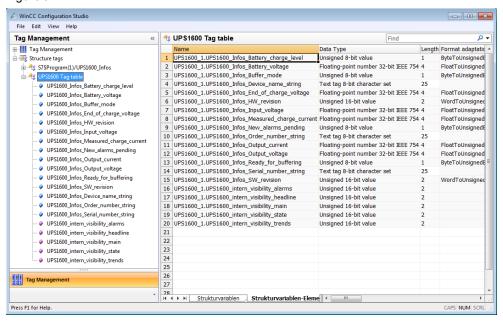

The following steps describe how to import the files from the library folder "HMI Tag table (WinCC V7.2)" into the WinCC project.


Table 9-4

The integration of the screen windows is thus completed.

Displaying the PROFINET diagnostic messages

In order to display the PROFINET diagnostic messages of the SITOP UPS1600 within the screen windows, the respective WinCC project must already be configured for the display of PROFINET diagnostic messages.


Information on the display and configuration of diagnostic messages in WinCC is available under the entry ID: $\underline{245799373}$.

Further notes regarding the PROFINET diagnostic messages of the SITOP UPS1600 are available in the SITOP UPS1600 User Manual in Chapter 3.2.1.

9.4 Interface description

The following chapter describes all tags that are contained in the library object "HMI Tag table (WinCC V7.2)" and required for the functioning of the screen windows.

Figure 9-1

The following table provides the definition of the structure type "UPS1600 Tag table". The created structure tag has the tag prefix "UPS1600_1".

Table 9-5

Structure element		
UPS1600_Infos_Battery_charge_level		
Data type: Unsigned 8-bit value		
Length: 1		
Format adaptation: ByteToUnsignedByte		
Tag type: Control tag		
Address: DB161,DBB171		
UPS1600_Infos_Battery_voltage		
Data type: Floating-point number 32-bit IEEE 754		
Length: 4		
Format adaptation: FloatToUnsignedWord		
Tag type: Control tag		
Address: DB161,DBW162		
Linear s caling: AS (1000-0), OS (10-0)		

Structure element
UPS1600_Infos_Buffer_mode
Data type: Unsigned 8-bit value
Length: 1
Format adaptation: ByteToUnsignedByte
Tag type: Control tag
Address: DB161,DBB168
UPS1600_Infos_Device_name_string
Data type: Text tag 8-bit character set
Length: 25
Tag type: Control tag
Address: DB161,DBB242
UPS1600_Infos_End_of_charge_voltage
Data type: Floating-point number 32-bit IEEE 754
Length: 4
Format adaptation: FloatToUnsignedWord
Tag type: Control tag
Address: DB161,DBW2
Linear scaling: AS (1000-0), OS (10-0)
UPS1600_Infos_HW_revision
Data type: Unsigned 16-bit value
Length: 2
Format adaptation: WordToUnsignedWord
Tag type: Control tag
Address: DB161,DBW6
UPS1600_Infos_Input_voltage
Data type: Floating-point number 32-bit IEEE 754
Length: 4
Format adaptation: FloatToUnsignedWord
Tag type: Control tag
Address: DB161,DBW154
Linear scaling: AS (1000-0), OS (10-0)
UPS1600_Infos_Measured_charge_current
Data type: Floating-point number 32-bit IEEE 754
Length: 4
Format adaptation: FloatToUnsignedWord
Tag type: Control tag
Address: DB161,DBW160
Linear scaling: AS (1000-0), OS (1-0)

Structure element
UPS1600_Infos_New_alarms_pending
Data type: Unsigned 8-bit value
Length: 1
Format adaptation: ByteToUnsignedByte
Tag type: Control tag
Address: DB161,DBB170
Linear scaling: AS (), OS ()
UPS1600_Infos_Order_number_string
Data type: Text tag 8-bit character set
Length: 25
Tag type: Control tag
Address: DB161,DBB186
UPS1600_Infos_Output_current
Data type: Floating-point number 32-bit IEEE 754
Length: 4
Format adaptation: FloatToUnsignedWord
Tag type: Control tag
Address: DB161,DBW164
Linear scaling: AS (1000-0), OS (5-0)
UPS1600_Infos_Output_voltage
Data type: Floating-point number 32-bit IEEE 754
Length: 4
Format adaptation: FloatToUnsignedWord
Tag type: Control tag
Address: DB161,DBW156
Linear s caling: (1000-0), OS (10-0)
UPS1600_Infos_Ready_for_buffering
Data type: Unsigned 8-bit value
Length: 1
Format adaptation: ByteToUnsignedByte
Tag type: Control tag
Address: DB161,DBB169
Linear scaling: AS (), OS ()
UPS1600_Infos_Serial_number_string
Data type: Text tag 8-bit character set
Length: 25
Tag type: Control tag
Address: DB161,DBB214

Structure element
UPS1600_Infos_SW_revision
Data type: Unsigned 16-bit value
Length: 2
Format adaptation: WordToUnsignedWord
Tag type: Control tag
Address: DB161,DBW8
UPS1600_intern_visibility_alarms
Data type: Unsigned 16-bit value
Length: 1
Tag type: Internal tag
UPS1600_intern_visibility_headline
Data type: Unsigned 16-bit value
Length: 1
Tag type: Internal tag
UPS1600_intern_visibility_main
Data type: Unsigned 16-bit value
Length: 1
Tag type: Internal tag
UPS1600_intern_visibility_state
Data type: Unsigned 16-bit value
Length: 1
Tag type: Internal tag
UPS1600_intern_visibility_trends
Data type: Unsigned 16-bit value
Length: 1
Tag type: Internal tag

10.1 Preconditions

10 Application of the Faceplates in WinCC Professional V12

10.1 Preconditions

The following requirements must be met to use the screen windows in WinCC Professional V12 SP1.

- The Hardware Support Package for the SITOP UPS1600 is installed in STEP 7 V12.
- Already existing S7 communication between the SITOP UPS1600 and SIMATIC S7 controller.
- All program blocks for STEP 7 V12 from the library "UPS1600 library TIA Portal V12 SP1" are integrated into the application program and executable.
- The library "UPS1600 library TIA Portal V12 SP1" is available.

Supported control panels

The use of the screen windows is approved for the following control panels:

WinCC RT Professional V12

Supported languages

The screen windows support the following languages:

- English (USA)
- German (Germany)
- Chinese (PR China)

Note regarding the application

The screen windows can only be used in combination. Using just one of the faceplates separately is not possible.

10.2 Library for WinCC Professional

The following objects are part of the master copy "UPS1600 HMI Faceplates (WinCC Professional V12)" in the library "UPS1600 library TIA Portal V12 SP1".

Table 10-1

Name	Туре	Description
HMI Windows (WinCC Professional V12)	Screen window	Comprises the screen windows "UPS1600" and "UPS1600_State".
HMI Schedulerjob	Job (scheduler)	-
HMI Tag table	Tag folder	Separate tag folder with all required tags
HMI VB-Script	VB script	-

10.2 Library for WinCC Professional

Name	Туре	Description
HMI Screens (WinCC Professional V12)	Screens	Comprises the screens "UPS1600" and "UPS1600_State".

HMI Windows (WinCC Professional V12)

This object comprises the screen windows "UPS1600" and "UPS1600_State". In these screen windows, the screens "UPS1600" and "UPS1600_State" will be displayed later.

The two screen windows are combined to one master copy in the library.

HMI Scheduler job

This object contains the job "UPS1600_state_job" for the scheduler. This job cyclically executes the VB script "UPS1600_Faceplate_state_min".

HMI Tag table

This object in the library contains the tag folder "HMI Tag table".

This folder comprises all tags required for the use of the faceplates.

The control tags in this folder are already equipped with a connection to the data block DB161 and a controller connection. The default connection name is "Connection 1".

After having integrated the tags from the library it might be necessary to adapt this connection name in your project.

HMI VB-Script

This object comprises the VB script "UPS1600_Faceplate_state_min".

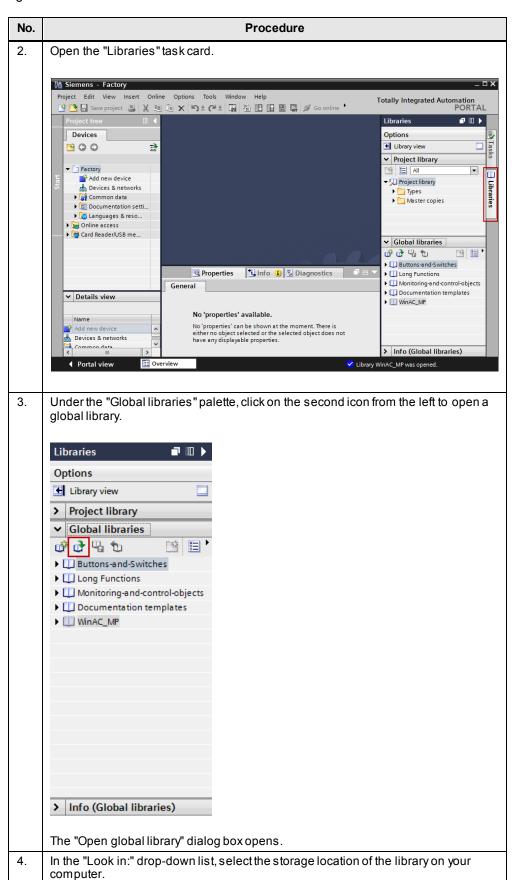
This script controls the status indication of the SITOP UPS1600 in the screen window "UPS1600 State".

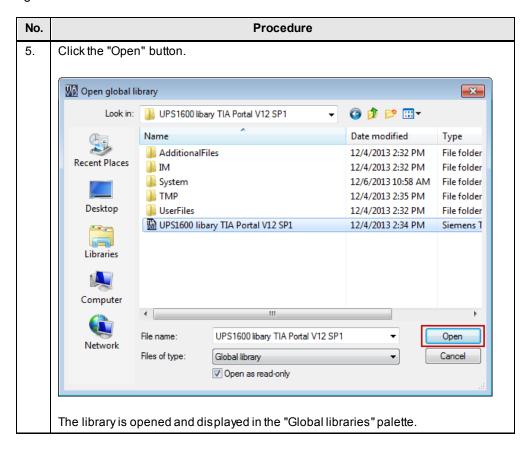
HMI Screens (WinCC Professional V12)

This object comprises the screens "UPS1600" and "UPS1600_State". The two screens are combined to one master copy in the library.

10.3 Integrating the screen windows

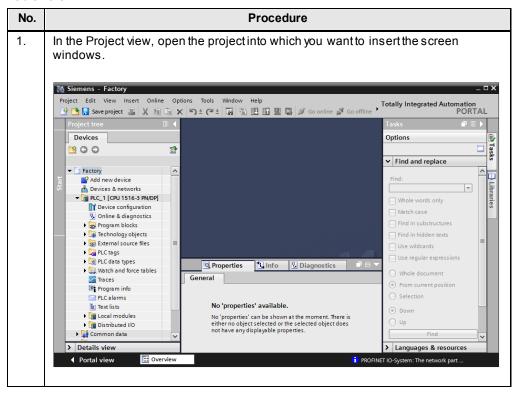
The following sections describe all steps required to integrate the screen windows into a WinCC Professional V12 project.

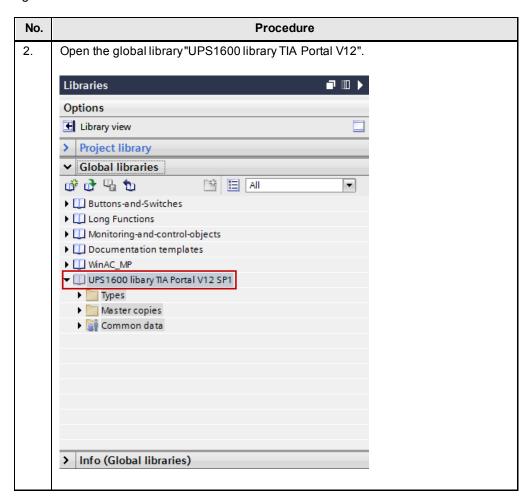

Target system used in this description:

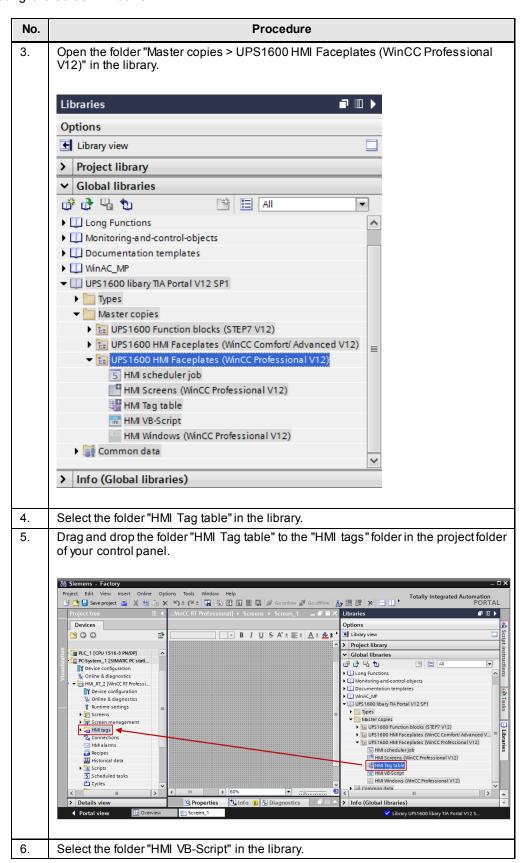

WinCC RT Professional V12

Opening the library in WinCC V12

The following steps describe how to open a library in WinCC Professional V12. Table 10-2






Inserting screen windows into a project

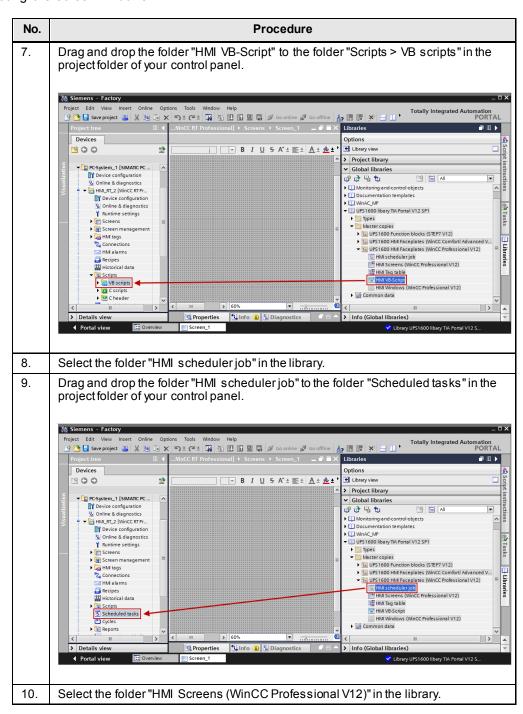
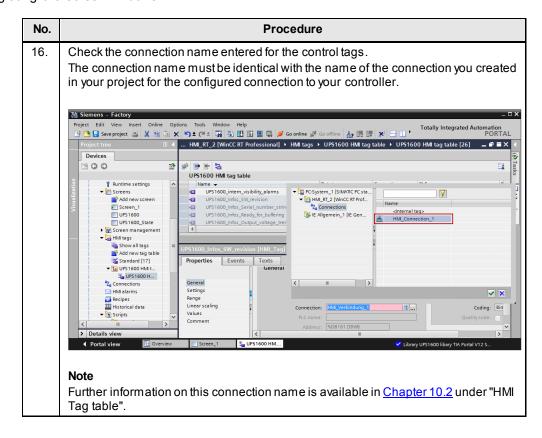
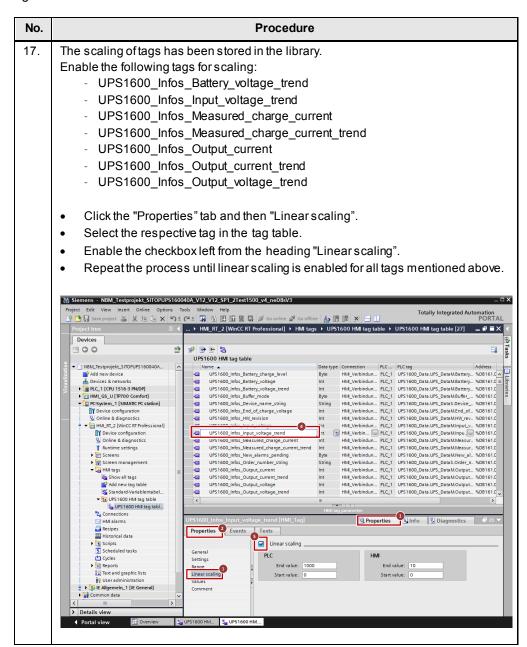
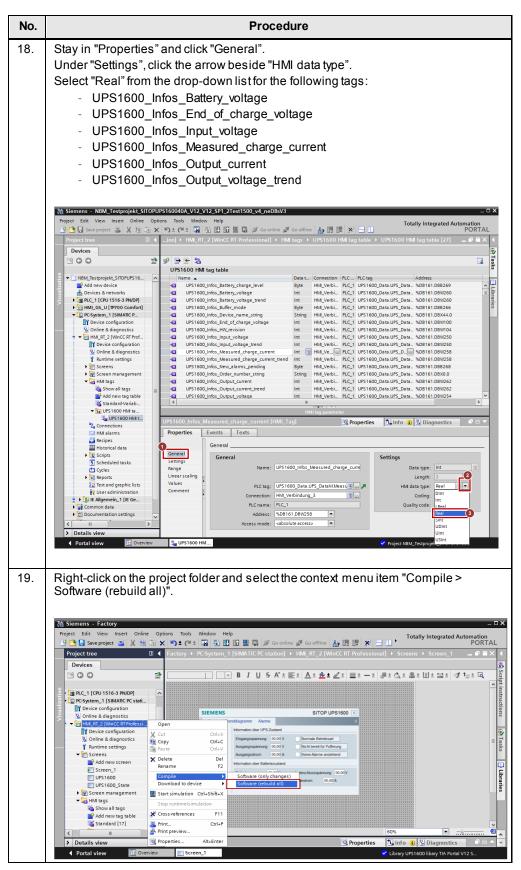

The following table describes the procedure for integrating the screen windows from the master copy "UPS1600 HMI Faceplates (WinCC Professional V12)" of the library "UPS1600 library TIA Portal V12" into an existing WinCC V12 project.

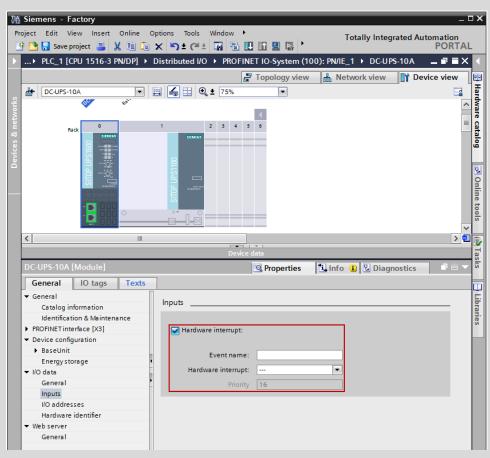
Table 10-3







The integration of the screen windows is thus completed.


Displaying the PROFINET diagnostic messages

In order to display the PROFINET diagnostic messages of the SITOP UPS1600 within the screen windows, the respective WinCC TIA Portal project must already be configured for the display of PROFINET diagnostic messages.

Information on the display and configuration of diagnostic messages in WinCC TIA Portal is available under the entry ID: <u>62121503</u>.

Note

The activation of the PROFINET diagnostic messages of the SITOP UPS1600 can be found in the Device view of the UPS1600.

Further notes regarding the PROFINET diagnostic messages of the SITOP UPS1600 are available in the SITOP UPS1600 User Manual in Chapter 3.2.1.

10.4 Interface description

The following chapter describes all tags that are contained in the library object "HMI Tag table" and required for the functioning of the screen windows.

The following tables provide the definition of the tags.

Internal tag

Table 10-4

WinCC TIA Portal tag		
Faceplate_intern_visibility_alarm		
Internal tag		
Data type: Int		
Faceplate_intern_visibility_headline		
Internal tag		
Data type: Int		
Faceplate_intern_visibility_main		
Internal tag		
Data type: Int		
Faceplate_intern_visibility_state		
Internal tag		
Data type: Int		
Faceplate_intern_visibility_trends		
Internal tag		
Data type: Int		

Control tags

WinCC TIA Portal tag		
UPS1600_Infos.Battery_charge_level		
Data type: Byte		
Address: DB 161 DBB 269		
Length: 1		
Acquisition cycle: 1s		
Acquisition mode: Cyclic on use		
UPS1600_Infos.Battery_voltage / UPS1600_Infos.Battery_voltage_trend		
Data type: Int		
Address: DB 161 DBW 260		
Length: 2		
Acquisition cycle: 1s		
Acquisition mode: Cyclic on use		
Linear scaling: 1000: 10		
UPS1600_Infos.Buffer_mode		
Data type: Byte		
Address: DB 161 DBB 266		
Length: 1		

WinCC TIA Portal tag
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.Device_name_string
Data type: String
Address: DB 161 DBX 44.0
Length: 20
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.End_of_charge_voltage
Data type: Int
Address: DB 161 DBW 100
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
Linear scaling: 1000:10
UPS1600_Infos.HW_revision
Data type: Int
Address: DB 161 DBW 104
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.Input_voltage/UPS1600_Infos.Input_voltage_trend
Data type: Int
Address: DB 161 DBW 250
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
Linear scaling: 1000: 10
UPS1600_Infos.Measured_charge_current
Data type: Int
Address: DB 161 DBW 258
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
Linear scaling: 1000:10
UPS1600 Infos.New alarms pending
Data type: Byte
Address: DB 161 DBB 268
Length: 1
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.Order_number_string
Data type: String
Data type. Stilling

WinCC TIA Portal tag
Address: DB 161 DBX 0.0
Length: 20
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.Output_current/UPS1600_Infos.Output_current_trend
Data type: Int
Address: DB 161 DBW 262
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
Linear scaling: 1000:5
UPS1600_Infos.Output_voltage/UPS1600_Infos.Output_voltage_trend
Data type: Int
Address: DB 161 DBW 254
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
Linear scaling: 1000: 10
UPS1600_Infos.Ready_for_buffering
Data type: Byte
Address: DB 161 DBB 267
Length: 1
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.Serial_number_string
Data type: String
Address: DB 161 DBX 22.0
Length: 20
Acquisition cycle: 1s
Acquisition mode: Cyclic on use
UPS1600_Infos.SW_revision
Data type: Int
Address: DB 161 DBW 106
Length: 2
Acquisition cycle: 1s
Acquisition mode: Cyclic on use

11 Related Literature

Internet link specifications

The following list is not complete and only represents a selection of relevant information.

Table 11-1

	Topic	Title
\1\	Link to this document	http://support.automation.siemens.com/WW/view/en/78817848
\2\	Siemens Industry Online Support	http://support.automation.siemens.com
\3\	SITOP UPS1600 Manual	http://support.automation.siemens.com/WW/view/en/84977415
\4\	STEP 7 Professional V12 System Manual	http://support.automation.siemens.com/WW/view/en/77991795
\5\	WinCC Advanced V12.0 SP1 System Manual	http://support.automation.siemens.com/WW/view/en/78318776
\6\	SIMATIC Programming with STEP 7 V5.5	http://support.automation.siemens.com/WW/view/en/45531107
\7\	WinCC flexible 2008 System Manual	http://support.automation.siemens.com/WW/view/en/18796010
/8/	WinCC System Manual	http://support.automation.siemens.com/WW/view/en/73506085
/9/	GSD for SITOP UPS1600 for integration into STEP 7 V5	http://support.automation.siemens.com/WW/view/en/75854605
\10\	HSP for SITOP UPS1600 for integration into STEP 7 V12 TIA	http://support.automation.siemens.com/WW/view/en/75854606

12 History

Table 12-1

Version	Date	Modifications
V1.0	2/2014	First version
V1.1	12/2014	SITOP UPS1600, 2nd delivery stage