

操作指南•10月2015年

基于 S7-1200 CPU 集成 PN 口 的 ModbusTCP 通信快速入门

https://support.industry.siemens.com/cs/cn/zh/view/81015512

Unrestricted

Copyright © Siemens AG Copyright year All rights reserved

目录

1	Modbus	TCP 通讯概述	3
	1.1	通讯所使用的以太网参考模型	3
	1.2	Modbus TCP 数据帧	3
	1.3	Modbus TCP 使用的通讯资源端口号	3
	1.4	Modbus TCP 使用的功能代码	3
	1.5	Modbus TCP 通讯应用举例	4
2	SIMATIC	S7-1200 Modbus TCP 通讯概述	5
3	配置 S7-	1200 CPU 作为 Modbus TCP Server 与通信伙伴建立通讯	6
4	配置 S7-	1200 CPU 作为 Modbus TCP Client 与通信伙伴建立通讯1	1
5	本文说明		7

1

Modbus TCP 通讯概述

MODBUS/TCP 是简单的、中立厂商的用于管理和控制自动化设备的 MODBUS 系列通讯协议的派生产品,显而易见,它覆盖了使用 TCP/IP 协议的"Intranet"和 "Internet"环境中 MODBUS 报文的用途。协议的最通用用途是为诸如 PLC's, I/O 模块,以及连接其它简单域总线或 I/O 模块的网关服务的。

1.1 通讯所使用的以太网参考模型

Modbus TCP 传输过程中使用了 TCP/IP 以太网参考模型的 5 层: 第一层:物理层,提供设备物理接口,与市售介质/网络适配器相兼容 第二层:数据链路层,格式化信号到源/目硬件址数据帧 第三层:网络层,实现带有 32 位 IP 址 IP 报文包 第四层:传输层,实现可靠性连接、传输、查错、重发、端口服务、传输调度 第五层: 应用层, Modbus 协议报文

1.2 Modbus TCP 数据帧

Modbus 数据在 TCP/IP 以太网上传输,支持 Ethernet II 和 802.3 两种帧格式, Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分,MBAP 报文头 (MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共7 个字 节。

1.3 Modbus TCP 使用的通讯资源端口号

在 Moodbus 服务器中按缺省协议使用 Port 502 通信端口,在 Modus 客户器程序中设置任意通信端口,为避免与其他通讯协议的冲突一般建议 2000 开始可以使用。

1.4 Modbus TCP 使用的功能代码

按照使用的通途区分,共有3种类型分别为:

公共功能代码:已定义好功能码,保证其唯一性,由 Modbus.org 认可;
 用户自定义功能代码有两组,分别为 65~72 和 100~110,无需认可,但不保证代码使用唯一性,如变为公共代码,需交 RFC 认可;

3) 保留功能代码,由某些公司使用某些传统设备代码,不可作为公共用途。

按照应用深浅,可分为3个类别:

1) 类别 0,客户机/服务器最小可用子集:读多个保持寄存器(fc.3);写多个保持寄存器(fc.16)。

2) 类别 1,可实现基本互易操作常用代码:读线圈(fc.1);读开关量输入(fc.2); 读输入寄存器(fc.4);写线圈(fc.5);写单一寄存器(fc.6)。

3) 类别 2,用于人机界面、监控系统例行操作和数据传送功能:强制多个线圈 (fc.15);读通用寄存器(fc.20);写通用寄存器(fc.21);屏蔽写寄存器(fc.22);读 写寄存器(fc.23)。

1.5 Modbus TCP 通讯应用举例

在读寄存器的过程中,以 Modbus TCP 请求报文为例,具体的数据传输过程如下: 1) Modbus TCP 客户端实况,用 Connect()命令建立目标设备 TCP 502 端口连接数据通信过程;

2) 准备 Modbus 报文,包括7个字节 MBAP 内请求;

3) 使用 send()命令发送;

4) 同一连接等待应答;

5) 同 recv()读报文,完成一次数据交换过程;

6) 当通信任务结束时,关闭 TCP 连接,使服务器可以为其他服务。

2

SIMATIC S7-1200 Modbus TCP 通讯概述

S7-1200 CPU 从 Firmware V1.0.2 开始,软件 STEP7 V11 SP1 版本开始,可以 直接调用 Modbus TCP 的库指令"MB_CLIENT"和"MB_SERVER"使用实现 Modbus TCP 通信功能,如下图 2-1 所示:

~ 通	信		
名称		描述	版本
: 🛄 🔹	S7通信		V1.2
•	开放式用户通信		<u>V3.1</u>
•	WEB 服务器		
-	其他		
•	MODBUS TCP		<u>V3.1</u>
	HB_CLIENT	通过 PROFINET进行通信,作为 Modbus TCP 客户端	<u>V3.1</u>
	HB_SERVER	通过 PROFINET进行通信,作为 Modbus TCP 服务器	<u>V3.1</u>
• 🎦 i	通信处理器		

图 2-1 TIA Portal 中包含的 ModbusTCP 块库

下面将分别介绍如何配置 S7-1200 为 Modbus/TCP 的 Server, Client 与通信伙 伴建立通信,测试例程中用到的软硬件如下表 1、2 所示:

名称	数量	订货号
SIMATIC CPU1215C (固件 V3.0)	1	6ES7 215-1AG31-0XB0
网线	若干	
编程器兼软件测试机	1	

表1例程中用到的硬件列表

名称	订货号
SIMATIC STEP7 Prossional V13	6ES7 822-1AA01-0YA5
Modscan32 用于在 PC 中模拟 Modbus Client	
Modsim32 用于在 PC 中模拟 Modbus Server	

表2例程中用到的软件列表

Copyright © Siemens AG Copyright year All rights reserved

3

配置 S7-1200 CPU 作为 Modbus TCP Server 与通信伙伴建立通讯

打开 TIA Portal V13 软件,新建一个项目,在项目中添加 CPU1215C,为集成的 PN 接口新建一个子网并设置 IP 地址,本例中为"192.168.70.102",如下 图 3-1 所示:

de modbus tcp			🕄 ± 100%		-				
	•								
	101	1	2	3	4	5	6	7	8
Rack_0									
	SIEMERS	100.0.250							
1	03								
	- 1		FU unat Catologi						
1	01								
-								0	
<		1111		_	_	_	_	_	
PROFINET	odule]								
常规 10 变量	系统常数	文本							
常规	以太网	列地址							
▶ 高级	接口]连接到							
时间同步									
硬件标识符	_		子网:	PN/IE_	_1				
	-				添加家	所子网			
	IP th	ιÌΫ							
				• 在	项目中设	置 IP 地址	ut 🛛		
					IP:	地址:	192.1	68 . 70	. 102
					子网	掩码:	255 . 2	255 . 25	5.0

图 3-1 新建一个 S7-1200 项目并配置 IP 地址

在 CPU1215C 的 OB1 组织块中添加 Modbus TCP Server 功能块

"MB_SERVER",软件将提示会为该FB块增加一个背景数据块,本例中为 DB1"MB_SERVER_DB",如下图 3-2 所示:

-⊢			> 基本指令
◆ 块标题: *Main Program Sweep (Cycle)* 注释			 ▶ 打展指令 ▶ 工艺
✓ 程序段 1:			 ✓ 通信 名称 ▶ □ \$7 通信
%0B1 *MB_SERVER EN		EN ENO	 ▶ → 开放式用户通信 ▶ → WEB 服务器 ▼ → 其他
*M0.0 *MB_SERVER. DISCONNECT DISCONNECT 1 CONNECT_ID	%00.1 NDR → *MB_SERVER.NDR* %00.2 DR → *MB_SERVER.DR*	%MW2 %MW4 *MB_SERVER. *> OUT1 *STATU STATUS* IN	◆ MODBUS TCP ◆ MB_CLIENT ● 通信处理器 ▶ 通信处理器 ▶ 预提服务
P#DB2.DBX0.0 INT 10 MB_HOLD_REG	SMO.3 *MB_SERVER. =ERROR #ERROR %M/W2		
	STATUS - STATUS"		

图 3-2 添加" MB_SERVER" 功能块

创建一个全局数据块用于匹配功能块"MB_SERVER"的管脚参数

" MB_HOLD_REG",本例中创建数据块 DB2 " Data_block_1",用于存储

保持寄存器的通信数据,并填写初始值,如下图 3-3 所示:

	Da	ta_blo	ock_1		
		名称		数据类型	启动值
1			atic		
2		• •	DATA	Array[110] of Int	
З	-		DATA[1]	Int	1
4			DATA[2]	Int	2
5	-		DATA[3]	Int	3
6			DATA[4]	Int	4
7			DATA[5]	Int	5
8			DATA[6]	Int	6
9			DATA[7]	Int	7
10	-		DATA[8]	Int	8
11	-		DATA[9]	Int	9
12	-		DATA[10]	Int	10

图 3-3 创建数据块 DB2

需要注意的是该数据块必须为非优化数据块(支持绝对寻址),在该数据块的"属性"中不勾选"优化的块访问"选项,如下图 **3-4** 所示:

常規		
信息	橋性	_
时间歇		
保护		
属性	一优化的块访问	
	• 个勾选该选坝。	

图 3-4 修改 DB 块属性

功能块"MB_SERVER"的其它管脚参数如下表 3 所示:

" MB_SERVER	管脚	数据类型	含义
"的管脚参数	声明		
	输λ	BOOL	0: 且连接不存在时,则可启动建立被动连接。
DIOCONNEOT	101∕ N	DOOL	1: 且连接存在时,则断开连接。
CONNECT_ID	输入	Uint	唯一标识 PLC 中的每个连接。
	榆λ	Llint	默认值=502: IP 端口号,将监视该端口是否有来自
	111/1	Oint	Modbus 客户端的连接请求。
	输入/	Variant	指向 MB_SERVER Modbus 保持寄存器的指针:必须是一
MB_HOLD_REG	输出	vanant	个标准的全局 DB 或 M 存储区地址。
	榆山	Rool	0: 没有新数据
NDK	相吐	воог	1:从 Modbus 客户端写入的新数据
DB	給山	Pool	0: 没有读取数据
DK	相吐	DUUI	1:从 Modbus 客户端读取的数据
	输出	Pool	MB_SERVER 执行因错误而终止后, ERROR 位将保持为
EKKUK		DUUI	TRUE 一个扫描周期时间。
STATUS	输出	Word	通信状态信息,用于诊断; STATUS 参数中的错误代码值
		vvoru	仅在 ERROR = TRUE 的一个循环周期内有效。

表 3 功能块" MB_SERVER" 的其它管脚参数

Copyright © Siemens AG Copyright year All rights reserved

上面提到保持寄存器是由功能块" MB_SERVER" 的管脚参数

"MB_HOLD_REG"关联,对于其它数据类型,如线圈、离散输入、模拟量输入等通过功能块均已经与 S7-1200 的过程映像区进行了映射,其映射地址对应如下图 3-5 所示:

		Modbus	功能			5	\$7-1200
代码	功能	数据区	地址范围	5	100	数据区	CPU 地址
01	读位	输出	1	到	8192	输出过程映像	Q0.0 到 Q1023.7
02	读位	输入	10001	到	18192	输入过程映像	10.0 到 11023.7
04	读字	输入	30001	到	30512	输入过程映像	IW0 到 IW1022
05	写位	输出	1	到	8192	输出过程映像	Q0.0 到 Q1023.7
15	写位	输出	1	到	8192	输出过程映像	Q0.0 到 Q1023.7

图 3-5 S7-1200 的 Modbus 地址映射表

设置完上述各管脚参数后,下载项目到 CPU1215C 中,打开 Modsan32 应用程序,下面以保持寄存器为例介绍通信测试过程。在 Modscan32 的数据定义界面中设置数据类型为保持寄存器,并设置 Modbus 偏移量及长度,建立与CPU1215C 集成 PN 口的通信连接,可以看到双方可以建立通信连接并进行数据读写,如下图 3-6 所示:

图 3-6 通信测试

对于其它数据类型,由于与 S7-1200CPU 的过程映像区进行了映射,其过程类 似。

使用功能块" MB_SERVER" 的一些注意事项:

1) S7-1200 CPU 的集成 PN 口通过功能块"MB_SERVER"支持与多个 Modbus 客户端的通信,支持的个数取决于 CPU 集成 PN 口所支持的 TCP 连接 数,必须为每一个客户端连接分别调用一次功能块"MB_SERVER",其背景 数据块、ID、端口号等参数必须唯一。

2) S7-1200 CPU 的集成 PN 口支持多协议,除了运行 Modbus TCP 协议外,同时可以运行 PROFINET、TCP/IP、S7 等协议。

3) S7-1200 CPU 的集成 PN 口可以同时作为 Modbus TCP 的 Server 及 Client。

Copyright © Siemens AG Copyright year All rights reserved

4

配置 S7-1200 CPU 作为 Modbus TCP Client 与通信伙伴建立通讯

在上述新建的项目中增加一个 CPU1215C 的站点,设置 PN 的 IP 地址 "192.168.70.102",之后在 CPU1215C 的 OB1 组织块中添加 Modbus TCP Client 功能块"MB_CLIENT",软件将提示会为该 FB 块增加一个背景数据 块,本例中为 DB1"MB_CLIENT_DB",如下图 4-1 所示:

图 4-1 插入一个 MB_CLIENT 功能块

创建一个全局数据块用于匹配功能块" MB_CLIENT" 的管脚参数 " MB_DATA_PTR",本例中为 DB2" Data_block_1",用于存储 Modbus 通 信的数据,如下图 4-2 所示:

	Da	ta_	blo	ock_1		
		名	称		数据类型	启动值
1		•	St	atic		
2	-		•	DATA	Array[110] of Int	
3	-			DATA[1]	Int	0
4	-			DATA[2]	Int	0
5				DATA[3]	Int	0
6	-00			DATA[4]	Int	0
7				DATA[5]	Int	0
8	-00			DATA[6]	Int	0
9				DATA[7]	Int	0
10	-			DATA[8]	Int	0
11	-			DATA[9]	Int	0
12				DATA[10]	Int	0

图 4-2 创建数据块 DB2

需要注意的是该数据块必须为非优化数据块(支持绝对寻址),在该数据块的"属性"中不勾选"优化的块访问"选项,如下图 4-3 所示:

ta_block_1 [D	82]	
常規		
信息 时间戳 编译 保护 属性	属性 □ 仅存储在装载内存中 □ 在设备中写保护数据块	
	「代化的块访问	
	*	
		「福定」「取消

图 4-3 修改 DB 块属性

对于功能块" MB_CLIENT" 的其它参数管脚含义如下表 4 所示:

" MB_CLIENT" 的	管脚		
管脚参数	声明	数据类型	含义
REQ	输入	BOOL	FALSE=无 Modbus 通信请求 TRUE=请求与 Modbus TCP 服务器通信
DISCONNECT	输入	BOOL	0: 且连接不存在时,则可启动建立被动连接。1: 且连接存在时,则断开连接。
CONNECT_ID	输入	Uint	唯一标识 PLC 中的每个连接。
IP_OCTET_1	输入	USint	Modbus TCP 服务器 IP 地址: 八位字节 1
IP_OCTET_2	输入	USint	Modbus TCP 服务器 IP 地址: 八位字节 2
IP_OCTET_3	输入	USint	Modbus TCP 服务器 IP 地址: 八位字节 3
IP_OCTET_4	输入	USint	Modbus TCP 服务器 IP 地址: 八位字节 4
IP_PORT	输入	Uint	默认值=502: 服务器的 IP 端口号
MB_MODE	输入	USint	模式选择:分配请求类型(0=读、1=写)
MB_DATA_ADDR	输入	UDINT	分配 MB_CLIENT 访问的数据的起始地址
MB_DATA_LEN	输入	UINT	数据长度: 数据访问的位数或字数
MB_DATA_PTR	输入/ 输出	Variant	指向 Modbus 数据寄存器的指针: 寄存器缓冲数据进入 Modbus 服务器或来自 Modbus 服务器。该指针必须分配 一个标准全局DB 或一个 M 存储器地址。
DONE	输出	BOOL	上一请求已完成且没有出错后,DONE 位将保持为 TRUE 一个扫描周期时间
BUSY	输出	BOOL	0:无 MB_CLIENT 操作正在进行 1: MB_CLIENT 操作正在进行
ERROR	输出	BOOL	0: 无错误1: 出错。 出错原因由参数 STATUS 指示
STATUS	输出	WORD	指令的详细状态信息

表 4 功能块" MB_CLIENT" 的其它管脚参数

对于" MB_MODE" " MB_DATA_ADDR" 和" MB_DATA_LEN" 参数,其对

应关系如下图 4-4 所示:

MB_MODE	Modbus 功能	数据长度	操作和数据	MB_DATA_ADDR
0	01	1 到 2000	读取输出位: 每个请求 1 到 2000 个位	1 到 9999
0	02	1 到 2000	读取输入位: 每个请求 1 到 2000 个位	10001 到 19999
0	03	1到125	读取保持寄存器: 每个请求1到125个字	40001 到 49999 或 400001 到 465535
0	04	1到125	读取输入字: 每个请求 1 到 125 个字	30001 到 39999
1	05	1	写入一个输出位: 每个请求一位	1 到 9999
1	06	1	写入一个保持寄存器: 每个请求1个字	40001 到 49999 或 400001 到 465535
1	15	2 到 1968	写入多个输出位: 每个请求 2 到 1968 个位	1 到 9999
1	16	2 到 123	写入多个保持寄存器: 每个请求 2 到 123 个字	40001 到 49999 或 400001 到 465535
2	15	1 到 1968	写入一个或多个输出位: 每个请求 1 到 1968 个位	1 到 9999
2	16	1到123	写入一个或多个保持寄存器: 每个请求1到123个字	40001 到 49999 或 400001 到 465535

图 4-4 "MB_MODE"、"MB_DATA_ADDR"和"MB_DATA_LEN"参数对应关系

之后打开上述功能块" MB_CLIENT" 的背景数据块,在" MB_UNIT_ID" 参数 中表示通信服务器伙伴的从站地址,该地址与通信伙伴一致,如下图 4-5 所示:

	1)	mo	dbus tcp [CPU 12150	CDC/DC/DC] ▶ 程序	味 ・ 系统:	块 ・ 程序资	源 ▶ MB_CLI	ENT_DB [[DB1]
1		2 02	ERRA						
-	MB	CLI	ENT DB						
		名称		数据类型	启动值	保持性	可从 HMI	在 HMI	设置
34	-		SAVED_MODE	Byte	16#0				
35	-		SAVED_IP1	Byte	16#0				
36	-		SAVED_IP2	Byte	16#0				
37	-		SAVED_IP3	Byte	16#0				
38	-		SAVED_IP4	Byte	16#0				
39	-		SAVED_DATA_ADDR	DWord	16#0				
40	-		SAVED_DATA_LEN	Word	16#0				
41	-		MB_STATE	Word	16#0		>	V	
42	-		COMM_SENT_COUNT	Word	16#0				
43	-		BYTE_COUNT	Word	16#0				
44	-		BYTE_COUNTB	Byte	16#0				
45	-00		SAVED_START_ADDR	Word	16#0				
46	-		MB_TRANSACTION_ID	Word	1				
47	-		MB_UNIT_ID	Word	16#001				
48	-		RETRIES	Word	0		V	V	
49			INIT_OK	Bool	false				
50	-		ACTIVE	Bool	false				
51	-		CONNECTED	Bool	false		V	V	
52	-		SAVED MA REQ	Bool	false				

图 4-5 在功能块" MB_CLIENT"的背景数据块设置 Unit ID

设置完上述各管脚参数后,下载项目到 CPU1215C 中,打开 Modsim32 应用程序,下面以保持寄存器为例介绍通信测试过程。

在 Modsim32 的数据定义界面中设置数据类型为保持寄存器,依据功能块

"MB_CLIENT"设置的起始地址"MB_DATA_ADDR"和长度

" MB_DATA_LEN",可以看到双方可以建立通信连接并进行数据读写,如下图 4-6 所示:

项	1 1		odbus tcp [Cl	PU 1215C DC/L	DC/DC]) 稻	序块	Data_b	lock_1 [D	B2]
-	dia	-		& & E 🔢	00				
	Dat	ta_bl	ock_1						
		名称		数据类型	偏移重	启动值	监视值	保持性	可
1	-	🔻 St	atic						
2	-	• •	DATA	Array[110] of I	Int 0.0				
3			DATA[1]	Int	0.0	0	1		
4			DATA[2]	Int	2.0	0	2		
5	-		DATA[3]	Int	4.0	0	3		
6	-00		DATA[4]	Int	6.0	0	4		
7	-		DATA[5]	Int	8.0	0	5		
8	-00		DATA[6]	Int	10.0	0	6		
9			DATA[7]	Int	12.0	0 /	7		
10	-00		DATA[8]	Int	14.0	0	8		
11	-00		DATA[9]	Int	16.0	0	9		
12	-		DATA[10]	Int	18.0	0	10		
	-	Mag	Sim 22 Mards	im 11		112			
			ISIMIS2 - [INIOUS						
	1	File کر	e Connection	Display Wind	dow Help	_			
				Devi	ice Id: 1				
		ddre	ee' 0001	п мор	BUS Point	Гуре	Unit I	D	
	1	huure	55. 0001	03· HOL			T		
	l i	enat	h: 100				1		
				_ /					
					_	_	_	_	
	4		<00001>	40034. <000	1005 4	0067.20	00005	4010	n• < n
	4	0002:	<00002>	40035: <000)00> 4	0068: <0	0000>	4010	
	4(0003:	<00003> /	40036: <000)00> 4	0069: <0	0000>		
	4(0004:	<00004> 📕	40037: <000)00> 4	0070: <0	0000>		
	4	UU05:	<00005>	40038: <000	JUU> 4	0071:<0	0000>		
	41	0006:	(00006)	40039: <000	1002 4 1005 A	0072: <0	00002		
	4	0008:	<00008>	40041: <000)00> 4	0074: <0	0000>		
	4	0009:	<00009>	40042: <000)00> 4	0075: <0	0000>		
	4(0010:	<00010>	40043: <000)00> 4	0076: <0	0000>		

图 4-6 通信测试

对于其它数据类型,测试过程类似。

使用功能块" MB_CLIENT" 的一些注意事项:

1) S7-1200 CPU 的集成 PN 口通过功能块"MB_CLIENT"支持与多个 Modbus 服务器的通信,支持的个数取决于 CPU 集成 PN 口所支持的 TCP 连接 数,必须为每一个服务器连接需要分别调用一次功能块"MB_CLIENT",其背 景数据块、ID 等参数必须唯一。

2) S7-1200 CPU 的集成 PN 口可以同时作为 Modbus TCP 的 Server 及 Client。

5

本文说明

本文所描述的内容适用于 S7-1200 V4.0 及以下 版本的 CPU 实现 Modbus TCP 通信,关于 S7-1200 V4.1 及以上版本的 CPU 实现 Modbus TCP 通信,指令使 用方法与 S7-1500 相同,请参考如下链接:

S7-1500 CPU 集成 PN 口的 ModbusTCP 通信快速入门

http://support.automation.siemens.com/CN/view/zh/90974593