SIEMENS

SIMATIC

S7
S7-1200 Programmable controller

System Manual

03/2014

A5E02486680-AG

Preface

Product overview

STEP 7 programming
software

Installation

PLC concepts

Device configuration

Programming concepts
Basic instructions

Extended instructions

Technology instructions

Communication

Web server

Communication processor
and Modbus TCP

Teleservice communication
(SMTP email)

Online and diagnostic tools

SM 1278 4x1O-Link Master

Technical specifications

Calculating a power budget

Order numbers
Exchanging a V3.0 CPU for
a V4.0 CPU

OO0 W >» g r oo 2o ©oow~No s wh =~

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

AAWARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent

editions.
Siemens AG Order number: 6ES7298-8FA30-8BHO Copyright © Siemens AG 2014.
Industry Sector ® 12/2013 Technical data subject to change All rights reserved

Postfach 48 48
90026 NURNBERG
GERMANY

Preface

Purpose of the manual

The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a
variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-1200 a perfect solution for controlling a wide variety of applications. The S7-
1200 models and the Windows-based STEP 7 programming tool (Page|35) give you the
flexibility you need to solve your automation problems.

This manual provides information about installing and programming the S7-1200 PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual
This manual describes the following products:
e STEP 7 V13 Basic and Professional|(Page 35)
e S7-1200 CPU firmware release V4.0

For a complete list of the S7-1200 products described in this manual, refer to the|technical
specifications|(Page 829).

Certification, CE label, C-Tick, and other standards

Refer to the technical specifications |(Page 829) for more information.

Service and support

In addition to our documentation, Siemens offers technical expertise on the Internet and on
the customer support web site (http://www.siemens.com/automation/).

Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process
and industry, as well as about the individual Siemens products that you are using, they can
provide the fastest and most efficient answers to any problems you might encounter.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

http://www.siemens.com/automation/

Preface

Documentation and information

S7-1200 and STEP 7 provide a variety of documentation and other resources for finding the
technical information that you require.

The S7-1200 system manual provides specific information about the operation,
programming, and the specifications for the complete S7-1200 product family. In addition
to the system manual, the S7-1200 Easy Book provides a more general overview to the
capabilities of the S7-1200 family.

Both the system manual and the Easy Book are available as electronic (PDF) manuals.
The electronic manuals can be downloaded from the customer support web site and can
also be found on the documentation disk that ships with every S7-1200 CPU.

The online STEP 7 information system provides immediate access to the conceptual
information and specific instructions that describe the operation and functionality of the
programming package and basic operation of SIMATIC CPUs.

My Documentation Manager accesses the electronic (PDF) versions of the SIMATIC
documentation set, including the system manual, the Easy Book, and the STEP 7
information system. With My Documentation Manager, you can drag and drop topics from
various documents to create your own custom manual.

The customer support entry portal (http://support.automation.siemens.com) provides a
link to My Documentation Manager under mySupport.

The customer support web site also provides podcasts, FAQs, and other helpful
documents for S7-1200 and STEP 7. The podcasts utilize short educational video
presentations that focus on specific features or scenarios in order to demonstrate the
interactions, convenience, and efficiency provided by STEP 7. Visit the following web
sites to access the collection of podcasts:

— STEP 7 Basic web page (http://www.automation.siemens.com/mcms/simatic-
controller-software/en/step7/step7-basic/Pages/Default.aspx)

— STEP 7 Professional web page (http://www.automation.siemens.com/mcms/simatic-
controller-software/en/step7/step7-professional/Pages/Default.aspx)

You can also follow or join product discussions on the Service & Support technical forum
(https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=e
n&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodei
d0=34612486). These forums allow you to interact with various product experts.

— Forum for S7-1200
(https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=
LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlylnternet=Fa
Ise)

— Forum for STEP 7 Basic
(https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=
LastPostDate&SortOrder=Descending&ForumlID=265&Language=en&onlylnternet=Fa
Ise)

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

http://support.automation.siemens.com/
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-basic/Pages/Default.aspx
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-basic/Pages/Default.aspx
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-professional/Pages/Default.aspx
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-professional/Pages/Default.aspx
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False

Preface

Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, solutions, machines, equipment and/or networks. They are
important components in a holistic industrial security concept. With this in mind, Siemens’
products and solutions undergo continuous development. Siemens recommends strongly
that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable
preventive action (e.g. cell protection concept) and integrate each component into a holistic,
state-of-the-art industrial security concept. Third-party products that may be in use should
also be considered. You can find more information about industrial security on the Internet
(http://www.siemens.com/industrialsecurity).

To stay informed about product updates as they occur, sign up for a product-specific
newsletter. You can find more information on the Internet
(http://support.automation.siemens.com).

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 5

http://www.siemens.com/industrialsecurity
http://support.automation.siemens.com/

Preface

S7-1200 Programmable controller
6 System Manual, 03/2014, A5E02486680-AG

Table of contents

PrEIACE ... ——————_— 3
1 PrOUCE OVEIVIBW ...ttt e e e e e e 23
1.1 Introducing the S7-1200 PLC........ooiiiei e e e e e s e e e e e e e e snrnreeeaaeesennns| 23
1.2 Expansion capability 0f the CPU............ooiiiiiii e 26
1.3 ST-1200 MOAUIESeeeiiiiiee ettt ettt e e ettt e e sttt e e sttt e e e antseeeeansseeeeansseeeeannneeesannneees] 29
1.4 NEW FEATUIMES ...ttt e e ettt e e e e bt e e e et e e e e snteeeeenbeeaeesnneeeeennnns 30
1.5 BaSiC HMI PANEIScoeeeeeeeeeeeeeeeeee ettt e et a e e e e e e e e e e e e e e e e e e aaaaaaaaees 32
2 STEP 7 programming SOfIWAIEuui s 35
2.1 SYSIEM FEQUINEIMENES ...ttt e e e e e e e st e e et e e e e e senbaeeeeaeessesnnnanneeaaees] 36
2.2 Different views to make the Work €asier ..o 37
2.3 EASY-10-USE H00ISo 38
2.3.1 Inserting instructions iNtO YOUr USEr Program..........ccooeeiiiiii i) 38
2.3.2 Accessing instructions from the "Favorites" toolbar.............cccoueeiiiiiiiiii e 38
2.3.3 Creating a complex equation with a simple iNStruction..............cccoocciiiiiiii e 39
234 Adding inputs or outputs to a LAD or FBD instructionccooooeiiii i 41
2.3.5 Expandable iNStrUCLIONS ... 42
2.3.6 Selecting a version for an iNSIrUCHONoooiiiiiiii e 42
2.3.7 Modifying the appearance and configuration of STEP 7ccooociiiiiiiii e 43
2.3.8 Dragging and dropping between editors...........couvvvviiiiiiiiiiiiieeeeeeee e 43
2.3.9 Changing the operating mode of the CPUcooiiiiiiii e 44
2.3.10 Changing the call type fOr @ DBccoo i e e 45
2.3.11 Temporarily disconnecting devices from @ NEtWOrK............ccccuiiieieeiiiiiiiiieeee e 46
2.3.12 Virtual unplugging of devices from the configuration..............cccccoe i, 47
3 INSEAIIALION ... ————— 49
3.1 Guidelines for installing S7-1200 dEVICESuueiiiieeiiiiieieeee e e sraeeeaae s 49
3.2 POWEr DUAGEL ... 51
3.3 Installation and removal ProCeAUIEScoooi i) 53
3.3.1 Mounting dimensions for the S7-1200 dEVICES.........cccuvuiiiiieii e e e | 53
3.3.2 Installing and removing the CPU ... ee e e e e e | 56
3.3.3 Installing and removing an SB, CB, Or BBc.cooiiiiiiiiiiiic e e e | 58
3.34 Installing and removiNg AN SIM.........oooiiiiiii e a e e ae e e e e e e enans | 60
3.3.5 Installing and removing @ CIM OF CP ...ttt a e e e snreee e e e e e e | 62
3.3.6 Removing and reinstalling the S7-1200 terminal block connector.............cccccvveeiieiciiiiieeeee e 63
3.3.7 Installing and removing the expansion Cable ... 64
3.3.8 TS (TeleSErviCe) AdapLer.........uvviiiieiiiiiieeee e e e e e e e e e e e e e e e e s enrnreees 66
3.3.8.1 Connecting the TeleService adapter............iiiiiiiiiiiiiee e 66
3.3.8.2 Installing the SIM Cardc..uuiiiiiie i e e e e e e e e e e e s e snab s b e e e eaeeseannrnnnees) 67
3.3.8.3 Installing the TS adapter unit on @ DIN railcccuvmiiiiiiii e 69
3.3.8.4 Installing the TS adapter 0N @ PaANEl..........cooieiiiiiiiiiiie e 69
S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 7

Table of contents

3.4 WINNG QUIAEIINES ...ttt et et e e e aabe e e e e anbeeeeaans 70
L IO o) o= o 3PP 77
4.1 Execution Of the USEr Programooo it 77
411 Operating Modes Of the CPU ... 81
41.2 Processing the scan cycle in RUN MOdE..........coouiiiiiiiiiii e 85
41.3 Organization DIOCKS (OBS)uiiiiiiiiiiiiiiie et e e 85
4.1.3.1 Program CYCIE OB ... et e s e e 86
T I B = 1 (0] o O = F RO PP PPP 86
4.1.3.3 Time delay iNterrupt OBo e 87
4.1.3.4 CycliciNterrupt OB ... e 87
4.1.3.5 Hardware interrupt OBo e e e e e e e e e e e e e r e e e e e e e e nnneeneeas 87
4.1.3.6 Time errorinterrupt OBt e e e e e e et e e e e e e e e e e e e e e e e e e nnareeeeas 88
4.1.3.7 Diagnostic error interrupt OBcoiiiiiiiie e 89
4.1.3.8 Pull or plug of MOAUIES OB ..o e s 91
4.1.3.9 Rack or station failure OBcooi i e 92
4.1.3.10 TiMe Of dAY OBottt et ettt e e s b bt e e sbe et e e an bt e e e anneeas 92
o I T B TS = 111 T = PR 93
o I Ty B € oo =1 (I = T PR 93
g I T B T o o)1 1= = PSPPI 94
4.1.3.14 Event execution priorities and QUEUINGcoeeii i e e e e e e e e e e e eeeeas 94
41.4 Monitoring and configuring the Cycle time..........coouiiii e 97
4.1.5 L0 o U 43110 o] o TP PR 99
4.1.5.1 System and CIOCK MEMOIYcooiiiiiiiiii e s e e e be e e e eneee 101
4.1.6 DIagnOSHICS DUFFETcoiiii e e e 103
4.1.7 TiME Of dAY CIOCK ...t e e b e e sbee e e 104
4.1.8 Configuring the outputs on a RUN-t0-STOP transitioncccoiiiiiiiii i 104
4.2 Data storage, memory areas, I/O and addreSSingcoeuiuiiieiiiiiieiniiee e 105
4.2.1 Accessing the data of the S7-1200coooiiiiiii e 105
4.3 Processing of @analog ValUESoi i 110
4.4 = = I Y/ 01 S SRR 110
4.4 1 Bool, Byte, Word, and DWord data typPescoceeeeiiieeeec e 111
442 INtEGEr dAta LYPES ..ot anneeas 112
443 Floating-point real data tyPesS......o.ueiii i e 112
444 Time and Date data tyPesSoouiiii i 113
4.4.5 Character and String data tyPesooi i e 114
4.4.6 F N4 = Yo =1 = T Y/ o 1= ST SRO 116
447 Data Structure data@ tyPe......oueeiie e 117
448 L O o= = B £ o= PR 117
449 POINEEr Aata tYPES ..ooiiiiiiie e 118
4.49.1 "Pointer" pointer data tyPeooooi oo a e 118
4.4.9.2 "Any" POINtEr data tYPe.....ccoiueiiiiiiii e 119
4.4.9.3 "Variant" pointer data tyPeooooioi i aa e 120
4410 Accessing a "slice" of a tagged data type ... 121
4411 Accessing a tag With @an AT OVErIaYoooiiiiiiii e 122
4.5 0] oL = 4 a1t o o] YA o= (o PR 124
4.5.1 Inserting @ memory card in the CPU ... 125
452 Configuring the startup parameter of the CPU before copying the project to the memory
Lo (o L O PP PUPPPOPPPPN 127
453 LI 10T =T o= o PRSP PPRPTP 127
S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

Table of contents

454 Program CaArdoooeieiiiiiiie ettt e et e e st e e e e aab et e e s anbe e e e sanbeeeesaneeeeeans| 130
455 Firmware UPAate ...t e e e e e e e e e ee e e e e e e e anns| 133
4.6 Recovery from a [0St PASSWOId...........eiiiiiiiiii e | 136
5 DeViCe CONTIGUIALION...........eeeieieiiii et e e e e e e e s e e s e r e e e e e e e e e s mnn e e e e e e e e ee s nnnnneeeeeaean 137
5.1 INSEIING @ CPU ... ettt e st e e e et e e e s rabeeeesaneeeeenns| 138
5.2 Detecting the configuration for an unspecified CPUccooiiiiiiiiiiiiiii e 140
5.3 Adding modules to the configuration ... 141
54 ChangiNg @ DEVICEeeiiiiiiiie ittt ettt sttt e e s bbe e e e s bne e e e abne e e e snnaees 142
5.5 Configuring the operation of the CPUooiiiiiiii e 142
5.5.1 OVEIVIEW ...ttt ettt a et ekttt e o bttt e o b bttt oo b bttt e skttt e e s asbe e e e s abbe e e e aabneeeeannnees] 142
5.5.2 Configuring digital input filter iMes ... 144
5.5.3 PUISE CALCN....cciiie ettt e et e e e s enbe e e e s anaeee e | 146
5.6 Configuring the parameters of the MOdUIES............ooiiiiiiiiiii e 147
5.7 Configuring the CPU for commuRNICatioNcueiiiiiiiiiiiii e 149
5.7.1 Creating @ NEtWOrk CONNECHIONccoiuiiiiiiiiii et 149
5.7.2 Configuring the Local/Partner connection path...............cooiiiiiiiiiii e 150
5.7.3 Parameters for the PROFINET CONNECHIONcoiiiiiiiiiiiiii e 153
5.7.4 Assigning Internet Protocol (IP) addreSSescooueiiiiiiiiiiiiiieeiee e 155
5.7.4.1 Assigning IP addresses to programming and network deviCesccocccvieeiiiiiiieeee e 155
5.7.4.2 Checking the IP address of your programming deviCecccooviiiiiiiiiere i) 157
5.7.4.3 Assigning an IP address to @ CPU ONlINE..........ccoiiiiiiiiiiiiie e 158
5.7.4.4 Configuring an IP address for a CPU in your Project...........oocuiiiiiiiiiiiiiiee e 159
5.7.5 Testing the PROFINET NEIWOTKooiiiiiiiiiiei e 162
5.7.6 Locating the Ethernet (MAC) address on the CPU ... 163
5.7.7 Configuring Network Time Protocol synchronizationcccocveeiiiiiiiieeeee e 165
5.7.8 PROFINET device start-up time, naming, and address assignment...........cccocceevinieeeeinieendd 166
6 (g oo 2=y 0011 g T o7 U= o} £ 169
6.1 Guidelines for designing @ PLC SYSteMeiiiiiiiiiiiiiiee e 169
6.2 StruCturing YOUI USEI PrOGIaMueiiiiiiiieeeiitee e ettt ettt e sttt e st e e e st e e s e nbe e e s snbeeesenee 170
6.3 Using blocks to Structure your Programeeei it | 172
6.3.1 Organization DIOCK (OB)........uuiiiiiiiiii ettt nee e e 172
6.3.2 FUNCHON (FC) .ttt ettt et e e e st e e e e st e e e e s enbeeeesannneeeens| 174
6.3.3 FUNCHON DIOCK (FB) ...ttt e e s saneee e | 175
6.3.4 D= =l o] oo [(] =) O PP PP PPPPPPRPPUPPN | 176
6.3.5 Creating reusable COde DIOCKS.........coiuiiiiiiii e 177
6.4 Understanding data CONSISTENCYoiiiiiiiii i | 178
6.5 Programming laNGUAGE.........cooiiiiiii ittt ettt e et e e st e e s sbeeeesaneeee e | 179
6.5.1 = o o L=l ToT [[oat (Y I PP PPPPPPOPIPPN | 180
6.5.2 Function Block Diagram (FBD)ccoueiiiiiiiiieiiiie ettt sneee e | 181
6.5.3 S L ettt et e e te e ettt e ettt ettt e aaeeeeteeeentee ettt eateeeanteeeaneeeanteeaaseeeanreeaneeanns] 181
6.5.4 EN and ENO for LAD, FBD @nd SCL.......c.uutiiiiiiiiiiiiie ettt sneeee | 188
6.6 L (01 (Tex 1 o] o OO PPPUPPROPURPN | 190
6.6.1 Access protection for the CPUo e 190
6.6.2 KNOW-hOW ProteCHIONooiiii et e e e e e e e e e emenneeeaeeeeeenne| 193

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 9

Table of contents

10

6.6.3 (@70 o)A o] 0] 1=T1 1o o 1SS 195
6.7 Downloading the elements Of YOUr Programoooiiiiiiiiiiie e 196
6.8 Uploading from the CPUooiiiii e e e 197
6.8.1 Copying elements of the Project ... 197
6.8.2 Using the compare FUNCHIONooiiiii e e 198
6.9 Debugging and testing the program............o e 198
6.9.1 Monitor and modify data in the CPU ... 198
6.9.2 Watch tables and force tables....... ..o 199
6.9.3 Cross reference 10 SNOW USAJEcoiiiiiiiiiiiie e 199
6.9.4 Call structure to examine the calling hierarchycocceiii e 201
BasSiC INSITUCHIONS ... 203
7.1 Bit [0QIC OPEIatiONS ... 203
711 Bit 10QIC INSIIUCHIONS ... e e 203
7.1.2 Set and reset INSHUCHIONS ... e 206
7.1.3 Positive and negative edge iNStruCtioNS...........cooiiiiiiii e 209
7.2 L1 a o] o1=T = 11] o LS PP PPRPTP 212
7.3 (@700] 1 (=T a0 01T =1 (o o < 7RSS 220
74 (O70] 4] 0= =1 (0] ge] oT=T =4 o] o 1T RS 226
741 Compare values INSITUCHONSoooo e e e e 226
7.4.2 IN_Range (Value within range) and OUT_Range (Value outside range) instructions............... 227
7.4.3 OK (Check validity) and NOT_OK (Check invalidity) inStructions.............cccccoviieiiiiieiiiiienee 228
7.5 Math fFUNCHIONS ... et 229
7.5.1 CALCULATE (Calculate) INSIrUCLIONeiiiiiiiie e 229
75.2 Add, subtract, multiply and divide iNStruCtionS ... 230
7.5.3 MOD (return remainder of division) INStrUCHION ... 231
754 NEG (Create twos complement) inSTrUCHION............ooiiiiiiiiiii e 232
7.5.5 INC (Increment) and DEC (Decrement) inStruCtionscooiiiiiiiiiiiiiiie e 232
7.5.6 ABS (Form absolute value) iNSTIUCHIONcooiiiiiiiiiii e 233
7.5.7 MIN (Get minimum) and MAX (Get maximum) iNnStructions.............ccoovveiiiiii i 234
7.5.8 LIMIT (Set limit value) iNSruCtioNeiii e 235
7.5.9 Exponent, logarithm, and trigonometry inStructions.............cccciiiiiii e 236
7.6 Y[AV 7= 0 1= = o] o I SR 238
7.6.1 MOVE (Move value), MOVE_BLK (Move block), and UMOVE_BLK (Move block

uninterrruptible) INSrUCIONS ... e 238
7.6.2 FieldRead (Read field) and FieldWrite (Write field) instructionsccccooiiiiiiie 240
7.6.3 FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible) instructions.......................... 242
7.6.4 SWAP (Swap bytes) INSITUCIONeiiiiiee e 243
7.7 (O70] 0 1YY] Te] T o] 01T =1 1o o -SSR 244
7.71 CONYV (Convert value) INStrUCHONocuuiiiiiieie e 244
7.7.2 Conversion INSTrUCHIONS TOr SCLooiiiiiie e 245
7.7.3 ROUND (Round numerical value) and TRUNC (Truncate numerical value) instructions......... 249
7.7.4 CEIL and FLOOR (Generate next higher and lower integer from floating-point number)

1) (o3 1] 1S PRSP 250
7.7.5 SCALE_X (Scale) and NORM_X (Normalize) insStructionscccocceeiiiiiieiiiiieeeciieee e 251
7.8 Program Control OPEratioNS.............iii i e 254
7.8.1 JMP (Jump if RLO = 1), JMPN (Jump if RLO = 0), and Label (Jump label) instructions.......... 254

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

7.8.2 JMP_LIST (Define jump list) iINSTrUCHONeeiiiiiie e 255
7.8.3 SWITCH (Jump distributor) iNStruCtionoooiiiii e 256
7.8.4 RET (Return) iNSIFUCLIONooiiiiiiii ittt e nnaeee e | 258
7.8.5 ENDIS_PW (Enable/disable CPU passwords) instruction.............ccccoeiiiiiiiiiein e 259
7.8.6 RE_TRIGR (Restart cycle monitoring time) instruction...............cccoiieiiii e 262
7.8.7 STP (Exit program) iNSTIUCHIONcoiiiiiii e 263
7.8.8 GET_ERROR and GET_ERROR_ID (Get error and error ID locally) instructions| 263
7.8.9 SCL program control StatemeENntsc..oii i e 267
7.8.9.1 Overview of SCL program control statementscoooouiiiii e 267
7.8.9.2 IF-THEN StatemMENt ...t et bee e e 268
7.8.9.3 CASE statement..... ..o 269
7.8.9.4 FOR SIAteMENt......oeii ettt et e e ebt e e e b e e e e 270
7.8.9.5 WHILE-DO Statementcooiiiiiiiiiiii ettt 271
7.8.9.6 REPEAT-UNTIL Statementccoouiiiiiiie et 272
7.8.9.7 CONTINUE Statementcoooiiiiiiie e e e e e e 273
7.8.9.8 EXIT StatemMENto e 273
7.8.9.9 GOTO StateMENL......ooiiiiiie et e e et e e e e et e e e anbe e e e e nees 274
7.8.9.10 RETURN StatemMeEntottt e e 274
7.9 LAV o] o I ToTe [T oT=T =1 (o] o - TSP RPPOTPPRNN 275
7.9.1 AND, OR, and XOR logic operation inStruCtionsccccooiiiiiiiiiiee e | 275
7.9.2 INV (Create ones complement) inStruCtion ..o | 276
7.9.3 DECO (Decode) and ENCO (Encode) inStructionsccooiieeiiiiiniiiieee e | 276
7.94 SEL (Select), MUX (Multiplex), and DEMUX (Demultiplex) instructionscccccceevinennnnd] 278
7.10 Shift AN FOLALE ...t 281
7.10.1 SHR (Shift right) and SHL (Shift left) inStructions ... 281
7.10.2 ROR (Rotate right) and ROL (Rotate left) inStructionscccooiiiiiiiin e 282
8 Extended iNSrUCIONS..........coo o 283
8.1 Date, time-of-day, and clock fUNCLIONS.............oooi e 283
8.1.1 Date and time-of-day iNStruCtIONSoouiiiiiii e | 283
8.1.2 ClOCK TUNCHIONS ...ttt e e et e e et e e e e abee e e e e 286
8.1.3 TimeTransformationRule data StruCture ... 289
8.1.4 SET_TIMEZONE (Set timezone) iNStruCtion ... 290
8.1.5 RTM (Runtime meters) iNStrUCONocuuiiiiiiiie e | 291
8.2 StriNG @Nd ChAraCEr........eiii e 292
8.2.1 StrING dAtA OVEIVIEW ... et e e s 292
8.2.2 S_MOVE (Move character string) iNStruCtion.............oooiiiiiiii e 293
8.2.3 String CoONVErsioN INSIFUCHIONSuiiiiiiiiei e e 293
8.2.3.1 S_CONV, STRG_VAL, and VAL_STRG (Convert to/from character string and number)
INSTIUCTIONS ...ttt sttt et e e s bttt e s bb et e e sbbe e e e sbbeeeesnenees] 293
8.2.3.2 Strg_TO_Chars and Chars_TO_Strg (Convert to/from character string and array of
CHAR) INSEIUCHIONS ...ttt sttt e st e e s e nae e e e enees) 302
8.2.3.3 ATH and HTA (Convert to/from ASCII string and hexadecimal number) instructions...............| 304
8.24 String operation INSIFUCLIONSuiiii e 306
8.24.1 MAX_LEN (Maximum length of a character string) instructionccoccccoiiiiii 306
8.2.4.2 LEN (Determine the length of a character string) instruction.............ccccooiiiiin 307
8.2.4.3 CONCAT (Combine character strings) iNStruction.............cccooiiiiiiiiii e 307
8.2.4.4 LEFT, RIGHT, and MID (Read substrings in a character string) instructions..........................| 308
8.2.4.5 DELETE (Delete characters in a character string) instructioncccocooeeiiiinnin 310
8.2.4.6 INSERT (Insert characters in a character string) instructionccccccoiiiiin 311
8.2.4.7 REPLACE (Replace characters in a character string) instructioncccccooiviiinininin 312

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 11

Table of contents

12

8.24.8

8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

8.4
8.4.1
8.4.2
8.4.2.1
8.4.2.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.34
8.4.4
8.4.5

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.4.1
8.56.5
8.5.5.1
8.5.6

8.6

8.6.1
8.6.2
8.6.3

8.7
8.7.1
8.7.1.1
8.71.2
8.7.1.3
8.7.1.4
8.7.2
8.7.2.1
8.7.2.2
8.7.2.3
8.7.2.4
8.7.2.5

8.8
8.8.1

8.9

FIND (Find characters in a character string) inStructionccocciiiie 313
Distributed /O (PROFINET, PROFIBUS, OF AS-i) ...cciiiiiiiiiiiiee et 314
Distributed /O INSrUCIONScooiiiiieii e 314
RDREC and WRREC (Read/write data record) inStructionscccocceviiiiiiiinieee e 315
RALRM (Receive interrupt) iNSrUCIONooiiiiiiiii e 318
STATUS parameter for RDREC, WRREC, and RALRM ..., 322
DPRD_DAT and DPWR_DAT (Read/write consistent data for DP slaves) instructions........... 326
DPNRM_DG (Read diagnostic data from a DP slave) instructioncccccoccoviiiinnenne, 328
L1 (=T o (U o) SR 331
ATTACH and DETACH (Attach/detach an OB and an interrupt event) instructions................. 331
(0o [[o 01 (T (] o T O PP PPPPPPPRN 334
SET_CINT (Set cyclic interrupt parameters) inStructionccocveeiii e 334
QRY_CINT (Query cyclic interrupt parameters) instructionccccoviieeiiii e 336
Time Of day INTEITUPLS ...oooiiieii e 337
SET_TINTL (Set time of day interrupt)..........oooueioii e 337
CAN_TINT (Cancel time of day interrupt) ... e 339
ACT_TINT (Activate time of day interrupt) ... 339
QRY_TINT (Query status of time of day interrupt)...........cccco i, 340
Time delay INTEITUPEScoiiiiie ettt e e s enneeee s 342
DIS_AIRT and EN_AIRT (Delay/enable execution of higher priority interrupts and

asynchronous error events) iNSrUCIONSc..oiiiiiiiii i 344
Diagnostics (PROFINET or PROFIBUS)oiiiiiiiiiiiie e 345
DIiagnostiC INSIIUCHIONSooiiiiiie e 345
Diagnostic events for distributed 1/O ... 345
LED (Read LED status) iNStrUCLIONooiiiiiii e 346
DeviceStates INSIrUCHION..........ii e 347
DeviceStates example configurationsooo i 349
ModuleStates INSITUCTIONii e e 353
ModuleStates example configurationsoooiiiiii i 354
GET_DIAG (Read diagnostic information) inStructionccccoiiiiiii e 358
PUISE . et en e e e e e e e n e e e e nneas 364
CTRL_PWM (Pulse width modulation) inStructioncoooiiiiii e 364
Operation of the PUISE OULPULSeiiiiiiie e 365
Configuring a pulse channel for PWM ... 367
ReCiPES aNd Data 10gScooiuiiiiiiiiii e 369
=ToT o= PRSP 369
RECIPE OVEIVIEBW ..ottt et e e et e e et e e et ee e e e nneas 369
RECIPE DB €XAMPIE ...ttt e e 370
Program instructions that transfer recipe data..................ccooi 374
ReCIDE eXamMPIE PrOGIamMt s e e e e e e e 378
=Y = T (0 To L= S PP PRP 380
Data 10g reCOord SrUCIUNE.........ciiiiiiii e 381
Program instructions that control data [0gs............ccccooi e, 382
WOrKing With data l0gSeveiiiie e 392
Limit to the size of data [0g fileS ... 393
Data 10g €XampPle PrOgramcocuueiieiiiiie ettt e e e e e nbee e e e aneas 396
Data BIOCK CONTIOL ... bbb e e 401
READ_DBL and WRIT_DBL (Read/write a data block in load memory) instructions................ 401
AdAress NANAIINGooeeeeie et e e 404

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

8.9.1 LOG2GEOQO (Determine the slot from the hardware identifier) instructionc.ccccccild 404
8.9.2 RD_ADDR (Determine the 10 addresses from the hardware identifier) instruction..................| 406
8.10 Common error codes for the "Extended" instructions..............oooooiii 407
9 Technology INSIIUCLIONS.coo e 409
9.1 HIGh-SPEEA COUNLET......coiiiiiii ittt e et e e e s rabe e e e snneeeee e | 409
9.11 Operation of the high-speed COUNLET ... e 411
9.1.2 Configuration of the HSC ... 417
9.2 o 19 o0 1 o U PEU | 418
9.2.1 Inserting the PID instruction and technology object.............coooiiiiiiiieeee 420
9.2.2 PID_Compact INSIFUCHON ...t e e e e e e e e e e e e e e eenne| 422
9.2.3 PID_Compact instruction ErrorBit parameters ... 426
9.24 PID_3Step INSIIUCHIONeeiiiieiee et e e e e e e e e e e e e e e meneeeeeeeeeennns| 428
9.2.5 PID_3Step instruction ErrorBit parameters ... 435
9.2.6 Configuring the PID CONTrOIETcooiiiiiii e 437
9.2.7 Commissioning the PID CONTrOlEr...........oooiiiiiiii e 439
9.3 1Y o) ioTa W eTe] o1 1 o] F PP UPPPPRPROPPRRN | 441
9.3.1 L 4 F= T o To [P UP T PPPRPROPPRRN | 446
9.3.2 Configuring @ PuISE GENEIAtON.........cciiiiiii it saneee s 448
9.3.3 ConfigurINg the @XISeiiiiiiiie e 449
9.34 Configuring the TO_CommandTable_PTO ... 452
9.3.5 Motion control INSTIUCIONSo.uiiiiiiie et sneee e | 455
9.3.5.1 MC INSITUCLION OVEIVIEWciiiiiiiiii ittt e ettt e e et e e e e nbe e e s e neeeeeennee 455
9.3.5.2 MC_Power (Release/block axis) iNStrUCONcooiiiiiiiiiiii e 456
9.3.5.3 MC_Reset (Confirm error) iNStrUuCHONooouiii i 459
9.3.5.4 MC_Home (Home axis) iNSTrUCLIONoiiiiiiiiiiiee e 460
9.3.5.5 MC_Halt (Pause axis) INStrUCHONocuiiiiiii e 462
9.3.5.6 MC_MoveAbsolute (Position axis absolutely) iNStructionccccoiiiii i) 464
9.3.5.7 MC_MoveRelative (Position axis relatively) inStructioncccoooiiiiii) 466
9.3.5.8 MC_MoveVelocity (Move axis at predefined velocity) instructionccccocooiiiiiiinind) 468
9.3.5.9 MC_Movedog (Move axis in jog mode) iNSIrUCLIONcooiiiiiiiiiiii e 471
9.3.5.10 MC_CommandTable (Run axis commans as movement sequence) instruction......................| 473
9.3.5.11 MC_ChangeDynamic (Change dynamc settings for the axis) instruction................ccccccoeeiiin 476
9.3.5.12 MC_WriteParam (write parameters of a technology object) instruction..............cccccciniiil] 478
9.3.5.13 MC_ReadParam instruction (read parameters of a technology object) instruction| 480
9.3.6 Operation of motion control for S7-1200.........ccciuiiiiiiiie e 481
9.3.6.1 CPU outputs used for motion CONLrol............occeiiiiiiii e 481
9.3.6.2 Hardware and software limit switches for motion controlc.ccccoiiiiii) 483
1SR I TR S o] 0T T PP PRP PPN 486
LSRG TG 20 SN 1T Q1o USROS | 491
9.3.7 L070] 09149117 1o] 11 o TSRS 492
9.3.8 Monitoring active COMMEANGSooiiiiiiiiiii ettt e et e et e e e s sbeeeessnreeeeens| 497
9.3.8.1 Monitoring MC instructions with a "Done" output parametercccocoeeiiiiieiniie e 497
9.3.8.2 Monitoring the MC_Velocity iNStrUCHON..........cuuiiiiiiiiii e 501
9.3.8.3 Monitoring the MC_MoveJog iNStrUCIONooiiiiiiiiiiie e 505
(L 0o Ty o 41U g (o= i o7 o T PP 509
101 Number of asynchronous communication connections supportedccccccoveiiiiiiiiineeennd 511
10.2 PROFINET ...ttt ettt ettt e ettt e sa et e e te e et e e e amte e e seeeaseeeamseeeanseeanseeanseeeanseeanneeeannen] 512
10.2.1 Local/Partner CONNECLIONocuuiiiiiiiiie ittt e s sare e e e s enneeee e | 512

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 13

Table of contents

14

10.2.2

10.2.2.1
10.2.2.2
10.2.2.3
10.2.2.4
10.2.2.5
10.2.2.6
10.2.2.7
10.2.2.8
10.2.2.9

10.2.2.10

10.2.3
10.2.3.1
10.2.3.2
10.2.3.3
10.2.3.4
10.2.4
10.2.4.1
10.2.5
10.2.5.1
10.2.5.2
10.2.5.3
10.2.6
10.2.6.1
10.2.6.2
10.2.6.3
10.2.6.4
10.2.6.5
10.2.7
10.2.7.1
10.2.7.2
10.2.7.3
10.2.7.4
10.2.7.5
10.2.8
10.2.9
10.2.10
10.2.11

10.3
10.3.1
10.3.2
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
10.3.4
10.3.5
10.3.6

10.4
10.4.1
10.4.1.1

Open USer COMMUNICALIONo e et e e e e e e e e e e e e e e e e nneneeeeaeeeeaannes 514
Connection IDs for the Open user communication iNStructions............cccccccuveviiiiiiiieieiiieieininnn, 514
L (e (eT 7o] - ST PPRTPRP 517
A NOC MOTE ...ttt b bttt b et e e bt et e e s bt e ebb e e e e anneee s 518
LI =10 T N 1T 2o o R O] USSP 519
TSEND_C and TRCV_C (Send and receive data via Ethernet) instructions...............ccccoccee. 520
TCON, TDISCON, TSEND, and TRCV (TCP communication) instructionscccoccueee.. 527
L OSSPSR 535
TUSEND @nd TURQCV ...ttt ettt et e e et e e enee e e teeeaneeeanseeeneeeeneeeanneas 535
O 1\ 1 RSP 541

Common parameters for iINSIrUCHONSooi e 548
Communication with @ programming deVICEeeiiiiiiiiiiii e 550
Establishing the hardware communications ConNECtioNcoccuiiiiiiiiie i 550
ConfiguriNg the AEVICES......coo i 551
Assigning Internet Protocol (IP) @ddreSSes........cuuuiiiiiiiiiiiiiee e 551
Testing your PROFINET NEIWOTKooiiiiiiiiiiiie et 551
HMI-t0-PLC COMMUNICATIONcoiiiiiiiiiiiiiii et 552
Configuring logical network connections between two devicesccccoiiiiiiiiiiieee. 553
PLC-t0-PLC COMMUNICAtION. ..ottt nbe e e 553
Configuring logical network connections between two devices.............c.cccoiiiiiiiii e, 554
Configuring the Local/Partner connection path between two devices...........cccceeviieeiiiiieeenns 555
Configuring transmit (send) and receive parameters...........oooueeiiiiiei i 555
Configuring a CPU and PROFINET O deVICe.......cceeiiiiiiiiiiiie e 558
Adding @ PROFINET 1O AEVICE. ...cciueieuiieiiet ettt e e e e e snee e e eeeeeneee e 558
Configuring logical network connections between a CPU and a PROFINET IO device 558
Assigning CPUS and deVICE NAMESocoiuiiiiiiiiiie ettt ettt s e e eneeas 559
Assigning Internet Protocol (IP) @ddreSSEs........ccuuiiiiiiiiiiiiiiiee et 559
Configuring the 1O CYCIE tIME ..o 560
Configuring a CPU and PROFINET iDEVICEcccoiuiiiiiiiiiie e 561
[-device FUNCHONAIITY.......cooiiiee e e 561
Properties and advantages of the -deviCe ... 562
Characteristics Of @n -AEVICE.......coiiiiii e 562
Data exchange between higher- and lower-level O systemccccooiiiiiiiiiiiie e, 565
Configuring the [-dEVICEcooiiiiiiii ettt e et e e sbe e e 567
DT F= T L0 L] 1 PRSP 569
Distributed 1/0 INSIIUCHIONScoouiiiiiie e 569
DIiagnostic INSIIUCHIONScoiiiiiiiiee e et 569
Diagnostic events for distributed 1/O ... 569
PROFIBUS ...ttt ettt ettt et e ettt e e m et e e s e e e aaeeesmaeeeameeeemneeaneeeanseeaaneeeanneans 569
Communications services of the PROFIBUS CMScooiiiiiiiiiiii e 571
Reference to the PROFIBUS CM user manuals..............cooiiiiiiiiiiieiiiiee e 572
Configuring a DP master and Slave deVICe..........ocuiii i 572
Adding the CM 1243-5 (DP master) module and @ DP slaveccccceviiiiiiiniiiecinecc e, 572
Configuring logical network connections between two PROFIBUS devicesccccceeinnne. 573
Assigning PROFIBUS addresses to the CM 1243-5 module and DP slavecccceeee... 574
Distributed /O INSIIUCHIONSoooiiiiii e e 575
DIiagnostic INSIIUCTIONScooiiiiii i 575
Diagnostic events for distributedoooiiiiii 576
U 576
Configuring an AS-i master and slave deviCe...........cooiiiiiiiiii e 577
Adding the AS-i master CM 1243-2 and AS-i Slave..........cceeiiiiiiiiiiie e 577

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

10.4.1.2 Configuring logical network connections between two AS-i devices........ccccccovvveiiiiiiiildd 578
10.4.1.3 Configuring the properties of the AS-i master CM1243-2...........cooiiiiiiiiiiiicieee e 578
10.4.1.4 Assigning an AS-i address t0 an AS-i SIave ... | 579
10.4.2 Exchanging data between the user program and AS-i slaves.......cccccooiiiiiiiniiiceeend 582
10.4.2.1 STEP 7 basiC CONfIQUIAtION........c.uiiiiiiiiii it 582
10.4.2.2 Configuring slaves With STEP 7.......couiiiiii e 583
10.4.3 Distributed /O INSTIUCHIONSueiiiiiieie e ee e | 585
10.4.4 Working With AS-i ONliNE tO0IScoiiiiiiii e 585
10.5 S7 COMMUNICATION ...eiiiiiiii ettt e et e e e e e e e e e e e abee e e ennee 587
10.5.1 GET and PUT (Read and write from a remote CPU) instructionscccccevniiiiiiinniinend 587
10.5.2 Creating an S7 CONNECHION........ouuiiiiiiiiii et e s e e naneees 591
10.5.3 Configuring the Local/Partner connection path between two devices..........cccccceveviiiiiinnn 592
10.5.4 GET/PUT connection parameter assignmentoccueeiiiiiiiiiiiiieeiiiee e 592
10.5.4.1 ConNeCtioN PAraMELEIS.......ooii ittt e e e e e et e e e e e e e e e e e e e e e e e e aannneeeeaeees] 593
10.5.4.2 Configuring @ CPU-t0-CPU S7 CONNECHIONciiuiiiiiiiiiiiiiiiiie et 596
L T =T o BT =Y = PP PP PP PP PP PPPPPPPPPPPPNY 601
11.1 Enabling the WED SErver.........oi et | 603
11.2 Configuring WED SEIVEI USEISciiiiiiiiie ittt e e saneees 604
11.3 Accessing the Web pages from @ PC ... 606
11.4 Accessing the Web pages from a mobile deviCe ... 607
11.5 Standard WEeD Pagesooo e 609
11.5.1 Layout of the standard Web pages ... | 609
11.5.2 Logging in @nd USEr PriVIIEJEScoiuuiiiiiiiiie ettt e e e snaeee e | 610
11.5.3 INEOAUCHION .ottt e e aab e e e s anbe e e s snnbeeeesnnneeeeans | 613
(I IR | - o RSP URROY 614
RS o T (o [= T) o= 11 [o] I PO UPPPROPPPRN | 615
11.5.6 DIagnoStic BUFfE........eiiiiieeee e ee e | 616
11.5.7 Module INFOrMAatIoNooueiiiiiiiie et nnbe e e e snneeee e | 616
11.5.8 COMMUNICALIONoiiitiiiii ittt ettt e e s st e e e s aabe e e e e anbeeeesaneeeeesanneeeeans | 620
11.5.9 Variable STatUsS.......ooueiiii et ee e | 620
T1.5.10 FlE BrOWSET ..ottt et e e et e e e abe et e e aabn e e e s annneeesannneees] 622
11.6 User-defined WED Pagesooouiiiiiiiii et | 625
11.6.1 Creating HTML PAgEScoo ittt ettt et e e e e e aabe e e s snneees 626
11.6.2 AWP commands supported by the S7-1200 Web Server ... 627
11.6.2.1 Reading VariabIescoouiiiiiiiii ettt 629
11.6.2.2 WIItING VArADIES. ...ttt et e et e e sabe e e e senneeee e | 630
11.6.2.3 Reading special Variablescooiiiiiiiiii e | 631
11.6.2.4 Writing Special variablesooi i | 633
11.6.2.5 Using an alias for a variable referenceccocueeiiiiiiiiiii e 634
11.6.2.6 Defining €NUM LYPESooiiiiiiiiiii ettt e st e e s sbeee e s sneeeee s | 635
11.6.2.7 Referencing CPU variables with an enum typeccoiiiiiiiiiii e 635
11.6.2.8 Creating fragmeEnts ...ttt e s e e s sneee e | 637
11.6.2.9 IMporting fragmMENntS ... e snneee e | 638
11.6.2.10 Combining definitioNS.........ooiuiiii i neeee e | 638
11.6.2.11 Handling tag names that contain special characters..............ccccociiiiinie e 639
11.6.3 Configuring use of user-defined Web pages ... 641
11.6.4 Programming the WWW instruction for user-defined web pages...........ccoccevviiiiniencnnin 642
11.6.5 Downloading the program blocks to the CPU ... 643

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 15

Table of contents

12

16

11.6.6 Accessing the user-defined Web pages ... 644
11.6.7 Constraints specific to user-defined Web pages.........cooueiriiioioiii e 644
11.6.8 Example of a user-defined Web Pageoooeeiiiiiiii i 645
11.6.8.1 Web page for monitoring and controlling a wind turbine............cccoceiiii i 645
11.6.8.2 Reading and displaying controller data.............coocuiiiiiiiii e 647
11.6.8.3 USING @N ENUM LYPE ...ttt e bt e e b b e e e eabre e e e aanes 648
11.6.8.4 Writing user input t0 the CONLIOIIEroooiiiiii e 649
11.6.8.5 Writing @ special variableooc.uiiiiiii e 650
11.6.8.6 Reference: HTML listing of remote wind turbine monitor Web pageccccciviiiiiennnnn 650
11.6.8.7 Configuration in STEP 7 of the example Web page ... 654
11.6.9 Setting up user-defined Web pages in multiple l[anguages.............cccoiieiiiiiiiiiiee e 656
11.6.9.1 Creating the folder STTUCIUIE.............iiiii e e 656
11.6.9.2 Programming the language SWItCh...........cooiiiiiiiii e 657
11.6.9.3 Configuring STEP 7 to use a multi-language page structure...........cccoooiiiiii e 659
11.6.10 Advanced user-defined Web page CONtrol...........ccuueiiiiiiiiiii e 660
11.7 L070] 01 =11 o €T SRR 664
11.7.1 Feature restrictions when the Internet options disable JavaScriptcccoooiiiiiiiiiiiiceee. 665
11.7.2 Feature restrictions when the Internet options do not allow cookiesccccccviiiiiiiiinn.n. 666
11.7.3 Importing the Siemens security certificate ... 666
11.7.4 Importing CSV format data logs to non-USA/UK versions of Microsoft Excel.......................... 667
Communication processor and Modbus TCP..........ccoui i rnrr e e e snere e e e e e e ee s | 669
121 Using the serial communication interfaces ... 669
12.2 Biasing and terminating an RS485 network connector.............cooiiiiii 670
12.3 Point-to-point (PtP) commUNICAtioNcoouiiiiiiii e 671
12.3.1 Configuring the communiCation POISoocuuiiiiiiiiie e 672
12.3.1.1 Managing floOW CONTIOLoouiiiiiiie e bbb e 674
12.3.2 Configuring the transmit (send) and receive parameters...........cococviiiiiiii i 675
12.3.2.1 Configuring transmit (Send) parameterscoooiiiiiiiii e 675
12.3.2.2 Configuring reCeive Parametersoocuiii i 676
12.3.3 Point-to-point INSITUCIONS........ooii e e e e 684
12.3.3.1 Common parameters for Point-to-Point inStructions ..., 684
12.3.3.2 PORT_CFG (Configure communication parameters dynamically) instruction......................... 686
12.3.3.3 SEND_CFG (Configure serial transmission parameters dynamically) instruction 688
12.3.3.4 RCV_CFG (Configure serial receive parameters dynamically) instructionc.cccooceeennn 689
12.3.3.5 SEND_PTP (Transmit send buffer data) instructionccccoiiii 694
12.3.3.6 RCV_PTP (Enable receive messages) inStruCtioNoocueiiiiiiiiiiiiiee e 697
12.3.3.7 RCV_RST (Delete receive buffer) iNStruCtion ... 698
12.3.3.8 SGN_GET (Query RS-232 signals) inStruCtionccueeiiiiiiiii e 699
12.3.3.9 SGN_SET (Set RS-232 signals) iNStruCtioncooiiiiiiiiii e 700
12.3.4 Programming the PtP communiCations............cooiiiiiiiiiiiii e 702
12.3.4.1 POIING @rChitECIUIE...... .ttt n e e e 703
12.3.5 Example: Point-to-Point communiCationoooiiiiiii e 704
12.3.5.1 Configuring the communication MOAUIE............cooiiiiiiiiii e 705
12.3.5.2 RS422 and RS485 operating MOUESccoiuiiiiiiiiie et 707
12.3.5.3 Programming the STEP 7 program..........coo it 710
12.3.5.4 Configuring the terminal emuIator ... 711
12.3.5.5 Running the example PrOgram........ .o it e e 712
12.4 Universal serial interface (USS) communication..............cooiiiiiiiiiieie e 712
12.4.1 Requirements for using the USS protoCol............oooiiiiiiiii e 713

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

12.4.2 USS_PORT (Edit communication via USS network) instruction.............cccccoiiiieiiiinn 715
12.4.3 USS_DRV (Swap data with drive) inStruction ..o | 716
12.4.4 USS_RPM (Readout parameters from the drive) instruction..............cccoiiiiie 719
12.4.5 USS_WPM (Change parameters in the drive) instruction.............ccoceeiiiiiieee 720
12.4.6 USS StAtUS COUES.ottt e e e e e et e e e e e e e e s nenneeeaeeeeaannnneeeaaeeeaannns| 722
12.4.7 General drive setup information............ooo e | 724
12.5 (V7T Yo] o TU =37] o1 4181 T (o= { o] o S OSSR | 727
12.5.1 Overview of Modbus RTU and TCP communication Modbus TCP instructions V13 727
L2 T Y o T | o T T I = US| 730
12.5.2.1 MB_CLIENT (Communicate via PROFINET as Modubus TCP client) instruction| 730
12.5.2.2 MB_SERVER (Communicate via PROFINET as Modbus TCP server) instruction..................| 736
12.5.2.3 MB_SERVER example: Multiple TCP CONNECHIONScoviiiiiiiiiiiiiiee e 742
12.5.2.4 MB_CLIENT example 1: Multiple requests with common TCP connection.............cccccccceeo0ld 743
12.5.2.5 MB_CLIENT example 2: Multiple requests with different TCP connections............cccccccceeelld 744
12.5.2.6 MB_CLIENT example 3: Output image write request ..o 745
12.5.2.7 MB_CLIENT example 4: Coordinating multiple requestsccccoeii i 745
12.5.3 MOADUS RTU ..ottt s e e st e e e st e e e e snte e e e s antaeeesanteeeesanseeeessssnneesns| 746
12.5.3.1 MB_COMM_LOAD (Configure port on the PtP module for Modbus RTU) instruction..............| 747
12.5.3.2 MB_MASTER (Communicate via the PtP port as Modbus master) instruction 749
12.5.3.3 MB_SLAVE (Communicate via the PtP port as Modubus slave) instructioncccoccee 755
12.5.3.4 Modbus RTU master example Programi........ ..o ioieeieeeeeeieciiieee e e e e seeeeeeeeeeesssseneeeeeeeeeeens| 762
12.5.3.5 Modbus RTU slave example programcocoeoeioiooiiiieeeeeeieseiee e e e e e s eee e e e s eeeeneeeeeeeeeeenns| 764
12.6 Telecontrol and TeleService with the CP 1242-7 ... 765
12.6.1 Connection t0 @ GSM NEWOIKooiiiiiiiieiiiie et e e e e e e e e e e e s enneeeeeeeeeeenne| 765
12.6.2 Applications of the CP 1242-7 ... e e e e e neee e e e e e e enns| 767
12.6.3 Other properties Of the CP ... e e e e e e e e | 768
L S o o7 1Yo =T SRS | 769
12.6.5 Configuration examples for telecontrol ..o 770
13 Teleservice communication (SMTP €mail)............cuuuiiiiiiiiiiiiiiiiiiiiiiieeereeeeereeeeere. 775
13.1 TM_Mail (Send email) INSTrUCLION.cooiuiiiiii e 775
14 Online and diagnOSHIC tOOISuuuiiiiiiiiiiiiiiiiiiiirree et eerrrernrerrrnnns 783
141 I = LU0 I USSP 783
14.2 Going online and connecting 10 @ CPU e e e 786
14.3 Assigning a name to a PROFINET 10 device onlineoccciiiiieiiiniieiciee e 787
14.4 Setting the IP address and time Of dayoooiiiiii e 789
14.5 Resetting to factory Settings..... ..o | 789
14.6 Updating fIrMWaret e e e e e ee e e e e e e e e smnneneeeeeeeeenns| 791
14.7 CPU operator panel for the onling CPU..............uiiiiiiiiiiiiiiiiiiiiieieieieieieieveveveveresesesesssssssssesssens | 792
14.8 Monitoring the cycle time and MemOry USAQEcoii i e e 792
14.9 Displaying diagnostic events in the CPU ... 793
1410 Comparing offline and oNliNe CPUS........coo e 794
14.11 Monitoring and modifying values in the CPU 795
14.11.1 Going online to monitor the values inthe CPU ... 796
14.11.2 Displaying status in the program editoro 797

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 17

Table of contents

15

18

14.11.3 Capturing the online values of a DB to reset the start values..............cccccovii 797
14.11.4 Using a watch table to monitor and modify values inthe CPUccccoiiiiiiii e 798
14.11.4.1 Using a trigger when monitoring or modifying PLC tagsccccuiiiiiiiiii i 799
14.11.4.2 Enabling outputs in STOP MOGE........cooiiiiiiiiiiie e 800
14.11.5 Forcing values iN the CPU ...t 801
14.11.5.1 Using the force table ... 801
14.11.5.2 Operation of the FOrce fUNCON ... 802
14.12 Downloading in RUN MOGE ...t e 803
14.12.1 Prerequisites for "Download in RUN mMOde"........ ..o 804
14.12.2 Changing your program in RUN MOE............oiiiiiiiiiiiiiii e 805
14.12.3 Downloading Selected DIOCKS...........oiiiiiiiiiii e 806
14.12.4 Downloading a single selected block with a compile error in another block..............ccceene 807
14.12.5 Modifying and downloading existing blocks in RUN mMode ..o 808
14.12.6 System reaction if the download process failS ..o 811
14.12.7 Considerations when downloading in RUN MOdeccooiiiiiiiiiiiiiii e 811
1413 Tracing and recording CPU data on trigger conditionsccooiiiiiiiiiiiiiieec e 813
SM 1278 4XIO-LINK MASEET.......cccuttiriiiiiiiiiiiiiiieetieeeeeeeererrrrere .| 815
15.1 SM 1278 4XIO-Link MaSster OVEIVIEWcoiiiiiiiiiiiiee it 815
S 20t It I =T V1= SRR 815
15.1.2 1O-Link and your STEP 7 Program..........oooo ittt 815
RS TR I T o oo =Y o 11T SRR 816
S0t I S U 3T 4o 1SR 817
15.1.5 Replacing the SM 4xIO-Link signal MOdUIEcooiiiiiiiiiiii e 817
15.1.6 Reset module to factory SEHiNGS.......coo i 818
15.2 17T a1 0 T=Tox 1o Vo USSP 819
LRI B 1 =TT oo T g1 o RSO 819
15.2.2 BIOCK QIBGIam ...t 820
15.3 Parameters/address SPACEcooiii i a e e eas 821
15.3.1 CONfIGUIATION ..o et e e s e e 821
LRSI I o = 0 0= (=Y SR 821
LRSI TR T o [| (=TT =Y o =L SO 822
15.3.4 Parameter data rECOMo.uiiiiiiiie e e 822
15.4 Interrupt, error, and SYStemM @larmso e 824
15.4.1 Status and error diSPIAYeeii i e 824
15.4.2 DIagnOSTIC @IarMScoi it e s 826
Technical SPECIfICAtIONS ... e e e s e r e e e e e s e e nnn e e e e e s e e e e nnnnnes 829
A1 General technical specCifiCationsc...eiiiiii e 829
A2 O] By 2 e OSSPSR 837
A.2.1 General specifications and features............oooo e 837
A.2.2 Timers, counters and code blocks supported by CPU 1211C ... 838
A.2.3 Digital inputs and OULPULSooiei e e e e e e eeeee e 840
A24 ANGIOG INPULS .t e ettt e et e e et e s e b e e e e e e e e 842
A.2.4.1 Step response of the built-in analog inputs of the CPU ... 842
A.2.42 Sample time for the built-in analog ports of the CPU...........ccoiiiii i, 843
A.2.4.3 Measurement ranges of the analog inputs for voltage (CPUS)..........ccccviiiiiiiiii e 843
A25 CPU 1211 WIrING di@GIamSeeiiiiiiiiee ettt rb et e be e e e sbb e e s sbee e e e sbeeee e e 844
A3 (O] U B 1 2 USRS 847

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

A3.1
A3.2
A3.3
A3.4
A3.41
A3.4.2
A3.43
A3.5

A4
A4.1
A4.2
A43
A4d4
A4.41
A4.4.2
A4.43
A4.5

A5
A5.1
Ab5.2
A53
A5.4
A5.41
A5.4.2
A543
Ab5.4.4
A5.5

A6
A6.1
A6.2
A6.3
A6.4
A6.4.1
A6.4.2
A6.4.3
A6.44
A6.4.5
A6.5

A7

AT
AT7.2
AT73
AT7.4
AT7.5

A8

A.8.1
A8.2
A8.3
A8.4
A.8.5

General specifications and features...........ooo e 847
Timers, counters and code blocks supported by CPU 1212C ... 848
Digital inputs and OUIPULS ... e e e e e e e e e eane| 850
LN E= (o To T o] o U | T PP PP OTPPPRRN 852
Step response of the built-in analog inputs of the CPU ... 852
Sample time for the built-in analog ports of the CPU...........ccooiiiiiii e 853
Measurement ranges of the analog inputs for voltage (CPUS)........cccccoeviiieiiiiiieiiiiieeenieeee 853
CPU 1212C WiriNG di@grams.....ccoeeeiiiiiiieei e ee e et e e e e e e et e e e e e e e e e neneeeeaeeeeeannnnnnees 854
(07 U e 1 7 PR OTRR 857
General specifications and features......... ..o 857
Timers, counters and code blocks supported by CPU 1214C ... 858
Digital inputs and OULPULS ... e e e e e ee e e e e e e eene| 860
ANGIOG INPULS <.ttt e e s bt e e s b b e e e e s b bt e e e sbae e e e abe e e e e abreeeeaa 862
Step response of the built-in analog inputs of the CPUcccoooiiiiii e 862
Sample time for the built-in analog ports of the CPU...........c.cccoiiiiiii e 863
Measurement ranges of the analog inputs for voltage (CPUS)..........ccccciiiiiiiiiiiinieceieen 863
L0 2 U B 2 BT @RV Ty g e 1= To | =T a 1< TS 864
(07 Uy s T SRRSO 867
General specifications and fEatUres............ooi e 867
Timers, counters and code blocks supported by CPU 1215C ... 869
(DT [1=1 T aT 01U 1 €<3R=T o [Ko 1014 o 10 £ 0SS 871
ANalog iNPUES @Nd OULPULS ...t e e e e e e e e e e e s e e e e e e e e e annns 872
Step response of built-in analog inputs of the CPU ... 873
Sample time for the built-in analog ports of the CPU..........ooiiiiiiii e, 873
Measurement ranges of the analog inputs for voltage (CPUS)..........ccccciiiiiiiiieiiniece, 873
Analog output SPECITICAtIONSeeiiiie i e e 874
CPU 1215C WIriNG Ai@gramS......cceeiieeiieiieeeeeeeiitieie e e e e e ettt e e e e e e e e teeeeeaeeesesnnnneeeeaeeeaaannnnneeees) 875
L0 U e s 4 USSP PRSI 879
General specifications and fEatUres...........oooo i) 879
Timers, counters and code blocks supported by CPU 1217C ... 880
Digital inputs and OULPULS........oouiiiii e e e 882
ANalog iNPULS @nd OULPULS ..ottt e e e e e 887
Analog input SPECIfICAtIONSeiiiiiiii e 887
Step response of built-in analog inputs of the CPU ... 888
Sample time for the built-in analog ports of the CPU...........ccccoiiiiiieee) 888
Measurement ranges of the analog inputs for voltage (CPUS)..........cccccoiiiiiiiiiieiiiiieceieee] 889
Analog output SPECIfICatiONScoiiiiiiii e | 889
CPU 1217C WiriNG dI@QIramMS.uueeiiiiuiiiieiiee ettt sttt e sb et e snne e e e sbne e e e sbnee e e snnnees 891
Digital signal Modules (SIMS) ...t e e e e e e e e e e eneneeeeeeeeeeeane| 892
SM 1221 digital input SPeCIfiCatioNsooii i 892
SM 1222 8-point digital output specifications ... 894
SM 1222 16-point digital output specifications ... 895
SM 1223 digital input/output VDC specificationsooiiiieiiiiiie e 900
SM 1223 digital input/output AC specifications.............oooiiiiiii e 904
Analog signal MOAUIES (SIMS)coiiiiiiiiiiiie e e e e e 907
SM 1231 analog input module specificationso 907
SM 1232 analog output module specificationsooo i 910
SM 1234 analog input/output module specifications ... 913
Step response of the analog INPULS ... 916
Sample time and update times for the analog iINPULS.........cc..eeiiiiiii i) 916

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 19

Table of contents

20

A.8.6
A8.7

A9
A9.1
A9.11
A9.1.2
A9.2
A9.21

A10
A.10.1
A.10.1.1
A10.1.2

A1

A111
A11.2
A11.3
A114

A2
A12.1
A12.2
A12.3
A12.3.1
A123.2
A12.3.3
A123.4
A124
A12.41
A124.2
A12.5
A12.5.1
A125.2

AA13

A14
A141
A14.11
A14.1.2
A14.2
A14.21
A14.3
A14.3.1
A143.2
A14.4
A14.41
A1442
A1443

A15
A.16
A7

Measurement ranges of the analog inputs for voltage and current (SB and SM)..................... 916
Measurement ranges of the analog outputs for voltage and current (SB and SM) 917
Thermocouple and RTD signal modules (SMS)cuuiiiiiiiiiiiiie e 919
SM 1231 TheIMOCOUPIE ...ttt e e e e et et e e e e e e e ae e e e e e e e e anneneeeeaeeeaaannes 919
Basic operation for a thermoCoUPIE ... 922
Selection tables for the SM 1231 thermocouple ... 923
STV I 2 T o I 0 PR UORPRR 925
Selection tables for the SM 1231 RTD ... e e e 928
Technology MOAUIES ...ttt e e e e e e e e et e e e e e e e e e nnneeeeeaaeeas 931
SM 1278 4AXIO-LINK MaSIEr Sueeiiiiiiiiie et e e st e e s antae e e s anneeeeeans 931
SM 1278 4xIO-Link Master signal module specifications ..o 931
SM 1278 4xIO-Link Master SM wiring diagrams...........oocueiiiiiiiiiiiiieee e 934
Digital signal Doards (SBS)......cceei it e e e e e eeaaeeeas 935
SB 1221 200 kHz digital input specificationsc..oooiiiii i 935
SB 1222 200 kHz digital output specificationsooiiiiiiii e 937
SB 1223 200 kHz digital input / output specifications ..o 940
SB 1223 2 X 24 VDC input / 2 X 24 VDC output specifications.............ccococeveeeiiiiiiieineee s 943
ANalog SigNal DOAIAS (SBS).....ciiuuiiiiiiiiiie i 946
SB 1231 1 analog input SPecCifiCationsoooii e 946
SB 1232 1 analog output SPeCIfiCatioNSccuiiiiiiiiii e 948
Measurement ranges for analog inputs and OUIPULScceiiiiiiiiiiic e 950
Step response of the analog INPULS ... 950
Sample time and update times for the analog INPULS..........ccooiiiiii e 950
Measurement ranges of the analog inputs for voltage and current (SB and SM)..................... 950
Measurement ranges of the analog outputs for voltage and current (SB and SM) 951
Thermocouple signal boards (SBS).......ccoiuiiiiiiiiiiiiee e 953
SB 1231 1 analog thermocouple input specificationscccciiiirii i 953
Basic operation for a thermoCOUPIEoooiiiiiiiii e 954
RTD Signal Doards (SBS)eeiiiiiiiieiiiiii ittt e et e et e e 957
SB 1231 1 analog RTD input SpecCifiCations...........ccuuueiiiiiii e 957
Selection tables for the SB 1231 RTDuuiiiiiiiiiiiiee e e e e e e e 960
BB 1297 Battery DOAI.......coouiiiiiiieee e e 962
CommuNICatioN INtEITACES. ... e e e e e e e e e e e e e e nnnes 964
PROFIBUS ...ttt ettt e e ettt e e e et e e e ettt e e e sabae e e e eataeeeeanteeaeeantaeeeensteeeeenseas 964
CM 1242-5 PROFIBUS DP SIQVE......ccciiiiiieiiiiie et e st eettee et e e staee e s sttae e e snreeassnaeeaeanes 964
CM 1243-5 PROFIBUS DP MaSEEIcccciviiieiiiiiee et eeeee ettt e st e e snatee e e saseeaesnaeeaeanes 965
LT S TSRS 967
CP 1242-7 GPRS ...ttt ettt e e st e e e st e e e satae e e e astaeeeeasteeeesantaeaesassaeeeaansenaeanns 967
CM 1243-2 AS-i MASTET ...ttt e e e e e e e e e e e e e e eas 970
Technical data for the AS-i master CM 1243-2...... . 970
Electrical connections of the AS-i master CM 1243-2 ... 971
RS232, RS422, and RS485 ...ttt ettt st e s e e s essae e e s annae e e e nnnaeaeeenneas 973
CB 1241 RS485 SPeCifiCations.......coiii it a e 973
CM 1241 RS232 SPeCIfiCatiONSooiiiiiiiiiei et a e e 975
CM 1241 RS422/485 SPECIfiCatiONS ... e e e 976
TeleService (TS Adapter and TS Adapter Modular)c..oooiiiiiiiiii e 978
SIMATIC MEMOIY CANUSeiiiitiiie ittt et et e e e rab et e e e abb e e e e s aab e e e e sabbeeeeaanneeeeaans 978
INPUL SIMUIBLOTS ...ttt e annneeeeaaeeean 978

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Table of contents

A.18 S7-1200 Potentiometer MOAUIEooouiiiii e 980
A.19 TL@ =y q o =T g 1= (o] I o= o] =SSR | 981
A.20 (©70] 0 41 0= o1 (o] o I] e Yo [1 o £ SRS 982
A.20.1 PM 1207 POWEN MOAUIE ..ottt e e et e e e e e e e e e e e e e e e e nnnaneeaaaes] 982
A.20.2 CSM 1277 compact SWItCh MOAUIE..........coiiiiiiiiiii e 982
A.20.3 CM CANOPEN MOAUIE ...ttt e e e e e e e e e e e e e e e e nneeeeeeaeeeaaannnnneeaaeaes] 983
B Calculating @ POWEr DUAQGEL........cooii e e e e s e e mnn e e e e e e ean 985
C (O o L= T o] 7T TP 989
C.1 CPU MOAUIES ...ttt ettt e e sttt e e abn e e e s aanneeeeanneees] 989
C.2 Signal modules (SMs), signal boards (SBs), and battery boards (BB)..........cccccoviiiiiiiinnin] 989
C3 107071911018] o] [o7= 11 [] o [F PP POOUPRPIN | 991
C4 Other MOAUIES..... .ttt e ettt e e et e e e e e e abeeeeeannee 992
C.5 =T g g Te] YA o= [L TP PP PP PPPPROPRPR 992
C.6 BaSIC HIMI AEVICES. ... ettt ettt et e et e e st e e e s aannee s 992
C.7 Spare parts and other hardWareuuuiiiiiiiiiiiiieeeeere e ererersrerererererersrersrsrerarerees| 993
C.8 Programming SOftWAIE ... e e e e e e e e e e e e 994
C.9 Do TolN 4 g =T g1 F=1 (o] o H PP PU PP OPPPPPOPPPR 994
D Exchanging a V3.0 CPU for @ V4.0 CPU ... e e e e s e e e e e e e ean 995
T 1= 999

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 21

Table of contents

22

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Product overview 1

1.1

Introducing the S7-1200 PLC

The S7-1200 controller provides the flexibility and power to control a wide variety of devices
in support of your automation needs. The compact design, flexible configuration, and
powerful instruction set combine to make the S7-1200 a perfect solution for controlling a
wide variety of applications.

The CPU combines a microprocessor, an integrated power supply, input and output circuits,
built-in PROFINET, high-speed motion control /O, and on-board analog inputs in a compact
housing to create a powerful controller. After you download your program, the CPU contains
the logic required to monitor and control the devices in your application. The CPU monitors
the inputs and changes the outputs according to the logic of your user program, which can
include Boolean logic, counting, timing, complex math operations, and communications with
other intelligent devices.

The CPU provides a PROFINET port for communication over a PROFINET network.
Additional modules are available for communicating over PROFIBUS, GPRS, RS485 or
RS232 networks.

@ Power connector
@

Memory card slot under top
door

® Removable user wiring

connectors (behind the
doors)

@ Status LEDs for the on-
board 1/0

® PROFINET connector (on
the bottom of the CPU)

t ®

Several security features help protect access to both the CPU and the control program:

e Every CPU provides password protection (Page|190) that allows you to configure access
to the CPU functions.

® You can use|"know-how protection" (Page|193) to hide the code within a specific block.

® You can use|copy protection (Page|195) to bind your program to a specific memory card
or CPU.

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

23

Product overview

1.1 Introducing the S7-1200 PLC

Table 1-1 Comparing the CPU models
Feature CPU 1211C CPU 1212C CPU 1214C CPU 1215C CPU 1217C
Physical size (mm) 90 x 100 x 75 90 x 100 x 75 110x100x75 130x100x75 150x 100 x 75
User memory Work 30 Kbytes 50 Kbytes 75 Kbytes 100 Kbytes 125 Kbytes
Load 1 Mbyte 1 Mbyte 4 Mbytes 4 Mbytes 4 Mbytes
Retentive 10 Kbytes 10 Kbytes 10 Kbytes 10 Kbytes 10 Kbytes
Local on-board Digital 6 inputs/4 8 inputs/6 14 inputs/10 14 inputs/10 14 inputs/10
I/0 outputs outputs outputs outputs outputs
Analog 2 inputs 2 inputs 2 inputs 2 inputs/2 2 inputs/2
outputs outputs
Process image Inputs (l) 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes
size Outputs (Q) 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes
Bit memory (M) 4096 bytes 4096 bytes 8192 bytes 8192 bytes 8192 bytes
Signal module (SM) expansion None 2 8 8 8
Signal board (SB), Battery board 1 1 1 1 1
(BB), or communication board
(CB)
Communication module (CM) 3 3 3 3 3
(left-side expansion)
High-speed Total Up to 6 configured to use any built-in or SB inputs
counters 1 MHz - - - - Ib.2 to Ib.5
100/'80 kHz la.0 to la.5 la.0 to la.5 la.0 to la.5 la.0 to la.5 la.0 to la.5
30/120 kHz -- la.6 tola.7 la.6 to Ib.5 la.6 to Ib.5 la.6 toIb.1
Pulse outputs?2 Total Up to 4 configured to use any built-in or SB outputs
1 MHz - -- -- -- Qa.0 to Qa.3
100 kHz Qa.0 to Qa.3 Qa.0 to Qa.3 Qa.0 to Qa.3 Qa.0 to Qa.3 Qa.4 to Qb.1
20 kHz -- Qa.4 to Qa.5 Qa.4 to Qb.1 Qa.4 to Qb.1 -

Memory card

SIMATIC Memory card (optional)

Real time clock retention time

20 days, typ./12 day min. at 40 degrees C (maintenance-free Super Capacitor)

PROFINET

Ethernet communication port

1 1

1

2

2

Real math execution speed

2.3 pslinstruction

Boolean execution speed

0.08 ps/instruction

1 The slower speed is applicable when the HSC is configured for quadrature mode of operation.

2 For CPU models with relay outputs, you must install a digital signal (SB) to use the pulse outputs.

24

The different CPU models provide a diversity of features and capabilities that help you create
effective solutions for your varied applications. For detailed information about a specific
CPU, see the technical specifications |(Page 829).

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Product overview

1.7 Infroducing the S7-1200 PLC

Table 1- 2 Blocks, timers, and counters supported by S7-1200

Element Description
Blocks Type OB, FB, FC, DB
Size 30 Kbytes (CPU 1211C)
50 Kbytes (CPU 1212C)
64 Kbytes (CPU 1214C, CPU 1215C, and CPU 1217C)
Quantity Up to 1024 blocks total (OBs + FBs + FCs + DBs)
Nesting depth 16 from the program cycle or startup OB;
6 from any interrupt event OB
Monitoring Status of 2 code blocks can be monitored simultaneously
OBs Program cycle Multiple
Startup Multiple
Time-delay interrupts 4 (1 per event)
Cyclic interrupts 4 (1 per event)
Hardware interrupts 50 (1 per event)
Time error interrupts 1
Diagnostic error interrupts 1
Pull or plug of modules 1
Rack or station failure 1
Time of day Multiple
Status 1
Update 1
Profile 1
Timers Type IEC
Quantity Limited only by memory size
Storage Structure in DB, 16 bytes per timer
Counters Type IEC
Quantity Limited only by memory size
Storage Structure in DB, size dependent upon count type

e Sint, USInt: 3 bytes
Int, UInt: 6 bytes
Dint, UDInt: 12 bytes

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

25

Product overview

1.2 Expansion capability of the CPU

1.2 Expansion capability of the CPU
The S7-1200 family provides a variety of modules and plug-in boards for expanding the
capabilities of the CPU with additional 1/0 or other communication protocols. For detailed
information about a specific module, see the technical specifications|(Page 829).
©) Communication module (CM or communication processor (CP)
® cpPu
® Signal board (SB), communication board (CB), or Battery Board (BB)
@ signal module (SM)
Table 1-3 Digital signal modules and signal boards
Type Input only Output only Combination In/Out
® digital SB e 4x24VDCIn, e 4x24VDCOut,200kH |e 2x24VDC In/2 x 24 VDC Out
200 kHz z e 2x24VDC In/2 x 24 VDC Out,
e 4x5VDC In, e 4x5VDC Out, 200 kHz
200 kHz 200 kHz e 2x5VDC In/2x5VDC Out,
200 kHz
@ digital SM e 8x24VDCIn e 8x24VDC Out e 8x24VDC In/8 x 24 VDC Out
e 8 xRelay Out e 8x24VDC In/8 x Relay Out
e 8 xRelay Out e 8x120/230 VAC In/8 x Relay Out
(Changeover)
e 16x24VDC In e 16 x24 VDC Out e 16 x24VDC In/16 x 24 VDC Out
e 16 x Relay Out e 16 x24 VDC In/16 x Relay Out
S7-1200 Programmable controller
26 System Manual, 03/2014, A5E02486680-AG

Product overview

1.2 Expansion capability of the CPU

Table 1-4 Analog signal modules and signal boards
Type Input only Output only Combination In/Out
(® analogSB | * 1 x 12 bit Analog In ¢ 1 x Analog Out -
e 1x16 bit RTD
e 1 x 16 bit Thermocouple
® analog SM e 4 xAnalogIn e 2 x Analog Out e 4 x Analog In/2 x Analog Out
e 4 x Analog In x 16 bit e 4 x Analog Out
e 8 xAnalog In
e Thermocouple:
- 4x16bitTC
- 8x16bitTC
e RTD:
- 4x16 bit RTD
- 8x 16 bit RTD
Table 1-5 Communication interfaces
Module Type Description
(D Communication module (CM) RS232 Full-duplex
RS422/485 Full-duplex (RS422)
Half-duplex (RS485)
PROFIBUS Master DPV1
PROFIBUS Slave DPV1
AS-i Master (CM 1243-2) AS-Interface
(® Communication processor (CP) Modem connectivity GPRS
(® Communication board (CB) RS485 Half-duplex
TeleService! TS Adapter IE Basic Connection to CPU
TS Adapter GSM GSM/GPRS
TS Adapter Modem Modem
TS Adapter ISDN ISDN
TS Adapter RS232 RS232

' The TS Adapter IE Basic allows you to connect various communication interfaces to the PROFINET port of the CPU
using an Ethernet cable. You can install up to 3 TS adapter modules onto the TS Adapter |IE Basic.

Table 1- 6 Technology modules
Module Type Description
@ 10 Link SM 1278 4xIO-Link Master Supports 4 10 link slaves

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

27

Product overview

1.2 Expansion capability of the CPU

Table 1-7 Other boards

Module Description
® Battery board Plugs into expansion board interface on front of CPU. Provides long term
backup of realtime clock

S7-1200 Programmable controller
28 System Manual, 03/2014, A5E02486680-AG

Product overview

1.3 S7-1200 modules

Table 1-8 S7-1200 expansion modules

1.3 S7-1200 modules

Type of module

Description

to the CPU, such as for
PROFIBUS or RS232/RS485
connectivity (for PtP, Modbus or
USS), or the AS-i master. A CP
provides capabilities for other types
of communication, such as to
connect the CPU over a GPRS
network.

e The CPU supports up to 3 CMs
or CPs

e Each CM or CP connects to the
left side of the CPU (or to the
left side of another CM or CP)

The CPU supports one plug-in O) Status LEDs on
expansion board: the SB
e A signal board (SB) provides ® | Removable user
additional 1/0O for your CPU. wiring connector
The SB connects on the front of
the CPU.
e A communication board (CB)
allows you to add another
communication port to your
CPU.
e A battery board (BB) allows you
to provide long term backup of
the realtime clock.
Signal modules (SMs) add (@ | Status LEDs
additional functionality to the CPU.
SMs connect to the right side of the @) ijs connector
CPU. slide tab
« Diqital /O ® Removable user
g wiring connector
e Analog I/O
e RTD and thermocouple
e SM 1278 10-Link Master
Communication modules (CMs) @ Status LEDs
and communications processors —
(CPs) add communication options @ | Communication

connector

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

29

Product overview

1.4 New features

1.4 New features

The following features are new in this release:

30

The S7-1200 supports new Organization Blocks (OBs) (Page|85) with differences in
priority levels and interrupts|(Page 94).

The|Web server|(Page 601) now supports the display of standard Web pages and user-
defined Web pages from a mobile device as well as from a PC. The standard Web pages
are available in English, German, French, Spanish, Italian, and Simplified Chinese with
this release.

The|"Download in Run"|(Page|803) feature now supports a maximum of twenty blocks
that you can download in RUN mode. You can also add tags and modify tags in existing
data blocks and function blocks and download the modified data blocks in RUN mode.

The online and diagnostic tools of STEP 7 provide the means to perform alfirmware
update (Page|791) of your CPU, signal modules, communication modules, and attached
signal or communication board.

STEP 7 includes altrace and logic analyzer function|(Page|813) that you can use with the
V4.0 S7-1200 CPUs. With this feature, you can configure specific data that you want to
trace and record when the CPU meets a trigger condition that you define. The CPU
stores the recorded data, and STEP 7 provides tools for retrieving and analyzing the
recorded data.

New programming instructions:

— Set tag on signal edge: R_TRIG|(Page 209), F_TRIG (Page|209)
— Write local time: WR_LOC_T (Page 286)

— 8tring maximum length:| MAX_LEN (Page 306)

— Time of day interrupts: SET_TINTL |(Page|337), CAN_TINT (Page|339), ACT_TINT
(Page 339), QRY_TINT (Page|340)

— Process recipes: RecipeExport|(Page 374), Recipelmport (Page|376)

— Address handling:|LOG2GEO (Page 404), RD_ADDR|(Page 406)

— Motion control: MC_WriteParam|(Page 478),|MC_ReadParam|(Page|480)
— Enable / disable password:| ENDIS_PW (Page 259)

HSC|(Page 411) improvements to allow any HSC instruction input or output to be
assigned to any built-in or SB digital input

PTO/PWM (Page|481) improvements to allow any PTO/PWM instruction input or output
to be assigned to any built-in or SB digital output

Enhanced library (Page 177) features, including versioning

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Product overview

1.4 New features

New modules for the S7-1200

New modules expand the power of the S7-1200 CPU and provide the flexibility to meet your
automation needs:

New|/CPU 1217C DC/DC/DC (Page 879) with high-speed differential points

New and improved S7-1200 signal modules. The new signal modules (6ES7 2xx-xxx32-
0XBO0) replace existing signal modules (6ES7 2xx-xxx30-0XB0). The new modules
provide:

— 4-20 mA range added to analog input and output modules
— Wirebreak detection when using 4-20 mA added to analog input modules

— Connector keying to prevent errors when plugging in field wiring connectors added to
modules with relay outputs

— Spare parts compatibility: you can employ the revised module in place of existing
modules without any changes.

New|spare parts|(Page 993) available for use with S7-1200 CPUs
New CPU 1217C Input Simulator|(Page|978) (6ES7 274-1XK30-0XA0)

New SM 1278 4xIO-Link Master|(Page|815) (6ES7 278-4BD32-0XB0) functions as both a
signal module and a communication module, and allows connection of up to 4 IO-Link
slaves (3-wire connection) or 4 standard actuators or standard encoders

New S7-1200 Potentiometer module (Page 980) (6ES7 274-1XA30-0XA0)

New CM CANopen for S7-1200 (Page|983) is a plug-in module that allows you to connect
CANopen devices to the S7-1200 PLC. It can be configured to be both master or slave.

Exchanging your V3.0 CPU for a V4.0 CPU

If you are replacing an S7-1200 V3.0 CPU with an S7-1200 V4.0 CPU, take note of the
documented|differences (Page 995) in the versions.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 31

Product overview

1.5 Basic HMI panels

1.5 Basic HMI panels

The SIMATIC HMI Basic Panels provide touch-screen devices for basic operator control and
monitoring tasks. All panels have a protection rating for IP65 and have CE, UL, cULus, and
NEMA 4x certification.

Basic HMI Panel Description Technical data

3.6" membrane keyboard with 10 freely o 250 tags
configurable tactile keys

e Mono (STN, black/white)
e 87 mmx 31 mm (3.6")

e Backlight color programmed (white,
green, yellow, or red)

e Resolution: 240 x 80

e 50 process screens
e 200 alarms
e 25 curves
40 KB recipe memory
e 5 recipes, 20 data records, 20 entries

4" touch screen with 4 tactile keys e 250 tags
e Mono (STN, gray scale) e 50 process screens
e 76.79 mm x 57.59 mm (3.8") e 200 alarms

Portrait or landscape e 25 curves

e Resolution: 320 x 240

e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

6" touch screen with 6 tactile keys e 500 tags

Color (TFT, 256 colors) or Mono e 50 process screens
(STN, gray scales)

e 1152 mm x 86.4 mm (5.7")
Portrait or landscape

e Resolution: 320 x 240

e 200 alarms
e 25 curves
e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

10" touch screen with 8 tactile keys e 500 tags
e Color (TFT, 256 colors) e 50 process screens
e 211.2mmx 158.4 mm (10.4") e 200 alarms
e Resolution: 640 x 480 e 25 curves
e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

KTP 1000 Basic PN

S7-1200 Programmable controller
32 System Manual, 03/2014, A5E02486680-AG

Product overview

1.5 Basic HMI panels

Basic HMI Panel Description

Technical data

15" touch screen

e Color (TFT, 256 colors)

e 304.1 mm x 228.1 mm (15.1")
e Resolution: 1024 x 768

L
v

~ < -

'

" TP 1500 Basic PN

e 500 tags

e 50 process screens
e 200 alarms

e 25curves

¢ 40 KB recipe memory (integrated
flash)
e 5recipes, 20 data records, 20 entries

See also

Customer support (http://www.siemens.com/automation/)

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

33

http://www.siemens.com/automation/

Product overview

1.5 Basic HMI panels

S7-1200 Programmable controller
34 System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software 2

STEP 7 provides a user-friendly environment to develop, edit, and monitor the logic needed
to control your application, including the tools for managing and configuring all of the devices
in your project, such as controllers and HMI devices. To help you find the information you
need, STEP 7 provides an extensive online help system.

STEP 7 provides standard programming languages for convenience and efficiency in
developing the control program for your application.

® LAD (ladder logic) (Page|180) is a graphical programming language. The representation
is based on circuit diagrams.

e FBD (Function Block Diagram) (Page|181) is a programming language that is based on
the graphical logic symbols used in Boolean algebra.

® SCL (structured control language)|(Page 181) is a text-based, high-level programming
language.

When you create a code block, you select the programming language to be used by that
block. Your user program can utilize code blocks created in any or all of the programming
languages.

Note

STEP 7 is the programming and configuration software component of the TIA Portal. The
TIA Portal, in addition to STEP 7, also includes WinCC for designing and executing runtime
process visualization, and includes online help for WinCC as well as STEP 7.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 35

STEP 7 programming software

2.1 System requirements

2.1 System requirements

To install STEP 7, you must log in with Administrator privileges.

Table 2-1 System requirements

Hardware/software Requirements

Processor type Pentium M, 1.6 GHz or similar

RAM 1GB

Available hard disk space 2 GB on system drive C:\

Operating systems e Windows 7 Home Premium or higher (STEP 7 Basic only,

not supported for STEP 7 Professional)
e Windows 7 or higher (Professional, Enterprise, Ultimate)

Graphics card 32 MB RAM
24-bit color depth
Screen resolution 1024 x 768
Network 20 Mbit/s Ethernet or faster
Optical drive DVD-ROM

S7-1200 Programmable controller
36 System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software

2.2 Different views to make the work easier

2.2 Different views to make the work easier

STEP 7 provides a user-friendly environment to develop controller logic, configure HMI
visualization, and setup network communication. To help increase your productivity, STEP 7
provides two different views of the project: a task-oriented set of portals that are organized
on the functionality of the tools (Portal view), or a project-oriented view of the elements within
the project (Project view). Choose which view helps you work most efficiently. With a single
click, you can toggle between the Portal view and the Project view.

Portal view
@ Portals for the different tasks
® Tasks for the selected portal

® Selection panel for the selected
action

@ Changes to the Project view

Project view
@ Menus and toolbar

® Project navigator
® Work area
@ Task cards

® Inspector window

® Changes to the Portal view
@ Editor bar

With all of these components in one place, you have easy access to every aspect of your
project. For example, the inspector window shows the properties and information for the
object that you have selected in the work area. As you select different objects, the inspector
window displays the properties that you can configure. The inspector window includes tabs
that allow you to see diagnostic information and other messages.

By showing all of the editors that are open, the editor bar helps you work more quickly and
efficiently. To toggle between the open editors, simply click the different editor. You can also
arrange two editors to appear together, arranged either vertically or horizontally. This feature
allows you to drag and drop between editors.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 37

STEP 7 programming software

2.3 Easy-to-use tools

2.3 Easy-to-use tools

2.3.1 Inserting instructions into your user program

STEP 7 provides task cards that contain the instructions for your + | Basic Instructions
program. The instructions are grouped according to function. Name

To create your program, you drag instructions from the task card

onto a network.

¥] General

b] Bitlogic operations

¥ &) Timer operstions

b +1] Countér oparations

b <] Comparator operations
b | %] Math functions

b = Move operations

b =y Conversion operations
P 3 Program control operations
¥ 5 Word logic operations
¥ i shift and rotate

23.2 Accessing instructions from the "Favorites" toolbar

STEP 7 provides a "Favorites" toolbar to give you quick access to the instructions that you
frequently use. Simply click the icon for the instruction to insert it into your network!

A = =[5 8= eo¢. e —~ (Forthe "Favorites” in the instruction tree, double-

=4k =i == {7 = =T [%

~ | Favorites

4k A+ = 7 = T

g

~ | Basic instructions

Mame

b] General

¥ i) Bitlogic operstions
- | @) Timer operations

E
& TOM
& TOF

3 TONR

H) R~

)| =(ToM)-

)] =(TOF)-

A =(TONR}-

)| (M-

A -(FT-

» [+1] Counter operations

» (<] Comparator operations

38

PR PR b B

click the icon.)

You can easily customize the v | Favorites
"Favorites" by adding new :
instructions.

Simply drag and drop an
instruction to the "Favorites".

dF =i =0= {7 = =

Tk

~ | Basic instructions
The instruction is now just a click name C

aWay! b || General A |

b | Bit logic operations

w [@] Timer operations

=T i
&/ Ton ¢
&/ TOF C
2 TONR |
H)] TP

)] {TON)-
K] ~{TOF)-
H)) ~(TONR)=
H)] (AT~

) -{FT-

¥ |41] Counter operations

=T e A iR A

¢ [€] Comparator operations w

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software

2.3 Easy-to-use tools

2.3.3 Creating a complex equation with a simple instruction

The Calculate instruction lets you create a math function that operates on multiple input
parameters to produce the result, according to the equation that you define.

] General In the Basic instruction tree, expand the Math functions folder.
L] Bit logic operations Double-click the Calculate instruction to insert the instruction
[i5] Timer operatians into your user program.

'_I_1| Counter operations

[€] comparatar operations
[£] Math functions
| CALCULATE

{4 v v v w w

£1 Aoo

The unconfigured Calculate
= instruction provides two input
parameters and an output
parameter.

out

Click the "???" and select the data types for the input and output

CALCLILATE .
o Real - — parameters. (The input and output parameters must all be the same
- e MO =
i data type.)
- Gealg o For this example, select the "Real" data type.
N2 9|,,[
WDint
Eyie
Word
Do rd

Click the "Edit equation” icon to enter the equation.

Edit "Calculate™ instruction [5¢
ouT = [
Example:

(INT &+ INZ) ™ (INT =INZ)
Possible instructions for Real.
+.= ", [, Abs, Meqg, Exp, ™", Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan, Sqr, Sqrt, Round, Ceil, Floor, Trunc

OK Cancel

For this example, enter the following equation for scaling a raw analog value. (The "In" and
"Out" designations correspond to the parameters of the Calculate instruction.)

Out vae = ((Out high = Out Iow) / (In high = In Iow)) * (In value = IN Iow) + Out 1ow
out = ((in4 - in5) / (in2 - in3)) * (in1 - in3) + in5
Where: Out value (Out) Scaled output value

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 39

STEP 7 programming software

2.3 Easy-to-use tools

IN value
In high
IN 1ow
Out high
Out 1ow

(in1)
(in2)
(in3)
(in4)
(in5)

Analog input value

Upper limit for the scaled input value
Lower limit for the scaled input value
Upper limit for the scaled output value
Lower limit for the scaled output value

In the "Edit Calculate" box, enter the equation with the parameter names:
OUT = ((in4 - in5) / (in2 - in3)) * (in1 - in3) +in5

Edit "Calculate™ instruction

Example
(IR & 123 ™ (I =12

Pozsible instructions for Real

+.= " 0 Abs, Heg, Exp. **. Frac, Ln. Sin, ASin. Cos, ACos. Tan, ATan, Sqr. Sqrt. Round, Ceil, Floor. Trunc

ouT = j-un-l-m:'-- In2-n3 " onl -in% «ns

Ok 1 cancel |

When you click "OK", the Calculate

instruction creates the inputs

required for the instruction.

Enter the tag names for the values
that correspond to the parameters.

40

D\L:‘::IATE EI

EM ENO

OUT := (ind-inS}0n2-in3)...

N1 ourt
Iz
NG
Inid
ING 4
Cal CULATE —

Res|

EN ENO

OUT == (ind = in5)/ {im2 =i...

Relwl D26 Relw1 D2

“In_walug” = N1 OUT = "0ur_valus”
%MD 30
“ln_high" = IN2
WO 34
"Im_low" = IN3

LMD 3EE
“Out_high" — N4

A n e,
“Out_low” — N5 35

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software
2.3 Easy-to-use tools

234 Adding inputs or outputs to a LAD or FBD instruction

Mzse Some of the instructions allow you to create additional inputs or outputs.

e To add an input or output, click the "Create" icon or right-click on an input stub for one of
the existing IN or OUT parameters and select the "Insert input" command.

® To remove an input or output, right-click on the stub for one of the existing IN or OUT
parameters (when there are more than the original two inputs) and select the "Delete"
command.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 41

STEP 7 programming software

2.3 Easy-to-use tools

2.3.5

2.3.6

42

Expandable instructions

Some of the more complex instructions are expandable, displaying only the key inputs and
outputs. To display all the inputs and outputs, click the arrow at the bottom of the instruction.

%DE3
"PID_3Step_
FID_35tep
= EHN
Setpoint
Input
Input_FER
= Actuator_H
— Actuator_L
Feedback

Feedback_FER

e

EMO =

Cutput_LF —
Qutput_DKN =
Cutput_PER

State
Errar =

ErrarBits

"PID_3Step_TO"
FID_35tep ia !P{

—EM EMI

Setpoint

Input

Input_PER
— Atuator_H Cutput_LIP =
= Actuator L Output DR =

Feedback Output_PER

Feedback_PER

— Reset —

State
Error =
ErrarBits

Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID
and motion) have created multiple released versions for these instructions. To help ensure
compatibility and migration with older projects, STEP 7 allows you to choose which version
of instruction to insert into your user program.

Options

_ ~ [Jmopsus

2 MB_COMM_LOAD

2 MB_MASTER
2 MB_SLAVE

i

3
3
=
1

. [z

&

£
g
£=1

Click the icon on the instruction tree task card to enable the
headers and columns of the instruction tree.

To change the version of the instruction, select the
appropriate version from the drop-down list.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software

2.3 Easy-to-use tools

2.3.7 Modifying the appearance and configuration of STEP 7

* General

Gerwral

¥ Herdvar

 FLC pragramming

¥ Simulation
Cmine & Diapnranics

¥ izuakration

General wettings
Usercase | AITHE
Utier isbedace lasguage. | fnglih I
Meemasic

rtematianal

Fhavw B of secently siad
proeas (58] Elemens

Shairw ol st 55 age wisdiws Beset to debauit
= Open carcade auamaticaly in vt
Laymut

I Laad mom rese it prajeet diireg Sbanti
Bezen oyt eden o delauil

17 Mestrenenr e
i@ Ponel e) Projemvies

2.3.8 Dragging and dropping between editors

You can select a variety of settings,
such as the appearance of the
interface, language, or the folder for
saving your work.

Select the "Settings" command from
the "Options" menu to change these
settings.

& Nt To help you perform tasks quickly and easily,

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

= STEP 7 allows you to drag and drop elements
from one editor to another. For example, you
can drag an input from the CPU to the address
of an instruction in your user program.

You must zoom in at least 200% to select the
inputs or outputs of the CPU.

Notice that the tag names are displayed not
only in the PLC tag table, but also are
displayed on the CPU.

43

STEP 7 programming software

2.3 Easy-to-use tools

To display two editors at one time, use the Window Help =
"Split editor" menu commands or buttons in Coseall Curle Shifts Fa

Minirnize all
the toolbar. :

Hest editor Cul+Fé

Prévaous editor Crrl+ Shilt+Fé

| Splicediter spaceverticaly

: Split ediror space horzontally Shift+F3

To toggle between the editors that have been opened, click the icons in the editor bar.

RO - =]

239 Changing the operating mode of the CPU
The CPU does not have a physical switch for changing the operating mode (STOP or RUN).

Use the "Start CPU" and "Stop CPU" toolbar buttons to change the operating

mode of the CPU. mm®

When you configure the CPU in the device configuration, you configure the start-up behavior
in the properties of the CPU.

The "Online and diagnostics" portal also provides an operator panel for changing the
operating mode of the online CPU. To use the CPU operator panel, you must be connected
online to the CPU. The "Online tools" task card displays an operator panel that shows the
operating mode of the online CPU. The operator panel also allows you to change the
operating mode of the online CPU.

 CPU operator panel Use the button on the operator panel to change the operating mode
PLE_1 [€FU 1214€ 0GDEDC] (STOP or RUN). The operator panel also provides an MRES button for
s i resetting the memory.
ERRCR | STOP
MAINT | MRES

The color of the RUN/STOP indicator shows the current operating mode of the CPU. Yellow
indicates STOP mode, and green indicates RUN mode.

Refer to Operating Modes of the CPU in the S7-1200 System Manual (Page|81) for
configuring the default operating mode on power up.

S7-1200 Programmable controller
44 System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software

2.3 Easy-to-use tools

2.3.10 Changing the call type for a DB
HIEC_Timer_0_ STEP 7 allows you to easily create or change the
ki association of a DB for an instruction or an FB that is in
an FB.

L] =

i ¢ You can switch the association between different DBs.
- il T e You can switch the association between a single-
A t instance DB and a multi-instance DB.
X Delete et e You can create an instance DB (if an instance DB is

Goto]

Cross-reference informeation

Change esll type.

= W Insert nerwork shiftaF2 =
[Insertemptybox Shift+FS

=i INEert comment

missing or not available).

You can access the "Change call type" command either
by right-clicking the instruction or FB in the program
editor or by selecting the "Block call" command from the
"Options" menu.

The "Call options" dialog allows

Data block you to select a single-instance

EB Name EC_Timer 0_DB| = or multi-instance DB. You can
Nurnber also select specific DBs from a

Single IEC_Timer_0_DB_1 k . :

instance Manu drop-down list of available DBs.

! The called function block saves its data in its own instance

ﬁﬂ data block.

Multi

instance

More...

—_—
0K Cancel

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

45

STEP 7 programming software

2.3 Easy-to-use tools

2.3.1

46

Temporarily disconnecting devices from a network

You can disconnect individual network devices from the subnet. Because the configuration of

the device is not removed from the project, you can easily restore the connection to the
device.

PLC_T 10-Device_1 10-Device_2
CPU1214C IM 151-3PN 1M 151-3FN
PLC_1 PLC_1
PNAE_2

Right-click the interface port of the network

B device and select the "Disconnect from
i . subnet" command from the context menu.
— Assign to new subnet

Assign to new 1O contraller
Disconnect from 10 system
’_.| Highlight 10 system

G Properties

STEP 7 reconfigures the network connections, but does not remove the disconnected device
from the project. While the network connection is deleted, the interface addresses are not

changed.

PLC_T 10-Device_1 10-Device_2
CRU1274C IM 151-5PN 1M 151-3FN
RLC Not assigned
PRAE_2

When you download the new network connections, the CPU must be set to STOP mode.

To reconnect the device, simply create a new network connection to the port of the device.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

STEP 7 programming software

2.3 Easy-to-use tools

2.3.12 Virtual unplugging of devices from the configuration

& Topalogyview | Networkview |If Deviceview | STEP 7 provides a storage area for
dr Ao =] &) & H &t = "unplugged" modules. You can drag a
- s T g “ module from the rack to save the
= configuration of that module. These
- unplugged modules are saved with your
project, allowing you to reinsert the
module in the future without having to

reconfigure the parameters.

One use of this feature is for temporary

maintenance. Consider a scenario where

you might be waiting for a replacement
[# Topology view | Networkview |If Deviceview | Module and plan to temporarily use a

dr (o EIEPEIET =] different module as a short-term

' replacement. You could drag the

configured module from the rack to the

"Unplugged modules" and then insert the

temporary module.

Modules not
plugged in

B

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 47

STEP 7 programming software

2.3 Easy-to-use tools

S7-1200 Programmable controller
48 System Manual, 03/2014, A5E02486680-AG

Installation 3

3.1 Guidelines for installing S7-1200 devices

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either
on a panel or on a standard rail, and you can orient the S7-1200 either horizontally or
vertically. The small size of the S7-1200 allows you to make efficient use of space.

A WARNING

Installation requirements for S7-1200 PLCs

The SIMATIC S7-1200 PLCs are Open Type Controllers. It is required that you install the
S7-1200 in a housing, cabinet, or electric control room. Entry to the housing, cabinet, or
electric control room should be limited to authorized personnel.

Failure to follow these installation requirements could result in death, severe personal injury
and/or property damage.

Always follow these requirements when installing S7-1200 PLCs.

Separate the S7-1200 devices from heat, high voltage, and electrical noise

As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such
as the S7-1200.

When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing
the exposure to a high-temperature environment will extend the operating life of any
electronic device.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 49

Installation

3.1 Guidelines for installing S7-1200 devices

Provide adequate clearance for cooling and wiring

S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25
mm of depth between the front of the modules and the inside of the enclosure.

A\ caution

For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C.

Orient a vertically mounted S7-1200 system as shown in the following figure.

Ensure that the S7-1200 system is mounted correctly.

When planning your layout for the S7-1200 system, allow enough clearance for the wiring
and communications cable connections.

. errres sy e ®

m
@ Side view ® Vertical installation
® Horizontal installation ® Clearance area

S7-1200 Programmable controller
50 System Manual, 03/2014, A5E02486680-AG

Installation
3.2 Power budget

3.2 Power budget

Your CPU has an internal power supply that provides power for the CPU, the signal
modules, signal board and communication modules and for other 24 VDC user power
requirements.

Refer to the|technical specifications (Page 829) for information about the 5 VDC logic budget
supplied by your CPU and the 5 VDC power requirements of the signal modules, signal
boards, and communication modules. Refer to the "Calculating a power budget" (Page 985)
to determine how much power (or current) the CPU can provide for your configuration.

The CPU provides a 24 VDC sensor supply that can supply 24 VVDC for input points, for relay
coil power on the signal modules, or for other requirements. If your 24 VDC power
requirements exceed the budget of the sensor supply, then you must add an external

24 VDC power supply to your system. Refer to the technical specifications|(Page 829) for the
24 VDC sensor supply power budget for your particular CPU.

Note

The CM 1243-5 (PROFIBUS master module) requires power from the 24 VDC sensor supply
of the CPU.

If you require an external 24 VDC power supply, ensure that the power supply is not
connected in parallel with the sensor supply of the CPU. For improved electrical noise
protection, it is recommended that the commons (M) of the different power supplies be
connected.

A WARNING

Connecting an external 24 VDC power supply in parallel with the 24 VDC sensor supply
can result in a conflict between the two supplies as each seeks to establish its own
preferred output voltage level

The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.

The DC sensor supply and any external power supply should provide power to different
points.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 51

Installation

3.2 Power budget

52

Some of the 24 VDC power input ports in the S7-1200 system are interconnected, with a
common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 VDC power
supply of the CPU, the power input for the relay coil of an SM, or the power supply for a non-
isolated analog input. All non-isolated M terminals must connect to the same external
reference potential.

A WArRNING

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.

Failure to comply with these guidelines could cause damage or unpredictable operation
which could result in death or severe personal injury and/or property damage.

Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the

same reference potential.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

3.3 Installation and removal procedures

3.3 Installation and removal procedures

3.3.1 Mounting dimensions for the S7-1200 devices

CPU 1211C, CPU 1212C, CPU 1214C
(measurements in mm)

» B¢ [« B — B [« » B |&
4 | | | |
v | | | |

116

4“— 75 —>»

CPU 1215C, CPU 1217C |

I |
4—01-»:4— c2 —>|l403+

4 A .

* >

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 53

Installation

3.3 Installation and removal procedures

Table 3- 1 Mounting dimensions (mm)
S7-1200 Devices Width A (mm) Width B (mm) Width C (mm)
CPU CPU 1211C and CPU 1212C 90 45 --
CPU 1214C 110 55 -
CPU 1215C 130 65 (top) Bottom:
C1:325
C2: 65
C3: 325
CPU 1217C 150 75 Bottom:
C1:37.5
C2:75
C3:37.5
Signal modules Digital 8 and 16 point 45 22,5 --
Analog 2, 4, and 8 point
Thermocouple 4 and 8 point
RTD 4 point
SM 1278 10 Link-Master
Digital DQ 8 x Relay (Changeover) 70 35 --
Analog 16 point 70 35 --
RTD 8 point
Communication CM 1241 RS232, and 30 15 -
interfaces CM 1241 RS422/485
CM 1243-5 PROFIBUS master and
CM 1242-5 PROFIBUS slave
CM 1242-2 AS-i Master
CP 1242-7 GPRS
TS (Teleservice) Adapter |IE Basic!
TS Adapter 30 15 --
TS Module 30 15 --

1 Before installing the TS (Teleservice) Adapter IE Basic, you must first connect the TS Adapter and a TS module. The
total width ("width A") is 60 mm.

Each CPU, SM, CM, and CP supports mounting on either a DIN rail or on a panel. Use the
DIN rail clips on the module to secure the device on the rail. These clips also snap into an
extended position to provide screw mounting positions to mount the unit directly on a panel.
The interior dimension of the hole for the DIN clips on the device is 4.3 mm.

A 25 mm thermal zone must be provided above and below the unit for free air circulation.

S7-1200 Programmable controller
54 System Manual, 03/2014, A5E02486680-AG

Installation
3.3 Installation and removal procedures

Installing and removing the S7-1200 devices

The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are
provided to secure the device on the DIN rail. The clips also snap into an extended position
to provide a screw mounting position for panel-mounting the unit.

@ DIN rail installation ® Panelinstallation
® DIN rail clip in latched position ©) Clip in extended position for panel mounting
Before you install or remove any electrical device, ensure that the power to that equipment

has been turned off. Also, ensure that the power to any related equipment has been turned
off.

A WARNING

Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage
due to electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

A WARNING

Incorrect installation of an S7-1200 module may cause the program in the S7-1200 to
function unpredictably.

Failure to replace an S7-1200 device with the same model, orientation, or order could result
in death, severe personal injury and/or property damage due to unexpected equipment
operation.

Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 55

Installation

3.3 Installation and removal procedures

3.3.2

56

A WArRNING

Do not disconnect equipment when a flammable or combustible atmosphere is present.

Disconnection of equipment when a flammable or combustible atmosphere is present may
cause a fire or explosion which could result in death, serious injury and/or property
damage.

Always follow appropriate safety precautions when a flammable or combustible atmosphere
is present.

Note
Electrostatic discharge can damage the device or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap whenever
you handle the device.

Installing and removing the CPU

You can install the CPU on a panel or on a DIN rail.

Note

Attach any communication modules to the CPU and install the assembly as a unit. Install
signal modules separately after the CPU has been installed.

Consider the following when installing the units on the DIN rail or on a panel:

e For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position
and that the lower DIN rail clip is in the extended position for the CPU and attached CMs.

e After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

® For panel mounting, make sure the DIN rail clips are pushed to the extended position.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

Table 3- 2

3.3 Installation and removal procedures

To install the CPU on a panel, follow these steps:

1. Locate, drill, and tap the mounting holes (M4), using the dimensions shown in table,
Mounting dimensions (mm)|(Page|53).

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.

3. Extend the mounting clips from the module. Make sure the DIN rail clips on the top and
bottom of the CPU are in the extended position.

4. Secure the module to the panel, using a Pan Head M4 screw with spring and flat washer.
Do not use a flat head screw.

Note

The type of screw will be determined by the material upon which it is mounted. You
should apply appropriate torque until the spring washer becomes flat. Avoid applying
excessive torque to the mounting screws. Do not use a flat head screw.

Note

Using DIN rail stops could be helpful if your CPU is in an environment with high vibration
potential or if the CPU has been installed vertically. Use an end bracket (8WA1 808 or
8WA1 805) on the DIN rail to ensure that the modules remain connected. If your system
is in a high-vibration environment, then panel-mounting the CPU will provide a greater
level of vibration protection.

Installing the CPU on a DIN rail

Task

Procedure

1. Install the DIN rail. Secure the rail to the mounting panel every 75 mm.

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

3. Hook the CPU over the top of the DIN rail.

4. Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the
rail.

5. Rotate the CPU down into position on the rail.

6. Push in the clips to latch the CPU to the rail.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 57

Installation

3.3 Installation and removal procedures

Table 3- 3

Removing the CPU from a DIN rail

Task

Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Disconnect the 1/0 connectors, wiring, and cables from
the CPU|(Page 63).

3. Remove the CPU and any attached communication
modules as a unit. All signal modules should remain
installed.

4. If an SM is connected to the CPU, retract the bus

connector:

— Place a screwdriver beside the tab on the top of the
signal module.

— Press down to disengage the connector from the
CPU.

— Slide the tab fully to the right.
5. Remove the CPU:

— Pull out the DIN rail clip to release the CPU from the
rail.

— Rotate the CPU up and off the rail, and remove the
CPU from the system.

3.3.3 Installing and removing an SB, CB, or BB
Table 3-4 Installing an SB, CB, or BB 1297
Task Procedure

1.

Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

Remove the top and bottom terminal block covers from the CPU.

Place a screwdriver into the slot on top of the CPU at the rear of the
cover.

Gently pry the cover up and remove it from the CPU.

Place the module straight down into its mounting position in the top
of the CPU.

Firmly press the module into position until it snaps into place.
Replace the terminal block covers.

58

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation
3.3 Installation and removal procedures

Table 3-5 Removing an SB, CB or BB 1297

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

Remove the top and bottom terminal block covers from the CPU.
Place a screwdriver into the slot on top of the module.
Gently pry the module up to disengage it from the CPU.

Remove the module straight up from its mounting position in the top
of the CPU.

Replace the cover onto the CPU.

o~ wN

N o

. Replace the terminal block covers.

Installing or replacing the battery in the BB 1297 battery board

The BB 1297 requires battery type CR1025. The battery is not included with the BB 1297
and must be purchased. To install or replace the battery, follow these steps:

1. In the BB 1297, install a new battery with the positive side of the battery on top, and the
negative side next to the printed wiring board.

2. The BB 1297 is ready to be installed in the CPU. Follow the installation directions above
to install the BB 1297.

To replace the battery in the BB 1297:
1. Remove the BB 1297 from the CPU following the removal directions above.

2. Carefully remove the old battery using a small screwdriver. Push the battery out from
under the clip.

3. Install a new CR1025 replacement battery with the positive side of the battery on top and
the negative side next to the printed wiring board.

4. Re-install the BB 1297 battery board following the installation directions above.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 59

Installation

3.3 Installation and removal procedures

3.34 Installing and removing an SM
Table 3-6 Installing an SM
Task Procedure

Install your SM after installing the CPU.
1.

3.

Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

Remove the cover for the connector from the right side of the
CPU:

— Insert a screwdriver into the slot above the cover.
— Gently pry the cover out at its top and remove the cover.
Retain the cover for reuse.

Connect the SM to the CPU:

Position the SM beside the CPU.
Hook the SM over the top of the DIN rail.

Pull out the bottom DIN rail clip to allow the SM to fit over the
rail.

Rotate the SM down into position beside the CPU and push
the bottom clip in to latch the SM onto the rail.

Extending the bus connector makes both mechanical and electrical connections for

the SM.

1. Place a screwdriver beside the tab on the top of the SM.
2. Slide the tab fully to the left to extend the bus connector into the CPU.
Follow the same procedure to install a signal module to a signal module.

60

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

Table 3-7 Removing an SM

3.3 Installation and removal procedures

Task

Procedure

You can remove any SM without removing the CPU or other SMs in place.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from
electrical power.

2. Remove the /O connectors and wiring|/from the SM|(Page 63).
3. Retract the bus connector.

— Place a screwdriver beside the tab on the top of the SM.

— Press down to disengage the connector from the CPU.

— Slide the tab fully to the right.
If there is another SM to the right, repeat this procedure for that SM.

Remove the SM:

1. Pull out the bottom DIN rail clip to release the SM from the rail.

2. Rotate the SM up and off the rail. Remove the SM from the system.

3. If required, cover the bus connector on the CPU to avoid contamination.

Follow the same procedure to remove a signal module from a signal module.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

61

Installation
3.3 Installation and removal procedures

3.3.5 Installing and removing a CM or CP

Attach any communication modules to the CPU and install the assembly as a unit, as shown
in/Installing and removing the CPU (Page 56).

Table 3-8 Installing a CM or CP

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Attach the CM to the CPU before installing the assembly
as a unit to the DIN rail or panel.

3. Remove the bus cover from the left side of the CPU:
— Insert a screwdriver into the slot above the bus cover.

— Gently pry out the cover at its top.
4. Remove the bus cover. Retain the cover for reuse.
5. Connect the CM or CP to the CPU:

— Align the bus connector and the posts of the CM with
the holes of the CPU

— Firmly press the units together until the posts snap into
place.

6. Install the CPU and CP on a DIN rail or panel.

Table 3- 9 Removing a CM or CP

Task Procedure
Remove the CPU and CM as a unit from the DIN rail or panel.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.
2. Remove the I/O connectors and all wiring and cables from the CPU and CMs.

3. For DIN rail mounting, move the lower DIN rail clips on the CPU and CMs to the
extended position.

4. Remove the CPU and CMs from the DIN rail or panel.
5. Grasp the CPU and CMs firmly and pull apart.

S7-1200 Programmable controller
62 System Manual, 03/2014, A5E02486680-AG

Installation
3.3 Installation and removal procedures

NOTICE

Separate modules without using a tool.

Do not use a tool to separate the modules because this can damage the units.

3.3.6 Removing and reinstalling the S7-1200 terminal block connector

The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy.

Table 3- 10 Removing the connector

Task Procedure

Prepare the system for terminal block connector removal by removing the power from the
CPU and opening the cover above the connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.
2. Inspect the top of the connector and locate the slot for the tip of the screwdriver.

3. Insert a screwdriver into the slot.
4

. Gently pry the top of the connector away from the CPU. The connector will release with a
snhap.

5. Grasp the connector and remove it from the CPU.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 63

Installation
3.3 Installation and removal procedures

Table 3- 11 Installing the connector

Task Procedure

Prepare the components for terminal block installation by removing power from the CPU and
opening the cover for connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.
2. Align the connector with the pins on the unit.
3. Align the wiring edge of the connector inside the rim of the connector base.

4. Press firmly down and rotate the connector until it snaps into place.
Check carefully to ensure that the connector is properly aligned and fully engaged.

3.3.7 Installing and removing the expansion cable

The S7-1200 expansion cable provides additional flexibility in configuring the layout of your
S7-1200 system. Only one expansion cable is allowed per CPU system. You install the
expansion cable either between the CPU and the first SM, or between any two SMs.

Table 3- 12 Installing and removing the male connector of the expansion cable

Task Procedure

To install the male connector:
1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Push the connector into the bus connector on the right side of the
signal module or CPU.

To remove the male connector:
1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Pull out the male connector to release it from the signal module or
CPU.

S7-1200 Programmable controller
64 System Manual, 03/2014, A5E02486680-AG

Installation
3.3 Installation and removal procedures

Table 3- 13 Installing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment
are disconnected from electrical power.

2. Place the female connector to the bus connector on
the left side of the signal module.

3. Slip the hook extension of the female connector
into the housing at the bus connector and press
down slightly to engage the hook.

4. Lock the connector into place:

— Place a screwdriver beside the tab on the top of
the signal module.
— Slide the tab fully to the left.
To engage the connector, you must slide the connector
tab all the way to the left. The connector tab must be
locked into place.

Table 3- 14 Removing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Unlock the connector:

— Place a screwdriver beside the tab on the top of
the signal module.

— Press down slightly and slide the tab fully to the
right.

3. Lift the connector up slightly to disengage the hook
extension.

4. Remove the female connector.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 65

Installation

3.3 Installation and removal procedures

3.3.8

3.3.8.1

66

Note
Installing the expansion cable in a vibration environment

If the expansion cable is connected to modules that move, or are not firmly fixed, the cable
male end snap-on connection can gradually become loose.

Use a cable tie to fix the male end cable on the DIN-rail (or other place) to provide extra
strain relief.

Avoid using excessive force when you pull the cable during installation. Ensure the cable-
module connection is in the correct position once installation is complete.

TS (TeleService) adapter

Connecting the TeleService adapter

Before installing the TS (TeleService) Adapter IE Basic, you must first connect the
TS Adapter and a TS module.

Available TS modules:
® TS module RS232
e TS module Modem
® TS module GSM
e TS module ISDN

Note

The TS module can be damaged if you touch the contacts of the plug connector @ of the
TS module.

Follow ESD guidelines in order to avoid damaging the TS module through electrostatic
discharge. Before connecting a TS module and TS Adapter, make sure that both are in an
idle state.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

3.3 Installation and removal procedures

[EC

SIMATIC

o
.
TEzEsTRy e R38Ry -!;
FLESERACE ﬁ&\i T SR ‘m u‘l.’-im:!.l'_\inupqn
= 5 4

@ TS module @ Plug connector from the TS module
® TS Adapter ® Cannotbe opened

@ Elements @ Ethernet port

Note

Before connecting a TS module and TS adapter basic unit, ensure that the contact pins @
are not bent.

When connecting, ensure that the male connector and guide elements are positioned
correctly.

Only connect a TS module into the TS adapter. Do not force a connection of the TS adapter
to a different device, such as an S7-1200 CPU. Do not change the mechanical construction
of the connector, and do not remove or damage the guide elements.

3.3.8.2 Installing the SIM card
Locate the SIM card slot on the underside of the TS module GSM.

Note
The SIM card may only be removed or inserted if the TS module GSM is de-energized.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 67

Installation
3.3 Installation and removal procedures

Table 3- 15 Installing the SIM card

Procedure Task

Use a sharp object to press
the eject button of the SIM
card tray (in the direction of
the arrow) and remove the
SIM card tray.

Place the SIM card in the SIM TS Module GSM

card tray as shown and put
the SIM card tray back into its
slot.

SIM card

SIM card tray

® 0O

Note

Ensure that the SIM card tray is correctly oriented in the card tray. Otherwise, the SIM card
will not make connection with the module, and the eject button may not remove the card tray.

S7-1200 Programmable controller
68 System Manual, 03/2014, A5E02486680-AG

Installation

3.3.8.3

Table 3- 16

3.3 Installation and removal procedures

Installing the TS adapter unit on a DIN rail

Prerequisites: You must have connected the TS Adapter and a TS module together, and the
DIN rail must have been installed.

Note

If you install the TS unit vertically or in high-vibration environment, the TS module can
become disconnected from the TS Adapter. Use an end bracket 8WA1 808 on the DIN rail to
ensure that the modules remain connected.

Installing and removing the TS Adapter

Task

Procedure

Installation:
1. Hook the TS Adapter with attached TS module @ on the DIN rail @
2. Rotate the unit back until it engages.

3. Push in the DIN rail clip on each module to attach each module to the
rail.

Removal:

1. Remove the analog cable and Ethernet cable from the underside of
the TS Adapter.

2. Remove power from the TS Adapter.
3. Use a screwdriver to disengage the rail clips on both modules.

4. Rotate the unit upwards to remove the unit from the DIN rail.

3.3.8.4

A WARNING
Safety requirements for installing or removing the TS Adapter.

Before you remove power from the unit, disconnect the grounding of the TS Adapter by
removing the analog cable and Ethernet cable. Failure to observe this precaution could
result in death, severe personal injury and/or property damage due to unexpected
equipment operation.

Always follow these requirements when installing or removing the TS Adapter.

Installing the TS adapter on a panel

Prerequisites: You must have connected the TS Adapter and TS module.

1. Move the attachment slider @ to the backside of the TS Adapter and TS module in the
direction of the arrow until it engages.

2. Screw the TS Adapter and TS module to the position marked with @ to the designated
assembly wall.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 69

Installation
3.4 Wiring guidelines

The following illustration shows the TS Adapter from behind, with the attachment sliders (D
in both positions:

f

F

Joy ;

'y

O_TIE=

108
116

Ii|
'I--i

@® Attachment slider
@ Drill holes for wall mounting

3.4 Wiring guidelines

Proper grounding and wiring of all electrical equipment is important to help ensure the
optimum operation of your system and to provide additional electrical noise protection for
your application and the S7-1200. Refer to the|technical specifications (Page|829) for the
S7-1200 wiring diagrams.

Prerequisites

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has
been turned off.

S7-1200 Programmable controller
70 System Manual, 03/2014, A5E02486680-AG

Installation

3.4 Wiring guidelines

Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to
your specific case.

A WARNING

Installation or wiring the S7-1200 or related equipment with power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury, and/or damage due to
electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-
1200 system. Electronic control devices, such as the S7-1200, can fail and can cause
unexpected operation of the equipment that is being controlled or monitored. For this reason,
you should implement safeguards that are independent of the S7-1200 to protect against
possible personal injury or equipment damage.

A WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment.

Such unexpected operations could result in death, severe personal injury and/or property
damage.

Use an emergency stop function, electromechanical overrides, or other redundant
safeguards that are independent of the S7-1200.

Guidelines for isolation

S7-1200 AC power supply boundaries and 1/0O boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such
as optical couplers, capacitors, transformers, and relays have been approved as providing
safe separation. Isolation boundaries which meet these requirements have been identified in
S7-1200 product data sheets as having 1500 VAC or greater isolation. This designation is
based on a routine factory test of (2Ue + 1000 VAC) or equivalent according to approved
methods. S7-1200 safe separation boundaries have been type tested to 4242 VDC.

The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to
EN 61131-2.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 71

Installation

3.4 Wiring guidelines

To maintain the safe character of the S7-1200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24 VDC nominal power supply and I/O circuits
must be powered from approved sources that meet the requirements of SELV, PELV, Class
2, Limited Voltage, or Limited Power according to various standards.

A WArRNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC
line can result in hazardous voltages appearing on circuits that are expected to be touch
safe, such as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could cause electric shock resulting in death, severe
personal injury and/or property damage.

Only use high voltage to low voltage power converters that are approved as sources of
touch safe, limited voltage circuits.

Guidelines for grounding the S7-1200

The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This
single point should be connected directly to the earth ground for your system.

All ground wires should be as short as possible and should use a large wire size, such as 2
mm2 (14 AWG).

When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for wiring the S7-1200

72

When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits,
and from all output circuits. Provide over-current protection, such as a fuse or circuit breaker,
to limit fault currents on supply wiring. Consider providing additional protection by placing a
fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current. The CPU and SM connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to
22 AWG). The SB connector accepts wire sizes from 1.3 mm2 to 0.3 mm2 (16 AWG to 22
AWG). Use shielded wires for optimum protection against electrical noise. Typically,
grounding the shield at the S7-1200 gives the best results.

When wiring input circuits that are powered by an external power supply, include an
overcurrent protection device in that circuit. External protection is not necessary for circuits
that are powered by the 24 VDC sensor supply from the S7-1200 because the sensor supply
is already current-limited.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

3.4 Wiring guidelines

All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed
securely into the connector. To avoid damaging the connector, be careful that you do not
over-tighten the screws. The maximum torque for the CPU and SM connector screw is 0.56
N-m (5 inch-pounds). The maximum torque for the SB, simulator, and potentiometer module
connector screw is 0.33 N-m (3 inch-pounds).

To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications|(Page 829) for the amount of
isolation provided and the location of the isolation boundaries. Do not depend on isolation
boundaries rated less than 1500 VAC as safety boundaries.

Guidelines for lamp loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This
surge current will nominally be 10 to 15 times the steady state current for a Tungsten lamp.
A replaceable interposing relay or surge limiter is recommended for lamp loads that will be
switched a large number of times during the lifetime of the application.

Guidelines for inductive loads

Use suppressor circuits with inductive loads to limit the voltage rise when a control output
turns off. Suppressor circuits protect your outputs from premature failure caused by the high
voltage transient that occurs when current flow through an inductive load is interrupted.

In addition, suppressor circuits limit the electrical noise generated when switching inductive
loads. High frequency noise from poorly suppressed inductive loads can disrupt the
operation of the PLC. Placing an external suppressor circuit so that it is electrically across
the load and physically located near the load is the most effective way to reduce electrical
noise.

S7-1200 DC outputs include internal suppressor circuits that are adequate for inductive
loads in most applications. Since S7-1200 relay output contacts can be used to switch either
a DC or an AC load, internal protection is not provided.

A good suppressor solution is to use contactors and other inductive loads for which the
manufacturer provides suppressor circuits integrated in the load device, or as an optional
accessory. However, some manufacturer provided suppressor circuits may be inadequate
for your application. An additional suppressor circuit may be necessary for optimal noise
reduction and contact life.

For AC loads, a metal oxide varistor (MOV) or other voltage clamping device may be used
with a parallel RC circuit, but is not as effective when used alone. An MOV suppressor with
no parallel RC circuit often results in significant high frequency noise up to the clamp
voltage.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 73

Installation

3.4 Wiring guidelines

A well controlled turn-off transient will have a ring frequency of no more than 10 kHz, with
less than 1 kHz preferred. Peak voltage for AC lines should be within +/- 1200 V of ground.
Negative peak voltage for DC loads using the PLC internal suppression will be ~40 V below
the 24 VDC supply voltage. External suppression should limit the transient to within 36 V of
the supply to unload the internal suppression.

Note

The effectiveness of a suppressor circuit depends on the application and must be verified for
your particular usage. Ensure that all components are correctly rated and use an
oscilloscope to observe the turn-off transient.

Typical suppressor circuit for DC or relay outputs that switch DC inductive loads

across a DC inductive load is suitable, but if your
application requires faster turn-off times, then the

addition of a zener diode (B) is recommended. Be
O sure to size your zener diode properly for the amount
4

of current in your output circuit.

@ @ In most applications, the addition of a diode (A)
A B

1N4001 diode or equivalent

8.2 V Zener (DC outputs),
36 V Zener (Relay outputs)

Output point

o 00 ©

M, 24 V reference

Typical suppressor circuit for relay outputs that switch AC inductive loads

74

@ @ Ensure that the working voltage of the metal oxide
varistor (MOV) is at least 20% greater than the
f———wWA— . .
— nominal line voltage.
Mov Choose pulse-rated, non-inductive resistors, and

capacitors recommended for pulse applications

(typically metal film). Verify the components meet
® average power, peak power, and peak voltage
requirements.

(@ See table for C value
(@ See table for R value
® Output point
If you design your own suppressor circuit, the following table suggests resistor and capacitor
values for a range of AC loads. These values are based on calculations with ideal

component parameters. | rms in the table refers to the steady-state current of the load when
fully ON.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Installation

Table 3- 17 AC suppressor circuit resistor and capacitor values

3.4 Wiring guidelines

Inductive load Suppressor values
I rms 230 VAC 120 VAC Resistor Capacitor
Amps VA VA Q W (power rating) nF
0.02 4.6 24 15000 0.1 15
0.05 11.5 6 5600 0.25 470
0.1 23 12 2700 0.5 100
0.2 46 24 1500 1 150
0.05 115 60 560 25 470
1 230 120 270 5 1000
2 460 240 150 10 1500

Conditions satisfied by the table values:
Maximum turn-off transition step < 500 V

Resistor peak voltage < 500 V
Capacitor peak voltage < 1250 V
Suppressor current < 8% of load current (50 Hz)
Suppressor current < 11% of load current (60 Hz)
Capacitor dV/dt < 2 V/us

Capacitor pulse dissipation : f(dv/dt)2 dt < 10000 Vs

Resonant frequency < 300 Hz
Resistor power for 2 Hz max switching frequency

Power factor of 0.3 assumed for typical inductive load

Guidelines for differential inputs and outputs

Differential inputs and outputs behave differently than standard inputs and outputs. There
are two pins per differential input and output. Determining whether a differential input or
output is on or off requires that you measure the voltage difference between these two pins.

See the detailed specifications for the| CPU 1217C in Appendix A (Page 879).

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

75

Installation

3.4 Wiring guidelines

76

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepts 4

4.1

Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:

e Organization blocks (OBs) define the structure of the program. Some OBs have
predefined behavior and start events, but you can also create OBs with custom start
events.

e Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain the data values for that instance of the FB
call. You can call an FB multiple times, each time with a unique instance DB. Calls to the
same FB with different instance DBs do not affect the data values in any of the other
instance DBs.

e Data blocks (DBs) store data that can be used by the program blocks.

Execution of the user program begins with one or more optional startup organization blocks
(OBs) which execute once upon entering RUN mode, followed by one or more program cycle
OBs that execute cyclically. You can also associate an OB with an interrupt event, which can
be either a standard event or an error event. These OBs execute whenever the
corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from
an OB or from another FC or FB, down to the following nesting depths:

e 16 from the program cycle or startup OB
e 6 from any interrupt event OB

FCs are not associated with any particular data block (DB). FBs are tied directly to a DB and
use the DB for passing parameters and storing interim values and results.

The size of the user program, data, and configuration is limited by the available load memory
and work memory in the CPU. There is no specific limit to the number of each individual OB,
FC, FB and DB block. However, the total number of blocks is limited to 1024.

Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle
or scan.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 77

PLC concepfts

4.1 Execution of the user program

Your S7-1200 automation solution can consist of a central rack with the S7-1200 CPU and
additional modules. The term "central rack" refers to either the rail or panel installation of the
CPU and associated modules. The modules (SM, SB, BB, CB, CM or CP) are detected and
logged in only upon powerup.

® [nserting or removing a module in the central rack under power (hot) is not supported.
Never insert or remove a module from the central rack when the CPU has power.

A wArRNING

Safety requirements for inserting or removing modules

Insertion or removal of a module (SM, SB, BB, CD, CM or CP) from the central rack
when the CPU has power could cause unpredictable behavior, resulting in damage to
equipment and/or injury to personnel.

Always remove power from the CPU and central rack and follow appropriate safety
precautions before inserting or removing a module from the central rack.

® You can insert or remove a SIMATIC memory card while the CPU is under power.
However, inserting or removing a memory card when the CPU is in RUN mode causes
the CPU to go to STOP mode.

NOTICE

Risks with removing memory card when CPU is in RUN mode.

Insertion or removal of a memory card when the CPU is in RUN mode causes the CPU
to go to STOP, which might result in damage to the equipment or the process being
controlled.

Whenever you insert or remove a memory card, the CPU immediately goes to STOP
mode. Before inserting or removing a memory card, always ensure that the CPU is not
actively controlling a machine or process. Always install an emergency stop circuit for
your application or process.

® |f you insert or remove a module in a distributed 1/O rack (AS-i, PROFINET, or
PROFIBUS) when the CPU is in RUN mode, the CPU generates an entry in the
diagnostics buffer, executes the pull or plug of modules OB if present, and by default
remains in RUN mode.

S7-1200 Programmable controller
78 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

Process image update and process image partitions

The CPU updates local digital and analog I/O points synchronously with the scan cycle using
an internal memory area called the process image. The process image contains a snapshot
of the physical inputs and outputs (the physical I/O points on the CPU, signal board, and
signal modules).

You can configure 1/0 points to be updated in the process image every scan cycle or when a
specific event interrupt occurs. You can also configure an /O point to be excluded from
process image updates. For example, your process might only need certain data values
when an event such as a hardware interrupt occurs. By configuring the process image
update for these /O points to be associated with a partition that you assign to a hardware
interrupt OB, you avoid having the CPU update data values unnecessarily every scan cycle
when your process does not need a continual update.

For 1/0O that is updated every scan cycle, the CPU performs the following tasks during each
scan cycle:

e The CPU writes the outputs from the process image output area to the physical outputs.

e The CPU reads the physical inputs just prior to the execution of the user program and
stores the input values in the process image input area. These values thus remain
consistent throughout the execution of the user instructions.

e The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.

For controlling whether your process updates 1/O points automatically on every scan cycle,
or upon the triggering of events, the S7-1200 provides five process image partitions. The first
process image partition, PIPO, is designated for I/O that is to be automatically updated every
scan cycle, and is the default assignment. You can use the remaining four partitions, PIP1,
PIP2, PIP3, and PIP4 for assigning I/O process image updates to various interrupt events.
You assign I/O to process image partitions in Device Configuration and you assign process
image partitions to interrupt events when you|create interrupt OBs (Page 172) or|edit OB
properties |(Page|172).

By default, when you insert a module in the device view, STEP 7 sets its I/O process image
update to "Automatic update". For I/O configured for "Automatic update", the CPU handles
the data exchange between the module and the process image area automatically during
every scan cycle.

To assign digital or analog points to a process image partition, or to exclude 1/0O points from
process image updates, follow these steps:

1. View the Properties tab for the appropriate device in Device configuration.
2. Expand the selections under "General" as necessary to locate the desired 1/O points.

3. Select "I/O addresses".

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 79

PLC concepfts

4.1 Execution of the user program

4. Optionally select a specific OB from the "Organization block" drop-down list.

5. From the "Process image" drop-down list, change "Automatic update" to "PIP1", "PIP2",
"PIP3", "PIP4" or "None". A selection of "None" means that you can only read from and
write to this 1/0 using immediate instructions. To add the points back to the process
image automatic update, change this selection back to "Automatic update".

o Properties [Mllaie B %
Geneval 10 tags Texts
b Geraral
¥ PROFINET inmerface
= Diamain Inpaut addresaes
saneral
Lide Tl L2 Smamaddess 0
b Daganl ouipas
I nddees ses
Harcvars identil far
(T

W aockeases

nganitation bl (Autamatic ugSace:

¥ High speed counter (HSCH &
¥ Pulze generacors (FICPAA Dutpet addresses Autamanc updsce:
Srartus [+ 1| I%
e Srar addeess: i
LTS ki b EFF3
ybarm mnd dock mamany drgenicatem ok | FEa
F Web server 08 Sena FIF
Time ol day fracess image
Userineerface languages
Pesteetion
Connection rexgurces
eraiew ol addees ses

bl £

You can immediately read physical input values and immediately write physical output
values when an instruction executes. An immediate read accesses the current state of the
physical input and does not update the process image input area, regardless of whether the
point is configured to be stored in the process image. An immediate write to the physical
output updates both the process image output area (if the point is configured to be stored in
the process image) and the physical output point. Append the suffix ":P" to the I/O address if
you want the program to immediately access I/O data directly from the physical point instead
of using the process image.

Note
Use of process image partitions

If you assign 1/O to one of the process image partitions PIP1 - PIP4, and do not assign an
OB to that partition, then the CPU never updates that 1/0 to or from the process image.
Assigning I/O to a PIP that does not have a corresponding OB assignment, is the same as
assigning the process image to "None". You can read the 1/O directly from the physical 1/0
with an immediate read instruction, or write to the physical I/O with an immediate write
instruction. The CPU does not update the process image.

The CPU supports distributed 1/O for both PROFINET and PROFIBUS networks (Page|509).

S7-1200 Programmable controller
80 System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.1 Execution of the user program

4.1.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

® |In STOP mode, the CPU is not executing the program. You can download a project.

® |In STARTUP mode, the startup OBs (if present) execute once. The CPU does not
process interrupt events during the startup mode.

® |In RUN mode, the program cycle OBs execute repeatedly. Interrupt events can occur and
the corresponding interrupt event OBs can execute at any point within the RUN mode.
You can/download some parts of a project in RUN mode (Page 803).

The CPU supports a warm restart for entering the RUN mode. Warm restart does not include
a memory reset. The CPU initializes all non-retentive system and user data at warm restart,
and retains the values of all retentive user data.

A memory reset clears all work memory, clears retentive and non-retentive memory areas,
copies load memory to work memory, and sets outputs to the configured "Reaction to CPU
STOP". A memory reset does not clear the diagnostics buffer or the permanently saved
values of the IP address.

You can configure the "startup after POWER ON" setting of the CPU. This configuration item
appears under the "Device configuration" for the CPU under "Startup”. Upon powering up,
the CPU performs a sequence of power-up diagnostic checks and system initialization.
During system initialization the CPU deletes all non-retentive bit (M) memory and resets all
non-retentive DB contents to the initial values from load memory. The CPU retains retentive
bit (M) memory and retentive DB contents and then enters the appropriate operating mode.
Certain detected errors prevent the CPU from entering the RUN mode. The CPU supports
the following configuration choices:

® No restart (stay in STOP mode)
® Warm restart - RUN
® Warm restart - mode prior to POWER OFF

Startup

Startup after FOWER N VWarm restart- RUN -

o restart (stay in STOF made)

Supported hardware
compatibility

Pararneter assignment time
for distnbuted HQ: | S0000 ms

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 81

PLC concepfts

4.1 Execution of the user program

82

NOTICE

Repairable faults can cause the CPU to enter STOP mode.

The CPU can enter STOP mode due to repairable faults, such as failure of a
replaceable signal module, or temporary faults, such as power line disturbance or erratic
power up event. Such conditions could result in property damage.

If you have configured the CPU to "Warm restart - mode prior to POWER OFF", the
CPU goes to the operating mode it was in prior to the loss of power or fault. If the CPU
was in STOP mode at the time of power loss or fault, the CPU goes to STOP mode on
power up and stays in STOP mode until it receives a command to go to RUN mode. If
the CPU was in RUN mode at the time of power loss or fault, the CPU goes to RUN
mode on the next power up providing it detects no errors that would inhibit a transition to
RUN mode.

Configure CPUs that are intended to operate independently of a STEP 7 connection to
"Warm restart - RUN" so that the CPU can return to RUN mode on the next power cycle.

You can change the current operating mode using the|"STOP" or "RUN" commands

(Page 792) from the online tools of the programming software. You can also include a STP
instruction|(Page|263) in your program to change the CPU to STOP mode. This allows you
to stop the execution of your program based on the program logic.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

® |n STOP mode, the CPU handles any communication requests (as appropriate) and
performs self-diagnostics. The CPU does not execute the user program, and the
automatic updates of the process image do not occur.

e |n STARTUP and RUN modes, the CPU performs the tasks shown in the following figure.

STARTUP RUN
A Clears the | (image) memory area @ Wwrites Q memory to the physical outputs
B Initializes the Q output (image) (@ Copies the state of the physical inputs to |
memory area with either zero, the last memory

value, or the substitute value, as
configured, and zeroes PB, PN, and
AS-i outputs
C Initializes non-retentive M memory and ® Executes the program cycle OBs
data blocks to their initial value and
enables configured cyclic interrupt and
time of day events.
Executes the startup OBs.
D Copies the state of the physical inputs @® Performs self-test diagnostics

to | memory

E Stores any interrupt events into the ® Processes interrupts and communications
queue to be processed after entering during any part of the scan cycle
RUN mode

F Enables the writing of Q memory to the
physical outputs

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 83

PLC concepfts

4.1 Execution of the user program

STARTUP processing

84

Whenever the operating mode changes from STOP to RUN, the CPU clears the process
image inputs, initializes the process image outputs and processes the startup OBs. Any read
accesses to the process-image inputs by instructions in the startup OBs read zero rather
than the current physical input value. Therefore, to read the current state of a physical input
during the startup mode, you must perform an immediate read. The startup OBs and any
associated FCs and FBs are executed next. If more than one startup OB exists, each is
executed in order according to the OB number, with the lowest OB number executing first.

Each startup OB includes startup information that helps you determine the validity of
retentive data and the time-of-day clock. You can program instructions inside the startup
OBs to examine these startup values and to take appropriate action. The following startup
locations are supported by the Startup OBs:

Table 4-1 Startup locations supported by the startup OB

Input Data Type | Description
LostRetentive Bool This bit is true if the retentive data storage areas have been lost
LostRTC Bool This bit is true if the time-of-day clock (Real time Clock) has been lost

The CPU also performs the following tasks during the startup processing.
® |Interrupts are queued but not processed during the startup phase
® No cycle time monitoring is performed during the startup phase

® Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and
PtP (point-to-point communication) modules can be made in startup

® Actual operation of HSC, PWM and point-to-point communication modules only occurs in
RUN

After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes
the control tasks in a continuous scan cycle.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.1 Execution of the user program

4.1.2 Processing the scan cycle in RUN mode

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user
program, updates communication modules, and responds to user interrupt events and
communication requests. Communication requests are handled periodically throughout the
scan.

These actions (except for user interrupt events) are serviced regularly and in sequential
order. User interrupt events that are enabled are serviced according to priority in the order in
which they occur. For interrupt events, the CPU reads the inputs, executes the OB, and then
writes the outputs, using the associated process image partition (PIP), if applicable.

The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

® Each scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB,
and SM modules configured for automatic 1/0O update (default configuration). When a
physical output is accessed by an instruction, both the output process image and the
physical output itself are updated.

® The scan cycle continues by reading the current values of the digital and analog inputs
from the CPU, SB, and SMs configured for automatic I/O update (default configuration),
and then writing these values to the process image. When a physical input is accessed
by an instruction, the value of the physical input is accessed by the instruction, but the
input process image is not updated.

e After reading the inputs, the user program is executed from the first instruction through
the end instruction. This includes all the program cycle OBs plus all their associated FCs
and FBs. The program cycle OBs are executed in order according to the OB number with
the lowest OB number executing first.

Communications processing occurs periodically throughout the scan, possibly interrupting
user program execution.

Self-diagnostic checks include periodic checks of the system and the I/O module status
checks.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts the scan cycle and calls the OB that was configured to process
that event. After the OB finishes processing the event, the CPU resumes execution of the
user program at the point of interruption.

41.3 Organization blocks (OBs)

OBs control the execution of the user program. Specific events in the CPU trigger the
execution of an organization block. OBs cannot call each other or be called from an FC or
FB. Only an event such as a diagnostic interrupt or a time interval, can start the execution of
an OB. The CPU handles OBs according to their respective priority classes, with higher
priority OBs executing before lower priority OBs. The lowest priority class is 1 (for the main
program cycle), and the highest priority class is 24.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 85

PLC concepfts

4.1 Execution of the user program

4.1.3.1 Program cycle OB

Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of the
program is a program cycle OB. This is where you place the instructions that control your
program and where you call additional user blocks. You can have multiple program cycle
OBs, which the CPU executes in numerical order. Main (OB1) is the default.

Program cycle events

The program cycle event happens once during each program cycle (or scan). During the
program cycle, the CPU writes the outputs, reads the inputs and executes program cycle
OBs. The program cycle event is required and is always enabled. You might have no
program cycle OBs, or you might have multiple OBs selected for the program cycle event.
After the program cycle event occurs, the CPU executes the lowest numbered program cycle
OB (usually "Main" OB 1). The CPU executes the other program cycle OBs sequentially (in
numerical order) within the program cycle. Program execution is cyclical such that the
program cycle event occurs at the following times:

® When the last startup OB finishes execution

® When the last program cycle OB finishes execution

Table 4-2 Start information for a program cycle OB

Input Data type Description

Initial_Call Bool True for initial call of the OB

Remanence | Bool True if retentive data are available
4.1.3.2 Startup OB

Startup OBs execute one time when the operating mode of the CPU changes from STOP to
RUN, including powering up in the RUN mode and in commanded STOP-to-RUN transitions.
After completion, the main "Program cycle" begins executing.

Startup events

The startup event happens one time on a STOP to RUN transition and causes the CPU to
execute the startup OBs. You can configure multiple OBs for the startup event. The startup
OBs execute in numerical order.

Table 4-3 Start information for a startup OB

Input Data type Description
LostRetentive Bool True if retentive data are lost
LostRTC Bool True if date and time are lost

S7-1200 Programmable controller
86 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

41.3.3 Time delay interrupt OB

Time delay interrupt OBs execute after a time delay that you configure.

Time delay interrupt events

You configure time delay interrupt events to occur after a specified delay time has expired.
You assign the delay time with the SRT_DINT instruction. The time delay events interrupt the
program cycle to execute the corresponding time delay interrupt OB. You can attach only
one time delay interrupt OB to a time delay event. The CPU supports four time delay events.

Table 4-4 Start information for a time delay interrupt OB

Input Data type Description
Sign Word Identifier passed to triggering call of SRT_DINT
4134 Cyclic interrupt OB

Cyclic interrupt OBs execute at a specified interval. You can configure up to a total of four
cyclic interrupt events, with one OB corresponding to each cyclic interrupt event.

Cyclic interrupt events

The cyclic interrupt events allow you to configure the execution of an interrupt OB at a
configured cycle time. You configure the initial cycle time when you create the cyclic interrupt
OB. A cyclic event interrupts the program cycle and executes the corresponding cyclic
interrupt OB. Note that the cyclic interrupt event is at a higher priority class than the program
cycle event.

You can attach only one cyclic interrupt OB to a cyclic event.

You can assign a phase shift to each cyclic interrupt so that the execution of cyclic interrupts
with the same scan time can be offset from one another by the phase offset amount. The
default phase offset is 0. To change the initial phase shift, or to change the initial scan time
for a cyclic event, right click the cyclic interrupt OB in the project tree, select "Properties”
from the context menu, then click "Cyclic interrupt”, and enter the new initial values. You can
also query and change the scan time and the phase shift from your program using the Query
cyclic interrupt (QRY_CINT) and Set cyclic interrupt (SET_CINT) instructions. Scan time and
phase shift values set by the SET_CINT instruction do not persist through a power cycle or a
transition to STOP mode; scan time and phase shift values return to the initial values
following a power cycle or a transition to STOP. The CPU supports a total of four cyclic
interrupt events.

4.1.3.5 Hardware interrupt OB

Hardware interrupt OBs execute when the relevant hardware event occurs. A hardware
interrupt OB interrupts normal cyclic program execution in reaction to a signal from a
hardware event.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 87

PLC concepfts

4.1 Execution of the user program

Hardware interrupt events

Changes in the hardware, such as a rising or falling edge on an input point, or an HSC (High
Speed Counter) event trigger hardware interrupt events. The S7-1200 supports one interrupt
OB for each hardware interrupt event. You enable the hardware events in the device
configuration, and assign an OB for an event in the device configuration or with an ATTACH
instruction in the user program. The CPU supports several hardware interrupt events. The
CPU model and the number of input points determine the exact events that are available.

Limits on hardware interrupt events are as follows:
Edges:

® Rising edge events: maximum of 16

e Falling edge events: maximum of 16

HSC events:

e CV=PV: maximum of 6

e Direction changed: maximum of 6

e External reset: maximum of 6

4.1.3.6 Time error interrupt OB

If configured, the time error interrupt OB (OB 80) executes when either the scan cycle
exceeds the maximum cycle time or a time error event occurs. If triggered, it executes,
interrupting normal cyclic program execution or any other event OB.

The occurrence of either of these events generates a diagnostic buffer entry describing the
event. The diagnostic buffer entry is generated regardless of the existence of the time error
interrupt OB.

Time error interrupt events
The occurrence of any of several different time error conditions results in a time error event:
® Scan cycle exceeds maximum cycle time

The "maximum cycle time exceeded" condition results if the program cycle does not
complete within the specified maximum scan cycle time. See the section on "Monitoring
the cycle time in the S7-1200 System Manual"|(Page|97) for more information regarding
the maximum cycle time condition, how to configure the maximum scan cycle time in the
properties of the CPU, and how to reset the cycle timer.

® CPU cannot start requested OB because a second time interrupt (cyclic or time-delay)
starts before the CPU finishes execution of the first interrupt OB

® Queue overflow occurred

The "queue overflow occurred" condition results if the interrupts are occurring faster than
the CPU can process them. The CPU limits the number of pending (queued) events by
using a different queue for each event type. If an event occurs when the corresponding
queue is full, the CPU generates a time error event.

S7-1200 Programmable controller
88 System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.1 Execution of the user program

All time error events trigger the execution of the time error interrupt OB if it exists. If the time
error interrupt OB does not exist, then the device configuration of the CPU determines the
CPU reaction to the time error:

e The default configuration for time errors, such as starting a second cyclic interrupt before
the CPU has finished the execution of the first, is for the CPU to stay in RUN.

® The default configuration for exceeding the maximum time is for the CPU to change to
STOP.

The user program can extend the program cycle execution time up to ten times the
configured maximum cycle time by executing the|RE_TRIGR instruction|(Page|262) to
restart the cycle time monitor. However, if two "maximum cycle time exceeded" conditions
occur within the same program cycle without resetting the cycle timer, then the CPU
transitions to STOP, regardless of whether the time error interrupt OB exists. See the section
on Monitoring the cycle time in the S7-1200 System Manual"|(Page|97).

Time error interrupt OB includes start information that helps you determine which event and
OB generated the time error. You can program instructions inside the OB to examine these
start values and to take appropriate action.

Table4-5 Start information for the time error OB (OB 80)

Input Data type Description

fault_id BYTE 16#01 - maximum cycle time exceeded
16#02 - requested OB cannot be started
16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error
occurred
csg_prio UINT Priority of the OB causing the error

To include a time error interrupt OB in your project, you must add a time error interrupt by
double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Time error interrupt".

The priority for a new V4.0 CPU is 22. If you|exchange a V3.0 CPU for a V4.0 CPU
(Page|995), the priority is 26, the priority that was in effect for V3.0. In either case, the
priority field is editable and you can set the priority to any value in the range 22 to 26.

4.1.3.7 Diagnostic error interrupt OB

The diagnostic error interrupt OB executes when the CPU detects a diagnostic error, or if a
diagnostics-capable module recognizes an error and you have enabled the diagnostic error
interrupt for the module. The diagnostic error interrupt OB interrupts the normal cyclic
program execution. You can include an STP instruction in the diagnostic error interrupt OB to
put the CPU in STOP mode if you desire your CPU to enter STOP mode upon receiving this
type of error.

If you do not include a diagnostic error interrupt OB in your program, the CPU ignores the
error and stays in RUN mode.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 89

PLC concepfts

4.1 Execution of the user program

Diagnostic error events

90

Analog (local), PROFINET, PROFIBUS, and some digital (local) devices are capable of
detecting and reporting diagnostic errors. The occurrence or removal of any of several
different diagnostic error conditions results in a diagnostic error event. The following
diagnostic errors are supported:

® No user power

e High limit exceeded
® |ow limit exceeded
e Wire break

e Short circuit

Diagnostic error events trigger the execution of the diagnostic error interrupt OB (OB 82) if it
exists. If it does not exist, then the CPU ignores the error.

To include a diagnostic error interrupt OB in your project, you must add a diagnostic error
interrupt by double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Diagnostic error interrupt".

Note
Diagnostic errors for multi-channel local analog devices (I/0, RTD, and Thermocouple)

The diagnostic error interrupt OB can report only one channel's diagnostic error at a time.

If two channels of a multi-channel device have an error, then the second error only triggers
the diagnostic error interrupt OB under the following conditions: the first channel error clears,
the execution of the diagnostic error interrupt OB that the first error triggered is complete,
and the second error still exists.

The diagnostic error interrupt OB includes startup information that helps you determine
whether the event is due to the occurrence or removal of an error, and the device and
channel which reported the error. You can program instructions inside the diagnostic error
interrupt OB to examine these startup values and to take appropriate action.

Note

Diagnostic error OB Start information references the submodule as a whole if no diagnostics
event is pending

In V3.0, the start information for an outgoing diagnostic error event always indicated the
source of the event. In V4.0, if the outgoing event leaves the submodule with no pending
diagnostics, the start information references the submodule as a whole (16#8000) even if the
source of the event was a specific channel.

For example, if a wire break triggers a diagnostic error event on channel 2, the fault is then
corrected, and the diagnostic error event is cleared, the Start information will not reference
channel 2, but the submodule (16#8000).

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

Table 4-6 Startup information for the diagnostic error interrupt OB
Input Data type Description
IOstate WORD 10 state of the device:

e Bit 0 = 1 if the configuration is correct, and = 0 if the configuration is
no longer correct.

e Bit4 =1 ifan error is present (such as a wire break). (Bit 4 = 0 if
there is no error.)

e Bit5 =1 if the configuration is not correct, and = 0 if the configuration
is correct again.

e Bit6 =1ifan I/O access error has occurred. Refer to LADDR for the
hardware identifier of the I/O with the access error. (Bit 6 = 0 if there
is no error.)

LADDR HW_ANY Hardware identifier of the device or functional unit that reported the
error’

Channel UINT Channel number

MultiError BOOL TRUE if more than one error is present

' The LADDR input contains the hardware identifier of the device or functional unit which returned the error. The
hardware identifier is assigned automatically when components are inserted in the device or network view and appears
in the Constants tab of PLC tags. A name is also assigned automatically for the hardware identifier. These entries in the
Constants tab of the PLC tags cannot be changed.

41.3.8

Pull or plug of modules event

Pull or plug of modules OB

The "Pull or plug of modules" OB executes when a configured and non-disabled distributed
I/O module or submodule (PROFIBUS, PROFINET, AS-i) generates an event related to
inserting or removing a module.

The following conditions generate a pull of plug of modules event:

Someone removes or inserts a configured module

A configured module is not physically present in an expansion rack

An incompatible module is in an expansion rack that does not correspond to the

configured module

A compatible module for a configured module is in an expansion rack, but the
configuration does not allow substitutes

A module or submodule has parameterization errors

If you have not programmed this OB, the CPU changes to STOP mode when any of these

conditions occur.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

91

PLC concepfts

4.1 Execution of the user program

Table 4-7 Start information for pull or plug of modules OB

Input Data type Description
LADDR HW_IO Hardware identifier
Event_Class | Byte 16#38: module inserted
16#29: module removed
Fault_ID Byte Fault identifier
4.1.3.9 Rack or station failure OB

The "Rack or station failure" OB executes when the CPU detects the failure or
communication loss of a distributed rack or station.

Rack or station failure event
The CPU generates a rack or station failure event when it detects one of the following:

® The failure of a DP master system or of a PROFINET 10 system (in the case of either an
incoming or an outgoing event).

e The failure of a DP slave or of an 10 device (in the case of either an incoming or an
outgoing event)

® Failure of some of the submodules of a PROFINET I-device

If you have not programmed this OB, the CPU changes to STOP mode when any of these
conditions occur.

Table 4- 8 Start information for rack or station failure OB

Input Data type Description
LADDR HW_IO Hardware identifier
Event_Class | Byte 16#32: Activation of a DP slave or an 10 device

16#33: Deactivation of a DP slave or an 10 device
16#38: outgoing event

16#39: incoming event

Fault_ID Byte Fault identifier

4.1.3.10 Time of day OB

Time of day OBs execute based on configured clock time conditions. The CPU supports two
time of day OBs.

S7-1200 Programmable controller
92 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

Time of day events

4.1 Execution of the user program

You can configure a time of day interrupt event to occur once on a specified date or time or
cyclically with one of the following cycles:

Every minute: The interrupt occurs every minute.
Hourly: The interrupt occurs every hour.
Daily: The interrupt occurs every day at a specified time (hour and minute).

Weekly: The interrupt occurs every week at a specified time on a specified day of the
week (for example, every Tuesday at 4:30 in the afternoon).

Monthly: The interrupt occurs every month at a specified time on a specified day of the
month. The day number must be between 1 and 28, inclusive.

Every end of month: The interrupt occurs on the last day of every month at a specified
time.

Yearly: The interrupt occurs every year on the specified date (month and day). You
cannot specify a date of February 29.

Table 4-9 Start information for a time of day event OB

Input Data type Description

CaughtUp Bool OB call is caught up because time was set forward

SecondTimes | Bool OB call is started a second time because time was set backward
4.1.3.11 Status OB

Status OBs execute if a DPV1 or PNIO slave triggers a status interrupt. This might be the
case if a component (module or rack) of a DPV1 or PNIO slave changes its operating mode,
for example from RUN to STOP.

Status events

For detailed information on events that trigger a status interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 4- 10 Start information for status OB

Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier

4.1.3.12 Update OB
Update OBs execute if a DPV1 or PNIO slave triggers an update interrupt.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 93

PLC concepfts

4.1 Execution of the user program

Update events

41.3.13

Profile events

41.3.14

94

For detailed information on events that trigger an update interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 4- 11 Start information for update OB

Input Data type Description

LADDR HW_IO Hardware identifier

Slot Ulnt Slot number

Specifier Word Alarm specifier
Profile OB

Profile OBs execute if a DPV1 or PNIO slave triggers a profile-specific interrupt.

For detailed information on events that trigger a profile interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 4- 12 Start information for profile OB

Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier

Event execution priorities and queuing

The CPU processing is controlled by events. An event triggers an interrupt OB to be
executed. You can specify the interrupt OB for an event during the creation of the block,
during the device configuration, or with an ATTACH or DETACH instruction. Some events
happen on a regular basis like the program cycle or cyclic events. Other events happen only
a single time, like the startup event and time delay events. Some events happen when the
hardware triggers an event, such as an edge event on an input point or a high speed counter
event. Events like the diagnostic error and time error event only happen when an error
occurs. The event priorities and queues are used to determine the processing order for the
event interrupt OBs.

The CPU processes events in order of priority where 1 is the lowest priority and 26 is the
highest priority. Prior to V4.0 of the S7-1200 CPU, each type of OB belonged to a fixed
priority class (1 to 26). With V4.0, you can assign a priority class to each OB that you
configure. You configure the priority number in the attributes of the OB properties.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

Interruptible and non-interruptible execution modes

OBs|(Page|85) execute in priority order of the events that trigger them. With V4.0 of the S7-
1200 CPU, you can configure OB execution to be interruptible or non-interruptible. Note that
program cycle OBs are always interruptible, but you can configure all other OBs to be either
interruptible or non-interruptible.

If you set interruptible mode, then if an OB is executing and a higher priority event occurs
before the OB completes its execution, the running OB is interrupted to allow the higher-
priority event OB to run. The higher-priority event runs, and at its completion, the OB that
was interrupted continues. When multiple events occur while an interruptible OB is
executing, the CPU processes those events in priority order.

If you do not set interruptible mode, then an OB runs to completion when triggered
regardless of any other events that trigger during the time that it is running.

Consider the following two cases where interrupt events trigger a cyclic OB and a time delay
OB. In both cases, the time delay OB (OB201) has no process image partition assignment
(Page | 77) and executes at priority 4. The cyclic OB (OB200) has a process image partition
assignment of PIP1 and executes at priority 2. The following illustrations show the difference
in execution between non-interruptible and interruptible execution modes:

execute OB201
read PIP1 execute OB200 write PIP1
write PIPO read PIP0 execute OB1 execute OB1 (continued)
Time |:‘> cyclic interval delay timer
elapsed expired
Figure 4-1 Case 1: Non-interruptible OB execution
execute OB201
read PIP1 execute OB200 execute OB200 (continued) write PIP1
write PIPO read PIP0 execute OB1 execute OB1 (continued)
Time |:|‘> cyclic interval delay timer
elapsed expired

Figure 4-2 Case 2: Interruptible OB execution

Note

If you configure the OB execution mode to be non-interruptible, then a time error OB cannot
interrupt OBs other than program cycle OBs. Prior to V4.0 of the S7-1200 CPU, a time error
OB could interrupt any executing OB. With V4.0, you must configure OB execution to be
interruptible if you want a time error OB (or any other higher priority OB) to be able to
interrupt executing OBs that are not program cycle OBs.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 95

PLC concepfts

4.1 Execution of the user program

Understanding event execution priorities and queuing

The number of pending (queued) events from a single source is limited, using a different
queue for each event type. Upon reaching the limit of pending events for a given event type,
the next event is lost. Refer to the topic about|time error interrupt OBs|(Page 88) for more
information regarding queue overflows.

Each CPU event has an associated priority. In general, the CPU services events in order of
priority (highest priority first). The CPU services events of the same priority on a "first-come,
first-served" basis.

Table 4- 13 OB events

Event Quantity allowed Default OB priority
Program cycle 1 program cycle event 14
Multiple OBs allowed
Startup 1 startup event ! 14
Multiple OBs allowed
Time delay Up to 4 time events 3
1 OB per event
Cyclic interrupt Up to 4 events 8
1 OB per event
Hardware interrupt Up to 50 hardware interrupt events? 18
1 OB per event, but you can use the same OB for multiple 18
events
Time error 1 event (only if configured)? 22 or 264
Diagnostic error 1 event (only if configured) 5
Pull or plug of modules 1 event 6
Rack or station failure 1 event 6
Time of day Up to 2 events 2
Status 1 event 4
Update 1 event 4
Profile 1 event 4

1 The startup event and the program cycle event never occur at the same time because the startup event runs to
completion before the program cycle event starts.

2 You can have more than 50 hardware interrupt event OBs if you use the DETACH and ATTACH instructions.

3 You can configure the CPU to stay in RUN if the scan cycle exceeds the maximum scan cycle time or you can use the
RE_TRIGR instruction to reset the cycle time. However, the CPU goes to STOP mode the second time that one scan
cycle exceeds the maximum scan cycle time.

4 The priority for a new V4.0 CPU is 22. If you exchange a V3.0 CPU for a V4.0 CPU, the priority is 26, the priority that
was in effect for V3.0. In either case, the priority field is editable and you can set the priority to any value in the range 22

to 26.

Refer to the topic "Exchanging a V3.0 CPU for a V4.0 CPU (Page|995)" for more details.

96

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

In addition, the CPU recognizes other events that do not have associated OBs. The following
table describes these events and the corresponding CPU actions:

Table 4- 14 Additional events
Event Description CPU action
1/0 access error Direct 1/0 read/write error The CPU logs the first occurrence in the diagnostic

buffer and stays in RUN mode.

Max cycle time error

CPU exceeds the configured cycle time The CPU logs the error in the diagnostic buffer and
twice transitions to STOP mode.

Peripheral access error | I/O error during process image update The CPU logs the first occurrence in the diagnostic

buffer and stays in RUN mode.

Programming error

program execution error If the block with the error provides error handling, it
updates the error structure; if not, the CPU logs the
error in the diagnostic buffer and stays in RUN
mode.

Interrupt latency

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
approximately 175 usec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

41.4 Monitoring and configuring the cycle time

S7-1200 Programmable

The cycle time is the time that the CPU operating system requires to execute the cyclic
phase of the RUN mode. The CPU provides two methods of monitoring the cycle time:

e Maximum scan cycle time
e Minimum scan cycle time

Scan cycle monitoring begins after the startup event is complete. Configuration for this
feature appears under the "Device Configuration" for the CPU under "Cycle time".

The CPU always monitors the scan cycle and reacts if the maximum scan cycle time is
exceeded. If the configured maximum scan cycle time is exceeded, an error is generated
and is handled one of two ways:

e |[f the user program does not include a time error interrupt OB, then the timer error event
generates a diagnostic buffer entry, but the CPU remains in RUN mode. (You can change
the configuration of the CPU to go to STOP mode when it detects a time error, but the
default configuration is to remain in RUN mode.)

e |[f the user program includes a time error interrupt OB, then the CPU executes it.

The RE_TRIGR instruction (Page|262) (re-trigger cycle time monitoring) allows you to reset
the timer that measures the cycle time. If the elapsed time for the current program cycle
execution is less than ten times the configured maximum scan cycle time, the RE_TRIGR
instruction retriggers the cycle time monitoring and returns with ENO = TRUE. If not, the
RE_TRIGR instruction does not retrigger the cycle time monitoring. It returns ENO = FALSE.

controller

System Manual, 03/2014, ASE02486680-AG 97

PLC concepfts

4.1 Execution of the user program

Typically, the scan cycle executes as fast as it can be executed and the next scan cycle
begins as soon as the current one completes. Depending upon the user program and
communication tasks, the time period for a scan cycle can vary from scan to scan. To
eliminate this variation, the CPU supports an optional minimum scan cycle time. If you
enable this optional feature and provide a minimum scan cycle time in ms, then the CPU
delays after the execution of the program cycle OBs until the minimum scan cycle time
elapses before repeating the program cycle.

In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing
runtime diagnostics and/or processing communication requests.

In the event that the CPU does not complete the scan cycle in the specified minimum cycle
time, the CPU completes the scan normally (including communication processing) and does
not create any system reaction as a result of exceeding the minimum scan time. The
following table defines the ranges and defaults for the cycle time monitoring functions.

Table 4- 15 Range for the cycle time

Cycle time Range (ms) Default
Maximum scan cycle time'! 1 to 6000 150 ms
Minimum scan cycle time? 1 to maximum scan cycle time Disabled

1 The maximum scan cycle time is always enabled. Configure a cycle time between 1 ms to 6000 ms. The default is 150

ms.

2 The minimum scan cycle time is optional, and is disabled by default. If required, configure a cycle time between 1 ms
and the maximum scan cycle time.

Configuring the cycle time and communication load

98

You use the CPU properties in the Device configuration to configure the following
parameters:

e Cycle: You can enter a maximum scan cycle monitoring time. You can also enable and
enter a minimum scan cycle time.

Cycle

Scan cycle monitoring time: | 150 ms
[] Enable minimum cycle time for cyclic OBs

ms

e Communication load: You can configure a percentage of the time to be dedicated for
communication tasks.

Communication load

Cycle load due to communication: 20 %

For more information about the scan cycle, see "Monitoring the cycle time". (Page|97)

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

4.1.5 CPU memory

Memory management

The CPU provides the following memory areas to store the user program, data, and
configuration:

Load memory is non-volatile storage for the user program, data and configuration. When
you download a project to the CPU, the CPU first stores the program in the Load memory
area. This area is located either in a memory card (if present) or in the CPU. The CPU
maintains this non-volatile memory area through a power loss. The memory card
supports a larger storage space than that built-in to the CPU.

Work memory is volatile storage for some elements of the user project while executing
the user program. The CPU copies some elements of the project from load memory into
work memory. This volatile area is lost when power is removed, and is restored by the
CPU when power is restored.

Retentive memory is non-volatile storage for a limited quantity of work memory values.
The CPU uses the retentive memory area to store the values of selected user memory
locations during power loss. When a power down or power loss occurs, the CPU restores
these retentive values upon power up.

To display the memory usage for a compiled program block, right-click the block in the
"Program blocks" folder in the STEP 7 project tree and select "Resources” from the context
menu. The Compiliation properties display the load memory and work memory for the
compiled block.

To display the memory usage for the online CPU, double-click "Online and diagnostics" in
STEP 7, expand "Diagnostics", and select "Memory".

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 99

PLC concepfts

4.1 Execution of the user program

Retentive memory

You can avoid data loss after power failure by marking certain data as retentive. The CPU
allows you to configure the following data as retentive:

e Bit memory (M): You can define the precise width of the memory for bit memory in the
PLC tag table or in the assignment list. Retentive bit memory always starts at MBO and
runs consecutively up through a specified number of bytes. Specify this value from the
PLC tag table or in the assignment list by clicking the "Retain" toolbar icon. Enter the
number of M bytes to retain starting at MBO.

e Tags of a function block (FB): If an FB was created with "Optimized" selected, then the
interface editor for this FB includes a "Retain" column. In this column, you can select
either "Retentive", "Non-retentive", or "Set in IDB" individually for each tag. An instance
DB that was created when this FB is placed in the program editor shows this retain
column as well. You can only change the retentive state of a tag from within the instance
DB interface editor if you selected "Set in IDB" (Set in instance data block) in the Retain
selection for the tag in the optimized FB.

If an FB was created with "Standard - compatible with S7-300/400" selected, then the
interface editor for this FB does not include a "Retain" column. An instance DB created
when this FB is inserted in the program editor shows a "Retain" column which is available
for edit. In this case, selecting the "Retain" option for any tag results in all tags being
selected. Similarly, deselecting the option for any tag results in all tags being deselected.
For an FB that was configured to be "Standard - compatible with S7-300/400", you can
change the retentive state from within the instance DB editor, but all tags are set to the
same retentive state together.

After you create the FB, you cannot change the option for "Standard - compatible with
S7-300/400". You can only select this option when you create the FB. To determine
whether an existing FB was configured for "Optimized" or "Standard - compatible with S7-
300/400", right-click the FB in the Project tree, select "Properties”, and then select
"Attributes". The check box "Optimized block access" when selected shows you whether
a block is optimized. Otherwise, it is standard and compatible with S7-300/400 CPUs.

e Tags of a global data block: The behavior of a global DB with regard to retentive state
assignment is similar to that of an FB. Depending on the block access setting you can
define the retentive state either for individual tags or for all tags of a global data block.

— If you select "Optimized" when you create the DB, you can set the retentive state for
each individual tag.

— If you select "Standard - compatible with S7-300/400" when you create the DB, the
retentive-state setting applies to all tags of the DB; either all tags are retentive or no
tag is retentive.

S7-1200 Programmable controller
100 System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.1 Execution of the user program

The CPU supports a total of 10240 bytes of retentive data. To see how much is available,
from the PLC tag table or the assignment list, click on the "Retain" toolbar icon. Although this
is where the retentive range is specified for M memory, the second row indicates the total
remaining memory available for M and DB combined. Note that for this value to be accurate,
you must compile all data blocks with retentive tags.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

4.1.5.1 System and clock memory

You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions by their tag names.

® You can assign one byte in M memory for system memory. The byte of system memory
provides the following four bits that can be referenced by your user program by the
following tag names:

— First cycle: (Tag name "FirstScan") bit is set to1 for the duration of the first scan after
the startup OB finishes. (After the execution of the first scan, the "first scan" bit is set
to 0.)

— Diagnostics status changed (Tag name: "DiagStatusUpdate") is set to 1 for one scan
after the CPU logs a diagnostic event. Because the CPU does not set the "diagnostic
graph changed" bit until the end of the first execution of the program cycle OBs, your
user program cannot detect if there has been a diagnostic change either during the
execution of the startup OBs or the first execution of the program cycle OBs.

— Always 1 (high): (Tag name "AlwaysTRUE") bit is always set to 1.
— Always 0 (low): (Tag name "AlwaysFALSE") bit is always set to 0.

® You can assign one byte in M memory for clock memory. Each bit of the byte configured
as clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user
program on a cyclic basis.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 101

PLC concepfts
4.1 Execution of the user program

The CPU initializes these bytes on the transition from STOP mode to STARTUP mode. The
bits of the clock memory change synchronously to the CPU clock throughout the STARTUP
and RUN modes.

A\ caution

Risks with overwriting the system memory or clock memory bits

Overwriting the system memory or clock memory bits can corrupt the data in these
functions and cause your user program to operate incorrectly, which can cause damage to
equipment and injury to personnel.

Because both the clock memory and system memory are unreserved in M memory,
instructions or communications can write to these locations and corrupt the data.

Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

System memory configures a byte with bits that turn on (value = 1) for a specific event.

System memory bits

[Enablz the use of system memory byte

Address of system memary

lyte (MEX): |'|
First cycle |°o|‘.|| 0 (FirstScan) |
Ciagrastics status changed |°o|‘.|| | (DiagStatusUpdate) |
Slways 1 (highh [%M1.2 (AhwaysTRUE) |
Always O (lowsd: [2%01.3 (AlwaysFALSE) |
Table 4- 16 System memory
7 ‘ 6 | 5 | 4 3 2 1 0
Reserved Always off Always on Diagnostic status First scan indicator
Value 0 Value 0 Value 1 indicator e 1: First scan after
e 1: Change startup
e 0: No change e 0: Not first scan

Clock memory configures a byte that cycles the individual bits on and off at fixed intervals.
Each clock bit generates a square wave pulse on the corresponding M memory bit. These
bits can be used as control bits, especially when combined with edge instructions, to trigger
actions in the user code on a cyclic basis.

S7-1200 Programmable controller
102 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.1 Execution of the user program

Clock memory bits

@;Enable the use of clock mermary byte

Address of clack memary byte

Ex: |0
10 Hz clock: [26MO.0 (Clack_10Hz) |
S Hzelock: [2%M0.1 (Clock_5Hz) |
[26M0.2 (Clock_2.5Hz) |
[26M0.3 (Clock_2H3) |
[26m0.4 (Clock_1.25Hz) |
[26M0.5 (Clock_1Hz) |
[26M0.6 (Clock_0.625H:) |
0.5 Hz clock: [3M0.7 (Clack_0.5Hz) |
Table 4- 17 Clock memory
Bit number 7 6 5 4 3 2 1 0
| Tag name
Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1
Frequency (Hz) 0.5 0.625 1 1.25 2 2.5 5 10

Because clock memory runs asynchronously to the CPU cycle, the status of the clock memory can change several times
during a long cycle.

41.6

Diagnostics buffer

The CPU supports a diagnostics buffer which contains an entry for each diagnostic event.
Each entry includes a date and time the event occurred, an event category, and an event
description. The entries are displayed in chronological order with the most recent event at
the top. Up to 50 most recent events are available in this log. When the log is full, a new
event replaces the oldest event in the log. When power is lost, the events are saved.

The following types of events are recorded in the diagnostics buffer:
e Each system diagnostic event; for example, CPU errors and module errors

e Each state change of the CPU (each power up, each transition to STOP, each transition
to RUN)

To access the|diagnostics buffer|(Page 793), you must be online. From the "Online &
diagnostics" view, locate the diagnostics buffer under "Diagnostics > Diagnostics buffer".

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 103

PLC concepfts

4.1 Execution of the user program

4.1.7

41.8

104

Time of day clock

The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to
keep the clock running during times when the CPU is powered down. The super-capacitor
charges while the CPU has power. After the CPU has been powered up at least 24 hours,
then the super-capacitor has sufficient charge to keep the clock running for typically 20 days.

STEP 7 sets the time-of-day clock to system time, which has a default value out of the box or
following a factory reset. To utilize the time-of-day clock, you must set it. Timestamps such
as those for diagnostic buffer entries, data log files, and data log entries are based on the
system time. You set the time of day from the|"Set time of day" function|(Page 789) in the
"Online & diagnostics" view of the online CPU. STEP 7 then calculates the system time from
the time you set plus or minus the Windows operating system offset from UTC (Coordinated
Universal Time). Setting the time of day to the current local time produces a system time of
UTC if your Windows operating system settings for time zone and daylight savings time
correspond to your locale.

STEP 7 includes|instructions (Page|286) to read and write the system time (RD_SYS_T and
WR_SYS_T), to read the local time (RD_LOC_T), and to set the time zone
(SET_TIMEZONE). The RD_LOC_T instruction calculates local time using the time zone and
daylight saving time offsets that you set in the "Time of day" configuration in the|general
properties of the CPU|(Page 142). These settings enable you to set your time zone for local
time, optionally enable daylight saving time, and specify the start and end dates and times
for daylight saving time. You can also use the SET_TIMEZONE instructions to configure
these settings.

Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP
mode. For any output of a CPU, SB or SM, you can set the outputs to either freeze the value
or use a substitute value:

e Substituting a specified output value (default): You enter a substitute value for each
output (channel) of that CPU, SB, or SM device.

The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

® Freezing the outputs to remain in last state: The outputs retain their current value at the
time of the transition from RUN to STOP. After power up, the outputs are set to the
default substitute value.

You configure the behavior of the outputs in Device Configuration. Select the individual
devices and use the "Properties" tab to configure the outputs for each device.

When the CPU changes from RUN to STOP, the CPU retains the process image and writes
the appropriate values for both the digital and analog outputs, based upon the configuration.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.2

4.21

4.2 Dala storage, memory areas, I/O and addressing

Data storage, memory areas, 1/0 and addressing

Accessing the data of the S7-1200

STEP 7 facilitates symbolic programming. You create symbolic names or "tags" for the
addresses of the data, whether as PLC tags relating to memory addresses and 1/O points or
as local variables used within a code block. To use these tags in your user program, simply
enter the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the
following paragraphs explain the "absolute" addressing that is referenced by the PLC tags.
The CPU provides several options for storing data during the execution of the user program:

® Global memory: The CPU provides a variety of specialized memory areas, including
inputs (1), outputs (Q) and bit memory (M). This memory is accessible by all code blocks
without restriction.

e PLC tag table: You can enter symbolic names in the STEP 7 PLC tag table for specific
memory locations. These tags are global to the STEP 7 program and allow programming
with names that are meaningful for your application.

e Data block (DB): You can include DBs in your user program to store data for the code
blocks. The data stored persists when the execution of the associated code block comes
to an end. A "global" DB stores data that can be used by all code blocks, while an
instance DB stores data for a specific FB and is structured by the parameters for the FB.

¢ Temp memory: Whenever a code block is called, the operating system of the CPU
allocates the temporary, or local, memory (L) to be used during the execution of the
block. When the execution of the code block finishes, the CPU reallocates the local
memory for the execution of other code blocks.

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. References to the input (I) or
output (Q) memory areas, such as 10.3 or Q1.7, access the process image. To immediately
access the physical input or output, append the reference with ":P" (such as 10.3:P, Q1.7:P,
or "Stop:P").

Table 4- 18 Memory areas

Memory area Description Force Retentive
| Copied from physical inputs at the beginning of the scan No No
Process image input cycle
I_:P1 Immediate read of the physical input points on the CPU, Yes No
(Physical input) SB, and SM
Q Copied to physical outputs at the beginning of the scan No No
Process image output cycle
Q_P1 Immediate write to the physical output points on the Yes No
(Physical output) CPU, SB, and SM
M Control and data memory No Yes
Bit memory (optional)
S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 105

PLC concepfts

4.2 Data storage, memory areas, l/O and addressing

Memory area Description Force Retentive
L Temporary data for a block local to that block No No
Temp memory

DB Data memory and also parameter memory for FBs No Yes
Data block (optional)

1 To immediately access (read or write) the physical inputs and physical outputs, append a ":P" to the address or tag
(such as 10.3:P, Q1.7:P, or "Stop:P").

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. The absolute address consists
of the following elements:

® Memory area identifier (such as |, Q, or M)
e Size of the data to be accessed ("B' for Byte, "W" for Word, or "D" for DWord)
e Starting address of the data (such as byte 3 or word 3)

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for
the size. You enter only the memory area, the byte location, and the bit location for the data
(such as 10.0, Q0.1, or M3.4).

M3 .4
® ©0o
0
1
2
3 ®
4
5
7 6 5§ 4 3 2 1 0
®
A Memory area identifier E Bytes of the memory area
B Byte address: byte 3 F Bits of the selected byte
Cc Separator ("byte.bit")

D Bit location of the byte (bit 4 of 8)

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3)
are followed by a period (".") to separate the bit address (bit 4).

Accessing the data in the memory areas of the CPU

STEP 7 facilitates symbolic programming. Typically, tags are created either in PLC tags, a
data block, or in the interface at the top of an OB, FC, or FB. These tags include a name,
data type, offset, and comment. Additionally, in a data block, a start value can be specified.
You can use these tags when programming by entering the tag name at the instruction
parameter. Optionally you can enter the absolute operand (memory area, size and offset) at
the instruction parameter. The examples in the following sections show how to enter
absolute operands. The % character is inserted automatically in front of the absolute
operand by the program editor. You can toggle the view in the program editor to one of
these: symbolic, symbolic and absolute, or absolute.

S7-1200 Programmable controller
106 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.2 Dala storage, memory areas, I/O and addressing

| (process image input): The CPU samples the peripheral (physical) input points just prior to
the cyclic OB execution of each scan cycle and writes these values to the input process
image. You can access the input process image as bits, bytes, words, or double words. Both
read and write access is permitted, but typically, process image inputs are only read.

Table 4- 19 Absolute addressing for | memory

Bit I[byte address].[bit address] 10.1
Byte, Word, or Double Word I[size][starting byte address] B4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs
of the CPU, SB or SM. The difference between an access using |_:P instead of | is that the
data comes directly from the points being accessed rather than from the input process
image. This I_:P access is referred to as an "immediate read" access because the data is
retrieved immediately from the source instead of from a copy that was made the last time the
input process image was updated.

Because the physical input points receive their values directly from the field devices
connected to these points, writing to these points is prohibited. That is, |_:P accesses are
read-only, as opposed to | accesses which can be read or write.

I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to start at 14.0, then the input points can be accessed as 14.0:P and 14.1:P or as |1B4:P.
Accesses to 14.2:P through 14.7:P are not rejected, but make no sense since these points are
not used. Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset
associated with the SB.

Accesses using |_:P do not affect the corresponding value stored in the input process image.

Table 4- 20 Absolute addressing for | memory (immediate)

Bit I[byte address].[bit address]:P 10.1:P
Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to
the physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Table 4- 21 Absolute addressing for Q memory

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

By appending a ":P" to the address, you can immediately write to the physical digital and
analog outputs of the CPU, SB or SM. The difference between an access using Q_:P instead
of Q is that the data goes directly to the points being accessed in addition to the output
process image (writes to both places). This Q_:P access is sometimes referred to as an
"immediate write" access because the data is sent immediately to the target point; the target
point does not have to wait for the next update from the output process image.

Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 107

PLC concepfts

4.2 Data storage, memory areas, l/O and addressing

108

Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or
SM, rounded up to the nearest byte. For example, if the outputs of a 2 DI/ 2 DQ SB are
configured to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or
as QB4:P. Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since
these points are not used. Accesses to QW4:P and QD4:P are prohibited since they exceed
the byte offset associated with the SB.

Accesses using Q_:P affect both the physical output as well as the corresponding value
stored in the output process image.

Table 4- 22 Absolute addressing for Q memory (immediate)

Bit Q[byte address].[bit address]:P Q1.1:P
Byte, Word, or Double word Qfsize][starting byte address]:P QB5:P, QW10:P or QD40:P

M (bit memory area): Use the bit memory area (M memory) for both control relays and data
to store the intermediate status of an operation or other control information. You can access
the bit memory area in bits, bytes, words, or double words. Both read and write access is
permitted for M memory.

Table 4- 23 Absolute addressing for M memory

Bit M[byte address].[bit address] M26.7

Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis.
The CPU allocates the temp memory for the code block and initializes the memory locations
to 0 at the time when it starts the code block (for an OB) or calls the code block (for an FC or
FB).

Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:

¢ M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data
is available globally for all of the elements of the user program.

® Temp memory: The CPU restricts access to the data in temp memory to the OB, FC, or
FB that created or declared the temp memory location. Temp memory locations remain
local and different code blocks do not share temp memory, even when the code block
calls another code block. For example: When an OB calls an FC, the FC cannot access
the temp memory of the OB that called it.

The CPU provides temp (local) memory for each OB priority level:

® 16 Kbytes for startup and program cycle, including associated FBs and FCs

® 6 Kbytes for each additional interrupt event thread, including associated FBs and FCs
You access temp memory by symbolic addressing only.

DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can access data block
memory in bits, bytes, words, or double words. Both read and write access is permitted for
read/write data blocks. Only read access is permitted for read-only data blocks.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.2 Dala storage, memory areas, I/O and addressing

Table 4- 24 Absolute addressing for DB memory

Bit DB[data block number].DBX[byte DB1.DBX2.3
address].[bit address]

Byte, Word, or Double DBJ[data block number].DB [size][starting | DB1.DBB4, DB10.DBW2,
Word byte address] DB20.DBD8

Note

When you specify an absolute address in LAD or FBD, STEP 7 precedes this address with a
"%" character to indicate that it is an absolute address. While programming, you can enter
an absolute address either with or without the "%" character (for example %10.0 or 1.0). If
omitted, STEP 7 supplies the "%" character.

In SCL, you must enter the "%" before the address to indicate that it is an absolute address.
Without the "%", STEP 7 generates an undefined tag error at compile time

Configuring the 1/0 in the CPU and I/O modules

T ' When you add a CPU and I/O modules to your

| ' configuration screen, | and Q addresses are
automatically assigned. You can change the
default addressing by selecting the address field in
the device configuration and typing new numbers.

¢ Digital inputs and outputs are assigned in
groups of 8 points (1 byte), whether the module
uses all the points or not.

e Analog inputs and outputs are assigned in

Device overdew

 iazae St iaddress Qadde pe order groups of 2 points (4 bytes).
103
102
R5485_1 101 OM 1241 (RS485) 6E57
= FLCY 1 CRUNN4C DODD 6EST
on4mono 1.4 0.1 0.1 DLmo10
A2 12 E4..67 A2
ADT =126 1.3 081 AD1 signel bosrd EEST
HSC_1 116 1000 High speed courts
HSC.2 117 High speed county
HSL_3 118 High speed counts
HSC 4 119 High speed courty
HSC_5 1.20 High speed counts
HEL_& 1.1 High speed county
Fulse_1 132 Pulse ganarator (P
Pulse_2 133 Pulse genarstor (P
* PROFINET L. X1 PROFINET inborface
Dl = 24VDC. T] SM 1221 DB x 24, GEST

The figure shows an example of a CPU 1214C with two SMs and one SB. In this example,
you could change the address of the DI8 module to 2 instead of 8. The tool assists you by
changing address ranges that are the wrong size or conflict with other addresses.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 109

PLC concepfts

4.3 Processing of analog values

4.3

44

110

Processing of analog values

Analog signal modules provide input signals or expect output values that represent either a
voltage range or a current range. These ranges are +10V, 5V, +2.5V, or 0 - 20 mA. The
values returned by the modules are integer values where 0 to 27648 represents the rated
range for current, and -27648 to 27648 for voltage. Anything outside the range represents
either an overflow or underflow. See the tables for|analog input representation (Page 916)
and|analog output representation (Page|917) for details.

In your control program, you probably need to use these values in engineering units, for
example to represent a volume, temperature, weight or other quantitative value. To do this
for an analog input, you must first normalize the analog value to a real (floating point) value
from 0.0 to 1.0. Then you must scale it to the minimum and maximum values of the
engineering units that it represents. For values that are in engineering units that you need to
convert to an analog output value, you first normalize the value in engineering units to a
value between 0.0 and 1.0, and then scale it between 0 and 27648 or -27648 to 27648,
depending on the range of the analog module. STEP 7 provides the NORM_X and SCALE_X
instructions (Page|251) for this purpose. You can also use the| CALCULATE instruction
(Page 229) to scale the|analog values (Page|39).

Data types

Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be
used by that instruction (example: the IN1 input of an ADD instruction). An actual parameter
is the memory location (preceded by a "%" character) or constant containing the data to be
used by the instruction (example %MD400 "Number_of _Widgets"). The data type of the
actual parameter specified by you must match one of the supported data types of the formal
parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
(direct) memory address. Tags associate a symbolic name (tag name) with a data type,
memory area, memory offset, and comment, and can be created either in the PLC tags
editor or in the Interface editor for a block (OB, FC, FB and DB). If you enter an absolute
address that has no associated tag, you must use an appropriate size that matches a
supported data type, and a default tag will be created upon entry.

All data types except String, Struct, Array, and DTL are available in the PLC tags editor and
the block Interface editors. String, Struct, Array, and DTL are available only in the block
Interface editors. You can also enter a constant value for many of the input parameters.

e Bit and Bit sequences (Page|111): Bool (Boolean or bit value), Byte (8-bit byte value),
Word (16-bit value), DWord (32-bit double-word value)

® Integer (Page 112)
— USInt (unsigned 8-bit integer), Sint (signed 8-bit integer),
— Ulnt (unsigned 16-bit integer), Int (signed 16-bit integer)
— UDInt (unsigned 32-bit integer), DInt (signed 32-bit integer)

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

441

4.4 Data types

® Floating-point Real (Page 112): Real (32-bit Real or floating-point value), LReal (64-bit
Real or floating-point value)

e Time and Date (Page 113): Time (32-bit IEC time value), Date (16-bit date value), TOD
(32-bit time-of-day value), DTL (12-byte date-and-time structure)

® Character and String|(Page|114): Char (8-bit single character), String (variable-length
string of up to 254 characters)

® Array|(Page|116)

e Data structure|(Page 117): Struct
e PLC Data type (Page 117)
® Pointers (Page 118): Pointer, Any, Variant

Although not available as data types, the following BCD numeric format is supported by the
conversion instructions.

Table 4- 25 Size and range of the BCD format

Format | Size (bits) | Numeric Range Constant Entry Examples
BCD16 |16 -999 to 999 123, -123
BCD32 |32 -9999999 to 9999999 1234567, -1234567

Bool, Byte, Word, and DWord data types

Table 4- 26 Bit and bit sequence data types

Data Bit Number Number Constant Address
type size type range examples examples
Bool 1 Boolean FALSE or TRUE TRUE, 1, 11.0
Binary Oor1 0, 2#0 Q0.1
M50.7
Octal 8#0 or 8#1 8#1 DB1.DBX2.3
Hexadecimal 16#0 or 16#1 16#1 Tag_name
Byte 8 Binary 2#0 to 2#11111111 2#00001111 1B2
Unsigned integer | 0 to 255 15 MB10
DB1.DBB4
Octal 8#0 to 8#377 8#17 Tag_name
Hexadecimal B#16#0 to B#16#FF B#16#F, 16#F
Word 16 Binary 2#0 to 2#1111111111111111 2#1111000011110000 MW10
Unsigned integer | 0 to 65535 61680 DB1.DBW2
Tag_name
Octal 8#0 to 8#177777 8#170360
Hexadecimal W#16#0 to W#16#FFFF, W#16#FOFO0, 16#F0F0
16#0 to 16#FFFF
DWord 32 Binary 2#0 to 2#111100001111111100 | MD10
2#111111111111111111111111 | 001111 DB1.DBD8
11111111 Tag_name
Unsigned integer | 0 to 4294967295 15793935

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

111

PLC concepfts

4.4 Data types
Data Bit Number Number Constant Address
type size type range examples examples
Octal 8#0 to 8#37777777777 8H#74177417
Hexadecimal DW#16#0000_0000 to DW#16#FOFFOF,
DW#16#FFFF_FFFF, 16#FOFFOF
16#0000_0000 to
16#FFFF_FFFF
442 Integer data types
Table 4- 27 Integer data types (U = unsigned, S = short, D= double)
Data type Bit size Number Range Constant examples Address
examples
USInt 8 0 to 255 78, 2#01001110 MBO, DB1.DBB4,
Sint 8 -128 to 127 +50, 16#50 Tag_name
Ulnt 16 0 to 65,535 65295, 0 MW2, DB1.DBW?2,
Int 16 -32,768 to 32,767 30000, +30000 Tag_name
UDInt 32 0 to 4,294,967,295 4042322160 MD6, DB1.DBDS,
Dint 32 -2,147,483,648 to -2131754992 Tag_name
2,147,483,647
443 Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real),
or 64-bit double-precision numbers (LReal) as described in the ANSI/IEEE 754-1985
standard. Single-precision floating-point numbers are accurate up to 6 significant digits and
double-precision floating point numbers are accurate up to 15 significant digits. You can
specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-point
constant to maintain precision.

Table 4- 28 Floating-point real data types (L=Long)

Data type | Bit size | Number range Constant Examples Address examples
Real 32 -3.402823e+38 to -1.175 495e-38, 123.456, -3.4, 1.0e-5 MD100, DB1.DBDS,
+0, Tag_name
+1.175 495e-38 to +3.402823e+38
LReal 64 -1.7976931348623158e+308 to 12345.123456789e40, DB_name.var_name
-2.2250738585072014e-308, 1.2E+40 Rules:
10, . .
+2.2250738585072014e-308 to ¢ No direct addressing
+1.7976931348623158e+308 support
e Can be assigned in an OB,
FB, or FC block interface
table
S7-1200 Programmable controller
112 System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.4 Data types

Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6 (Real), or 15 (LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

444 Time and Date data types

Table 4-29 Time and date data types

Data type Size Range Constant Entry Examples
Time 32 bits | T#-24d_20h_31m_23s_648ms to T#5m_30s
T#24d_20h_31m_23s_647ms T#1d_2h_15m_30s_45ms
Stored as: -2,147,483,648 ms to +2,147,483,647 | TIME#10d20h30m20s630ms
ms 500h10000ms
10d20h30m20s630ms
Date 16 bits D#1990-1-1 to D#2168-12-31 D#2009-12-31
DATE#2009-12-31
2009-12-31
Time_of_Day 32 bits | TOD#0:0:0.0 to TOD#23:59:59.999 TOD#10:20:30.400
TIME_OF_DAY#10:20:30.400
23:10:1
DTL 12 bytes | Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20:30:20.250
(Date and Time Max.: DTL#2554-12-31-23:59:59.999 999 999
Long)
Time

TIME data is stored as a signed double integer interpreted as milliseconds. The editor format
can use information for day (d), hours (h), minutes (m), seconds (s) and milliseconds (ms).

It is not necessary to specify all units of time. For example T#5h10s and 500h are valid.

The combined value of all specified unit values cannot exceed the upper or lower limits in
milliseconds for the Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

Date
DATE data is stored as an unsigned integer value which is interpreted as the number of days
added to the base date 01/01/1990, to obtain the specified date. The editor format must
specify a year, month and day.

TOD

TOD (TIME_OF_DAY) data is stored as an unsigned double integer which is interpreted as
the number of milliseconds since midnight for the specified time of day (Midnight = 0 ms).
The hour (24hr/day), minute, and second must be specified. The fractional second
specification is optional.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 113

PLC concepfts

4.4 Data types

DTL

Table 4- 30 Size and range for DTL

DTL (Date and Time Long) data type uses a12 byte structure that saves information on date
and time. You can define DTL data in either the Temp memory of a block or in a DB. A value
for all components must be entered in the "Start value" column of the DB editor.

Length Format Value range Example of value input
(bytes)

12 Clock and calendar Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20:30:20.250

Year-Month-Day:Hour:Minute: Max.: DTL#2554-12-31-23:59:59.999
Second.Nanoseconds 999 999
Each component of the DTL contains a different data type and range of values. The data
type of a specified value must match the data type of the corresponding components.

Table 4- 31 Elements of the DTL structure

Byte Component Data type Value range

0 Year UINT 1970 to 2554

1

2 Month USINT 1t0 12

3 Day USINT 1to 31

4 Weekday ' USINT 1(Sunday) to 7(Saturday) !

5 Hour USINT 0to 23

6 Minute USINT 0to 59

7 Second USINT 0to 59

8 Nanoseconds UDINT 0 to 999 999 999

9

10

11

1 The weekday is not considered in the value entry.

44.5

Character and String data types

Table 4- 32 Character and String data types

Data type Size Range Constant Entry Examples
Char 8 bits ASCII character codes: 16#00 to 16#FF ALY'@'
String n+ 2 bytes | n = (0 to 254 character bytes) 'ABC'
S7-1200 Programmable controller
114 System Manual, 03/2014, ASE02486680-AG

PLC concepfts

Char

String

4.4 Data types

Char data occupies one byte in memory and stores a single character coded in ASCII
format. The editor syntax uses a single quote character before and after the ASCII character.
Visible characters and control characters can be used. A table of valid control characters is
shown in the description of the String data type.

The CPU supports the String data type for storing a sequence of single-byte characters. The
String data type contains a total character count (humber of characters in the string) and the
current character count. The String type provides up to 256 bytes for storing the maximum
total character count (1 byte), the current character count (1 byte), and up to 254 characters,
with each character stored in 1 byte.

You can use literal strings (constants) for instruction parameters of type IN using single
quotes. For example, ‘ABC’ is a three-character string that could be used as input for
parameter IN of the S_CONYV instruction. You can also create string variables by selecting
data type "String" in the block interface editors for OB, FC, FB, and DB. You cannot create a
string in the PLC tags editor.

You can specify the maximum string size in bytes by entering square brackets after the
keyword "String" (once the data type "String" is selected from a data type drop-list). For
example, "MyString String[10]" would specify a 10-byte maximum size for MyString. If you do
not include the square brackets with a maximum size, then 254 is assumed.

The following example defines a String with maximum character count of 10 and current
character count of 3. This means the String currently contains 3 one-byte characters, but
could be expanded to contain up to 10 one-byte characters.

Table 4- 33 Example of a String data type

Total Character Current Character Character 1 Character 2 Character 3 Character 10
Count Count
10 3 'C' (16#43) '‘A' (16#41) T' (16#54) -
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 11

ASCII control characters can be used in Char and String data. The following table shows
examples of control character syntax.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

115

PLC concepfts

4.4 Data types

Table 4- 34 Valid ASCII control characters

Control characters ASCII Hex value Control function Examples
$L or $I 0A Line feed '$LText', 'SOAText'
SN or $n 0A and 0D Line break '$NText', '$0A$0DText'
The new line shows two characters in the
string.
$P or $p 0C Form feed '$PText', '$0CText'
$R or $r 0D Carriage return (CR) '$RText','$0DText'
$T or $t 09 Tab '$TText', '$09Text'
$$ 24 Dollar sign '100$$', '100$24"
$ 27 Single quote '$'Text$",'$27 Text$27"
4.4.6 Array data type
Arrays

You can create an array that contains multiple elements of the same data type. Arrays can
be created in the block interface editors for OB, FC, FB, and DB. You cannot create an array

in the PLC tags editor.

To create an array from the block interface editor, name the array and choose data type

"Array [lo .. hi] of type", then edit "lo", "hi", and "type" as follows:

® |o - the starting (lowest) index for your array

® hi - the ending (highest) index for your array

® type - one of the data types, such as BOOL, SINT, UDINT

Table 4- 35 ARRAY data type rules

Data Type Array syntax

ARRAY Name [index1_min..index1_max, index2_min..index2_max] of <data type>

All array elements must be the same data type.

The index can be negative, but the lower limit must be less than or equal to the upper limit.

Arrays can have one to six dimensions.

Multi-dimensional index min..max declarations are separated by comma characters.

Nested arrays, or arrays of arrays, are not allowed.

The memory size of an array = (size of one element * total number of elements in array)

Array index

Valid index data types Array index rules

Constant or
variable Dint

USint, Sint, Uint, Int, UDInt, e Value limits; -32768 to +32767

e Valid: Mixed constants and variables
o Valid: Constant expressions

e Not valid: Variable expressions

116

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.4 Data types
Example: array ARRAYT[1..20] of REAL One dimension, 20 elements
declarations ARRAY[-5..5] of INT One dimension, 11 elements
ARRAYT[1..2, 3..4] of CHAR Two dimensions, 4 elements
Example: array ARRAY1[0] ARRAY1 element 0
addresses ARRAY2[1,2] ARRAY?2 element [1,2]
ARRAY3Ji,j] Ifi =3 and j=4, then ARRAY3 element

[3, 4] is addressed

4.4.7 Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data
types. The struct data type can be used to handle a group of related process data as a single
data unit. A Struct data type is named and the internal data structure declared in the data
block editor or a block interface editor.

Arrays and structures can also be assembled into a larger structure. A structure can be
nested up to eight levels deep. For example, you can create a structure of structures that
contain arrays.

448 PLC data type

The PLC data type editor lets you define data structures that you can use multiple times in
your program. You create a PLC data type by opening the "PLC data types" branch of the
project tree and double-clicking the "Add new data type" item. On the newly created PLC
data type item, use two single-clicks to rename the default name and double-click to open
the PLC data type editor.

You create a custom PLC data type structure using the same editing methods that are used
in the data block editor. Add new rows for any data types that are necessary to create the
data structure that you want.

If a new PLC data type is created, then the new PLC type name will appear in the data type
selector drop drop-lists in the DB editor and code block interface editor.

Potential uses of PLC data types:

e PLC data types can be used directly as a data type in a code block interface or in data
blocks.

e PLC data types can be used as a template for the creation of multiple global data blocks
that use the same data structure.

For example, a PLC data type could be a recipe for mixing colors. You can then assign this
PLC data type to multiple data blocks. Each data block can then have the variables adjusted
to create a specific color.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 117

PLC concepfts

4.4 Data types

449 Pointer data types
The pointer data types (Pointer, Any, and Variant) can be used in the block interface tables
for FB and FC code blocks. You can select a pointer data type from the block interface data
type drop-lists.
The Variant data type is also used for instruction parameters.

4491 "Pointer" pointer data type

The data type Pointer points to a particular variable. It occupies 6 bytes (48 bits) in memory
and can include the following information:

® DB number or 0 if the data is not stored in a DB
e Storage area in the CPU

® \Variable address

Pointer format

Bit Bit

15 .8 7 0
Byte 0 Byte 1
Byte 2 Memory area o|lo|lofofo|b|b|b|Byte3
Byte 4 b|b|b|b|b|b|b|b b(b|b|b|b|x|x|x]| Byteb

~ —

b = byte address X = bit address

Depending on the instruction, you can declare the following three types of pointers:

® Area-internal pointer: contains data on the address of a variable

® Area-crossing pointer: contains data on the memory area and the address of a variable

® DB-pointer: contains a data block number and the address of a variable

Table 4- 36 Pointer types:

Type Format Example entry
Area-internal pointer P#Byte.Bit P#20.0
Area-crossing pointer P#Memory_area_Byte.Bit P#M20.0

DB-pointer

P#Data_block.Data_element

P#DB10.DBX20.0

You can enter a parameter of type Pointer without the prefix (P #). Your entry will be
automatically converted to the pointer format.

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

PLC concepfts

Table 4- 37 Memory area encoding in the Pointer data:

4.4 Data types

4.49.2

Hexadecimal code Data type Description

b#16#81 | Input memory area
b#16#82 Q Output memory area
b#16#83 M Marker memory area
b#16#84 DBX Data block

b#16#85 DIX Instance data block
b#16#86 L Local data

b#16#87 Vv Previous local data

"Any" pointer data type

The pointer data type ANY ("Any") points to the beginning of a data area and specifies its
length. The ANY pointer uses 10 bytes in memory and can include the following information:

e Data type: Data type of the data elements

® Repeat factor: Number of data elements

e DB Number: Data block in which data elements are stored

e Storage area: Memory area of the CPU, in which the data elements are stored
e Start address: "Byte.Bit" starting address of the data

The following image shows the structure of the ANY pointer:

Bit Bit

15 .. 1 ..0
Byte 0 Dete tyne Byte 1
Byte 2 Repeat factor Byw3
Byte 4 Byte 5
Byte 6 Memory area olololo|lo|b|b|b| Byte?
Byte 8 b| b| b| b| b| b| b| bl bl b|b{b|b|x|x|x]| Byte9

—~ \.W_./

b = Byte adress X = Bit adress

A pointer can not detect ANY structures. It can only be assigned to local variables.

Table 4- 38 Format and examples of the ANY pointer:

Format Entry example Description

P#Data_block.Memory_area P#DB 11.DBX 20.0 INT 10

Data_address Type Number

10 words in global DB 11
starting from DBB 20.0

P#Memory_area Data_address | P#M 20.0 BYTE 10 10 bytes starting from MB 20.0

Type Number P#l 1.0 BOOL 1 Input 11.0

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 119

PLC concepfts

4.4 Data types
Table 4- 39 Data type encoding in the ANY pointer
Hexadecimal code Data type Description
b#16#00 Null Null pointer
b#16#01 Bool Bits
b#16#02 Byte Bytes, 8 Bits
b#16#03 Char 8-bit character
b#16#04 Word 16-bit-word
b#16#05 Int 16-bit-integer
b#16#37 Sint 8-bit-integer
b#16#35 Ulint 16-bit unsigned integer
b#16#34 uUSint 8-bit unsigned integer
b#16#06 DWord 32-bit double word
b#16#07 Dint 32-bit double integer
b#16#36 UDiInt 32-bit-unsigned double integer
b#16#08 Real 32-Bit floating point
b#16#0B Time Time
b#16#13 String Character string
Table 4- 40 Memory area encoding in the ANY pointer:
Hexadecimal code Memory area Description
b#16#81 | Input memory area
b#16#82 Q Output memory area
b#16#83 M Marker memory area
b#16#84 DBX Data block
b#16#85 DIX Instance data block
b#16#86 L Local data
b#16#87 \% Previous local data
4493 "Variant" pointer data type
The data type Variant can point to variables of different data types or parameters. The
Variant pointer can point to structures and individual structural components. The Variant
pointer does not occupy any space in memory.
Table 4- 41 Properties of the Variant pointer

Length Representation Format Example entry
(Byte)
0 Symbolic Operand MyTag
DB_name.Struct_name.element_name MyDB.Struct1.pressure1
Absolute Operand %MW10
DB_number.Operand Type Length P#DB10.DBX10.0 INT 12
S7-1200 Programmable controller
120 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4410

4.4 Data types

Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on
their size. The syntax for accessing such a data slice is as follows:

e "<PLC tag name>".xn (bit access)

e "<PLC tag name>".bn (byte access)

e "<PLC tag name>".wn (word access)

e "<Data block name>".<tag name>.xn (bit access)

e "<Data block name>".<tag name>.bn (byte access)
e "<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word 0 - 1. A word-
sized tag can be accessed by bits 0 - 15, bytes 0 - 1, or word 0. A byte-sized tag can be
accessed by bits 0 - 7, or byte 0. Bit, byte, and word slices can be used anywhere that bits,
bytes, or words are expected operands.

BYTE

WORD

x31|x30] x29|x28 [x27 [x26 | x25|x24| x23|x22 | x21| x20| x19| x 18| x17[x16|

b3

b2

w1

Note

Valid data types that can be accessed by slice are Byte, Char, Conn_Any, Date, Dint,
DWord, Event_Any, Event_Att, Hw_Any, Hw_Device, HW_Interface, Hw_lo, Hw_Pwm,
Hw_SubModule, Int, OB_Any, OB_Att, OB_Cyclic, OB_Delay, OB_WHINT, OB_PCYCLE,
OB_STARTUP, OB_TIMEERROR, OB_Tod, Port, Rtm, Sint, Time, Time_Of_Day, UDInt,
Ulnt, USInt, and Word. PLC Tags of type Real can be accessed by slice, but data block tags
of type Real cannot.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 121

PLC concepts

4.4 Data types
Examples
In the PLC tag table, "DW" is a declared tag of type DWORD. The examples show bit, byte,
and word slice access:
LAD FBD SCL
Bit access "D 1 1 5 IF "DW".x11l THEN
"DW" 1 — ce
— = N . END_IF;
Byte access O b3 - IF "DW".b2 = "DW".b3
| . | B;rt_e THEN
e "D b2 — IN1
DW".b3 "D hE — N2 : END_IF;
Word access out:= "DW".w0 AND
AND AMD DWW wl -
Word word DW" .wl;
Er EMC = EM
"Dl — N1 ouT "D sae) — I ouT
D"l — N2 2k "D] —| N2 s ERNOF
441 Accessing a tag with an AT overlay
The AT tag overlay allows you to access an already-declared tag of a standard access block
with an overlaid declaration of a different data type. You can, for example, address the
individual bits of a tag of a Byte, Word, or DWord data type with an Array of Bool.
Declaration
To overlay a parameter, declare an additional parameter directly after the parameter that is
to be overlaid and select the data type "AT". The editor creates the overlay, and you can
then choose the data type, struct, or array that you wish to use for the overlay.
Example

This example shows the input parameters of a standard-access FB. The byte tag B1 is
overlaid with an array of Booleans:

] B Biyte
- AT AT"B1" Array [0.7] of Bool
L] AT[O] Bool
L] AT[1] Eool
L] AT[2] Bool
L] AT[3] Eool
L] AT[4] Bool
L] AT[S] Eool
L] AT[e] Bool
L] AT[7] Eool

S7-1200 Programmable controller
122 System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.4 Data types
Table 4- 42 Overlay of a byte with a Boolean array
7 6 5 4 3 2 1 0
AT[O] AT[1] AT[2] AT[3] AT[4] ATI[5] ATI[6] AT[7]
Another example is a DWord tag overlaid with a Struct:
= Dl Dwiord
w» DW1_Struct AT "Dw1" Struct
= 31 wiord
= 52 Byte
] 53 Byte
The overlay types can be addressed directly in the program logic:
LAD FBD SCL
#aT[1] & IF #AT[1] THEN
— #AT[1] — ce
@ i END_IF;
IF (#DW1 Struct.Sl1l =
#DW1_Struct.51 == —
I - | word W#16#000C) THEN
Word #DW_Struct.51 — IN1 e
Wr#16X000C WHTERIN0C — IN2] END_IF;
outl := #DW1l_Struct.S2;
RIGHE FADWE
EN ENO -
#DW_StructS2 — N sk OUTI wom=EN s OUTY
#DW1_Struct. 52 — IN END -

Rules

Overlaying of tags is only possible in FB and FC blocks with standard access.

You can overlay parameters for all block types and all declaration sections.

An overlaid parameter can be used like any other block parameter.

You cannot overlay parameters of type VARIANT.

The size of the overlaying parameter must be less than or equal to the size of the overlaid
parameter.

The overlaying variable must be declared immediately after the variable that it overlays
and identified with the keyword "AT".

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

123

PLC concepfts

4.5 Using a memory card

4.5

124

Using a memory card

Note
The CPU supports only the pre-formatted| SIMATIC memory cards|(Page 978).

Before you copy any program to the formatted memory card, delete any previously saved
program from the memory card.

Use the memory card either as a transfer card or as a program card. Any program that you
copy to the memory card contains all of the code blocks and data blocks, any technology
objects, and the device configuration. A copied program does not contain force values.

e Use atransfer card |(Page 127) to copy a program to the internal load memory of the CPU
without using STEP 7. After you insert the transfer card, the CPU first erases the user
program and any force values from the internal load memory, and then copies the
program from the transfer card to the internal load memory. When the transfer process is
complete, you must remove the transfer card.

You can use an empty transfer card to access a password-protected CPU when the
password has been lost or forgotten |(Page 136). Inserting the empty transfer card deletes
the password-protected program in the internal load memory of the CPU. You can then
download a new program to the CPU.

e Use a program card|(Page|130) as external load memory for the CPU. Inserting a
program card in the CPU erases all of the CPU internal load memory (the user program
and any force values). The CPU then executes the program in external load memory (the
program card). Downloading to a CPU that has a program card updates only the external
load memory (the program card).

Because the internal load memory of the CPU was erased when you inserted the
program card, the program card must remain in the CPU. If you remove the program
card, the CPU goes to STOP mode. (The error LED flashes to indicate that program card
has been removed.)

The copied program on a memory card includes the code blocks, the data blocks, the
technology objects, and the device configuration. The memory card does not contain any
force values. The force values are not part of the program, but are stored in the load
memory, whether the internal load memory of the CPU, or the external load memory (a
program card). If a program card is inserted in the CPU, STEP 7 then applies the force
values only to the external load memory on the program card.

You also use a memory card when downloading|firmware updates (Page 133).

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.5 Using a memory card

451 Inserting a memory card in the CPU

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

A WArRNING

Verify that the CPU is not running a process before inserting the memory card.

If you insert a memory card (whether configured as a program card, transfer card, or
firmware update card) into a running CPU, the CPU goes immediately to STOP mode,
which might cause process disruption that could result in death or severe personal injury.

Before inserting or removing a memory card, always ensure that the CPU is not actively
controlling a machine or process. Always install an emergency stop circuit for your
application or process.

Note
Do not insert V3.0 program transfer cards into S7-1200 V4.0 CPUs.

Version 3.0 program transfer cards are not compatible with version S7-1200 V4.0 CPUs.
Inserting a memory card that contains a V3.0 program causes a CPU error.

If you do insert an invalid version program transfer card (Page 127), you should remove the
card, and perform a STOP to RUN transition, a memory reset (MRES), or cycle power. After
you recover the CPU from the error condition, you can download a valid V4.0 CPU program.

To transfer a V3.0 program to a V4.0 program, you must use the TIA Portal to Change
Device in the Hardware Configuration.

Note

If you insert a memory card with the CPU in STOP mode, the diagnostic buffer displays a
message that the memory card evaluation has been initiated. The CPU will evaluate the
memory card the next time you either change the CPU to RUN mode, reset the CPU
memory with an MRES, or power-cycle the CPU.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 125

PLC concepfts

4.5 Using a memory card

To insert a memory card, open the top
CPU door and insert the memory card in
the slot. A push-push type connector
allows for easy insertion and removal.

The memory card is keyed for proper
installation.

S7-1200 Programmable controller
126 System Manual, 03/2014, ASE02486680-AG

PLC concepfts
4.5 Using a memory card

4.5.2 Configuring the startup parameter of the CPU before copying the project to the
memory card

When you copy a program to a transfer card or a program card, the program includes the
startup parameter for the CPU. Before copying the program to the memory card, always
ensure that you have configured the operating mode for the CPU following a power-cycle.
Select whether the CPU starts in STOP mode, RUN mode, or in the previous mode (prior to
the power cycle).

Startup

Startup after POWER O Warm restart - UM -
Supported hardware [la restart (stay in STOF made)
cormpatibility
Farameter ESSIgI‘II‘ﬂE‘I‘IttIITIE
for distnbuted G | &0000 ms
45.3 Transfer card

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 127

PLC concepfts

4.5 Using a memory card

Creating a transfer card

Always remember to configure the startup parameter of the CPU |(Page|127) before copying
a program to the transfer card. To create a transfer card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program or a firmware
update, you must delete the program files before reusing the card. Use Windows Explorer
to display the contents of the memory card and delete the "S7_JOB.S7S" file and also
delete any existing "Data Logs" folders and directory folder (such as "SIMATIC.S7S" or
"FWUPDATE.S7S").

NOTICE
Do NOT delete the hidden files " LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Transfer" from the "Card type" drop-down menu.

At this point, STEP 7 creates the empty transfer card. If you are creating an empty
transfer card, such as to recover from a lost CPU password (Page|136), remove the
transfer card from the card reader.

St di
PR Storage medivm

Mefmnry space

Free space: | 25069056 Bytes
Used space: | 8450084 Bytes
Write-protected

Card characteristics

Marne |50 cad (9)

el s —

File systemc | FATA2
Capatity | 33550040 Bytes

Savigl number | SMC_3b5c090600

[Cancel

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

S7-1200 Programmable controller
128 System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.5 Using a memory card

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a transfer card

A WARNING

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your
process is in a safe state.

Note
Do not insert V3.0 program transfer cards into S7-1200 V4.0 CPUs.

Version 3.0 program transfer cards are not compatible with version S7-1200 V4.0 CPUs.
Inserting a memory card that contains a V3.0 program causes a CPU error.

If you do insert an invalid version program transfer card, then remove the card, perform a
STOP to RUN transition, a memory reset (MRES), or cycle power. After you recover the
CPU from the error condition, you can download a valid V4.0 CPU program

To transfer the program to a CPU, follow these steps:

1. Insert the transfer card into the CPU (Page|125). If the CPU is in RUN, the CPU will go to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the rebooting and evaluating the memory card, the CPU copies the program to the
internal load memory of the CPU.

The RUN/STOP LED alternately flashes green and yellow to indicate that the program is
being copied. When the RUN/STOP LED turns on (solid yellow) and the MAINT LED
flashes, the copy process has finished. You can then remove the memory card.

4. Reboot the CPU (either by restoring power or by the alternative methods for rebooting) to
evaluate the new program that was transferred to internal load memory.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the project.

Note

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 129

PLC concepfts

4.5 Using a memory card

454

Program card

NOTICE

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

Before you copy any program elements to the program card, delete any
previously saved programs from the memory card.

Creating a program card

130

When used as a program card, the memory card is the external load memory of the CPU. If
you remove the program card, the internal load memory of the CPU is empty.

Note

If you insert a blank memory card into the CPU and perform a memory card evaluation by
either power cycling the CPU, performing a STOP to RUN transition, or performing a
memory reset (MRES), the program and force values in internal load memory of the CPU are
copied to the memory card. (The memory card is now a program card.) After the copy has
been completed, the program in internal load memory of the CPU is then erased. The CPU
then goes to the configured startup mode (RUN or STOP).

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.5 Using a memory card

Always remember to configure the startup parameter of the CPU |(Page|127) before copying
a project to the program card. To create a program card, follow these steps:

1.

Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program or a firmware
update, you must delete the program files before reusing the card. Use Windows Explorer
to display the contents of the memory card and delete the "S7_JOB.S7S" file and also
delete any existing "Data Logs" folders and any directory folder (such as "SIMATIC.S7S"
or "FWUPDATE.S7S").

NOTICE
Do NOT delete the hidden files " LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__"and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select

your card reader.

. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the

memory card in the card reader and selecting "Properties" from the context menu.

In the "Memory card" dialog, select "Program" from the drop-down menu.

Storage medium ,.
B Storage medi =i

Memory space

Fres space: | IS136138 Bytes
Used spamces | 8422912 Bytes

‘Write-protected

Card characteristics
Wame: |50 cand (5
File syscemc | FATI2

Caparity | 33559040 Mhtes

Sedial numiber SMC_3b50897100

Wiable far | HWLPLEC 1200

PLC card mode
cadpe T -
]

Ok qancel

Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 131

PLC concepfts

4.5 Using a memory card

Using a program card as the load memory for your CPU

132

A WArRNING

Risks associated with inserting a program card
Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a memory card, always ensure that the CPU is offline and in a safe state.

To use a program card with your CPU, follow these steps:

1. Insert the program card into the CPU. If the CPU is in RUN mode, the CPU goes to STOP
mode. The maintenance (MAINT) LED flashes to indicate that the memory card needs to
be evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the CPU reboots and evaluates the program card, the CPU erases the internal load
memory of the CPU.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the CPU.

The program card must remain in the CPU. Removing the program card leaves the CPU with
no program in internal load memory.

A\ WARNING

Risks associated with removing a program card

If you remove the program card, the CPU loses its external load memory and generates an
error. The CPU goes to STOP mode and flashes the error LED.

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death or serious injury to
personnel, and/or damage to equipment.

Do not remove the program card without understanding that you are removing the program
from CPU.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts
4.5 Using a memory card

4.5.5 Firmware update

You can use a memory card for performing a firmware update. Alternative methods include
using the module information page|(Page 616) of the Web server to perform a firmware
update, or using the online and diagnostic functions of STEP 7 to perform a firmware update
(Page|791). This chapter explains the method that uses a memory card.

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

You use a memory card when downloading firmware updates from customer support
(http://www.siemens.com/automation/). From this Web site, navigate to Automation
Technology > Automation Systems > SIMATIC Industrial Automation Systems > PLC >
Modular controllers SIMATIC S7 > SIMATIC S7-1200. From there continue navigating to the
specific type of module that you need to update. Under "Support", click the link for "Software
Downloads" to proceed.

Alternatively, you can access the S7-1200 downloads Web page
(http://support.automation.siemens.com/\WW/view/en/34612486/133100) directly.

Note
You cannot update an S7-1200 CPU V3.0 or earlier to S7-1200 V4.0 by firmware update.

NOTICE

Do not use the Windows formatter utility or any other formatting utility to reformat the
memory card.

If a Siemens memory card is reformatted using the Microsoft Windows formatter utility, then
the memory card will no longer be usable by a S7-1200 CPU.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 133

http://www.siemens.com/automation/
http://support.automation.siemens.com/WW/view/en/34612486/133100

PLC concepfts

4.5 Using a memory card

134

To download the firmware update to your memory card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

You can reuse a SIMATIC memory card that contains a user program or another firmware
update, but you must delete some of the files on the memory card.

To reuse a memory card, you must delete the "S7_JOB.S7S" file and any existing "Data
Logs" folders or any folder (such as "SIMATIC.S7S" or "FWUPDATE.S7S") before
downloading the firmware update. Use Windows Explorer to display the contents of the
memory card and to delete the file and folders.

NOTICE
Do NOT delete the hidden files " LOG__" and "crdinfo.bin" from the memory card.

The "__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

2. Select the self-extracting file (.exe) for the firmware update that corresponds to your
module, and download it to your computer. Double-click the update file, set the file
destination path to be the root directory of the SIMATIC memory card, and start the
extraction process. After the extraction is complete, the root directory (folder) of the
memory card will contain a "FWUPDATE.S7S" directory and the "S7_JOB.S7S" file.

3. Safely eject the card from the card reader/writer.

To install the firmware update, follow these steps:

A WARNING

Verify that the CPU is not actively running a process before installing the firmware update.

Installing the firmware update will cause the CPU to go to STOP mode, which could affect
the operation of an online process or machine. Unexpected operation of a process or
machine could result in death or injury to personnel and/or property damage.

Before inserting the memory card, always ensure that the CPU is offline and in a safe state.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

PLC concepfts

4.5 Using a memory card

1. Insert the memory card into the CPU. If the CPU is in RUN mode, the CPU then goes to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to start the firmware update. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

Note

To complete the firmware upgrade for the module, you must ensure that the external
24 VDC power to the module remains on.

After the CPU reboots, the firmware update starts. The RUN/STOP LED alternately
flashes green and yellow to indicate that the update is being copied. When the
RUN/STOP LED turns on (solid yellow) and the MAINT LED flashes, the copy process
has finished. You must then remove the memory card.

3. After removing the memory card, reboot the CPU again (either by restoring power or by
the alternative methods for rebooting) to load the new firmware.

The user program and hardware configuration are not affected by the firmware update.
When the CPU is powered up, the CPU enters the configured start-up state. (If the startup
mode for your CPU was configured to "Warm restart - mode before POWER OFF", the CPU
will be in STOP mode because the last state of the CPU was STOP.)

Note
Updating multiple modules connected to CPU

If your hardware configuration contains multiple modules that correspond to a single
firmware update file on the memory card, the CPU applies the updates to all applicable
modules (CM, SM, and SB) in configuration order, that is, by increasing order of the module
position in Device Configuration in STEP 7.

If you have downloaded multiple firmware updates to the memory card for multiple modules,
the CPU applies the updates in the order in which you downloaded them to the memory
card.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 135

PLC concepfts

4.6 Recovery from a lost password

4.6 Recovery from a lost password

If you have lost the password for a password-protected CPU, use an empty transfer card to
delete the password-protected program. The empty transfer card erases the internal load
memory of the CPU. You can then download a new user program from STEP 7 to the CPU.

For information about the creation and use of an empty transfer card, see the section of
transfer cards|(Page|127).

A WArRNING
Verify that the CPU is not actively running a process before inserting the memory card

If you insert a transfer card in a running CPU, the CPU goes to STOP. Control devices can
fail in an unsafe condition, resulting in unexpected operation of controlled equipment. Such
unexpected operations could result in death or serious injury to personnel, and/or damage
to equipment.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your
process is in a safe state.

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
136 System Manual, 03/2014, A5E02486680-AG

Device configuration

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

Communication module (CM) or communication processor (CP): Up to 3, inserted in slots 101,
102, and 103

CPU: Slot 1

Ethernet port of CPU

Signal board (SB), communication board (CB) or battery board (BB): up to 1, inserted in the
CPU

Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9

(CPU 1214C, CPU 1215C and CPU 1217C allow 8, CPU 1212C allows 2, CPU 1211C does not
allow any)

® ®0

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 137

Device configuration

5.1 Inserting a CPU

5.1

138

To create the device configuration,
add a device to your project.

¢ Inthe Portal view, select "Devices [
& Networks" and click "Add new
device".

¢ In the Project view, under the
project name, double-click "Add
new device".

)

Devices &
Huotworks

Devices

e
ot

*] Project]

Inserting a CPU

ﬂ"’ @ Show all devices

@ Add new device

ﬁ»\dd new device

You create your device configuration by inserting a CPU into your project. Be sure you insert
the correct model and firmware version from the list. Selecting the CPU from the "Add new

device" dialog creates the rack and CPU.

"Add new device" dialog

g v

» (@ U e panon:
» (@ U e panony
b [Uropecibed o7 1230

[— —
" e

- SRS

ORlrio: | ST 121 AR
anion: 13

i

Wk rmgory TS FI, M0 powns suppl weh
13 x 34N SARESIMEE. D08 AT ped
AL s s B B sl i i 3 jubie
algad o8 binid gl bunsd Sanadl o
[
il o oo Tl wodube
s e ey
FROMRET rea s cr i ograremng, M ared
LG ramr s

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

Device view of the hardware

5.1 Inserting a CPU

configuration

|}' Topology wiew I;b Hetwork view

& R
-

[Device view | Options
=) il | o EH (B2 =
|~ Catalog
3 [Fitemr
» [o

» [Ssgral boands

» [Communications boards

* [Bamery honrds

»lmo

r@og

* g oo

rlma

» [l A0

L A

w | ¥ [l Comrunecatons rodules

< i n L [l Technology modules
Selecting the CPU in the Device]
view displays the CPU . §
. . . v FCFINETince dace themet sccdnesees
properties in the inspector o DA D
WindOW # schoenced Bubnec | ornepworked FI
. ml::v:o:,:l--wwon Addd remw st
T I pratucel
» D sl pastpats = seriFaddress in the prject
:2:‘»:-‘::1.;-|h=- L) IPatdiess [197 1eB. 0 1
Lk i e B % . % .M. 0
B High 3 pesed 0 uness [HECH o [s iF rasmer
¥ Fuize garameara FTCHFRN]) N
3:"’ (71 BeriFacress usieg & M e medied
Note

The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU during the device configuration. If your CPU is connected to a router on
the network, you also enter the IP address for a router.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

139

Device configuration

5.2 Detecting the configuration for an unspecified CPU

5.2

140

Detecting the configuration for an unspecified CPU

| anline _[ptinsTosks Window Hielp If you are connected to a CPU, you can upload the
e ' configuration of that CPU, including any modules, to your
B smulsbon d project. Simply create a new project and select the "unspecified

CPU" instead of selecting a specific CPU. (You can also skip

I Cownlond to device el
the device configuration entirely by selecting the "Create a PLC
_ program" from the "First steps". STEP 7 then automatically
W creates an unspecified CPU.)
rscisen dowmetion | From the program editor, you select the "Hardware detection”
i hisorl e z command from the "Online" menu.

From the device configuration editor, you select the option for detecting the configuration of
the connected device.

-

The device is not specified
=4 Pleaie use the o specily the CPU,

- O the configuration of the connected device

After you select the CPU from the online dialog and click the Load button, STEP 7 uploads
the hardware configuration from the CPU, including any modules (SM, SB, or CM). You can
then configure the parameters for the CPU and the modules.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

5.3

Table 5- 1

5.3 Adding modules fo the configuration

Adding modules to the configuration

Use the hardware catalog to add modules to the CPU:

e Signal module (SM) provides additional digital or analog I/O points. These modules are
connected to the right side of the CPU.

e Signal board (SB) provides just a few additional I/O points for the CPU. The SB is
installed on the front of the CPU.

e Battery Board 1297 (BB) provides long-term backup of the realtime clock. The BB is
installed on the front of the CPU.

e Communication board (CB) provides an additional communication port (such as RS485).
The CB is installed on the front of the CPU.

e Communication module (CM) and communication processor (CP) provide an additional
communication port, such as for PROFIBUS or GPRS. These modules are connected to
the left side of the CPU.

To insert a module into the device configuration, select the module in the hardware catalog
and either double-click or drag the module to the highlighted slot. You must add the modules
to the device configuration and download the hardware configuration to the CPU for the
modules to be functional.

Adding a module to the device configuration

Module

Select the module Insert the module

SM

v Catalog

=Search .
Bl Filter H
» [o

» [l Segnal board
» [l Communications boards
» [Batrery Board
~mo
~ o« 20
I cE=7 220-1BF 30-0XB0
» [0116 x 24vDC

SB, BB or
CB

w | Catalag

<Search

A Filer
» [cru
= [Signal board

o

»[@oo

- @ oiog

= [012002 = 24VBe
I £E57 223-0BD30-0XED

et

m| e
o

%
L

Il cE57 223-3B0300xB0
» [0 DIZDO2 = S0DC

CMor CP

» [oo
v s
v i s
':! Communications madules
+ [FROFIBUS
w [Feantaepoane
» [CM 1241 95282
» [cM 1241 Rsass)
s :.(I-I V240 (22405
E BEST 24 1-1CHE 10280
» [2% intertace

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG 141

Device configuration

5.4 Changing a device

54 Changing a device

You can change the device type of a configure CPU or module. From Device configuration,
right-click the device and select "Change device" from the context menu. From the dialog,
navigate to and select the CPU or module that you want to replace. The Change device
dialog shows you combatibility information between the two devices.

Note

Device exchange: replacing a V3.0 CPU with a V4.0 CPU

You can open a STEP 7 V12 project in STEP 7 V13 and replace V3.0 CPUs with V4.0
CPUs. You cannot replace CPUs that are from versions prior to V3.0. When you replace a

V3.0 CPU with a V4.0 CPU, consider the differences (Page|995) in features and behavior
between the two versions, and actions you must take.

If you have a project for a CPU version older than V3.0, you can upgrade that project first to
V3.0 and then upgrade the V3.0 project to V4.0.

5.5 Configuring the operation of the CPU

5.5.1 Overview

To configure the operational parameters for the CPU, select the CPU in the Device view
(blue outline around whole CPU), and use the "Properties" tab of the inspector window.

[Properties " info | Y Diagnostics |

General 10 tags | Texts
»
b PROFINET interince el
b D400 Project information
b AL
¥ High speed court=rs (HSC) Marme: | FLC_T

* Fulse generators [PTOFYM)
STAMD
Cycle

Commurication loed

Authior FREEAF

Cornmment ~ |

Sysvem and chock mermory
» Wweb zerver
Tirree o day
User intedace anguages 1]
Frotection Slox |1
Connection resouces

Crverdew of addresses Catalog information
.

Short designation: | CFU 1214 C BODGDC

S7-1200 Programmable controller
142 System Manual, 03/2014, A5E02486680-AG

Device configuration

5.5 Configuring the operation of the CPU

Table 5- 2 CPU properties
Property Description
PROFINET interface Sets the IP address for the CPU and time synchronization
DI, DO, and Al Configures the behavior of the local (on-board) digital and analog I/O (for example, digital

input filter times and digital output reaction to a CPU stop).

High-speed counters
(Page 409) and pulse
generators (Page| 365)

Enables and configures the high-speed counters (HSC) and the pulse generators used for
pulse-train operations (PTO) and pulse-width modulation (PWM)

When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or motion control instructions), the corresponding output addresses are removed
from the Q memory and cannot be used for other purposes in your user program. If your
user program writes a value to an output used as a pulse generator, the CPU does not write
that value to the physical output.

Startup|(Page|81)

Startup after POWER ON: Selects the behavior of the CPU following an off-to-on transition,
such as to start in STOP mode or to go to RUN mode after a warm restart

Supported hardware compatibility: Configures the substitution strategy for all system
components (SM, SB, CM, CP and CPU):

Allow acceptable substitute

e Allow any substitute (default)

Each module internally contains substitution compatibility requirements based on the
number of 1/O, electrical compatibility, and other corresponding points of comparison. For
example, a 16-channel SM could be an acceptable substitute for an 8-channel SM, but an 8-
channel SM could not be an acceptable substitute for a 16-channel SM. If you select "Allow
acceptable substitute", STEP 7 enforces the substitution rules; otherwise, STEP 7 allows
any substitution.

Parameter assignment time for distributed 1/0: Configures a maximum amount of time
(default: 60000 ms) for the distributed 1/O to be brought online. (The CMs and CPs receive
power and communication parameters from the CPU during startup. This assignment time
allows time for the I/O connected to the CM or CP to be brought online.)

The CPU goes to RUN as soon as the distributed I/O is online, regardless of the assignment
time. If the distributed 1/0 has not been brought online within this time, the CPU still goes to
RUN--without the distributed I/O.

Note: If your configuration uses a CM 1243-5 (PROFIBUS master), do not set this parameter
below 15 seconds (15000 ms) to ensure that the module can be brought online.

Cycle/(Page 97)

Defines a maximum cycle time or a fixed minimum cycle time

Communication load

Allocates a percentage of the CPU time to be dedicated to communication tasks

System and clock memory
(Page|101)

Enables a byte for "system memory" functions and enables a byte for "clock memory"
functions (where each bit toggles on and off at a predefined frequency).

Web server/(Page 601)

Enables and configures the Web server feature.

Time of day

Selects the time zone and configures daylight saving time

User interface languages

Selects a language for Web server and CPU display corresponding to the project language.
For up to two project languages, you can assign a corresponding user interface language for
Web server and CPU display.

Protection (Page 190)

Sets the read/write protection and passwords for accessing the CPU

Connection resources
(Page|511)

Provides a summary of the communication connection resources that are available for the
CPU and the number of connection resources that have been configured.

Overview of addresses

Provides a summary of the I/O addresses that have been configured for the CPU.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

143

Device configuration

5.5 Configuring the operation of the CPU

5.5.2

144

Configuring digital input filter times

The digital input filters protect your program from responding to unwanted fast changes in
the input signals, as may result from switch contact bounce or electrical noise. The default
filter time of 6.4 ms blocks unwanted transitions from typical mechanical contacts. Different
points in your application can require shorter filter times to detect and respond to inputs from
fast sensors, or longer filter times to block slow contact bounce or longer impulse noise.

An input filter time of 6.4 ms means that a single signal change, from ‘0’ to ‘1’ or from ‘1’ to
‘0’, must continue for approximately 6.4 ms to be detected, and a single high or low pulse
shorter than approximately 6.4 ms is not detected. If an input signal switches between ‘0’
and ‘1" more rapidly than the filter time, the input point value can change in the user program
when the accumulated duration of new value pulses over old value pulses exceeds the filter
time.

The digital input filter works this way:

® When a "1" is input, it counts up, stopping at the filter time. The image register point
changes from "0" to "1" when the count reaches the filter time.

e When a "0" is input, it counts down, stopping at "0". The image register point changes
from "1" to "0" when the count reaches "0".

e |[f the input is changing back and forth, the counter will count up some and count down
some. The image register will change when the net accumulation of counts reaches
either the filter time or "0".

® A rapidly, changing signal with more "0’s" than "1’s" will eventually go to "0", and if there
are more "1’s" than "0’s", the image register will eventually change to "1".

O Properties Filinte B[Diagnestics |

General | [Dtage | Teurs

Cigieal inpass

3 Channadd

Inpat bers. | &

7] Ematde rang dpe detectin

<]

[Enable fallng edgs detaction

Each input point has a single filter configuration that applies to all uses: process inputs,
interrupts, pulse catch, and HSC inputs. To configure input filter times, select "Digital Inputs".

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration
5.5 Configuring the operation of the CPU

The default filter time for the digital inputs is 6.4 ms. You can choose any of the following
filter time values:

e 0.1us e 0.05ms
e 0.2us e 0.1ms
e 04us e 0.2ms
e 0.8us e 04ms
e 1.6us e 0.8ms
e 32us e 1.6ms
e 6.4us e 32ms
e 10.0us e 6.4ms
e 128us e 10.0ms
e 20.0us e 128 ms

e 20.0ms
A WARNING

Risks with changes to filter time for digital input channel

If the filter time for a digital input channel is changed from a previous setting, a new "0"
level input value may need to be presented for up to 20.0 ms accumulated duration before
the filter becomes fully responsive to new inputs. During this time, short "0" pulse events of
duration less than 20.0 ms may not be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 145

Device configuration

5.5 Configuring the operation of the CPU

5.5.3

146

Pulse catch

The S7-1200 CPU provides a pulse catch feature for digital input points. The pulse catch
feature allows you to capture high-going pulses or low-going pulses that are of such a short
duration that they would not always be seen when the CPU reads the digital inputs at the
beginning of the scan cycle.

When pulse catch is enabled for an input, a change in state of the input is latched and held
until the next input cycle update. This ensures that a pulse which lasts for a short period of
time will be caught and held until the CPU reads the inputs.

The figure below shows the basic operation of the S7-1200 CPU with and without pulse
catch enabled:

Scan cycle Next scan cycle

Physical input _:_,_‘

Output from pulse catch

The CPU misses this pulse because the input
turned on and off before the CPU updated the

T Input update T Input update
|
|
I
|
I
: process-image input register
I

1
: i The CPU catches this pulse on the physical input
Enabled _

Because the pulse catch function operates on the input after it passes through the input filter,
you must adjust the input filter time so that the pulse is not removed by the filter. The figure
below shows a block diagram of the digital input circuit:

® »| Optical B} IDigitalinputi] [Fulser = Input to CPU !

isolation filter catch ! ..
External
digital input Pulse catch
enable

The figure below shows the response of an enabled pulse catch function to various input
conditions. If you have more than one pulse in a given scan, only the first pulse is read. If
you have multiple pulses in a given scan, you should use the rising/falling edge interrupt

events:

Scan cycle | Next scan cycle

T Input update ? Input update

Input to pulse catch — L1
Output from pulse catch ——

Input to pulse catch

Output from pulse catch ———
Input to pulse catch

Output from pulse catch

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

5.6 Configuring the parameters of the modules

5.6 Configuring the parameters of the modules

To configure the operational parameters for the modules, select the module in the Device
view and use the "Properties" tab of the inspector window to configure the parameters for the
module.

Configuring a signal module (SM) or a signal board (SB)

The device configuration for signal modules and signal boards provides the means to
configure the following:

e Digital I/0: You can configure inputs for rising-edge detection or falling-edge detection
(associating each with an event and hardware interrupt) or for "pulse catch" (to stay on
after a momentary pulse) through the next update of the input process image. Outputs
can use a freeze or substitute value.

® Analog I/O: For individual inputs, configure parameters, such as measurement type
(voltage or current), range and smoothing, and to enable underflow or overflow
diagnostics. Analog outputs provide parameters such as output type (voltage or current)
and for diagnostics, such as short circuit (for voltage outputs) or upper/lower limit
diagnostics. You do not configure ranges of analog inputs and outputs in engineering
units on the Properties dialog. You must handle this in your program logic as described in
the topic "Processing of analog values (Page 110)".

® |/O addresses: You configure the start address for the set of inputs and outputs of the
module. You can also assign the inputs and outputs to a process image partition (PIPO,
PIP1, PIP2, PIP3, PIP4) or to automatically update, or to use no process image partition.
See|"Execution of the user program"|(Page 77) for an explanation of the process image
and process image partitions.

& Propertias i) Infa Yl Dlagnostics
General
General
w Digial puts
Chanre " Input addressas

VD addresses

Stamaddress: |4

Chanrel]
B3 middresaes
Hardware idenifier

Dutput addresses

Start address; |4

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 147

Device configuration

5.6 Configuring the parameters of the modules

Configuring a communication interface (CM, CP or CB)
Depending on the type of communication interface, you configure the parameters for the

o Prapeities [ilinre [Diagnastics

network.
Ganeral
b General AFIBLE
- FIOFIBUS imertace <1 FROFIBUS address
General Interface networked with

FROFBUS addigss

Opersting mode Subrer
Hardwarne identiier
Parameters
Address
a Highe st address:

Transmission speed:

148

Mot Atwnikid

udd new Fubnet

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

5.7

5.7.1

5.7 Configuring the CPU for communication

Configuring the CPU for communication

Creating a network connection

Use the "Network view" of Device configuration to create the network connections between

the devices in your project. After creating the network connection, use the "Properties" tab of

the inspector window to configure the parameters of the network.

Table 5- 3

Creating a network connection

Result

Action

devices to be connected.

Select "Network view" to display the

Project] = Devices & networks
| = Topology view ,5_3,:, Metwork view |[If Device view

% Mewwork| 1§ Connections ﬂ; = Qg [=4

A1
CPUI214C

AC 2
CPU24C

the second device.

Select the port on one device and
drag the connection to the port on

Project] = Devices & networks
= Topology view | & Network view .ﬂ'f Device view

u o T7) R @2’ G

e Metwork, L} Connections [

PLC_1 ALC_2
CPUTAC CRU1214C

the network connection.

Release the mouse button to create

Project] = Devices & networks
| Topology view |gh Networkview |[f Device view |

% Metwork] 1§ Connections FINECHor - B s —a
-
PLC_1 PLC_2
CPU1214C CPU1214C
WAE_T

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

149

Device configuration

5.7 Configuring the CPU for communication

5.7.2

Configuring the Local/Partner connection path

After inserting a TSEND_C, TRCV_C or TCON instruction into the user program, the
inspector window displays the properties of the connection whenever you have selected any
part of the instruction. Specify the communication parameters in the "Configuration" tab of

the "Properties" for the communication instruction.

Table 5- 4

Configuring the connection path (using the properties of the instruction)

TCP, 1ISO-on-TCP, and UDP

Connection properties

For the TCP, 1ISO-on-TCP, and UDP Ethernet
protocols, use the "Properties" of the instruction
(TSEND_C, TRCV_C, or TCON) to configure the
"Local/Partner" connections.

The illustration shows the "Connection
properties" of the "Configuration tab" for an ISO-
on-TCP connection.

o Propertles YL Info m kT Dlagnostics

Genetal Configuration

Conmection parsmeter @
Block parameter
General

End paint

Interisce.
Subnet
Addresy

TEAF D

Connection parameter

Conmestion type:
Canmection il

Conntstion dats

Address details

TAAP (A5 il

Lacal

PLC_1

£PU 1 214C DO 1 -
PRAE_2
15216800.1

1Egn T

FLC_1_Recene DE

(®) Establish active
conREIon

Loeal THAF
B0 00
#1,30.2E,30.30

[]

PanEr

PLC_2 -

P 1 314G DODGDEG IE =
PNAE_2

19206004

i
FLC_ 2 Sand DS -

Estabhsh sothve
EORRETHON

Partrar T3AF
11,00

ED.ON 45 534F 6F £E T4 45

Note

When you configure the connection properties for one CPU, STEP 7 allows you either to
select a specific connection DB in the partner CPU (if one exists), or to create the connection
DB for the partner CPU. The partner CPU must already have been created for the project
and cannot be an "unspecified" CPU.

You must still insert a TSEND_C, TRCV_C or TCON instruction into the user program of the
partner CPU. When you insert the instruction, select the connection DB that was created by

the configuration.

150

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

Table 5- 5

5.7 Configuring the CPU for communication

Configuring the connection path for S7 communication (Device configuration)

S7 communication (GET and PUT)

Connection properties

For S7 communication, use the "Devices &

T Propertles |*Linfo 1| % Diagnestics

networks" editor of the network to configure the Genpal
Local/Partner connections. You can click the
"Highlighted: Connection" button to access the
"Properties".

The "General" tab provides several properties:

Local 1

Adden sy detnily

e "General" (shown)

e "Local ID"

e "Special connection properties"
e "Address details" (shown)

Jpecinl connecton properbed

G neral

Connection

oftine stasus. 85

Connection path
La<al Partreer
End paint | FLC 1 AL 2
inpersce: FLC_1, FROFIMET snterad = FLC_2, FROFINET inperiad =
Inceslace npe: | ExhemeciP EthernediF
Subner | FRAE_1 LT] .
Address: 1521880 192.1680%

%l into W | % Disgnostics

General
General
Local i

SpeErinl CONNECTA PROpEmes

9 Propesties
Address detalls
Loeal Partees
Ervd pine FLC_1 AC2
Rachislor
Connetion res
(he=t

TRAR | SMMARCACCION0Y SIMATIC-ACCTO 101

Subnat ID: CTAF - BODO - 0001 CTAF - DOO4 - 0001

Refer to "Protocols"|(Page 517) in the "PROFINET" section or to|"Creating an S7
connection"|(Page|591) in the "S7 communication" section for more information and a list of

available communication instructions.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

151

Device configuration

5.7 Configuring the CPU for communication

Table 5- 6 Parameters for the multiple CPU connection
Parameter Definition
Address Assigned IP addresses
General End point Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Interface type S7 communication only. Type of interface
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Establish active Radio button to select Local or Partner CPU as the active connection
connection
Address End point S7 communication only. Name assigned to the partner (receiving) CPU
details Rack/slot 87 communication only. Rack and slot location
Connection resource S7 communication only. Component of the TSAP used when configuring an
S7 connection with an S7-300 or S7-400 CPU
Port (decimal): TCP and UPD: Partner CPU port in decimal format
TSAP ' and Subnet ID: ISO on TCP (RFC 1006) and S7 communication: Local and partner CPU
TSAPs in ASCII and hexadecimal formats

1 When configuring a connection with an S7-1200 CPU for ISO-on-TCP, use only ASCII characters in the TSAP extension

for the passive communication partners.

Transport Service Access Points (TSAPs)

Port Numbers

152

Using TSAPs, ISO on TCP protocol and S7 communication allows multiple connections to a
single IP address (up to 64K connections). TSAPs uniquely identify these communication
end point connections to an IP address.

In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"

field.

With TCP and UDP protocols, the connection parameter configuration of the Local (active)
connection CPU must specify the remote IP address and port number of the Partner
(passive) connection CPU.

In the "Address Details" section of the Connection Parameters dialog, you define the ports to
be used. The port of a connection in the CPU is entered in the "Local Port" field. The port
assigned for the connection in your partner CPU is entered under the "Partner Port" field.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

5.7 Configuring the CPU for communication

5.7.3 Parameters for the PROFINET connection
The TSEND_C, TRCV_C and TCON instructions require that connection-related parameters
be specified in order to connect to the partner device. These parameters are assigned by the
TCON_Param structure for the TCP, ISO-on-TCP, and UDP protocols. Typically, you use the
"Configuration" tab of the "Properties" of the instruction to specify these parameters. If the
"Configuration" tab is not accessible, then you must specify the TCON_Param structure
programmatically.
TCON_Param
Table 5-7 Structure of the connection description (TCON_Param)
Byte Parameter and data type Description
0...1 block_length Ulnt Length: 64 bytes (fixed)
2...3 id CONN_OUC Reference to this connection: Range of values: 1 (default) to 4095.
(Word) Specify the value of this parameter for the TSEND_C, TRCV_C or
TCON instruction under ID.
4 connection_type USint Connection type:
e 17: TCP (default)
¢ 18:1SO-on-TCP
e 19:UDP
5 active_est Bool ID for the type of connection:
e TCP and ISO-on-TCP:
— FALSE: Passive connection
— TRUE: Active connection (default)
e UDP: FALSE
6 local_device_id USiInt ID for the local PROFINET or Industrial Ethernet interface:
1 (default)
7 local_tsap_id_len USint Length of parameter local_tsap_id used, in bytes; possible values:
e TCP: 0 (active, default) or 2 (passive)
e |SO-on-TCP: 2to 16
e UDP:2
rem_subnet_id_len USint This parameter is not used.
rem_staddr_len USint Length of address of partner end point, in bytes:
e 0: unspecified (parameter rem_staddr is irrelevant)
e 4 (default): Valid IP address in parameter rem_staddr (only for
TCP and ISO-on-TCP)
10 rem_tsap_id_len USint Length of parameter rem_tsap_id used, in bytes; possible values:
e TCP: 0 (passive) or 2 (active, default)
e 1SO-on-TCP: 210 16
e UDP:0
11 next_staddr_len USint This parameter is not used.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

153

Device configuration

5.7 Configuring the CPU for communication

Byte Parameter and data type Description
12 ... 27 |local_tsap_id Array [1..16] of | Local address component of connection:
Byte e TCP and ISO-on-TCP: local port no. (possible values: 1 to
49151; recommended values: 2000...5000):
— local_tsap_id[1] = high byte of port number in hexadecimal
notation;
— local_tsap_id[2] = low byte of port number in hexadecimal
notation;
— local_tsap_id[3-16] = irrelevant
e [SO-on-TCP: local TSAP-ID:
— local_tsap_id[1] = B#16#EO;
— local_tsap_id[2] = rack and slot of local end points (bits 0 to
4: slot number, bits 5 to 7: rack number);
— local_tsap_id[3-16] = TSAP extension, optional
e UDP: This parameter is not used.
Note: Make sure that every value of local_tsap_id is unique within
the CPU.
28 ... 33 |rem_subnet_id Array [1..6] of This parameter is not used.
USint
34 ...39 |rem_staddr Array [1..6] of TCP and ISO-on-TCP only: IP address of the partner end point.
USint (Not relevant for passive connections.) For example, IP address
192.168.002.003 is stored in the following elements of the array:
rem_staddr[1] = 192
rem_staddr[2] = 168
rem_staddr[3] = 002
rem_staddr[4] = 003
rem_staddr[5-6]= irrelevant
40 ... 55 |rem_tsap_id Array [1..16] of | Partner address component of connection
Byte e TCP: partner port number. Range: 1 to 49151; Recommended
values: 2000 to 5000):
— rem_tsap_id[1] = high byte of the port number in
hexadecimal notation
— rem_tsap_id[2] = low byte of the port number in
hexadecimal notation;
— rem_tsap_id[3-16] = irrelevant
e |SO-on-TCP: partner TSAP-ID:
— rem_tsap_id[1] = B#16#EO
— rem_tsap_id[2] = rack and slot of partner end point (bits 0
to 4: Slot number, bits 5 to 7: rack number)
— rem_tsap_id[3-16] = TSAP extension, optional
e UDP: This parameter is not used.
56 ... 61 | next_staddr Array [1..6] of This parameter is not used.
Byte
62 ... 63 |spare Word Reserved: W#16#0000
S7-1200 Programmable controller
154 System Manual, 03/2014, A5E02486680-AG

Device configuration

5.7 Configuring the CPU for communication

See also

Configuring the Local/Partner connection path|(Page|150)
5.7.4 Assigning Internet Protocol (IP) addresses
5.741 Assigning IP addresses to programming and network devices

If your programming device is using an on-board adapter card connected to your plant LAN
(and possibly the world-wide web), the IP Address Network ID and subnet mask of your CPU
and the programming device's on-board adapter card must be exactly the same. The
Network ID is the first part of the IP address (first three octets) (for example, 211.154.184.16)
that determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0; however, since your computer is on a plant LAN, the subnet mask may have
various values (for example, 2565.255.254.0) in order to set up unique subnets. The subnet
mask, when combined with the device IP address in a mathematical AND operation, defines
the boundaries of an IP subnet.

Note

In a World Wide Web scenario, where your programming devices, network devices, and IP
routers communicate with the world, you must assign unique IP addresses to avoid conflict
with other network users. Contact your company IT department personnel, who are familiar
with your plant networks, for assignment of your IP addresses.

A WARNING
Unauthorized access to the CPU through the Web server

Unauthorized access to the CPU or changing PLC variables to invalid values could disrupt
process operation and could result in death, severe personal injury and/or property
damage.

Enabling the Web server allows authorized users to perform operating mode changes,
writes to PLC data, and firmware updates, Siemens recommends that you observe the
following security practices:

e Enable access to the Web server only with the HTTPS protocol.

e Password-protect Web server user IDs (Page|604) with a strong password. Strong
passwords are at least eight characters in length, mix letters, numbers, and special
characters, are not words that can be found in a dictionary, and are not names or
identifiers that can be derived from personal information. Keep the password secret and
change it frequently.

¢ Do not extend the default minimum privileges of the "Everybody" user.

e Perform error-checking and range-checking on your variables in your program logic
because Web page users can change PLC variables to invalid values.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 155

Device configuration

5.7 Configuring the CPU for communication

If your programming device is using an Ethernet-to-USB adapter card connected to an
isolated network, the IP Address Network ID and subnet mask of your CPU and the
programming device's Ethernet-to-USB adapter card must be exactly the same. The Network
ID is the first part of the IP address (first three octets) (for example, 211.154.184.16) that
determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0. The subnet mask, when combined with the device IP address in a
mathematical AND operation, defines the boundaries of an IP subnet.

Note

An Ethernet-to-USB adapter card is useful when you do not want your programming device
on your company LAN. During initial testing or commissioning tests, this arrangement is

particularly useful.

Table 5-8 Assigning Ethernet addresses

Programming Device
Adapter Card

Network Type

Internet Protocol (IP) Address

Subnet Mask

On-board adapter
card

Connected to
your plant LAN
(and possibly
the world-wide
web)

Network ID of your CPU and the
programming device's on-board
adapter card must be exactly the
same.!

The subnet mask of your CPU and the
on-board adapter card must be exactly
the same.

The subnet mask normally has a value of
255.255.255.0; however, since your
computer is on a plant LAN, the subnet
mask may have various values (for
example, 2565.255.254.0) in order to set
up unique subnets.?

Ethernet-to-USB
adapter card

Connected to an
isolated network

Network ID of your CPU and the
programming device's Ethernet-to-
USB adapter card must be exactly
the same.!

The subnet mask of your CPU and the
Ethernet-to-USB adapter card must be
exactly the same.

The subnet mask normally has a value of
255.255.255.0.2

1 The Network ID is the first part of the IP address (first three octets) (for example, 211.154.184.16) that determines what
IP network you are on.)

2 The subnet mask, when combined with the device IP address in a mathematical AND operation, defines the boundaries

of an IP subnet.

156

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration
5.7 Configuring the CPU for communication

Assigning or checking the IP address of your programming device using "My Network Places" (on
your desktop)

You can assign or check your programming device's IP address with the following menu
selections:

® (Right-click) "My Network Places"

® "Properties"

® (Right-click) "Local Area Connection"
e "Properties"

In the "Local Area Connection Properties" dialog, in the "This connection uses the following
items:" field, scroll down to "Internet Protocol (TCP/IP)". Click "Internet Protocol (TCP/IP)",
and click the "Properties" button. Select "Obtain an IP address automatically (DHCP)" or
"Use the following IP address" (to enter a static IP address).

Note

Dynamic Host Configuration Protocol (DHCP) automatically assigns an IP address to your
programming device upon power up from the DHCP server.

5.74.2 Checking the IP address of your programming device

You can check the MAC and IP addresses of your programming device with the following
menu selections:

1. In the "Project tree", expand "Online access".
2. Right-click the required network, and select "Properties".
3. In the network dialog, expand "Configurations", and select "Industrial Ethernet".

The MAC and IP addresses of the programming device are displayed.

OIS DUEFTO0 LS8 7 8 Fast Ttherset Adapler - Packe! Sohesoles Mislgart

v Gonliurations vl Edamrat
[ethasteast b ot Laxal settings
Y —

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 157

Device configuration

5.7 Configuring the CPU for communication

5.74.3

158

Assigning an IP address to a CPU online

You can assign an IP address to a network device online. This is particularly useful in an

initial device configuration.

1. In the "Project tree," verify that
no IP address is assigned to the
CPU, with the following menu
selections:

¢ "Online access"

e <Adapter card for the network
in which the device is located>

e "Update accessible devices"

NOTE: If STEP 7 displays a MAC
address instead of an IP address,
then no IP address has been
assigned.

2. Under the required accessible
device, double-click "Online &
diagnostics".

3. In the "Online & diagnostics"
dialog, make the following menu
selections:

¢ "Functions"
e "Assign IP address"

Project tree
Devicas

iQQ

w* 7 Prog=ctl
I ~9d new device
oy Divices & netwarks
» @ PLc_1 [oPU 12940 DEDODC]
» g commien dats
* 0] Documertation settings
¥) Languages & resources
w g Online access
¥ _J] USE [57U5A]

b Lf| GO [RE232F multi-master cable]

» 0 PLESIN VS x [TCRIF]

» L Inte| (R} FROI 000 MT Metwoek Corne... 8
|| -Lirk DUB-E100 LS8 2.0 Fast Ethem 8,

it Lipdiate scomasible devices

¥ [Aecessible device [05-00-06-05-51-11]

= b-Link DUB-E100 LSE 2.0 Fazt Bthern.

j-,] Update sccessbde devices

-

= gl Accessible device [08-00-06-05-91-11]

|
- Diagnosnes
- General
b Fursions Wodule

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

4. In the "IP address" field, enter
your new IP address, and click the
"Assign IP address" button.

5. In the "Project tree," verify that
your new IP address has been
assigned to the CPU, with the
following menu selections:

e "Online access"

e <Adapter for the network in
which the device is located>

e "Update accessible devices"

5.74.4

Configuring the PROFINET interface

5.7 Configuring the CPU for communication

1]
* Disgnastcs Azsipn P address

Resesco factory semings
Faddrass: 192 . 166 . 2 12
Subnetmask: 255 . 255 2%s o0

ol Use roimes

Aoumersddrass: 192 | 16R 2 2

Devices
HoQ oo f

w] Praject]
B Add new device
o Devices & nenworks
* [PLC_T [CPU 1 274C DEDODE]
» [common data
» [El| Documentation satbngs
» [Langusges & redaurcas
= g Online apcess
» [§usa|sruse] -
» B COM[RS252PH multi-master cable] B
» Ll FLCSIM V2 [TCPAF]
» L Incel(R) FROM 000 MT Hersork Corme... 80
= [O-Link DJE-E1 00 USB 2.0 Fast Ethem. 8,

i

[l cPUcommon [192168.212)

Configuring an IP address for a CPU in your project

To configure parameters for the PROFINET interface, select the green PROFINET box on
the CPU. The "Properties" tab in the inspector window displays the PROFINET port.

@

PROFINET port

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

159

Device configuration

5.7 Configuring the CPU for communication

Configuring the IP address

Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-AB or 01:23:45:67:89:AB).

IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.

Routers rely on IP addresses to deliver and receive data packets.

dProperties [dinto | Disgnostics IP addresses properties: In
| General | 10tags | Texts | the Properties window,
i diiesses | Ethemet addresses select the "Ethernet
fs s e Interface networked with addresses" configuration
[:«::::: ?::.:.;: Subret ‘-"nnt;:r' =d — - entry. STEP 7 displays the
e subine Ethernet address
1P protocal configuration dialog, which
@ SetiPaddress in the project associates the software
sl 102 teo 2 otl project with the IP address
o A S of the CPU that will receive

|| e router
that project.

() SerIF address using & difierent rmechod

PROFINET
|| et PROFINET dewce name using & dilenent
rrethed,
[l Genernte PROFINET device name sutomatcally
FROFINET device name | plc_1
Comverned name: | plod doad

Device nuamber. |0

S7-1200 Programmable controller
160 System Manual, 03/2014, A5E02486680-AG

Device configuration

5.7 Configuring the CPU for communication

Table 5- 9 Parameters for the IP address

Parameter Description

Subnet Name of the Subnet to which the device is connected. Click the "Add new subnet" button to create a
new subnet. "Not connected" is the default. Two connection types are possible:
e The "Not connected" default provides a local connection.
e A subnetis required when your network has two or more devices.

IP protocol IP address Assigned IP address for the CPU
Subnet mask Assigned subnet mask
Use IP router Click the checkbox to indicate the use of an IP router
Router address Assigned IP address for the router, if applicable

Note

All' IP addresses are configured when you download the project. If the CPU does not have a
pre-configured IP address, you must associate the project with the MAC address of the
target device. If your CPU is connected to a router on a network, you must also enter the IP
address of the router.

The "Set IP address using a different method" radio button allows you to change the IP
address online or by using the '"T_CONFIG (Page 541)" instruction after the program is
downloaded. This IP address assignment method is for the CPU only.

A warRNING

Downloading a hardware configuration with "Set IP address using different method"

After downloading a hardware configuration with the "Set IP address using a different
method" option enabled, it is not possible to transition the CPU operating mode from RUN
to STOP or from STOP to RUN.

User equipment continues to run under these conditions and can result in unexpected
machine or process operations, which could cause death, severe personal injury, or
property damage if proper precautions are not taken.

Ensure that your CPU IP address(es) are set before using the CPU in an actual automation
environment. This can be done by using your STEP 7 programming package, the S7-1200
Tool, or an attached HMI device in conjunction with the T_CONFIG instruction.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 161

Device configuration

5.7 Configuring the CPU for communication

5.7.5

A WArRNING
Condition in which PROFINET network might stop

When changing the IP address of a CPU online or from the user program, it is possible to
create a condition in which the PROFINET network might stop.

If the IP address of a CPU is changed to an IP address outside the subnet, the PROFINET
network will lose communication, and all data exchange will stop. User equipment may be
configured to keep running under these conditions. Loss of PROFINET communication may
result in unexpected machine or process operations, causing death, severe personal injury,
or property damage if proper precautions are not taken.

If an IP address must be changed manually, ensure that the new IP address lies within the
subnet.

Testing the PROFINET network

After completing the configuration, download the project|(Page 196) to the CPU. All IP
addresses are configured when you download the project.

Extended download te device

Confgand aoonyn rades of LC_1*

Bevicn B B T Addradi
LEA) O T NSCO00.. TR AT

IGAT nborlacn Bor Ioadiney. B Dol A8 00 U983 0 P w

Adte bl Apaiad in et Subort o Shiw ol go06 Fiible device s

Brvce B B Tt Addraaa Target device
] i Y T - [- T T
ﬂ - - e Acers bbess =

Rebein

| Lowd Careel

Assigning an IP address to a device online

162

The S7-1200 CPU does not have a pre-configured IP address. You must manually assign an
IP address for the CPU:

® To assign an IP address to a device online, refer to "Device configuration: Assigning an
IP address to a CPU online" (Page 158) for this step-by-step procedure.

® To assign an IP address in your project, you must configure the IP address in the Device
configuration, save the configuration, and download it to the PLC. Refer to|"Device
configuration: Configuring an IP address for a CPU in your project"|(Page 159) for more
information.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Device configuration

5.7 Configuring the CPU for communication

Using the "Extended download to device" dialog to test for connected network devices

The S7-1200 CPU "Download to device" function and its "Extended download to device"
dialog can show all accessible network devices and whether or not unique IP addresses
have been assigned to all devices. To display all accessible and available devices with their
assigned MAC or IP addresses, check the "Show all accessible devices" checkbox.

Exended dewmload be device
Conliguend aconsi nodad of TLE_ 1

Brvice
e

B B Tt
CUINECOT0.. T

Addenas
VH2 10

PGS nsnrdace or koading B L U100 I8 T O

) A

Acoriiibie drvios intanget subnt

i B
20300

Tree
Tor
o

| Shaw ol gotesaibin devices

Addeaii
OO 0E0E91 11
Aocers s

Tanpit device

el ih

Carel |

If the required network device is not in this list, communications to that device have been
interrupted for some reason. The device and network must be investigated for hardware

and/or configuration errors.

5.7.6

Locating the Ethernet (MAC) address on the CPU

In PROFINET networking, a Media Access Control address (MAC address) is an identifier
assigned to the network interface by the manufacturer for identification. A MAC address

usually encodes the manufacturer's

registered identification number.

The standard (IEEE 802.3) format for printing MAC addresses in human-friendly form is six
groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in transmission
order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

Note

Each CPU is loaded at the factory with a permanent, unique MAC address. You cannot

change the MAC address of a CPU

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

163

Device configuration

5.7 Configuring the CPU for communication

The MAC address is printed on the front, lower-left corner of the CPU. Note that you have to
lift the lower door to see the MAC address information.

0 \

®

0000060000000000006000 000

X *ﬁ':Ei.iJIJ}JJﬁJJJJﬂ'—
1

o P EEEEEE

OOUOOUOO0 OOOEO0
#1323 4887 012348
B T3

Beocm’

b

| A00000
® || [ESD _SENSITIVE|
guuUUL

el

MAC address

Initially, the CPU has no IP address, only a factory-installed MAC address. PROFINET
communications requires that all devices be assigned a unique IP address.

Extended download te device

Conigraed accens rades o LC_1°

Devicn B B

e

e O EC000. Toe

IGAT nborlacn Bor Ioadiney. B Dol A8 00 U983 0 P w
aection t subort | W lercal) T

Adbe b Apeiad intanget fubait

Gedicn Eervicn By
- N300

T

VA

(o] S il B0 1 bt
Addean Tasget device

BBSIELTNAY =
LR B3 -

Rekeih

164

Use the CPU "Download to
device" function and the
"Extended download to device"
dialog to show all accessible
network devices and ensure that
unique IP addresses have been
assigned to all devices. This
dialog displays all accessible and
available devices with their
assigned MAC or IP addresses.
MAC addresses are all-important
in identifying devices that are
missing the required unique IP
address.

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

Device configuration
5.7 Configuring the CPU for communication

5.7.7 Configuring Network Time Protocol synchronization

A WARNING

If an attacker can access your networks through Network Time Protocol (NTP)
synchronization, the attacker can possibly take limited control of your process by shifting
the CPU system time.

The NTP client feature of the S7-1200 CPU is disabled by default, and, when enabled, only
allows configured IP addresses to act as an NTP server. The CPU disables this feature by
default, and you must configure this feature to allow remotely-controlled CPU system time
corrections.

The S7-1200 CPU supports "time of day" interrupts and clock instructions that depend upon
accurate CPU system time. If you configure NTP and accept time synchronization from a
server, you must ensure that the server is a trusted source. Failure to do so can cause a
security breach that allows an unknown user to take limited control of your process by
shifting the CPU system time.

For security information and recommendations, please see our "Operational Guidelines for
Industrial Security" (http://www.industry.siemens.com/topics/global/en/industrial-
security/Documents/operational_guidelines_industrial_security_en.pdf) on the Siemens
Service and Support site.

The Network Time Protocol (NTP) is widely used to synchronize the clocks of computer
systems to Internet time servers. In NTP mode, the CPU sends time-of-day queries at
regular intervals (in the client mode) to the NTP server in the subnet (LAN). Based on the
replies from the server, the most reliable and most accurate time is calculated and the time
of day on the station is synchronized.

The advantage of this mode is that it allows the time to be synchronized across subnets.

The IP addresses of up to four NTP servers need to be configured. The update interval
defines the interval between the time queries (in seconds). The value of the interval ranges
between 10 seconds and one day.

In NTP mode, it is generally UTC (Universal Time Coordinated) that is transferred; this
corresponds to GMT (Greenwich Mean Time).

In the Properties window, select the "Time synchronization" configuration entry. STEP 7
displays the Time synchronization configuration dialog:

Time synchronization

[« Enable time-of-day synchronization using NTP

maode
Serser 1: 192 0168 .0 .2
Serser 2: 192 . 168 .0 .22
Serser 3: 192 . 168 .0 . 23
Serverd: 192 . 165 . 0 .24
Update interval: |10 SEC

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 165

http://www.industry.siemens.com/topics/global/en/industrial-security/Documents/operational_guidelines_industrial_security_en.pdf
http://www.industry.siemens.com/topics/global/en/industrial-security/Documents/operational_guidelines_industrial_security_en.pdf

Device configuration

5.7 Configuring the CPU for communication

Note

All IP addresses are configured when you download the project.

Table 5- 10 Parameters for time synchronization

Parameter Definition
Enable time-of-day Click the checkbox to enable time-of-day synchronization using
synchronization using Network NTP servers.
Time Protocol (NTP) servers
Server 1 Assigned IP Address for network time server 1
Server 2 Assigned IP Address for network time server 2
Server 3 Assigned IP Address for network time server 3
Server 4 Assigned IP Address for network time server 4
Time synchronization interval Interval value (sec)
5.7.8 PROFINET device start-up time, naming, and address assignment

PROFINET IO can extend the start-up time for your system (configurable time-out). More
devices and slow devices impact the amount of time it takes to switch to RUN.

In V4.0, you can have a maximum of 16 PROFINET IO devices on your S7-1200 PROFINET
network.

Each station (or 10 device) starts up independently on start-up, and this affects the overall
CPU start-up time. If you set the configurable time-out too low, there may not be a sufficient
overall CPU start-up time for all stations to complete start-up. If this situation occurs, false
station errors will result.

In the CPU Properties under "Startup"”, you can find the "Parameter assignment time for
distributed 1/0" (time-out). The default configurable time-out is 60,000 ms (1 minute); the
user can configure this time.

PROFINET device naming and addressing in STEP 7

All PROFINET devices must have a Device Name and an IP Address. Use STEP 7 to define
the Device Names and to configure the IP addresses. Device names are downloaded to the
10 devices using PROFINET DCP (Discovery and Configuration Protocol).

S7-1200 Programmable controller
166 System Manual, 03/2014, A5E02486680-AG

Device configuration
5.7 Configuring the CPU for communication

PROFINET address assignment at system start-up

The controller broadcasts the names of the devices to the network, and the devices respond
with their MAC addresses. The controller then assigns an IP address to the device using
PROFINET DCP protocol:

e [f the MAC address has a configured IP address, then the station performs start-up.

e [f the MAC address does not have a configured IP address, STEP 7 assigns the address
that is configured in the project, and the station then performs start-up.

e |[f there is a problem with this process, a station error occurs and no start-up takes place.
This situation causes the configurable time-out value to be exceeded.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 167

Device configuration

5.7 Configuring the CPU for communication

S7-1200 Programmable controller
168 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.1 Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow
the directives of your own company's procedures and the accepted practices of your own
training and location.

Table 6- 1 Guidelines for designing a PLC system

Recommended steps | Tasks

Partition your process | Divide your process or machine into sections that have a level of independence from each other.
or machine These partitions determine the boundaries between controllers and influence the functional
description specifications and the assignment of resources.

Create the functional Write the descriptions of operation for each section of the process or machine, such as the 1/0
specifications points, the functional description of the operation, the states that must be achieved before
allowing action for each actuator (such as a solenoid, a motor, or a drive), a description of the
operator interface, and any interfaces with other sections of the process or machine.

Design the safety Identify any equipment that might require hard-wired logic for safety. Remember that control
circuits devices can fail in an unsafe manner, which can produce unexpected startup or change in the
operation of machinery. Where unexpected or incorrect operation of the machinery could result in
physical injury to people or significant property damage, consider the implementation of
electromechanical overrides (which operate independently of the PLC) to prevent unsafe
operations. The following tasks should be included in the design of safety circuits:

¢ Identify any improper or unexpected operation of actuators that could be hazardous.

¢ |dentify the conditions that would assure the operation is not hazardous, and determine how
to detect these conditions independently of the PLC.

¢ Identify how the PLC affects the process when power is applied and removed, and also
identify how and when errors are detected. Use this information only for designing the normal
and expected abnormal operation. You should not rely on this "best case" scenario for safety
purposes.

e Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

e Provide the appropriate status information from the independent circuits to the PLC so that
the program and any operator interfaces have necessary information.

« |dentify any other safety-related requirements for safe operation of the process.

Plan system security Determine what level of protection (Page 190) you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 169

Programming concepts

6.2 Structuring your user program

Recommended steps

Tasks

Specify the operator
stations

Based on the requirements of the functional specifications, create the following drawings of the
operator stations:

e Overview drawing that shows the location of each operator station in relation to the process
or machine.

e Mechanical layout drawing of the devices for the operator station, such as display, switches,
and lights.

e Electrical drawings with the associated 1/O of the PLC and signal modules.

Create the
configuration drawings

Based on the requirements of the functional specification, create configuration drawings of the
control equipment:

e Overview drawing that shows the location of each PLC in relation to the process or machine.

e Mechanical layout drawing of each PLC and any 1/0 modules, including any cabinets and
other equipment.

e Electrical drawings for each PLC and any I/0 modules, including the device model numbers,
communications addresses, and |/O addresses.

Create a list of
symbolic names

Create a list of symbolic names for the absolute addresses. Include not only the physical I/O
signals, but also the other elements (such as tag names) to be used in your program.

6.2 Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:

170

An organization block (OB) responds to a specific event in the CPU and can interrupt the
execution of the user program. The default for the cyclic execution of the user program
(OB 1) provides the base structure for your user program. If you include other OBs in your
program, these OBs interrupt the execution of OB 1. The other OBs perform specific
functions, such as for startup tasks, for handling interrupts and errors, or for executing
specific program code at specific time intervals.

A function block (FB) is a subroutine that is executed when called from another code
block (OB, FB, or FC). The calling block passes parameters to the FB and also identifies
a specific data block (DB) that stores the data for the specific call or instance of that FB.
Changing the instance DB allows a generic FB to control the operation of a set of
devices. For example, one FB can control several pumps or valves, with different
instance DBs containing the specific operational parameters for each pump or valve.

A function (FC) is a subroutine that is executed when called from another code block (OB,
FB, or FC). The FC does not have an associated instance DB. The calling block passes
parameters to the FC. The output values from the FC must be written to a memory
address or to a global DB.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.2 Structuring your user program

Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:

e A linear program executes all of the instructions for your automation tasks in sequence,
one after the other. Typically, the linear program puts all of the program instructions into
the OB for the cyclic execution of the program (OB 1).

® A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides
the program segment for each subordinate task. You structure your program by calling
one of the code blocks from another block.

Linear structure: Modular structure:
OB 1 OB 1 / FB 1
«— «— —

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a
number of benefits:

® You can create reusable blocks of code for standard tasks, such as for controlling a pump
or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

e When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The
modular components not only help to standardize the program design, but can also help
to make updating or modifying the program code quicker and easier.

e Creating modular components simplifies the debugging of your program. By structuring
the complete program as a set of modular program segments, you can test the
functionality of each code block as it is developed.

e Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 171

Programming concepts

6.3 Using blocks to structure your program

6.3

6.3.1

172

Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You
then structure your program by having other code blocks call these reusable modules. The
calling block passes device-specific parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the
called block. After execution of the called block is complete, the CPU resumes the execution
of the calling block. Processing continues with execution of the instruction that follows after
the block call.

Calling block
Called (or interrupting) block
Program execution

®
OB, FB, FC OB, FB, FC

- 11/

()]

Instruction or event that initiates the execution of
another block

Program execution

l '\‘, Block end (returns to calling block)
@

You can nest the block calls for a more modular structure. In the following example, the
nesting depth is 3: the program cycle OB plus 3 layers of calls to code blocks.

®e 02>

| | Start of cycle
@ | ® | ® y
I > — - ® Nesting depth
OB 1 FB 1 FC 1
|DB
w2 [1] 1 [T FC 21
<+ + A
[oB [ce
> v
N) FC1 DB 1

Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, causes the CPU to execute an OB. Some OBs have
predefined start events and behavior.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.3 Using blocks to structure your program

The program cycle OB contains your main program. You can include more than one program
cycle OB in your user program. During RUN mode, the program cycle OBs execute at the
lowest priority level and can be interrupted by all other event types. The startup OB does not
interrupt the program cycle OB because the CPU executes the startup OB before going to
RUN mode.

After finishing the processing of the program cycle OBs, the CPU immediately executes the
program cycle OBs again. This cyclic processing is the "normal" type of processing used for
programmable logic controllers. For many applications, the entire user program is located in
a single program cycle OB.

You can create other OBs to perform specific functions, such as for handling interrupts and
errors, or for executing specific program code at specific time intervals. These OBs interrupt
the execution of the program cycle OBs.

Use the "Add new block" dialog to create new OBs in your user program.

Interrupt handling is always
e event-driven. When such
an event occurs, the CPU

P Lenguage: o - interrupts the execution of
Ao R wamber B the user program and calls
Cugarizgiian o Cyclic inmerupt) manual the OB that was Configured
. ardware Interru|] sulormabic
.-':‘lm: er'\oril:ner'u:t: e ; to handle that event. After
‘; ::";I“"“F*“:"'I”""d"’l""*“ finishing the execution of
ull or plug of modules DescAptan . .
n— :i:-c: or mvtr;r failure *.;mi'm E"cluojti;m“um q,dic;lly the Interruptlng OB, the
uncon ul "'l’_ FRFTT ‘_ &®rOT and i i i|-| [l i Thi |
& 10 access error M“!P: W:Jr.ﬂ:l? menswuL%??r::Imniu;I CPU resumes the
A Time of dey g;:*?phm-m arvd call addivanal user execution of the user
o Status .
‘E & Updee program at the point of
Pumoran R interruption.
Drsts block
w Additional information
[w#] Add neew & open Ok Cancel

The CPU determines the order for handling interrupt events by priority. You can assign
multiple interrupt events to the same priority class. For more information, refer to the topics
on organization blocks |(Page 85) and execution of the user program (Page|77).

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 173

Programming concepts

6.3 Using blocks to structure your program

Creating additional OBs

You can create multiple OBs for your user program, even for the program cycle and startup
OB events. Use the "Add new block" dialog to create an OB and enter a name for your OB.

If you create multiple program cycle OBs for your user program, the CPU executes each
program cycle OB in numerical sequence, starting with the program cycle OB with the lowest
number (such as OB 1). For example: after the first program cycle OB (such as OB 1)
finishes, the CPU executes the program cycle OB with the next higher number.

Configuring the properties of an OB

6.3.2

174

You can modify the properties of an

General OB. For example, you can configure the
ﬁ:u“j,“:'m“ Gensral OB number or programming language.
Time stamps
Compdation Marne Tire delay stermapt
:-‘:.l.;lult:: Constant name: OB _Tne Ct'a} INEEfTupt
Type: OB
Mumber, | X0
Event class: |Time delay mtermipt
Language; LAD -

Process image part number

L]

Note

Note that you can assign a process image part number to an OB that corresponds to PIPO,
PIP1, PIP2, PIP3, or PIP4. If you enter a number for the process image part number, the
CPU creates that process image partition. See the topic "Execution of the user program
(Page 77)" for an explanation of the process image partitions.

Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input
values. The FC stores the results of this operation in memory locations. For example, use
FCs to perform standard and reusable operations (such as for mathematical calculations) or
technological functions (such as for individual controls using bit logic operations). An FC can
also be called several times at different points in a program. This reuse simplifies the
programming of frequently recurring tasks.

An FC does not have an associated instance data block (DB). The FC uses the local data
stack for the temporary data used to calculate the operation. The temporary data is not
saved. To store data permanently, assign the output value to a global memory location, such
as M memory or to a global DB.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.3 Using blocks to structure your program

6.3.3 Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and
static data. FBs have variable memory that is located in a data block (DB), or "instance" DB.
The instance DB provides a block of memory that is associated with that instance (or call) of
the FB and stores data after the FB finishes. You can associate different instance DBs with
different calls of the FB. The instance DBs allow you to use one generic FB to control
multiple devices. You structure your program by having one code block make a call to an FB
and an instance DB. The CPU then executes the program code in that FB, and stores the
block parameters and the static local data in the instance DB. When the execution of the FB
finishes, the CPU returns to the code block that called the FB. The instance DB retains the
values for that instance of the FB. These values are available to subsequent calls to the
function block either in the same scan cycle or other scan cycles.

Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be
quickly accessed from one scan to the next, each FB in your user program has one or more
instance DBs. When you call an FB, you also specify an instance DB that contains the block
parameters and the static local data for that call or "instance" of the FB. The instance DB
maintains these values after the FB finishes execution.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.

An FB stores the Input, Output, and InOut, and Static parameters in an instance DB.

You can also modify and download the function block interface in RUN mode.

Assigning the start value in the instance DB

The instance DB stores both a default value and a start value for each parameter. The start
value provides the value to be used when the FB is executed. The start value can then be
modified during the execution of your user program.

The FB interface also provides a "Default value" column that allows you to assign a new start
value for the parameter as you are writing the program code. This default value in the FB is
then transferred to the start value in the associated instance DB. If you do not assign a new
start value for a parameter in the FB interface, the default value from instance DB is copied
to start value.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 175

Programming concepts

6.3 Using blocks to structure your program

Using a single FB with DBs

The following figure shows an OB that calls one FB three times, using a different data block
for each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices.
Each instance DB stores the data (such as speed, ramp-up time, and total operating time)
for an individual device.

DB 201

0B1 e 5

FB 22

FB 22, DB 201 I%

FB 22, DB 202

FB 22, DB 203 '
DB 203

In this example, FB 22 controls three separate devices, with DB 201 storing the operational
data for the first device, DB 202 storing the operational data for the second device, and DB
203 storing the operational data for the third device.

6.3.4 Data block (DB)

You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB).

The data stored in a DB is not deleted when the execution of the associated code block
comes to an end. There are two types of DBs:

® A global DB stores data for the code blocks in your program. Any OB, FB, or FC can
access the data in a global DB.

® Aninstance DB stores the data for a specific FB. The structure of the data in an instance
DB reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The
Temp memory for the FB is not stored in the instance DB.)

Note

Although the instance DB reflects the data for a specific FB, any code block can access
the data in an instance DB.

You can also modify and download data blocks in RUN mode (Page 808).

S7-1200 Programmable controller
176 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.3 Using blocks to structure your program

Read-only data blocks

You can configure a DB as being read-only:
1. Right-click the DB in the project navigator and select "Properties" from the context menu.
2. In the "Properties" dialog, select "Attributes".

3. Select the "Data block write-protected in the device" option and click "OK".

Optimized and standard data blocks

6.3.5

You can also configure a data block to be either standard or optimized. A standard DB is
compatible with STEP 7 Classic programming tools and the classic S7-300 and S7-400
CPUs. Data blocks with optimized access have no fixed defined structure. The data
elements contain only a symbolic name in the declaration and no fixed address within the
block. The CPU stores the elements automatically in the available memory area of the block
so that there are no gaps in the memory. This makes for optimal use of the memory
capacity.

To set optimized access for a data block, follow these steps:

1. Expand the program blocks folder in the STEP 7 project tree.

2. Right-click the data block and select "Properties" from the context menu.
3. For the attributes, select "Optimized block access".

Note that optimized block access is the default for new data blocks. If you deselect
"Optimized block access", the block uses standard access.

Creating reusable code blocks

Use the "Add new block"
Hoame dialog under "Program
| Lo blocks" in the Project
T scL - navigator to create OBs,
= 1 s = FBs, FCs, and global DBs.
o c; b When you create a code

block, you select the
s programming language for
Funczion blocks are code blocks that store their values penmanently in instance data blacks, the b|OCk YOLI dO nOt
Functian block s that they remain svadable after the block has been execued

select a language for a DB
because it only stores data.

Selecting the "Add new
and open" check box
(default) opens the code
block in the Project view.

#

g

Functicn

Drate block
PR

|> | Additional Information

[l Add rew ard cpen OF Cancel

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 177

Programming concepts

6.4 Understanding data consistency

You can store objects you want to reuse in libraries. For each project, there is a project
library that is connected to the project. In addition to the project library, you can create any
number of global libraries that can be used over several projects. Since the libraries are
compatible with each other, library elements can be copied and moved from one library to
another.

Libraries are used, for example, to create templates for blocks that you first paste into the
project library and then further develop there. Finally, you copy the blocks from the project
library to a global library. You make the global library available to other colleagues working
on your project. They use the blocks and further adapt them to their individual requirements,
where necessary.

For details about library operations, refer to the STEP 7 online Help library topics.

6.4 Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words
or DWords) and all of the system-defined structures (for example, IEC_TIMERS or DTL).
The reading or writing of the value cannot be interrupted. (For example, the CPU protects
the access to a DWord value until the four bytes of the DWord have been read or written.) To
ensure that the program cycle OBs and the interrupt OBs cannot write to the same memory
location at the same time, the CPU does not execute an interrupt OB until the read or write
operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a program cycle OB and an
interrupt OB, your user program must also ensure that these values are modified or read
consistently. You can use the DIS_AIRT (disable alarm interrupt) and EN_AIRT (enable
alarm interrupt) instructions in your program cycle OB to protect any access to the shared
values.

® |Insert a DIS_AIRT instruction in the code block to ensure that an interrupt OB cannot be
executed during the read or write operation.

® [nsert the instructions that read or write the values that could be altered by an interrupt
OB.

e |Insert an EN_AIRT instruction at the end of the sequence to cancel the DIS_AIRT and
allow the execution of the interrupt OB.

A communication request from an HMI device or another CPU can also interrupt execution of
the program cycle OB. The communication requests can also cause issues with data
consistency. The CPU ensures that the elementary data types are always read and written
consistently by the user program instructions. Because the user program is interrupted
periodically by communications, it is not possible to guarantee that multiple values in the
CPU will all be updated at the same time by the HMI. For example, the values displayed on a
given HMI screen could be from different scan cycles of the CPU.

S7-1200 Programmable controller
178 System Manual, 03/2014, A5E02486680-AG

Programming concepts
6.5 Programming language

The PtP (Point-to-Point) instructions, PROFINET instructions (such as TSEND_C and
TRCV_C), PROFINET Distributed /O instructions, and PROFIBUS Distributed I/O
Instructions (Page 314) transfer buffers of data that could be interrupted. Ensure the data
consistency for the buffers of data by avoiding any read or write operation to the buffers in
both the program cycle OB and an interrupt OB. If it is necessary to modify the buffer values
for these instructions in an interrupt OB, use a DIS_AIRT instruction to delay any interruption
(an interrupt OB or a communication interrupt from an HMI or another CPU) until an
EN_AIRT instruction is executed.

Note

The use of the DIS_AIRT instruction delays the processing of interrupt OBs until the
EN_AIRT instruction is executed, affecting the interrupt latency (time from an event to the
time when the interrupt OB is executed) of your user program.

6.5 Programming language
STEP 7 provides the following standard programming languages for S7-1200:

e |AD (ladder logic) is a graphical programming language. The representation is based on
circuit diagrams|(Page|180).

e FBD (Function Block Diagram) is a programming language that is based on the graphical
logic symbols used in Boolean algebra (Page 181).

e SCL (structured control language) is a text-based, high-level programming language
(Page|181).

When you create a code block, you select the programming language to be used by that
block.

Your user program can utilize code blocks created in any or all of the programming
languages.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 179

Programming concepts

6.5 Programming language

6.5.1 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and
coils are linked to form networks.

=
—

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.

STEP 7 does not limit the number of instructions (rows and columns) in a LAD network.

Note

Every LAD network must terminate with a coil or a box instruction.

Consider the following rules when creating a LAD network:

® You cannot create a branch that could result in a power flow in the reverse direction.
A B C D z

| || € 9

E F

> |

|
I

2y
- @

® You cannot create a branch that would cause a short circuit.
A B (& z

| I 11 G 2

S7-1200 Programmable controller
180 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.5 Programming language

6.5.2 Function Block Diagram (FBD)

Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

. To create the logic for complex operations,
- .
“Start — o insert parallel branches between the boxes.

"ON" ——r — "On”

"Stop" =0 sk —_— _—

Mathematical functions and other complex functions can be represented directly in
conjunction with the logic boxes.

STEP 7 does not limit the number of instructions (rows and columns) in an FBD network.

6.5.3 SCL

Structured Control Language (SCL) is a high-level, PASCAL-based programming language
for the SIMATIC S7 CPUs. SCL supports the block structure of STEP 7|(Page 172). Your
project can include program blocks in any of the three programming languages: SCL, LAD,
and FBD.

SCL instructions use standard programming operators, such as for assignment (:=),
mathematical functions (+ for addition, - for subtraction, * for multiplication, and / for division).
SCL also uses standard PASCAL program control operations, such as IF-THEN-ELSE,
CASE, REPEAT-UNTIL, GOTO and RETURN. You can use any PASCAL reference for
syntactical elements of the SCL programming language. Many of the other instructions for
SCL, such as timers and counters, match the LAD and FBD instructions. For more
information about specific instructions, refer to the specific instructions in the chapters for
Basic instructions (Page|203) and|Extended instructions |(Page|283).

You can designate any type of block (OB, FB, or FC) to use the SCL programming language
at the time you create the block. STEP 7 provides an SCL program editor that includes the
following elements:

® Interface section for defining the parameters of the code block
® Code section for the program code
® |Instruction tree that contains the SCL instructions supported by the CPU

You enter the SCL code for your instruction directly in the code section. The editor includes
buttons for common code constructs and comments. For more complex instructions, simply
drag the SCL instructions from the instruction tree and drop them into your program. You can
also use any text editor to create an SCL program and then import that file into STEP 7.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 181

Programming concepts

6.5 Programming language

Interface

Marne Data type Cammment
* Input

L] StartStopSwitch Bool

w OQutput

s RuntesMo Bool

SN-N-N-N

* [nout

<Add nEwes
Temp
= <Add nEwes

g
1

< w Return
0-q] = Ret_‘al Waoid

= 0 DO el o e 0 . —

.

CASE... FDR... WHILE..

IF- “gr. mDO. DO..

THEN
/4 Statement section IF

END_IF:

In the Interface section of the SCL code block you can declare the following types of
parameters:

® Input, Output, InOut, and Ret_Val: These parameters define the input tags, output tags,
and return value for the code block. The tag name that you enter here is used locally
during the execution of the code block. You typically would not use the global tag name in
the tag table.

e Static (FBs only; the illustration above is for an FC): The code block uses static tags for
storage of static intermediate results in the instance data block. The block retains static
data until overwritten, which can be after several cycles. The names of the blocks, which
this block calls as multi-instance, are also stored in the static local data.

® Temp: These parameters are the temporary tags that are used during the execution of
the code block.

If you call the SCL code block from another code block, the parameters of the SCL code
block appear as inputs or outputs.

“StatProcess™ |
EN ENO

“Start” | StanStopSuiich RuriresMob ' On"

In this example, the tags for "Start" and "On" (from the project tag table) correspond to
"StartStopSwitch" and "RunYesNo" in the declaration table of the SCL program.

S7-1200 Programmable controller
182 System Manual, 03/2014, A5E02486680-AG

Programming concepts

Constructing an SCL expression

Table 6- 2

6.5 Programming language

An SCL expression is a formula for calculating a value. The expression consists of operands
and operators (such as *, /, + or -). The operands can be tags, constants, or expressions.

The evaluation of the expression occurs in a certain order, which is defined by the following

factors:

® Every operator has a pre-defined priority, with the highest-priority operation performed

first.

® For operators with equal priority, the operators are processed in a left-to-right sequence.

® You use parentheses to designate a series of operators to be evaluated together.

The result of an expression can be used either for assigning a value to a tag used by your
program, as a condition to be used by a control statement, or as parameters for another SCL

instruction or for calling a code block.

Operators in SCL

Type

Operation

Operator

Priority

Parentheses

(Expression)

(.)

Math

Power

*%k

Sign (unary plus)

+

Sign (unary minus)

Multiplication

Division

Modulo

Addition

Subtraction

Comparison

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

<>

Bit logic

Negation (unary)

NOT

AND logic operation

AND or &

Exclusive OR logic operation

XOR

OR logic operation

OR

Assignment

Assignment

A 20O |WIN([NoOoooojlajo|d|lD]|Dh|lWOWIWIN|~

0
1

As a high-level programming language, SCL uses standard statements for basic tasks:

® Assignment statement: :=

o Mathematical functions: +, -, *, and /

® Addressing of global variables (tags): "<tag name>" (Tag name or data block name

enclosed in double quotes)

® Addressing of local variables: #<variable name> (Variable name preceded by "#" symbol)

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

183

Programming concepts

6.5 Programming language

The following examples show different expressions for different uses.

"C" := #A+#B; Assigns the sum of two local variables to a tag
"Data block 1".Tag := #A; Assignment to a data block tag

IF #A > §#B THEN "C" := §#A; Condition for the IF-THEN statement

"C" := SQRT (SQR (#A) + SQR (#B)); Parameters for the SQRT instruction

Arithmetic operators can process various numeric data types. The data type of the result is
determined by the data type of the most-significant operands. For example, a multiplication
operation that uses an INT operand and a REAL operand yields a REAL value for the result.

Control statements

A control statement is a specialized type of SCL expression that performs the following
tasks:

® Program branching

® Repeating sections of the SCL program code
® Jumping to other parts of the SCL program

e Conditional execution

The SCL control statements include IF-THEN, CASE-OF, FOR-TO-DO, WHILE-DO,
REPEAT-UNTIL, CONTINUE, GOTO, and RETURN.

A single statement typically occupies one line of code. You can enter multiple statements on
one line, or you can break a statement into several lines of code to make the code easier to
read. Separators (such as tabs, line breaks and extra spaces) are ignored during the syntax
check. An END statement terminates the control statement.

The following examples show a FOR-TO-DO control statement. (Both forms of coding are
syntactically valid.)
FOR x := 0 TO max DO sum := sum + value(x); END_FOR;
FOR x := 0 TO max DO
sum := sum + value (x);
END_FOR;

A control statement can also be provided with a label. A label is set off by a colon at the
beginning of the statement:
Label: <Statement>;

The STEP 7 online help provides a complete SCL programming language reference.

S7-1200 Programmable controller
184 System Manual, 03/2014, A5E02486680-AG

Programming concepts

Conditions

Addressing

6.5 Programming language

A condition is a comparison expression or a logical expression whose result is of type BOOL
(with the value of either TRUE or FALSE). The following example shows conditions of
various types.

#Temperature > 50 Relational expression
#Counter <= 100

#CHARL < 'S’
(#Alpha <> 12) AND NOT #Beta Comparison and logical expression
5 + #Alpha Arithmetic expression

A condition can use arithmetic expressions:
e The condition of the expression is TRUE if the result is any value other than zero.

® The condition of the expression is FALSE if the result equals zero.

As with LAD and FBD, SCL allows you to use either tags (symbolic addressing) or absolute
addresses in your user program. SCL also allows you to use a variable as an array index.

Absolute addressing

$10.0 Precede absolute addresses with the "%" symbol.
$MB100 Without the "%", STEP 7 generates an undefined
tag error at compile time.

Symbolic addressing

"PLC_Tag_1" Tag in PLC tag table
"Data_block_1".Tag_l Tag in a data block
"Data_block 1".MyArray[#i] Array element in a data block array

Indexed addressing with PEEK and POKE instructions

SCL provides PEEK and POKE instructions that allow you to read from or write to data
blocks, 1/0, or memory. You provide parameters for specific byte offsets or bit offsets for the
operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 185

Programming concepts

6.5 Programming language

PEEK (area:=_in_,
dbNumber:= in_,
byteOffset:= in);

PEEK_WORD (area:=_in_,
dbNumber:= in_,
byteOffset:=_in_);

PEEK _DWORD (area:=_in_,
dbNumber:= in_,
byteOffset:= in);

PEEK BOOL(area:=_in_,
dbNumber:= in_,

byteOffset:= in ,

bitOffset:=_in);

POKE (area:=_in_,
dbNumber:= in_,
byteOffset:= in_,
value:=_in_);

186

Reads the byte referenced by byteOffset of
the referenced data block, 1/0 or memory
area.

Example referencing data block:

$MB100 := PEEK (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when
#i = 3

Reads the word referenced by byteOffset of
the referenced data block, I/O or memory
area.

Example:

$MW200 := PEEK WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i)

Reads the double word referenced by
byteOffset of the referenced data block, 1/0 or
memory area.

Example:

$MD300 := PEEK DWORD (area:=16#84,
dbNumber:=1, byteOffset:=#i)

Reads a Boolean referenced by the bitOffset
and byteOffset of the referenced data block,
I/O or memory area

Example:

$MB100.0 := PEEK BOOL (area:=16#84,
dbNumber:=1, byteOffset:=#ii,
bitOffset:=#j);

Writes the value (Byte, Word, or DWord) to
the referenced byteOffset of the referenced
data block, I/O or memory area

Example referencing data block:

POKE (area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag 1");
Example referencing QB3 output:

POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag 1");

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts
6.5 Programming language

POKE_BOOL (area:=_in_, Writes the Boolean value to the referenced
dbNumber:=_in_, bitOffset and byteOffset of the referenced
byteOffset:=_in , data block, 1/0 or memory area

bitOffset:=_in_,

) Example:
value:=_in);

POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5,
value:=0) ;

POKE_BLK (area_src:=_in_, Writes "count" number of bytes starting at the
dbNumber_src:= in_, referenced byte Offset of the referenced
byteOffset src:= in_, source data block, I/O or memory area to the
area_dest:= in_, referenced byteOffset of the referenced

dbNumber_dest:=_in_, destination data block, /0O or memory area
byteOffset dest:= in ,
- - = Example:

POKE_BLK (area_src:=16#84,
dbNumber src:=#src_db,
byteOffset_src:=#src_byte,
area dest:=16#84,

dbNumber dest:=#src_db,
byteOffset_dest:=#src_byte,
count:=10) ;

count:= in);

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16#81 [
16#82 Q
16#83 M
16#84 DB

Calling other code blocks from your SCL program

To call another code block in your user program, simply enter the name (or absolute
address) of the FB or FC with the parameters. For an FB, you must provide the instance DB
to be called with the FB.

<DB name> (Parameter list) Call as a single instance

<#Instance name> (Parameter list) Call as multi-instance
"MyDB" (MyInput:=10, MyInOut:="Tagl") ;

<FC name> (Parameter list) Standard call
<Operand>:=<FC name> (Parameter list) Callin an expression
"MyFC" (MyInput:=10, MyInOut:="Tagl") ;

You can also drag blocks from the navigation tree to the SCL program editor, and complete
the parameter assignment.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 187

Programming concepts

6.5 Programming language

Adding block comments to SCL code

You can include a block comment in your SCL code by including the comment text between
(* and *). You can have any number of comment lines between the (* and the *). Your SCL

program block can include many block comments. For programming convenience, the SCL
editor includes a block comment button along with common control statements:

|F.. CASE.. FOR. WHILE. . .,
“* QF. TODO.. DO.. '

6.5.4 EN and ENO for LAD, FBD and SCL

Determining "power flow" (EN and ENO) for an instruction

Certain instructions (such as the Math and the Move instructions) provide parameters for EN
and ENO. These parameters relate to power flow in LAD or FBD and determine whether the
instruction is executed during that scan. SCL also allows you to set the ENO parameter for a
code block.

e EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for
the box instruction to be executed. If the EN input of a LAD box is connected directly to
the left power rail, the instruction will always be executed.

e ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the
box executes its function without error, then the ENO output passes power flow
(ENO = 1) to the next element. If an error is detected in the execution of the box
instruction, then power flow is terminated (ENO = 0) at the box instruction that generated
the error.

Table 6-3 Operands for EN and ENO

Program editor Inputs/outputs Operands Data type

LAD EN, ENO Power flow Bool

FBD EN I, I:P, Q, M, DB, Temp, Power Flow Bool
ENO Power Flow Bool

SCL EN’ TRUE, FALSE Bool
ENO? TRUE, FALSE Bool

1 The use of EN is only available for FBs.

2. The use of ENO with the SCL code block is optional. You must configure the SCL compiler to set ENO when the code
block finishes.

S7-1200 Programmable controller
188 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.5 Programming language

Configuring SCL to set ENO
To configure the SCL compiler for setting ENO, follow these steps:
1. Select the "Settings" command from the "Options" menu.

2. Expand the "PLC programming" properties and select "SCL (Structured Control
Language)".

3. Select the "Set ENO automatically" option.

Using ENO in program code

You can also use ENO in your program code, for example by assigning ENO to a PLC tag,
or by evaluating ENO in a local block.

Examples:
“MyFunction”
(IN1 := .. ,
IN2 = .. ,

OUT1 => #myOut,
ENO => j#statusFlag); // PLC tag statusFlag holds the value of E
NO

“MyFunction”
(IN1 := ..
IN2 := .. ,
OUT1 => #myOut,
ENO => ENO); // block status flag of "MyFunction"
// is stored in the local block

IF ENO = TRUE THEN
// execute code only if MyFunction returns true ENO

Effect of Ret_Val or Status parameters on ENO

Some instructions, such as the communication instructions or the string conversion
instructions, provide an output parameter that contains information about the processing of
the instruction. For example, some instructions provide a Ret_Val (return value) parameter,
which is typically an Int data type that contains status information in a range from -32768 to
+32767. Other instructions provide a Status parameter, which is typically a Word data type
that stores status information in a range of hexadecimal values from 16#0000 to 16#FFFF.
The numerical value stored in a Ret_Val or a Status parameter determines the state of ENO
for that instruction.

® Ret_Val: A value from 0 to 32767 typically sets ENO = 1 (or TRUE). A value from -32768
to -1 typically sets ENO = 0 (or FALSE). To evaluate Ret_Val, change the representation
to hexadecimal.

e Status: A value from 16#0000 16#7FFF typically sets ENO = 1 (or TRUE). A value from
16#8000 to 16#FFFF typically sets ENO = 0 (or FALSE).

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 189

Programming concepts

6.6 Profection

See also

6.6

6.6.1

Instructions that take more than one scan to execute often provide a Busy parameter (Bool)
to signal that the instruction is active but has not completed execution. These instructions
often also provide a Done parameter (Bool) and an Error parameter (Bool). Done signals that
the instruction was completed without error, and Error signals that the instruction was
completed with an error condition.

® When Busy =1 (or TRUE), ENO = 1 (or TRUE).
® When Done = 1 (or TRUE), ENO = 1 (or TRUE).
® When Error =1 (or TRUE), ENO = 0 (or FALSE).

OK (Check validity) and NOT_OK (Check invalidity) instructions (Page 228)

Protection

Access protection for the CPU

The CPU provides four levels of security for restricting access to specific functions. When
you configure the security level and password for a CPU, you limit the functions and memory
areas that can be accessed without entering a password.

Each level allows certain functions to be accessible without a password. The default
condition for the CPU is to have no restriction and no password-protection. To restrict access
to a CPU, you configure the properties of the CPU and enter the password.

Entering the password over a network does not compromise the password protection for the
CPU. Password protection does not apply to the execution of user program instructions
including communication functions. Entering the correct password provides access to all of
the functions at that level.

PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU.

Table 6-4 Security levels for the CPU

Security level

Access restrictions

Full access (no
protection)

Allows full access without password protection.

Read access

Allows HMI access and all forms of PLC-to-PLC communications without password protection.

Password is required for modifying (writing to) the CPU and for changing the CPU mode
(RUN/STOP).

190

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.6 Protection

Security level Access restrictions

HMI access Allows HMI access and all forms of PLC-to-PLC communications without password protection.

Password is required for reading the data in the CPU, for modifying (writing to) the CPU, and for
changing the CPU mode (RUN/STOP).

No access (complete Allows no access without password protection.

protection) Password is required for HMI access, reading the data in the CPU, for modifying (writing to) the
CPU, and for changing the CPU mode (RUN/STOP)

Passwords are case-sensitive. To configure the protection level and passwords, follow these
steps:

1. In the "Device configuration”, select the CPU.
2. In the inspector window, select the "Properties" tab.

3. Select the "Protection” property to select the protection level and to enter passwords.

Protection

Protection

Selecs the access level for the PLC

Access level ACTESS ACCESS PErMISSion

Hml Read irine: Passwaord Confirrmation

() Full sccess (no protection) " iohoheidals A EEERRY
) Read sccess

:’.:",t HMI access

L4
L4

................

() Mo access (complete protection)

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 191

Programming concepts

6.6 Profection

When you download this configuration to the CPU, the user has HMI access and can access
HMI functions without a password. To read data, the user must enter the configured
password for "Read access" or the password for "Full access (no protection)". To write data,
the user must enter the configured password for "Full access (no protection)”.

A WArRNING
Unauthorized access to a protected CPU

Users with CPU full access privileges have privileges to read and write PLC variables.
Regardless of the access level for the CPU, Web server users can have privileges to read
and write PLC variables. Unauthorized access to the CPU or changing PLC variables to
invalid values could disrupt process operation and could result in death, severe personal
injury and/or property damage.

Authorized users can perform operating mode changes, writes to PLC data, and firmware
updates. Siemens recommends that you observe the following security practices:

e Password protect CPU access levels and Web server user IDs|(Page 604) with strong
passwords. Strong passwords are at least eight characters in length, mix letters,
numbers, and special characters, are not words that can be found in a dictionary, and
are not names or identifiers that can be derived from personal information. Keep the
password secret and change it frequently.

e Enable access to the Web server only with the HTTPS protocol.
¢ Do not extend the default minimum privileges of the Web server "Everybody" user.

e Perform error-checking and range-checking on your variables in your program logic
because Web page users can change PLC variables to invalid values.

Connection mechanisms

To access remote connection partners with PUT/GET instructions, the user must also have
permission.

By default, the "Permit access with PUT/GET communication" option is not enabled. In this
case, read and write access to CPU data is only possible for communication connections
that require configuration or programming both for the local CPU and for the communication
partner. Access through BSEND/BRCYV instructions is possible, for example.

Connections for which the local CPU is only a server (meaning that no
configuration/programming of the communication with the communication partner exists at
the local CPU), are therefore not possible during operation of the CPU, for example:

e PUT/GET, FETCH/WRITE or FTP access through communication modules
e PUT/GET access from other S7 CPUs

e HMI access through PUT/GET communication

S7-1200 Programmable controller
192 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.6 Protection

If you want to allow access to CPU data from the client side, that is, you do not want to
restrict the communication services of the CPU, follow these steps:

1. Configure the protection access level to be any level other than "No access (complete
protection)".

2. Select the "Permit access with PUT/GET communication" check box.

Connection mechanisms

&l Permit access with PUTIGET communicstion from remote parener (FLC, HMI, OFC,)

When you download this configuration to the CPU, the CPU permits PUT/GET
communication from remote partners

6.6.2 Know-how protection

Know-how protection allows you to prevent one or more code blocks (OB, FB, FC, or DB) in
your program from unauthorized access. You create a password to limit access to the code
block. The password-protection prevents unauthorized reading or modification of the code
block. Without the password, you can read only the following information about the code
block:

® Bilock title, block comment, and block properties
® Transfer parameters (IN, OUT, IN_OUT, Return)
® Call structure of the program

® Global tags in the cross references (without information on the point of use), but local
tags are hidden

When you configure a block for "know-how" protection, the code within the block cannot be
accessed except after entering the password.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 193

Programming concepts

6.6 Profection

Use the "Properties"” task card of the code block to configure the know-how protection for
that block. After opening the code block, select "Protection" from Properties.

| General |
General
; Protection
Infarmatian
Time stamps Know-how protection
Compilation
m The block iz not protected
fttribiezs | Frotection
Copy protection
Ho binding [=]
dl =nal number insemes = ¢ -] it i
1. In the Properties for the code block, click

the "Protection" button to display the
"Know-how protection" dialog.

.) 8
2. Click the "Define" button to enter the ———
password. e
oK I cencel |

After entering and confirming the password, LENIGEET IS¢

click "OK".
Enter protection passvword
Hew | n
Confirrm: || n
| o I cancel |

S7-1200 Programmable controller
194 System Manual, 03/2014, A5E02486680-AG

Programming concepts
6.6 Profection

6.6.3 Copy protection

An additional security feature allows you to bind program blocks for use with a specific
memory card or CPU. This feature is especially useful for protecting your intellectual
property. When you bind a program block to a specific device, you restrict the program or
code block for use only with a specific memory card or CPU. This feature allows you to
distribute a program or code block electronically (such as over the Internet or through email)

or by sending a memory cartridge. Copy protection is available for/OBs (Page|172), FBs
(Page|175), and FCs|(Page|174).

Use the "Properties" task card of the code block to bind the block to a specific CPU or
memory card.

1. After opening the code block, select "Protection”.

General |
General
) Protection
Infarmation
Time stamps Know-how protection
Complation
The block 13 not protected
Artributes

Frotection

Copy protection

Ho binding £

2. From the drop-down list under "Copy protection" task, select the option to bind the code
block either to a memory card or to a specific CPU.

Know-how protection

The block 1s not protecred

Fratection

Copy protection

Bind to senal number of the OFU

®) serial number inzerted when dewnloading to & devics of 8 memory card

—
{_)Enter senal number

3. Select the type of copy protection and enter the serial number for the memory card or
CPU.

Note

The serial number is case-sensitive.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 195

Programming concepts

6.7 Downloading the elements of your program

6.7

196

Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs)
in permanent memory.

Exended dewmload be device

Conliguend aconsi nodad of TLE_ 1

Brvice B B Tt Addraaa
e CUINECOT0.. T AT

PGS nsnrdace or koading B L U100 I8 T O

Acce il Srdons intanges sl o Sheres ol ansaibie devices
Bevicn Bt T Addra 31 Tarpit device

- - L Aocers i -

Flazh LG

el ih

| (T35 Sansel |

You can download your project from the programming device to your CPU from any of the
following locations:

e "Project tree": Right-click the program element, and then click the context-sensitive
"Download" selection.

e "Online" menu: Click the "Download to device" selection.

® Toolbar: Click the "Download to device" icon.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

You can also|download a panel project for the Basic HMI panels|(Page 32) from the
TIA Portal to a memory card in the S7-1200 CPU.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.8 Uploading from the CPU

Uploading from the CPU

Copying elements of the project

You can also copy the program blocks from an online CPU or a memory card attached to
your programming device.

Prepare the offline project for the copied program blocks: « e

1. Add a CPU device that matches the online CPU. e
2. Expand the CPU node once so that the "Program gL 1PLC 1 [CPU 1212C DQDODC]

I Device configuration
W Online & diagnostics

blocks" folder is visible.

w g Frogram blocks
B ~dd new bl
& Main [0B1]

To upload the program blocks from the online CPU to the Go online
offline project, follow these steps:

1. Click the "Program blocks" folder in the offline project. it

2. Click the "Go online" button.

3. Click the "Upload" button.

4. Confirm your decision from the Upload dialog
(Page 786).

As an alternative to the previous method, follow these R Criine access)
steps: » (i UsE [STUSE] a0
A con L]
1. From the project navigator, expand the node for » LI FC Adaprer [MFI] 5
"Online access" to select the program blocks in the D -E-'CP-*'li‘: 'P["-'.P'l :
. . b} Incel{R} FROM OGO
online CPU: = | D-Link DUB-E10¢ US [

2. Expand the node for the network, and double click A2 Updats ace ds
"Update accessible devices". T :1‘|1I|[|'I| Ir.:;qn.!t..;;

3. Expand the node for the CPU. = [Program blacks

4. Drag the "Program blocks" folder from the online CPU :!.?:] I_.?ll,l
and drop the folder into the "Program blocks" folder of b [Technological objects

» [PLC data rypes

your offline project.

5. In the "Upload preview" dialog, select the box for
"Continue", and then click the "Upload from device"
button.

When the upload is complete, all of the program blocks, B 1P C 1 [chu 1212€ DCDEDC)]

technology blocks, and tags will be displayed in the offline I Device conbiguration
% Online & diagnostics
area. = g Program blocks
& Add new blach
4 Wain [OB1]
3 Block_1 [FC1]

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 197

Programming concepts

6.9 Debugging and testing the program

Note

You can copy the program blocks from the online CPU to an existing program. The
"Program-blocks" folder of the offline project does not have to be empty. However, the
existing program will be deleted and replaced by the user program from the online CPU.

6.8.2 Using the compare function

You can use the "Compare" editor (Page 794) in STEP 7 to find differences between the
online and offline projects. You might find this useful prior to uploading from the CPU.

6.9 Debugging and testing the program

6.9.1 Monitor and modify data in the CPU

As shown in the following table, you can monitor and modify values in the online CPU.

Table 6- 5 Monitoring and modifying data with STEP 7

Editor Monitor Modify Force
Watch table Yes Yes No
Force table Yes No Yes
Program editor Yes Yes No
Tag table Yes No No
DB editor Yes No No
Wi Monitoring with a
watch table
ER%7AZFFLUES
Harmne Address Dizplay format Wlenitor value ity valug i
on" %l0. 0 Bool E| FALSE
"Off %101 Bool [H] FALSE
Bun S0 0 Boaol [E FALSE
on ot o Monitoring with the LAD editor
1 !---—-'— ------------------------------------ o em——
“Run” !
b

Refer to the "Online and diagnostics" chapter for more information about monitoring and
modifying data in the CPU (Page|795).

S7-1200 Programmable controller
198 System Manual, 03/2014, A5E02486680-AG

Programming concepts

6.9 Debugging and testing the program

6.9.2 Watch tables and force tables

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs (I:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.

STEP 7 also provides a force table for "forcing" a tag to a specific value. For more
information about forcing, see the section onforcing values in the CPU|(Page 802) in the
"Online and Diagnostics" chapter.

Note
The force values are stored in the CPU and not in the watch table.

You cannot force an input (or "I" address). However, you can force a peripheral input. To
force a peripheral input, append a ":P" to the address (for example: "On:P").

STEP 7 also provides the capability of tracing and recording program variables based on
trigger conditions (Page 813).

6.9.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is
used throughout the complete project, such as the user program, the CPU and any HMI
devices. The "Cross-reference" tab displays the instances where a selected object is being
used and the other objects using it. The Inspector window also includes blocks which are
only available online in the cross-references. To display the cross-references, select the
"Show cross-references" command. (In the Project view, find the cross references in the
"Tools" menu.)

Note

You do not have to close the editor to see the cross-reference information.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 199

Programming concepts

6.9 Debugging and testing the program

200

You can sort the entries in the cross-reference. The cross-reference list provides an
overview of the use of memory addresses and tags within the user program.

e When creating and changing a program, you retain an overview of the operands, tags
and block calls you have used.

® From the cross-references, you can jump directly to the point of use of operands and

tags.

e During a program test or when troubleshooting, you are notified about which memory
location is being processed by which command in which block, which tag is being used in
which screen, and which block is called by which other block.

Table 6- 6 Elements of the cross reference
Column Description
Object Name of the object that uses the lower-level objects or that is being used by the
lower-level objects
Quantity Number of uses
Location Each location of use, for example, network
Property Special properties of referenced objects, for example, the tag names in multi-instance
declarations
as Shows additional information about the object, such as whether an instance DB is
used as template or as a multiple instance
Access Type of access, whether access to the operand is read access (R) and/or write
access (W)
Address Address of the operand
Type Information on the type and language used to create the object
Path Path of object in project tree

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Programming concepts
6.9 Debugging and testing the program

6.9.4 Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It
provides an overview of the blocks used, calls to other blocks, the relationships between
blocks, the data requirements for each block, and the status of the blocks. You can open the
program editor and edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program.
STEP 7 highlights the first level of the call structure and displays any blocks that are not
called by any other block in the program. The first level of the call structure displays the OBs
and any FCs, FBs, and DBs that are not called by an OB. If a code block calls another block,
the called block is shown as an indentation under the calling block. The call structure only
displays those blocks that are called by a code block.

You can selectively display only the blocks causing conflicts within the call structure. The
following conditions cause conflicts:

® Blocks that execute any calls with older or newer code time stamps
® Blocks that call a block with modified interface

® Blocks that use a tag with modified address and/or data type

® Blocks that are called neither directly nor indirectly by an OB

® Blocks that call a non-existent or missing block

You can group several block calls and data blocks as a group. You use a drop-down list to
see the links to the various call locations.

You can also perform a consistency check to show time stamp conflicts. Changing the time
stamp of a block during or after the program is generated can lead to time stamp conflicts,
which in turn cause inconsistencies among the blocks that are calling and being called.

® Most time stamp and interface conflicts can be corrected by recompiling the code blocks.

e [f compilation fails to clear up inconsistencies, use the link in the "Details" column to go to
the source of the problem in the program editor. You can then manually eliminate any
inconsistencies.

® Any blocks marked in red must be recompiled.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 201

Programming concepts

6.9 Debugging and testing the program

S7-1200 Programmable controller
202 System Manual, 03/2014, A5E02486680-AG

Basic instructions

71 Bit logic operations
7.1.1 Bit logic instructions
LAD and FBD are very effective for handling Boolean logic. While SCL is especially effective
for complex mathematical computation and for project control structures, you can use SCL
for Boolean logic.
LAD contacts
Table 7- 1 Normally open and normally closed contacts
LAD SCL Description
"IN IF in THEN Normally open and normally closed contacts: You can connect contacts
- — Statement; to other contacts and create your own combination logic. If the input bit
ELSE you specify uses memory identifier | (input) or Q (output), then the bit
Statement; value is read from the process-image register. The physical contact
END IF: signals in your control process are wired to | terminals on the PLC. The
- IF NOT (in) THEN CPU scan(sj.the :vi;ed inlput §igtr;1als and coqtinuou§ly utpdatfe? the
i Statement ; corresponding state values in the process-image input register.
ELSE You can perform an immediate read of a physical input using ":P"
St . following the | offset (example: "%I3.4:P"). For an immediate read, the bit
atement;
data values are read directly from the physical input instead of the
END IF;
- process image. An immediate read does not update the process image.
Table 7- 2 Data types for the parameters
Parameter Data type Description
IN Bool Assigned bit
® The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.
e The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.
® Contacts connected in series create AND logic networks.
® Contacts connected in parallel create OR logic networks.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 203

Basic instructions

7.1 Bit logic operations

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
exclusive OR (x) box networks where you can specify bit values for the box inputs and
outputs. You may also connect to other logic boxes and create your own logic combinations.
After the box is placed in your network, you can drag the "Insert input" tool from the
"Favorites" toolbar or instruction tree and then drop it onto the input side of the box to add
more inputs. You can also right-click on the box input connector and select "Insert input".

Box inputs and outputs can be connected to another logic box, or you can enter a bit
address or bit symbol name for an unconnected input. When the box instruction is executed,
the current input states are applied to the binary box logic and, if true, the box output will be

true.

Table 7- 3 AND, OR, and XOR boxes
FBD SCL! Description
= out := inl AND All inputs of an AND box must be TRUE for the output to be

" el in2; TRUE.

"2 — s —_

e out := inl OR in2; | Any input of an OR box must be TRUE for the output to be

"I — TRUE.

2" — st —

out := inl XOR An odd number of the inputs of an XOR box must be TRUE for

i —l in2; the output to be TRUE.

"2 — s —_

1 For SCL: You must assign the result of the operation to a variable to be used for another statement.

Table 7- 4 Data types for the parameters
Parameter Data type Description
IN1, IN2 Bool Input bit
S7-1200 Programmable controller
204 System Manual, 03/2014, A5E02486680-AG

Basic instructions

NOT logic inverter

Table 7- 5 Invert RLO (Result of Logic Operation)

7.1 Bit logic operations

LAD FBD

SCL

Description

RIERIE-

"t L

— NOT — &

"IN —o

"IM2" — sk

NOT

For FBD programming, you can drag the "Negate binary
input" tool from the "Favorites" toolbar or instruction tree and
then drop it on an input or output to create a logic inverter on
that box connector.

The LAD NOT contact inverts the logical state of power flow
input.

If there is no power flow into the NOT contact, then there
is power flow out.

If there is power flow into the NOT contact, then there is
no power flow out.

Output coil and assignment box

The coil output instruction writes a value for an output bit. If the output bit you specify uses
memory identifier Q, then the CPU turns the output bit in the process-image register on or
off, setting the specified bit equal to power flow status. The output signals for your control
actuators are wired to the Q terminals of the CPU. In RUN mode, the CPU system
continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output
register. The CPU system transfers the new output state reaction that is stored in the
process-image register, to the wired output terminals.

Table 7-6 Assignment and negate assignment

LAD FBD SCL Description
“ouT” “quT out := <Boolean In FBD programming, LAD coils are transformed into
—_ — z expression>; assignment (= and /=) boxes where you specify a bit
- - address for the box output. Box inputs and outputs can be
connected to other box logic or you can enter a bit
QT -ouT" out := NOT address.
—/— i <Boolean You can specify an immediate write of a physical output
— - expression>; using ":P" following the Q offset (example: "%Q3.4:P").
For an immediate write, the bit data values are written to
vouT the process image output and directly to physical output.
—_ O—

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

205

Basic instructions
7.1 Bit logic operations

Table 7-7 Data types for the parameters

Parameter Data type Description
ouT Bool Assigned bit

e |[f there is power flow through an output coil or an FBD "=" box is enabled, then the output
bit is set to 1.

e |[f there is no power flow through an output coil or an FBD "=" assignment box is not
enabled, then the output bit is set to 0.

e |f there is power flow through an inverted output coil or an FBD "/=" box is enabled, then
the output bit is set to 0.

e |f there is no power flow through an inverted output coil or an FBD "/=" box is not enabled,
then the output bit is set to 1.

7.1.2 Set and reset instructions

Set and Reset 1 bit

Table 7- 8 S and R instructions

LAD FBD SCL Description
noUT" "quT" Not available Set output:
TS T When S (Set) is activated, then the data value at the OUT
—{5— N — - address is set to 1. When S is not activated, OUT is not
changed.
"oyt “guT" Not available Reset output:
TR When R (Reset) is activated, then the data value at the OUT
—H .'I_ N — - address is set to 0. When R is not activated, OUT is not
changed.

1 For LAD and FBD: These instructions can be placed anywhere in the network.

2 For SCL: You must write code to replicate this function within your application.

Table 7- 9 Data types for the parameters

Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit tag of location to be monitored
ouT Bool Bit tag of location to be set or reset

S7-1200 Programmable controller
206 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.1 Bit logic operations

Set and Reset Bit Field

Table 7- 10 SET_BF and RESET_BF instructions

LAD? FBD SCL Description
"OUT" Ut Not available Set bit field:
TEETBE When SET_BF is activated, a data value of 1 is assigned to "n"
—{SET_BFH N bits starting at address tag OUT. When SET_BF is not
i N activated, OUT is not changed.
QT "quT" Not available Reset bit field:
"RESET BE | RESET_BF writes a data value of 0 to "n" bits starting at
—{ RESET_BF || —EN address tag OUT. When RESET_BF is not activated, OUT is
"R N not changed.

' For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

Table 7- 11 Data types for the parameters

Parameter Data type Description

ouT Bool Starting element of a bit field to be set or reset (Example:
#MyArray[3])

n Constant (UInt) Number of bits to write

Set-dominant and Reset-dominant flip-flops

Table 7- 12 RS and SR instructions

LAD / FBD SCL Description
"HOUT Not available Reset/set flip-flop:
RS RS is a set dominant latch where the set dominates. If the set (S1) and reset (R)
-F o~ signals are both true, the value at address INOUT will be 1.
=51
HOLT" Not available Set/reset flip-flop:
TTTERTTTT SR is a reset dominant latch where the reset dominates. If the set (S) and reset
-5 p] (R1) signals are both true, the value at address INOUT will be 0.
=R

1 For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 207

Basic instructions

7.1 Bit logic operations

Table 7- 13 Data types for the parameters

Parameter Data type Description

S, S1 Bool Set input; 1 indicates dominance
R, R1 Bool Reset input; 1 indicates dominance
INOUT Bool Assigned bit tag "INOUT"

Q Bool Follows state of "INOUT" bit

The "INOUT" tag assigns the bit address that is set or reset. The optional output Q follows
the signal state of the "INOUT" address.

Instruction S1 R "INOUT" bit
RS 0 0 Previous state
0 1 0
1 0o 1
1 1 1
S R1
SR 0 0 Previous state
0 1 0
1 0o 1
1 1 0

S7-1200 Programmable controller
208 System Manual, 03/2014, A5E02486680-AG

Basic instructions

713

Table 7- 14

7.1 Bit logic operations

Positive and negative edge instructions

Positive and negative transition detection

LAD

FBD

SCL

Description

“IN“

—{P—
"h_BIT"

“lN“

P

"M_BIT"

Not available

Scan operand for positive signal edge.

LAD: The state of this contact is TRUE when a positive transition (OFF-
to-ON) is detected on the assigned "IN" bit. The contact logic state is
then combined with the power flow in state to set the power flow out
state. The P contact can be located anywhere in the network except the
end of a branch.

FBD: The output logic state is TRUE when a positive transition (OFF-
to-ON) is detected on the assigned input bit. The P box can only be
located at the beginning of a branch.

"
—N
"M_BIT"

e

"M_BIT"

Not available

Scan operand for negative signal edge.

LAD: The state of this contact is TRUE when a negative transition (ON-
to-OFF) is detected on the assigned input bit. The contact logic state is
then combined with the power flow in state to set the power flow out
state. The N contact can be located anywhere in the network except
the end of a branch.

FBD: The output logic state is TRUE when a negative transition (ON-to-
OFF) is detected on the assigned input bit. The N box can only be
located at the beginning of a branch.

Ut

—{(P
"M_EIT"

Ut

P:

"M_BIT"

Not available

Set operand on positve signal edge.

LAD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
P coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The P= box can be located anywhere in the branch.

|||:|L|T||

—(N
"M_BIT"

Ut

"M_BIT"

Not available

Set operand on negative signal edge.

LAD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
N coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The N= box can be located anywhere in the branch.

1 For SCL: You must write code to replicate this function within your application.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

209

Basic instructions

7.1 Bit logic operations

Table 7- 15 P_TRIG and N_TRIG

LAD / FBD SCL Description
B TRIE Not available ! Scan RLO (result of logic operation) for positve signal edge.
_ ELK_ Q= The Q output power flow or logic state is TRUE when a positive
- - transition (OFF-to-ON) is detected on the CLK input state (FBD) or CLK
M_BIT power flow in (LAD).
In LAD, the P_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the P_TRIG instruction can be located
anywhere except the end of a branch.
NS Not available * Scan RLO for negative signal edge.
_ ELK_ oL The Q output power flow or logic state is TRUE when a negative
BT transition (ON-to-OFF) is detected on the CLK input state (FBD) or CLK

power flow in (LAD).

In LAD, the N_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the N_TRIG instruction can be located
anywhere except the end of a branch.

1 For SCL: You must write code to replicate this function within your application.

Table 7- 16 R_TRIG and F_TRIG instructions

LAD / FBD SCL Description
"_TPIG_DE" "R_TRIG_DB" (CLK:= | Settag on positive signal edge.
FTRIG _in_, Q=> out_ The assigned instance DB is used to store the previous state of the CLK
EN ENG — input. The Q output power flow or logic state is TRUE when a positive
cLi o transition (OFF-to-ON) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).
In LAD, the R_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the R_TRIG instruction can be located
anywhere except the end of a branch.
" TRIG_DE_1" "F‘_TRIG_DB" (CLK:= | Set tag on negative signal edge.
F TRIG _in_, Q=> out The assigned instance DB is used to store the previous state of the CLK
EN ENG = input. The Q output power flow or logic state is TRUE when a negative
LK ab transition (ON-to-OFF) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).
In LAD, the F_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the F_TRIG instruction can be located
anywhere except the end of a branch.
For R_TRIG and F_TRIG, when you insert the instruction in the program, the "Call options"
dialog opens automatically. In this dialog you can assign
whether the edge memory bit is stored in its own data block (single instance) or as a local
tag (multiple instance) in the
block interface. If you create a separate data block, you will find it in the project tree in the
"Program resources" folder
under "Program blocks > System blocks".
S7-1200 Programmable controller
210 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.1 Bit logic operations

Table 7- 17 Data types for the parameters (P and N contacts/coils, P=, N=, P_TRIG and N_TRIG)
Parameter Data type Description
M_BIT Bool Memory bit in which the previous state of the input is saved
IN Bool Input bit whose transition edge is detected
ouT Bool Output bit which indicates a transition edge was detected
CLK Bool Power flow or input bit whose transition edge is detected
Q Bool Output which indicates an edge was detected

All edge instructions use a memory bit (M_BIT: P/N contacts/coils, P_TRIG/N_TRIG) or
(instance DB bit: R_TRIG, F_TRIG) to store the previous state of the monitored input signal.
An edge is detected by comparing the state of the input with the previous state. If the states
indicate a change of the input in the direction of interest, then an edge is reported by writing
the output TRUE. Otherwise, the output is written to FALSE.

Note

Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory
bit in your program design either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use
a unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by
other system functions, such as an I/O update. Use only M, global DB, or Static memory (in
an instance DB) for M_BIT memory assignments.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 211

Basic instructions

7.2 Timer operations

7.2 Timer operations

You use the timer instructions to create programmed time delays. The number of timers that
you can use in your user program is limited only by the amount of memory in the CPU. Each
timer uses a 16 byte IEC_Timer data type DB structure to store timer data that is specified at
the top of the box or coil instruction. STEP 7 automatically creates the DB when you insert
the instruction.

Table 7- 18 Timer instructions

LAD / FBD boxes LAD coils SCL

"IEC Timer O _DB".TP(

Description

The TP timer generates a pulse with a preset

RT

IEC_Timer_0 TP_DE
- —{ TP p— IN:= bool_in_, width time.
Time "PRESET_Tag" PT:= time_in_,
= o= Q=> bool out_,
ill l ET=>_ time_out);
IEC Timer 1 TON_DE "IEC_Timer O _DB".TON (The TON timer sets output Q to ON after a preset
DT —{TOM }— IN:= bool in_, time delay.
Time "PRESET_Tag" PT:= time_in_,
— M Q- Q=> bool out_,
] E ET=> time out);
IEC Timer 2 T0F OB "IEC_Timer_ 0_DB".TOF (The TOF timer resets output Q to OFF after a
e —{T0F }— IN:= bool in_, preset time delay.
Time "PRESET_Tag" PT:= time_ in ,
M 0- 0=> bool_out_,
il i ET=> time out);
IEC_Timer_3 TONR_DE "IEC_Timer 0 _DB".TONR (|The TONR timer sets output Q to ON after a
E=r —{ TOMR }— IN:= bool in_, preset time delay. Elapsed time is accumulated
Time "PRESET_Tag” R:= bool in_ over multiple timing periods until the R input is
I 0= PT:= time in , used to reset the elapsed time.
B Q=> bool out_,
il ET=>_ time_out);
FBD only: TOM_DB (No SCL equivalent) The PT (Preset timer) coil loads a new PRESET
—{FT }— time value in the specified IEC_Timer.
| - "PRESET_Tag"
T —
FBD only: TOM_DE (No SCL equivalent) The RT (Reset timer) coil resets the specified
— T IEC_Timer.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL examples, "IEC_Timer_0_DB" is the name of the instance DB.

212

S7-1200 Programmable controller

System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.2 Timer operations

Table 7- 19 Data types for the parameters

Parameter Data type Description

Box: IN Bool TP, TON, and TONR:

Coil: Power flow Box: O=Disable timer, 1=Enable timer
Coil: No power flow=Disable timer, Power flow=Enable timer
TOF:

Box: 0=Enable timer, 1=Disable timer
Coil: No power flow=Enable timer, Power flow=Disable timer

R Bool TONR box only:
0=No reset
1= Reset elapsed time and Q bit to 0
Box: PT Time Timer box or coil: Preset time input
Coil: "PRESET_Tag"
Box: Q Bool Timer box: Q box output or Q bit in the timer DB data
Coil: DBdata.Q Timer coil: you can only address the Q bit in the timer DB data
Box: ET Time Timer box: ET (elapsed time) box output or ET time value in the timer DB
Coil: DBdata.ET data

Timer coil: you can only address the ET time value in the timer DB data.

Table 7- 20 Effect of value changes in the PT and IN parameters

Timer Changes in the PT and IN box parameters and the corresponding coil parameters

P e Changing PT has no effect while the timer runs.

e Changing IN has no effect while the timer runs.

TON e Changing PT has no effect while the timer runs.

e Changing IN to FALSE, while the timer runs, resets and stops the timer.

TOF e Changing PT has no effect while the timer runs.
e Changing IN to TRUE, while the timer runs, resets and stops the timer.

TONR e Changing PT has no effect while the timer runs, but has an effect when the timer resumes.

e Changing IN to FALSE, while the timer runs, stops the timer but does not reset the timer. Changing
IN back to TRUE will cause the timer to start timing from the accumulated time value.

PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER DB
data as signed double integers that represent milliseconds of time. TIME data uses the T#
identifier and can be entered as a simple time unit (T#200ms or 200) and as compound time
units like T#2s_200ms.

Table 7- 21 Size and range of the TIME data type

Data type Size Valid number ranges'
TIME 32 bits, stored T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms
as Dint data Stored as -2,147,483,648 ms to +2,147,483,647 ms

1 The negative range of the TIME data type shown above cannot be used with the timer instructions. Negative PT (preset
time) values are set to zero when the timer instruction is executed. ET (elapsed time) is always a positive value.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 213

Basic instructions

7.2 Timer operations

Timer coil example

The -(TP)-, -(TON)-, -(TOF)-, and -(TONR)- timer coils must be the last instruction in a LAD
network. As shown in the timer example, a contact instruction in a subsequent network
evaluates the Q bit in a timer coil's IEC_Timer DB data. Likewise, you must address the
ELAPSED element in the IEC_timer DB data if you want to use the elapsed time value in
your program.

"Tag_Input" Timer
| { | {TF —

"Tag_Time"

| “DE1".MylEC_

The pulse timer is started on a 0 to 1 transition of the Tag_Input bit value. The timer runs for
the time specified by Tag_Time time value.

"DB1".MyIEC_
Timer.Q) "Tag_Output”

] 1 I 3
I 11 L

As long as the timer runs, the state of DB1.MylEC_Timer.Q=1 and the Tag_Output value=1.
When the Tag_Time value has elapsed, then DB1.MylEC_Timer.Q=0 and the Tag_Output
value=0.

Reset timer -(RT)- and Preset timer -(PT)- coils

214

These caoil instructions can be used with box or coil timers and can be placed in a mid-line
position. The coil output power flow status is always the same as the coil input status. When
the -(RT)- coil is activated, the ELAPSED time element of the specified IEC_Timer DB data
is reset to 0. When the -(PT)- coil is activated, the PRESET time element of the specified
IEC_Timer DB data is loaded with the assigned time-duration value..

Note

When you place timer instructions in an FB, you can select the "Multi-instance data block"
option. The timer structure names can be different with separate data structures, but the
timer data is contained in a single data block and does not require a separate data block for
each timer. This reduces the processing time and data storage necessary for handling the
timers. There is no interaction between the timer data structures in the shared multi-instance
DB.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

Operation of the timers

Table 7-22 Types of IEC timers

7.2 Timer operations

Timer

Timing diagram

TP: Gernerate pulse

The TON timer sets output Q to ON after a preset time
delay.

IN 4
The TP timer generates a pulse with a preset width
time. I | | | || | |

ET)

PTT

QA

PT PT_ | [pT |
| I | I

TON: Generate ON-delay IN 4

TOF: Generate OFF-delay

The TOF timer resets output Q to OFF after a preset
time delay.

ET

i

TONR: Time accumulator

The TONR timer sets output Q to ON after a preset time
delay. Elapsed time is accumulated over multiple timing
periods until the R input is used to reset the elapsed
time.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

215

Basic instructions

7.2 Timer operations

216

Note

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead,
each timer utilizes its own timer structure in DB memory and a continuously-running internal
CPU timer to perform timing.

When a timer is started due to an edge change on the input of a TP, TON, TOF, or TONR
instruction, the value of the continuously-running internal CPU timer is copied into the
START member of the DB structure allocated for this timer instruction. This start value
remains unchanged while the timer continues to run, and is used later each time the timer is
updated. Each time the timer is started, a new start value is loaded into the timer structure
from the internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current
value of the internal CPU timer to determine the elapsed time. The elapsed time is then
compared with the preset to determine the state of the timer Q bit. The ELAPSED and Q
members are then updated in the DB structure allocated for this timer. Note that the elapsed
time is clamped at the preset value (the timer does not continue to accumulate elapsed time
after the preset is reached).

A timer update is performed when and only when:
® A timer instruction (TP, TON, TOF, or TONR) is executed

e The "ELAPSED" member of the timer structure in DB is referenced directly by an
instruction

® The "Q" member of the timer structure in DB is referenced directly by an instruction

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions
7.2 Timer operations

Timer programming

The following consequences of timer operation should be considered when planning and
creating your user program:

® You can have multiple updates of a timer in the same scan. The timer is updated each
time the timer instruction (TP, TON, TOF, TONR) is executed and each time the
ELAPSED or Q member of the timer structure is used as a parameter of another
executed instruction. This is an advantage if you want the latest time data (essentially an
immediate read of the timer). However, if you desire to have consistent values throughout
a program scan, then place your timer instruction prior to all other instructions that need
these values, and use tags from the Q and ET outputs of the timer instruction instead of
the ELAPSED and Q members of the timer DB structure.

® You can have scans during which no update of a timer occurs. It is possible to start your
timer in a function, and then cease to call that function again for one or more scans. If no
other instructions are executed which reference the ELAPSED or Q members of the timer
structure, then the timer will not be updated. A new update will not occur until either the
timer instruction is executed again or some other instruction is executed using ELAPSED
or Q from the timer structure as a parameter.

e Although not typical, you can assign the same DB timer structure to multiple timer
instructions. In general, to avoid unexpected interaction, you should only use one timer
instruction (TP, TON, TOF, TONR) per DB timer structure.

e Self-resetting timers are useful to trigger actions that need to occur periodically. Typically,
self-resetting timers are created by placing a normally-closed contact which references
the timer bit in front of the timer instruction. This timer network is typically located above
one or more dependent networks that use the timer bit to trigger actions. When the timer
expires (elapsed time reaches preset value), the timer bit is ON for one scan, allowing the
dependent network logic controlled by the timer bit to execute. Upon the next execution of
the timer network, the normally closed contact is OFF, thus resetting the timer and
clearing the timer bit. The next scan, the normally closed contact is ON, thus restarting
the timer. When creating self-resetting timers such as this, do not use the "Q" member of
the timer DB structure as the parameter for the normally-closed contact in front of the
timer instruction. Instead, use the tag connected to the "Q" output of the timer instruction
for this purpose. The reason to avoid accessing the Q member of the timer DB structure
is because this causes an update to the timer and if the timer is updated due to the
normally closed contact, then the contact will reset the timer instruction immediately. The
Q output of the timer instruction will not be ON for the one scan and the dependent
networks will not execute.

Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the timer data stored in the previous run mode session is lost, unless
the timer data structure is specified as retentive (TP, TON, TOF, and TONR timers).

When you accept the defaults in the call options dialog after you place a timer instruction in
the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your timer data retentive, you must either use a global DB or a Multi-
instance DB.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 217

Basic instructions

7.2 Timer operations

Assign a global DB to store timer data as retentive data

218

This option works regardless of where the timer is placed (OB, FC, or FB).

1.

Create a global DB:

Double-click "Add new block" from the Project tree
Click the data block (DB) icon
For the Type, choose global DB

If you want to be able to select individual data elements in this DB as retentive, be
sure the DB type "Optimized" box is checked. The other DB type option "Standard -
compatible with S7-300/400" only allows setting all DB data elements retentive or
none retentive.

Click OK

Add timer structure(s) to the DB:

In the new global DB, add a new static tag using data type IEC_Timer.
In the "Retain" column, check the box so that this structure will be retentive.

Repeat this process to create structures for all the timers that you want to store in this
DB. You can either place each timer structure in a unique global DB, or you can place
multiple timer structures into the same global DB. You can also place other static tags
besides timers in this global DB. Placing multiple timer structures into the same global
DB allows you to reduce your overall number of blocks.

Rename the timer structures if desired.

. Open the program block for editing where you want to place a retentive timer (OB, FC, or

FB).

Place the timer instruction at the desired location.

5. When the call options dialog appears, click the cancel button.

On the top of the new timer instruction, type the name (do not use the helper to browse)
of the global DB and timer structure that you created above (example:
"Data_block_3.Static_1").

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.2 Timer operations

Assign a multi-instance DB to store timer data as retentive data

This option only works if you place the timer in an FB.

This option depends upon whether the FB properties specify "Optimized block access"
(allows symbolic access only). To verify how the access attribute is configured for an existing
FB, right-click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

5. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure

appears in the FB Interface under Static.

If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

Under Static, locate the timer structure that was just created for you.

In the Retain column for this timer structure, change the selection to "Retain". Whenever
this FB is called later from another program block, an instance DB will be created with this
interface definition which contains the timer structure marked as retentive.

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

. In the Call options dialog, rename the timer if desired.

. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure

appears in the FB Interface under Static.

. Open the block that will use this FB.

. Place this FB at the desired location. Doing so results in the creation of an instance data

block for this FB.

. Open the instance data block created when you placed the FB in the editor.

. Under Static, locate the timer structure of interest. In the Retain column for this timer

structure, check the box to make this structure retentive.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 219

Basic instructions

7.3 Counter operations

7.3 Counter operations

Table 7- 23 Counter instructions

LAD / FBD

SCL

Description

"Counter name"

Int

"IEC_Counter_0 DB".CTU
(
CU:= bool_in,
R:= bool_in,
PV:= int in,
Q=> bool out,
Cv=>_int out);

Int

"IEC_Counter_0_DB".CTD
(
CD:= bool_in,
LD:= bool_in,
PV:= int in,
Q=> bool out,
CV=> int out);

"Counter name"

"IEC_Counter_0 DB".CTU
D(

CTUD
Int CU:= bool_in,
— U ou b CD:= bool_in,
—co oD - R:= bool_in,
—r oV LD:= bool_in,
—LD PV:= int in,
Py QU=> bool_ out,

QD=> bool_ out,
Cv=> int out);

Use the counter instructions to count internal program events and
external process events. Each counter uses a structure stored in a
data block to maintain counter data. You assign the data block when
the counter instruction is placed in the editor.

e CTU is a count-up counter
e CTD is a count-down counter
e CTUD is a count-up-and-down counter

1 For LAD and FBD: Select the count value data type from the drop-down list below the instruction name.

2 STEP 7 automatically creates the DB when you insert the instruction.

3 In the SCL examples, "IEC_Counter_0_DB" is the name of the instance DB.

Table 7- 24 Data types for the parameters

Parameter Data type’ Description

CU, CD Bool Count up or count down, by one count
R (CTU, CTUD) Bool Reset count value to zero

LD (CTD, CTUD) Bool Load control for preset value

PV

Sint, Int, DInt, USInt, Ulnt, UDInt

Preset count value

Q, QU Bool True if CV >= PV
QD Bool True if CV <=0
CcVv Sint, Int, DInt, USInt, Ulnt, UDInt Current count value

1 The numerical range of count values depends on the data type you select. If the count value is an unsigned integer
type, you can count down to zero or count up to the range limit. If the count value is a signed integer, you can count
down to the negative integer limit and count up to the positive integer limit.

220

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.3 Counter operations

The number of counters that you can use in your user program is limited only by the amount
of memory in the CPU. Counters use the following amount of memory:

e For Sint or USInt data types, the counter instruction uses 3 bytes.
e For Int or Ulnt data types, the counter instruction uses 6 bytes.
e For Dint or UDInt data types, the counter instruction uses 12 bytes.

These instructions use software counters whose maximum counting rate is limited by the
execution rate of the OB in which they are placed. The OB that the instructions are placed in
must be executed often enough to detect all transitions of the CU or CD inputs. For faster
counting operations, see the/ CTRL_HSC instruction (Page 409).

Note

When you place counter instructions in an FB, you can select the multi-instance DB option,
the counter structure names can be different with separate data structures, but the counter
data is contained in a single DB and does not require a separate DB for each counter. This
reduces the processing time and data storage necessary for the counters. There is no
interaction between the counter data structures in the shared multi-instance DB.

Operation of the counters

Table 7-25 Operation of CTU (count up)

Counter

Operation

The CTU counter counts up by 1 when the value of parameter CU
changes from 0 to 1. The CTU timing diagram shows the operation for cu | | [[|—|
an unsigned integer count value (where PV = 3).

1))
o If the value of parameter CV (current count value) is greater than or R : : T
equal to the value of parameter PV (preset count value), then the : . '
counter output parameter Q = 1. : ' ;
e |If the value of the reset parameter R changes from 0 to 1, then the .
current count value is reset to 0. cv
Q

I:I

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

221

Basic instructions

7.3 Counter operations

Table 7-26 Operation of CTD (count down)

Counter Operation

The CTD counter counts down by 1 when the value of M |-|_|_|

parameter CD changes from 0 to 1. The CTD timing diagram CcD _|_|_|-|_|_| "

shows the operation for an unsigned integer count value J_| |_|_;_
LOAD

(where PV = 3).

o |f the value of parameter CV (current count value) is equal 9 2
to or less than 0, the counter output parameter Q = 1. oV J_I—i1_l L=

e If the value of parameter LOAD changes from 0 to 1, the 0 0

value at parameter PV (preset value) is loaded to the ' ' !

counter as the new CV (current count value). Q | | |

Table 7- 27 Operation of CTUD (count up and down)

Counter Operation
The CTUD counter counts up or
down by 1 on the 0 to 1 P cu Ml !_I :rl !_I ,rl !_I
transition of the count up (CU) or ! ' ' : !
count down (CD) inputs. The cD ; : : . !_l [:
CTUD timing diagram shows the ' ' : ; ' ! '
operation for an unsigned " : ' ' ' ' ; |
integer count value (where PV = R . . . , : : \ !
4). : ' i ' ! ' ! '
! : : : 1 ! 1 !
o If the value of parameter CV LOAD ! . o . : ! |_| : :
is equal to or greater than the 1 . ' : 5 ! ' ro5
value of parameter PV, then ' . N e B e
the counter output parameter i : L3
QU =1. :
o [f the value of parameter CV cv 0
is less than or equal to zero,
then the counter output
parameter QD = 1. Qu ! ! L
e Ifthe value of parameter ab 1 —
LOAD changes from 0 to 1,
then the value at parameter
PV is loaded to the counter
as the new CV.
o If the value of the reset
parameter R is changes from
0 to 1, the current count
value is reset to 0.

S7-1200 Programmable controller
222 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.3 Counter operations

Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the counter data stored in the previous run mode session is lost,
unless the counter data structure is specified as retentive (CTU, CTD, and CTUD counters).

When you accept the defaults in the call options dialog after you place a counter instruction
in the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your counter data retentive, you must either use a global DB or a Multi-
instance DB.

Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).

1.

Create a global DB:

— Double-click "Add new block" from the Project tree
— Click the data block (DB) icon

— For the Type, choose global DB

— If you want to be able to select individual items in this DB as retentive, be sure the
symbolic-access-only box is checked.

— Click OK
Add counter structure(s) to the DB:

— Inthe new global DB, add a new static tag using one of the counter data types. Be
sure to consider the Type you want to use for your Preset and Count values.

— In the "Retain" column, check the box so that this structure will be retentive.

— Repeat this process to create structures for all the counters that you want to store in
this DB. You can either place each counter structure in a unique global DB, or you can
place multiple counter structures into the same global DB. You can also place other
static tags besides counters in this global DB. Placing multiple counter structures into
the same global DB allows you to reduce your overall number of blocks.

— Rename the counter structures if desired.

Open the program block for editing where you want to place a retentive counter (OB, FC,
or FB).

Place the counter instruction at the desired location.

5. When the call options dialog appears, click the cancel button. You should now see a new

counter instruction which has "???" both just above and just below the instruction name.

. On the top of the new counter instruction, type the name (do not use the helper to

browse) of the global DB and counter structure that you created above (example:
"Data_block_3.Static_1"). This causes the corresponding preset and count value type to
be filled in (example: Ulnt for an IEC_UCounter structure).

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 223

Basic instructions

7.3 Counter operations

Counter Data Type Corresponding Type for the Preset and Count
Values

IEC_Counter INT

IEC_SCounter SINT

IEC_DCounter DINT

IEC_UCounter UINT

IEC_USCounter USINT

IEC_UDCounter UDINT

Assign a multi-instance DB to store counter data as retentive data
This option only works if you place the counter in an FB.

This option depends upon whether the FB properties specify "Optimized block access"
(allows symbolic access only). To verify how the access attribute is configured for an existing
FB, right-click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):
1. Open the FB for edit.
2. Place the counter instruction at the desired location in the FB.

3. When the Call options dialog appears, click on the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

4. In the Call options dialog, rename the counter if desired.

5. Click OK. The counter instruction appears in the editor with type INT for the preset and
count values, and the IEC_COUNTER structure appears in the FB Interface under Static.

6. If desired, change the type in the counter instruction from INT to one of the other types.
The counter structure will change correspondingly.

7. If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

8. Under Static, locate the counter structure that was just created for you.

9. In the Retain column for this counter structure, change the selection to "Retain".
Whenever this FB is called later from another program block, an instance DB will be
created with this interface definition which contains the counter structure marked as
retentive.

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1. Open the FB for edit.
2. Place the counter instruction at the desired location in the FB.

3. When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

4. In the Call options dialog, rename the counter if desired.

S7-1200 Programmable controller
224 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.3 Counter operations

5. Click OK. The counter instruction appears in the editor with type INT for the preset and
count value, and the IEC_COUNTER structure appears in the FB Interface under Static.

6. If desired, change the type in the counter instruction from INT to one of the other types.

The counter structure will change correspondingly.
7. Open the block that will use this FB.

8. Place this FB at the desired location. Doing so results in the creation of an instance data

block for this FB.

9. Open the instance data block created when you placed the FB in the editor.

10.Under Static, locate the counter structure of interest. In the Retain column for this counter
structure, check the box to make this structure retentive.

Type shown in counter instruction (for preset Corresponding structure Type shown in FB

and count values)
INT
SINT
DINT
UINT
USINT
UDINT

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

IEC_Counter
IEC_SCounter
IEC_DCounter
IEC_UCounter
IEC_USCounter
IEC_UDCounter

225

Basic instructions

7.4 Comparator operations

7.4

7.4.1

Comparator operations

Compare values instructions

Table 7- 28 Compare instructions

LAD FBD SCL Description
N - out := inl = in2; Compares two values of the same data type. When the
- B_},_le or LAD contact comparison is TRUE, then the contact is
'I Byte |_ T — (N IF inl = in2 activated. When the FBD box comparison is TRUE,
MM N2 N2 _ THEN out := 1, |then the boxoutputis TRUE.
ELSE out := 0;
END IF;

1

Click the "???" and select data type from the drop-down list.

Table 7- 29 Data types for the parameters

For LAD and FBD: Click the instruction name (such as "==") to change the comparison type from the drop-down list.

Parameter

Data type

Description

IN1, IN2

Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, String, Char, Values to compare

Time, DTL, Constant

Table 7- 30 Comparison descriptions

Relation type The comparison is true if ...
= IN1 is equal to IN2
<> IN1 is not equal to IN2
>= IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2
S7-1200 Programmable controller
226

System Manual, 03/2014, A5E02486680-AG

Basic instructions
7.4 Comparator operations

7.4.2 IN_Range (Value within range) and OUT_Range (Value outside range)
instructions

Table 7- 31 Value within Range and value outside range instructions

LAD / FBD SCL Description
TRRCTNTerS out := IN_RANGE (min, Tests whether an input value is in or out of a specified value range.
T val, max); If the comparison is TRUE, then the box output is TRUE.
WL
VAL
IA
out := OUT RANGE (min,
OLT_RAMNGE =
P val, max);
WL
WAL
WA

1 For LAD and FBD: Click the "???" and select the data type from the drop-down list.

Table 7- 32 Data types for the parameters

Parameter Data type! Description
MIN, VAL, MAX | Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Comparator inputs
Constant

T The input parameters MIN, VAL, and MAX must be the same data type.
e The IN_RANGE comparison is true if: MIN <= VAL <= MAX
® The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 227

Basic instructions

7.5 Math functions

74.3

OK (Check validity) and NOT_OK (Check invalidity) instructions

Table 7- 33 OK (check validity) and Not OK (check invalidity) instructions

LAD FBD SCL Description
. e Not available Tests whether an input data reference is a valid real
—j ok |- S number according to IEEE specification 754.
e g Not available
—noT_ok - MNOT_OK

1 For LAD and FBD: When the LAD contact is TRUE, the contact is activated and passes power flow. When the FBD box
is TRUE, then the box output is TRUE.

Table 7- 34 Data types for the parameter
Parameter Data type Description
IN Real, LReal Input data
Table 7- 35 Operation
Instruction The Real number test is TRUE if:
OK The input value is a valid real number 1
NOT_OK The input value is not a valid real number *

1 A Real or LReal value is invalid if it is +/- INF (infinity), NaN (Not a Number), or if it is a denormalized value. A
denormalized value is a number very close to zero. The CPU substitutes a zero for a denormalized value in calculations.

228

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.5 Math functions
7.5 Math functions
7.51 CALCULATE (Calculate) instruction
Table 7-36 CALCULATE instruction
LAD / FBD SCL Description
Use the The CALCULATE instruction lets you create a math function that
EALE;';'?"ME standard SCL operates on inputs (IN1, IN2, .. INn) and produces the result at OUT,
EN - enoL | math according to the equation that you define.
OUT = <777 e;(p;tes?]ons © |+ selecta data type first. All inputs and the output must be the same
create the data type.
IN1 ouT equation.
IN2sk e To add another input, click the icon at the last input.
Table 7- 37 Data types for the parameters
Parameter Data type’
IN1, IN2, ..INn Sint, Int, Dint, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord
ouT Sint, Int, Dint, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord

T The IN and OUT parameters must be the same data type (with implicit conversions of the input parameters). For
example: A SINT value for an input would be converted to an INT or a REAL value if OUT is an INT or REAL

Click the calculator icon to open the dialog and define your math function. You enter your
equation as inputs (such as IN1 and IN2) and operations. When you click "OK" to save the
function, the dialog automatically creates the inputs for the CALCULATE instruction.

An example and a list of possible math operations you can include is shown at the bottom of
the editor.

ouT:= | HEE

Example:
(N1 + INZ) * (INT - IN2)
Foszible instructions:

Anid, O, XOr, Swap, Notl inv, «, - %, . Mod, Abs, Meg. Exp. ™™, Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan,
Sqr, Sqre. Round, Ceil, Floor, Trune

oK . Cancsl

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 229

Basic instructions

7.5 Math functions

Note

You also must create an input for any constants in your function. The constant value would
then be entered in the associated input for the CALCULATE instruction.

By entering constants as inputs, you can copy the CALCULATE instruction to other locations
in your user program without having to change the function. You then can change the values
or tags of the inputs for the instruction without modifying the function.

When CALCULATE is executed and all the individual operations in the calculation complete
successfully, then the ENO = 1. Otherwise, ENO = 0.

7.5.2 Add, subtract, multiply and divide instructions

Table 7- 38 Add, subtract, multiply and divide instructions

LAD / FBD SCL Description
out := inl + in2; |, ADD: Addition (IN1 + IN2 = OUT)

A00 = 3 - i .
— out :=inl - in2; | SUB: Subtraction (IN1 - IN2 = OUT)
out := inl * in2;
EM ENO= | out := inl / in2; e MUL: Multiplication (IN1 * IN2 = OUT)
M1 ouT « DIV: Division (IN1/IN2 = OUT)
N2> An Integer division operation truncates the fractional part of the quotient

to produce an integer output.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 39 Data types for the parameters (LAD and FBD)

Parameter Data type’ Description
IN1, IN2 Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Constant Math operation inputs
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Math operation output

1 Parameters IN1, IN2, and OUT must be the same data type.

IN2se To add an ADD or MUL input, click the "Create" icon or right-click on an input
[:\?, stub for one of the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO
=1.

S7-1200 Programmable controller
230 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.5 Math functions
Table 7-40 ENO status
ENO Description
1 No error
0 The Math operation result value would be outside the valid number range of the data type selected. The

least significant part of the result that fits in the destination size is returned.

0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.

Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

ADD Real/LReal: If both IN values are INF with different signs, this is an illegal operation and NaN is

returned.

0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal operation and NaN is
returned.

0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is
returned.

0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

7.5.3 MOD (return remainder of division) instruction

Table 7-41 Modulo (return remainder of division) instruction

LAD / FBD SCL Description
out := inl MOD in2; You can use the MOD instruction to return the remainder of an integer
"",EE' division operation. The value at the IN1 input is divided by the value at
JEN EMNO M the IN2 input and the remainder is returned at the OUT output.
1M1 ouT
Iz

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 42 Data types for parameters

Parameter Data type! Description
IN1 and IN2 Sint, Int, DInt, USInt, Ulnt, UDInt, Constant Modulo inputs
ouT Sint, Int, DInt, USInt, Uint, UDInt Modulo output

T The IN1, IN2, and OUT parameters must be the same data type.

Table 7- 43 ENO values

ENO Description
1 No error
0 Value IN2 = 0, OUT is assigned the value zero

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 231

Basic instructions

7.5 Math functions

7.5.4

NEG (Create twos complement) instruction

Table 7- 44 NEG (create twos complement) instruction

LAD / FBD SCL Description
— -(in); The NEG instruction inverts the arithmetic sign of the value at parameter IN and stores
NEG .
_ e the result in parameter OUT.
—EN END -
N our}

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 45 Data types for parameters

Parameter Data type! Description
IN Sint, Int, DInt, Real, LReal, Constant Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

1 The IN and OUT parameters must be the same data type.

Table 7- 46 ENO status

ENO Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: NEG (-128) results in +128 which exceeds the data type maximum.
7.5.5 INC (Increment) and DEC (Decrement) instructions
Table 7- 47 INC and DEC instructions
LAD / FBD SCL Description
TRE in_out := in_out + 1; Increments a signed or unsigned integer number value:
7 IN_OUT value +1 = IN_OUT value
—{EH EMOD -
{INAOUT
— in_out := in out - 1; Decrements a signed or unsigned integer number value:
| IN_OUT value - 1 = IN_OUT value
=EN EMND —
{IRADUT

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

232

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

Table 7- 48 Data types for parameters

7.5 Math functions

Parameter

Data type

IN/OUT

Sint, Int, DInt, USInt, Ulnt, UDInt

Math operation input and output

Table 7-49 ENO status

ENO Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: INC (+127) results in +128, which exceeds the data type maximum.
7.5.6 ABS (Form absolute value) instruction

Table 7- 50 ABS (absolute value) instruction

LAD / FBD SCL
------- out := ABS(in); Calculates the absolute value of a signed integer or real number at parameter
ABS :
ey | IN and stores the result in parameter OUT.
—EM ENO =
L ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 51 Data types for parameters

Parameter Data type!
IN Sint, Int, DInt, Real, LReal Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

T The IN and OUT parameters must be the same data type.

Table 7- 52 ENO status

Example for Sint: ABS (-128) results in +128 which exceeds the data type maximum.

ENO Description
1 No error
0 The math operation result value is outside the valid number range of the selected data type.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

233

Basic instructions

7.5 Math functions

7.5.7 MIN (Get minimum) and MAX (Get maximum) instructions

Table 7- 53 MIN (get minimum) and MAX (get maximum) instructions

LAD / FBD SCL Description
out:= MIN(The MIN instruction compares the value of two parameters IN1
TL’: inl:= variant in_, and IN2 and assigns the minimum (lesser) value to parameter
— in2:= variant _in_ OUT.
— EN EMD = [,...in32]);
1M1 auT
IM25x
out:= MAX(The MAX instruction compares the value of two parameters IN1
h:::j(inl:= variant_in_, and IN2 and assigns the maximum (greater) value to parameter
— in2:= variant in_ OUT.
— EN 1) [,...in32]);
1M1 auT
I 2sx

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 54 Data types for the parameters

Parameter Data type’ Description

IN1, IN2 Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Constant | Math operation inputs (up to 32 inputs)
[...IN32]

ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal Math operation output

1 The IN1, IN2, and OUT parameters must be the same data type.

M2ae To add an input, click the "Create" icon or right-click on an input stub for one of
[:E the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 7- 55 ENO status

ENO Description
1 No error
0 For Real data type only:

e At least one input is not a real number (NaN).
e The resulting OUT is +/- INF (infinity).

S7-1200 Programmable controller
234 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.5 Math functions

7.5.8 LIMIT (Set limit value) instruction
Table 7- 56 LIMIT (set limit value) instruction

LAD / FBD SCL Description

T LIMIT (MN:= variant in_, The Limit instruction tests if the value of parameter IN is inside the
| 5 - IN:= variant_in_, value range specified by parameters MIN and MAX and if not,

| e == MX:= variant_in_, clamps the value at MIN or MAX.

':x OUT:=_variant_out_);
1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.
Table 7- 57 Data types for the parameters

Parameter Data type’ Description

MN, IN, and MX Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Constant Math operation inputs

ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal Math operation output

T The MN, IN, MX, and OUT parameters must be the same data type.

If the value of parameter IN is within the specified range, then the value of IN is stored in
parameter OUT. If the value of parameter IN is outside of the specified range, then the OUT
value is the value of parameter MIN (if the IN value is less than the MIN value) or the value
of parameter MAX (if the IN value is greater than the MAX value).

Table 7- 58 ENO status

ENO Description

No error
0 Real: If one or more of the values for MIN, IN and MAX is NaN (Not a Number), then NaN is returned.
0 If MIN is greater than MAX, the value IN is assigned to OUT.

SCL examples:

e MyVal := LIMIT(MN:=10,IN:=53, MX:=40); //Result: MyVal = 40
e MyVal := LIMIT(MN:=10,IN:=37, MX:=40); //Result: MyVal = 37
e MyVal := LIMIT(MN:=10,IN:=8, MX:=40); //Result: MyVal = 10

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 235

Basic instructions

7.5 Math functions

7.5.9 Exponent, logarithm, and trigonometry instructions

You use the floating point instructions to program mathematical operations using a Real or
LReal data type:

® SQR: Form square (IN 2= OUT)

® SQRT: Form square root (vIN = OUT)

® LN: Form natural logarithm (LN(IN) = OUT)

e EXP: Form exponential value (e N=0UT), where base e = 2.71828182845904523536
® EXPT: exponentiate (IN1 N2= QUT)

EXPT parameters IN1 and OUT are always the same data type, for which you must
select Real or LReal. You can select the data type for the exponent parameter IN2 from
among many data types.

® FRAC: Return fraction (fractional part of floating point number IN = OUT)

® SIN: Form sine value (sin(IN radians) = OUT)

® ASIN: Form arcsine value (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
® COS: Form cosine (cos(IN radians) = OUT)

® ACOS: Form arccosine value (arccos(IN) = OUT radians), where the cos(OUT radians) =
IN

® TAN: Form tangent value (tan(IN radians) = OUT)

® ATAN: Form arctangent value (arctan(IN) = OUT radians), where the tan(OUT radians) =
IN

Table 7- 59 Examples of floating-point math instructions

LAD / FBD SCL Description

—saE out := SQR(in); Square: IN 2= OUT

Real | or For example: If IN = 9, then OUT = 81.

—EH END = out := in * in;

{IM our |

SR out := inl ** in2; General exponential: IN1 N2= OQUT

| Feal =777 | For example: If IN1 = 3 and IN2 = 2, then OUT = 9.
—EN ENO =

{IN1 ouT

{IN2

1 For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.
2 For SCL: You can also use the basic SCL math operators to create the mathematical expressions.

S7-1200 Programmable controller
236 System Manual, 03/2014, A5E02486680-AG

Basic instructions

Table 7- 60 Data types for parameters

7.6 Move operations

Parameter Data type Description
IN, IN1 Real, LReal, Constant Inputs
IN2 Sint, Int, DInt, USInt, Ulnt,UDInt, Real, LReal, Constant EXPT exponent input
ouT Real, LReal Outputs
Table 7- 61 ENO status
ENO Instruction Condition Result (OUT)
1 All No error Valid result
0 SQR Result exceeds valid Real/LReal range +INF
IN is +/- NaN (not a number) +NaN
SQRT IN is negative -NaN
IN is +/- INF (infinity) or +/- NaN +/- INF or +/- NaN
LN IN is 0.0, negative, -INF, or -NaN -NaN
IN is +INF or +NaN +INF or +NaN
EXP Result exceeds valid Real/LReal range +INF
IN is +/- NaN +/- NaN
SIN, COS, TAN IN is +/- INF or +/- NaN +/- INF or +/- NaN
ASIN, ACOS IN is outside valid range of -1.0 to +1.0 +NaN
IN is +/- NaN +/- NaN
ATAN IN is +/- NaN +/- NaN
FRAC IN is +/- INF or +/- NaN +NaN
EXPT IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NaN if IN2 is Real/LReal,
-INF otherwise
IN1 or IN2 is +/- NaN +NaN
IN1 is 0.0 and IN2 is Real/LReal (only) +NaN

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

237

Basic instructions

7.6 Move operations

7.6 Move operations

7.6.1 MOVE (Move value), MOVE_BLK (Move block), and UMOVE_BLK (Move block
uninterrruptible) instructions

Use the Move instructions to copy data elements to a new memory address and convert
from one data type to another. The source data is not changed by the move process.

e The MOVE instruction copies a single data element from the source address specified by
the IN parameter to the destination addresses specified by the OUT parameter.

¢ The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter.
The COUNT specifies how many data elements are copied. The number of bytes per
element copied depends on the data type assigned to the IN and OUT parameter tag
names in the PLC tag table.

Table 7- 62 MOVE, MOVE_BLK and UMOVE_BLK instructions

LAD / FBD SCL Description
T outl := in; Copies a data element stored at a specified address to a new

—EM EMO = address or multiple addresses.!

M 5x0UT1

TR MOVE_BLK (Interruptible move that copies a block of data elements to a new

JEN EnDe in:= variant_in, address.

I auT count:= uint_in,

COUMT out=> variant out);

LTINS, LT UMOVE_BLK (Uninterruptible move that copies a block of data elements to a
— EM T ENO in:= variant_in, new address.

IN ouT count:= uint in,

CoUNT out=> variant_out);

1 MOVE instruction: To add another output in LAD or FBD, click the "Create" icon by the output parameter. For SCL, use
multiple assignment statements. You might also use one of the loop constructions.

Table 7- 63 Data types for the MOVE instruction

Parameter Data type Description

IN Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, Source address
DWord, Char, Array, Struct, DTL, Time

ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, Destination address
DWord, Char, Array, Struct, DTL, Time

S7-1200 Programmable controller
238 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.6 Move operations

4 0UT1 To add MOVE outputs, click the "Create" icon or right-click on an output stub for

one of the existing OUT parameters and select the "Insert output” command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

Table 7- 64 Data types for the MOVE_BLK and UMOVE_BLK instructions
Parameter Data type Description
IN Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Byte, Word, Source start address
DWord
COUNT Ulnt Number of data elements to copy
ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, Destination start address
DWord
Note

Rules for data copy operations

To copy the Bool data type, use SET_BF, RESET_BF, R, S, or/output coil (LAD)
(Page 206)

To copy a single elementary data type, use MOVE

To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK
To copy a structure, use MOVE

To copy a string, use'S_MOVE (Page 293)

To copy a single character in a string, use MOVE

The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or
structures to the I, Q, or M memory areas.

MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:

Interrupt events are queued and processed during MOVE_BLK execution. Use the
MOVE_BLK instruction when the data at the move destination address is not used within
an interrupt OB subprogram or, if used, the destination data does not have to be
consistent. If a MOVE_BLK operation is interrupted, then the last data element moved is
complete and consistent at the destination address. The MOVE_BLK operation is
resumed after the interrupt OB execution is complete.

Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram. For
more information, see the section on data consistency|(Page 178).

ENO is always true following execution of the MOVE instruction.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 239

Basic instructions
7.6 Move operations

Table 7- 65 ENO status

ENO Condition Result
1 No error All COUNT elements were successfully copied.
0 Either the source (IN) range or the destination (OUT) Elements that fit are copied. No partial
range exceeds the available memory area. elements are copied.
7.6.2 FieldRead (Read field) and FieldWrite (Write field) instructions
Note
STEP 7 V10.5 did not support a variable reference as an array index or multi-dimensional
arrays. The FieldRead and FieldWrite instructions were used to provide variable array index
operations for a one-dimensional array. STEP 7 V11 and greater do support a variable as an
array index and multi-dimensional arrays. FieldRead and FieldWrite are included in STEP 7
V11 and greater for backward compatibility with programs that have used these instructions.
Table 7-66 FieldRead and FieldWrite instructions
LAD / FBD SCL Description
. value := FieldRead reads the array element with the index
F"";ffad member [index] ; value INDEX from the array whose first element in
EN END = specified by the MEMBER parameter. The value of
INDE3 YALLE the array element is transferred to the location
MEMEER specified at the VALUE parameter.
_ member [index] := WriteField transfers the value at the location specified
F"";';‘;"B value; by the VALUE parameter to the array whose first
EN ENO element is specified by the MEMBER parameter. The
INDE3 MEMEER value is transferred to the array element whose array
yaLLIE index is specified by the INDEX parameter.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

240

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.6 Move operations

Table 7- 67 Data types for parameters

Parameter and type Data type Description
Index Input Dint The index number of the array element to be read or
written to
Member 1 Input Array element types: Location of the first element in a one- dimension
Bool, Byte, Word, DWord, array defined in a global data block or block
Char, Sint, Int, DInt, USInt, interface.
Uint, UDInt, Real, LReal For example: If the array index is specified as [-2..4],
then the index of the first element is -2 and not 0.
Value 1 Out Bool, Byte, Word, DWord, Location to which the specified array element is
Char, Sint, Int, DInt, USInt, copied (FieldRead)
Ulnt, UDInt, Real, LReal Location of the value that is copied to the specified
array element (FieldWrite)

1 The data type of the array element specified by the MEMBER parameter and the VALUE parameter must have the
same data type.

The enable output ENO = 0, if one of the following conditions applies:
® The EN input has signal state "0"

® The array element specified at the INDEX parameter is not defined in the array
referenced at MEMBER parameter

® Errors such as an overflow occur during processing

Accessing data by array indexing

To access elements of an array with a variable, simply use the variable as an array index in
your program logic. For example, the network below sets an output based on the Boolean
value of an array of Booleans in "Data_block_1" referenced by the PLC tag "Index".

"Data_block_1"
Bool_ %00
Array["Index”] "Tag_1"

] | i
LI} L

The logic with the variable array index is equivalent to the former method using the
FieldRead instruction:

FieldRead
Bool

EM EMC

%rADT00 W00
"Index" — INDEX WALUE — "Tag_1"

"Data_block_1"
Bool_Array[1] — MEMEER

FieldWrite and FieldRead instructions can be replaced with variable array indexing logic.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 241

Basic instructions

7.6 Move operations

SCL has no FieldRead or FieldWrite instructions, but supports indirect addressing of an

array with a variable:
#Tag_1 := "Data_block 1".Bool Array[#Index];

7.6.3 FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible) instructions

Table 7- 68 FILL_BLK and UFILL_BLK instructions

LAD / FBD SCL Description

AL FILL BLK(Interruptible fill instruction: Fills an address range with copies of a
e L ENO in:= variant_in, |specified data element

M ouT } count:=int,

{ COLINT | out=> variant_out) ;

i UFILL BLK(Uninterruptible fill instruction: Fills an address range with copies of a

ENIJIILL. END in:= variant_in, |specified data element

1M ouT count:=int

| COUNT | out=> variant out);

Table 7- 69 Data types for parameters

Parameter Data type Description
IN Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, | Data source address
DWord
COUNT USint, Uint Number of data elements to copy
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, | Data destination address
DWord
Note

Rules for data fill operations

e To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
o To fill with a single elementary data type, use MOVE

e Tofill an array with an elementary data type, use FILL_BLK or UFILL_BLK

e To fill a single character in a string, use MOVE

e The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the |, Q, or M
memory areas.

S7-1200 Programmable controller
242 System Manual, 03/2014, A5E02486680-AG

Basic instructions
7.6 Move operations

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the
destination where the initial address is specified by the parameter OUT. The copy process
repeats and a block of adjacent addresses is filled until the number of copies is equal to the
COUNT parameter.

FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:

® Interrupt events are queued and processed during FILL_BLK execution. Use the
FILL_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent.

® Interrupt events are queued but not processed until UFILL_BLK execution is complete.
Use the UFILL_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

Table 7- 70 ENO status

ENO Condition Result
1 No error The IN element was successfully copied to
all COUNT destinations.
0 The destination (OUT) range exceeds Elements that fit are copied. No partial
the available memory area elements are copied.

7.6.4 SWAP (Swap bytes) instruction

Table 7-71 SWAP instruction

LAD / FBD SCL Description

T o out := SWAP(in); |Reverses the byte order for two-byte and four-byte data elements. No change
777 is made to the bit order within each byte. ENO is always TRUE following
—{EM EMO = execution of the SWAP instruction.
{IN ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 243

Basic instructions

7.7 Conversion operations

Table 7- 72 Data types for the parameters

Parameter Data type Description
IN Word, DWord Ordered data bytes IN
ouT Word, DWord Reverse ordered data bytes OUT
Example 1 Parameter IN = MBO Parameter OUT = MB4,
(before execution) (after execution)
Address MWO MB1 MW4 MB5
W#16#1234 12 34 34 12
WORD MSB LSB MSB LSB
Example 2 ~ Parameter IN = MB0 Parameter OUT = MB4,
(before execution) (after execution)
Address MDO MB1 MB2 MB3 MD4 MB5 MB6 MB7
DW#16# 12 34 56 78 78 56 34 12
12345678
DWORD MSB LSB MSB LSB
7.7 Conversion operations
7.71 CONV (Convert value) instruction

Table 7-73 Convert (CONV) instruction

LAD / FBD SCL Description
out := <data type in> TO_<data type out>(in); Converts a data element from one
.‘,E‘::rﬂ data type to another data type.
=EN EMD =
.IH I:IITIT I

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

2

For SCL: Construct the conversion instruction by identifying the data type for the input parameter (in) and output

parameter (out). For example, DWORD_TO_REAL converts a DWord value to a Real value.

244

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.7 Conversion operations

Table 7- 74 Data types for the parameters

Parameter Data type Description

IN Bit string”, Sint, USInt, Int, UInt, DInt, UDInt, Real, LReal, Input value
BCD16, BCD32

ouT Bit string”, Sint, USInt, Int, UInt, DInt, UDInt, Real, LReal, Input value converted to a new data type
BCD16, BCD32

T The instruction does not allow you to select Bit strings (Byte, Word, DWord). To enter an operand of data type Byte,
Word, or DWord for a parameter of the instruction, select an unsigned integer with the same bit length. For example,
select USInt for a Byte, Ulnt for a Word, or UDInt for a DWord.

After you select the (convert from) data type, a list of possible conversions is shown in the
(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data
type. Conversions from and to BCD32 are restricted to the Dint data type.

Table 7- 75 ENO status

ENO Description Result OUT
No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
Result exceeds valid range for OUT data type OUT is set to the IN value
7.7.2 Conversion instructions for SCL

Conversion instructions for SCL

Table 7- 76 Conversion from a Bool, Byte, Word, or DWord

Data type Instruction Result
Bool BOOL_TO_BYTE, BOOL_TO_WORD, The value is transferred to the least significant bit of the
BOOL_TO_DWORD, BOOL_TO_INT, target data type.
BOOL TO DINT
Byte BYTE TO_BOOL The least significant bit is transferred into the destination
data type.
BYTE TO_WORD, BYTE_TO_DWORD The value is transferred to the least significant byte of the
target data type.
BYTE TO_SINT, BYTE_TO_USINT The value is transferred to the target data type.
BYTE TO_INT, BYTE_TO_UINT, The value is transferred to the least significant byte of the
BYTE TO DINT, BYTE TO_UDINT target data type.
Word WORD_TO_BOOL The least significant bit is transferred into the destination
data type.
WORD_TO_BYTE The least significant byte of the source value is
transferred to the target data type
WORD_TO_DWORD The value is transferred to the least significant word of
the target data type.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 245

Basic instructions

7.7 Conversion operations

Data type Instruction Result
WORD_TO_SINT, WORD_TO_ USINT The least significant byte of the source value is
transferred to the target data type.
WORD_TO_INT, WORD_TO_UINT The value is transferred to the target data type.
WORD_TO_DINT, WORD_TO_UDINT The value is transferred to the least significant word of
the target data type.
DWord DWORD_TO_BOOL The least significant bit is transferred into the destination

data type.

DWORD_TO_BYTE, DWORD_TO_WORD,
DWORD_TO_SINT

The least significant byte of the source value is
transferred to the target data type.

DWORD_TO_USINT, DWORD_TO_INT,
DWORD_TO_UINT

The least significant word of the source value is
transferred to the target data type.

DWORD_TO_DINT, DWORD_TO_UDINT,
DWORD_TO REAL

The value is transferred to the target data type.

Table 7- 77 Conversion from a short integer (Sint or USInt)

Data type Instruction Result
Sint SINT_TO_BOOL The least significant bit is transferred into the destination
data type.
SINT_TO_BYTE The value is transferred to the target data type
SINT_TO_WORD, SINT_TO_DWORD The value is transferred to the least significant byte of the
target data type.
SINT_TO_INT, SINT_TO_DINT, The value is converted.
SINT TO_USINT, SINT TO_UINT,
SINT TO_UDINT, SINT TO_REAL,
SINT TO_LREAL, SINT TO CHAR,
SINT TO STRING
USint USINT_ TO_BOOL The least significant bit is transferred into the destination
data type.
USINT_TO_BYTE The value is transferred to the target data type
USINT_TO_WORD, USINT_TO_DWORD, The value is transferred to the least significant byte of the
USINT_TO_INT, USINT_ TO_UINT, target data type.
USINT TO DINT, USINT TO UDINT
USINT_TO_SINT, USINT_TO_REAL, The value is converted.
USINT_TO_LREAL, USINT TO_ CHAR,
USINT TO STRING
S7-1200 Programmable controller
246 System Manual, 03/2014, ASE02486680-AG

Basic instructions

Table 7- 78 Conversion from an integer (Int or Ulnt)

7.7 Conversion operations

Data type instruction Result
Int INT TO_BOOL The least significant bit is transferred into the destination
data type.
INT_TO_BYTE, INT_TO_DWORD, The value is converted.
INT_TO_SINT, INT_TO_USINT,
INT_TO_UINT, INT_TO_UDINT,
INT_TO_REAL, INT TO_ LREAL,
INT TO CHAR, INT TO STRING
INT TO_WORD The value is transferred to the target data type.
INT_TO_DINT The value is transferred to the least significant byte of the
target data type.
Ulnt UINT_TO_BOOL The least significant bit is transferred into the destination

data type.

UINT_TO_BYTE, UINT_TO_SINT,
UINT_TO_USINT, UINT TO_INT,

UINT_TO_REAL, UINT_TO_LREAL,
UINT TO CHAR, UINT TO STRING

The value is converted.

UINT_TO_WORD, UINT TO_DATE

The value is transferred to the target data type.

UINT_TO_DWORD, UINT_TO_DINT,
UINT TO_ UDINT

The value is transferred to the least significant byte of the
target data type.

Table 7-79 Conversion from a double integer (Dint or UDInt)

Data type Instruction Result
Dint DINT_TO_BOOL The least significant bit is transferred
into the destination data type.
DINT TO _BYTE, DINT_TO WORD, DINT TO_SINT, The value is converted.
DINT TO_USINT, DINT TO_INT, DINT TO_UINT,
DINT TO_UDINT, DINT TO REAL, DINT TO_ LREAL,
DINT TO CHAR, DINT TO STRING
DINT_TO_DWORD, DINT TO_TIME The value is transferred to the target
data type.
UDiInt UDINT TO_BOOL The least significant bit is transferred

into the destination data type.

UDINT TO CHAR, UDINT TO STRING

UDINT _TO_BYTE, UDINT TO_WORD, UDINT TO_SINT,
UDINT TO_USINT, UDINT_TO_INT, UDINT TO_UINT,
UDINT_TO_DINT, UDINT TO_REAL, UDINT TO_LREAL,

The value is converted.

UDINT TO_DWORD, UDINT_TO_TOD

The value is transferred to the target
data type.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

247

Basic instructions

7.7 Conversion operations

Table 7- 80 Conversion from a Real number (Real or LReal)
Data type Instruction Result
Real REAL TO_DWORD, REAL TO_LREAL The value is transferred to the target
data type.
REAL TO_SINT, REAL TO_USINT, REAL TO_INT, The value is converted.
REAL TO UINT, REAL TO DINT, REAL TO UDINT,
REAL TO STRING - -
LReal LREAL TO_SINT, LREAL TO_USINT, LREAL TO_INT, The value is converted.
LREAL TO UINT, LREAL TO DINT, LREAL TO UDINT,
LREAL_TO_REAL, LREAL TO STRING T
Table 7- 81 Conversion from Time, DTL, TOD or Date
Data type Instruction Result
Time TIME_TO_DINT The value is transferred to the target data type.
DTL DTL_TO_DATE, DTL_TO_TOD The value is converted.
TOD TOD_TO_UDINT The value is converted.
Date DATE TO_UINT The value is converted.
Table 7- 82 Conversion from a Char or String
Data type Instruction Result
Char CHAR TO_SINT, CHAR TO_USINT, The value is converted.
CHAR TO INT, CHAR TO UINT,
CHAR TO DINT , CHAR TO UDINT
CHAR TO_STRING The value is transferred to the first character of
the string.
String STRING_TO_SINT, STRING_TO_ USINT, The value is converted.
STRING TO INT, STRING TO UINT,
STRING_TO_DINT, STRINE TS UDINT,
STRING_TO_REAL, STRING_TO_LREAL
STRING_TO_CHAR The first character of the string is copied to the
Char.
S7-1200 Programmable controller
248 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.7 Conversion operations

7.7.3 ROUND (Round numerical value) and TRUNC (Truncate numerical value)
instructions

Table 7- 83 ROUND and TRUNC instructions

LAD / FBD SCL Description
out := ROUND (in); Converts a real number to an integer. For LAD/FBD, you click the "???" in
ﬁ::g';?m the instruction box to select the data type for the output, for example "DInt".
—EN END For SCL, the default data type for the output of the ROUND instruction is
{IM ouT | DINT. To round to another output data type, enter the instruction name with

the explicit name of the data type, for example, ROUND_REAL or
ROUND_LREAL.

The real number fraction is rounded to the nearest integer value (IEEE -
round to nearest). If the number is exactly one-half the span between two
integers (for example, 10.5), then the number is rounded to the even
integer. For example:

e ROUND (10.5) = 10
e ROUND (11.5) = 12

T out := TRUNC(in); TRUNC converts a real number to an integer. The fractional part of the real
Real toDint number is truncated to zero (IEEE - round to zero).
—(EN EMO -
{IN auT |

T For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

Table 7- 84 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Rounded or truncated output

Table 7- 85 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 249

Basic instructions

7.7 Conversion operations

7.74 CEIL and FLOOR (Generate next higher and lower integer from floating-point

number) instructions

Table 7- 86 CEIL and FLOOR instructions

LAD / FBD SCL Description
i out := CEIL(in); Converts a real number (Real or LReal) to the closest integer
Hc:fn'ém greater than or equal to the selected real number (IEEE "round
Jen emol to +infinity").
{IN ouT |
P — out := FLOOR(in) ; Converts a real number (Real or LReal) to the closest integer
FLODR "
Fesad bo Dind smaller than or equal to the selected real number (IEEE "round
—EN EMO to -infinity").
{IN ouT |

1 For LAD and FBD: Click the "??7?" (by the instruction name) and select a data type from the drop-down menu.

Table 7- 87 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal Converted output

Table 7- 88 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
S7-1200 Programmable controller
250 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.7.5

7.7 Conversion operations

SCALE_X (Scale) and NORM_X (Normalize) instructions

Table 7- 89 SCALE_X and NORM_X instructions

LAD / FBD

SCL

Description

Real to 777
= EM END
{ MIN ouT |
{ WALLE

out :=SCALE X(min:=_in_,

value:=_in_,
max:=_in);

Scales the normalized real parameter VALUE
where (0.0 <= VALUE <= 1.0) in the data type
and value range specified by the MIN and MAX

parameters:
OUT = VALUE (MAX - MIN) + MIN

| MIN ouT |
| VALLIE
| Mt

out :=NORM X(min:= in ,

value:=_in ,
max:= _in);

Normalizes the parameter VALUE inside the
value range specified by the MIN and MAX

parameters:

OUT = (VALUE - MIN) / (MAX - MIN),
where (0.0 <= 0OUT <=1.0)

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7-90 Data types for the parameters

Parameter Data type' Description

MIN Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Input minimum value for range

VALUE SCALE_X: Real, LReal Input value to scale or normalize
NORM_X: Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal

MAX Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Input maximum value for range

ouT SCALE_X: Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Scaled or normalized output value
NORM_X: Real, LReal

T For SCALE_X: Parameters MIN, MAX, and OUT must be the same data type.
For NORM_X: Parameters MIN, VALUE, and MAX must be the same data type.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

251

Basic instructions

7.7 Conversion operations

Note
SCALE_X parameter VALUE should be restricted to (0.0 <= VALUE <=1.0)

If parameter VALUE is less than 0.0 or greater than 1.0:

e The linear scaling operation can produce OUT values that are less than the parameter
MIN value or above the parameter MAX value for OUT values that fit within the value
range of the OUT data type. SCALE_X execution sets ENO = TRUE for these cases.

e ltis possible to generate scaled numbers that are not within the range of the OUT data
type. For these cases, the parameter OUT value is set to an intermediate value equal to
the least-significant portion of the scaled real number prior to final conversion to the OUT
data type. SCALE_X execution sets ENO = FALSE in this case.

NORM_X parameter VALUE should be restricted to (MIN <= VALUE <= MAX)
If parameter VALUE is less than MIN or greater than MAX, the linear scaling operation can

produce normalized OUT values that are less than 0.0 or greater than 1.0. NORM_X
execution sets ENO = TRUE in this case.

Table 7- 91 ENO status

ENO Condition Result OUT

1 No error Valid result

0 Result exceeds valid range for the OUT data Intermediate result: The least-significant portion of a real
type number prior to final conversion to the OUT data type.

0 Parameters MAX <= MIN SCALE_X: The least-significant portion of the Real number

VALUE to fill up the OUT size.

NORM_X: VALUE in VALUE data type extended to fill a
double word size.

0 Parameter VALUE = +/- INF or +/- NaN VALUE is written to OUT

S7-1200 Programmable controller
252 System Manual, 03/2014, A5E02486680-AG

Basic instructions

Example (LAD): normalizing and scaling an analog input value

7.7 Conversion operations

An analog input from an analog signal module or signal board using input in current is in the
range 0 to 27648 for valid values. Suppose an analog input represents a temperature where
the 0 value of the analog input represents -30.0 degrees C and 27648 represents 70.0

degrees C.

To transform the analog value to the corresponding engineering units, normalize the input to
a value between 0.0 and 1.0, and then scale it between -30.0 and 70.0. The resulting value
is the temperature represented by the analog input in degrees C:

HORM_
Int to Real
EM EMO
0 - KIN
HMOED -3,
HlE2 "Mormalizad_ 0000000000000
"Temp_input” - “ALUE ouT - value” OE+001
R A
27648 -
"Mormalized_
walue”
7.
0000000000000
0OE+007

SCALE_X

Real taReal

EM EMD ey
MOE0
OUT = "Current_temp"

MM
WALUE
A

Note that if the analog input was from an analog signal module or signal board using voltage,
the MIN value for the NORM_X instruction would be -27648 instead of 0.

Example (LAD): normalizing and scaling an analog output value

An analog output to be set in an analog signal module or signal board using output in current
must be in the range 0 to 27648 for valid values. Suppose an analog output represents a
temperature setting where the 0 value of the analog input represents -30.0 degrees C and
27648 represents 70.0 degrees C. To convert a temperature value in memory that is
between -30.0 and 70.0 to a value for the analog output in the range 0 to 27648, you must
normalize the value in engineering units to a value between 0.0 and 1.0, and then scale it to

the range of the analog output, 0 to 27648:

MORM_x
Real taReal
EM EMO
1]
-3, FMO&0
0000000000000 "Mormalized
- %MOB0
OE+007 — MIN auT - walue” "Mormalized
WS value”
"Target_temp” = WALUE 27645
7.
0000000000000
OE+007 — MAX

SCALE_X
Real ta Int
EM EMO —y
MIN S0
OuT - "Temp_output”
WALUE
R A

Note that if the analog output was for an analog signal module or signal board using voltage,
the MIN value for the SCALE_X instruction would be -27648 instead of 0.

Additional information on analog input representations (Page|916) and/analog output
representations |(Page 917) in both voltage and current can be found in the Technical

Specifications.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

253

Basic instructions
7.8 Program control operations

7.8 Program control operations
7.8.1 JMP (Jump if RLO = 1), JMPN (Jump if RLO = 0), and Label (Jump label)
instructions

Table 7-92 JMP, JMPN, and LABEL instruction

LAD FBD SCL Description
Label_rame Vi s See the| GOTO (Page|274) | Jump if RLO (result of logic operation) = 1:
—{JHP— JMP statement. If there is power flow to a JMP coil (LAD), or if the

=1 | JMP box input is true (FBD), then program execution

continues with the first instruction following the
specified label.

Lateel_name Label_riame Jump if RLO = 0:
—{JMPH}— JMPN If there is no power flow to a JMPN coil (LAD), or if
- | the JMPN box input is false (FBD), then program
execution continues with the first instruction following
the specified label.
Destination label for a JMP or JMPN jump instruction.

Label_name Label_name

1 You create your label names by typing in the LABEL instruction directly. Use the parameter helper icon to select the
available label names for the JMP and JMPN label name field. You can also type a label name directly into the JMP or

JMPN instruction.

Table 7- 93 Data types for the parameters

Parameter Data type Description

Label_name Label identifier Identifier for Jump instructions and the corresponding jump
destination program label

e Each label must be unique within a code block.

® You can jump within a code block, but you cannot jump from one code block to another
code block.

® You can jump forward or backward.
® You can jump to the same label from more than one place in the same code block.

S7-1200 Programmable controller
254 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

7.8.2 JMP_LIST (Define jump list) instruction

Table 7-94 JMP_LIST instruction

LAD /FBD : SCL Description
P LISt CASE k OF The JMP_LIST instruction acts as a program jump distributor to control
— 0: GOTO destO0; the execution of program sections. Depending on the value of the K
— EN DESTO 1: GOTO destl; input, a jump occurs to the corresponding program label. Program
K DESTT 2: GOTO dest2; |execution continues with the program instructions that follow the
DESTZ2 [n: GOTO destn;] |destinationjump label. If the value of the K input exceeds the number of
1 DEST3 END CASE; labels - 1, then no jump occurs and processing continues with the next
- program network.

Table 7- 95 Data types for parameters

Parameter Data type Description

K Uint Jump distributor control value

DESTO, DEST1, .., | Program Labels Jump destination labels corresponding to specific K parameter values:
DESTn. If the value of K equals 0, then a jump occurs to the program label

assigned to the DESTO output. If the value of K equals 1, then a jump
occurs to the program label assigned to the DEST1 output, and so on. If
the value of the K input exceeds the (number of labels - 1), then no jump
occurs and processing continues with the next program network.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 255

Basic instructions

7.8 Program control operations

7.8.3

For LAD and FBD: When the JMP_LIST box is first placed in your program, there are two
jump label outputs. You can add or delete jump destinations.

JMP_LIST
EM DESTO

K DEST1
by

JMP_LIST
-EM DESTO

K wDEST1=
.

Table 7- 96 SWITCH instruction

Click the create icon inside the box (on the left of the last DEST parameter)
to add new outputs for jump labels.

¢ Right-click on an output stub and select the "Insert output" command.
¢ Right-click on an output stub and select the "Delete" command.

SWITCH (Jump distributor) instruction

LAD / FBD

SCL

Description

SWITCH
e

EM DESTOD
K DESTH
== ::DEST2
e ELSE

Not available

The SWITCH instruction acts as a program jump distributor to
control the execution of program sections. Depending on the
result of comparisons between the value of the K input and the
values assigned to the specified comparison inputs, a jump occurs
to the program label that corresponds to the first comparison test
that is true. If none of the comparisons is true, then a jump to the
label assigned to ELSE occurs. Program execution continues with
the program instructions that follow the destination jump label.

1 For LAD and FBD: Click below the box name and select a data type from the drop-down menu.

2 For SCL: Use an IF-THEN set of comparisons.

256

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

Table 7- 97 Data types for parameters

7.8 Program control operations

Parameter Data type’

Description

LReal, Byte, Word, DWord, Time,
TOD, Date

K Sint, Int, DiInt, USInt, Uint, UDInt, Real,

Common comparison value input

==, <> <, <=, > >=
LReal, Byte, Word, DWord, Time,
TOD, Date

Sint, Int, DInt, USInt, Uint, UDInt, Real,

Separate comparison value inputs for specific comparison
types

DESTO, DESTY, ..,
DESTn. ELSE

Program Labels

Jump destination labels corresponding to specific
comparisons:

The comparison input below and next to the K input is
processed first and causes a jump to the label assigned to
DESTO, if the comparison between the K value and this
input is true. The next comparison test uses the next input
below and causes a jump to the label assigned to DEST1, if
the comparison is true, The remaining comparisons are
processed similarly and if none of the comparisons are true,
then a jump to the label assigned to the ELSE output
occurs.

1 The K input and comparison inputs (==, <>, <, <=, >, >=) must be the same data type.

Adding inputs, deleting inputs, and specifying comparison types

When the LAD or FBD SWITCH box is first placed in your program there are two comparison
inputs. You can assign comparison types and add inputs/jump destinations, as shown below.

-EN DESTO

K ::DESTI

DESTO
k. :DEST1

= .%ELSE

-EM DESTO .
K s:DESTT o
ELSE

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

Click a comparison operator inside the box and select a new operator
from the drop-down list.

Click the create icon inside the box (to the left of the last DEST
parameter) to add new comparison-destination parameters.

Right-click on an input stub and select the "Insert input" command.
Right-click on an input stub and select the "Delete" command.

257

Basic instructions

7.8 Program control operations

Table 7-98 SWITCH box data type selection and allowed comparison operations

Data type Comparison Operator syntax
Byte, Word, DWord Equal ==
Not equal <>
Sint, Int, Dint, USInt, Ulint, Equal ==
UDInt, Real, LReal, Time, TOD, | Not equal <>
Date
Greater than or equal >=
Less than or equal <=
Greater than >
Less than <

SWITCH box placement rules
® No LAD/FBD instruction connection in front of the compare input is allowed.

® There is no ENO output, so only one SWITCH instruction is allowed in a network and the
SWITCH instruction must be the last operation in a network.

7.8.4 RET (Return) instruction

The optional RET instruction is used to terminate the execution of the current block. If and
only if there is power flow to the RET coil (LAD) or if the RET box input is true (FBD), then
program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB, the "Return_Value" parameter
is ignored. If the current block is a FC or FB, the value of the "Return_Value " parameter is
passed back to the calling routine as the ENO value of the called box.

You are not required to use a RET instruction as the last instruction in a block; this is done
automatically for you. You can have multiple RET instructions within a single block.

For SCL, see the RETURN (Page| 274) statement.

Table 7-99 Return_Value (RET) execution control instruction

LAD FBD SCL Description
“Fretun, Vake" “Rletur, Valus" RETURN; Terminates the execution of the current block
—{RET} [RET |

Table 7- 100 Data types for the parameters

Parameter Data type Description

Return_Value Bool The "Return_value" parameter of the RET instruction is assigned to the ENO output
of the block call box in the calling block.

S7-1200 Programmable controller
258 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

Sample steps for using the RET instruction inside an FC code block:

1. Create a new project and add an FC:
2. Editthe FC:

Add instructions from the instruction tree.

Add a RET instruction, including one of the following for the "Return_Value"

parameter:

TRUE, FALSE, or a memory location that specifies the required return value.

Add more instructions.

3. Call the FC from MAIN [OB1].
The EN input on the FC box in the MAIN code block must be true to begin execution of the

FC.

The value specified by the RET instruction in the FC will be present on the ENO output of the
FC box in the MAIN code block following execution of the FC for which power flow to the
RET instruction is true.

7.8.5

Table 7- 101 ENDIS_PW instruction

ENDIS_PW (Enable/disable CPU passwords) instruction

LAD / FBD SCL Description
S ENDIS_PW(The ENDIS_PW instruction can allow and
— - e req:= bool in , disallow client connections to a S7-1200
— REQ Ret_val f pwd:= bool_in_, CPU, even when the client can provide the
— F_FWD F_PWD_ON — - - ..
=— FULL_PWD FULL_PWD_OM = full_PWd: =_b°°l_ln_' correct password.
— P R_PWD_ON — r_pwd:= bool in_, This instruction does not disallow Web
— HMI_PWD Hk_PWD_ON —

hmi_pwd:= bool_in _,
f pwd on=> bool_out_,

full pwd on=> bool out_,

r_pwd_on=> bool_ out_,

hmi_pwd_on=> bool out_,

server passwords.

Table 7- 102 Data types for the parameters

Parameter and type Data type Description

REQ IN Bool Perform function if REQ=1

F_PWD IN Bool Failsafe password: Allow (=1) or disallow (=0)

FULL_PWD IN Bool Full access password: Allow (=1) or disallow (=0) full access password
R_PWD IN Bool Read access password: Allow (=1) or disallow (=0)

HMI_PWD IN Bool HMI password: Allow (=1) or disallow (=0)

F_PWD_ON ouT Bool Failsafe password status: Allowed (=1) or disallowed (=0)
FULL_PWD_ON ouT Bool Full access password status: Allowed (=1) or disallowed (=0)

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

259

Basic instructions

7.8 Program control operations

Parameter and type

Data type Description

R_PWD_ON

ouT Bool Read only password status: Allowed (=1) or disallowed (=0)

HMI_PWD_ON

ouT Bool HMI password status: Allowed (=1) or disallowed (=0)

Ret_Val

ouT Word Function result

260

Calling ENDIS_PW with REQ=1 disallows password types where the corresponding
password input parameter is FALSE. Each password type can be allowed or disallowed
independently. For example, if the fail-safe password is allowed and all other passwords
disallowed, then you can restrict CPU access to a small group of employees.

ENDIS_PW is executed synchronously in a program scan and the password output
parameters always show the current state of password allowance independent of the input
parameter REQ. All passwords that you set to allow must be changeable to
disallowed/allowed. Otherwise, an error is returned and all passwords are allowed that were
allowed before ENDIS_PW execution. This means that in a standard CPU (where the failsafe
password is not configured) F_PWD must always be set to 1, to result in a return value of 0.
In this case, F_PWD_ON is always 1.

Note

e ENDIS_PW execution can block the access of HMI devices, if the HMI password is
disallowed.

¢ Client sessions that were authorized prior to ENDIS_PW execution remain unchanged by
ENDIS_PW execution.

After a power-up, CPU access is restricted by passwords previously defined in the regular
CPU protection configuration. The ability to disallow a valid password must be re-established
with a new ENDIS_PW execution. However, if ENDIS_PW is immediately executed and
necessary passwords are disallowed, then TIA portal access can be locked out. You can use
a timer instruction to delay ENDIS_PW execution and allow time to enter passwords, before
the passwords become disallowed.

Note
Restoring a CPU that locks out TIA portal communication

Refer to the "Recovery from a lost password|(Page 136)" topic for details about how to erase
the internal load memory of a PLC using a memory card.

An operating mode change to STOP caused by errors, STP execution or STEP 7 does not
abolish the protection. The protection is valid until the CPU is power cycled. See the
following table for details.

Action Operating mode ENDIS_PW password control

After memory reset from STOP Active: Disallowed passwords
STEP 7 remain disallowed.

After powering on, or changing | STOP Off: No passwords are
a memory card disallowed.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

Action

Operating mode

ENDIS_PW password control

After ENDIS_PW execution in a
program cycle or startup OB

STARTUP, RUN

Active: Passwords are
disallowed according to
ENDIS_PW parameters

After change of the operating
mode from RUN or STARTUP
to STOP through STP
instruction, error, or STEP 7

STOP

Active: Disallowed passwords
remain disallowed

Note

Password protect CPU access levels with strong passwords. Strong passwords are at least
eight characters in length, mix letters, numbers, and special characters, are not words that
can be found in a dictionary, and are not names or identifiers that can be derived from
personal information. Keep the password secret and change it frequently.

Table 7- 103 Condition codes

RET_VAL Description

(W#16#...)

0000 No error

80D0 The password for fail-safe is not configured.

80D1 The password for read/write access is not configured.
80D2 The password for read access is not configured.
80D3 The password for HMI access is not configured.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

261

Basic instructions

7.8 Program control operations

7.8.6 RE_TRIGR (Restart cycle monitoring time) instruction

Table 7- 104 RE_TRIGR instruction

LAD / FBD SCL Description
e —_—_— RE_TRIGR() ; RE_TRIGR (Re-trigger scan time watchdog) is used to extend the maximum
[RE_TRIGH . .

JEen~ EMDL time allowed before the scan cycle watchdog timer generates an error.

Use the RE_TRIGR instruction to restart the scan cycle monitoring timer during a single scan
cycle. This has the effect of extending the allowed maximum scan cycle time by one
maximum cycle time period, from the last execution of the RE_TRIGR function.

Note

Prior to S7-1200 CPU firmware version 2.2, RE_TRIGR was restricted to execution from a
program cycle OB and could be used to extend the PLC scan time indefinitely. ENO =
FALSE and the watchdog timer is not reset when RE_TRIGR was executed from a start up
OB, an interrupt OB, or an error OB.

For firmware version 2.2 and later, RE_TRIGR can be executed from any OB (including start
up, interrupt, and error OBs). However, the PLC scan can only be extended by a maximum
of 10x the configured maximum cycle time.

Setting the PLC maximum cycle time

Configure the value for maximum scan cycle time in the Device configuration for "Cycle
time".

Table 7- 105 Cycle time values

Cycle time monitor Minimum value Maximum value Default value

Maximum cycle time 1ms 6000 ms 150 ms

Watchdog timeout

If the maximum scan cycle timer expires before the scan cycle has been completed, an error
is generated. If the user program includes a time error interrupt OB (OB 80), the CPU
executes the time error interrupt OB, which can include program logic to create a special
reaction.

If the user program does not include a time error interrupt OB, the first timeout condition is
ignored and the CPU remains in RUN mode. If a second maximum scan time timeout occurs
in the same program scan (2 times the maximum cycle time value), then an error is triggered
that causes a transition to STOP mode.

In STOP mode, your program execution stops while CPU system communications and
system diagnostics continue.

S7-1200 Programmable controller
262 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

7.8.7 STP (Exit program) instruction

Table 7- 106 STP instruction

LAD / FBD SCL Description

T STP() ; STP puts the CPU in STOP mode. When the CPU is in STOP mode, the
JEM ENO = execution of your program and physical updates from the process image are
: stopped.

For more information see: Configuring the outputs on a RUN-to-STOP transition|(Page 104).

If EN = TRUE, then the CPU goes to STOP mode, the program execution stops, and the
ENO state is meaningless. Otherwise, EN = ENO = 0.

7.8.8 GET_ERROR and GET_ERROR_ID (Get error and error ID locally) instructions

The get error instructions provide information about program block execution errors. If you

add a GET_ERROR or GET_ERROR_ID instruction to your code block, you can handle
program errors within your program block.

GET_ERROR

Table 7- 107 GET_ERROR instruction

LAD / FBD SCL Description
GET_ERROR(_out) ; Indicates that a local program block execution error has occurred
GET_ERROR i) : .
_ B and fills a predefined error data structure with detailed error
EN ENO information.
ERROR
Table 7- 108 Data types for the parameters
Parameter Data type Description
ERROR ErrorStruct Error data structure: You can rename the structure, but not the

members within the structure.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

263

Basic instructions

7.8 Program control operations

Table 7- 109 Elements of the ErrorStruct data structure

Structure components Data type Description
ERROR_ID Word Error ID
FLAGS Byte Shows if an error occurred during a block call.
e 16#01: Error during a block call.
e 16#00: No error during a block call.
REACTION Byte Default reaction:
e 0: Ignore (write error),
e 1: Continue with substitute value "0" (read error),
e 2: Skip instruction (system error)
CODE_ADDRESS CREF Information about the address and type of block
BLOCK_TYPE Byte Type of block where the error occurred:
e 1:0B
e 2:FC
e 3:FB
CB_NUMBER Ulint Number of the code block
OFFSET UDInt Reference to the internal memory
MODE Byte Access mode: Depending on the type of access, the following
information can be output:
Mode (A) (B) (©) (D) (E)
0
1 Offset
2 Area
3 Location | Scope Number
4 Area Offset
5 Area DB no. Offset
6 PtrNo. Area DB no. Offset
/Acc
7 PtrNo./ | Slot No./ Area DB no. Offset
Acc Scope
OPERAND_NUMBER Ulnt Operand number of the machine command
POINTER_NUMBER _ Ulint (A) Internal pointer
LOCATION
SLOT_NUMBER_SCOPE Ulint (B) Storage area in internal memory
DATA_ADDRESS NREF Information about the address of an operand
AREA Byte (C) Memory area:
e L:16#40 - 4E, 86, 87, 8E, 8F, CO-CE
o | 16#81
o Q: 16#82
o M: 16#83
o DB: 16#84, 85, 8A, 8B

S7-1200 Programmable controller
264 System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

Structure components Data type Description
DB_NUMBER Ulnt (D) Number of the data block
OFFSET UDInt (E) Relative address of the operand
GET_ERROR_ID

Table 7- 110 GetErrorlD instruction

LAD / FBD SCL Description
GET_ERR ID(); Indicates that a program block execution error has occurred and reports
GET_ERR_ID . e
the ID (identifier code) of the error.
—EN ENO —
D

Table 7- 111 Data types for the parameters

Parameter

Data type

Description

ID

Word

Error identifier values for the ErrorStruct ERROR_ID member

Table 7- 112 Error_ID values

ERROR_ID ERROR_ID decimal Program block execution error
hexadecimal

0 0 No error

2520 9504 Corrupted string

2522 9506 Operand out of range read error
2523 9507 Operand out of range write error
2524 9508 Invalid area read error

2525 9509 Invalid area write error

2528 9512 Data alignment read error (incorrect bit alignment)
2529 9513 Data alignment write error (incorrect bit alignment)
252C 9516 Uninitialized pointer error

2530 9520 DB write protected

253A 9530 Global DB does not exist

253C 9532 Wrong version or FC does not exist
253D 9533 Instruction does not exist

253E 9534 Wrong version or FB does not exist
253F 9535 Instruction does not exist

2575 9589 Program nesting depth error

2576 9590 Local data allocation error

2942 10562 Physical input point does not exist
2943 10563 Physical output point does not exist

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

265

Basic instructions

7.8 Program control operations

Operation

By default, the CPU responds to a block execution error by logging an error in the
diagnostics buffer. However, if you place one or more GET_ERROR or GET_ERROR_ID
instructions within a code block, this block is now set to handle errors within the block. In this
case, the CPU does not log an error in the diagnostics buffer. Instead, the error information
is reported in the output of the GET_ERROR or GET_ERROR_ID instruction. You can read
the detailed error information with the GET_ERROR instruction, or read just the error
identifier with GET_ERROR_ID instruction. Normally the first error is the most important, with
the following errors only consequences of the first error.

The first execution of a GET_ERROR or GET_ERROR_ID instruction within a block returns
the first error detected during block execution. This error could have occurred anywhere
between the start of the block and the execution of either GET_ERROR or GET_ERROR_ID.
Subsequent executions of either GET_ERROR or GET_ERROR_ID return the first error
since the previous execution of GET_ERROR or GET_ERROR_ID. The history of errors is
not saved, and execution of either instruction will re-arm the PLC system to catch the next
error.

The ErrorStruct data type used by the GET_ERROR instruction can be added in the data
block editor and block interface editors, so your program logic can access these values.
Select ErrorStruct from the data type drop-down list to add this structure. You can create
multiple ErrorStruct elements by using unique names. The members of an ErrorStruct cannot
be renamed.

Error condition indicated by ENO

266

If EN = TRUE and GET_ERROR or GET_ERROR_ID executes, then:
e ENO = TRUE indicates a code block execution error occurred and error data is present
e ENO = FALSE indicates no code block execution error occurred

You can connect error reaction program logic to ENO which activates after an error occurs. If
an error exists, then the output parameter stores the error data where your program has
access to it.

GET_ERROR and GET_ERROR_ID can be used to send error information from the currently
executing block (called block) to a calling block. Place the instruction in the last network of
the called block program to report the final execution status of the called block.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8.9

7.8.9.1

7.8 Program control operations

SCL program control statements

Overview of SCL program control statements

Structured Control Language (SCL) provides three types of program control statements for
structuring your user program:

Selective statements: A selective statement enables you to direct program execution into
alternative sequences of statements.

Loops: You can control loop execution using iteration statements. An iteration statement
specifies which parts of a program should be iterated depending on certain conditions.

Program jumps: A program jump means an immediate jump to a specified jump
destination and therefore to a different statement within the same block.

These program control statements use the syntax of the PASCAL programming language.

Table 7- 113 Types of SCL program control statements

Program control statement

Description

Selective IF-THEN statement Enables you to direct program execution into one of two alternative
(Page|268) branches, depending on a condition being TRUE or FALSE
CASE statement Enables the selective execution into 1 of n alternative branches, based
(Page|269) on the value of a variable

Loop FOR statement Repeats a sequence of statements for as long as the control variable
(Page|270) remains within the specified value range
WHILE-DO statement Repeats a sequence of statements while an execution condition
(Page|271) continues to be satisfied

REPEAT-UNTIL
statement|(Page 272)

Repeats a sequence of statements until a terminate condition is met

Program jump

CONTINUE statement

Stops the execution of the current loop iteration

(Page 273)

EXIT statement Exits a loop at any point regardless of whether the terminate condition
(Page|273) is satisfied or not

GOTO statement Causes the program to jump immediately to a specified label
(Page|274)

RETURN statement Causes the program to exit the block currently being executed and to
(Page 274) return to the calling block

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

267

Basic instructions

7.8 Program control operations

7.8.9.2 IF-THEN statement

The IF-THEN statement is a conditional statement that controls program flow by executing a
group of statements, based on the evaluation of a Bool value of a logical expression. You
can also use brackets to nest or structure the execution of multiple IF-THEN statements.

Table 7- 114 Elements of the IF-THEN statement

SCL Description

IF "condition" THEN If "condition" is TRUE or 1, then execute the following statements until
statement_A; encountering the END_IF statement.
statement_B; If "condition" is FALSE or 0, then skip to END_IF statement (unless the
statement C; program includes optional ELSIF or ELSE statements).

[ELSIF "condition-n" THEN The optional ELSEIF' statement provides additional conditions to be

statement N;

71

evaluated. For example: If "condition" in the IF-THEN statement is FALSE,
then the program evaluates "condition-n". If "condition-n" is TRUE, then
execute "statement_N".

[ELSE
statement X;

71

The optional ELSE statement provides statements to be executed when the
"condition" of the IF-THEN statement is FALSE.

END_IF;

The END_IF statement terminates the IF-THEN instruction.

" You can include multiple ELSIF statements within one IF-THEN statement.

Table 7- 115 Variables for the IF-THEN statement

Variables

Description

"condition"

Required. The logical expression is either TRUE (1) or FALSE (0).

"statement_A"

Optional. One or more statements to be executed when "condition" is TRUE.

"condition-n"

Optional. The logical expression to be evaluated by the optional ELSIF statement.

"statement_N"

Optional. One or more statements to be executed when "condition-n" of the ELSIF statement is
TRUE.

"statement_X"

Optional. One or more statements to be executed when "condition" of the IF-THEN statement
is FALSE.

An IF statement is executed according to the following rules:

268

The first sequence of statements whose logical expression = TRUE is executed. The
remaining sequences of statements are not executed.

If no Boolean expression = TRUE, the sequence of statements introduced by ELSE is
executed (or no sequence of statements if the ELSE branch does not exist).

Any number of ELSIF statements can exist.

Note

Using one or more ELSIF branches has the advantage that the logical expressions
following a valid expression are no longer evaluated in contrast to a sequence of IF
statements. The runtime of a program can therefore be reduced.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

7.8.9.3 CASE statement

Table 7- 116 Elements of the CASE statement

SCL Description

CASE "Test Value" OF The CASE statement executes one of several
"ValuelList": Statement[; Statement, ...] groups of statements, depending on the value
"ValueList": Statement[; Statement, ...] of an expression.

[ELSE

Else-statement[; Else-statement, ...]]

END CASE;

Table 7- 117 Parameters

Parameter

Description

"Test_Value"

Required. Any numeric expression of data type Int

"ValueList"

Required. A single value or a comma-separated list of values or ranges of values. (Use two
periods to define a range of values: 2..8) The following example illustrates the different
variants of the value list:

1: Statement_A;

2, 4: Statement _B;
3,5..7,9: Statement _C;

Statement

Required. One or more statements that are executed when "Test_Value" matches any value
in the value list

Else-statement

Optional. One or more statements that are executed if no match with a value of the
"ValueList" stated matches

The CASE statement is executed according to the following rules:

® The Test_value expression must return a value of the type Int.

e \When a CASE statement is processed, the program checks whether the value of the

Test_

value expression is contained within a specified list of values. If a match is found,

the statement component assigned to the list is executed.

e [f no match is found, the program section following ELSE is executed or no statement is
executed if the ELSE branch does not exist.

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG 269

Basic instructions

7.8 Program control operations

CASE statements can be nested. Each nested case statement must have an associated

END_CASE statement.

CASE "varl" OF
1 : $#var2 := 'A';
2 : #var2 := 'B';
ELSE
CASE "var3" OF
65..90: #var2 := 'UpperCase';
97..122: #var2 := 'LowerCase';
ELSE
#var2:= 'SpecialCharacter';
END_CASE;
END_CASE;
7.8.9.4 FOR statement

Table 7- 118 Elements of the FOR statement

SCL

Description

’

END_FOR;

FOR "control variable"
[BY "increment"] DO
statement;

:= "begin" TO "end"

A FOR statement is used to repeat a sequence of
statements as long as a control variable is within
the specified range of values. The definition of a
loop with FOR includes the specification of an
initial and an end value. Both values must be the
same type as the control variable.

You can nest FOR loops. The END_FOR
statement refers to the last executed FOR
instruction.

Table 7- 119 Parameters

Parameter Description
"control_variable" Required. An integer (Int or DInt) that serves as a loop counter
"begin" Required. Simple expression that specifies the initial value of the control variables
"end" Required. Simple expression that determines the final value of the control variables
"increment"” Optional. Amount by which a "control variable" is changed after each loop. The "increment"
has the same data type as "control variable". If the "increment" value is not specified, then
the value of the run tags will be increased by 1 after each loop. You cannot change
"increment" during the execution of the FOR statement.
S7-1200 Programmable controller
270 System Manual, 03/2014, ASE02486680-AG

Basic instructions

7.8 Program control operations

The FOR statement executes as follows:

At the start of the loop, the control variable is set to the initial value (initial assignment)
and each time the loop iterates, it is incremented by the specified increment (positive
increment) or decremented (negative increment) until the final value is reached.

Following each run through of the loop, the condition is checked (final value reached) to
establish whether or not it is satisfied. If the end condition is not satisfied, the sequence of
statements is executed again, otherwise the loop terminates and execution continues
with the statement immediately following the loop.

Rules for formulating FOR statements:

The control variable may only be of the data type Int or Dint.

You can omit the statement BY [increment]. If no increment is specified, it is automatically
assumed to be +1.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page|273). The EXIT statement executes the statement immediately following the
END_FOR statement.

Use the CONTINUE statement/(Page|273) to skip the subsequent statements of a FOR loop
and to continue the loop with the examination of whether the condition is met for termination.

7.8.9.5 WHILE-DO statement

Table 7- 120 WHILE statement

SCL Description
WHILE "condition" DO The WHILE statement performs a series of statements until a given condition is
Statement; TRUE.
Statement; You can nest WHILE loops. The END_WHILE statement refers to the last executed
-7 WHILE instruction.
END WHILE;

Table 7- 121 Parameters

Parameter Description

"condition" Required. A logical expression that evaluates to TRUE or FALSE. (A "null" condition is
interpreted as FALSE.)

Statement Optional. One or more statements that are executed until the condition evaluates to TRUE.

Note

The WHILE statement evaluates the state of "condition" before executing any of the
statements. To execute the statements at least one time regardless of the state of
"condition", use the REPEAT statement|/(Page 272).

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 271

Basic instructions

7.8 Program control operations

The WHILE statement executes according to the following rules:
® Prior to each iteration of the loop body, the execution condition is evaluated.

® The loop body following DO iterates as long as the execution condition has the value
TRUE.

® Once the value FALSE occurs, the loop is skipped and the statement following the loop is
executed.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 273). The EXIT statement executes the statement immediately following the
END_WHILE statement

Use the CONTINUE statement to skip the subsequent statements of a WHILE loop and to
continue the loop with the examination of whether the condition is met for termination.

7.8.9.6 REPEAT-UNTIL statement

Table 7- 122 REPEAT instruction

SCL Description
REPEAT The REPEAT statement executes a group of statements until a given condition is
Statement; TRUE.
; You can nest REPEAT loops. The END_REPEAT statement always refers to the last
UNTIL "condition" executed Repeat instruction.
END REPEAT;

Table 7- 123 Parameters

Parameter

Description

Statement

Optional. One or more statements that are executed until the condition is TRUE.

"condition"

Required. One or more expressions of the two following ways: A numeric expression or string
expression that evaluates to TRUE or FALSE. A "null" condition is interpreted as FALSE.

272

Note

Before evaluating the state of "condition", the REPEAT statement executes the statements
during the first iteration of the loop (even if "condition" is FALSE). To review the state of
"condition" before executing the statements, use the WHILE statement (Page 271).

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 273). The EXIT statement executes the statement immediately following the
END_REPEAT statement

Use the CONTINUE statement (Page|273) to skip the subsequent statements of a REPEAT
loop and to continue the loop with the examination of whether the condition is met for
termination.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.8 Program control operations

7.8.9.7 CONTINUE statement

Table 7- 124 CONTI

NUE statement

SCL Description

CONTINUE The CONTINUE statement skips the subsequent statements of a program loop (FOR,
Statement; WHILE, REPEAT) and continues the loop with the examination of whether the condition is
; met for termination. If this is not the case, the loop continues.

The CONTINUE statement executes according to the following rules:

® This statement immediately terminates execution of a loop body.

e Depending on whether the condition for repeating the loop is satisfied or not the body is
executed again or the iteration statement is exited and the statement immediately
following is executed.

® |n a FOR statement, the control variable is incremented by the specified increment
immediately after a CONTINUE statement.

Use the CONTINUE statement only within a loop. In nested loops CONTINUE always refers

to the loop that includes it immediately. CONTINUE is typically used in conjunction with an IF

statement.

If the loop is to exit regardless of the termination test, use the EXIT statement.

The following example shows the use of the CONTINUE statement to avoid a division-by-0

error when calculating the percentage of a value:

FOR i := 0 TO 10 DO

IF value[i] = 0 THEN CONTINUE; END_IF;

p := part / value[i] * 100;
s := INT_TO_STRING(p) ;
percent := CONCAT(INl:=s, IN2:="%");
END_FOR;
7.8.9.8 EXIT statement

Table 7- 125 EXIT instruction

SCL Description

EXIT; An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT) at any point, regardless of whether
the terminate condition is satisfied.

The EXIT statement executes according to the following rules:

® This statement causes the repetition statement immediately surrounding the exit
statement to be exited immediately.

® Execution of the program is continued after the end of the loop (for example after
END_FOR).

S7-1200 Programmable controller

System Manual, 03/201

4, ASE02486680-AG 273

Basic instructions

7.8 Program control operations

Use the EXIT statement within a loop. In nested loops, the EXIT statement returns the
processing to the next higher nesting level.
FOR i := 0 TO 10 DO
CASE value[i, 0] OF
1..10: value [i, 1]:="A";
11..40: value [i, 1]:="B";
41..100: value [i, 1]:="C";
ELSE
EXIT;
END_CASE;
END_FOR;

7.8.9.9 GOTO statement

Table 7- 126 GOTO statement

SCL Description
GOTO JumpLabel; The GOTO statement skips over statements by jumping to a label in the same
Statement; block.
. ; The jump label ("JumpLabel") and the GOTO statement must be in the same block.
JumpLabel: Statement; The name of a jump label can only be assigned once within a block. Each jump
label can be the target of several GOTO statements.

It is not possible to jump to a loop section (FOR, WHILE or REPEAT). It is possible to jump
from within a loop.

In the following example: Depending on the value of the "Tag_value" operand, the execution
of the program resumes at the point defined by the corresponding jump label. If "Tag_value"
equals 2, the program execution resumes at the jump label "MyLabel2" and skips
"MyLabel1".

CASE "Tag_value" OF

1 : GOTO MyLabell;

2 : GOTO MyLlabel2;

ELSE GOTO MyLabel3;

END_CASE;

MyLabell: "Tag 1" := 1;
MyLabel2: "Tag 2" := 1;
MyLabel3: "Tag 4" := 1;

7.8.9.10 RETURN statement

Table 7- 127 RETURN instruction

SCL

Description

RETURN;

The Return instruction exits the code block being executed without conditions. Program
execution returns to the calling block or to the operating system (when exiting an OB).

274

Example of a RETURN instruction:
IF "Error" <> 0 THEN
RETURN;

END_IF;

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions
7.9 Word logic operations

Note

After executing the last instruction, the code block automatically returns to the calling block.
Do not insert a RETURN instruction at the end of the code block.

7.9 Word logic operations

7.91 AND, OR, and XOR logic operation instructions

Table 7- 128 AND, OR, and XOR logic operation instructions

LAD / FBD SCL Description
T out := inl AND in2; AND: Logical AND
777
EM ENO out := inl OR in2; OR: Logical OR
:E; oo out := inl XOR in2; XOR: Logical exclusive OR

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

M2ae To add an input, click the "Create" icon or right-click on an input stub for one of the
[:E existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 7- 129 Data types for the parameters

Parameter Data type Description
IN1, IN2 Byte, Word, DWord Logical inputs
ouT Byte, Word, DWord Logical output

1 The data type selection sets parameters IN1, IN2, and OUT to the same data type.

The corresponding bit values of IN1 and IN2 are combined to produce a binary logic result at
parameter OUT. ENO is always TRUE following the execution of these instructions.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 275

Basic instructions

7.9 Word logic operations

7.9.2 INV (Create ones complement) instruction

Table 7- 130 INV instruction

LAD / FBD SCL Description
i . Not available Calculates the binary one's complement of the parameter IN. The one's
INV . ; . .
¥37 complement is formed by inverting each bit value of the IN parameter
—EN EMNO — (changing each 0 to 1 and each 1 to 0). ENO is always TRUE following
{IN ouT | the execution of this instruction.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 131 Data types for the parameters

Parameter Data type Description

IN Sint, Int, DInt, USInt, Ulnt, UDInt, Byte, Word, DWord Data element to invert
ouT Sint, Int, DInt, USInt, UInt, UDInt, Byte, Word, DWord Inverted output
7.9.3 DECO (Decode) and ENCO (Encode) instructions

Table 7- 132 ENCO and DECO instruction

LAD / FBD SCL Description
SRS out := ENCO(_in); Encodes a bit pattern to a binary number
7 The ENCO instruction converts parameter IN to the binary number
=EM END = corresponding to the bit position of the least-significant set bit of
L ouT | parameter IN and returns the result to parameter OUT. If

parameter IN is either 0000 0001 or 0000 0000, then a value of 0
is returned to parameter OUT. If the parameter IN value is 0000
0000, then ENO is set to FALSE.

B out := DECO(_in_); Decodes a binary number to a bit pattern

| ™ The DECO instruction decodes a binary number from parameter
—EN ENO — IN, by setting the corresponding bit position in parameter OUT to

{IN our | a 1 (all other bits are set to 0). ENO is always TRUE following

execution of the DECO instruction.

Note: The default data type for the DECO instruction is DWORD.
In SCL, change the instruction name to DECO_BYTE or
DECO_WORD to decode a byte or word value, and assign to a
byte or word tag or address.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
276 System Manual, 03/2014, A5E02486680-AG

Basic instructions

Table 7- 133 Data types for the parameters

7.9 Word logic operations

Parameter Data type Description

IN ENCO: Byte, Word, DWord ENCO: Bit pattern to encode
DECO: Ulint DECO: Value to decode

ouT ENCO: Int ENCO: Encoded value
DECO: Byte, Word, DWord DECO: Decoded bit pattern

Table 7- 134 ENO status

ENO Condition Result (OUT)
1 No error Valid bit number
0 IN is zero OUT is set to zero

The DECO parameter OUT data type selection of a Byte, Word, or DWord restricts the
useful range of parameter IN. If the value of parameter IN exceeds the useful range, then a
modulo operation is performed to extract the least significant bits shown below.

DECO parameter IN range:
® 3 bits (values 0-7) IN are used to set 1 bit position in a Byte OUT

® 4-bits (values 0-15) IN are used to set 1 bit position in a Word OUT
® 5 bits (values 0-31) IN are used to set 1 bit position in a DWord OUT

Table 7- 135 Examples

DECO IN value DECO OUT value (Decode single bit position)
Byte OUT Min. IN 0

8 bits Max. IN 7 10000000

Word OUT Min. IN 0 0000000000000001

16 bits Max. IN 15 1000000000000000

DWord OUT Min. IN 0 00000000000000000000000000000001

32 bits Max. IN 31 10000000000000000000000000000000

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG

277

Basic instructions
7.9 Word logic operations

794 SEL (Select), MUX (Multiplex), and DEMUX (Demultiplex) instructions

Table 7- 136 SEL (select) instruction

LAD / FBD SCL Description
SEL out := SEL(SEL assigns one of two input values to parameter OUT, depending
= g:= bool_in, on the parameter G value.
EM o EMNO -~ in0:-_variant_in,
G ouT inl:= variant_in);
IND
IM1

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 137 Data types for the SEL instruction

Parameter Data type ! Description
G Bool e 0 selects INO
e 1 selects IN1
INO, IN1 Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Inputs
Time, Char
ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord, Output
Time, Char

1 Input variables and the output variable must be of the same data type.

Condition codes: ENO is always TRUE following execution of the SEL instruction.

Table 7- 138 MUX (multiplex) instruction

LAD / FBD SCL Description
e, out := MUX(MUX copies one of many input values to parameter OUT, depending
el k:= unit _in, on the parameter K value. If the parameter K value exceeds (INn- 1),
EN ENO = inl:=variant_in, then the parameter ELSE value is copied to parameter OUT.
K out in2:=variant_in,
IND
IN1 = [...in32:=variant in,]
ELSE . LT
inelse:=variant_in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

278

IMZsE
ELSE

To add an input, click the "Create" icon or right-click on an input stub for one of
the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.9 Word logic operations

Table 7- 139 Data types for the MUX instruction

Parameter Data type Description
K Ulnt e 0 selects IN1
o 1 selects IN2

e nselects INn

INO, IN1, .. INn Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord, Inputs

Time, Char

ELSE Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord, Input substitute value (optional)
Time, Char

ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord, | Output
Time, Char

' Input variables and the output variable must be of the same data type.

Table 7- 140 DEMUX (Demultiplex) instruction

LAD / FBD SCL Description
e DEMUX (DEMUX copies the value of the location assigned to parameter IN to
797 k:= unit in, one of many outputs. The value of the K parameter selects which
ENM EMO - in:=variant_in, output selected as the destination of the IN value. If the value of K is
K auTo outl:=variant in, greater than the number (OUTr - 1) then the IN value is copied to
N s=0UTH out2 :=variant_in, location assigned to the ELSE parameter.
ELSE -
[...out32:=variant_in,]
outelse:=variant in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

sE OUTT To add an output, click the "Create" icon or right-click on an output stub for one
LSE of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

S7-1200 Programmable controller
System Manual, 03/2014, ASE02486680-AG 279

Basic instructions

7.9 Word logic operations

Table 7- 141 Data types for the DEMUX instruction

OUTn DWord, Time, Char

Parameter Data type ! Description

K Ulnt Selector value:
e 0 selects OUT1
e 1 selects OUT2
e nselects OUTn

IN Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, Input

DWord, Time, Char
OuUTO, OUTH1, .. | Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, Outputs

ELSE Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word,
DWord, Time, Char

Substitute output when K is greater than
(OUTn -1)

1 The input variable and the output variables must be of the same data type.

Table 7- 142 ENO status for the MUX and DEMUX instructions

ENO Condition Result OUT

1 No error MUX: Selected IN value is copied to
ouT
DEMUX: IN value is copied to selected
ouT

0 MUX: K is greater than the number of inputs -1 e No ELSE provided: OUT is

unchanged,

e ELSE provided, ELSE value assigned
to OUT

DEMUX: K is greater than the number of outputs -1

e No ELSE provided: outputs are
unchanged,

e ELSE provided, IN value copied to
ELSE

280

S7-1200 Programmable controller
System Manual, 03/2014, A5E02486680-AG

Basic instructions

7.10

7.10.1

Shift and rotate

Table 7- 143 SHR and SHL instructions

7. 10 Shift and rotate

SHR (Shift right) and SHL (Shift left) instructions

LAD / FBD SCL Description
T out := SHR(Use the shift instructions (SHL and SHR) to shift the bit pattern of
5 in:= variant in_, parameter IN. The result is assigned to parameter OUT.

—EM ENO |- n:=_uint_in); Parameter N specifies the number of bit positions shifted:

{IN ouT |

M

out := SHL(
in:= variant in_,
n:= uint in);

e SHR: Shift bit pattern right
e SHL: Shift bit pattern left

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 7- 144 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord Bit pattern to shift

N Ulint Number of bit positions to shift
ouT Byte, Word, DWord Bit pattern after shift operation

® For N=0, no shift occurs. The IN value is assigned to OUT.

e Zeros are shifted into the bit positions emptied by the shift operation.

e [f the number of positions to shift (N) exceeds the number of bits in the target value (8 for
Byte, 16 for Word, 32 for DWord), then all original bit values will be shifted out and

replaced with zeros (zero is assigned to OUT).

e ENO is always TRUE for the shift operations.

Table 7- 145 SHL example for Word data

Shift the bits of a Word to the left by inserting zeroes from the right (N = 1)

IN 1110 0010 1010 1101

OUT value before first shift:

1110 0010 1010 1101

After first shift left:

1100 0101 0101 1010

After second shift left:

1000 1010 1011 0100

After third shift left:

0001 0101 0110 1000

S7-1200 Programmable controller

System Manual, 03/2014, ASE02486680-AG

281

Basic instructions
7. 10 Shift and rotate

7.10.2 ROR (Rotate right) and ROL (Rotate left) instructions
Table 7- 146 ROR and ROL instructions

LAD / FBD SCL Description

T out := ROL(Use the rotate instructions (ROR and ROL) to rotate the bit pattern of

277 in:= variant in_, parameter IN. The result is assigned to parameter OUT. Parameter N

=EH EMND = n:=_uint_in); defines the number of bit positions rotated.

I: | out := ROR(¢ ROR: Rotate bit pattern right

' ' :.n:=_x.rar1a.mt_1n_, ¢ ROL: Rotate bit pattern left

n:= uint in);

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 7- 147 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord Bit pattern to rotate

N Ulint Number of bit positions to rotate
ouT Byte, Word, DWord Bit pattern after rotate operation

® For N=0, no rotate occurs. The IN value is assigned to OUT.

e Bit data rotated out one side of the target value is rotated into the other side of the target
value, so no original bit values are lost.

e |f the number of bit positions to rotate (N) exceeds the number of bits in the target value
(8 for Byte, 16 for Word, 32 for DWord), then the rotation is still performed.

e ENO is always TRUE following execution of the rotate instructions.

Table 7- 148 ROR example for Word data

Rotate bits out the right -side into the left -side (N = 1)

IN 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001
After first rotate right: 1010 0000 0000 0000
After second rotate right: 0101 0000 0000 0000

S7-1200 Programmable controller
282 System Manual, 03/2014, A5E02486680-AG

Extended instructions

8.1 Date, time-of-day, and clock functions

8.1.1 Date and time-of-day instructions
Use the date and time instructions for calendar and time calculations.

® T_CONV converts a value to or from (date and time data types) and (byte, word, and
dword size data types)

e T_ADD adds Time and DTL values: (Time + Time = Time) or (DTL + Time = DTL)
e T_SUB subtracts Time and DTL values: (Time - Time = Time) or (DTL - Time = DTL)

e T_DIFF provides the difference between two DTL values as a Time value: DTL - DTL =
Time

e T_COMBINE combines a Date value and a Time_and_Date value to create a DTL value

For information about the format of DTL and Time data, refer to the section on the Time and
Date data types|(Page 113).

Table 8- 1 T_CONV (Convert times and extract) instruction

LAD / FBD SCL example Description
i out := DINT TO_TIME (T_CONV converts a value to or from (date and time data types) and
T_CONV
977 10 777 in:= variant_in); (byte, word, and dword size data types).
~EM ENDL
{in Out| out := TIME_TO_ DINT(
in:= variant in);

T For LAD and FBD boxes: Click "???" and select the source/target data types from the drop-down menu.

2 For SCL: Drag T_CONV from instruction tree and drop into the program editor, then select the source/target data types.

Table 8-2 Valid data types for T_CONV conversions

Data type IN (or OUT) Data types OUT (