

SIMOTION

SIMOTION SCOUT
Supplement to the CP 340 and
CP 341 Modules

Function Manual

04/2014

Preface

Fundamental safety
instructions

 1

Description
 2

CP 340 function blocks
 3

CP 341 function blocks
 4

Alarm processing
 5

Appendices
 A

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

Copyright © Siemens AG 2014.
All rights reserved

Preface

Contents of the function manual
This document is part of the SIMOTION Programming
 References documentation package.

This manual is a supplement to the following SIMATIC manuals:

● CP 340 Point-to-Point Communication, Installation and Parameter Assignment
● CP 341 Point-to-Point Communication, Installation and Parameter Assignment
These documents are included in the SIMOTION SCOUT scope of supply as electronic
documentation!

This manual supplement will help you to integrate and start up the CP 340 and CP 341
communication processors in a SIMOTION system.

Differences in handling which result from the software architecture of a SIMOTION system as
compared to the software architecture of a SIMATIC system will be described.

Function blocks
The function blocks for communication between the SIMOTION system and the CP 340 and
CP 341 modules are part of the program library of the "SIMOTION SCOUT" engineering
system.

Sections in this manual
The following chapters of this manual describe the function blocks (FBs) and data structures
used in a SIMOTION system.

● General
This chapter describes the differences and similarities in operation of the various CP
modules.

● CP 340 function blocks
This chapter describes the function blocks required for communication between a
SIMOTION system and a CP 340.

● CP 341 function blocks
This chapter describes the function blocks required for communication between a
SIMOTION system and a CP 341.

● Alarm processing
This chapter describes the differences in alarm processing in the SIMOTION system
compared to the SIMATIC system.

● SIMATIC and SIMOTION Names
This appendix contains a comparison of SIMATIC and SIMOTION names.

● The index allows you to locate information quickly.

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 3

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in the SIMOTION Documentation
Overview document.

This documentation is included as electronic documentation in the scope of delivery of
SIMOTION SCOUT. It comprises ten documentation packages.

The following documentation packages are available for SIMOTION V4.4:

● SIMOTION Engineering System Handling

● SIMOTION System and Function Descriptions

● SIMOTION Service and Diagnostics

● SIMOTION IT

● SIMOTION Programming

● SIMOTION Programming - References

● SIMOTION C

● SIMOTION P

● SIMOTION D

● SIMOTION Supplementary Documentation

Hotline and Internet addresses

Additional information
Click the following link to find information on the the following topics:

● Ordering documentation / overview of documentation

● Additional links to download documents

● Using documentation online (find and search manuals/information)

http://www.siemens.com/motioncontrol/docu

Please send any questions about the technical documentation (e.g. suggestions for
improvement, corrections) to the following e-mail address:
docu.motioncontrol@siemens.com

My Documentation Manager
Click the following link for information on how to compile documentation individually on the
basis of Siemens content and how to adapt it for the purpose of your own machine
documentation:

http://www.siemens.com/mdm

Preface

Supplement to the CP 340 and CP 341 Modules
4 Function Manual, 04/2014

Training
Click the following link for information on SITRAIN - Siemens training courses for automation
products, systems and solutions:

http://www.siemens.com/sitrain

FAQs
Frequently Asked Questions can be found in SIMOTION Utilities & Applications, which are
included in the scope of delivery of SIMOTION SCOUT, and in the Service&Support pages
in Product Support:

http://support.automation.siemens.com

Technical support
Country-specific telephone numbers for technical support are provided on the Internet under
Contact:

http://www.siemens.com/automation/service&support

Preface

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 5

Table of contents

Preface...3

1 Fundamental safety instructions...9
 1.1 General safety instructions..9
 1.2 Industrial security..10

2 Description..11
 2.1 General..11
 2.2 Product description..12
 2.3 Setup and connection..14
 2.4 Integrating the communications processors in the SIMOTION project.......................................15
 2.5 Integrating the function blocks in the user project...17
 2.6 Creating I/O variables..18

3 CP 340 function blocks...19
 3.1 Overview of the function blocks of the CP 340..19
 3.2 _CP340_send function block...20
 3.3 _CP340_receive function block...25
 3.4 _CP340_printer function block...29
 3.4.1 Description of the _CP340_printer FB ..29
 3.4.2 supplemental function blocks..35
 3.4.3 CP 340 print call examples..40
 3.5 _CP340_getV24Signals function block..45
 3.6 _CP340_setV24Signals function block..47
 3.7 Calling the CP 340 function blocks..48
 3.8 Data consistency...50
 3.9 Application Examples..51
 3.9.1 sending and receiving with CP 340...51
 3.9.2 Printing with CP 340..54

4 CP 341 function blocks...59
 4.1 Overview of the function blocks of the CP 341..59
 4.2 _CP341_send function block...60
 4.2.1 Description of the _CP341_send FB ..60
 4.2.2 Application with 3964(R) protocol or ASCII driver...60
 4.2.3 Application with RK 512 computer interfacing...64
 4.3 _CP341_receive function block...72
 4.3.1 Description of the _CP341_receive FB ...72

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 7

 4.3.2 Application with 3964(R) protocol or ASCII driver...72
 4.3.3 Application with RK 512 computer interfacing...76
 4.4 _CP341_printer function block...84
 4.4.1 Description of the _CP341_printer FB...84
 4.4.2 supplemental function blocks..90
 4.4.3 CP 341 print call examples..95
 4.5 _CP341_getV24Signals function block..100
 4.6 _CP341_setV24Signals function block..102
 4.7 Calling the CP 341 function blocks..103
 4.8 Data consistency...105
 4.9 Special features related to data transfer...106
 4.9.1 Communication flag function with the CP 341...106
 4.9.2 Requests that can be processed simultaneously with the CP 341...106
 4.9.3 Data transfer with the RK 512 computer interfacing..107
 4.10 Application example of the CP 341...108

5 Alarm processing..113

A Appendices...117
 A.1 SIMOTION and SIMATIC names..117
 A.2 List of abbreviations..123

 Index...125

Table of contents

Supplement to the CP 340 and CP 341 Modules
8 Function Manual, 04/2014

Fundamental safety instructions 1
1.1 General safety instructions

 WARNING

Risk of death if the safety instructions and remaining risks are not carefully observed

If the safety instructions and residual risks are not observed in the associated hardware
documentation, accidents involving severe injuries or death can occur.
● Observe the safety instructions given in the hardware documentation.
● Consider the residual risks for the risk evaluation.

 WARNING

Danger to life or malfunctions of the machine as a result of incorrect or changed
parameterization

As a result of incorrect or changed parameterization, machines can malfunction, which in
turn can lead to injuries or death.
● Protect the parameterization (parameter assignments) against unauthorized access.
● Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY

STOP or EMERGENCY OFF).

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 9

1.2 Industrial security

 Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, solutions, machines, equipment and/or networks. They are
important components in a holistic industrial security concept. With this in mind, Siemens’
products and solutions undergo continuous development. Siemens recommends strongly
that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable
preventive action (e.g. cell protection concept) and integrate each component into a holistic,
state-of-the-art industrial security concept. Third-party products that may be in use should
also be considered. For more information about industrial security, visit http://
www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific
newsletter. For more information, visit http://support.automation.siemens.com

 WARNING

Danger as a result of unsafe operating states resulting from software manipulation

Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe
operating states to develop in your installation which can lead to death, severe injuries and/
or material damage.
● Keep the software up to date.

Information and newsletters can be found at:
http://support.automation.siemens.com

● Incorporate the automation and drive components into a state-of-the-art, integrated
industrial security concept for the installation or machine.
For more detailed information, go to:
http://www.siemens.com/industrialsecurity

● Make sure that you include all installed products into the integrated industrial security
concept.

Fundamental safety instructions
1.2 Industrial security

Supplement to the CP 340 and CP 341 Modules
10 Function Manual, 04/2014

Description 2
2.1 General

This chapter describes the general differences between SIMOTION and SIMATIC systems in
terms of the operation of the CP 340 / CP 341 communications processors and in terms of
data transfer.

 Note

This manual is a supplement to SIMATIC manuals CP 340 Point-to-Point Connection,
Installation and Parameter Assignment/CP 341 Point-to-Point Connection, Installation and
Parameter Assignment.
These documents are shipped with SIMOTION SCOUT in electronic form!

The following software versions are required for the standard functions described in this
documentation:

● SIMOTION SCOUT V4.2 or higher

● SIMOTION Kernel V4.2 or higher

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 11

2.2 Product description
The communications processor (CP) enables data to be exchanged between your SIMOTION
system and another communications partner.

Function blocks are required for data exchange between the SIMOTION device and the
communications processors. The function blocks for the SIMOTION system are described in
this manual; these function blocks are handled differently than the function blocks for SIMATIC
S7.

Functionality of the CP 340 / CP 341
The functionality of the function blocks and the CPs in a SIMOTION system is the same as in
the SIMATIC S7 with the exception of special protocols for the CP 341.

The special protocols for "Modbus Slave", "Modbus Master" and "Data Highway" for the CP
341 are not currently supported by SIMOTION function blocks. For detailed information, see
the "CP 340 function blocks" and "CP 341 function blocks" chapters.

Possible applications
In addition to the possible applications described in SIMATIC manuals CP 340 Point-to-Point
Connection, Installation and Parameter Assignment and CP 341 Point-to-Point Connection,
Installation and Parameter Assignment, these communications processors (CPs) can also be
used in a SIMOTION system. The communications processors can be used as centralized
modules (on the SIMOTION C2xx only) or as distributed modules (SIMOTION C2xx,
SIMOTION P350 and SIMOTION D4xx).

More than one CP 340/CP 341 can be used on one SIMOTION device.

The figure below shows the connection of an ET 200M distributed I/O device with IM 153-1
and CP 340 or CP 341 to a SIMOTION device (e.g. SIMOTION C2xx).

Description
2.2 Product description

Supplement to the CP 340 and CP 341 Modules
12 Function Manual, 04/2014

Figure 2-1 Connection of an ET 200M distributed I/O device with IM 153-1 and CP 340 or CP 341 to
a SIMOTION C2xx (example of distributed application)

Description
2.2 Product description

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 13

2.3 Setup and connection

Overview
The following sequence of operations is required to commission the CP 340/CP 341 and
operate it under the control of the SIMOTION system:

Distributed application (SIMOTION C2xx, SIMOTION P350, and SIMOTION D4xx)
1. Assemble and install the cables for the ET 200M distributed I/O device complete with power

supply (PS), interface module (IM) and communications processor (CP).

2. Establish the PROFIBUS connection between the ET 200M and the SIMOTION device.

3. Set the PROFIBUS DP node address on the IM.

4. Switch on the terminating resistor at the first and last bus node.

 Note

For steps 1 to 4, refer to the ET 200M Distributed I/O manual.

This documentation is included in the SIMOTION SCOUT scope of supply as electronic
documentation!

5. For inserting the communications processors CP 340 or CP 341 into the SIMOTION project,
see Chapter Integrating the communications processors in the SIMOTION project
(Page 15).

6. Assign parameters for the CP 340/CP 341 communications processors.
The SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
and CP 341 Point-to-Point Connection, Installation and Parameter Assignment manuals
contain a description of how to install the parameter assignment interface for the CP 340
and 341 and how to assign parameters for the communications processors.

7. For integrating function blocks into the SIMOTION project, see Chapter Integrating the
function blocks in the user project (Page 17).

Centralized application (SIMOTION C2xx only)
1. For information on planning the mechanical installation and preparing and mounting the

SIMOTION components, refer to the SIMOTION C2xx operating instructions and the
SIMATIC S7-300 Automation System, Software Installation manual.
These documents are shipped with SIMOTION SCOUT in electronic form!

2. To continue, refer to steps 5 to 7 for distributed application.

Description
2.3 Setup and connection

Supplement to the CP 340 and CP 341 Modules
14 Function Manual, 04/2014

2.4 Integrating the communications processors in the SIMOTION project

Requirement
The following requirements must be met in the case of networking via PROFIBUS:

1. You have created a project in SIMOTION SCOUT and have inserted a rack with a
SIMOTION hardware platform in the hardware configuration.

2. You have configured a PROFIBUS subnet (for distributed application only).

 Note

For information on creating a project and configuring a PROFIBUS subnet, refer to the
online help for SIMOTION SCOUT.

The following requirements must be met in the case of networking via PROFINET:

1. You have created a project in SIMOTION SCOUT and have inserted and configured a rack
with a PROFINET-compatible SIMOTION device in the hardware configuration.

2. You have configured a PROFINET IO system (for distributed application only).

 Note

For information on creating a project and configuring a PROFINET IO system, refer to the
online help for SIMOTION SCOUT.

Inserting the CP 340/CP 341 (distributed application)
The following description is an example of networking via PROFIBUS.

1. In SIMOTION SCOUT, open the User Projects dialog box with the Project > Open menu
command. In this dialog box, select your project and confirm your choice with OK.

2. Open HW Config.

3. In the HW Config window, open the Hardware catalog with the View > Catalog menu
command.

4. Open the PROFIBUS DP folder and the ET 200M subfolder in the hardware catalog. There,
select e.g. the IM 153-1 interface module (MLFB no.: 6ES7 153-1AA03-0XB0 or a
replacement module).

5. Use Drag & Drop to place the IM 153-1 I/O device on the PROFIBUS subnet of your project.
The Properties - PROFIBUS IM 153-1 Interface dialog box is opened. In this dialog box,
select the address you set on the IM 153-1 (see ET 200M Distributed I/O Device manual)
and confirm by pressing OK.
The selected IM 153-1 I/O device is inserted into the project.

Description
2.4 Integrating the communications processors in the SIMOTION project

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 15

6. The inserted I/O device must now be fitted with your project modules. To do this, open the
CP 300 subfolder below the selected I/O device in the hardware catalog and select the
relevant CP modules.

 Note

Diagnostic alarms are not enabled by default. Activate the alarms for each module in the
Properties dialog box.

7. Save and compile your project.

Description
2.4 Integrating the communications processors in the SIMOTION project

Supplement to the CP 340 and CP 341 Modules
16 Function Manual, 04/2014

2.5 Integrating the function blocks in the user project

Creating an instance of the FBs in the user project
The function blocks are part of the program library of the SIMOTION SCOUT engineering
system. For working with the blocks, an instance has to be created in the user project for each
function block used.

Example:

VAR_GLOBAL
...
 myInstCP340Send : _CP340_send; // create FB instance
 myInstCP341Send : _CP341_send; // create FB instance
...
END_VAR

Call (LAD representation)
The LAD representation of the individual function blocks can be found in the respective function
block descriptions.

Example of an application
The application example is included on the "SIMOTION Utilities & Applications" CD-ROM and
is available for various SIMOTION hardware platforms.

The "SIMOTION Utilities & Applications" CD-ROM is provided free of charge and part of the
SIMOTION SCOUT scope of delivery.

Description
2.5 Integrating the function blocks in the user project

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 17

2.6 Creating I/O variables

Overview
Communication between the SIMOTION device and the CP 340 and CP 341 takes place by
means of direct I/O access and data set transfer. For data set transfer, the module address is
transferred to the FB as an input parameter. I/O variables are used to address the direct read/
write access to the I/O.

You can freely assign the names of I/O variables in SIMOTION SCOUT. I/O variables must
be specified as ARRAY [0..15] of BYTE. You assign the address settings in the hardware
configuration to these I/O variables.

The names of the I/O inputs must be transferred to the function blocks as call parameters
(periIn). The prepared data for the I/O outputs are provided by the FB as in/out parameters
(periOut). The in/out parameter must be supplied with a variable of type ARRAY [0..15] of
BYTE. After the block is called, this variable must be assigned to the I/O variables for the I/O
outputs (see Chapter Calling the CP 340 function blocks (Page 48)).

 Note

The variable for supplying the in/out parameters must not be created as a temporary variable
(VAR_TEMP or local variable of a function).

The following example shows how to assign the module addresses to the I/O variables in
SIMOTION SCOUT.

Figure 2-2 Address assignment in SIMOTION SCOUT for two CP modules

 Note

For additional information, see the following sources:
● SIMOTION SCOUT online help
● Programming Manual of the corresponding programming language, e.g.:

– SIMOTION ST, Structured Text programming manual
– SIMOTION MCC, Motion Control Chart programming manual
– SIMOTION LAD/FBD, Ladder Diagram and Function Block Diagram programming

manual

These documents are included in the SIMOTION SCOUT scope of delivery as electronic
documentation.

Description
2.6 Creating I/O variables

Supplement to the CP 340 and CP 341 Modules
18 Function Manual, 04/2014

CP 340 function blocks 3
3.1 Overview of the function blocks of the CP 340

This chapter contains a description of all of the function blocks (FBs) and the data structure
required for communication between a SIMOTION device and a CP 340.

The function blocks form the software interface between the SIMOTION device and the CPs.
They must be called repeatedly (in cycles) from the user program.

The following function blocks are available:

● _CP340_send function block (Page 20)

● _CP340_receive function block (Page 25)

● _CP340_printer function block (Page 29)

● _CP340_getV24Signals function block (Page 45)

● _CP340_setV24Signals function block (Page 47)

 Note

The SIMOTION identifiers have changed as of V4.0. A comparison of the SIMOTION and
SIMATIC identifiers can be found in the appendix SIMOTION and SIMATIC names
(Page 117) in the table "SIMOTION and SIMATIC CP 340 identifiers".

SIMOTION SCOUT contains all of the required FBs and the Struct_CP340_printData data
structure (for _CP340_printer function block only) of the CP 340. The function blocks can be
used to control one or more CP 340 modules.

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 19

3.2 _CP340_send function block

Function
The _CP340_send function block enables you to send data from the data send array to a
communications partner. You have 1,024 bytes available for this.

For the transfer, you can use the 3964 (R) protocol or ASCII driver.

Call (LAD representation)

Parameter description

Table 3-1 Parameters of the _CP340_send FB

Name P type 1) Data type Meaning Actions performed by
user

Actions
performed
by block

execute IN BOOL Initiates job on positive edge Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data

set transfer (from HW Config)
Entered Checked

dataOffset IN UDINT Offset of the first element to be sent Entered Checked
dataLength IN UDINT Number of elements to be sent Entered Checked
periIn IN ARRAY[0..15] of

BYTE
I/O inputs of the CP transferred to
the FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY[0..15] of
BYTE

Prepared FB data for the I/O outputs
of the CP 2)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

CP 340 function blocks
3.2 _CP340_send function block

Supplement to the CP 340 and CP 341 Modules
20 Function Manual, 04/2014

Name P type 1) Data type Meaning Actions performed by
user

Actions
performed
by block

data IN/OUT ARRAY[0..1023]
of BYTE

Send data array Entered Checked

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error = TRUE, the error
information (event class and
number) is displayed in the errorID
parameter. 3)

Checked Entered

errorIdTransfer OUT DINT Error during data transfer between
the CP and the
SIMOTION device (detailed error
diagnostics if 16#1E0F is present in
the errorID parameter 4))

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 340.

3) For error information, refer to the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 340"

4) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 340 function blocks
3.2 _CP340_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 21

Signal sequence diagram of the _CP340_send FB
The following figure illustrates the behavior of the done and error parameters according to the
input circuit of execute and reset.

Figure 3-1 Signal sequence diagram of the _CP340_send FB

 Note

The execute input is edge-triggered. The send job starts when there is a positive edge at the
execute input.

Task integration (call)
The _CP340_send function block must be called cyclically in the BackgroundTask or the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

CP 340 function blocks
3.2 _CP340_send function block

Supplement to the CP 340 and CP 341 Modules
22 Function Manual, 04/2014

The SIMOTION device sends data to a communications partner
The _CP340_send function block transfers a data block that is specified by the following
parameters to the CP 340:

● data corresponds to the data array containing the send data

● dataOffset corresponds to the array index containing the first send byte

● dataLength corresponds to the amount of data to be sent in bytes

The _CP340_send FB must be called repeatedly by a program. The send job can only be
executed by cyclically calling the send FB.

A positive edge at the execute input initiates the transfer. A data transfer operation can run
over several calls, depending on the amount of data involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP340_send FB to its initial state. The send operation will remain disabled as long
as the signal state at the reset parameter is "TRUE".

The moduleAddress parameter specifies the module address of the CP 340 being addressed.

Status and error display on the _CP340_send FB
The done output indicates that the job has been completed without errors. The error output
indicates that an error has occurred. If an error occurs, the corresponding event class/number
is displayed in the errorID output (see "Parameters of the _CP340_send FB" table). If no errors
have occurred, errorID has a value of 0. Done and error/errorID are also displayed for reset
of the _CP340_send FB. When 16#1E0F is displayed in the errorID parameter, a detailed
error description is also output via the errorIdTransfer parameter.

The done, error, errorID, and errorIdTransfer parameters are available for one block call only.

 Note

There is no parameter check for the _CP340_send function block. Incorrect parameterization
of this block may cause the SIMOTION device to switch to "STOP" mode.

Before the CP 340 can process an initiated job following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the _CP340_send
FB must be complete. Any jobs initiated in the meantime will not be lost. They are transferred
to the CP 340 once the startup coordination has finished.

The end of the startup coordination is indicated in output parameter startup = FALSE.

CP 340 function blocks
3.2 _CP340_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 23

Assignment in the data area
The data to be sent is transferred to the _CP340_send FB in the data parameter
(VAR_IN_OUT) as ARRAY of BYTE. At the beginning of the send operation, the data is copied
to a local variable of the FB and transferred from there to the CP 340.

 Note

Once the data have been entered in the static memory of the send FB, you can modify the
variable created in the data parameter. This does not affect the data to be sent.

CP 340 function blocks
3.2 _CP340_send function block

Supplement to the CP 340 and CP 341 Modules
24 Function Manual, 04/2014

3.3 _CP340_receive function block

Function
The _CP340_receive function block enables you to receive data from a communications
partner in the data receive field. You have 1,024 bytes available for this.

For the transfer, you can use the 3964 (R) protocol or ASCII driver.

Call (LAD representation)

enable

periOut

_CP340_receive

dataOffset

errorID

BOOL

WORD

error

UDINT

DINT

data

reset

moduleAddress

BOOL

BOOL

ARRAY [0..1023] of BYTE

periIn ARRAY [0..15] of BYTE

ARRAY [0..15] of BYTE ARRAY [0..15] of BYTE periOut

ARRAY [0..1023] of BYTE data

dataLength

BOOL

UDINT

newDataReceived

startup BOOL

errorIdTransfer DINT

Parameter description

Table 3-2 Parameters of the _CP340_receive FB

Name P type 1) Data type Meaning Actions performed
by user

Actions
performed
by block

enable IN BOOL Receive enable Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data

set transfer (from HW Config)
Entered Checked

dataOffset IN UDINT Offset of the first element to be
received

Entered Checked

periIn IN ARRAY[0..15] of
BYTE

I/O inputs of the CP transferred to
the FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY[0..15] of
BYTE

Prepared FB data for the I/O
outputs of the CP 2)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

CP 340 function blocks
3.3 _CP340_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 25

Name P type 1) Data type Meaning Actions performed
by user

Actions
performed
by block

data IN/OUT ARRAY[0..1023]
of BYTE

Receive data array Checked Entered

error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error=TRUE, the error
information (event class and
number) is displayed in the
errorID parameter.3)

Checked Entered

newDataReceived OUT BOOL Receive new data Checked Entered
dataLength OUT UDINT Quantity of data received Checked Entered
startup OUT BOOL Indicates CP startup Checked Entered
errorIdTransfer OUT DINT Error during data transfer

between the CP and the
SIMOTION device (precise error
diagnostics if 16#1E0F is present
in the errorID parameter 4))

Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 340.

3) For error information, refer to the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 340".

4) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 340 function blocks
3.3 _CP340_receive function block

Supplement to the CP 340 and CP 341 Modules
26 Function Manual, 04/2014

Signal sequence diagram of the _CP340_receive FB
The following figure illustrates the behavior of the newDataReceived, dataLength, and error
parameters according to the input circuit of enable and reset.

Figure 3-2 Signal sequence diagram of the _CP340_receive FB

Task integration (call)
The _CP340_receive function block must be called cyclically in the BackgroundTask or the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

SIMOTION device receives data from a communications partner
The _CP340_receive FB transfers a data block that is specified by the data and dataOffset
parameters from the CP 340 to a SIMOTION device. The _CP340_receive function block must
be called repeatedly by a program. The receive job can only be executed by cyclically calling
the receive FB.

Receiving of data is enabled with static signal state "TRUE" in the enable parameter. An active
data transfer can be canceled with signal state "FALSE" in the enable parameter. The canceled
receive job is terminated with an error message (errorID output). The receive operation will

CP 340 function blocks
3.3 _CP340_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 27

remain disabled as long as the signal state at the enable parameter is "FALSE". A data transfer
operation can run over several calls, depending on the amount of data involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP340_receive FB to its initial state. The receive operation will remain disabled as
long as the signal state at the reset parameter is "TRUE".

The moduleAddress parameter specifies the module address of the CP 340 being addressed
for the data set transfer.

Status and error display on the _CP340_receive FB
The newDataReceived output indicates that new data have been received without errors. The
amount of data received is indicated in the dataLength parameter. The error output indicates
that an error has occurred. If an error occurs, the corresponding event class/number is
displayed in the errorID output (see "Parameters of the _CP340_receive FB" table). If no error
has occurred, errorID has the value "0". newDataReceived and error/errorID will also be output
when the _CP340_receive FB is reset. When 16#1E0F is displayed in the errorID parameter,
a detailed error description is also output via the errorIdTransfer parameter.

The newDataReceived, dataLength, error, errorID, and errorIdTransfer parameters are
available for one block passage only.

 Note

There is no parameter check for the _CP340_receive function block. Incorrect
parameterization of this block may cause the SIMOTION device to switch to STOP mode.

Before a job from the CP 340 can be received following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP SIMOTION startup mechanism of the
_CP340_receiveFB must be complete.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
During the receive operation, the data to be received is stored temporarily in the FB. Once
data transmission from the CP 340 to the SIMOTION device has been completed, the data is
made available in the data parameter (VAR_IN_OUT) of the _CP340_receive FB.

CP 340 function blocks
3.3 _CP340_receive function block

Supplement to the CP 340 and CP 341 Modules
28 Function Manual, 04/2014

3.4 _CP340_printer function block

3.4.1 Description of the _CP340_printer FB

Function
The _CP340_printer function block is used to send data of type Struct_CP340_printData from
the printer memory area to a serial printer. For example, the _CP340_printer function block
might send a process message to the CP 340. The CP 340 prints out the process message
on the connected printer.

Call (LAD representation)

Parameter description

Table 3-3 Parameters of the _CP340_printer FB

Name P type 1) Data type Comment Actions performed
by user

Actions
performed
by block

execute IN BOOL Initiates job on positive edge Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data set

transfer (from HW Config)
Entered Checked

periIn IN ARRAY[0..15]
of BYTE

I/O inputs of the CP transferred to the
FB

I/O variable of the I/
O inputs of the CP
transferred to the FB

Checked

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 29

Name P type 1) Data type Comment Actions performed
by user

Actions
performed
by block

periOut IN/OUT ARRAY[0..15]
of BYTE

Prepared FB data for the I/O outputs
of the CP 2)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

printData IN/OUT Struct_CP340_
printData

Send data array (data to be printed) Entered Checked

Struct_CP340_printData (data structure) 5)

 variable ARRAY[0..3] of
Struct_CP340_
dataRecord

Variable to be printed Entered Checked

 format ARRAY[0..150]
of BYTE

Format string Entered Checked

Struct_CP340_dataRecord (data structure) 5)

 dataLength UDINT Quantity of data Entered Checked
 data ARRAY[0..31]

of BYTE
Print data Entered Checked

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error=TRUE, the error information
(event class and number) is displayed
in the errorID parameter.3)

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
errorIdTransfer OUT DINT Error during data transfer to the CP

(precise error diagnostics if 16#1E0F
is present at the errorID parameter 4))

Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 340.

3) For error information, refer to the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 340".

4) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

5) See "Message text structure", print storage area structure example

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
30 Function Manual, 04/2014

Signal sequence diagram of the _CP340_printer FB
The following figure illustrates the behavior of the done and error parameters according to the
input circuit of execute and reset.

Figure 3-3 Signal sequence diagram of the _CP340_printer FB

 Note

The execute input is edge-triggered. The send job starts when there is a positive edge at the
execute input.

Task integration (call)
The _CP340_printer function block must be called cyclically in the BackgroundTask or the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

The _CP340_printer function block is called repeatedly by a program. The print job can only
be executed by cyclically calling the print FB.

A positive edge at the execute input initiates the transfer of the message text. A data transfer
operation can run over several calls (program cycles), depending on the amount of data
involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP340_printer FB to its initial state. The sending of print jobs will remain disabled
as long as the signal state at the reset parameter is TRUE.

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 31

The moduleAddress parameter specifies the module address of the CP 340 being addressed
for the data set transfer.

For call examples for the _CP340_printer FB, see Chapter CP 340 print call examples
(Page 40).

Status and error display on the _CP340_printer FB
The done output parameter indicates that the job has been completed without errors. The
error output indicates that an error has occurred. If an error occurs, the corresponding event
class/number is displayed in the errorID output parameter (see "Parameters of the
CP340_printer FB" table). If no errors have occurred, errorID has a value of 0. Done and error/
errorID are also displayed for reset of the _CP340_printer FB. When 16#1E0F is displayed in
the errorID parameter, a detailed error description is also output via the errorIdTransfer
parameter.

The done, error, errorID, and errorIdTransfer parameters are available for one block call only.

 Note

There is no parameter check for the _CP340_printer function block. Incorrect
parameterization of this block may cause the SIMOTION device to switch to "STOP" mode.
Before the CP 340 can process an initiated job following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the _CP340_printer
FB must be complete. Any jobs initiated in the meantime will not be lost. They are transferred
to the CP 340 once the startup coordination has finished.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
The print data is transferred to the _CP340_printer FB as a data structure of type
Struct_CP340_printData and copied to a local variable of the FB at the beginning of the print
operation.

Structure of printer memory of type Struct_CP340_printData
The four variables to be printed and the format string must be entered in a variable with the
following data type:

Example:

Struct_CP340_dataRecord : STRUCT
 dataLength : UDINT; // Data quantity
 data : ARRAY [0..31] of BYTE; // Data field
END_STRUCT

Struct_CP340_printData : STRUCT
 variable : ARRAY [0..3] of Struct_CP340_dataRecord; // 1st to 4th variable
 format : ARRAY [0..150] of BYTE; // Format string

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
32 Function Manual, 04/2014

END_STRUCT

The first variable to be printed corresponds to the variable [0] element, the second variable to
be printed corresponds to the variable [1] element, etc. The number of bytes to be printed per
variable is limited to 32. The data for variable i must be placed in variable [i-1].data[0..31]. The
number of bytes to be printed must be entered in the variable [i-1].dataLength element.

The format string corresponds to the format element. The format string must be structured as
follows (refer to the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter
Assignment manual):

● Specification of string length in format [0]

● Specification of individual characters in format [1 to 150]

 Note

If the maximum length is exceeded, the print job is canceled and event number 16#1E41
is indicated at the errorID parameter output of the _CP340_printer FB.

Entering variables and message texts in the printer memory area
Before the data transfer to the CP 340 begins, the variable values to be printed must be entered
byte by byte and in the proper format in the variable[].data element of the data structure of
type Struct_CP340_printData (see item 2 in the example below). The number of bytes for each
variable (variable length) must be assigned to the variable.datalength element (e.g. WORD
type variable - variable.datalength:=2). An entry corresponding to the data type of the value
must be made in the format element for each value entered in the variable element. (e.g.
WORD type variable - %I). The total length of the entries in the format element must be
assigned to the format[0] element.

You configure message texts with the CP 340 "point-to-point connection" parameter
assignment interface. Once the hardware configuration has been downloaded to the
SIMOTION device, the message texts are stored in the CP 340. The message texts that have
been saved can be selected with corresponding entries in the variable and format elements.

 Note

You can use supplemental function blocks (see Chapter supplemental function blocks
(Page 35)) to enter values into the printer memory area and to select message texts.

Example:

● Print message text no. 3 (stored in CP 340).
Configured message text: "This is message text no. 3"

myPrintData.variable[0].datalength := 1;
myPrintData.variable[0].data[0] := 3; // Message text no. 3

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 33

myPrintData.format[0] :=2; // Format string length
myPrintData.format[1] :=16#25; // "%" Format specification for message
text
myPrintData.format[1] :=16#4E // "N" Format specification for message
text

● Print message text no. 4 with a WORD-type variable.

Configured message text : "This is message text no. %I"
Printed text : "This is message text no. 4"

myPrintData.variable[0].datalength := 1;
myPrintData.variable[0].data[0] := 4; // Message text no.4

myPrintData.variable[1].datalength := 2; // 2 Byte data type WORD
myPrintData.variable[1].data[0] := 0 // High - Byte
myPrintData.variable[1].data[1] := 4 // Low - Byte
myPrintData.format[0] := 4; // Format string length
myPrintData.format[1] := 16#25; // ASCII code "%" format
specification
myPrintData.format[2] := 16#4E; // ASCII code "N" format
specification
 // for message text
myPrintData.format[3] := 16#25; // ASCII code "%" format
specification
myPrintData.format[4] := 16#49; // ASCII code "I" format
specification
 // for integer

Notes on handling

The format string entry in the "format" field must be hexadecimal.

Example:
% corresponds to 25 hex in the IBM character set,
N (message text output) corresponds to 4E hex in the IBM character set.
(see Hardware configuration > Character set)

Data types DATE, TIME, DATE_AND_TIME_OF_DAY and TIME_OF_DAY are not supported.
The date information must be entered as a DWORD or WORD in the printer data structure.

Representation type "A" (German date format):
//datefrg:=4018 (01.01.2001) and 4199 (01.07.2001)
printData.variable[0].datalength:=2;
printData.variable[0].data[0]:=WORD_TO_BYTE(SHR(datefrg,8));
printData.variable[0].data[1]:=WORD_TO_BYTE(SHR(datefrg,0));

Representation type "F":
The value to be printed must be in floating point format (mantissa/exponent) (see call example
2, Chapter CP 340 print call examples (Page 40))

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
34 Function Manual, 04/2014

Representation type "C":
If variable[].datalength:=1 in the printer data structure, the characters will be printed
horizontally.
If variable[].datalength:=2 (3,4) in the printer data structure, the characters will be printed
vertically.

Representation type "X":
For CP 340 RS232, product version E08 and higher, representation type "X" (binary) outputs
the values correctly on a serial printer.

Disconnected printer
The communications link is not monitored for printers even if alarm generation is enabled in
HW Config of STEP 7.

Example:

● A break in the connection between the printer and the CP 340 triggers neither an error nor
a diagnostic alarm.

● Nor are they triggered if a print job is started but no printer is connected.

 Note

The code in examples 1, 2, and 3 (see Chapter CP 340 print call examples (Page 40))
can be transferred to the SIMOTION SCOUT editor with Copy and Paste.

3.4.2 supplemental function blocks

Function
Supplemental function blocks are provided for entering variables of various data types as well
as for entering message texts into data structure Struct_CP340_printData. You enter the value
of the variables byte by byte and in the proper format in the variable element of the printer
memory area and, optionally, in the format element. When numbers are entered for message
texts, one entry is made in each of the format and variable elements. The method of
representation for the variables in printed text and the method of entry in the format string can
be selected by means of parameters.

The following supplemental function blocks are available:

● _CP340_realToPrintData
Entry of a number of data type REAL into data structure Struct_CP340_printData

● _CP340_dwordToPrintData
Entry of a number of data type DWORD into data structure Struct_CP340_printData

● _CP340_wordToPrintData
Entry of a number of data type WORD into data structure Struct_CP340_printData

● _CP340_byteToPrintData
Entry of a number of data type BYTE into data structure Struct_CP340_printData

● _CP340_dintToPrintData
Entry of a number of data type DINT into data structure Struct_CP340_printData

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 35

● _CP340_intToPrintData
Entry of a number of data type INT into data structure Struct_CP340_printData

● _CP340_printMsgText
Selection of message texts stored in the CP 340

 Note

SINT and USINT data types can be entered into data structure Struct_CP340_printData
with the _CP340_intToPrintData function block. Type conversion is implicit.

Parameter description

Table 3-4 _CP340_byteToPrintData, _CP340_wordToPrintData, _CP340_dwordToPrintData parameters

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN BYTE/WORD/

DWORD
Variable/value to be entered in the data
structure.

Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_REPLACE_WI
TH_SIGN

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_REPLACE_WI
THOUT_SIGN

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: unsigned
integer

CP_REPLACE_BI
NARY

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: binary

CP_ADD_WITHO
UT_SIGN

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: unsigned
integer

CP_ADD_WITH_S
IGN

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
36 Function Manual, 04/2014

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP340_prin
tData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 3-5 _CP340_realToPrintData

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN REAL Variable/value to be entered in the data

structure.
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_REPLACE_WI
THOUT_EXPONE
NT

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: floating-point

CP_REPLACE_WI
TH_EXPONENT

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: with
exponent

CP_ADD_WITHO
UT_EXPONENT

Entry is added in the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: floating-point

CP_ADD_WITH_E
XPONENT

Entry is added in the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: with
exponent

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 37

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP340_pri
ntData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 3-6 _CP340_dintToPrintData, _CP340_intToPrintData

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN INT/DINT Variable/value to be entered in the data

structure.
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_DEFAULT Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_ADD_TO_ST
RING

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
38 Function Manual, 04/2014

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

printData IN/OUT Struct_CP340_pri
ntData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 3-7 _CP340_printMsgText

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
numMsgText IN USINT Number of the message text (stored in

the CP 340)
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_DEFAULT Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_ADD_TO_ST
RING

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP340_
printData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 39

Task integration (call)
The supplemental blocks must be called in the BackgroundTask or the TimerInterruptTask.

For call examples for the _CP340_printer FB, see Chapter CP 340 print call examples
(Page 40).

Status and error indicators
The done output indicates that the job has been completed without errors. The error output
indicates that an error has occurred.

The done and error parameters are available for one block call only.

3.4.3 CP 340 print call examples

Call example 1

UNIT E1CP340p;

INTERFACE
VAR_GLOBAL
 myPreparePrintData : BOOL; // Initiate prepare print request
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // Abort print
 myActualLevel : REAL := 5.67; // actual value "level"
 myModuleAddress_1 : DINT:= 256; // address of 1st CP340 module
 myPrintData : Struct_CP340_printData; // instance of datastruct
 myFB_CP340_printMessageText : _CP340_printMsgText; // instances of function blocks
 myFB_CP340_realToPrintData : _CP340_realToPrintData; // instances of function blocks
 myFB_CP340_print : _CP340_printer; // instance of function block
 myOutputArrayCP340_1 : ARRAY[0..15] of BYTE; // field for CP340 output data
END_VAR
PROGRAM Example_print_1; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_1
// BackgroundTask program

// Example to print out messagetext 3 with one variable
// ("actualLevel") of type REAL: "The actual level (l) is: <actualLevel>"
// The message-text 3 must be specified in the hardwareconfiguration of CP340
// like this: "The actual level (l) is:"

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
40 Function Manual, 04/2014

// The following I/O-variable for CP340 module are required:
// peripheralInputCP340_1: input address of CP340 module; type Array; length 16
// peripheralOutputCP340_1: output address of CP340 module; type Array; length 16

// entry to printDatastruct myprintData
myFB_CP340_printMessageText (execute := myPreparePrintData,
 printData := myPrintData,
 numMsgText := 3, // number of message text
 numVariable := 1, // number of variable
 entryFormatString := CP_DEFAULT);

myFB_CP340_realToprintData (execute := myPreparePrintData,
 printData := myPrintData,
 data := myActualLevel,
 numVariable := 2,
 entryFormatString := CP_ADD_WITH_EXPONENT);
// call instance of _CP340_printer
// use requestPrint to start datatransfer to serial printer

myFB_CP340_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp340_1, // peripheral input
 periOut := myOutputArrayCP340_1, // output data field
 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP340_1 := myOutputArrayCP340_1;

END_PROGRAM //Example_print_1
END_IMPLEMENTATION

Call example 2

UNIT E2CP340p;

INTERFACE
VAR_GLOBAL
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // abort print
 myPrintDword : DWORD; // value to print out

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 41

 myModuleAddress_1 : DINT := 256; // address of 1st CP340 module
 myPrintData : Struct_CP340_printData; // instance of datastruct
 myFB_CP340_print : _CP340_printer; // instance of function block
 myOutputArrayCP340_1 : ARRAY[0..15] OF BYTE; // field for CP340 output data
END_VAR
PROGRAM Example_print_2; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_2 // BackgroundTask program
// example with notation "F" and variable of type DWORD
// (containing mantissa and exponent)

// The following I/O-variable for CP340 module are required:
// peripheralInputCP340_1: input address of CP340 module; type Array; length 16
// peripheralOutputCP340_1: output address of CP340 module; type Array; length 16

// formatstring (length 2 Byte, notation "F"):
myPrintData.format[0] := 2 ;
myPrintData.format[1] := 16#25 ; // "%"
myPrintData.format[2] := 16#46 ; // "F"

// assignment for variable (type DWORD), to print out with notation "F"
myPrintDword := REAL_TO_DWORD(10000.0); // variable (DWORD) with mantissa and exponent

// !!!
// ATTENTION! wrong example for this case is an assingnment with an integer value e.g.:
// myprintDword := 10000; // because the format is WITHOUT mantissa and exponent
// !!!

// fill out printData interface manually with DWORD-variable
myPrintData.variable[0].dataLength := 4 ; // 1st variable, lenth 4 Byte
myPrintData.variable[0].data[0] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,24)));
myPrintData.variable[0].data[1] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,16)));
myPrintData.variable[0].data[2] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,8)));
myPrintData.variable[0].data[3] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,0)));

// call instance of _CP340_printer
// use requestPrint to start datatransfer to serial printer
myFB_CP340_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp340_1, // peripheral input
 periOut := myOutputArrayCP340_1, // output data field

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
42 Function Manual, 04/2014

 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP340_1 := myOutputArrayCP340_1;

END_PROGRAM //Example_print_2
END_IMPLEMENTATION

Call example 3

UNIT E3CP340p;

INTERFACE
VAR_GLOBAL
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // Abort print
 myPrintReal1 : REAL; // 1st value
 myPrintReal2 : REAL; // 2nd value
 myPrintReal3 : REAL; // 3rd value
 myModuleAddress_1 : DINT := 256; // address of 1st CP340 module
 myPrintData : Struct_CP340_printData; // instance of datastruct
 myFB_CP340_print : _CP340_printer; // instance of function block
 myFB_CP340_realToprintData1 : _CP340_realToPrintData; // instances of function blocks
 myFB_CP340_realToprintData2 : _CP340_realToPrintData; // instances of function blocks
 myFB_CP340_realToprintData3 : _CP340_realToPrintData; // instances of function blocks
 myOutputArrayCP340_1 : ARRAY[0..15] OF BYTE;
END_VAR
PROGRAM Example_print_3; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_3 // BackgroundTask program
// The following example program demonstrates usage of _CP340_realToPrintData()

// The following I/O-variable for CP340 module are required:
// peripheralInputCP340_1: input address of CP340 module; type Array; length 16
// peripheralOutputCP340_1: output address of CP340 module; type Array; length 16

// preset variables with user-values
myPrintReal1 := 1.11; myPrintReal2 := 2.22; myPrintReal3 := 3.33;

// write variables (type REAL) to printDatastruct with _CP340_realToPrintData

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 43

myFB_CP340_realToprintData1 (execute := TRUE,
 data := myPrintReal1, // 1st variable
 numVariable := 1,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);
myFB_CP340_realToprintData2 (execute := TRUE,
 data := myPrintReal2; // 2nd variable
 numVariable := 2,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);
myFB_CP340_realToprintData3 (execute := TRUE,
 data := myPrintReal3, // 3rd variable
 numVariable := 3,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);

// call instance of _CP340_printer, "requestPrint" starts data transfer
// to serial printer
myFB_CP340_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp340_1, // peripheral input
 periOut := myOutputArrayCP340_1, // output data field
 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP340_1 := myOutputArrayCP340_1;

END_PROGRAM //Example_print_3
END_IMPLEMENTATION

CP 340 function blocks
3.4 _CP340_printer function block

Supplement to the CP 340 and CP 341 Modules
44 Function Manual, 04/2014

3.5 _CP340_getV24Signals function block

Function
The _CP340_getV24Signals function block reads the RS-232-C accompanying signals from
the CP 340 and makes them available to the user in the block parameters. The functionality
of the _CP340_getV24Signals FB can only be used if a parameterized ASCII driver is
specified.

Call (LAD representation)

Parameter description

Table 3-8 Parameters of the _CP340_getV24Signals FB

Name P type 1) Data type Meaning Actions performed by user Actions
performed by

block
enable IN BOOL Block enable Entered Checked
periIn IN ARRAY[0..15]

of BYTE
I/O inputs of the CP
transferred to the FB

I/O variable of the I/O inputs of the CP
transferred to the FB

Checked

error OUT BOOL Job completed with errors Checked Entered
sigDtr OUT BOOL Data terminal ready Checked Entered
sigDsr OUT BOOL Data set ready Checked Entered
sigRts OUT BOOL Request to send Checked Entered
sigCts OUT BOOL Clear to send Checked Entered
sigDcd OUT BOOL Data carrier detected Checked Entered
sigRi OUT BOOL Ring Indicator Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

CP 340 function blocks
3.5 _CP340_getV24Signals function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 45

Task integration (call)
The _CP340_getV24Signals function block must be called cyclically in the BackgroundTask
or in the TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. For runtime
reasons, calling the FB in the IPOSynchronousTask is not recommended.
The RS 232C accompanying signals will be updated with each FB call (cyclical polling). The
CP 340 updates the status of the inputs/outputs in a time base of 20 ms.

 Note

A minimum pulse duration is necessary to detect a signal change. Determining factors are
the cycle time (SIMOTION device), the update time on the CP 340, and the response time
of the communications partner.

CP 340 function blocks
3.5 _CP340_getV24Signals function block

Supplement to the CP 340 and CP 341 Modules
46 Function Manual, 04/2014

3.6 _CP340_setV24Signals function block

Function
The _CP340_setV24Signals function block can be used to set or reset RS 232C accompanying
signals. The functionality of the _CP340_setV24Signals FB can only be used if a parameterized
ASCII driver is specified.

Call (LAD representation)

Parameter description

Table 3-9 Parameters of the _CP340_setV24Signals FB

Name P type 1) Data type Meaning Actions performed by user Actions performed by
block

enable IN BOOL Block enable Entered Checked
sigDtr IN BOOL Data terminal ready Entered Checked
sigRts IN BOOL Request to send Entered Checked
periOut IN/OUT ARRAY[0..15]

of BYTE
Prepared FB data for the I/
O outputs of the CP 2)

Checked and transferred to the
I/O variable for the I/O outputs

Entered

error OUT BOOL Job completed with errors Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 340.

Task integration (call)
The _CP340_setV24Signals function block must be called cyclically in the BackgroundTask
or in the TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the
function block in the IPOSynchronousTask is not recommended for runtime reasons.

CP 340 function blocks
3.6 _CP340_setV24Signals function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 47

3.7 Calling the CP 340 function blocks
In order to be able to work with the function blocks in your user project, proceed as follows
(the numbers shown in the following program segment correspond to the steps below):

1. Create the function block instance (see the following program segment, e.g. create instance
for the _CP340_send FB).

2. Create a variable for the data structure (for FB _CP340_printer only).

3. Create an array for the in/out parameters of the FB.

4. Call instance of the function block.

5. Transfer input parameters.

6. The output parameters of the FB are accessed with <instance name of FB>. <name of the
output parameter>.

7. Data prepared by the FB for the I/O outputs are assigned to the array of the I/O variable
created in step 3.

 Note

The CP 340 call example is an extract from the supplied E_CP340 application example,
which is included on the "SIMOTION Utilities & Applications" CD-ROM.

If you wish to control multiple CP 340 devices, you must create a new variable for the data
structure and FB instances with a new name for each CP 340 you implement.

Call example for CP 340

UNIT E_CP340;

INTERFACE
 VAR_GLOBAL
 myExecSendCP340 : BOOL; // Trigger send task
 myModuleAddrCP340 : DINT:=256; // module address
 mySendDataArrayCP340 : ARRAY [0..1023] OF BYTE; // Send data array 1024 bytes

 myInstCP340Send : _CP340_send; // Create instance of FB (1)
 END_VAR

 PROGRAM ExampleCP340; // Program in BackgroundTask

END_INTERFACE

IMPLEMENTATION
 VAR_GLOBAL
 MyResetSend : BOOL; // Cancel send order
 END_VAR

 VAR

CP 340 function blocks
3.7 Calling the CP 340 function blocks

Supplement to the CP 340 and CP 341 Modules
48 Function Manual, 04/2014

 MyCPOutputArray : ARRAY [0..15] OF BYTE; // Array for CP output data
 END_VAR

(3)

 VAR_TEMP
 MyDataLengthSend : UDINT; // Length of data to be sent
 MyDataOffsetSend : UDINT; // Offset of first byte to be sent
 END_VAR

 // CALL FB INSTANCE TO SEND
 myInstCP340Send (
 execute := myExecSendCP340, // Trigger order
 reset := myResetSend, // Order cancellation
 moduleAddress := myModuleAddrCP340, // Module address
 dataOffset := myDataOffsetSend, // Data offset
 dataLength := myDataLengthSend, // Number of data to be sent
 periIn := myPeripheralInputCP340, // I/O variable of I/O inputs
 periOut := myCPOutputArray, // Output data array
 data := mySendDataArrayCP340 // Send data array
);

(4)
(5)

 myStateStartUpCP340 := myInstCP340Send.startUp; // Module start-up status (6)

 // TRANSFER DATA TO CP340
 myPeripheralOutputCP340 := myCPOutputArray; // Assign array for CP output data

END_PROGRAM // ExampleCP340 (7)

END_IMPLEMENTATION

 Note

The PROGRAM "ExampleCP340" must be assigned in the execution system.

CP 340 function blocks
3.7 Calling the CP 340 function blocks

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 49

3.8 Data consistency

When sending data
Once a job is initiated by a positive edge at the execute input, the data to be sent is copied to
the static memory area of the send FB. This means that once the FB call has ended, the send
data array can be written to again for the next send request on a positive edge. The data are
retained as consistent data within the send FB.

 Note

During the copy operation to the static memory area of the FB, data consistency cannot be
guaranteed if the send/receive data areas are accessed in a higher priority task.

When receiving data
Once the receive request is complete, the data are copied over to the receive buffer in a block
from the static memory area of the receive FB. This means that once the FB call has ended,
either all data are entered in the receive buffer (newDataReceived = TRUE) or no data are
entered in the receive buffer (newDataReceived = FALSE).

 Note

During the copy operation from the static memory area of the receive FB, data consistency
cannot be guaranteed if the send/receive data areas are accessed in a higher priority task.

When printing
The data in the printData parameter in the static memory area of the FB are copied when a
positive edge occurs at the execute input of the _CP340_printer FB. This means that once
the FB call has ended, you can write to the variable and the format string for the next print
request.

CP 340 function blocks
3.8 Data consistency

Supplement to the CP 340 and CP 341 Modules
50 Function Manual, 04/2014

3.9 Application Examples

3.9.1 sending and receiving with CP 340

Function
This example shows how to:

● use the _CP340_send function block to send data from the Send data array to a
communications partner.

● use the _CP340_receive function block to receive data in the receive data array.

In the example program, the CP 340 is used both as sender and as receiver. This requires the
jumpering of the send and receive lines (PIN 2 and PIN 3 on the RS232 interface) and the
"ASCII" setting in the parameter assignment tool. The _CP340_send FB is used to transfer the
send data to the CP module. This sends the data using the RS232 interface. The jumpered
send and receive line means that the data to be sent is read immediately by the CP module.
The _CP340_receive FB reads the received data from the CP module and copies these data
to the receive data array.

This example requires proper installation of the parameter assignment tool, as described in
the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
manual.

Hardware platform
The application example is available for various SIMOTION hardware platforms. You must
adapt the example for centralized applications with SIMOTION C.

 Note

If the application example is not available for your hardware platform, you must adapt the
hardware configuration.

Assigning module parameters
Proceed as follows:

1. Open your project in SIMOTION SCOUT.

2. Open the hardware configuration in SIMOTION SCOUT.

3. Configure your hardware station with a CP 340 module.

4. Double-click the CP 340 to open the Properties dialog box for this module. Click the
Parameter button to launch the parameter assignment tool of the CP 340 module.

5. The "ASCII" protocol must be selected in the protocol selection box.
The standard settings of the ASCII protocol suffices for the application example.

6. Jumper the send and receive line (PIN 2/PIN 3) of the RS232 interface.

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 51

7. Apply your settings in the parameter assignment interface with the File > Save menu
command, and close the interface with the File > Exit menu command. Close the Properties
window for the CP 340 module by clicking the OK button.

8. Save the hardware configuration with the Station > Save and compile menu command.

9. Download the hardware configuration with the Target system > Download to module menu
command.
The red "SF" LED on the IM 153 turns on and then off if the assigned module parameters
have been downloaded without errors.

Adapting the application example
The configuration in the example and its available hardware must be adapted.

The following options are available:

1. You can adapt the configuration in the example to the available hardware
(e.g. PROFIBUS DP address).

2. You can adapt the configuration of the hardware to the example (e.g. PROFIBUS DP
address).

Calling the application example
The application example can be found on the "SIMOTION Utilities & Applications" CD-ROM.
The "SIMOTION Utilities & Applications" CD-ROM is provided free of charge and is included
in the SIMOTION SCOUT scope of delivery.

1. Dearchive and open the project containing the application example.

2. Check the axis configuration: PROFIBUS DP addresses.

3. Check the module addresses (hardware configuration) against the I/O addresses of the
controller in SIMOTION SCOUT and module address in the program
(myModuleAddrCP340).

4. Save and compile the example project. Then, you can download the example to the
SIMOTION device and switch to RUN mode.

Sequence of the application example

Table 3-10 Input icons used

Symbol Data type Designation
mySelectPointToPointCP340 BOOL Select point-to-point connection
myExecSendCP340 BOOL Start send job
mySendOrder1 BOOL Select send: Job 1
mySendOrder2 BOOL Select send: Job 2
mySendOrder3 BOOL Select send: Job 3
myResetSend BOOL Cancel send job
myEnableToReceive BOOL Receive enable
myReceiveOrder1 BOOL Select receive: Job 1

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
52 Function Manual, 04/2014

Symbol Data type Designation
myReceiveOrder2 BOOL Select receive: Job 2
myReceiveOrder3 BOOL Select receive: Job 3
myResetReceive BOOL Cancel receive job
myModuleAddrCP340 DINT CP 340 module address, default 256
mySendDataArrayCP340 ARRAY[0..1023] of BYTE Send data array
myReceiveDataArrayCP340 ARRAY[0..1023] of BYTE Receive data array

Table 3-11 Output symbols used

Symbol Data type Designation
mySendDone BOOL Send: Completed
mySendError BOOL Send: Error display
mySendErrorNumber WORD Send: Error status
mySendTransErrorNumber DINT Send: Error status transfer
myNewDataReceived BOOL Receive: New data have been received
myReceiveError BOOL Receive: Error display
myReceiveErrorNumber WORD Receive: Error status
myReceiveTransErrorNumber DINT Receive: Error status transfer
myStateStartupCP340 BOOL CP 340 startup status

FALSE = startup completed
myDiagnosticAlarm BOOL TRUE = diagnostic alarm present on the CP 340
myProcessAlarm BOOL TRUE = process alarm present on the CP340
myAlarmInterrupt UDINT Type of the alarm (process, diagnostic alarm)
myLogBaseAddrIn DINT Module address
myLogBaseAddrOut DINT
myLogAddress DINT Diagnostic address
myAlarmDetails DWORD Alarm information

 Note

You can either monitor and control the input and output variables used in the programming
example in the INTERFACE area of the unit (under VAR_GLOBAL) using the symbol browser,
or you can assign real inputs and outputs to the input and output variables in your user
program.

For the "point-to-point connection" application example, set the "mySelectPointToPointCP340"
input to "TRUE". This requires that the "E_CP340p" element be selected in the "PROGRAMS"
folder in the project navigator. This will call function blocks contained in the application example.

Receiving data:

To receive data, you must set the "myEnableToReceive" variable to "TRUE" (static signal). If
receive jobs 1 and 3 are enabled ("myReceiveOrder1" = TRUE and
"myReceiveOrder3" = TRUE), the data is stored in the "myReceiveDataArrayCP340" data
array starting with the "myReceiveDataArrayCP340[0]" array element (data offset is 0). If job
2 is enabled ("myReceiveOrder2" = TRUE), the data is stored in the "receiveDataArray" data

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 53

array starting with the "myReceiveDataArrayCP340[20]" array element (data offset is 20).
If "myNewDataReceived" = TRUE, this indicates that new data has been received. This signal
is present for one cycle only.
If an error occurred during the transfer ("myReceiveError" = TRUE), the error code is stored
in the "myReceiveErrorNumber" variable. If error code 16#1E0F is present in
"myReceiveErrorNumber", an error occurred during the data transfer. The transfer error code
is stored in the "myReceiveTransErrorNumber" variable. The error signals are deleted when
you set input "myResetReceive" = TRUE.

Sending data:

You can use the "mySendOrder1", "mySendOrder2" and "mySendOrder3" inputs to select
between three send jobs:

● Job 1 sends 10 bytes of data from the "mySendDataArrayCP340" data array from array
element "mySendDataArrayCP340[0]" to "mySendDataArrayCP340[9]"

● Job 2 sends 20 bytes of data from the "mySendDataArrayCP340" data array from array
element "mySendDataArrayCP340[20]" to "mySendDataArrayCP340[39]"

● Job 3 sends 1024 bytes of data from the "mySendDataArrayCP340" data array.

The data is sent to the communications partner if the "myExecSendCP340" input detects a
signal change from "FALSE" to "TRUE" (positive edge).
If output signal "mySendDone" = TRUE, the send job has been completed. A new job can be
sent if the "myExecSendCP340" input signal detects another signal change from FALSE to
TRUE. If an error occurred during the transfer ("mySendError" = TRUE), the error code is
stored in the "mySendErrorNumber" variable. If error code 16#1E0F is present in
"mySendErrorNumber" , an error occurred during the data transfer. The transfer error code is
stored in the "mySendTransErrorNumber" variable. The error signals are deleted when you
set input "myExecSendCP340" = FALSE.

When the signal state at the "myResetSend" or "myResetReceive" input is set to "TRUE", the
send job or receive job is canceled, respectively. If the signal state remains "TRUE", sending
and receiving of data is disabled.

 Note

Proper data transfer can be observed as follows:
● The "TxD" and "RxD" LEDs on the CP module illuminate.
● Output parameter (_CP_send FBs) done = TRUE or NewDataReceived = TRUE

3.9.2 Printing with CP 340

Function
The example shows how to use the _CP340_printer function block to send
Struct_CP340_printData type data from the print memory area to a serial printer. For more
information, see Chapter _CP340_printer function block (Page 29).

In the example program, text examples with and without variables, date specifications, and
line and page feeds are output to the printer by means of the CP 340.

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
54 Function Manual, 04/2014

This example requires proper installation of the parameter assignment tool, as described in
the SIMATIC CP 340 Point-to-Point Connection, Installation and Parameter Assignment
manual.

Hardware platform
The application example is available for various SIMOTION hardware platforms.

 Note

If the application example is not available for your hardware platform, you must adapt the
hardware configuration.

Assigning module parameters
Proceed as follows:

1. Open your project in SIMOTION SCOUT.

2. Open the hardware configuration in SIMOTION SCOUT.

3. Configure your hardware station with a CP 340 module.

4. Double-click the CP 340 to open the Properties dialog box for this module. Click the
Parameter button to launch the parameter assignment tool of the CP 340 module.

5. The "PRINTER" protocol must be selected in the protocol selection box.

6. Open the protocol properties by selecting the Edit > Go to protocol menu command and
the Edit > Open object menu command.

7. Select the following setting in the Protocol dialog box (all other settings remain unchanged):

– Baud rate: 9600 bits/s

– Data flow control: none

– Data bits: 8

– Stop bits: 1

– Parity: even

Confirm your selection with OK.

8. To edit the message texts, double-click the Messages icon to open the relevant dialog box.
In the next dialog box, click the SDB button.

9. Under "Edit Message", enter a number on the left and the text on the right, as follows:

– 1 System level log

– 2 Date:

– 3 Level %I I reached at %Z (time)

Confirm your selection with OK.

10.To edit the page layout, double-click the Page Layout icon to open the relevant dialog box.

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 55

11.Select the following settings in this dialog box:

– Left-hand margin: 3

– Lines per page: 20

– Separators / end of line: CR LF

– Header lines: Example: Printing with the CP 340 for SIMOTION

– Page footers: page %P

Confirm your selection with OK.

12.The default settings for the "IBM" character set remain selected under "Font" and "Control
Characters".

13.Apply your settings in the parameter assignment interface with the File > Save menu
command, and close the interface with the File > Exit menu command. Click OK to close
the Properties window for the CP 340 module.

14.Save the hardware configuration with the Station > Save and compile menu command.

15.Download the hardware configuration with the Target system > Download to module menu
command.
The red "SF" LED on the IM 153 turns on and then off if the assigned module parameters
have been downloaded without errors.

Adapting the application example
The configuration in the example and its available hardware must be adapted.

The following options are available:

1. You can adapt the configuration in the example to the available hardware
(e.g. PROFIBUS DP address).

2. You can adapt the configuration of the hardware to the example (e.g. PROFIBUS DP
address).

Calling the application example
The application example can be found on the "SIMOTION Utilities & Applications" CD-ROM.
The "SIMOTION Utilities & Applications" CD-ROM is provided free of charge and part of the
SIMOTION SCOUT scope of delivery.

1. Dearchive and open the project containing the application example

2. Check the axis configuration: PROFIBUS DP addresses

3. Check the module addresses (hardware configuration) against the I/O addresses of the
controller in SIMOTION SCOUT and the module addresses in the program
(myModuleAddr_1)

4. Save and compile the example project. Then, you can download the example to the
SIMOTION device and switch to RUN mode.

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
56 Function Manual, 04/2014

Sequence of the application example
Further steps for executing the example are performed in the symbol browser using the
"myPrintSelect" variable. This requires that the "E_CP340p" element be selected in the
"PROGRAMS" folder in the project navigator.

The program resets the "myPrintSelect" variable autonomously; this can be seen in the "Status
Value" column in the symbol browser.

This application example shows you how to use the _FB_CP340.print function block to send
data from the send data array to a serial printer.

The following texts can be printed with the example program:

1. Print new page with header:
"Example: Printing with the CP 340 for SIMOTION"

2. Print new line and five line feeds

3. Print message text without variables and two line feeds:
"System level log"

4. Message text, two tabs and WORD variable for German date format.
"Date:"
"Date: 01.01.2001"

5. Message text with time of day and quantity (DWORD variable and DINT variable) and six
line feeds
"Level %I I was reached at %Z (time)"
"Level 3000 I was reached at 08:45:04.018 (time)"

6. Print footer with conversion instruction for page number
"Page: %P"
"Page: 1"

To print out all the lines from the example, select the check box for "myPrintSelect"
and set ALL_PRINT in the "Control Value" column in the symbol browser.

Click "Immediate control" to assign the value ALL_PRINT to the variable and to print the
example.

Other settings can be assigned to the "myPrintSelect" variable:

"DATE_PRINT" Output "Date: 01.01.2001"
"REPORT_TEXT_PRINT" Output "Level 3000 reached at 08:45:04.018"
"NO_PRINT" No output made

The date, time, and level quantity can be changed using the following variables:

● myDateGermany

● myTimeValue,

● myQuantity

Utilized control variables

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 57

Table 3-12 Utilized control variables

Symbol Data type Initial value Designation
myPrintSelect EnumPrintSelect NO_PRINT Selection of printer output
myDateGermany WORD 4018 Date: 01.01.2001
myTimeValue DWORD 31504018 Time: 08:45:04.018
myQuantity DINT 3000 Quantity: 3000
myModuleAddr_1 DINT 256 Module address

Pending errors are indicated by the following variables:

Table 3-13 Variables used for displaying errors

Symbol Data type Initial value Designation
myDiagnosticAlarm BOOL Diagnostic interrupt
myProcessAlarm BOOL Process interrupt
myErrorNumberprinter WORD Error code
myTransErrorNumberprinter DINT Transfer error number
myStopPrinter BOOL FALSE Cancel print

 Note

The active transfer job can be canceled by setting the "myStopPrinter" variable to "TRUE".
The _CP340_printer FB is reset to its initial state.

The sending of print jobs will remain disabled as long as the signal state of the "myStopPrinter"
variable is "TRUE".

CP 340 function blocks
3.9 Application Examples

Supplement to the CP 340 and CP 341 Modules
58 Function Manual, 04/2014

CP 341 function blocks 4
4.1 Overview of the function blocks of the CP 341

This chapter contains a description of all of the function blocks (FBs) and the data structure
required for communication between a SIMOTION device and a CP 341.

The function blocks form the software interface between the SIMOTION device and the CPs.
They must be called repeatedly (in cycles) from the user program.

The following function blocks are available:

● _CP341_send function block (Page 60)

● _CP341_receive function block (Page 72)

● _CP341_printer function block (Page 84)

● _CP341_getV24Signals function block (Page 100)

● _CP341_setV24Signals function block (Page 102)

 Note

The SIMOTION identifiers have changed as of V4.0. A comparison of the SIMOTION and
SIMATIC identifiers can be found in the appendix SIMOTION and SIMATIC names
(Page 117) in the table "SIMOTION and SIMATIC identifiers CP 341".

SIMOTION SCOUT contains all of the required function blocks and the
Struct_CP341_Cl512Data data structure (for RK 512 computer link only) of the CP 341. The
function blocks can be used to control one or more CP 341 modules.

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 59

4.2 _CP341_send function block

4.2.1 Description of the _CP341_send FB

Function
The _CP341_send function block enables you to send data from the send data array to a
communications partner (3964(R) protocol, RK 512 protocol, ASCII driver) or to fetch data from
a communications partner and store it there (RK 512). You have 4,096 bytes available for this.

Task integration (call)
The _CP341_send function block must be called cyclically in the BackgroundTask or in the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

4.2.2 Application with 3964(R) protocol or ASCII driver

The SIMOTION device sends data to a communications partner
The _CP341_send function block transfers a data block that is specified by the following
parameters to the CP 341:

● data corresponds to the data array containing the send data

● dataOffset corresponds to the array index containing the first send byte

● dataLength corresponds to the amount of data to be sent in bytes

The _CP341_send function block is called repeatedly by a program. The send job can only be
executed by cyclically calling the send FB.

A positive edge at the execute input initiates the transfer. A data transfer operation can run
over several calls, depending on the amount of data involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP341_send FB to its initial state. The send operation will remain disabled as long
as the signal state at the reset parameter is "TRUE".

The moduleAddress parameter specifies the module address of the CP 341 being addressed.

Status and error display on the _CP341_send FB
The done output indicates that the job has been completed without errors. The error output
indicates that an error has occurred. If an error occurs, the corresponding event class/number
is displayed in the errorID output (see "Parameters of the _CP341_send FB" table (3964 (R)
procedure or ASCII driver application)"). If no errors have occurred, errorID has a value of 0.
Done and error/errorID are also displayed on reset of the _CP341_send function block. When

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
60 Function Manual, 04/2014

16#1E0F is displayed in the errorID parameter, a detailed error description is also output via
the errorIdTransfer parameter.

Parameters done, error,errorID, and errorIdTransfer are present for one block call only.

 Note

There is no parameter check for the _CP341_send function block. Incorrect parameterization
of this block may cause the SIMOTION device to switch to "STOP" mode.

Before the CP 341 can process an initiated job following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the _CP341_send
FB must be complete. Any jobs initiated in the meantime will not be lost. They are transferred
to the CP 341 once the startup coordination has finished.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
The data to be sent are transferred to the _CP341_send FB in the data parameter
(VAR_IN_OUT) as ARRAY of BYTE. At the beginning of the send operation, the data is copied
to the FB and transferred from there to the CP 341.

 Note

Once the data have been entered in the static memory of the send FB, you can modify the
variable created in the data parameter. This does not affect the data to be sent.

Call (LAD representation)

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 61

Parameter description

Table 4-1 Parameters of the _CP341_send FB (application with 3964(R) protocol or ASCII driver)

Name P type 1) Data type Meaning Actions performed by
user

Actions
performed
by block

execute IN BOOL Initiates job on positive edge Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data set

transfer (from HW Config)
Entered Checked

dataOffset IN UDINT First element to be sent Entered Checked
dataLength 2) IN UDINT Number of elements to be sent Entered Checked
periIn IN ARRAY [0..15]

of BYTE
I/O inputs of the CP transferred to the
FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY [0..15]
of BYTE

Prepared FB data for the I/O outputs
of the CP 3)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

data IN/OUT ARRAY[0..4095]
of BYTE

Send data array Entered and checked Entered

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error = TRUE, the error
information (event class and number)
is displayed in the errorID
parameter. 4)

Checked Entered

errorIdTransfer OUT DINT Error during data transfer to the CP
(precise error diagnostics if 16#1E0F
is present at the errorID parameter 5))

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) If an application uses earlier CP 341 versions with a maximum telegram length of 1 kB, only the maximum value of 1,024

can be set at the dataLength input parameter.
3) Note: The periOut parameter must be supplied with a variable of type ARRAY [0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

4) For error information, refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 341".

5) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
62 Function Manual, 04/2014

Signal sequence diagram of the _CP341_send FB
The following figure illustrates the behavior of the done and error parameters according to the
input circuit of execute and reset.

Figure 4-1 Signal sequence diagram of the _CP341_send FB

 Note

The execute input is edge-triggered. The send job starts when there is a positive edge at the
execute input.

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 63

4.2.3 Application with RK 512 computer interfacing

Sending data with the _CP341_send FB: SIMOTION with SIMOTION

 Note

The handling of the _CP341_send FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMOTION communication.

You can send data to a communications partner by specifying 'SEND_CP' in the mode
parameter.

A positive edge at the execute input initiates the data transfer. A data transfer operation can
run over several calls (program cycles), depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

The data to be sent is specified in the following parameters:

● data indicates the data array containing the send data.

● dataOffset corresponds to the array index containing the first send byte.

● dataLength corresponds to the amount of data to be sent in bytes.

You must also indicate where the data is to be entered on the receiver.

● The remoteCpuId parameter specifies the number of the receiver (relevant for
multiprocessor communication only).

● remoteDataType specifies the memory area where the data will be entered on the receiver
(if the communications partner is a SIMOTION device, 68 must always be entered).

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
64 Function Manual, 04/2014

● remoteMemIndex specifies the memory index where the receive data will be entered.
RemoteMemIndex = 0 is not permissible. An error message will be generated.

● remoteDataOffset specifies the array index in which the first receive byte is to be entered.

 Note

The above parameters relate to a variable addressed specifically by the receiver. The
receiver specifies the variable in which the data will be entered.

Figure 4-2 Send data _FB_P_Send: SIMOTION with SIMOTION

The communication flag bit (see Chapter Special features related to data transfer (Page 106)),
which is checked in the receiver before the send job is initiated and set once the send job is
complete, is specified with parameters remoteComFlagByte (array index containing the
communication flag bit) and remoteComFlagBit (bit position of the communication flag bit).

Special features for sending data
Assigning 255 to the remoteComFlagByte parameter will disable the communication flag
functionality.

Sending data with the _CP341_send FB: SIMOTION with SIMATIC

 Note

The handling of the _CP341_send FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMATIC communication.

You can send data to a communications partner by specifying 'SEND_CP' in the mode
parameter.

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 65

A positive edge at the execute input initiates the data transfer. A data transfer operation can
run over several calls (program cycles), depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

The data to be sent is specified in the following parameters:

● data indicates the data array containing the send data.

● dataOffset corresponds to the array index containing the first send byte.

● dataLength corresponds to the amount of data to be sent in bytes.

You must also indicate where the data is to be entered on the receiver.

● The remoteCpuId parameter specifies the number of the receiver (relevant for
multiprocessor communication only).

● remoteDataType indicates the memory area where data will be entered on the receiver.

– Data block = 68

– Extended data block = 88

– Flag = 77

– Input = 69

– Output = 65

– Counter = 90

– Timer = 84

● remoteMemIndex specifies the number of the data block or extended data block where the
receive data will be entered. It has no relevance for all other receive areas.
RemoteMemIndex = 0 is not permissible. An error message will be generated.

● remoteDataOffset specifies the array index in which the first receive byte is to be entered.

The communication flag bit (see Chapter Special features related to data transfer (Page 106)),
which is checked in the receiver before the send job is initiated and set once the send job is
complete, is specified with parameters remoteComFlagByte (array index containing the
communication flag bit) and remoteComFlagBit (bit position of the communication flag bit) in
the SIMATIC flag area.

Special features for sending data
Assigning 255 to the remoteComFlagByte parameter will disable the communication flag
functionality.

The signal sequence diagram of the _CP341_send FB can be found in Chapter Description of
the _CP341_send FB (Page 60).

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
66 Function Manual, 04/2014

Fetching data with the _CP341_send FB: SIMOTION with SIMOTION

 Note

The handling of the _CP341_send FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMOTION communication.

You can fetch data from a communications partner by specifying "FETCH_CP" in the mode
parameter.

A positive edge at the execute input initiates the data transfer. A data transfer operation can
run over several calls (program cycles), depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

You must also indicate where the data are to be fetched on the receiver.

● The remoteCpuId parameter specifies the number of the receiver (relevant for
multiprocessor communication only).

● remoteDataType specifies the memory area where the data will be fetched on the receiver
(if the communications partner is a SIMOTION device, 68 must always be entered).

● remoteMemIndex specifies the memory index where the data will be fetched.
RemoteMemIndex = 0 is not permissible. An error message will be generated.

● remoteDataOffset specifies the array index where the first byte is to be fetched.

 Note

The above parameters relate to a variable addressed specifically by the communications
partner. They specify the variable from which the data will be fetched.

Figure 4-3 Fetch data _P_Send FB: SIMOTION with SIMOTION

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 67

The following parameters are used to specify where the fetched data will be saved:

● data corresponds to the data array in which the requested data will be entered.

● dataOffset corresponds to the array index in which the first fetched data byte will be entered.

● dataLength corresponds to the amount of data to be fetched in bytes.

The communication flag bit (see Chapter Special features related to data transfer (Page 106)),
which is checked in the receiver before the send job is initiated and set once the fetch job is
complete, is specified with parameters remoteComFlagByte (array index containing the
communication flag bit) and remoteComFlagBit (bit position of the communication flag bit).

Special features for fetching data
Assigning 255 to the remoteComFlagByte parameter will disable the communication flag
functionality.

Fetching data with the _CP341_send FB: SIMOTION with SIMATIC

 Note

The handling of the _CP341_send FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMATIC communication.

You can fetch data from a communications partner by specifying "FETCH_CP" in the mode
parameter.

A positive edge at the execute input initiates the data transfer. A data transfer operation can
run over several calls (program cycles), depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

You must also indicate where the data is to be fetched on the communications partner.

● remoteCpuId specifies the number of the communications partner (relevant for
multiprocessor communication only).

● remoteDataType specifies the memory area where the data will be fetched on the
communications partner.

– Data block = 68

– Extended data block = 88

– Flag = 77

– Input = 69

– Output = 65

– Counter = 90

– Timer = 84

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
68 Function Manual, 04/2014

● remoteMemIndex specifies the number of the data block or extended data block where the
receive data will be fetched.
RemoteMemIndex = 0 is not permissible. An error message will be generated.

● remoteDataOffset specifies the array index where the first byte is to be fetched.

The following parameters are used to specify where the fetched data will be saved:

● data corresponds to the data array in which the requested data will be entered.

● dataOffset corresponds to the array index in which the first fetched data byte will be entered.

● dataLength corresponds to the amount of data to be fetched in bytes.

The communication flag bit (see Chapter Special features related to data transfer (Page 106)),
which is checked in the communications partner before the send job is initiated and set once
the send job is complete, is specified with parameters remoteComFlagByte (array index
containing the communication flag bit) and remoteComFlagBit (bit position of the
communication flag bit) in the SIMATIC communication flag area.

Special features for fetching data
Assigning 255 to the remoteComFlagByte parameter will disable the communication flag
functionality.

The signal sequence diagram of the _CP341_send FB can be found in Chapter Description of
the _CP341_send FB (Page 60).

Assignment in the data area
During the receive operation, the data to be received are stored temporarily in a local ARRAY.
Once the data transfer from the CP 341 to the SIMOTION device is complete, the data is made
available in the data (VAR_IN_OUT) parameter of the _CP341_send FB.

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 69

Call (LAD representation)

Parameter description

Table 4-2 Parameters of the _CP341_send FB (application with RK 512 computer link)

Name P type 1) Data type Comment Actions performed by
user

Actions
performed
by block

mode IN EnumSendFetch SEND_CP: Sends data
FETCH_CP: Fetches data
from the communications
partner

Entered Checked

execute IN BOOL Initiates job on positive edge Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for

data set transfer (found in
HW Config)

Entered Checked

dataOffset IN UDINT First element to be sent Entered Checked
dataLength IN UDINT Number of elements to be sent Entered Checked
remoteCpuId IN USINT Number of the remote

communications partner
Entered Checked

remoteDataType IN USINT Area type in the remote
communications partner

Entered Checked

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
70 Function Manual, 04/2014

Name P type 1) Data type Comment Actions performed by
user

Actions
performed
by block

remoteMemIndex IN UINT Memory index in the remote
communications partner
(1 ≤ remoteMemIndex ≤ 6) 2)

Entered Checked

remoteDataOffset IN UDINT First element in the remote
communications partner

Entered Checked

remoteComFlagByte IN USINT Communication flag index in
the local communications
partner

Entered Checked

remoteComFlagBit IN USINT Communication flag bit no. in
the local communications
partner

Entered Checked

periIn IN ARRAY[0..15] of
BYTE

I/O inputs of the CP transferred
to the FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY[0..15] of
BYTE

Prepared FB data for the I/O
outputs of the CP 3)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

data IN/OUT ARRAY[0..4095]
of BYTE

Send data array
Receive data for parameter
mode = FETCH_CP

Entered and checked Entered

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error=TRUE, the error
information (event class and
number) is displayed in the
errorID parameter.4)

Checked Entered

errorIdTransfer OUT DINT Error during data transfer to the
CP (precise error diagnostics if
16#1E0F is present at the
errorID parameter 5))

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) remoteMemIndex = 0 is not permissible. An error message will be generated.
3) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

4) For error information, refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 341"

5) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 341 function blocks
4.2 _CP341_send function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 71

4.3 _CP341_receive function block

4.3.1 Description of the _CP341_receive FB

Function
The _CP341_receive function block enables you to receive data from a communications
partner in the receive data array (3964(R) protocol, ASCII driver, RK 512) or to make data
available for the communications partner (RK 512). Each data array depends on the type of
protocol used. If you are using the 3964(R) protocol or ASCII driver, the receive data array is
dataCl3964. For an RK 512 computer link, the data array is dataCl512. In both cases, 4,096
bytes are available. From the dataCl512 data array, data is also made available for the
communications partner.

Task integration (call)
The _CP341_receive function block must be called cyclically in the BackgroundTask or in the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

4.3.2 Application with 3964(R) protocol or ASCII driver

SIMOTION device receives data from a communications partner
The _CP341_receive function block transfers a data block that is specified by the dataCl3964
and dataOffset parameters from the CP 341 to a SIMOTION device. The _CP341_receive
function block is called repeatedly by a program. The receive job can only be executed by
cyclically calling the receive FB.

Receiving of data is enabled with static signal state "TRUE" in the enable parameter. An active
data transfer can be canceled with signal state "FALSE" in the enable parameter. The canceled
receive job is terminated with an error message at the errorID output. The receive operation
will remain disabled as long as the signal state at the enable parameter is "FALSE". A data
transfer operation can run over several calls, depending on the amount of data involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP341_receive FB to its initial state. The receive operation will remain disabled as
long as the signal state at the reset parameter is "TRUE".

The moduleAddress parameter specifies the module address of the CP 341 being addressed.

Status and error display on the _CP341_receive FB
The newDataReceived output indicates that the job has been completed without errors. The
amount of data received is indicated in the dataLength parameter. The error output indicates
that an error has occurred. If an error occurs, the corresponding event class/number is
displayed in the errorID output (see "Parameters of the _CP341_receive FB" table (3964 (R)

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
72 Function Manual, 04/2014

procedure or ASCII driver)"). If no error has occurred, errorID has the value "0".
newDataReceived and error/errorID will also be output when the _CP341_receive FB is reset.
When 16#1E0F is displayed in the errorID parameter, a detailed error description is also output
via the errorIdTransfer parameter.

The newDataReceived, dataLength, error, errorID, and errorIdTransfer parameters are
available for one block call only.

 Note

There is no parameter check for the _CP341_receive FB. Incorrect parameterization of this
block may cause the SIMOTION device to switch to "STOP" mode.

Before a job from the CP 341 can be received following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the
_CP341_receive FB must be complete.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
During the receive operation, the data to be received are stored temporarily in a local ARRAY.
Once the data transfer from the CP 341 to the SIMOTION device is complete, the data are
made available in the dataCl3964 (VAR_IN_OUT) parameter of the _CP341_receive FB.

 Note

To ensure data consistency, do not access the receive data array until all the data has been
received (newDataReceived = TRUE).

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 73

Call (LAD representation)

Parameters of the _CP341_receive FB (3964(R) protocol or ASCII driver)

Table 4-3 Parameters of the _CP341_receive FB (3964(R) protocol or ASCII driver)

Name P type 1) Data type Meaning Actions performed
by user

Actions
performed
by block

enable IN BOOL Receive enable Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data

set transfer (from HW Config)
Entered Checked

dataOffset IN UDINT First element to be received Entered Checked
periIn IN ARRAY[0..15] of

BYTE
I/O inputs of the CP transferred to
the FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY[0..15] of
BYTE

Prepared FB data for the I/O
outputs of the CP 2)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

dataCl3964 IN/OUT ARRAY[0..4095]
of BYTE

Receive data array Entered and checked Entered

dataCl512 IN/OUT ARRAY[0..6] of
'Struct_CP341_
Cl512Data'

Data area for RK 512 two-
dimensional array 3)

Entered and checked Checked

comFlags IN/OUT ARRAY[0..31] of
BYTE

Communication flag area for RK
512

Entered and checked Entered

newDataReceived OUT BOOL New data have been received Checked Entered

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
74 Function Manual, 04/2014

Name P type 1) Data type Meaning Actions performed
by user

Actions
performed
by block

error OUT BOOL Job completed with errors Checked Entered
dataLength OUT UDINT Quantity of data received Checked Entered
errorID OUT WORD Error specification

For error=TRUE, the error
information (event class and
number) is displayed in the status
parameter.4)

Checked Entered

errorIdTransfer OUT DINT Error during data transfer to the
CP (precise error diagnostics if
16#1E0F is present at the errorID
parameter 5))

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

3) No data can be exchanged in array index dataCl512[0].
4) For error information, refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment

manual, Chapter "Diagnostics with the CP 341"
5) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices

Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 75

Signal sequence diagram of the _CP341_receive FB
The following figure illustrates the behavior of the newDataReceived, dataLength, and error
parameters according to the input circuit of enable and reset.

Figure 4-4 Signal sequence diagram of the _CP341_receive FB

4.3.3 Application with RK 512 computer interfacing

Receiving data with the _CP341_receive FB: SIMOTION with SIMOTION

 Note

The handling of the _CP341_receive FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMOTION communication.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
76 Function Manual, 04/2014

The data to be received will be entered in a variable created in the dataCl512 parameter. The
communications partner specifies where the receive data will be entered in the variable. The
information about the entry location is output at the following output parameters.

● localCpuId specifies the number of the receiver (relevant for multiprocessor communication
only).

● localDataType specifies the memory area where the receive data have been entered
(irrelevant for SIMOTION with SIMOTION communication).

● localMemIndex specifies the memory index where the receive data have been entered.

● localDataOffset specifies the array index where the first receive byte has been entered.

● dataLength corresponds to the amount of data received in bytes.

A static "TRUE" signal state in the enable parameter enables a check to determine whether
data are to be read from the CP 341. An active data transfer can be canceled with signal state
"FALSE" in the enable parameter. The canceled receive job is terminated with an error
message at the errorID output. The receive operation will remain disabled as long as the signal
state at the enable parameter is "FALSE". A data transfer operation can run over several calls,
depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

The communication flag area (see Chapter Special features related to data transfer
(Page 106)) is specified by a variable created in the comFlags parameter. The communication
flag bit, which was checked in the receiver before the send job was initiated and was set after
the send job was finished, is indicated at output parameters localComFlagByte (array index
containing the communication flag bit) and localComFlagBit (bit position of communication flag
bit).

Special features for receiving data
Assigning 255 to the localComFlagByte parameter will disable the communication flag
functionality.

Receiving data with the _CP341_receive FB: SIMOTION with SIMATIC

 Note

The handling of the _CP341_receive FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMATIC communication.

The communications partner on the SIMATIC side must set the input parameters according
to the SIMOTION description.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 77

Signal sequence diagram of the _CP341_receive FB
The following figure illustrates the behavior of the newDataReceived, dataLength, and error
parameters according to the input circuit of enable and reset.

Figure 4-5 Signal sequence diagram of the _CP341_receive - receive data FB

Providing data with the _CP341_receive FB: SIMOTION with SIMOTION

 Note

The handling of the _CP341_receive FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMOTION communication.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
78 Function Manual, 04/2014

Function block processing is enabled with static signal state "TRUE" in the enable parameter.
An active data transfer can be canceled with signal state "FALSE" in the enable parameter.
The canceled fetch job is terminated with an error message at the errorID output. Data cannot
be provided as long as the signal state at the enable parameter is "FALSE". A data transfer
operation can run over several calls, depending on the amount of data involved.

The moduleAddress parameter specifies the module address of the CP that is to be used for
the data transfer.

The data to be provided are entered in a variable created in the dataCl512 parameter. The
communications partner specifies which data is to be fetched from the variable. The information
about the fetched data is output in the following output parameters.

● localCpuId specifies the number of the communications partner providing the data (relevant
for multiprocessor communication only).

● localDataType specifies the memory area where the data was fetched (irrelevant for
SIMOTION).

● localMemIndex specifies the memory index where the data were fetched.

● localDataOffset specifies the array index where the first data byte was fetched.

● dataLength corresponds to the amount of data sent in bytes.

Special features for providing data
Assigning 255 to the localComFlagByte parameter will disable the communication flag
functionality.

Providing data with the _CP341_receive FB: SIMOTION with SIMATIC

 Note

The handling of the _CP341_receive FB differs according to whether data is to be exchanged
with a SIMOTION System or a SIMATIC System.

The parameter assignment is described below for a function block for SIMOTION with
SIMATIC communication.

The communications partner on the SIMATIC side must specify the input parameters according
to the SIMOTION description.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 79

Signal sequence diagram of the _CP341_receive FB
The following figure illustrates the behavior of the newDataReceived, dataLength, and error
parameters according to the input circuit of enable and reset.

Figure 4-6 Signal sequence diagram of the _CP341_receive - providing data FB

Error display on the _CP341_receive FB
The newDataReceived output parameter indicates that the job has been completed without
errors. The amount of data received is indicated in the dataLength parameter. The error output
indicates that an error has occurred. If an error occurs, the corresponding event class/number
is displayed in the errorID output parameter (see "Parameters of the _CP341_receive FB"
table (application with RK 512 computer link)"). If no errors have occurred, errorID has a value
of 0. The newDataReceived and error/errorID parameters are also displayed on reset of the
_CP341_receive FB. When 16#1E0F is displayed in the errorID parameter, a detailed error
description is also output via the errorIdTransfer parameter.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
80 Function Manual, 04/2014

The newDataReceived, dataLength, error, errorID, and errorIdTransfer parameters are
available for one block passage only.

 Note

There is no parameter check for the _CP341_receive FB. Incorrect parameterization of this
block may cause the SIMOTION device to switch to "STOP" mode.

Before a job from the CP 341 can be received following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the
_CP341_receive FB must be complete.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
During the receive operation, the data to be received is stored temporarily in the
_CP341_receive FB. Once the data transfer from the CP 341 to the SIMOTION device is
complete, the data are made available in the dataCl512 (VAR_IN_OUT) parameter of the
_CP341_receive FB.

Call (LAD representation)

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 81

Parameter description

Table 4-4 Parameters of the _CP341_receive FB (application with RK 512 computer link)

Name P type 1) Data type Meaning Actions performed by
user

Actions
performed

by block
enable IN BOOL Receive enable Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN UDINT Module address of the CP

for data set transfer (from
HW Config)

Entered Checked

periIn IN ARRAY[0..15] of
BYTE

I/O inputs of the CP
transferred to the FB

I/O variable of the I/O
inputs of the CP
transferred to the FB

Checked

periOut IN/OUT ARRAY[0..15] of
BYTE

Prepared FB data for the I/O
outputs of the CP 3)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

dataCl3964 IN/OUT ARRAY[0..4095]
of BYTE

Receive data array Entered and checked Entered

dataCl512 IN/OUT ARRAY[0..6] of
'Struct_CP341_C
l512Data'

Data area for RK 512 two-
dimensional array 2)

Entered and checked Checked

Struct_CP341_Cl512Data (data structure)
 data ARRAY[0..4095]

of BYTE
Data array for RK 512
computer link (send and
fetch job)

SEND_CP: checked
FETCH_CP: Entered

SEND_CP:
entered
FETCH_CP:
Checked

comFlags IN/OUT ARRAY[0..31] of

BYTE
Communication flag area for
RK 512

Entered and checked Entered

localCpuId OUT USINT Number of the local
communications partner

Checked Entered

localDataType OUT USINT Area type in the local
communications partner

Checked Entered

localMemIndex OUT UINT Memory index in the local
communications partner

Checked Entered

localDataOffset OUT UDINT First element in the local
communications partner

Checked Entered

localComFlagByte OUT USINT Communication flag index in
the local communications
partner

Checked Entered

localComFlagBit OUT USINT Communication flag bit no.
in the local communications
partner

Checked Entered

newDataReceived OUT BOOL Job completed without
errors

Checked Entered

error OUT BOOL Job completed with errors Checked Entered

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
82 Function Manual, 04/2014

Name P type 1) Data type Meaning Actions performed by
user

Actions
performed

by block
errorID OUT WORD Error specification

For error=TRUE, the error
information (event class and
number) is displayed in the
errorID parameter.4)

Checked Entered

dataLength OUT UDINT Quantity of data received Checked Entered
errorIdTransfer OUT DINT Error during data transfer to

the CP (precise error
diagnostics if 16#1E0F is
present at the errorID
parameter 5))

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) No data can be exchanged in array index dataCl512[0].
3) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

4) For error information, refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 341".

5) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

CP 341 function blocks
4.3 _CP341_receive function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 83

4.4 _CP341_printer function block

4.4.1 Description of the _CP341_printer FB

Function
The _CP341_printer function block is used to send data of type Struct_CP341_printData from
the printer memory area to a serial printer. For example, the _CP341_printer function block
might send a process message to the CP 341. The CP 341 prints out the process message
on the connected printer.

Call (LAD representation)

Parameter description

Table 4-5 Parameters of the _CP341_printer FB

Name P type 1) Data type Comment Actions performed
by user

Actions
performed
by block

execute IN BOOL Initiates job on positive edge Entered Checked
reset IN BOOL Cancels job Entered Checked
moduleAddress IN DINT Module address of the CP for data set

transfer (from HW Config)
Entered Checked

periIn IN ARRAY[0..15]
of BYTE

I/O inputs of the CP transferred to the
FB

I/O variable of the I/
O inputs of the CP
transferred to the FB

Checked

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
84 Function Manual, 04/2014

Name P type 1) Data type Comment Actions performed
by user

Actions
performed
by block

periOut IN/OUT ARRAY[0..15]
of BYTE

Prepared FB data for the I/O outputs
of the CP 2)

Checked and
transferred to the I/O
variable for the I/O
outputs

Entered

printData IN/OUT Struct_CP341_
printData

Send data array (data to be printed) Entered Checked

Struct_CP341_printData (data structure) 5)

 variable ARRAY[0..3] of
Struct_CP341_
dataRecord

Variable to be printed Entered Checked

 format ARRAY[0..150]
of BYTE

Format string Entered Checked

Struct_CP341_dataRecord (data structure) 5)

 dataLength UDINT Quantity of data Entered Checked
 data ARRAY[0..31]

of BYTE
Print data Entered Checked

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors Checked Entered
errorID OUT WORD Error specification

For error=TRUE, the error information
(event class and number) is displayed
in the errorID parameter.3)

Checked Entered

startup OUT BOOL Indicates CP startup Checked Entered
errorIdTransfer OUT DINT Error during data transfer to the CP

(precise error diagnostics if 16#1E0F
is present at the errorID parameter 4))

Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

3) For error information, refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment
manual, Chapter "Diagnostics with the CP 341".

4) For a more detailed description (_readRecord and _writeRecord), see SIMOTION System Function/Variable Devices
Parameter Manual. This documentation is included in the SIMOTION SCOUT scope of delivery as electronic documentation.

5) See "Message text structure", print storage area structure example

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 85

Signal sequence diagram of the _CP341_printer FB
The following figure illustrates the behavior of the done and error parameters according to the
input circuit of execute and reset.

Figure 4-7 Signal sequence diagram of the _CP341_printer FB

 Note

The execute input is edge-triggered. The send job starts when there is a positive edge at the
execute input.

Task integration (call)
The _CP341_printer function block must be called cyclically in the BackgroundTask or the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

The _CP341_printer function block is called repeatedly by a program. The print job can only
be executed by cyclically calling the print FB.

A positive edge at the execute input initiates the transfer of the message text. A data transfer
operation can run over several calls (program cycles), depending on the amount of data
involved.

The active transfer job can be canceled by setting the reset parameter to "TRUE". This will
reset the _CP341_printer FB to its initial state. The sending of print jobs will remain disabled
as long as the signal state at the reset parameter is TRUE.

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
86 Function Manual, 04/2014

The moduleAddress parameter specifies the module address of the CP 341 being addressed
for the data set transfer.

For call examples for the _CP341_printer FB, see Chapter CP 341 print call examples
(Page 95).

Status and error display on the _CP341_printer FB
The done output parameter indicates that the job has been completed without errors. The
error output indicates that an error has occurred. If an error occurs, the corresponding event
class/number is displayed in the errorID output parameter (see "Parameters of the
CP341_printer FB" table). If no errors have occurred, errorID has a value of 0. Done and error/
errorID are also output for reset of the _CP341_printer FB. When 16#1E0F is displayed in the
errorID parameter, a detailed error description is also output via the errorIdTransfer parameter.

The done, error, errorID, and errorIdTransfer parameters are available for one block call only.

 Note

There is no parameter check for the _CP341_printer function block. Incorrect
parameterization of this block may cause the SIMOTION device to switch to "STOP" mode.
Before the CP 341 can process an initiated job following a transition of the SIMOTION device
from "STOP" to "RUN" mode, the CP-SIMOTION startup mechanism of the _CP341_printer
FB must be complete. Any jobs initiated in the meantime will not be lost. They are transferred
to the CP 341 once the startup coordination has finished.

The end of the startup coordination is indicated in output parameter startup = FALSE.

Assignment in the data area
The print data is transferred to the _CP341_printer FB as a data structure of type
Struct_CP341_printData and copied to a local variable of the FB at the beginning of the print
operation.

Structure of printer memory of type Struct_CP341_printData
The four variables to be printed and the format string must be entered in a variable with the
following data type:

Example:

Struct_CP341_dataRecord : STRUCT
 dataLength : UDINT; // Data quantity
 data : ARRAY [0..31] of BYTE; // Data field
END_STRUCT

Struct_CP341_printData : STRUCT
 variable : ARRAY [0..3] of Struct_CP341_dataRecord; // 1st to 4th variable
 format : ARRAY [0..150] of BYTE; // Format string
END_STRUCT

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 87

The first variable to be printed corresponds to the variable [0] element, the second variable to
be printed corresponds to the variable [1] element, etc. The number of bytes to be printed per
variable is limited to 32. The data for variable i must be placed in variable [i-1].data[0..31]. The
number of bytes to be printed must be entered in the variable [i-1].dataLength element.

The format string corresponds to the format element. The format string must be structured as
follows (refer to the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter
Assignment Manual):

● Specification of string length in format [0]

● Specification of individual characters in format [1 to 150]

 Note

If the maximum length is exceeded, the print job is canceled and event number 16#1E41
is indicated at the errorID parameter output of the _CP341_printer FB.

Entering variables and message texts in the printer memory area
Before the data transfer to the CP 341 begins, the variable values to be printed must be entered
byte by byte and in the proper format in the variable[].data element of the data structure of
type Struct_CP341_printData (see item 2 in the example below). The number of bytes for each
variable (variable length) must be assigned to the variable.datalength element (e.g. WORD
type variable - variable.datalength:=2). An entry corresponding to the data type of the value
must be made in the format element for each value entered in the variable element. (e.g.
WORD type variable - %I). The total length of the entries in the format element must be
assigned to the format[0] element.

You configure message texts with the CP 341 "point-to-point connection" parameter
assignment interface. Once the hardware configuration has been downloaded to the
SIMOTION device, the message texts are stored in the CP 341. The message texts that have
been saved can be selected with corresponding entries in the variable and format elements.

 Note

You can use supplemental function blocks (see Chapter supplemental function blocks
(Page 90)) to enter values into the printer memory area and to select message texts.

Example:

● Print message text no. 3 (stored in CP 341).
Configured message text: "This is message text no. 3"

myPrintData.variable[0].datalength := 2; // Data type WORD
myPrintData.variable[0].data[0] := 0;
myPrintData.variable[1].data[0] := 3; // Message text no. 3

myPrintData.format[0] :=2; // Format string length

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
88 Function Manual, 04/2014

myPrintData.format[1] :=16#25; // "%" Format specification for message
text
myPrintData.format[1] :=16#4E // "N" Format specification for message
text

● Print message text no. 4 with a WORD-type variable.

Configured message text : "This is message text no. %I"
Printed text : "This is message text no. 4"

myPrintData.variable[0].datalength := 2; // Data type WORD
myPrintData.variable[0].data[0] := 0;
myPrintData.variable[0].data[0] := 4; // Message text no.4

myPrintData.variable[1].datalength := 2; // 2 Byte data type WORD
myPrintData.variable[1].data[0] := 0 // High - Byte
myPrintData.variable[1].data[1] := 4 // Low - Byte
myPrintData.format[0] := 4; // Format string length
myPrintData.format[1] := 16#25; // ASCII code "%" format
specification
myPrintData.format[2] := 16#4E; // ASCII code "N" format
specification
 // for message text
myPrintData.format[3] := 16#25; // ASCII code "%" format
specification
myPrintData.format[4] := 16#49; // ASCII code "I" format
specification
 // for integer

Notes on handling

The format string entry in the "format" field must be hexadecimal.

Example:
% corresponds to 25 hex in the IBM character set,
N (message text output) corresponds to 4E hex in the IBM character set.
(see Hardware configuration > Character set)

Data types DATE, TIME, DATE_AND_TIME_OF_DAY and TIME_OF_DAY are not supported.
The date information must be entered as a DWORD or WORD in the printer data structure.

Representation type "A" (German date format):
//datefrg:=4018 (01.01.2001) and 4199 (01.07.2001)
printData.variable[0].datalength:=2;
printData.variable[0].data[0]:=WORD_TO_BYTE(SHR(datefrg,8));
printData.variable[0].data[1]:=WORD_TO_BYTE(SHR(datefrg,0));

Representation type "F":
The value to be printed must be in floating point format (mantissa/exponent) (see call example
2, Chapter CP 341 print call examples (Page 95))

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 89

Representation type "C":
If variable[].datalength:=1 in the printer data structure, the characters will be printed
horizontally.
If variable[].datalength:=2 (3,4) in the printer data structure, the characters will be printed
vertically.

Representation type "X":
For CP 341 RS232, product version E08 and higher, representation type "X" (binary) outputs
the values correctly on a serial printer.

Disconnected printer
The communications link is not monitored for printers even if alarm generation is enabled in
HW Config of STEP 7.

Example:

● A break in the connection between the printer and the CP 341 triggers neither an error nor
a diagnostic alarm.

● Nor are they triggered if a print job is started but no printer is connected.

 Note

The code in examples 1, 2, and 3 (see Chapter CP 341 print call examples (Page 95))
can be transferred to the SIMOTION SCOUT editor with Copy and Paste.

4.4.2 supplemental function blocks

Function
Supplemental function blocks are provided for entering variables of various data types as well
as for entering message texts into data structure Struct_CP341_printData. You enter the value
of the variables byte by byte and in the proper format in the variable element of the printer
memory area and, optionally, in the format element. When numbers are entered for message
texts, one entry is made in each of the format and variable elements. The method of
representation for the variables in printed text and the method of entry in the format string can
be selected by means of parameters.

The following supplemental function blocks are available:

● _CP341_realToPrintData
Entry of a number of data type REAL into data structure Struct_CP341_printData

● _CP341_dwordToPrintData
Entry of a number of data type DWORD into data structure Struct_CP341_printData

● _CP341_wordToPrintData
Entry of a number of data type WORD into data structure Struct_CP341_printData

● _CP341_byteToPrintData
Entry of a number of data type BYTE into data structure Struct_CP341_printData

● _CP341_dintToPrintData
Entry of a number of data type DINT into data structure Struct_CP341_printData

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
90 Function Manual, 04/2014

● _CP341_intToPrintData
Entry of a number of data type INT into data structure Struct_CP341_printData

● _CP341_printMsgText
Selection of message texts stored in CP 341

 Note

SINT and USINT data types can be entered into data structure Struct_CP341_printData
with the _CP341_intToPrintData function block. Type conversion is implicit.

Parameter description

Table 4-6 _CP341_byteToPrintData, _CP341_wordToPrintData, _CP341_dwordToPrintData parameters

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN BYTE/WORD/

DWORD
Variable/value to be entered in the data
structure.

Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_REPLACE_WI
TH_SIGN

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_REPLACE_WI
THOUT_SIGN

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: unsigned
integer

CP_REPLACE_BI
NARY

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: binary

CP_ADD_WITHO
UT_SIGN

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: unsigned
integer

CP_ADD_WITH_S
IGN

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 91

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP341_prin
tData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 4-7 _CP341_realToPrintData

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN REAL Variable/value to be entered in the data

structure.
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_REPLACE_WI
THOUT_EXPONE
NT

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: floating-point

CP_REPLACE_WI
TH_EXPONENT

Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: with
exponent

CP_ADD_WITHO
UT_EXPONENT

Entry is added in the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: floating-point

CP_ADD_WITH_E
XPONENT

Entry is added in the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: with
exponent

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
92 Function Manual, 04/2014

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP341_pri
ntData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 4-8 _CP341_dintToPrintData, _CP341_intToPrintData

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
data IN INT/DINT Variable/value to be entered in the data

structure.
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_DEFAULT Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_ADD_TO_ST
RING

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string.
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 93

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

printData IN/OUT Struct_CP341_pri
ntData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

Table 4-9 _CP341_printMsgText

Name P type 1) Data type Comment Actions
performed by
user

Actions
performed
by block

execute IN BOOL Edge-triggered job initiation Entered Checked
numMsgText IN USINT Number of the message text (stored in

the CP 341)
Entered Checked

numVariable IN INT Number of the variable in which the
entry is to be made.
1 ≤ numVariable ≤ 4

Entered Checked

entryFormatString IN ENUM Method of entry in the format string and
method of representation of the value in
the data parameter.

Entered Checked

CP_DEFAULT Entry starting at byte 1 in the
substructure of the format string;
existing entries are overwritten.
Method of representation: signed
integer

CP_ADD_TO_ST
RING

Entry is added to the substructure of the
format string, entryAtByteNumber
parameter is evaluated.
Method of representation: signed
integer

CP_NO_ENTRY No entry in the substructure of the
format string

entryAtByteNumber IN USINT Specifies the byte at which the entry is
to begin in the substructure of the format
string
entryAtByteNumber = 0 Entry is made
after the last entry found

Entered Checked

printData IN/OUT Struct_CP341_pri
ntData

Data structure for the printer data No actions Enters
values

done OUT BOOL Job completed without errors Checked Entered
error OUT BOOL Job completed with errors (permissible

value range exceeded)
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
94 Function Manual, 04/2014

Task integration (call)
The supplemental blocks must be called in the BackgroundTask or the TimerInterruptTask.

For call examples for the _CP341_printer FB, see Chapter CP 341 print call examples
(Page 95).

Status and error indicators
The done output indicates that the job has been completed without errors. The error output
indicates that an error has occurred.

The done and error parameters are available for one block call only.

4.4.3 CP 341 print call examples

Call example 1

UNIT E1CP341p;

INTERFACE
VAR_GLOBAL
 myPreparePrintData : BOOL; // Initiate prepare print request
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // Abort print
 myActualLevel : REAL := 5.67; // actual value "level"
 myModuleAddress_1 : DINT:= 256; // address of 1st CP341 module
 myPrintData : Struct_CP341_printData; // instance of datastruct
 myFB_CP341_printMessageText : _CP341_printMsgText; // instances of function blocks
 myFB_CP341_realToPrintData : _CP341_realToPrintData; // instances of function blocks
 myFB_CP341_print : _CP341_printer; // instance of function block
 myOutputArrayCP341_1 : ARRAY[0..15] of BYTE; // field for CP341 output data
END_VAR
PROGRAM Example_print_1; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_1
// BackgroundTask program

// Example to print out messagetext 3 with one variable
// ("actualLevel") of type REAL: "The actual level (l) is: <actualLevel>"
// The message-text 3 must be specified in the hardwareconfiguration of CP341
// like this: "The actual level (l) is:"

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 95

// The following I/O-variable for CP341 module are required:
// peripheralInputCP341_1: input address of CP341 module; type Array; length 16
// peripheralOutputCP341_1: output address of CP341 module; type Array; length 16

// entry to printDatastruct myprintData
myFB_CP341_printMessageText (execute := myPreparePrintData,
 printData := myPrintData,
 numMsgText := 3, // number of message text
 numVariable := 1, // number of variable
 entryFormatString := CP_DEFAULT);

myFB_CP341_realToprintData (execute := myPreparePrintData,
 printData := myPrintData,
 data := myActualLevel,
 numVariable := 2,
 entryFormatString := CP_ADD_WITH_EXPONENT);
// call instance of _CP341_printer
// use requestPrint to start datatransfer to serial printer

myFB_CP341_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp341_1, // peripheral input
 periOut := myOutputArrayCP341_1, // output data field
 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP341_1 := myOutputArrayCP341_1;

END_PROGRAM //Example_print_1
END_IMPLEMENTATION

Call example 2

UNIT E2CP341p;

INTERFACE
VAR_GLOBAL
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // abort print
 myPrintDword : DWORD; // value to print out

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
96 Function Manual, 04/2014

 myModuleAddress_1 : DINT := 256; // address of 1st CP341 module
 myPrintData : Struct_CP341_printData; // instance of datastruct
 myFB_CP341_print : _CP341_printer; // instance of function block
 myOutputArrayCP341_1 : ARRAY[0..15] OF BYTE; // field for CP341 output data
END_VAR
PROGRAM Example_print_2; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_2 // BackgroundTask program
// example with notation "F" and variable of type DWORD
// (containing mantissa and exponent)

// The following I/O-variable for CP341 module are required:
// peripheralInputCP341_1: input address of CP341 module; type Array; length 16
// peripheralOutputCP341_1: output address of CP341 module; type Array; length 16

// formatstring (length 2 Byte, notation "F"):
myPrintData.format[0] := 2 ;
myPrintData.format[1] := 16#25 ; // "%"
myPrintData.format[2] := 16#46 ; // "F"

// assignment for variable (type DWORD), to print out with notation "F"
myPrintDword := REAL_TO_DWORD(10000.0); // variable (DWORD) with mantissa and exponent

// !!!
// ATTENTION! wrong example for this case is an assingnment with an integer value e.g.:
// myprintDword := 10000; // because the format is WITHOUT mantissa and exponent
// !!!

// fill out printData interface manually with DWORD-variable
myPrintData.variable[0].dataLength := 4 ; // 1st variable, lenth 4 Byte
myPrintData.variable[0].data[0] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,24)));
myPrintData.variable[0].data[1] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,16)));
myPrintData.variable[0].data[2] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,8)));
myPrintData.variable[0].data[3] := WORD_TO_BYTE(DWORD_TO_WORD(SHR(printDword,0)));

// call instance of _CP341_printer
// use requestPrint to start datatransfer to serial printer
myFB_CP341_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp341_1, // peripheral input
 periOut := myOutputArrayCP341_1, // output data field

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 97

 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP341_1 := myOutputArrayCP341_1;

END_PROGRAM //Example_print_2
END_IMPLEMENTATION

Call example 3

UNIT E3CP341p;

INTERFACE
VAR_GLOBAL
 myRequestPrint : BOOL; // Initiate transfer to printer
 myReset : BOOL; // Abort print
 myPrintReal1 : REAL; // 1st value
 myPrintReal2 : REAL; // 2nd value
 myPrintReal3 : REAL; // 3rd value
 myModuleAddress_1 : DINT := 256; // address of 1st CP341 module
 myPrintData : Struct_CP341_printData; // instance of datastruct
 myFB_CP341_print : _CP341_printer; // instance of function block
 myFB_CP341_realToprintData1 : _CP341_realToPrintData; // instances of function blocks
 myFB_CP341_realToprintData2 : _CP341_realToPrintData; // instances of function blocks
 myFB_CP341_realToprintData3 : _CP341_realToPrintData; // instances of function blocks
 myOutputArrayCP341_1 : ARRAY[0..15] OF BYTE;
END_VAR
PROGRAM Example_print_3; // program for BackgroundTask
END_INTERFACE

IMPLEMENTATION
PROGRAM Example_print_3 // BackgroundTask program
// The following example program demonstrates usage of _CP341_realToPrintData()

// The following I/O-variable for CP341 module are required:
// peripheralInputCP341_1: input address of CP341 module; type Array; length 16
// peripheralOutputCP341_1: output address of CP341 module; type Array; length 16

// preset variables with user-values
myPrintReal1 := 1.11; myPrintReal2 := 2.22; myPrintReal3 := 3.33;

// write variables (type REAL) to printDatastruct with _CP341_realToPrintData

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
98 Function Manual, 04/2014

myFB_CP341_realToprintData1 (execute := TRUE,
 data := myPrintReal1, // 1st variable
 numVariable := 1,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);
myFB_CP341_realToprintData2 (execute := TRUE,
 data := myPrintReal2; // 2nd variable
 numVariable := 2,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);
myFB_CP341_realToprintData3 (execute := TRUE,
 data := myPrintReal3, // 3rd variable
 numVariable := 3,
 entryFormatString := CP_ADD_WITHOUT_EXPONENT,
 entryAtByteNumber := 0,
 printData := myPrintData);

// call instance of _CP341_printer, "requestPrint" starts data transfer
// to serial printer
myFB_CP341_print (execute := myRequestPrint, // initiate request
 reset := myReset, // abort request
 moduleAddress := myModuleAddress_1, // module address
 periIn := myPeripheralinputcp341_1, // peripheral input
 periOut := myOutputArrayCP341_1, // output data field
 printData := myPrintData); // data to print out

// transfer output data field to peripheral output
myPeripheralOutputCP341_1 := myOutputArrayCP341_1;

END_PROGRAM //Example_print_3
END_IMPLEMENTATION

CP 341 function blocks
4.4 _CP341_printer function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 99

4.5 _CP341_getV24Signals function block

Function
The _CP341_getV24Signals function block reads the RS-232-C accompanying signals from
the CP 341 and makes them available to the user in the block parameters. The functionality
of the _CP341_getV24Signals FB can only be used if a parameterized ASCII driver is
specified.

Call (LAD representation)

Parameter description

Table 4-10 Parameters of the _CP341_getV24Signals FB

Name P type 1) Data type Meaning Actions performed by user Actions
performed by

block
enable IN BOOL Block enable Entered Checked
periIn IN ARRAY[0..15]

of BYTE
I/O inputs of the CP
transferred to the FB

I/O variable of the I/O inputs of the
CP transferred to the FB

Checked

error OUT BOOL Job completed with
errors

Checked Entered

sigDtr OUT BOOL Data terminal ready Checked Entered
sigDsr OUT BOOL Data set ready Checked Entered
sigRts OUT BOOL Request to send Checked Entered
sigCts OUT BOOL Clear to send Checked Entered
sigCcd OUT BOOL Data carrier detected Checked Entered
sigRi OUT BOOL Ring Indicator Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

CP 341 function blocks
4.5 _CP341_getV24Signals function block

Supplement to the CP 340 and CP 341 Modules
100 Function Manual, 04/2014

Task integration (call)
The _CP341_getV24Signals function block must be called cyclically in the BackgroundTask
or the TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the
function block in the IPOSynchronousTask is not recommended for runtime reasons.

The RS 232C accompanying signals are updated each time the function is called (cyclic
polling). The CP 341 updates the status of the inputs/outputs in a time base of 20 ms.

 Note

A minimum pulse duration is necessary to detect a signal change. Determining factors are
the cycle time (SIMOTION device), the update time on the CP 341, and the response time
of the communications partner.

CP 341 function blocks
4.5 _CP341_getV24Signals function block

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 101

4.6 _CP341_setV24Signals function block

Function
The _CP341_setV24Signals function block can be used to set or reset RS-232-C
accompanying signals. The functionality of the _CP341_setV24Signals FB can only be used
if a parameterized ASCII driver is specified.

Call (LAD representation)

Parameter description

Table 4-11 Parameters of the _CP341_setV24Signals FB

Name P type 1) Data type Meaning Actions performed by user Actions performed by
block

enable IN BOOL Block enable Entered Checked
sigDtr IN BOOL Data terminal ready Entered Checked
sigRts IN BOOL Request to send Entered Checked
periOut IN/OUT ARRAY [0..15]

of BYTE
Prepared FB data for the I/O
outputs of the CP 2)

Checked and transferred to the
I/O variables for the I/O outputs

Entered

error OUT BOOL Job completed with errors Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Note: The periOut parameter must be supplied with a variable of type ARRAY[0..15] of BYTE. Create a local or global

variable in your program under VAR (do not create a temporary variable under VAR_TEMP). After the FB has been called,
this variable must be assigned to the I/O variable for the I/O outputs of the module. See call example for CP 341.

Task integration (call)
The _CP341_getV24Signals function block must be called cyclically in the BackgroundTask
or the TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the
function block in the IPOSynchronousTask is not recommended for runtime reasons.

CP 341 function blocks
4.6 _CP341_setV24Signals function block

Supplement to the CP 340 and CP 341 Modules
102 Function Manual, 04/2014

4.7 Calling the CP 341 function blocks
In order to be able to work with the function blocks in your user project, proceed as follows
(the numbers shown in the following program segment correspond to the steps below):

1. Create the function block instance (see the following program segment, e.g. create instance
for the _CP341_send FB).

2. Create a variable for the data structure (for RK 512 computer interfacing only).

3. Create an array for the in/out parameters of the FB.

4. Call instance of the function block.

5. Transfer input parameters.

6. The output parameters of the FB are accessed with <instance name of FB>.
<name of output parameter>.

7. Data prepared by the FB for the I/O outputs are assigned to the array of the I/O variables
created in step 3.

 Note

The CP 341 call example is an extract from the supplied E_CP341 application example,
which is included on the "SIMOTION Utilities & Applications" CD-ROM.

If you wish to control multiple CP 341 devices, you must create a new variable for the data
structure and FB instances with a new name for each CP 341 you implement.

Call example for CP 341

UNIT E_CP341;

INTERFACE

VAR_GLOBAL
 myExecSendCP341 : BOOL; // Trigger send task
 myModuleAddrCP341 : DINT:=256; // module address
 mySendDataArrayCP341 : ARRAY [0..4095] OF BYTE; // Send data array 4,096 bytes

 myInstCP341Send : _CP341_send; // Create instance of FB
END_VAR

(1)

PROGRAM ExampleCP341; // Program in BackgroundTask

END_INTERFACE

IMPLEMENTATION
 VAR_GLOBAL

 MyResetSend : BOOL; // Cancel send order
 END_VAR

CP 341 function blocks
4.7 Calling the CP 341 function blocks

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 103

PROGRAM ExampleCP341 // Program in BackgroundTask

// Variables used: see interface area under VAR_GLOBAL
VAR

 MyCPOutputArray : ARRAY [0..15] OF BYTE; // Array for CP output data
END_VAR

(3)

VAR_TEMP
 MyDataLengthSend : UDINT; // Length of data to be sent
 MyDataOffsetSend : UDINT; // Offset of first byte to be sent
END_VAR

// CALL FB INSTANCE TO SEND
 myInstCP341Send (
 mode := SEND_CP, // Send data
 execute := myExecSendCP341, // Trigger order
 reset := myResetSend, // Order book
 moduleAddress := myModuleAddrCP341, // Module address
 dataOffset := myDataOffsetSend, // Offset
 dataLength := myDataLengthSend, // Number of data to be sent
 periIn := myPeripheralInputCP341, // I/O variable of I/O inputs
 periOut := myCPOutputArray, // Data for I/O outputs
 data := mySendDataArrayCP341 // Send data array
);

(4)

(5)

 myStateStartUpCP341 := myInstCP341Send.startUp; // Start-up status (6)

// TRANSFER DATA TO CP341
 myPeripheralOutputCP341 := myCPOutputArray; // Array for output variables
 // of I/O variables

(7)

END_PROGRAM // ExampleCP341

END_IMPLEMENTATION

 Note

The "ExampleCP341" program must be assigned in the execution system.

CP 341 function blocks
4.7 Calling the CP 341 function blocks

Supplement to the CP 340 and CP 341 Modules
104 Function Manual, 04/2014

4.8 Data consistency

When sending data
Once a job is initiated by a positive edge at the execute input, the data to be sent is copied to
the static memory area of the send FB. This means that once the FB call has ended, the send
data array can be written to again for the next send request on a positive edge. The data are
retained as consistent data within the send FB.

 Note

During the copy operation to the static memory area of the FB, data consistency cannot be
guaranteed if the send/receive data areas are accessed in a higher priority task.

When receiving data
Once the receive request is complete, the data are copied over to the receive buffer in a block
from the static memory area of the receive FB. This means that when the FB call is complete,
either all data (newDataReceived = TRUE) are entered in the receive buffer or no data
(newDataReceived = FALSE) have been entered.

 Note

During the copy operation from the static memory area of the receive FB, data consistency
cannot be guaranteed if the send/receive data areas are accessed in a higher priority task.

CP 341 function blocks
4.8 Data consistency

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 105

4.9 Special features related to data transfer

4.9.1 Communication flag function with the CP 341
The communication flag functionality with respect to RK 512 computer interfacing is similar to
that in the SIMATIC. Once data has been sent or fetched, a bit is set in the communications
partner. This bit is checked when a new job is initiated. If it is set (= TRUE), the job is not
processed. The communications partner must first reset this bit (= FALSE). The bit to be set
or checked is specified by the requester FB (_CP341_send) in the remoteComFlagByte and
remoteComFlagBit parameters.

SIMOTION ↔ SIMOTION
In the variable (ARRAY [0..31] of BYTE) created in the comFlags parameter, the bit position
of the communication flag bit to be checked or set is specified as follows:

● remoteComFlagByte corresponds to the array index of the byte in which the bit is to be set/
checked.

● remoteComFlagBit corresponds to the bit position in the byte specified by the
remoteComFlagByte parameter.

 Note

The same variable must always be transferred at the comFlags parameter during the block
call to ensure consistency of the communication flag bit.

SIMOTION ↔ SIMATIC
Communication flags are always stored in the flag area MB0 to MB254 in SIMATIC. The bit
position of the communication flag bit to be checked or set is specified as follows:

● remoteComFlagByte corresponds to the flag byte in which the bit is to be set or checked
(e.g. remoteComFlagByte=1 corresponds to MB1).

● remoteComFlagBit corresponds to the bit position in the byte specified by the
remoteComFlagByte parameter.

4.9.2 Requests that can be processed simultaneously with the CP 341
The following function blocks may only be programmed once in your user program for each
CP 341 communication processor used:

● _CP341_send FB

● _CP341_receive FB

CP 341 function blocks
4.9 Special features related to data transfer

Supplement to the CP 340 and CP 341 Modules
106 Function Manual, 04/2014

4.9.3 Data transfer with the RK 512 computer interfacing

Data transfer options
Active jobs:

The _CP341_send function block enables you to issue active jobs to the CP 341 in the user
program of the SIMOTION system. You can

● Send data from your automation system to a remote communications partner.

● Fetch data from a remote communications partner and store it in the send data array.

 Note

If you fetch data from a CP 341, a _CP341_receive function block must be programmed
for the communications partner.

Passive jobs:

The _CP341_receive function block enables you to use passive jobs to coordinate the reading
of data on the CP 341 and make the data available. The communications partner is active.
You can

● Enter data sent by the communications partner in the dataCl512 receive data array.

● Make data available from dataCl512 for a remote communications partner.

Special feature related to sending data
Note the following special features related to "sending" data:

● With RK 512, the amount of sent data must be an even number. If an odd value is specified
for the length in the dataLength parameter, an additional filler byte with a value of "FALSE"
will be transferred at the end of the data.

● With RK 512, any specified offset must be an even number. If an odd offset is specified,
the data will be stored for the partner starting with the next smallest even offset.

CP 341 function blocks
4.9 Special features related to data transfer

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 107

4.10 Application example of the CP 341

Function
This example shows how to:

● use the _CP341_send function block to send data from the Send data array to a
communications partner.

● use the _CP341_receive function block to receive data in the receive data array.

In the example program, the CP 341 is used both as the sender and receiver. This requires
the jumpering of the send and receive lines (PIN 2 and PIN 3 on the RS232 interface) and the
"ASCII" setting in the parameter assignment tool. The _CP341_send FB is used to transfer the
send data to the CP module. This sends the data using the RS232 interface. The jumpered
send and receive line means that the data to be sent is read immediately by the CP module.
The _CP341_receive FB reads the received data from the CP module and copies these data
to the receive data array.

This example requires proper installation of the parameter assignment tool, as described in
the SIMATIC CP 341 Point-to-Point Connection, Installation and Parameter Assignment
manual.

Hardware platform
The application example is available for various SIMOTION hardware platforms. You must
adapt the example for centralized applications with SIMOTION C.

 Note

If the application example is not available for your hardware platform, you must adapt the
hardware configuration.

Assigning module parameters
Proceed as follows:

1. Open your project in SIMOTION SCOUT.

2. Open the hardware configuration in SIMOTION SCOUT.

3. Configure your hardware station with a CP 341 module.

4. Double-click the CP 341 to open the "Properties" dialog box for this module. Click the
"Parameters" button to launch the parameter assignment tool of the CP 341 module.

5. The "ASCII" protocol must be selected in the protocol selection box.
The standard settings of the ASCII protocol suffices for the application example.

6. Jumper the send and receive line (PIN 2/PIN 3) of the RS232 interface.

7. Apply your settings in the parameter assignment interface with the "File" > "Save" menu
command, and close the interface with the "File" > "Exit" menu command. Click "OK" to
close the Properties window for the CP 341 module.

CP 341 function blocks
4.10 Application example of the CP 341

Supplement to the CP 340 and CP 341 Modules
108 Function Manual, 04/2014

8. Save the hardware configuration with the "Station" > "Save and compile" menu command.

9. Download the hardware configuration with the "Target system" > "Download to module"
menu command.
The red "SF" LED on the IM 153 turns on and then off if the assigned module parameters
have been downloaded without errors.

Adapting the application example
The configuration in the example and its available hardware must be adapted.

The following options are available:

1. You can adapt the configuration in the example to the available hardware
(e.g. PROFIBUS DP address).

2. You can adapt the configuration of the hardware to the example (e.g. PROFIBUS DP
address).

Calling the application example
The application example can be found on the "SIMOTION Utilities & Applications" CD-ROM.
The "SIMOTION Utilities & Applications" CD-ROM is provided free of charge and part of the
SIMOTION SCOUT scope of delivery.

1. Dearchive and open the project containing the application example.

2. Check the axis configuration: PROFIBUS DP addresses.

3. Check the module addresses (hardware configuration) against the I/O addresses of the
controller in SIMOTION SCOUT and module address in the program
(myModuleAddrCP341).

4. Save and compile the example project. Then, you can download the example to the
SIMOTION device and switch to RUN mode.

Sequence of the application example

Table 4-12 Input icons used

Symbol Data type Designation
mySelectPointToPointCP341 BOOL Select point-to-point connection
myExecSendCP341 BOOL Initiate send job
mySendOrder1 BOOL Select send: Job 1
mySendOrder2 BOOL Select send: Job 2
mySendOrder3 BOOL Select send: Job 3
myResetSend BOOL Cancel send job
myEnableToReceive BOOL Receive enable
myReceiveOrder1 BOOL Select receive: Job 1
myReceiveOrder2 BOOL Select receive: Job 2
myReceiveOrder3 BOOL Select receive: Job 3
myResetReceive BOOL Cancel receive job

CP 341 function blocks
4.10 Application example of the CP 341

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 109

Symbol Data type Designation
myModuleAddrCP341 DINT CP 341 module address, default 256
mySendDataArrayCP341 ARRAY[0..4095] of BYTE Send data array
myReceiveDataArrayCP341 ARRAY[0..4095] of BYTE Receive data array

Table 4-13 Output symbols used

Symbol Data type Designation
mySendDone BOOL Send: Completed
mySendError BOOL Send: Error display
mySendErrorNumber WORD Send: Error status
mySendTransErrorNumber DINT Send: Error status transfer
myNewDataReceived BOOL Receive: New data have been received
myReceiveError BOOL Receive: Error display
myReceiveErrorNumber WORD Receive: Error status
myReceiveTransErrorNumber DINT Receive: Error status transfer
myStateStartupCP341 BOOL CP 341 startup status

FALSE = startup completed
myDiagnosticAlarm BOOL TRUE = diagnostic alarm present on the CP 341
myProcessAlarm BOOL TRUE = process alarm present on the CP341
myAlarmInterrupt UDINT Type of the alarm (process, diagnostic alarm)
myLogBaseAddrIn DINT Module address
myLogBaseAddrOut DINT
myLogAddress DINT Diagnostic address
myAlarmDetails DWORD Alarm information

 Note

You can monitor and control the input and output variables used in the programming example
in the INTERFACE area of the unit (under VAR_GLOBAL); alternatively, you can assign real
inputs and outputs to the input and output variables in your user program.

For the "point-to-point connection" application example, set the "myselectPointToPointCP341"
input to "TRUE". This will call function blocks contained in the application example.

Receiving data:

To receive data, you must set the "myEnableToReceive" variable to "TRUE" (static signal). If
receive jobs 1 and 3 are enabled (myReceiveOrder1 = TRUE and
"myReceiveOrder3" = TRUE), the data is stored in the "myReceiveDataArrayCP341" data
array starting with the "myReceiveDataArrayCP341[0]" array element (data offset is 0). If job
2 is enabled ("myReceiveOrder2" = TRUE), the data is stored in the
"myReceiveDataArrayCP341" data array starting with the "myReceiveDataArrayCP341[20]"
array element (data offset is 20).

CP 341 function blocks
4.10 Application example of the CP 341

Supplement to the CP 340 and CP 341 Modules
110 Function Manual, 04/2014

If "myNewDataReceived" = TRUE, this indicates that new data has been received. This signal
is present for one cycle only.

If an error occurred during the transfer ("myReceiveError" = TRUE) the error code is stored in
the "mySendErrorNumber" variable. If error code 16#1E0F is present in
"myReceiveErrorNumber", an error occurred during the data transfer. The transfer error code
is stored in the "myReceiveTransErrorNumber" variable. The error signals are reset when you
set input "myResetReceive" = TRUE.

Sending data:

You can use the "mySendOrder1", "mySendOrder2" and "mySendOrder3" inputs to select
between three send jobs:

● Job 1 sends 10 bytes of data from the "mySendDataArrayCP341" data array from array
element "mySendDataArrayCP341[0]" to "mySendDataArrayCP341[9]"

● Job 2 sends 20 bytes of data from the "mySendDataArrayCP341" data array from array
element "mySendDataArrayCP341[20]" to "mySendDataArrayCP341[39]"

● Job 3 sends 4,096 bytes of data from the "mySendDataArrayCP341" data array.

The data is sent to the communications partner if the "myExecSendCP341" input detects a
signal change from "FALSE" to "TRUE" (positive edge).
If output signal "mySendDone" = TRUE, the send job has been completed. A new job can be
sent if the "myExecSendCP341" input signal detects another signal change from FALSE to
TRUE.

If an error occurred during the transfer ("mySendError" = TRUE), the error code is stored in
the "mySendErrorNumber" variable. If error code 16#1E0F is present in
"mySendErrorNumber", an error occurred during the data transfer. The transfer error code is
stored in the "mySendTransErrorNumber" variable. The error signals are reset when you set
input "myExecSendCP341" = FALSE.

When the signal state at the "myResetSend" or "myResetReceive" input is set to "TRUE", the
send job or receive job is canceled, respectively. If the signal state remains "TRUE", sending
and receiving of data is disabled.

 Note

Proper data transfer can be observed as follows:
● The "TxD" and "RxD" LEDs on the CP module illuminate.
● Output parameter (_CP341_send FB) done = TRUE or NewDataReceived = TRUE

CP 341 function blocks
4.10 Application example of the CP 341

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 111

Alarm processing 5
Pending error messages are processed and evaluated differently in a SIMOTION system than
in a SIMATIC system. Diagnostic alarms are not enabled by default. Enable the alarms for
each module in the hardware configuration, see Chapter Integrating the communications
processors in the SIMOTION project (Page 15).

If you have parameterized diagnostic alarms, then you should program the alarm processing
sequence according to the principle presented below.

Figure 5-1 Alarm processing for CP 340 or CP 341

Alarm evaluation
Alarms originating from the I/O are evaluated in the PeripheralFaultTask. When the
PeripheralFaultTask is started, the Taskstartinfo is made available, which you can evaluate in
the user program.

The Taskstartinfo of PeripheralFaultTask is comparable to the local data of OB82 in the
SIMATIC system.

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 113

Table 5-1 Meaning of the Taskstartinfo

Task TSI Remarks
PeripheralFaultTask DT TSI#startTime Start time of the task

UDINT TSI#interruptID Identifies the triggering event:
● _SC_PROCESS_INTERRUPT
● _SC_DIAGNOSTIC_INTERRUPT
● _SC_STATION_DISCONNECTED
● _SC_STATION_RECONNECTED

DINT TSI#logBaseAdrIn Logical base address if a process alarm (PRAL) or a diagnostic
alarm (DAL) was caused by an input area on the module, otherwise
_SC_INVALID_ADDRESS

DINT TSI#logBaseAdrOut Logical base address if a process alarm (PRAL) or a diagnostic
alarm (DAL) was caused by an output area on the module,
otherwise _SC_INVALID_ADDRESS

DINT TSI#logDiagAdr Diagnostic address of a DP slave if the alarm was caused by a
station failure or station recovery of an associated DP slave,
otherwise _SC_INVALID_ADDRESS

DWORD TSI#details Detail information (bit fields)

Definition of a diagnostic alarm
If the user program is to respond to an internal or external error, you can set the parameters
for a diagnostic alarm that will interrupt the cyclical program of the SIMOTION device.

Events triggering a diagnostic alarm
The criteria (events) that trigger diagnostic alarms in a SIMOTION system are the same as in
a SIMATIC system.

More detailed information is available in the following SIMATIC manuals: CP 340 Point-to-Point
Connection, Installation and Parameter Assignment and CP 341 Point-to-Point Connection,
Installation and Parameter Assignment.

Responses to a diagnostic alarm
If a diagnostic alarm occurs, the following take place:

● Diagnostic data are written to TSI#details variable in the Taskstartinfo of
PeripheralFaultTask.

● In the PeripheralFaultTask, you can read out and save the 4 bytes of diagnostic data.

● The group error LED (SF) of the CP module lights up. The group error LED (SF) is
extinguished as soon as the error has been remedied.

Alarm processing

Supplement to the CP 340 and CP 341 Modules
114 Function Manual, 04/2014

Bit assignment
The TSI#details variable is assigned in the same way as in a SIMATIC system.

 Note

More information is available in the following SIMATIC manuals:
● CP 340 Point-to-Point Connection, Installation and Parameter Assignment
● CP 341 Point-to-Point Connection, Installation and Parameter Assignment

Alarm processing

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 115

Appendices A
A.1 SIMOTION and SIMATIC names

The tables below contain a comparison of SIMOTION and SIMATIC names.

Table A-1 SIMOTION and SIMATIC names for CP 340

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION Function Library)
Function block parameters
_CP340_send FB P_SEND (FB 3) _FB_CP340_send
execute REQ request
reset R abort
moduleAddress LADDR moduleAddress
dataOffset DBB_NO dataOffset
dataLength LEN dataLength
periIn - inputInterface
periOut - outputInterface
data DB_NO data
done DONE done
error ERROR error
errorID STATUS errorNumber
errorIdTransfer - transferErrorNumber
startup - startup

_CP340_receive FB P_RCV (FB 2) _FB_CP340_receive
enable EN_R enable
reset R abort
moduleAddress LADDR moduleAddress
dataOffset DBB_NO dataOffset
periIn - inputInterface
periOut - outputInterface
data DB_NO data
newDataReceived NDR newDataReceived
error ERROR error
dataLength LEN dataLength
errorID STATUS errorNumber
errorIdTransfer - transferErrorNumber
startup - startup

_CP340_printer FB P_PRINT (FB 4) _FB_CP340_print

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 117

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION Function Library)
execute REQ request
reset R abort
moduleAddress LADDR moduleAddress
periIn - inputInterface
periOut - outputInterface
printData (DB_NO/DBB_NO) printerData
done DONE done
error ERROR error
errorID STATUS errorNumber
errorIdTransfer - transferErrorNumber
startup - startup

_CP340_getV24Signals FC V24_STAT (FC 5) _FB_CP340_getV24State
enable - -
periIn - inputInterface
error - -
sigDtr DTR_OUT signalDTR
sigDsr DSR_IN signalDSR
sigRts RTS_OUT signalRTS
sigCts CTS_IN signalCTS
sigDcd DCD_IN signalDCD
sigRi RI_IN signalRI

_CP340_setV24Signals FC V24_SET (FC 6) _FB_CP340_setV24Signals
enable - -
sigDtr DTR signalDTR
sigRts RTS signalRTS
periOut - outputInterface
error - -

Data structure elements Data structure elements
Struct_CP340_printData No direct reference to SIMATIC Struct_CP340_printerData
variable - variable
format - format
Struct_CP340_dataRecord No direct reference to SIMATIC Struct_CP340_dataRecord
dataLength - dataLength
data - data

Module parameters (supplemental
function blocks)

Module parameters (supplemental function blocks)

Appendices
A.1 SIMOTION and SIMATIC names

Supplement to the CP 340 and CP 341 Modules
118 Function Manual, 04/2014

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION Function Library)
_CP340_byteToPrintData,
_CP340_wordToPrintData,
_CP340_dwordToPrintData,

- _FB_CP340_byteToPrinterdata,
_FB_CP340_wordToPrinterdata,
_FB_CP340_dwordToPrinterdata,

execute - execute
data - data
numVariable - numberVariable
entryFormatString - entryFormatstring
entryAtByteNumber - entryAtByteNumber
printData - printerData
done - done
error - error
_CP340_realToPrintData - _FB_CP340_realToPrinterdata
execute - execute
data - data
numVariable - numberVariable
entryFormatString - entryFormatstring
entryAtByteNumber - entryAtByteNumber
printData - printerData
done - done
error - error
_CP340_dintToPrintData,
_CP340_intToPrintData

- _FB_CP340_dintToPrinterdata,
_FB_CP340_intToPrinterdata

execute - execute
data - data
numVariable - numberVariable
entryFormatString - entryFormatstring
entryAtByteNumber - entryAtByteNumber
printData - printerData
done - done
error - error
_CP340_printMsgText - _FB_CP340_printMessageText
execute - execute
numMsgText - numberMsgText
numVariable numberVariable
entryFormatString - entryFormatstring
entryAtByteNumber - entryAtByteNumber
printData - printerData
done - done
error - error

Appendices
A.1 SIMOTION and SIMATIC names

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 119

Table A-2 SIMOTION and SIMATIC names for CP 341

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION function library)
Function block parameters
_CP341_send FB P_SND_RK (FB 8) _FB_CP341_send
mode SF operatingMode
execute REQ request
reset R abort
moduleAddress LADDR moduleAddress
dataOffset DBB_NO dataOffset
dataLength LEN dataLength
periIn - inputInterface
periOut - outputInterface
data DB_NO data
done DONE done
error ERROR error
errorID STATUS errorNumber
errorIdTransfer - transferErrorNumber
remoteCpuId R_CPU_NO (computer interfacing) remoteCPUNumber
remoteDataType R_Typ (computer interfacing) remoteDataType
remoteMemIndex R_NO (computer interfacing) remoteMemoryIndex
remoteDataOffset R_OFFSET (computer interfacing) remoteDataOffset
remoteComFlagByte R_CF_BYT (computer interfacing) remoteComFlagByte
remoteComFlagBit R_CF_BIT (computer interfacing) remoteComFlagBit
startup _ startup

_CP341_receive FB P_RCV_RK (FB 7) _FB_CP341_receive
enable EN_R enable
reset R abort
moduleAddress LADDR moduleAddress
dataOffset DBB_NO dataOffset
periIn - inputInterface
periOut - outputInterface
dataCl3964 DB_NO (procedure/ASCII driver) dataCL3964
newDataReceived NDR newDataReceived
error ERROR error
dataLength LEN dataLength
errorID STATUS errorNumber
errorIdTransfer - transferErrorNumber
dataCl512 - dataCL512
comFlags - communicationFlags
localCpuId - localCPUNumber
localDataType L_TYP (computer interfacing) localDataType

Appendices
A.1 SIMOTION and SIMATIC names

Supplement to the CP 340 and CP 341 Modules
120 Function Manual, 04/2014

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION function library)
localMemIndex L_NO (computer interfacing) localMemoryIndex
localDataOffset L_OFFSET (computer interfacing) localDataOffset
localComFlagByte L_CF_BYT (computer interfacing) localComFlagByte
localComFlagBit L_CF_BIT (computer interfacing) localComFlagBit
startup _ startup

_CP341_printer FB P_PRINT_RK (FB13) No equivalent
execute REQ -
reset R -
moduleAddress LADDR -
periIn - -
periOut - -
printData DB_NO/DBB_NO -
done DONE -
error ERROR -
errorID STATUS -
errorIdTransfer - -
startup - -

_CP341_byteToPrintData,
_CP341_wordToPrintData,
_CP341_dwordToPrintData,
_CP341_realToPrintData,
_CP341_dintToPrintData,
_CP341_intToPrintData,
_CP341_printMsgText

- No equivalent

_CP341_getV24Signals FC V24_STAT (FC 5) _FB_CP341_getV24State
enable - -
periIn - inputInterface
error -
sigDtr DTR_OUT signalDTR
sigDsr DSR_IN signalDSR
sigRts RTS_OUT signalRTS
sigCts CTS_IN signalCTS
sigDcd DCD_IN signalDCD
sigRi RI_IN signalRI

_CP341_setV24Signals FC V24_SET (FC 6) _FB_CP341_setV24Signals
enable -
periIn - inputInterface
error -

Appendices
A.1 SIMOTION and SIMATIC names

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 121

Name in the SIMOTION system
as of V4.0

(command library in SCOUT)

Name in the SIMATIC system Name in the SIMOTION system
up to V3.2

(SIMOTION function library)
sigDtr DTR signalDTR
sigRts RTS signalRTS
periOut - outputInterface

Data structure elements Data structure elements
Struct_CP341_Cl512CpData No direct reference to SIMATIC Struct_CP341_CL512Data
data - data

Appendices
A.1 SIMOTION and SIMATIC names

Supplement to the CP 340 and CP 341 Modules
122 Function Manual, 04/2014

A.2 List of abbreviations

Table A-3 Abbreviations

Abbreviation Meaning
CP Communications processor
DP Distributed I/O
FB Function block
HW Hardware
IM Interface Modul (SIMATIC S7-300 interface module)
IN Input parameters
IN/OUT In/out parameters
I/O Input/Output
LAD Ladder Logic
LED Light Emitting Diode (Light emitting diodes)
OUT Output parameter
RK Computer link

Appendices
A.2 List of abbreviations

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 123

Index

A
Abbreviations, 123
Alarm processing, 113

Bit assignment, 115

B
Bit assignment, 115

C
Calling function blocks

CP 340, 48
CP 341, 103

Centralized application, 14
Communication flag function of the CP 341, 106
Connection, 14
CP 340 application examples, 51
CP 340 function blocks

 _CP340_setV24Signals, 47
_CP340_getV24Signals, 45
_CP340_printer, 29
_CP340_receive, 25
_CP340_send, 20
Call example, 48
Overview, 19

CP 340 print call examples, 40
CP 341 application example, 108
CP 341 function blocks

_CP341_getV24Signals, 100
_CP341_receive, 72
_CP341_send, 60
_CP341_setV24Signals, 102
Call example, 103
Overview, 59

CP 341 print call examples, 95
CP 341 function blocks

_CP341_printer, 84

D
Data consistency, 50, 105

When printing, 50
when receiving data, 105
When receiving data, 50

when sending data, 105
When sending data, 50

Diagnostic interrupt
Bit assignment, 115

Distributed application, 14

F
Functionality, 12

I
I/O variable

Creating, 18
Inserting CP into project, 15
Integrating the function blocks, 17

P
Possible applications, 12
Printing data, 29, 84

CP 340 supplemental function blocks, 35
CP 341 supplemental function blocks, 90

R
Reading RS 232 C accompanying signals, 45, 100
Receiving data, 25, 72

Procedure 3964 (R) or ASCII driver, 72
RK512 computer link, 77

References, 4

S
Sending data, 20, 60

Procedure 3964 (R) or ASCII driver, 60
RK 512 computer link, 64

Setting and resetting RS 232 C accompanying
signals, 47, 102
Setup, 14
SIMOTION and SIMATIC names, 117
special features related to RK 512 computer
interfacing, 107
supplemental function blocks

CP 340, 35
CP 341, 90

Supplement to the CP 340 and CP 341 Modules
Function Manual, 04/2014 125

	Supplement to the CP 340 and CP 341 Modules
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Industrial security

	2 Description
	2.1 General
	2.2 Product description
	2.3 Setup and connection
	2.4 Integrating the communications processors in the SIMOTION project
	2.5 Integrating the function blocks in the user project
	2.6 Creating I/O variables

	3 CP 340 function blocks
	3.1 Overview of the function blocks of the CP 340
	3.2 _CP340_send function block
	3.3 _CP340_receive function block
	3.4 _CP340_printer function block
	3.4.1 Description of the _CP340_printer FB
	3.4.2 supplemental function blocks
	3.4.3 CP 340 print call examples

	3.5 _CP340_getV24Signals function block
	3.6 _CP340_setV24Signals function block
	3.7 Calling the CP 340 function blocks
	3.8 Data consistency
	3.9 Application Examples
	3.9.1 sending and receiving with CP 340
	3.9.2 Printing with CP 340

	4 CP 341 function blocks
	4.1 Overview of the function blocks of the CP 341
	4.2 _CP341_send function block
	4.2.1 Description of the _CP341_send FB
	4.2.2 Application with 3964(R) protocol or ASCII driver
	4.2.3 Application with RK 512 computer interfacing

	4.3 _CP341_receive function block
	4.3.1 Description of the _CP341_receive FB
	4.3.2 Application with 3964(R) protocol or ASCII driver
	4.3.3 Application with RK 512 computer interfacing

	4.4 _CP341_printer function block
	4.4.1 Description of the _CP341_printer FB
	4.4.2 supplemental function blocks
	4.4.3 CP 341 print call examples

	4.5 _CP341_getV24Signals function block
	4.6 _CP341_setV24Signals function block
	4.7 Calling the CP 341 function blocks
	4.8 Data consistency
	4.9 Special features related to data transfer
	4.9.1 Communication flag function with the CP 341
	4.9.2 Requests that can be processed simultaneously with the CP 341
	4.9.3 Data transfer with the RK 512 computer interfacing

	4.10 Application example of the CP 341

	5 Alarm processing
	A Appendices
	A.1 SIMOTION and SIMATIC names
	A.2 List of abbreviations

	Index

