

常问问题 •8 月/2014 年

S7-200 SMART PLC 读取 1FL6 伺服电机的绝对值编码器数值

SINAMICS V90

http://support.automation.siemens.com/CN/view/zh/99521584

目录

1 概况	3
2 使用的硬件及软件	3
2.1 硬件	
2.2 软件	
3 实现方法	3
3.1 概述	
3.2 实现步骤	
3.3 接线	
3.4 PLC 组态及编程	
4参考资料 9)

1 概况

SINAMICS V90是西门子推出的一款小型、高效便捷的伺服系统。它作为 SINAMICS 驱动 系列家族的新成员,与SIMOTICS S-1FL6 伺服电机完美结合,组成最佳的伺服驱动系统,实 现位置控制、速度控制和扭矩控制。目前1FL6电机有两种编码器类型,即增量编码器类型及 绝对值编码器类型。

西门子的小型自动化 S7-200 SMART PLC 可以控制 V90 驱动器,本文介绍如何实现 SMART PLC 读取 1FL6 伺服电机的绝对值编码器数值。

关于如何实现 SMART PLC 控制 V90 实现定位控制请参见《SIMATIC S7-200 SMART 系统手册》及《S7-200 SMART 连接 SINAMICS V90 实现位置控制》。

2 使用的硬件及软件

2.1硬件

序号	设备名称	订货号
1	PS207 电源 24 V DC/2.5 A	6EP1 332-1LA00
2	SIMATIC S7-200 SMART CPU ST60	6ES7288-1ST60-0AA0
3	V90 驱动器	6SL3210-5FE10-4UA0
4	伺服电机	1FL6042-1AF61-0LG1
5	V90 动力电缆 (含接头)	6FX3002-5CL01-1AD0
6	伺服电机编码器电缆 (含接头,用于绝对值编码器)	6FX3002-2DB10-1AD0
7	V90 控制信号电缆(含 50 针接头及 1m 电缆线)	6SL3260-4NA00-1VB0
8	SIMATIC Field PG M3	6ES7715-1BB23-0AA1
9	Mini USB 电缆	

2.2 软件

序号	说 明
1	Window 7 旗舰版 32 位
2	STEP 7-Micro/WIN SMART 编程软件
3	SI NAMI CS_V-ASSI STANT

3 实现方法

3.1 概述

如图 1 所示,使用 PG 通过标准 mini USB 电缆与 V90 连接,打开 SI NAMI CS V—ASSI TANT 软件设置驱动器的参数。

图 1 PG 与 V90 连接

如图 2 所示,PLC 通过 V90 上的 RS485 通讯读取编码器调整状态并且通过 V90 的数字量 输出检查 V90 的驱动器状态,判断绝对位置是否有效。如果 V90 的 D01=1,D02=0 和 D03=1 且 r2507=3,这意味着 PLC 可以有效地读取编码器的绝对位置,此时可以通过 RS485 USS 通讯读 取绝对位置(r2521[0]),否则 r2521 是无效的。PLC 可以通过数字量输出报警或面板来提示用 户当前 r2521 无效。读取 r2521 值后,PLC 可以通过 PTI 方式输出脉冲给驱动器执行相应的运 动控制。

图 2 PLC 与 V90 系统连接图

3.2 实现步骤

根据 SIMATIC S7-200 SMART CPU ST60 的运动控制功能信号分配和 V90 端子定义进行接线(详见《SINAMICS V90 OPI 操作手册》);使用 SINAMICS_V-ASSISTANT 对 SINAMICS V90 进行参数设置以及对电机的绝对值编码器进行调试;使用 STEP 7-Micro/WIN SMART 编程软件 对 CPU ST60 进行组态和参数化,操作步骤如表 1 所示。

表 1. 操作步骤

步骤	内容
1	接线
2	进行外部脉冲位置控制模式(PTI)下的系统调试
3	STEP 7-Micro/WIN SMART 连接 S7-200 SMART
4	组态运动轴
5	组态轴工艺对象的参数
6	下载到 PLC
7	用轴控制面板调试轴
8	编程
9	下载到 PLC
10	试运行

3.3 接线

S7-200 SMART 与 V90 的 485 通讯连接:

SINAMICS V90 伺服驱动通过 RS485 接口(X12)使用 USS 协议与 PLC RS485(端口 0) 进行通讯,接线如图3所示。

图 3 S7-200 SMART CPU 与 V90 通讯线连接

S7-200 SMART 通过 PTI 方式控制 V90 定位的控制信号接线如图 4 所示:

图 4 S7-200 SMART CPU 与 V90 控制信号连接

3.4 PLC 组态及编程

在 PLC 的编程软件中组态运动轴,详细步骤参见《SIMATIC S7-200 SMART 系统手册》, 注意在组态轴工艺对象的参数中需启用从驱动器里读取 1FL6 伺服电机绝对值编码器的位置, 如图 5 所示。

运动控制向导		×
 ○ 報 ○ ○ 報 0 (轴 0) ○ ○ 執 0 (轴 0) ○ ○ 執 0) ○ ○ 和 0 (軸 0) ○ ○ ○ 和 0 (軸 0) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	从驱动器中读取绝对位置 可以从特定的 Siemens 伺服驱动器 中读取位置信来更新运动轴中的当前位置信。将 SINAMICS V90 伺服驱动器 与已安装绝对编码器的 SIMOTICS-1FL6 伺服电机结合使用时, 支持此功能。调用子例程 AXISO_ABSPOS 以从驱动器中读取绝对位置。 ✓ 已启用	
□ 打幅365万mL □ 组件 ☑ 映射 □ 完成	<上→↑ 【下→↑>】 生成 取消	

图 5 启用从驱动器里读取 1FL6 伺服电机绝对值编码器的位置

在 PLC 中编程如表 2 所示:

表 2. PLC 编程

注意:

PLC 的 RS485 接口的波特率和驱动器 USS 地址要求与 V90 一致,因此, 需要对 V90 里 的参数 P29004 设置一致的 USS 地址。并且 V90 USS RS485 端口的波特率设置为 38400bi ts/s, 报文长度为 4 个 PKW 和 0 个 PZD 的 USS 协议。

4 参考资料

《SINAMICS V90 操作手册》

http://support.automation.siemens.com/CN/view/zh/80007808/0/zh

《SINAMICS V90 入门指南》

http://support.automation.siemens.com/CN/view/zh/80007847/0/zh

SINAMICS V-ASSISTANT 调试工具

http://support.automation.siemens.com/CN/view/zh/81550014

《S7-200 SMART 系统手册》

http://www.ad.siemens.com.cn/download/docMessage.aspx?ID=6780&loginID=&srno=&sendtime=

《西门子 S7-200 SMART 技术参考 Version1.1》

http://www.ad.siemens.com.cn/download/docMessage.aspx?ID=6861&loginID=&srno=&sendtime=

常见问题: S7-200 SMART 连接 SI NAMI CS V90 实现位置控制

http://www.ad.siemens.com.cn/download/docMessage.aspx?ID=7603&loginID=&srno=&sendtime=