

Quick Start
PROFINET Driver V2.2

Quick Start
PROFINET Driver V2.2

Getting Started

04/2020
A5E42795137-AB

Introduction
 1

Quick start for Windows
 2

Quick start for Linux
 3

Quick start for IOT20x0
 4

Quick start for CP1625
Stand-alone

 5

Quick start for CP1625 Host
 6

Hardware configuration in
engineering system

 7

Using PROFINET interface
for IP communication

 8

Application examples
 9

Appendix
 A

 Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E42795137-AB
Ⓟ 04/2020 Subject to change

Copyright © Siemens AG 2017 - 2020.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 3

Table of contents

1 Introduction .. 7
1.1 Overview ... 7
1.2 Security information .. 12
1.3 PROFINET security guidelines ... 13
1.4 Open Source Software ... 14
1.5 Disclaimer for third-party software updates .. 14
1.6 Notes on protecting administrator accounts ... 14

2 Quick start for Windows ... 15
2.1 Quick start for Windows .. 15
2.2 Installing WinPcap Developer's Pack ... 16
2.3 Installing WinPcap .. 17
2.4 Installing Visual Studio 2017 ... 17
2.5 Disabling network protocols that are not utilized .. 18
2.6 Disabling the PNIO adapter of the PG/PC interface ... 19
2.7 Start application example ... 20

3 Quick start for Linux ... 24
3.1 Quick start for Linux .. 24
3.2 PN Driver Linux variants ... 24
3.3 Installing Debian ... 25
3.4 Enabling admin rights for the user .. 26
3.5 Installing the real-time Linux kernel .. 27
3.6 Installing other required packages .. 28
3.7 Using the PN Device Driver for the Linux variant ... 29
3.7.1 Compiling the PN Device Driver ... 30
3.7.2 Loading the PN Device Driver .. 30
3.7.3 Binding the PCI card ... 31
3.7.4 Unbinding the PCI card ... 31
3.7.5 Unloading the PN Device Driver ... 32
3.7.6 Loading the PN Device Driver automatically .. 32
3.7.7 Determining errors during loading of the PN Device Driver.. 33
3.8 Additional Configuration for the Linux Native variant .. 33
3.8.1 Disabling DHCP .. 33
3.8.2 Removing IP address.. 34
3.8.3 Disabling ARP Protocol .. 34
3.8.4 Preventing duplicated packets .. 34
3.8.5 Adapting LED Blink functionality to your hardware ... 34
3.9 Installing and starting Eclipse IDE .. 35
3.10 Starting the application example ... 37

Table of contents

 Quick Start PROFINET Driver V2.2
4 Getting Started, 04/2020, A5E42795137-AB

4 Quick start for IOT20x0 .. 39

4.1 Quick start for IOT20x0 .. 39

4.2 Installing Yocto Image .. 39
4.2.1 Download IOT20x0 Board Support Package ... 40
4.2.2 Using PREEMPT_RT kernel .. 40
4.2.3 Building the Image ... 41
4.2.4 Creating a bootable media ... 42

4.3 Using the PN Device Driver ... 43
4.3.1 Compiling the PN Device Driver .. 43
4.3.2 Loading the PN Device Driver .. 46
4.3.3 Unloading the PN Device Driver .. 46

4.4 Building the PN Driver application ... 47
4.4.1 Build on Command Line ... 47
4.4.2 Build in Eclipse IDE .. 48

4.5 Connecting to the target device ... 50

4.6 Transferring files from the host to the target .. 51
4.6.1 File transfer via USB flash drive ... 51
4.6.2 File transfer via Remote Access .. 52

4.7 Running the application on the target .. 59

4.8 Debugging the PN Driver application ... 61
4.8.1 Debugging the PN Driver application via GNU Debugger ... 61
4.8.2 Debugging the PN Driver application via Remote Debugging ... 61

5 Quick start for CP1625 Stand-alone .. 64

5.1 Quick start for CP1625 Stand-alone .. 64

5.2 Installing Buildroot Image ... 64
5.2.1 Downloading Buildroot package .. 65
5.2.2 Configuring Buildroot ... 65
5.2.3 Building the image ... 65
5.2.4 Adding custom files to the Linux image ... 66
5.2.5 Connecting to the target device via serial console .. 67
5.2.6 Flashing the bootloader ... 68
5.2.7 Booting the image .. 69

5.3 Building the PN Driver application ... 72

5.4 Running the application on the target .. 73

5.5 Transferring files from the target to the host .. 74
5.5.1 Transferring files from the target to the host using serial port ... 74
5.5.2 Transferring files between the target and the host using Secure Shell (SSH) 74

 Table of contents

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 5

6 Quick start for CP1625 Host .. 77

6.1 Quick start for CP1625 Host ... 77

6.2 Changing local port range ... 78

6.3 Installing Buildroot image .. 78
6.3.1 Downloading Buildroot package ... 78
6.3.2 Configuring Buildroot .. 78
6.3.3 Building the image .. 79
6.3.4 Adding custom files to the Linux image .. 79
6.3.5 Configuring CP1625 firmware application as an auto boot application 79

6.4 Using the PN Device Driver .. 80

6.5 Building the PN Driver application .. 80
6.5.1 Building the firmware application .. 80
6.5.2 Building the example application .. 81

6.6 Running the PN Driver application .. 81

7 Hardware configuration in engineering system .. 83

7.1 Hardware configuration in the TIA Portal .. 83
7.1.1 Installing the Hardware Support Package for PN Driver V2.2 .. 83
7.1.2 Generating an XML configuration file ... 86

7.2 Hardware configuration in PNConfigLib ... 88
7.2.1 Generating an XML configuration file ... 88

8 Using PROFINET interface for IP communication ... 90

8.1 How to use PROFINET interface for socket connections ... 90

8.2 Limitations ... 91
8.2.1 Transport protocols ... 91
8.2.2 Local port range .. 91
8.2.2.1 Changing local port range for Linux Native and CP1625 Host variants 92
8.2.3 Default Gateway and IP assignment .. 93
8.2.3.1 Default Gateway assignment via external tools and DHCP ... 93
8.2.3.2 Supported methods for IP and Default Gateway assignment .. 94
8.2.3.3 Disabling DHCP IP assignment for Linux Native and CP1625 Host variants......................... 99
8.2.4 Bandwidth limitation .. 99
8.2.5 SNMP .. 99
8.2.6 Firewall .. 100

8.3 Network planning .. 100

Table of contents

 Quick Start PROFINET Driver V2.2
6 Getting Started, 04/2020, A5E42795137-AB

9 Application examples ... 101

9.1 Test application .. 102
9.1.1 Startup options ... 102
9.1.2 Menu Items .. 103

9.2 Multiple use IO systems ... 105
9.2.1 Menu Items .. 105

9.3 PNIO diagnostics ... 106
9.3.1 Menu Items .. 106

9.4 Configuration control for IO systems.. 107
9.4.1 Optional IO devices .. 107
9.4.2 Flexible topology .. 108
9.4.3 Menu Items .. 109

9.5 Option handling .. 110
9.5.1 Menu Items .. 112

9.6 Receiving alarms ... 113
9.6.1 Menu Items .. 113

9.7 Isochronous mode ... 114
9.7.1 Menu Items .. 115

9.8 Isochronous calculation ... 117
9.8.1 Interpretation of ISO calculation output ... 118
9.8.2 Menu Items .. 119
9.8.3 Enabling debug mode when needed ... 119
9.8.4 Adapting calculation source code into an existing application ... 119
9.8.4.1 Import relevant source files and include them in your Makefile ... 120
9.8.4.2 Insert your application program in the proper callback function .. 120
9.8.4.3 Call functions necessary to manage calculation lifecycle .. 121

9.9 References ... 121

9.10 Opening archived TIA projects in the TIA Portal .. 122

A Appendix .. 123

A.1 Abbreviations / Glossary of terms .. 123

 Index .. 124

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 7

 Introduction 1
1.1 Overview

Purpose of this documentation
These compact instructions aim to provide you with a quick introduction to using "PROFINET
Driver for controller".

Conventions
The terms "PROFINET Driver for controller" and "PN Driver" are used synonymously in this
manual.Please also observe notes marked as follows:

 Note

A note contains important information on the product described in the documentation, on the
handling of the product, or on the section of the documentation to which particular attention
should be paid.

Target group of the documentation
This document is intended for software developers and should help them create an
executable user program in a very short amount of time. This requires the following basic
knowledge:

● Programming experience with C/C++

● User knowledge in the operating systems Windows or Linux depending on the used
variant

● Experience with PROFINET systems

● Basic knowledge of the configuration software TIA Portal or PNConfigLib

● General knowledge of automation technology

What is PN Driver?
PN Driver is a PROFINET controller development kit for RT and IRT.

Introduction
1.1 Overview

 Quick Start PROFINET Driver V2.2
8 Getting Started, 04/2020, A5E42795137-AB

What are the requirements?
You can run PN Driver on a PC or on an embedded device of your choice. For detailed
requirements of the sample variants, you can refer to the corresponding chapters in this
document. To port PN Driver to another operating system or to a different hardware platform,
you should refer to "How to Port PN Driver V2.2 Manual".

Even though a hardware configuration can also be created without an engineering system,
we recommend using the TIA Portal engineering system. You can also use the
PNConfigLib tool that allows you to create PROFINET projects, perform consistency checks
to ensure their validation and compile them. It is intended to be a lightweight solution to
create and compile PROFINET projects. If you use neither TIA Portal nor PNConfigLib, you
have to make sure that all the used XML input or output files originate from reliable sources.

 Note

The hardware components that are stated as requirements for running the PN Driver
software (e.g. CP 1625 board, Intel Ethernet adapters) are not included in the product,
customers are responsible for the procurement process.

New functions of PN Driver V2.2
● Linux IP stack support

● Standard Linux Ethernet Driver support

● Calculation tool of Isochronous mode parameters

● Firmware download via SSH

● Hardware configuration with TIA Portal V16

● Enable/Disable SNMP functionality

● Isochronous Real Time (IRT) Performance Upgrade

 Note

Only little endian systems are supported.

 Note

PN Driver runs only as 32-bit application.

 Note

There are two types of startup for PROFINET devices: "Startup Mode Legacy" and "Startup
Mode Advanced". Both startup types are supported by PN Driver in RT communication, but
PN Driver only supports the "Startup Mode Advanced" startup type in IRT communication.

 Introduction
 1.1 Overview

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 9

Application examples
The PN Driver software package includes a set of application examples which offers a quick
start into programming your own applications. The application examples also provide an
overview of the functionality of PN Driver.

Technical specifications

Table 1- 1 Technical specifications of the PN Driver variants

PN Driver V2.2 Windows Linux Linux Native IOT20x0 CP1625 Host CP1625
Stand-alone

Max. number of
PROFINET devices

16 128 128 64 28 128

Max. number of Fast
Startup
devices

- 32 - - 32 32

Supported send cy-
cles RT

32 ms 1, 2, 4 ms 1 ms 1, 2, 4 ms 1, 2, 4 ms 1, 2, 4 ms

Supported send cy-
cles
IRT & Isochronous
mode

- - - - 0.250, 0.375,
0.5, 0.625,
0.75, 0.875, 1,
2, 4 ms

0.5, 0.625,
0.75, 0.875, 1,
2, 4 ms

Supported number of
PROFINET IRT de-
vices

- - - - 32 32

Number of supported
frames
per milliseconds

4 frames
per 32 ms

13 frames
per 1 ms

13 frames
per 1 ms

8 frames
per 1 ms

64 frames
per 1 ms

64 frames
per 1 ms

Max. data length of a
submodule
in bytes

1024 1024 1024 1024 1024 1024

Max. number of input
addresses in bytes

8192 8192 8192 8192 8192 8192

Max. number of output
addresses in bytes

8192 8192 8192 8192 8192 8192

Max. data record
length
in bytes

32768 32768 32768 32768 32768 32768

Introduction
1.1 Overview

 Quick Start PROFINET Driver V2.2
10 Getting Started, 04/2020, A5E42795137-AB

Overview of the supplied documentation

Table 1- 2 PN Driver documentation

Documentation Contents
PROFINET IO-Base User Programming Interface
Programming Manual

This document describes the IO-Base API which
represents the interface for creating your own
user programs.

PROFINET Driver for Controller Engineering
Interface Programming and Operating Manual

If an engineering system is not available, hard-
ware configuration can also take place by creat-
ing an XML configuration file. This document
describes how you can create a hardware config-
uration based on an XML file.

How to Port PN Driver V2.2 Manual This document describes how to port the PN
Driver software to another operating system or to
a different hardware platform.

Readme This document includes a short introduction
about the new features coming with the release.
The document also contains registration and
licensing information.

Overview of the supplied PNConfigLib documentation

Table 1- 3 PNConfigLib documentation

Documentation Contents
PNConfigLib User Manual and Documentation This document provides technical details to con-

figure PROFINET controllers with PNConfigLib
and includes application examples.

XSD Documentation This document gives a list of all configuration
parameters defined in input files with their expla-
nation.

PROFINET Controller Attribute List This document includes PROFINET attributes
with their descriptions, types, default values and
ranges to help users develop their own
PROFINET controller.

Readme This document includes a short introduction
about the new features coming with the release.
The document also contains registration and
licensing information.

Additional support
If you have questions regarding the PN Driver that are not addressed in the documentation,
please contact your local representative at the Siemens office nearest to you.
Please send questions, comments and suggestions regarding this manual in writing to the
specified e-mail addresses below.
For useful product information about PN Driver and PNConfigLib, please visit the following
address (https://support.industry.siemens.com/cs/products/6es7195-3aa00-0ya0). In
addition, you can find general information on the Internet (https://www.siemens.com/profinet-
development).

https://support.industry.siemens.com/cs/products/6es7195-3aa00-0ya0
https://www.siemens.com/profinet-development
https://www.siemens.com/profinet-development

Introduction
1.1 Overview

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 11

Technical contact information worldwide

Siemens Sanayi ve Ticaret A.Ş E-mail: (mailto:profinet.devkits.industry@siemens.com)

Office Address:
Yakacık Caddesi No 111
34870 Istanbul, Turkey

Technical contact information for the U.S.

PROFI Interface Center
(http://www.profiinterfacecenter.com)
Office Address:
Siemens Industry, Inc.
C/O The PROFI Interface Center
One Internet Plaza Johnson City,
TN 37604

Phone: +1 (423) 262-2576
E-mail: (mailto:PIC.industry@siemens.com)

Technical contact information for China

The PROFI Interface Center China
Office Address:
7, Wangjing Zhonghuan Nanlu
100102 Beijing

Phone: +86- (10-) 6476-4725
E-mail: (mailto:Profinet.cn@siemens.com)

mailto:profinet.devkits.industry@siemens.com
http://www.profiinterfacecenter.com/
mailto:PIC.industry@siemens.com
mailto:Profinet.cn@siemens.com

Introduction
1.2 Security information

Quick Start PROFINET Driver V2.2
12 Getting Started, 04/2020, A5E42795137-AB

1.2 Security information
Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be
connected to an enterprise network or the internet if and to the extent such a connection is
necessary and only when appropriate security measures (e.g. firewalls and/or network
segmentation) are in place.

For additional information on industrial security measures that may be implemented, please
visit (https://www.siemens.com/industrialsecurity).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure
to cyber threats.

To stay informed about product updates, follow us on Twitter (@ProductCERT), register to
our advisory mailing list or subscribe to the Siemens Industrial Security RSS Feed under
(https://new.siemens.com/global/en/products/services/cert.html#Subscriptions).

https://www.siemens.com/industrialsecurity
https://new.siemens.com/global/en/products/services/cert.html#Subscriptions

Introduction
1.3 PROFINET security guidelines

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 13

1.3 PROFINET security guidelines
As PROFINET controller, PN Driver must abide by the security guidelines of the PROFINET
International Organization.

The security and installation guidelines of PROFINET International Organization can be
found on the Internet under (https://www.profibus.com).

In particular we refer to:

PROFINET Planung / Design
Version: 1.38
Order No.: 8.061 / 8.062 (German / English)

PROFINET Montage / Cabling and Assembly
Version: 2.8
Order No.: 8.071 / 8.072 (German / English)

PROFINET Inbetriebnahme / Commissioning
Version: 1.44
Order No.: 8.081 / 8.082 (German / English)

PROFINET Security Guideline
Version: 2.0
Order No.: 7.002 / 7.001 (English / German)

PROFINET IO Security Level 1
Version: 1.2.1.1
Order No.: 7.302 (English)

https://www.profibus.com/

Introduction
1.4 Open Source Software

Quick Start PROFINET Driver V2.2
14 Getting Started, 04/2020, A5E42795137-AB

1.4 Open Source Software
The product/system described in this document may use Open Source Software or any
similar software of a third party (hereinafter referred to as "OSS"). The OSS is listed in the
Readme_OSS-file of the product.

The purchaser of the product/system described in this document (hereinafter referred to as
"the Customer") is responsible for the right to use OSS that is required for the product to
operate safely and without any problems in accordance with the respective license
conditions of the OSS.

1.5 Disclaimer for third-party software updates
This product includes third-party software. Siemens AG only provides a warranty for
updates/patches of the third-party software, if these have been officially released by
Siemens AG. Otherwise, updates/patches are undertaken at your own risk.

1.6 Notes on protecting administrator accounts
A user with administrator privileges has extensive access and manipulation options in the
system. Therefore, ensure there are adequate safeguards for protecting the administrator
accounts to prevent unauthorized changes. To do this, use secure passwords and a
standard user account for normal operation. Other measures, such as the use of security
policies, should be applied as needed.

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 15

 Quick start for Windows 2
2.1 Quick start for Windows

Overview
This section describes the most important steps required for commissioning PN Driver under
Windows 10. PN Driver V2.2 is tested only with Windows 10 64-bit OS.

Customers are responsible for the target system build (PN Driver under Windows) with the
help of the source code of PN Driver V2.2, application examples and the relevant
documentation. PN Driver must be run as a 32-bit application under Windows.

PN Driver Windows variant is only for demonstration purposes. It is not meant to run as a
proper IO controller because Windows OS does not support RT.

Requirements
You need a WinPcap installed PC with a network adapter. You can use any network adapter
that is supported by WinPcap device driver. To create your own user programs based on the
IO-Base API, we recommend using a development environment, such as Microsoft Visual
Studio 2017.

Copy the CD contents to a path on your Windows PC. Then execute the steps described in
the following sections.

Quick start for Windows
2.2 Installing WinPcap Developer's Pack

 Quick Start PROFINET Driver V2.2
16 Getting Started, 04/2020, A5E42795137-AB

2.2 Installing WinPcap Developer's Pack

Procedure
1. Download the WinPcap Developer’s Pack from the website

(https://www.winpcap.org/devel.htm).

2. Create a folder called "driver" under the path "[..]\pn_driver\src\".

3. Extract the downloaded zip file and copy the folder "WpdPack" to the folder
"[..]\pn_driver\src\driver\".

Figure 2-1 PN Driver file structure

The test application uses the files "wpcap.dll" and "packet.dll" to access the local network
adapters.

PN Driver V2.2 is tested with version 4.1.2 of the developer’s pack.

https://www.winpcap.org/devel.htm

 Quick start for Windows
 2.3 Installing WinPcap

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 17

2.3 Installing WinPcap

Procedure
1. Download the WinPcap driver for Windows from the WinPcap website

(https://www.winpcap.org/).

2. Perform the installation.

PN Driver V2.1 is tested with version 4.1.3 of the WinPcap driver for Windows.

 Note

Notice that WinPcap Developer’s pack and WinPcap versions with which PN Driver V2.2 is
tested are different from each other. This is because "there is no Developer's package
specific for WinPcap 4.1.3 and the current 4.1.2 package is compatible with WinPcap 4.1.3"
as stated in WinPcap website.

 Note

Although WinPcap website states that the product is not officially supported any more, PN
Driver V2.2 is tested with WinPcap and works properly.

2.4 Installing Visual Studio 2017
The Microsoft Visual Studio 2017 development environment lets you run the test application
provided on the installation package under Windows or you can develop your own
application by using PN Driver.

Procedure
1. Download a Microsoft Visual Studio 2017 product of your choice (version 15.9.1 or

higher) for Windows from the Microsoft website (https://www.visualstudio.com/vs/older-
downloads/).

2. Perform the installation. During installation, do not forget to include the "Desktop
development with C++" workload.

https://www.winpcap.org/
https://www.visualstudio.com/vs/older-downloads/
https://www.visualstudio.com/vs/older-downloads/

Quick start for Windows
2.5 Disabling network protocols that are not utilized

 Quick Start PROFINET Driver V2.2
18 Getting Started, 04/2020, A5E42795137-AB

2.5 Disabling network protocols that are not utilized
Since PN Driver includes an IP stack, it is important that all network protocols (TCP/IP, File
and Printer Sharing, Client for Microsoft Networks, etc.) are disabled on the network adapter
used by PN Driver.

Procedure
1. Make sure that all network protocols are disabled for the network adapter on which PN

Driver will run.

Figure 2-2 Disabling network protocols

 Quick start for Windows
 2.6 Disabling the PNIO adapter of the PG/PC interface

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 19

2.6 Disabling the PNIO adapter of the PG/PC interface
If a copy of a configuration software such as TIA Portal is installed on your computer, the
PNIO adapters of the PG/PC interface must be disabled.

Procedure
1. Ensure that all PNIO adapters of the PG/PC interface are disabled.

Figure 2-3 Disabling PNIO adapters of the PG/PC interface

Quick start for Windows
2.7 Start application example

 Quick Start PROFINET Driver V2.2
20 Getting Started, 04/2020, A5E42795137-AB

2.7 Start application example
The enclosed CD includes application examples. The execution and debugging of the
"test_app" is described below as an example.

Requirement
The following paths are important for executing the application example:

● Microsoft Visual Studio 2017 project folder:
"[..]\pn_driver\src\examples\test_app\win32\test_app.sln"

● Source files: "[..]\pn_driver\src\examples\test_app\src\"

● Example XML configuration file: "[..]\pn_driver\src\examples\test_app\win32\
PNDriverBase_TestApp\Station_1.PN Driver_1.PNDriverConfiguration.XML"

Procedure
1. Start Visual Studio 2017 and open the "Solution" under the path

"[..]\pn_driver\src\examples\test_app\win32\test_app.sln". Two projects are loaded in this
step: "pndriver_w32" and "test_app".

Figure 2-4 Solution Explorer

Before PN Driver can be started or debugging can take place, you must ensure that the
application can find the related XML configuration file. A prepared XML configuration file
is available in the directory of the application examples. If you want to control a different
HW configuration with this application, you must copy the configuration file to the working
directory. See the section Application examples (Page 102).

2. Under the "test_app" project, open the file "pnd_test.c".

 Quick start for Windows
 2.7 Start application example

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 21

3. Set a breakpoint on the "int main()" function and start the program.
When you start the program for the first time, the projects are initially compiled.

If the program is executed further, the functions that can be executed by the test
application are listed.

Figure 2-5 Menu of the test application

Quick start for Windows
2.7 Start application example

 Quick Start PROFINET Driver V2.2
22 Getting Started, 04/2020, A5E42795137-AB

4. Enter "2" to call the start function. If the WinPcap driver has been installed correctly, a list
with the network adapters is shown. Select the network adapter that you want to use for
the PROFINET communication. When the HW configuration is downloaded without errors
and PN Driver is started, "0" is output as return value.

Figure 2-6 List of network adapters

 Quick start for Windows
 2.7 Start application example

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 23

 Note

For an application developed for PN Driver V1.0 to run under PN Driver V2.1 or PN Driver
V2.2, you must make the following changes in the source code:
1. When starting PN Driver, insert the new function "SERV_CP_init" before calling the

function "SERV_CP_startup".
2. Update the function "SERV_CP_startup" according to the specification in the manual

"PROFINET IO-Base User Programming Interface".
3. When shutting down PN Driver, call the function "SERV_CP_undo_init" after calling the

function "SERV_CP_shutdown".

Details on the respective functions are available in the manual "PROFINET IO-Base User
Programming Interface".

 Note

PN Driver V1.1 is compatible with PN Driver V2.1 and PN Driver V2.2.

 Quick Start PROFINET Driver V2.2
24 Getting Started, 04/2020, A5E42795137-AB

 Quick start for Linux 3
3.1 Quick start for Linux

Overview
This section describes the steps required for commissioning PN Driver under Linux.
The following statements refer to Debian 9.3 with the Linux kernel V4.9 including real-time
patch. To keep updated for any Debian version upgrade, please refer to the PN Driver
Readme document .
Customers are responsible for the target system build (PN Driver under Linux) with the help
of the source code of PN Driver V2.2, application examples and the relevant documentation
files.

3.2 PN Driver Linux variants
There are two PN Driver variants that can run on a Linux PC with a standard ethernet
adapter: Linux Native and Linux. These variants have the following different features and
constraints:
Linux Native variant: It is possible to use the same network interface for both IP
communication of third party applications and PROFINET communication with this PN Driver
variant.
Please note that the configurations which are described in the section Using PROFINET
interface for IP communication (Page 90) are mandatory for this variant even if the interface
is only used for PROFINET.
PN Driver Linux Native variant can be used with any ethernet adapter as long as it is
installed to the system with its driver correctly.
The interface that is used by Linux Native variant must not be used for any other purposes.
The real-time performance could be influenced by not following this rule. For TCP and UDP
communication the created virtual interface should be used.
PROFINET feature Fast Startup is not supported by this variant.
Linux variant: You must have PNDevDriver installed on your system. This is the device driver
used by PN Driver and it is provided in the PN Driver delivery. The supported ethernet
adapters are Intel I210 ("Springville") and Intel 82574L ("Hartwell"). The PROFINET interface
can be used only by PN Driver, so you should have an additional ethernet adapter for any
other type of network communication.
PROFINET feature Fast Startup is supported by this variant.

 Note
We recommend using the Eclipse development environment under Linux.
PN Driver only supports little endian environments. PN Driver only works as a 32-bit
application under 32-bit or 64-bit operating systems.

 Quick start for Linux
 3.3 Installing Debian

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 25

3.3 Installing Debian
Debian images are available on the Debian website (https://www.debian.org/) and can be
installed with a USB stick. For installation, you can copy the *.iso image to a USB stick (for
example, with UNetbootin from (https://unetbootin.github.io)).

The USB stick must be formatted in FAT32 and should be blank.

Procedure
1. Install Debian.

– You can use the default settings during installation.

– User name and password as well as the Superuser(Root) password must be chosen
to comply with your security regulations.

After the installation is completed and the PC is restarted, the login window is displayed.

2. Enter the previously specified user name and the specified password.

Figure 3-1 Debian login

 Note

Standard Linux and Linux toolchain are not parts of the product PN Driver V2.2.

https://www.debian.org/
https://unetbootin.github.io/

Quick start for Linux
3.4 Enabling admin rights for the user

 Quick Start PROFINET Driver V2.2
26 Getting Started, 04/2020, A5E42795137-AB

3.4 Enabling admin rights for the user
You need superuser rights to run example application. To get these rights, you may need to
proceed as follows. This step highly depends on the options chosen during installation.

Procedure
1. Start a terminal and enter "su".

2. Confirm the password prompt with the superuser password specified during installation.

3. If you have not already installed ‘sudo’ package, you need to run the following command:
apt-get install sudo

4. Add your user to the superuser group ("sudo") by entering "adduser PnDriverUser sudo".
("PnDriverUser" is the user name used in the example).

Figure 3-2 Enabling admin rights

5. Log off with the current user and log on again for the changes to become effective.

 Quick start for Linux
 3.5 Installing the real-time Linux kernel

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 27

3.5 Installing the real-time Linux kernel

Procedure
1. To ensure the real-time capability of the Linux system, download and install the real-time

kernel from the repository:

– for 32-bit systems:
sudo apt install 4.9.0-11-rt-686

– for 64-bit systems:
sudo apt install 4.9.0-11-rt-amd64

2. When the CPU is not active, parts of it are switched to idle mode. This saves power for
the PC but it takes longer for the CPU until it can compute actively. This wake up mode
slows down cyclic tasks with short cycle times (ms and µs). You therefore need to change
the scheduling mechanism of the real-time Linux kernel with one of the following
methods:

– Add the boot parameter "idle=poll" below the kernel you use in the file
"/boot/grub/grub.cfg". Example:
linux /boot/vmlinuz-4.9.0-11-rt-686-pae root=UUID=xxx ro quiet idle=poll

– If changes in kernel boot parameters are not allowed or if this setting needs to be
enabled/disabled on demand, the user application may use the Power Management
Quality of Service (PM QOS) interface, which is mapped to /dev/cpu_dma_latency, to
achieve the same effect. Writing zero to /dev/cpu_dma_latency will emulate the
idle=poll behavior.

If no desirable Linux kernel with real-time support ("rt") is available, you must download the
source code files of the required Linux kernel, edit them with a Realtime preemption (RT-
Preempt) patch and compile the kernel yourself. You can download the kernel and the
available Realtime patches at kernel.org kernel.org
(https://www.mirrorservice.org/sites/ftp.kernel.org/pub/linux/kernel/)

 NOTICE
While power management and frequency scaling are disabled with idle=poll parameter or
/dev/cpu_dma_latency interface, turbo mode should be disabled from the BIOS setting to prevent any
negative effects on the CPU for long-term usage.

https://www.mirrorservice.org/sites/ftp.kernel.org/pub/linux/kernel/

Quick start for Linux
3.6 Installing other required packages

 Quick Start PROFINET Driver V2.2
28 Getting Started, 04/2020, A5E42795137-AB

3.6 Installing other required packages

Requirements
You may need the following to execute the instructions listed below:

 Note

Please make sure that your machine has internet access and the packet servers are
reachable. These steps highly depend on the chosen options of the operating system
installation.

Proxy server

If a proxy server is required, edit the file "/etc/apt/apt.conf.d/80proxy" by entering the
respective proxy settings as follows:

Acquire::http::Proxy "..."; //("..." = http://user:password@proxy.server:port/)

Acquire::https::Proxy "..."; //("..." = http://user:password@proxy.server:port/)

Sources for updates

You need to store the sources for updates in order to be able to download the required
packages. To store the sources for updates, please follow the steps below:

1. Open the file “/etc/apt/sources.list”.

2. There comment out "cdrom".

3. Uncomment the following and extend with “non-free”:
deb http://deb.debian.org/debian stretch-updates main contrib non-free
deb-src http://deb.debian.org/debian stretch-updates main contrib non-free

4. Add:
deb http://deb.debian.org/debian stretch main contrib non-free
deb-src http://deb.debian.org/debian stretch main contrib non-free

5. Save the list. Then enter the following in the terminal program:
sudo find /var/lib/apt –type f –exec rm {} \+
sudo apt update

 Quick start for Linux
 3.7 Using the PN Device Driver for the Linux variant

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 29

Procedure
1. Install the required Linux header files. For example, enter the following in the terminal

program for 64 bit systems:
sudo apt install linux-headers-4.9.0-11-rt-amd64

Make sure that the headers match the currently used kernel. You can read out the kernel
version with the command "uname –a".

2. To build the PN Driver application, you must install "gcc", "make" and additional
packages. To do so, enter the following in the terminal program:
sudo apt install build-essential

3. Install the following packages to get the debugging option:
sudo apt install gdb gdbserver gdb-multiarch

4. PN Driver is a 32-bit application. If you have a 64-bit Debian installation but want to run
32-bit applications, you must add the i386 architecture to the package manager and
update the package database. To do so, enter the following in the terminal program:
sudo dpkg --add-architecture i386
sudo apt update
sudo apt install libc6-dev-i386
sudo apt install g++-multilib

Next you must install the matching C++ standard library:
sudo apt install libstdc++6:i386

3.7 Using the PN Device Driver for the Linux variant

Overview
You can skip this section if the Linux Native variant will be used. Linux variant of PN Driver
requires PN Device Driver (PNDevDrv) to use the network adapters. You must compile the
modules yourself as described below.

 Note

When we talk about "32-bit" or "64-bit" in this section, we are always referring to the installed
operating system and not the application. This means you use a 64-bit Linux kernel module
for a 64-bit operating system even when a 32-bit application is executed.

After a restart, the PNDevDrv must be loaded again unless you have set your system to do it
automatically as described in the section Loading the PN Device Driver automatically
(Page 30).

Quick start for Linux
3.7 Using the PN Device Driver for the Linux variant

 Quick Start PROFINET Driver V2.2
30 Getting Started, 04/2020, A5E42795137-AB

3.7.1 Compiling the PN Device Driver
You must compile the Linux kernel module. To do so, you need the directory "bc_driver/".

Procedure
1. When you have installed all the build tools mentioned above (see section Installing other

required packages), you can generate the PN Device Driver by entering the following
command in the directory "[..]/bc_driver/src/pndevdrv/bin/Linux":

– in 32-bit systems:
sudo make modules IS_32=1

– in 64-bit systems:
sudo make modules

The result is a "*.ko" file which can then be loaded. Keep in mind that a "_32.ko" file can
only be compiled and loaded on a 32-bit Debian; a "_64.ko" file can only be used with 64-
bit systems.

2. In addition to the actual driver, a shared object file must be generated; this file
corresponds to a DLL in Windows. You can generate this shared object file with the
"Makefile_SharedObject" in "[..]/bc_driver/src/pndevdrv/bin/Linux":

– in 32-bit systems:
make -f Makefile_SharedObject PnDev_DriverU32.so CCFLAGS=-DMAP_32BIT=0

– in 64-bit systems:
make –f Makefile_SharedObject all

As a result, a shared object file ("*.so") for 32-bit or 64-bit applications is generated and
stored in the same folder.

3.7.2 Loading the PN Device Driver

Procedure
1. To load the PN Device Driver temporarily (until the next restart), use the following

command in the same folder in which the "PnDevDrv_*.ko" module is located:

– for 32-bit systems:
sudo insmod PnDevDrv_32.ko

– for 64-bit systems:
sudo insmod PnDevDrv_64.ko

 Quick start for Linux
 3.7 Using the PN Device Driver for the Linux variant

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 31

3.7.3 Binding the PCI card

Overview
To get the PNDevDrv running for a specific PCI Card, you need to bind the card to the driver.
To execute the following procedure, admin rights are necessary. For detailed information,
please refer to the section Enabling admin rights for the user (Page 26)

Procedure
1. Find out the PCI location of the corresponding card. Use the command "lspci –k".

2. Identify if there is already a Linux kernel driver in use. If there is, unbind the PCI device.
The following command is an example of doing this.

echo 0000:01:00.0 > /sys/bus/pci/devices/0000:01:00.0/driver/unbind

3. A supported unbound card can be bound to PNDevDrv with:

echo 0000:01:00.0 > /sys/bus/pci/drivers/pndevdrv/bind

4. When executing the command "lspci –k" again, the used Linux kernel driver for the
corresponding PCI card should be

“Kernel driver in use: pndevdrv”.

3.7.4 Unbinding the PCI card

Overview
The PNDevDrv can be unbound from a specific PCI card.

 Note

Unbinding and binding the PNDevDrv can be used for resetting the card if there has been a
crash.

Procedure
1. Find out the PCI location of the corresponding card. Use the command "lspci -k".

2. A bound card can be unbound by executing one of the following commands with the
corresponding PCI location.

“echo 0000:01:00.0 > /sys/bus/pci/drivers/pndevdrv/unbind”

or

“echo 0000:01:00.0 > /sys/bus/pci/devices/0000:01:00.0/driver/unbind”

3. When executing the command “lspci –k” again, the line “Kernel driver in use:“ should
not be present.

Quick start for Linux
3.7 Using the PN Device Driver for the Linux variant

 Quick Start PROFINET Driver V2.2
32 Getting Started, 04/2020, A5E42795137-AB

3.7.5 Unloading the PN Device Driver
If the application you have developed crashes, we recommend that you reload the
PN Device Driver.

Procedure
1. Enter the following in the terminal program:

– for 32-bit systems:
sudo rmmod PnDevDrv_32

– for 64-bit systems:
sudo rmmod PnDevDrv_64

2. Then you can load the PN Device Driver once again (see the section Loading the PN
Device Driver (Page 30)).

The error message "Error: Module PnDevDrv_xx is in use" indicates that the driver is being
used by another application in the system. This application must be closed first.

3.7.6 Loading the PN Device Driver automatically
Linux supports automatic loading of drivers during booting. For this, you must do the
following:

Procedure
1. Copy the Linux kernel module "*.ko" to a folder that is available during system start, e.g.

"/usr/local/". (In case of encrypted home drives, "/home/<Username>/[..]" might not be
readable.)

2. For Linux to find the driver during booting, a symbolic link to the Linux
kernel module must be created:
sudo ln -s /usr/local/PnDevDrv_64.ko /lib/modules/4.9.0-11-rt-amd64
The input "4.9.0-11-rt-amd64" in the example depends on the installed real-time Linux
kernel. Make sure that the path information is correct.

3. For the automated binding of the PNDevDrv to the corresponding card, a file called
pndev.rules needs to be created at /etc/udev/rules.d/.
This file unbinds the card from an already existing driver and binds it to the PNDevDrv.
To do so, add the following lines to pndev.rules file:
 ACTION=="add", KERNEL=="0000:01:00.0", SUBSYSTEM=="pci", RUN+="/bin/sh -c 'echo
0000:01:00.0 > /sys/bus/pci/devices/0000:01:00.0/driver/unbind'"
 ACTION=="add", KERNEL=="0000:01:00.0", SUBSYSTEM=="pci", RUN+="/bin/sh -c
'modprobe PnDevDrv_64'"
 ACTION=="add", KERNEL=="0000:01:00.0", SUBSYSTEM=="pci", RUN+="/bin/sh -c 'echo
0000:01:00.0 > /sys/bus/pci/drivers/pndevdrv/bind'"
 Please note that you must adapt the PCI bus addresses according to your system.

4. Internal start routines of Linux can be updated with the following two commands, so that
the driver can be loaded during the next restart:
sudo depmod –a
sudo update-initramfs -u

 Quick start for Linux
 3.8 Additional Configuration for the Linux Native variant

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 33

3.7.7 Determining errors during loading of the PN Device Driver
If loading of the PNDevDrv ("insmod") were to fail, you can output the last system messages
and try to determine what caused the error.

Procedure
1. To do so, enter:

dmesg

Possible causes of error are:

● Insufficient memory for mapping (for 32-bit systems)

– Error message during loading: "Permission denied!" - dmesg indicates that "vmap"
could not be executed

– Solution: Start 32-bit systems with the boot parameter "vmalloc=xxxM".

● Other drivers loaded for the network adapters (igb, e1000e)

– Solution: Unbind/bind the driver from/to the PCI card.

● Driver is already loaded

– Solution: Unload/load the driver.

● Insufficient coherent memory available (for DMA transfer).

– Solution: Load driver during booting when memory is not yet very fragmented.

● Path to "*.ko" file incorrect (with loading during boot process)

– Solution: Update the path.

3.8 Additional Configuration for the Linux Native variant
If the Linux Native variant is used, the following settings that are specific to this variant must
be done.

3.8.1 Disabling DHCP
DCHP clients must be deactivated for the interface which is used for PROFINET
communication.

Adding the following line to the file "/etc/network/interfaces" would deactivate DHCP clients
for the interface (assuming the interface name is eth0):

● iface eth0 inet manual

Quick start for Linux
3.8 Additional Configuration for the Linux Native variant

 Quick Start PROFINET Driver V2.2
34 Getting Started, 04/2020, A5E42795137-AB

3.8.2 Removing IP address
The interface which is used for PROFINET communication must not have any IP address
since it is used to capture raw packets by PN Driver.

This setting is not necessary if the setting which is described in Disabling DHCP (Page 33)
has already been done and the system has been rebooted or the networking system has
been restarted afterwards. Otherwise, the following command would remove the IP address
(assuming the interface name is eth0):

● ip addr flush dev eth0

3.8.3 Disabling ARP Protocol
The ARP protocol must be disabled for the interface used by the Linux Native variant.
Otherwise, two ARP responses will be sent on the wire for ARP probes, one from PN Driver
and the other one from Linux IP stack.

Adding the following line to a created "/etc/sysctl.d/pn_arp.conf" file would disable ARP for
the interface used by the Linux Native variant (assuming the interface name is eth0):

● net.ipv4.conf.eth0.arp_ignore=8

3.8.4 Preventing duplicated packets
In the Linux Native variant, incoming packets are received by both PN Driver and Linux IP
stack. As PN Driver also sends the non-PROFINET packets to the Linux IP stack, Linux IP
stack gets the same non-PROFINET packet twice. To prevent duplicate packets the
following commands need to be executed, before PN Driver is started (assuming the
interface name is eth0):

● sudo tc qdisc add dev eth0 handle ffff: ingress

● sudo tc filter add dev eth0 parent ffff: matchall skip_hw action drop

These commands are not persistent and they need to be run after every PC restart or
binding/unbinding the driver to/from the PCI Card.

3.8.5 Adapting LED Blink functionality to your hardware
Linux Native variant can be used with any ethernet adapter, but the LED handling solution
provided by PN Driver may not be suitable for every adapter. In this case, the user needs to
implement a hardware specific LED handling for "DCP Show Location" service of
PROFINET. For more details please refer to the related section of "How to Port PN Driver
V2.2 Manual".

 Quick start for Linux
 3.9 Installing and starting Eclipse IDE

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 35

3.9 Installing and starting Eclipse IDE
The Eclipse development environment may be used for starting and debugging PN Driver
under Linux.

Procedure
1. Under Debian, you can install Eclipse with the package manager "apt". To do so, enter:

sudo apt install eclipse-cdt

2. Start Eclipse for debugging with superuser (root) rights:
sudo eclipse

3. After the installation, you can load the test application in Eclipse using [File > Import >
General > Existing Projects into Workspace].

4. In the Import dialog as root directory, navigate to the CD directory
"[..]/pn_driver/src/examples". Eclipse now displays all existing projects.

5. Select "pndriver_32" and "test_app" projects under the following paths respectively
depending on the variant which you want to build

For Linux variant;

[..]/pn_driver/src/examples/shared/linux32

[..]/pn_driver/src/examples/test_app/linux32

For Linux Native variant;

[..]/pn_driver/src/examples/shared/linux32_native

[..]/pn_driver/src/examples/test_app/linux32_native

Once these projects are imported into Eclipse, you can use the test application for
debugging. All settings required for the build process are already implemented.

Quick start for Linux
3.9 Installing and starting Eclipse IDE

 Quick Start PROFINET Driver V2.2
36 Getting Started, 04/2020, A5E42795137-AB

6. Compile the two projects using [Project > Build All]. The compilation process uses a
makefile that is available in the subdirectory "build" under the project directories which are
selected in the above step.

Figure 3-3 Eclipse - Build All

During debugging you must ensure that the starting conditions regarding the XML file and
the shared object file are observed. Both files must be located in the same directory as the
executed PN Driver. See the section Starting the application example (Page 37).

 Quick start for Linux
 3.10 Starting the application example

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 37

3.10 Starting the application example

Requirements
Before you start PN Driver or run debugging, you must ensure that the application can locate
the corresponding XML file as well as the shared object file of the PN Device Driver if the
Linux variant is used. Both files must be stored in the same directory as the executable PN
Driver file. The directory for the test application is the same as the project directory which is
selected in chapter Additional Configuration for the Linux Native variant (Page 33)

● This directory already includes a prepared test XML file for hardware configuration.

● If Linux variant is used, for communication between PN Driver and the PNDevDrv, the
associated shared object file "PnDev_DriverU32.so" that is available in the directory
"[..]/bc_driver/src/pndevdrv/bin/Linux" must be placed in the same directory as the
executable PN Driver file.

● Because PN Driver changes the thread priority in the real-time Linux kernel, the
application must be started with superuser permissions. For debugging, this is also true
for the Eclipse development environment from which the application is started.

If the Linux Native variant is used, the configuration steps which are described in Additional
Configuration for the Linux Native variant (Page 33) must be done before running the
application.

 Note

When you start the PN Driver application in Eclipse in debugging mode, the application may
no longer respond. Exit Eclipse and restart it.

To avoid errors, start the PN Driver application in Eclipse in Run mode.

Procedure
1. You can now create a breakpoint with Eclipse in the "main()" function

("[..]/pn_driver/src/examples/test_app/src/pnd_test.c") which stops the program at the
beginning during debugging.

2. For debugging, right-click the "test_app" project and select using [Debug As > 1 Local
C/C++ Application].

 Note

To detect crashes in the application, a time-out of 2 s is executed when you start PN
Driver. You can disable this timeout, which disrupts debugging, in the file
"[..]/pn_driver/src/source/pnd/src/agent/pnd_agent.cpp", function "pnd_agent_startup",
when calling "eps_open(xxx, xxx, 2);". To do so, replace the last parameter (timeout
period in s, here: "2") with "0" (infinite waiting).

Quick start for Linux
3.10 Starting the application example

 Quick Start PROFINET Driver V2.2
38 Getting Started, 04/2020, A5E42795137-AB

3. After starting PN Driver (by running the command "sudo ./test_app" or with Eclipse), it
will show an overview of all detected and supported Ethernet adapters. By entering "2"
(for "SERV_CP_startup"), you can select a card that is to be used by PN Driver.

Figure 3-4 Selecting a network adapter

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 39

 Quick start for IOT20x0 4
4.1 Quick start for IOT20x0

Overview
This section describes the steps required for commissioning PN Driver under a custom
Linux operation system built with Yocto Project (https://www.yoctoproject.org).

The following statements refer to standard Yocto image for IOT20x0 where x stands for 0, 2
or 4. This image can be built by using IOT20x0 Board Support Package IOT20x0 Board
Support Package (https://github.com/siemens/meta-iot2000/releases/tag/V2.2.0) with Yocto
2.1.

Customers are responsible for the target system build (PN Driver under IOT20x0 hardware
device) with the help of the source code of PN Driver V2.2, application examples and the
relevant documentation files.

Requirements
You need an IOT20x0 hardware device with a valid boot image and PNDevDrv installed. We
recommend using the Eclipse development environment under Linux Host Development
System, especially for remote debugging purposes.

 Note

PN Driver only works as a 32-bit application under 32-bit or 64-bit operating systems. Please
note that IOT20x0 platform has a 32-bit operating system.

4.2 Installing Yocto Image

Requirements
You need a build host with a minimum of 50 GB of free disc space that is running a
supported Linux distribution. In this chapter Linux Host Development System refers to
Debian 9.3 with the Linux kernel V4.9 including RT patch. For more details, refer to the
section Installing Debian (Page 25). For a list of other distributions that support the Yocto
Project, refer to (https://www.yoctoproject.org/docs/2.1/mega-manual/mega-
manual.html#detailed-supported-distros). To keep updated for any Debian version upgrade,
please refer to the PN Driver Readme document.

https://www.yoctoproject.org/
https://github.com/siemens/meta-iot2000/releases/tag/V2.2.0
https://www.yoctoproject.org/docs/2.1/mega-manual/mega-manual.html#detailed-supported-distros
https://www.yoctoproject.org/docs/2.1/mega-manual/mega-manual.html#detailed-supported-distros

Quick start for IOT20x0
4.2 Installing Yocto Image

 Quick Start PROFINET Driver V2.2
40 Getting Started, 04/2020, A5E42795137-AB

4.2.1 Download IOT20x0 Board Support Package
IOT20x0 Board Support Package which you can download from
(https://github.com/siemens/meta-iot2000/releases/tag/V2.2.0) is required to build standard
Yocto image for IOT20x0.

To download the package run:

● git clone https://github.com/siemens/meta-iot2000

To use specific V2.2.0, run the following command under your repository directory:

● git checkout tags/V2.2.0

This package contains the following elements: meta-iot2000-bsp and meta-iot2000-example.
meta-iot2000-example is an extended version of meta-iot2000-bsp and it can be used to
build an exemplary image with additional tools and services on top of meta-iot2000-bsp.
meta-iot2000-bsp does not configure the network. For preconfigured IP settings, you should
use meta-iot2000-example package.

For updates and detailed information please refer to (https://github.com/siemens/meta-
iot2000).

4.2.2 Using PREEMPT_RT kernel
The recipes-rt recipes provide package and image recipes for using and testing the
PREEMPT_RT Linux kernel. In order to build the image with the linux-yocto-rt kernel, file
"kas-rt.yml" under the directory [..]/meta-iot2000/meta-iot2000-example has the value for
"PREFERRED_PROVIDER_virtual/kernel" configuration parameter.

Additional packages need to be included in the image. In order to include these packages,
add attributes “CORE_IMAGE_EXTRA_INSTALL” and “IMAGE_INSTALL_append” to the file
“kas-rt.yml”. The final content of the file “kas-rt.yml” must be as follows with the added lines
highlighted:

header:

 version: 2

 includes:

 - kas.yml

target: iot2000-example-image-rt

local_conf_header:

 rt_kernel: |

 PREFERRED_PROVIDER_virtual/kernel = "linux-cip-rt"

 CORE_IMAGE_EXTRA_INSTALL = "libstdc++"

 IMAGE_INSTALL_append = " pciutils"

https://github.com/siemens/meta-iot2000/releases/tag/V2.2.0
https://github.com/siemens/meta-iot2000
https://github.com/siemens/meta-iot2000

 Quick start for IOT20x0
 4.2 Installing Yocto Image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 41

4.2.3 Building the Image
IOT2000 Board Support Package uses Yocto 2.1. Before you start the building process, you
have to install the required packages according to the Host Development System. For a list
of required packages please refer to (https://www.yoctoproject.org/docs/2.1/mega-
manual/mega-manual.html#packages)

Building process is done by using the kas build tool. The kas build tool provides an easy
mechanism to setup BitBake based projects by using a project configuration file. For detailed
information, please refer to (https://github.com/siemens/kas)

If the meta-iot2000 package is downloaded from the link given in section 4.2.1 as a
compressed archive file (not by using git as described), the following highlighted line must be
added to the meta-iot2000-example/kas.yml file:
header:
 version: 2
 includes:
 - file: meta-iot2000-bsp/kas.yml
 repo: meta-iot2000
distro: poky-iot2000
target: iot2000-example-image
repos:
 meta-iot2000:
 path: <PATH TO META-IOT2000 FOLDER>
 layers:
 meta-iot2000-example:
meta-intel-iot-middleware:
 url: https://git.yoctoproject.org/git/meta-intel-iot-middleware
 refspec: fc8eabfa4fb54802d3f97123b9d2954450175e33
meta-nodejs:
 url: https://github.com/imyller/meta-nodejs
 refspec: eec531e97a17bfd406f3bf76dee4057dcf5286a4
local_conf_header:
 package_ipk: |
 PACKAGE_CLASSES = "package_ipk"
The <PATH TO META-IOT2000 FOLDER> part must be replaced by the path of the meta-iot2000
folder.

To build the image, run;
● sed -i 's/wagi\/linux-cip-rt/cip\/linux-cip/g' meta-iot2000-bsp/recipes-

kernel/linux/linux-cip-rt_4.4.bb

● kas build meta-iot2000-example/kas-rt.yml

https://www.yoctoproject.org/docs/2.1/mega-manual/mega-manual.html#packages
https://www.yoctoproject.org/docs/2.1/mega-manual/mega-manual.html#packages
https://github.com/siemens/kas

Quick start for IOT20x0
4.2 Installing Yocto Image

 Quick Start PROFINET Driver V2.2
42 Getting Started, 04/2020, A5E42795137-AB

4.2.4 Creating a bootable media
After build process has finished, the created image can be found under the directory
[..]/meta-iot2000/build/tmp/deploy/images/iot2000/. Copy this image file (e.g. "iot2000-
example-image-rt-iot2000.wic") onto the microSD card via a tool for writing images to USB
sticks or SD/CF cards.

Unless you add new configurations or features to the configuration files of the Yocto Linux
image, you don’t need to build a new one.

There are two ways to boot the image: from SD card or from USB stick.

For updates and detailed information please refer to (https://github.com/siemens/meta-
iot2000/).

Requirements
It is assumed that the user already has the required hardware and software components
available and has already set up a connection configuration like the one described below.
You should note that this is only one example option for a development environment for PN
Driver under IOT20x0 hardware device.

Hardware components can be listed as below:

● An IOT20x0 hardware device with a valid boot image (e.g. built by Yocto, refer to section
Installing Yocto Image (Page 39)) to run the PN Driver application on.

● An Ethernet cable to connect IOT20x0 and the development PC.

The figure below shows an example connection setting for SIMATIC IOT20x0.

Figure 4-1 An example connection configuration between IOT20x0 and Linux based development

PC

https://github.com/siemens/meta-iot2000/
https://github.com/siemens/meta-iot2000/

 Quick start for IOT20x0
 4.3 Using the PN Device Driver

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 43

Additional Notes
You can use Linux VM on a Windows PC to download or debug the PN Driver application.

The figure below shows an example connection setting for SIMATIC IOT20x0 device.

Figure 4-2 An example connection configuration between IOT20x0 and Windows based

development PC

4.3 Using the PN Device Driver

Overview
PN Driver requires the PN Device Driver (PNDevDrv) for accessing the hardware and
handling the interrupts. You must compile the necessary modules yourself as described
below.

4.3.1 Compiling the PN Device Driver
To compile PNDevDrv, use the BitBake tool. BitBake is a generic task execution engine and
executes tasks according to provided metadata that is stored in recipe (.bb), configuration
(.conf) and class (.bbclass) files.

For detailed information please refer to (https://www.yoctoproject.org/docs/2.1/bitbake-user-
manual/bitbake-user-manual.html).

All necessary files for compiling the PNDevDrv are under "[..]/bc_driver/src/pndevdrv-iot"
directory which includes the recipe file ("pndevdrv.bb) and the files that are used to compile
the Linux kernel module (under "[..]/bc_driver/src/pndevdrv-iot /files/" directory).

https://www.yoctoproject.org/docs/2.1/bitbake-user-manual/bitbake-user-manual.html
https://www.yoctoproject.org/docs/2.1/bitbake-user-manual/bitbake-user-manual.html

Quick start for IOT20x0
4.3 Using the PN Device Driver

 Quick Start PROFINET Driver V2.2
44 Getting Started, 04/2020, A5E42795137-AB

Procedure
1. After you have built a valid Yocto image (see the section Installing Yocto Image

(Page 39)), you can generate the PN Device Driver. You should find the script "oe-init-
build-env" under "[..]/meta-iot2000/poky/" directory. Before running BitBake commands,
you need to run an environment setup script to set up the OpenEmbedded build
environment as follows:

– . oe-init-build-env ../build

A message like “You can now run ‘bitbake <target>’” will appear in the shell.

2. Copy the "pndevdrv-iot" folder from "[..]/bc_driver/src/" directory to "[..]/poky/meta-
skeleton/recipes-kernel" directory.

3. Make sure that the path of the added layer ([..]/poky/meta-skeleton) is added to the
BBLAYERS variable in bblayers.conf file which is located under "[..]/meta-
iot2000/build/conf" directory.

4. Run the following commands in "[..]/meta-iot2000/build". Clean the old object files before
compiling the sources. To do so, enter:

– bitbake –f –c clean pndevdrv

To compile:

– bitbake –f –c compile pndevdrv

And to build:

– bitbake pndevdrv

The build result should be found under "[..]/meta-iot2000/build/tmp/work/iot2000-poky-
linux/pndevdrv/1.0-r0" directory. The newly generated "PnDevDrv_32.ko" file can be used
to install PNDevDrv at boot routine.

 Quick start for IOT20x0
 4.3 Using the PN Device Driver

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 45

In addition to the actual driver, a shared object file must be generated. You can generate this
shared object file with the "Makefile_SharedObject" in "[..]/bc_driver/src/pndevdrv/bin/Linux".

1. The standard Yocto Project SDK, which provides a cross-development toolchain and
libraries, must be installed. Before installation, you should first generate Linux SDK. To
do so, run the following command in "[..]/meta-iot2000":

– kas build meta-iot2000-example/kas-sdk-linux-x64.yml

The build result should be found under "[..]/meta-iot2000/build/tmp/deploy/sdk" directory.
To install Yocto SDK, run the newly generated "poky-iot2000-glibc-x86_64-iot2000-
example-image-i586-nlp-32-toolchain-2.2.2.sh"

2. Open a new shell and set the current directory to "[..]/bc_driver/src/pndevdrv/bin/Linux".

Then, set environment variables. To do so, enter:

– . /opt/poky-iot2000/2.2.2/environment-setup-i586-nlp-32-poky-linux
(Please pay attention to the blank between ‘.’ and ‘/’ characters)

It is assumed that script is generated and located under "/opt/poky-iot2000/2.2.2/"
directory.

3. To generate the shared object file, enter the following:

– make –f Makefile_SharedObject

As a result, the two shared object files ("*.so") for 32-bit and 64-bit applications are
generated and stored in the same folder ("[..]/bc_driver/src/pndevdrv/bin/Linux").

Quick start for IOT20x0
4.3 Using the PN Device Driver

 Quick Start PROFINET Driver V2.2
46 Getting Started, 04/2020, A5E42795137-AB

4.3.2 Loading the PN Device Driver

Procedure
1. Copy PnDevDrv_32.ko to target device (IOT20x0 hardware device) (see the section

Transferring files from the host to the target (Page *)). Do not use the home directory as a
location because it is not accessible at boot time. For example, you can use "/usr/src"
directory.

– cp PnDevDrv_32.ko /usr/src/

2. Link the Linux kernel module. To do so, enter the following:

– ln –s /usr/src/PnDevDrv_32.ko /lib/modules/4.4.105-cip15-rt10

3. After having linked PnDevDrv_32.ko, execute:

– depmod -a

4. Copy "pndev.rules" file which is located under
"[..]/bc_driver/src/pndevdrv/bin/Linux/iot2000/" directory to "/etc/udev/rules.d/" directory in
target device.

– cp pndev.rules /etc/udev/rules.d

5. Restart IOT20x0 hardware device to make the changes take place. To do so, enter:

– reboot

6. Check if the PNDevDrv is installed correctly. To do so, enter:

– lsmod

and see if PnDevDrv_32 is listed among the installed modules.

4.3.3 Unloading the PN Device Driver
If you want to unload PN Device Driver from your target device (IOT20x0 hardware device),
you can do so by following the procedure below.

Procedure
1. To remove PNDevDrv Linux kernel module, enter:

– rmmod PnDevDrv_32

2. Then you can load PNDevDrv once again. Enter the directory where you have located the
Linux kernel module (e.g. "/usr/src")

– cd /usr/src

Then run the following command:

– insmod PnDevDrv_32.ko

 Quick start for IOT20x0
 4.4 Building the PN Driver application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 47

4.4 Building the PN Driver application
The compiler "i586-poky-linux-gcc" is used to build applications for IOT20x0 and therefore
Yocto Project SDK must be installed before building the PN Driver application. Before
installation, you should first build Linux SDK. To do so, run the following command in
"[..]/meta-iot2000":

● kas build meta-iot2000-example/ kas-sdk-linux-x64.yml

The build result should be found under "[..]/meta-iot2000/build/tmp/deploy/sdk" directory. To
install Yocto SDK, run the newly generated "poky-iot2000-glibc-x86_64-iot2000-example-
image-i586-nlp-32-toolchain-2.2.2.sh".

PN Driver applications for IOT20x0 can be built on the command line or in the Eclipse IDE.

4.4.1 Build on Command Line

Procedure
To build PN Driver application on the command line:

1. Start a new shell and set the current directory to
"[..]/pn_driver/src/examples/shared/iot2000/build".

Then set the build environment to the Linux compiler. To do so, enter:

– . /opt/poky-iot2000/2.2.2/environment-setup-i586-nlp-32-poky-linux
(Please pay attention to the blank between ‘.’ and ‘/’ characters)

2. Build PN Driver as a library by calling "make" (or "make debug" if you want to build in
debug mode) in "[..]/pn_driver/src/examples/shared/iot2000/build". Make sure that
"libpndriver.a" has been created under
"[..]/pn_driver/src/examples/shared/iot2000/build/lib" directory.

3. Build the application within the same shell and link the PN Driver library to the application
by calling "make" (or "make debug" if you want to build in debug mode) in ‘iot2000’ folder
of the application, e.g. "[..]/pn_driver/src/examples/test_app/iot2000/build". Make sure that
binary of the application has been created under e.g.
"[..]/pn_driver/src/examples/test_app/iot2000" directory.

Quick start for IOT20x0
4.4 Building the PN Driver application

 Quick Start PROFINET Driver V2.2
48 Getting Started, 04/2020, A5E42795137-AB

4.4.2 Build in Eclipse IDE

Requirement
The Eclipse development environment must be ready for use for starting and debugging PN
Driver under Linux (virtual Linux) machine. In order to use remote debugging you will need a
more recent version of Eclipse than provided by the Eclipse package in Debian 9.3, such as
Eclipse Oxygen. To install the Eclipse Oxygen, run the following commands:

● wget http://ftp.fau.de/eclipse/technology/epp/downloads/release/oxygen/3a/eclipse-

cpp-oxygen-3a-linux-gtk-x86_64.tar.gz

● sudo tar xfz eclipse-cpp-oxygen-3a-linux-gtk-x86_64.tar.gz -C /opt/

● sudo ln -s /opt/eclipse/eclipse /usr/bin

Procedure
To build PN Driver application in Eclipse IDE:

1. Start a new shell and set the build environment to the Linux compiler. To do so, enter:

– . /opt/poky-iot2000/2.2.2/environment-setup-i586-nlp-32-poky-linux

2. Start the Eclipse IDE from the same shell with the following command:

– eclipse

3. Load the application for IOT20x0 that is provided with PN Driver in Eclipse using [File >
Import > General > Existing Projects in Workspace]

4. Select the two projects "pndriver_32" (located in
"[..]/pn_driver/src/examples/shared/iot2000/") and "test_app" (located in
"[..]/pn_driver/src/examples/test_app/iot2000/") and click "Finish".

5. Compile the two projects using [Project > Build All].

 Quick start for IOT20x0
 4.4 Building the PN Driver application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 49

6. Make sure that libpndriver.a has been created. It is located under
"[..]/pn_driver/src/examples/shared/iot2000/build/lib". Also "test_app" should be located
under "[..]/pn_driver/src/examples/test_app/iot2000".

Figure 4-3 Eclipse - Build All

Quick start for IOT20x0
4.5 Connecting to the target device

 Quick Start PROFINET Driver V2.2
50 Getting Started, 04/2020, A5E42795137-AB

4.5 Connecting to the target device
You can access the target device (IOT20x0 hardware device) via remote connection. For this
purpose “Secure Shell” (SSH) protocol can be used. SSH enables secure system
administration and file transfer.

Before connecting to IOT20x0 hardware device from Linux Development System, IP address
configurations must be done. In our example, IP addresses “192.168.200.17” and
“192.168.200.1” are assigned to Linux Development System and IOT20x0 hardware device,
respectively. Note that IP Suite is already configured for IOT20x0 hardware device during
Yocto image generation. You must configure the IP Suite for your Linux Development
System.

After IP configuration has been done successfully, open a new shell in Linux Development
System and enter:

● ssh root@192.168.200.1

Additional Notes
If you want to connect to the target device via serial console, serial port settings are as
follows:

Table 4- 1 Hardware components of the test application

Setting Value
Baudrate 115200
Data 8 Bits
Parity None
Stop bits 1
Hardware flow control No
Software flow control No

 Quick start for IOT20x0
 4.6 Transferring files from the host to the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 51

4.6 Transferring files from the host to the target
After having connected successfully to the target IOT20x0 hardware device, transfer the
necessary files to run the PN Driver application. File transfer from the host (Development
Machine) to target (IOT20x0 hardware device) can be done via USB flash drive or remote
access.

4.6.1 File transfer via USB flash drive
File transfer from the host to the target can be done via USB flash drive. Also, for running the
PN Driver application for IOT20x0 hardware device, the USB flash drive can be used.

1. Generate the following files:

– For PN Device Driver shared object file ("PnDev_DriverU32.so") please see the
section Compiling the PN Device Driver (Page 43),

– For binary file of the PN Driver application (e.g. "test_app" and libpndriver.a (optional))
please see the section Building the PN Driver application (Page 47),

– Hardware configuration file (a test XML file is provided under
iot2000/PNDriverBase_TestApp directory which is located under application directory)

2. Copy the files mentioned above to the USB flash drive (under the same directory).

3. Locate USB flash drive to the USB port on the IOT20x0 hardware device and mount. To
do so, follow the commands below:

– mkdir /mnt/usb

– mount /dev/sda1 /mnt/usb

4. Check the content of USB flash drive under /mnt/usb folder. Note that /mnt/usb is given
as an example here, and you can use any folder to mount the USB drive.

 Note

If the name of your device is other than sda1, modify the command (mount /dev/sda1
/mnt/usb) accordingly. You can see the list of your devices by running the command “cat
/proc/partitions”.

Quick start for IOT20x0
4.6 Transferring files from the host to the target

 Quick Start PROFINET Driver V2.2
52 Getting Started, 04/2020, A5E42795137-AB

4.6.2 File transfer via Remote Access
With the use of remote access to the IOT20x0 hardware device with two Ethernet controllers
(only IOT2040 has 2 interfaces), it is possible to transfer the required files via Remote
System Explorer (RSE) toolkit of Eclipse IDE.

Required files are:

● PnDev_DriverU32.so,

● Binary file of PN Driver application (e.g. “test_app” and libpndriver.a (optional)),

● Hardware configuration file

The RSE allows you to connect and work with a variety of remote systems, e.g. displaying
remote file systems, transferring files between hosts, performing remote search and
executing commands.

Before configuring a new connection between Linux Host Development System and IOT20x0
hardware device, IP address configurations must be done. In our example, IP addresses
“192.168.200.17” and “192.168.200.1” are assigned to Linux Host Development System and
IOT20x0 hardware device respectively.

You can use the “ping” command to test the remote connection between Linux Host
Development System and IOT20x0 hardware device.

 Quick start for IOT20x0
 4.6 Transferring files from the host to the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 53

To configure a new connection:

1. Install the Remote System Explorer (RSE) and Target Communication Framework (TCF)
plugins in your Eclipse IDE using [Help > Install New Software]

Figure 4-4 Install RSE plugin

Quick start for IOT20x0
4.6 Transferring files from the host to the target

 Quick Start PROFINET Driver V2.2
54 Getting Started, 04/2020, A5E42795137-AB

2. In Eclipse, switch to the RSE perspective using [Window > Open Perspective > Remote
System Explorer].

Figure 4-5 Install TCF plugin

3. In Remote System Explorer view:

Right-click and select “New/Connection”.

 Quick start for IOT20x0
 4.6 Transferring files from the host to the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 55

4. In “New Connection” dialog, select “TCF” as “System type” and click “Next” button.

Figure 4-6 Generate new TCF connection

Quick start for IOT20x0
4.6 Transferring files from the host to the target

 Quick Start PROFINET Driver V2.2
56 Getting Started, 04/2020, A5E42795137-AB

5. Enter IP address of the target machine as “Host name” (IOT20x0 hardware device) and
an arbitrary string to name new connection as “Connection name”.

Figure 4-7 Configure new TCF connection

 Quick start for IOT20x0
 4.6 Transferring files from the host to the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 57

6. To verify the remote connection, check the window as shown in the figure below. Enter
“root” as “User ID”. No password is required.

Figure 4-8 User ID and password configurations of new TCF connection

Quick start for IOT20x0
4.6 Transferring files from the host to the target

 Quick Start PROFINET Driver V2.2
58 Getting Started, 04/2020, A5E42795137-AB

7. A new connection should be displayed in "Remote Systems" view and you should be able
to view the file system of your target device.

Figure 4-9 View content of the file system

 Quick start for IOT20x0
 4.7 Running the application on the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 59

4.7 Running the application on the target

Requirements
Before you start PN Driver, you must ensure that the application can locate the
corresponding XML file as well as the shared object file of the PN Device Driver. Both files
must be stored in the same directory as the executable PN Driver file.

After connection is established to the target device via remote connection (see the section
Connecting to the target device (Page 50)), the PN Driver application must be run manually
via SSH. To do so:

1. Set the current directory to the directory where PN Driver application binary is located on
your target device.

2. Run the PN Driver application binary:

– ./test_app

Quick start for IOT20x0
4.7 Running the application on the target

 Quick Start PROFINET Driver V2.2
60 Getting Started, 04/2020, A5E42795137-AB

When you run the application, a similar screen on console as in the figure below is
displayed.

Figure 4-10 PN Driver application menu on IOT20x0

 Quick start for IOT20x0
 4.8 Debugging the PN Driver application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 61

4.8 Debugging the PN Driver application
You can debug the PN Driver application via GNU debugger (GDB) or remotely via Eclipse
IDE.

4.8.1 Debugging the PN Driver application via GNU Debugger
GDB, the GNU Project Debugger, allows you to see what is going on ‘inside’ another
program while it executes. For detailed information please refer to
(https://www.gnu.org/software/gdb/).

Procedure
The PN Driver application should be run manually via remote connection. To do so:

1. Set the current directory to the directory where PN Driver application binary is located on
your IOT20x0 hardware device.

2. To start the GDB, use the following command:

– gdb ./test_app

3. Before runnig the application, set the breakpoints. For example:

– (gdb)break pnd_test.c:19 #to set a break point for file pnd_test.c, line 19

4. To run the application, enter:

– run

5. To exit the GDB, use the following command:

– quit

4.8.2 Debugging the PN Driver application via Remote Debugging

Requirement
The Eclipse development environment must be ready for use for starting and debugging PN
Driver under Linux (virtual Linux) machine.

Procedure
To debug the PN Driver application in Eclipse IDE:

1. Start a new shell and set the build environment to the Linux compiler. To do so, enter:

– . /opt/poky-iot2000/2.2.2/environment-setup-i586-nlp-32-poky-linux

2. Start the Eclipse IDE from the same shell with the following command:

– eclipse

https://www.gnu.org/software/gdb/

Quick start for IOT20x0
4.8 Debugging the PN Driver application

 Quick Start PROFINET Driver V2.2
62 Getting Started, 04/2020, A5E42795137-AB

3. Load the application for IOT20x0 that is supplied with PN Driver in Eclipse using [File >
Import > General > Existing Projects] in the workspace.

Select the two projects "pndriver_32" (located in
"[..]/pn_driver/src/examples/shared/iot2000/") and "test_app" (located in
"[..]/pn_driver/src/examples/test_app/iot2000/") and click "Finish".

4. After having loaded the PN Driver application, Debug Configuration should be done.
In “Debug Configurations” menu, following fields should be filled in as below:

Figure 4-11 Remote Debug Configurations – “Main” tab

 Quick start for IOT20x0
 4.8 Debugging the PN Driver application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 63

● “Main” tab:

– C/C++ Application: Path to the directory where PN Driver test application is located
under Host Development System.

– Connection: IP address of IOT20x0 hardware device.
– Remote Absolute File Path for C/C++ Application: Path to the directory where PN

Driver test application binary is located in your target device.
– Commands to execute before application: Command to set current path to the path

where PN Driver test application binary is located in your target device.

● "Source" tab:

– Add “Source Lookup Path” for both PN Driver library and test application.

Figure 4-12 Remote Debug Configurations – “Source” tab

● “Debugger” tab:
– GDB debugger: "/opt/poky-iot2000/2.2.2/sysroots/x86_64-pokysdk-linux/usr/bin/i586-

poky-linux/i586-poky-linux-gdb"
– GDB command line: “.gdbinit”

 Quick Start PROFINET Driver V2.2
64 Getting Started, 04/2020, A5E42795137-AB

 Quick start for CP1625 Stand-alone 5
5.1 Quick start for CP1625 Stand-alone

Overview
This section describes the steps required for commissioning PN Driver under a custom Linux
operating system, built with Buildroot (https://buildroot.org/).

Customers are responsible for the target system build (PN Driver under CP 1625Dev board)
with the help of the source code of PN Driver V2.2, application examples and the relevant
documentation files.

Requirements
You need a CP 1625Dev board and Linux Host Development System for both building the
Buildroot image and PN Driver application. You must configure your board for stand-alone
usage. For more details, please refer to CP 1625 operating instructions in
(https://support.industry.siemens.com/cs/ww/en/view/109756564). You also need a cable for
serial connection. We recommend using TTL-232R-RPI cable from FTDI.

 Note

PN Driver CP1625 Stand-alone variant only supports little endian environments and 32-bit
operating systems.

5.2 Installing Buildroot Image

Requirements
uildroot is designed to run in Linux environments. For details about system requirements,
please refer to (https://buildroot.org/downloads/manual/manual.html#requirement). In this
chapter Linux Host Development System refers to Debian 9.3 with the Linux kernel V4.9
including RT patch. For more details, refer to the section Installing Debian (Page 25).

To keep updated for any Debian version upgrade, please refer to the PN Driver Readme
document.

https://buildroot.org/
https://support.industry.siemens.com/cs/ww/en/view/109756564

 Quick start for CP1625 Stand-alone
 5.2 Installing Buildroot Image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 65

5.2.1 Downloading Buildroot package
Buildroot is required as Linux system generation tool for building the Linux image.
Recommended Buildroot version is buildroot-2017.02.9 which can be downloaded from
(https://buildroot.org/downloads/).

Download “buildroot-2017.02.9.tar.gz” from the download page and extract it. To do so, run
the following command in the directory where the downloaded package is located:

● tar -xvf buildroot-2017.02.9.tar.gz

Buildroot has dependencies toon some software packages. For detailed information please
refer to (https://buildroot.org/docs.html).

5.2.2 Configuring Buildroot
Buildroot has to be configured for PN Driver. To do so, copy the following add-on file from
PN Driver CD to the directory where the Buildroot package is located:

 "[..]/contrib/Buildroot/siemens_cp1625_br2017.02.9_addon.tar.gz"

Then extract the file by running the following command:

● tar –xvf siemens_cp1625_br2017.02.9_addon.tar.gz

5.2.3 Building the image
In order to build the Linux Image run the following commands:

● cd buildroot-2017.02.9

● make clean

● make cp1625_nand_defconfig

● make

“"rootfs.ubi" will be created under "[..]/buildroot-2017.02.9/output/images" directory after the
build process has been successfully completed. Note that internet connection is required
when running commands above for the first time.

https://buildroot.org/downloads/
https://buildroot.org/docs.html

Quick start for CP1625 Stand-alone
5.2 Installing Buildroot Image

 Quick Start PROFINET Driver V2.2
66 Getting Started, 04/2020, A5E42795137-AB

5.2.4 Adding custom files to the Linux image
To run PN Driver application on CP 1625Dev board, you need to transfer the application
binary and the configuration file to the board. For details about creating the application
binary, please refer to the section Building PN Driver application (Page 72). Buildroot’s
overlay structure is used for integrating files in the Linux image. To do so, follow the
procedure below.

Procedure
1. Copy the files that you want to be included in the image (e.g. the application binary and

the configuration file) to the directory "[..]/buildroot-
2017.02.9/board/cp1625/rootfs_overlay/root".

2. Run the following command in "[..]/buildroot-2017.02.9"

– make

3. The image called "rootfs.ubi" will be created in "output/images" directory. Use this image
to boot CP 1625Dev board as described in the section Booting the image (Page 69).

 Quick start for CP1625 Stand-alone
 5.2 Installing Buildroot Image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 67

5.2.5 Connecting to the target device via serial console
Connection to CP 1625Dev board from your host development system is possible via serial
console. UART1 serial interface is used for the console connection. Serial port settings are
as follows:

Table 5- 1 Hardware components of the test application

Setting Value
Baudrate 115200
Data 8 bits
Parity None
Stop bits 1
Hardware flow control No
Software flow control No

The figure below shows an example connection setting for CP 1625Dev board:

 UART cable is for the access to the console. Ethernet cable is for the communication via TFTP.

Figure 5-1 An example connection configuration for CP1625 Stand-alone

Quick start for CP1625 Stand-alone
5.2 Installing Buildroot Image

 Quick Start PROFINET Driver V2.2
68 Getting Started, 04/2020, A5E42795137-AB

5.2.6 Flashing the bootloader
In order to boot your CP 1625Dev board, you need a bootloader which was created when
you build the image as described in the section Building the image (Page 65).
“bootloader.bin” will be under "[..]/buildroot-2017.02.9/output/images” directory. You must
copy it to your Linux PC. To flash the bootloader, follow the procedure below in your Linux
PC.

Procedure
1. Configure your board for PCIe usage. For more details, please refer to CP 1625 operating

instructions in (https://support.industry.siemens.com/cs/ww/en/view/109756564).

2. Plug the board in a Linux PC.

3. Build the bootloader application by running "make" in
"[..]/bc_driver/src/pndevdrv/tools/cp1625_flash_bootloader". The application binary will be
created in this directory.

4. In order to run this application on CP 1625Dev board, you need to use PNDevDrv. For
details of building and installing the PNDevDrv kernel module and binding it to your
board, refer to the section Using the PN Device Driver for the Linux variant (Page 29).
You also need to build a shared library for PNDevDrv and copy it where your application
is located. The procedure for this is also explained in the same section.

5. Start the application by running the following command.

– sudo ./cp1625_flash_bootloader64 (or cp1625_flash_bootloader32)

6. Select your CP 1625Dev board. If it is the only device, it will be selected automatically.

7. Select option “(1) CP1625 – Flash NAND Bootloader”.

8. Enter the path for “bootloader.bin”.

9. Select option “(c) Cancel” to close the application.

10. Shutdown your PC and unplug the CP 1625Dev board.

11. Reconfigure it for stand-alone usage.

https://support.industry.siemens.com/cs/ww/en/view/109756564

 Quick start for CP1625 Stand-alone
 5.2 Installing Buildroot Image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 69

5.2.7 Booting the image
To boot CP 1625Dev board with the image created in the host development system, you
must use TFTP server. To do so, follow the procedure below.

Procedure
1. TFTP client that runs on CP 1625Dev board assumes IP address of the TFTP server is

192.168.0.1. Bind 192.168.0.1 IP address on Build Host machine where TFTP server will
run.

2. Install the TFTP server by running the following command:

– sudo apt install tftpd-hpa

3. Configure the TFTP server by editing the file “/etc/default/tftpd-hpa”. The content of the
file should be as follows:

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"

TFTP_DIRECTORY="/var/lib/tftpboot"

TFTP_ADDRESS="192.168.0.1:69"

TFTP_OPTIONS="--secure"

4. Copy the Buildroot image in the “/var/lib/tftpboot/” directory by running the following
command:

– sudo cp [..]/buildroot-2017.02.9/output/images/rootfs.ubi /var/lib/tftpboot/

5. Connect the Ethernet port 1 of CP 1625Dev board to your Linux Host Development
System.

For the following steps you must be able to run commands on the board. To do so, you
must connect to the board from your host via serial console. Refer to the section
Connecting to the target device via serial console (Page 67) for details of serial
connection.

Quick start for CP1625 Stand-alone
5.2 Installing Buildroot Image

 Quick Start PROFINET Driver V2.2
70 Getting Started, 04/2020, A5E42795137-AB

6. Power up the board and stop autoboot by pressing ‘s’ to enter “U-Boot” menu.

Figure 5-2 Open "U-Boot" menu

 Quick start for CP1625 Stand-alone
 5.2 Installing Buildroot Image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 71

7. Load ‘rootfs.ubi’ file from TFTP server by running the following command:

– run prgubiimg

Figure 5-3 Load rootfs.ubi file

8. After loading has been finished, a message like “PROGRAM SUCCEEDED” will be
shown. Then you should reboot the board by entering “reset”. The board will boot with the
image taken from TFTP server.

Figure 5-4 Reset CP 1625Dev board

Quick start for CP1625 Stand-alone
5.3 Building the PN Driver application

 Quick Start PROFINET Driver V2.2
72 Getting Started, 04/2020, A5E42795137-AB

5.3 Building the PN Driver application
Buildroot cross compilation toolchain is used to build applications for CP1625 Stand-alone
variant. The toolchain is provided in the Buildroot package.

Procedure
To build the PN Driver application, follow the steps below:

1. Start a new shell and set the current directory to "[..]/buildroot-2017.02.9/". Then set the
build environment to the Linux compiler. To do so, run the following command:

– source ./set_toolchain_env_buildroot_complete.sh

2. If you want to use the same network interface for both IP communication of third party
applications and PROFINET communication, build PN Driver as a library by running
"make" (or "make debug" if you want to build in debug mode) in
"[..]/pn_driver/src/examples/shared/cp1625_standalone_native/build". Otherwise, run
"make" (or "make debug" if you want to build in debug mode) in
"[..]/pn_driver/src/examples/shared/cp1625_standalone/build". Make sure that
"libpndriver.a" has been created in the subdirectory "lib".

Please refer to the section Using PROFINET interface for IP communication (Page 90) for
the details regarding IP communication over the PROFINET interface.

3. Build the application within the same shell and link the PN Driver library to the application
by running "make" (or "make debug" if you want to build in debug mode) in
"cp1625_standalone_native" or "cp1625_standalone" folder of the application, depending
on which version of the library has been built in the previous step, e.g.,
"[..]/pn_driver/src/examples/test_app/cp1625_standalone_native/build" or
"[..]/pn_driver/src/examples/test_app/cp1625_standalone/build". Make sure that binary of
the application has been created in the parent directory.

 Quick start for CP1625 Stand-alone
 5.4 Running the application on the target

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 73

5.4 Running the application on the target
After CP 1625Dev board has booted with an image that contains PN Driver application and
necessary hardware configuration file, you can run the application by executing the following
command:

● ./test_app

When you run the application, a similar screen is displayed as shown in the figure below:

Figure 5-5 PN Driver application menu on CP1625 Stand-alone

Quick start for CP1625 Stand-alone
5.5 Transferring files from the target to the host

 Quick Start PROFINET Driver V2.2
74 Getting Started, 04/2020, A5E42795137-AB

5.5 Transferring files from the target to the host
Firmware download or file exchange to CP1625 Stand-alone variant can be performed either
by updating the whole file system image from u-boot using serial terminal or by using Secure
Shell (SSH). With the introduction of the standard Linux networking stack support,
applications are able to use the ethernet connection with the created virtual interface, over
which SSH connections can be made for file exchange and shell access. By this way, big
files can be exchanged faster in comparison with the serial port connection, but serial port
connection is required in the initial setup since PN Driver must be running to use SSH.

5.5.1 Transferring files from the target to the host using serial port
It is possible to transfer files from CP 1625Dev board to your host development system via
serial console. Different transfer protocols are available depending on the serial console
application that you use, such as ExtraPutty or Tera Term. For example you can use
ZMODEM with ExtraPutty as follows.

Procedure
1. Start sending the file to the host by running the following command:

– sz –e –b –X filename

2. Start receiving the file in ExtraPutty: [File Transfer > ZMODEM > Receive]

3. Enter the name of the file you want to transfer and the file will be transferred into the
ExtraPutty folder.

5.5.2 Transferring files between the target and the host using Secure Shell (SSH)
It is possible to transfer files between the CP 1625Dev board and the host development
system using SSH if you are using the same network interface for both PROFINET and other
IP based network communication. This feature is only supported by the CP1625 Stand-alone
variant.

To use the ethernet connection, two preconditions must be satisfied:

● PN Driver must be running: This is achieved by calling "SERV_CP_startup()" IO-Base
function. Once "SERV_CP_startup()" returns without any error, a virtual network interface
emerges within Linux system. The virtual network interface has the name of "pnio1" and it
is accessible for the applications running on the same host as PN Driver until the PN
Driver is shutdown via "SERV_CP_shutdown()" IO-Base function. Once
SERV_CP_shutdown() returns without any error, the virtual network interface disappears.

● SSH server must be enabled: You can enable/disable SSH server via PN Driver example
application or through some initialization scripts during the booting up phase of the
board as follows:

 Quick start for CP1625 Stand-alone
 5.5 Transferring files from the target to the host

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 75

Procedure
1. First, to be able to login through SSH, the public key of the host development system

must be provided to the CP 1625Dev board. To generate the public/private keys use
"ssh-keygen" application by running the following command:

– ssh-keygen

2. Then, copy the public key that is created on the host development system into a file
called "authorized_keys" by running the following command:

– cat id_rsa.pub >> /home/user_name/.ssh/authorized_keys

3. And copy the "authorized_keys" file under the "[..]/buildroot-
2017.02.9/board/cp1625/rootfs_overlay/root/.ssh" directory.

4. Now you can enable/disable the SSH server via the PN Driver example application
("test_app"). After building PN Driver application and booting the CP 1625Dev board, you
can use menu item "Enable/Disable SSH" to enable or disable SSH.

You can also make the selection persistent by using the ssh configuration file
"enable_ssh.txt" which is located under
"src/examples/test_app/cp1625_standalone_native/" folder. To enable the SSH server,
set "enable_ssh" to 1. You can disable the SSH server by setting "enable_ssh" to 0. After
PN Driver is started via "SERV_CP_startup()" IO-Base function, ssh configuration file is
checked. The PN Driver application takes the required actions to start or stop the SSH
server according to the saved selection. This configuration can be also updated
according to the selection that you make via the menu item "Enable/Disable SSH".

Quick start for CP1625 Stand-alone
5.5 Transferring files from the target to the host

 Quick Start PROFINET Driver V2.2
76 Getting Started, 04/2020, A5E42795137-AB

5. You can also enable/disable SSH server through initialization scripts during bootup. First
you must create a script and name it according to the naming convention rules. The files
that begin with ‘S’ are run to start a system service. Therefore you must name your script
according to this rule.

The content of an example script file "S99testapp" may be as follows:

#!/bin/sh

run test_app

HW_PATH="/root/my_config.xml"

case "$1" in

 start)

 printf "starts test_app: "

 /root/test_app '-a' '-f' $HW_PATH

 ;;

 stop)

 ;;

esac

You must change the name of your application and the related command line arguments
according to your own PN Driver example application.

Also you must change the user rights of the script file by running the following command:

– chmod +x S99testapp

Then you must place it under the "[..]/buildroot-
2017.02.9/board/cp1625/rootfs_overlay/etc/init.d" directory. This script will be called by
the master script in ASCII sort order when you boot the system. According to the
persistent data stored in "enable_ssh.txt", related enable/disable action will be taken by
the PN Driver application after start up.

After you enable SSH via menu item or using initialization script, you can transfer file
between the host PC and the CP 1625Dev board with the following commands:

6. Use su command on host development PC.

7. Connect to the CP 1625Dev board with "ssh root@<CP1625_IP_address>" command.

8. Open the target folder where you want to locate the file on the CP 1625Dev board.

9. Copy the file from host development PC to the CP 1625Dev board by running the
following command:

– scp siemens@HostPC_IP_address:/home/siemens/CD/pn_driver/src/examples/

test_app/cp1625_standalone_native/test_app

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 77

 Quick start for CP1625 Host 6
6.1 Quick start for CP1625 Host

Overview
This section describes the steps required for commissioning PN Driver in a distributed
system consisting of a Linux host and an embedded device which runs on a custom Linux
operating system, built with Buildroot (https://buildroot.org/).

In CP1625 Host variant, it is possible to run PN Driver V2.2 distributed on Linux host PC and
on CP 1625 PCIe card. With the help of the processing power of the host PC, you are able to
profit both from the features of CP 1625 board and from the variety of applications on the
host PC, at the same time.

The customer is responsible for the target system build with the help of the source code of
PN Driver V2.2, application examples and the relevant documentation files.

Requirements
You need a Linux host development PC running on Debian 9.3 with Linux kernel V4.9
including RT patch. Please refer to the section Installing Debian (Page 25) for more details.
You also need a CP 1625 or a CP 1625Dev board inserted into a free PCIe slot on the host
machine. In case you use a CP 1625Dev board, you must configure it for PCIe usage. For
more details, please refer to CP 1625 operating instructions in
(https://support.industry.siemens.com/cs/ww/en/view/109756564). To keep updated for any
Debian version upgrade, please refer to the PN Driver Readme document. Throughout this
chapter, both CP 1625 and CP 1625Dev boards are referred to as CP 1625 board.

 Note

PN Driver only supports little endian operating systems on host and CP 1625 board. PN
Driver only works as a 32-bit application under 32-bit or 64-bit operating systems.

https://buildroot.org/
https://support.industry.siemens.com/cs/ww/en/view/109756564

Quick start for CP1625 Host
6.2 Changing local port range

 Quick Start PROFINET Driver V2.2
78 Getting Started, 04/2020, A5E42795137-AB

6.2 Changing local port range
If it is required to have IP communication parallel to PROFINET using the same network
interface, local port range of the Linux system must be changed. This can be done as
follows:

Copy the following add-on file from PN Driver CD to the root directory “/”.

"[..]/contrib/Linux_Host/siemens_linux_host_addon.tar.gz"

Then extract the file by running the following command.

● sudo tar -xvf siemens_linux_host_addon.tar.gz

Please refer to the section Using PROFINET interface for IP communication (Page 90) for
the details regarding this limitation and IP communication over the PROFINET interface in
general.

6.3 Installing Buildroot image

6.3.1 Downloading Buildroot package
Buildroot is required as Linux system generation tool, which is used to build the Linux image
for the CP 1625 board. Suggested Buildroot version is buildroot-2017.02.9 which can be
downloaded from (https://buildroot.org/downloads/).

Download “buildroot-2017.02.9.tar.gz” from the download page and extract it. To do so, run
the following command in the directory where the downloaded package is located:

● tar -xvf buildroot-2017.02.9.tar.gz

Buildroot has dependencies on other software packages. For detailed information please
refer to (https://buildroot.org/docs.html)

6.3.2 Configuring Buildroot
Buildroot has to be configured for PN Driver. To do so, copy the following addon file from PN
Driver CD to the directory where the Buildroot package is located:

 "[..]/contrib/Buildroot/siemens_cp1625_br2017.02.9_addon.tar.gz"

Then extract the file by running the following command:

● tar –xvf siemens_cp1625_br2017.02.9_addon.tar.gz

https://buildroot.org/downloads/
https://buildroot.org/docs.html

 Quick start for CP1625 Host
 6.3 Installing Buildroot image

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 79

6.3.3 Building the image
Note that internet connection is required when running the commands listed below for the
first time. In order to build the Linux Image run the following commands:

● cd buildroot-2017.02.9

● make clean

● make cp1625_pci_defconfig

● make

"uboot+linux.bin" will be created under "output/images" directory after the build process has
been successfully completed.

6.3.4 Adding custom files to the Linux image
You need the firmware application to run on CP 1625 board. Therefore you need to transfer
the application’s binary to the board. For details about how to create the firmware application
binary, please refer to the section Building PN Driver application (Page 80). Buildroot’s
overlay structure is used for integrating files in the Linux image. To do so, follow the
procedure below.

Procedure
1. Copy the files that you want to be included in the image (e.g. firmware application binary)

to the directory "[..]/buildroot-2017.02.9/board/cp1625/rootfs_overlay/root"

2. Run the following command in "[..]/buildroot-2017.02.9"

– make

3. The image called "uboot+linux.bin" will be created in "[..]/buildroot-
2017.02.9/output/images" directory. Use this image to run PN Driver application as
described in the section Running PN Driver application (Page 81).

6.3.5 Configuring CP1625 firmware application as an auto boot application
To start firmware application automatically on CP 1625 board, edit the file "[..]/buildroot-
2017.02.9/board/cp1625/rootfs_overlay/root/.profile" as follows:

1. Uncomment the last line

2. Change the name of the application to pnd_main. The last line of the file should be
“/root/pnd_main”

Quick start for CP1625 Host
6.4 Using the PN Device Driver

 Quick Start PROFINET Driver V2.2
80 Getting Started, 04/2020, A5E42795137-AB

6.4 Using the PN Device Driver
To use CP 1625 board under Linux, PN Driver requires the PN Device Driver (PNDevDrv).
For details on how to use PNDevDrv under Debian 9.3 with the Linux kernel V4.9, see the
section Using the PN Device Driver for the Linux variant (Page 29)

6.5 Building the PN Driver application
In CP1625 Host variant you must build both firmware and the example application.

6.5.1 Building the firmware application
Buildroot cross compilation toolchain is used to build applications for CP1625 Host variant.
The toolchain is provided in the Buildroot package.

Procedure
To build the firmware application, follow the steps below:

1. Start a new shell and set the current directory to "[..]/buildroot-2017.02.9/". Then you
should set the build environment to the Linux compiler. To do so, run the following
command:

– source ./set_toolchain_env_buildroot_complete.sh

2. If you want to use the same network interface for both IP communication of third party
applications and PROFINET communication, build the firmware application by running
"make" (or "make debug" if you want to build in debug mode) in
"[..]/pn_driver/src/examples/shared/cp1625_fw_native/build", otherwise run "make" in
"[..]/pn_driver/src/examples/shared/cp1625_fw/build". Make sure that the application
binary "pnd_main" is created in the parent directory.

Please refer to the section Using PROFINET interface for IP communication (Page 90) for
the details regarding IP communication over the PROFINET interface.

 Quick start for CP1625 Host
 6.6 Running the PN Driver application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 81

6.5.2 Building the example application

Procedure
To build the example application, follow the steps below:

1. Start a new shell.

2. Build PN Driver as a library by running "make" (or "make debug" if you want to build in
debug mode) in "[..]/pn_driver/src/examples/shared/cp1625_host_native/linux_host/build"
or "[..]/pn_driver/src/examples/shared/cp1625_host/linux_host/build" depending on the IP
communication choice, which is mentioned above . Make sure that "libpndriver.a" has
been created in the subdirectory "lib".

3. Build the application within the same shell and link the PN Driver library to the application
by running "make" (or "make debug" if you want to build in debug mode) in
"cp1625_host_native" or "cp1625_host" folder of the application depending on the IP
communication choice, which is mentioned above, e.g.,
"[..]/pn_driver/src/examples/test_app/cp1625_host_native/build" or
"[..]/pn_driver/src/examples/test_app/cp1625_host/build". Make sure that binary of the
application has been created in the parent directory.

6.6 Running the PN Driver application

Requirements
Before you start the PN Driver application, copy firmware image “uboot+linux.bin”, shared
object file “PnDev_DriverU32.so” and the prepared hardware configuration file to the same
directory as the executable PN Driver example application. Make sure you have inserted the
PNDevDrv kernel object as described in the section Loading the PN Device Driver
(Page 30).

Procedure
To start PN Driver application, follow the steps below:

1. Change directory to where your application binary is located:

– cd [..]/pn_driver/src/examples/test_app/cp1625_host/

or

– cd [..]/pn_driver/src/examples/test_app/cp1625_host_native/

depending on the IP communication choice.

2. Run the application:

– sudo ./test_app

Quick start for CP1625 Host
6.6 Running the PN Driver application

 Quick Start PROFINET Driver V2.2
82 Getting Started, 04/2020, A5E42795137-AB

When you run the application, a similar screen is displayed as shown in the figure below:

Figure 6-1 PN Driver application menu on CP1625 Host

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 83

 Hardware configuration in engineering system 7

Overview
To generate the required XML configuration files, two alternatives are presented: TIA Portal
and PNConfigLib.

 Note

PN Driver does not perform a consistency check of hardware configuration files. Customers
are responsible for the protection and security of hardware configuration.

7.1 Hardware configuration in the TIA Portal

Overview
This section describes the basic steps for generating the required XML configuration files
with the TIA Portal
TIA Portal as of V16 is used as a basis. You also need the Hardware Support Package for
PN Driver V2.2.

7.1.1 Installing the Hardware Support Package for PN Driver V2.2

Requirements
The project view of the TIA Portal is open.

Procedure
1. Click "Support Packages" under "Options".

The "Detailed information" dialog opens.

2. You have the following options:

– If the support package for PN Driver V2.2 (HSP0307) is already on your computer,
you can add it to the "Local Support Packages" list by selecting "Add from file system".

– If the support package for PN Driver V2.2 (HSP0307) is not yet on your computer,
download it by clicking on the "Download from the Internet" link displayed at the
dialog. Then you can add it to the "Local Support Packages" list from the file system.

3. Select the "HSP_V16_0307_001_Other_PNDriver_2.2.isp16" support package.

Hardware configuration in engineering system
7.1 Hardware configuration in the TIA Portal

 Quick Start PROFINET Driver V2.2
84 Getting Started, 04/2020, A5E42795137-AB

4. Click "Install".

5. Follow the instructions on the screen.

Figure 7-1 Installing support packages

 Hardware configuration in engineering system
 7.1 Hardware configuration in the TIA Portal

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 85

Result: The version information "V2.2" is displayed for the existing PROFINET Driver
record in the hardware catalog under "Communications Modules" –
"PROFINET/Ethernet" – "PROFINET Driver" – "6ES7195-3AA00-0YA0".

Figure 7-2 PN Driver in the hardware catalog

Hardware configuration in engineering system
7.1 Hardware configuration in the TIA Portal

 Quick Start PROFINET Driver V2.2
86 Getting Started, 04/2020, A5E42795137-AB

7.1.2 Generating an XML configuration file

Requirements
The network view of the TIA Portal is open.

Procedure
1. Add PN Driver to the project. You have the following options:

– Drag PN Driver from the hardware catalog to the network view.

– Copy and paste the PN Driver into the network view.

– Double-click the PN Driver entry in the hardware catalog.

2. Select the "PN Driver Station" in the network view and switch to the device view.

Figure 7-3 PN Driver station in the network view

 Hardware configuration in engineering system
 7.1 Hardware configuration in the TIA Portal

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 87

3. Select the desired interface submodule (for Linux, Linux Native, Windows, etc.) in the
hardware catalog under "Communications Modules" – "PROFINET/Ethernet" – "Interface
Submodules".

Figure 7-4 Interface submodule in the hardware catalog

4. Perform your hardware configuration as usual.

5. Compile the entire project.
A consistency check is run when the configuration is compiled. Inconsistencies are
displayed as messages in the Inspector window under "Info".

6. When your configuration is consistent, TIA Portal automatically generates the XML
configuration file for the PN Driver. The storage path of the XML configuration file and
other messages are displayed in the Inspector window under "Info".

Figure 7-5 Storage path of the XML configuration file in the Inspector window

7. Double-click the message "Configuration XML file has been generated under…" to open
the Windows Explorer.

8. Integrate the generated XML configuration file in your system.

Hardware configuration in engineering system
7.2 Hardware configuration in PNConfigLib

 Quick Start PROFINET Driver V2.2
88 Getting Started, 04/2020, A5E42795137-AB

7.2 Hardware configuration in PNConfigLib

Overview
PNConfigLib is a library that allows you to create PROFINET projects, to perform
consistency checks to ensure their validation, and to compile these projects. It provides an
API to allow you to call PNConfigLib in your own code.

This section explains PNConfigLib briefly. For more detailed information, please refer to
PNConfigLib manuals inside PNConfigLib software package.

7.2.1 Generating an XML configuration file
From the user point of view, PNConfigLib has only one single entry point called “Run”. This
method accepts the paths of the input files (Configuration, ListOfNodes and optional
Topology) as inputs and returns a “PNConfigLibResult” object as an output.

Figure 7-6 PNConfigLib’s single entry point is the “Run” method

Requirements
The input files of PNConfigLib consist of two required and one optional XML files:
ListOfNodes.xml (mandatory), Configuration.xml (mandatory), Topology.xml (optional).

ListOfNodes.xml: A "node" represents an IO device or an IO controller, which is configured in
the "Configuration" file. The user should present here all the nodes with their identifiers. IO
devices are described with GSDML files provided by the device manufacturer. The content of
the GSDML consists of configuration information, parameters, modules, diagnostic, alarms,
vendor and device identification. PNConfigLib imports the GSDML files indicated in the
ListOfNodes.

Configuration.xml: The nodes defined in the ListOfNodes file are configured in the
Configuration file. The IO controller and IO device settings, their modules and submodules,
subnets, sync domains etc. are defined here.

Topology.xml: The port interconnections are defined in the optional Topology file. In this file,
the user may provide information on how devices are connected to each other.

You can find examples for ListOfNodes.xml, Configuration.xml and Topology.xml in the
PNConfigLib manual.

 Hardware configuration in engineering system
 7.2 Hardware configuration in PNConfigLib

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 89

Procedure
1. Use PNConfigLib to read the provided input files.

2. Use PNConfigLib to compile the project. If there is no error, an XML based configuration
is created for each IO controller within the project.

3. Integrate the generated XML configuration file in your system.

Additional Notes
In order to generate an XML configuration file, you can use PnConfigLib.dll to create your
own application or you can use PNConfigLibRunner.exe.

With PNConfigLibRunner.exe you can call PnConfigLib.dll from command prompt with the
following parameters:

PNConfigLibRunner.exe –c “Configuration.xml” –l “ListOfNodes.xml” –t “Topology.xml” –o
“OutputFolderPath”

• -c, --configuration Required. Path to Configuration XML file

• -l, --listofnodes Required. Path to ListOfNodes XML file

• -t, --topology Optional. Path to Topology XML file

• -o, --output Optional. Output folder

• --help Displays help screen

• --version Displays version information

For more details, refer to the PNConfigLib manual.

 Quick Start PROFINET Driver V2.2
90 Getting Started, 04/2020, A5E42795137-AB

 Using PROFINET interface for IP communication 8

Overview
It is possible to use the same interface both for PROFINET communication and for IP
communication of other applications when PN Driver is running on Linux.

The following PN Driver variants support this feature:

1. Linux Native

2. CP1625 Stand-alone

3. CP1625 Host

How to activate this feature is described under the platform specific chapters, e.g., Quick
start for Linux (Page 24) for the Linux Native variant.

Please refer to "IO-Base User Programming Interface" document for the details regarding
IO-Base functions that are mentioned in this chapter.

You may refer to the function manual "PROFINET with STEP 7 V16"
(https://support.industry.siemens.com/cs/ww/en/view/49948856) for the settings which must
be done in the engineering system such as IP assignment to the controller.

8.1 How to use PROFINET interface for socket connections
PN Driver must be running in order to enable the IP communication of other applications in
parallel. This is achieved by calling "SERV_CP_startup()" IO-Base function.

Once "SERV_CP_startup()" returns without any error, a virtual network interface emerges
within Linux system. Controller application can continue with its internal tasks. Virtual
network interface is not affected by other calls to IO-Base unless PN Driver is shutdown via
"SERV_CP_shutdown()" IO-Base function. Once SERV_CP_shutdown() returns without any
error, the virtual network interface disappears.

The virtual network interface has the name of "pnio1" and it is accessible for the applications
running on the same host as PN Driver. For example, the list of the available network
interfaces that is displayed by Linux "ip" utility would include "pnio1" interface as well as
other interfaces. This could be achieved by the following command.

● ip link show

This means that you can also create your own socket application or add the functionality to
the controller application and use the PROFINET interface as the network interface. Please
note that having another interface in the same subnet as "pnio1" on the same host might
cause routing problems which could result in communication failure.

https://support.industry.siemens.com/cs/ww/en/view/49948856

 Using PROFINET interface for IP communication
 8.2 Limitations

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 91

8.2 Limitations
Using the PROFINET interface for socket connections is possible with the listed limitations
below.

8.2.1 Transport protocols
Only IP based protocols (e.g. TCP and UDP) are supported. Non-IP based protocols are not
supported.

8.2.2 Local port range
Dynamic local port range of Linux must be shifted. The new range must be same as IANA
dynamic port range that is specified as 49152 – 65535. Some of the Linux distributions
including the one that is used in PN Driver Linux based variants have a different default
dynamic local port range.

There are two reasons for this adjustment.

● PN Driver UDP packet filtering mechanism will drop the inbound UDP frames with a
destination port number outside the IANA dynamic port range.

In order to prevent PROFINET UDP frames and/or the UDP frames which belong to a 3rd
party application from being dropped at the reception, the local dynamic port range of
Linux must be shifted.

● According to the PROFINET specification, IANA dynamic port range must be used for
PROFINET UDP communication. PN Driver’s PROFINET stack does not bind its UDP
socket to a specific port. Instead, it assumes that the dynamic local port range is already
the same as the IANA dynamic port range.

With this adjustment, the port range is shifted for both TCP and UDP communication using
any network interface. However, in most of the cases, the port number that your client socket
is bound to is not critical for the server side. In addition, it is still possible to bind the client
TCP sockets to specific ports explicitly if it is necessary.

One example as a problematic side effect of the UDP packet filtering is UDP based DNS
requests which are sent through "pnio1" interface. If the port range is not adjusted
appropriately as explained above, DNS requests sent from the PN-Interface will arrive the
server but the response might be dropped by UDP packet filtering. It is also possible that
even if the port range is adjusted, the response may still be dropped since some of the DNS
stub resolvers use specifically UDP port 53 regardless of the configured port range. Please
make sure that the local DNS stub resolver in your system does not have this behavior.

Changing port range is already configured within Buildroot settings for CP1625 Stand-alone
variant. There is no need to take extra action once you have created the image as explained
in the section Installing Buildroot Image (Page 64). However, it must be configured manually
for Linux Native and CP1625 Host variants as described below.

Using PROFINET interface for IP communication
8.2 Limitations

 Quick Start PROFINET Driver V2.2
92 Getting Started, 04/2020, A5E42795137-AB

8.2.2.1 Changing local port range for Linux Native and CP1625 Host variants
A configuration file is provided in the PN Driver CD to configure the port range at each boot
as from 49152 to 60999.

Copy the following add-on file from PN Driver CD to the root directory "/".

"[..]/contrib/Linux_Host/siemens_linux_host_addon.tar.gz"

Then extract the file by running the following command.

● sudo tar -xvf siemens_linux_host_addon.tar.gz

 Using PROFINET interface for IP communication
 8.2 Limitations

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 93

8.2.3 Default Gateway and IP assignment

8.2.3.1 Default Gateway assignment via external tools and DHCP
Default gateway address must not be set via external tools or DHCP client. It must be set
only by PN Driver to be PROFINET compliant and the supported ways are the ones
described in Supported methods for IP and Default Gateway assignment (Page 94).

All external settings for default gateway assignment must be avoided.

The necessary configuration must be done to prevent DHCP client from assigning a default
gateway to network interfaces which should use DHCP even if the interface is not used for
PROFINET. This could be done via network manager on Debian by selecting "Use this
connection only for resources on its network" option for the active connection profile of each
interface. The following screenshot illustrates the setting.

Figure 8-1 The setting for default gateway

Using PROFINET interface for IP communication
8.2 Limitations

 Quick Start PROFINET Driver V2.2
94 Getting Started, 04/2020, A5E42795137-AB

You can also configure this setting from terminal. To do so, follow the steps below:

1. List all the interfaces managed by the network manager, and see which connection profile
they are using with the following command

– nmcli

The output of this command will be a list of interfaces in the following format:

<interface name>: connected to <connection profile name>

2. For each interface, run the following command:

– sudo nmcli connection modify "<connection profile name>" ipv4.never-default

true

8.2.3.2 Supported methods for IP and Default Gateway assignment
Changing IP and gateway address via OS tools such as "ip" would cause undefined
behavior. Only the methods which are described in this section must be used for this
purpose.

Please note that, the assigned default gateway will be valid for the entire Linux IP stack.

The IP assignment to "pnio1" interface and default gateway assignment can be done by one
of the following methods as long as the gateway is in the same subnet as "pnio1" interface
and thus as the PROFINET system or there is no default gateway.

1. IP address assignment to the PROFINET interface of the controller in the hardware
configuration XML file. This could be done via the engineering system.

2. The engineering system or a tool with DCP support such as PRONETA (PROFINET
Network Analyzer - Configuration and Diagnostic Tool), which can be downloaded from
(https://support.industry.siemens.com/cs/document/67460624/proneta-basic-3-0-0-4-
commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW)), might provide this
functionality.

3. Setting the IP address within the controller application calling
"PNIO_interface_set_ip_and_nos()" IO-Base function.

Setting the IP suite at runtime with option 2 or 3 might be necessary for the use cases such
as "Multiple use IO systems".

In order to use the options 2 and 3, the hardware configuration must allow adapting the IP
address of the controller outside the engineering project. Please see Figure 8-3 for the
relevant setting in TIA portal.

https://support.industry.siemens.com/cs/document/67460624/proneta-basic-3-0-0-4-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/67460624/proneta-basic-3-0-0-4-commissioning-and-diagnostics-tool-for-profinet?dti=0&lc=en-WW

 Using PROFINET interface for IP communication
 8.2 Limitations

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 95

You may want to use a default gateway which is not in the same subnet as "pnio1" interface
to access another network such as company network or Internet. The following image
illustrates this scenario.

Figure 8-2 Using default gateway for company network access

Using PROFINET interface for IP communication
8.2 Limitations

 Quick Start PROFINET Driver V2.2
96 Getting Started, 04/2020, A5E42795137-AB

In this case, the IP assignment to "pnio1" interface and to the IO devices must be done via
DCP and the hardware configuration must be specified, that the IP address for both the
controller and the IO devices may be adapted locally. The following images illustrate the
necessary settings in TIA Portal for the controller and the IO device respectively.

Figure 8-3 Setting for the controller

Figure 8-4 Setting for the IO device

Default gateway to "pnio1" interface can be set together with the IP address. There must not
be any default gateway assigned to the IO devices so, only IP address assignment must be
done.

 Using PROFINET interface for IP communication
 8.2 Limitations

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 97

Following images illustrate the assignment via PRONETA for the controller and one of the IO
devices in Figure 8-2 respectively.

Figure 8-5 IP & Gateway assignment to controller via PRONETA

Using PROFINET interface for IP communication
8.2 Limitations

 Quick Start PROFINET Driver V2.2
98 Getting Started, 04/2020, A5E42795137-AB

Figure 8-6 IP assignment to IO device via PRONETA

It might be necessary to enable "Multiple use IO system" feature on the IO system first to be
able to make the setting for the local IP assignment on the IO device.

Since the default gateway is outside the subnet of the PROFINET interface "pnio1" with this
change, standard gateway of the controller becomes inactive. This situation is indicated with
PNIO_ALARM_MULTIPLE_INTERFACE alarm and "Application Ready" indication at
runtime.

Please refer to IO-Base user programming interface document for the details of the alarm
and the indication. Please be aware that, changing IP and gateway address at runtime may
cause failure of the existing socket connections in the system.

 Using PROFINET interface for IP communication
 8.2 Limitations

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 99

8.2.3.3 Disabling DHCP IP assignment for Linux Native and CP1625 Host variants
IP assignment via DHCP is not allowed. It is already not possible to assign an IP address to
"pnio1" interface of CP1625 Stand-alone variant via DHCP; however, it must be disabled
manually for "pnio1" interface of Linux Native and CP1625 Host variants.

Adding the following line to "/etc/network/interfaces" file would disable DHCP client for
"pnio1" interface:

● iface pnio1 inet manual

DHCP IP assignment for the interface used for the Linux Native variant is also not allowed
and must be disabled. This can be done in the same way, but using the name of the
interface instead of pnio1. For example if eth0 is used for the Linux Native variant, the
following line would disable DHCP client for eth0 interface:

● iface eth0 inet manual

8.2.4 Bandwidth limitation
Data infeed from "pnio1" interface for data types other than cyclic real-time data is limited to
3k octets per millisecond to avoid critical network load and share the communication
bandwidth fairly between devices. This includes e.g. PROFINET alarms, PROFINET
records, UDP and TCP frames.

We recommend to limit the sending bandwidth as 3k octets per millisecond maximum for
other non-real time communication nodes in your network as well to prevent network
problems due to high load.

8.2.5 SNMP
● It is not possible to use an SNMP agent other than the internal SNMP agent of PN Driver

at the standard SNMP ports.

● The SNMP agent provides interface group content for only "pnio1" interface. The other
interfaces in the system and relevant data is not provided.

● SNMP counter values of OSI model layer 3 and the above layers correspond to the entire
IP stack and thus all interfaces. Counter values which are that of layer 2 and layer 1
correspond to only "pnio1" interface.

● There is no interface to the user to define additional MIB objects, only RFC1213 MIB-II is
supported.

Using PROFINET interface for IP communication
8.3 Network planning

 Quick Start PROFINET Driver V2.2
100 Getting Started, 04/2020, A5E42795137-AB

8.2.6 Firewall
You may need to check the firewall settings of your system to allow PROFINET
communication via "pnio1" interface since PROFINET UDP traffic may be subject to the
firewall rules.

With improper firewall settings, the PROFINET UDP frames which are sent from the IO
devices to the controller can be blocked by the firewall. This would cause connection
problems between the controller and the IO devices.

8.3 Network planning
Network load might become an issue when PROFINET and non-real time communication
are used together. Siemens offers a tool, SINETPLAN, to calculate and simulate network
load for PROFINET networks.

With SINETPLAN, you can optimize the use of network bandwidth and avoid problems that
could arise during the commissioning and the production. For more information, please refer
to (https://new.siemens.com/global/en/products/automation/industrial-
communication/profinet/portfolio/sinetplan.html)

https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/portfolio/sinetplan.html
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/portfolio/sinetplan.html

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 101

Application examples 9
Overview

The PN Driver software package includes a set of application examples which offer a quick
start into programming your own application. These examples are very useful and helpful for
you to get familiar with PN Driver. These examples can be listed as follows:

● Test application

● Multiple use IO systems

● PNIO diagnostics

● Configuration control of IO systems

● Option handling

● Receiving alarms

● Isochronous mode

● Isochronous calculation

An XML file which includes the hardware configuration is stored for each application example
in the respective folder.

Application examples
9.1 Test application

 Quick Start PROFINET Driver V2.2
102 Getting Started, 04/2020, A5E42795137-AB

9.1 Test application
The test application (“test_app") uses the hardware configuration as shown in the figure
below.

Figure 9-1 Hardware configuration of the test application

The table below lists the included hardware components.

Table 9- 1 Hardware components of the test application

Component Number Article number Firmware
PN Driver 1 6ES7195-3AA00-0YA0 V2.2
SIMATIC ET 200SP,
PROFINET interface mod-
ule IM 155-6 PN ST

5 6ES7155-6AA01-0BN0 V4.1

Light-colored BaseUnit (BU...D) 5 6ES7193-6BP20-0DA0
Dark-colored BaseUnit (BU...B) 5 6ES7193-6BP20-0BA0
DI 8x24VDC ST 5 6ES7131-6BF01-0BA0 V0.0
DQ 8x24VDC/0.5A ST 5 6ES7132-6BF01-0BA0 V0.0

9.1.1 Startup options
The test application can be executed with various startup options in terms of reading the
configuration file. Refer to the table below for these options and their usage.

Table 9- 2 Startup options of the test application

./test_app Starts with default configuration under PNDriverBase_TestApp
folder.

./test_app –f <file_path> Starts with the configuration file given by <file_path>.

./test_app –d <directory_path> Lists all the xml files in the directory given by <directory_path>.
User chooses one of them to start test_app.

 Application examples
 9.1 Test application

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 103

9.1.2 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. SERV_CP_Startup

Starts all the internal tasks and configures PNIO stack according to the configuration. It
must be called before “Open Controller””.

4. SERV_CP_Shutdown
This must be called as the last function when exiting the user program. After the return
of the function, all internal threads have been exited and the entire local memory has
been released again.

5. Open Controller
Registers PN Driver as an IO controller with the IO-Base functions. It also registers
callback functions for setting the mode, device activation/deactivation, diagnostics re-
quests and IO system reconfiguration.

6. Close Controller
This function deregisters PN Driver as an IO Controller. All registered callback functions
are also deregistered with this function.

7. Set Mode PNIO_MODE_OFFLINE
With this function, you change the mode of the controller to OFFLINE.

8. Set Mode PNIO_MODE_CLEAR
With this function, you change the mode of the controller to CLEAR.

9. Set Mode PNIO_MODE_OPERATE
With this function, you change the mode of the controller to OPERATE.

10. Device Activate
This sets up a connection between your IO controller (PN Driver) and an IO device. You
need to specify which IO device you want to activate by entering a logical address as-
sociated with it. Each IO device can have several modules and therefore also can have
several addresses. It is enough to address just one of these.

11. Device Deactivate
This disconnects an IO device from PN Driver. You need to specify which IO device you
want to deactivate by entering a logical address associated with it.

12. I&M Data Read
With this function, PN Driver sends a read identification and maintenance data record
job to a module of an IO device. You should enter the logical address of the module for
which the read data record job is intended.

13. I&M Data Write
With this function, PN Driver sends a write identification and maintenance data record
job to a module of an IO device. You should enter the logical address of the module for
which the write data record job is intended.

15. SERV_CP_set_trace_level
With this function, the trace level of individual internal components can be changed
during operation. The function can be called at any time after the "SERV_CP_startup()"
function. When you call this function, you will first be asked the component for which
you want to change trace level, and then the level you want to set.

Application examples
9.1 Test application

 Quick Start PROFINET Driver V2.2
104 Getting Started, 04/2020, A5E42795137-AB

16. IO Data Read/Write
After selecting this menu item, you call either PNIO_data_read() or PNIO_data_write().
These functions read input data from and write IO data to the process image, respec-
tively.

17. Perform record operations
You can perform record read and record write operations following the submenu that
appears when you choose this menu item

18. List Modules and Submodules
This lists the details of modules and submodules that are connected to PN Driver in the
hardware configuration.

21. Open PDEV interface
This opens the local Ethernet interface to use its functions, and registers interface
callback functions for setting IP suite and name of station and reading remanent file.

22. Close PDEV Interface
This closes local Ethernet interface.

23. Interface Record Read
You can perform record read from the local Ethernet interface using this menu.

24. Interface Set IP and NoS
You can change the "IP Suite" and/or the station name of the local Ethernet interface by
using the submodule that appears when you choose this menu item.

25. Enable/Disable SNMP
SNMP functionality can be activated or deactivated by using the submodule that ap-
pears when you choose this menu item.

26. Enable/Disable SSH
SSH server can be activated or deactivated by using the submodule that appears when
you choose this menu item. This menu item appears when PN Driver runs under CP
1625Dev board "PN Driver CP1625 Stand-alone" and if you are using the same network
interface for both PROFINET and other IP based network communication.

27. Show PN Driver Version Info
This menu item displays the version of the actual used PN Driver version.

99. Write trace data to file
This menu item appears when circular trace mechanism is activated (#define
PNDTEST_USE_CIRCLE_TRACE) in the application. With this method, trace data will
be held in RAM until a FATAL/exception occurs. Also, you can write this trace data to a
file by using this menu item before exiting the user program.

0. QUIT
You can quit the application by entering 0.

 Application examples
 9.2 Multiple use IO systems

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 105

9.2 Multiple use IO systems
The application example shows how to use the feature "multiple use IO systems".

The application example for "multiple use IO systems" ("multiple_use_io_systems") uses the
hardware configuration as shown in the figure below. For the details of hardware
components such as article number and firmware version please refer to the section Test
application (Page 102)

Figure 9-2 Hardware configuration of multiple use IO systems and PNIO diagnostics

9.2.1 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the configuration.
Opens the local Ethernet interface and registers callback functions for setting IP suite
and name of station and reading remanent file. Registers PN Driver as an IO controller
and also changes the mode of the controller to OPERATE.

3. Start Tailoring Process
With this function you can start the tailoring process and set the IP suite and name of
station of PN Driver. The process of setting the IP suite and name of station of PN Driv-
er leads the tailoring process of each IO device.
With this application you can also store IP suite and name of station values remanently
in a file named "rema.xml". With the next start of the application, when you startup, IP
suite and name of station values will be taken from "rema.xml" file.

0. QUIT
You can quit the application by entering 0.

Application examples
9.3 PNIO diagnostics

 Quick Start PROFINET Driver V2.2
106 Getting Started, 04/2020, A5E42795137-AB

9.3 PNIO diagnostics
The application shows how to gather configuration and diagnosis information of IO devices.
Besides the device information, information about network parameters of the local IO
interface is also provided. The application example for PNIO Diagnostics ("pnio_ctrl_diag")
uses the same hardware configuration and the same hardware components as the test
application. For details, see the section Test application (Page 102)

9.3.1 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the configuration.
Opens the local Ethernet interface and registers callback functions for setting IP suite
and name of station and reading remanent file. Registers PN Driver as an IO controller
and also changes the mode of the controller to OPERATE.

3. Show Submodule List
Displays a list of all configured submodules that are connected to PN Driver in the
hardware configuration.

4. Show Device Diagnostic
Displays the status information of IO device for which the logical address is given.

5. Show Device Configuration and Diagnostics
With this function, diagnosis information and all modules/submodules of each IO device
are displayed

6. Show Address Info
Displays the network parameters of the local IO interface.

7. Set Device I&M Values
With this function, you can set the identification and maintenance (I&M) data record
values for a module of an IO device. You should enter the logical address of the mod-
ule. Then you should enter Function and Location tag (I&M1), build in date tag (I&M2),
descriptor tag (I&M3) and signature tag (I&M4).

0. QUIT
You can quit the application by entering 0.

 Application examples
 9.4 Configuration control for IO systems

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 107

9.4 Configuration control for IO systems
The application example shows how to use the feature "configuration control of IO systems".
At startup, one of the two possible configurations can be chosen. One hardware
configuration for optional IO devices and one hardware configuration for flexible topology can
be found in the folder for this example.

This application example uses the same hardware configuration and the same hardware
components as the test application. For the details of hardware components such as article
number and firmware version please refer to the section Test application (Page 102).

9.4.1 Optional IO devices
The hardware configuration used for optional IO devices is shown in the figure below.

Note that the IO device with the device name "device1" is not physically included in the
hardware configuration. The created application example is used to inform PN Driver with
"PNIO_reconfig_iosystem" about this state to commission the plant.

Additionally, in the hardware configuration "device2" is projected as "Optional IO-Device"
and "device3", "device4" and "device5" are projected as mandatory IO device. Each port has
a fixed partner port. Also note that, even if "device1" is not physically included in the
hardware configuration, "device1" is projected as "Optional IO-Device" in the engineering
configuration.

Figure 9-3 Physical hardware configuration of optional IO devices

Application examples
9.4 Configuration control for IO systems

 Quick Start PROFINET Driver V2.2
108 Getting Started, 04/2020, A5E42795137-AB

9.4.2 Flexible topology
The hardware configuration used for flexible topology is shown in the figure below.

Note that the order of the IO devices is changed in the physical configuration. The
application example is created to inform PN Driver about this state to commission the plant.

Additionally, in the hardware configuration the port settings of each IO device and IO
controller are set to "Set Partner by user program".

Figure 9-4 Physical hardware configuration of flexible topology

 Application examples
 9.4 Configuration control for IO systems

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 109

9.4.3 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the chosen configu-
ration (1 for optional IO devices configuration and 2 for flexible topology). Opens the
local Ethernet interface. Registers PN Driver as an IO controller and callback function
for IO system reconfiguration. Also changes the mode of the controller to OPERATE.

4. Deactivate All IO Devices
With this function you can avoid diagnostic messages on the IO devices by deactivating
all IO devices including the mandatory ones.

5. Execute Tailoring Process
Tailoring process is done with the parameters specified in "DeviceList" and "PortInter-
connectionList" and then the activation of all IO devices which are mandatory or option-
al and listed in "DeviceList" is triggered.
"DeviceList" contains the logical addresses of the optional and physically present IO
devices. For example; for optional IO devices configuration "DeviceList" has only one
entry for "device2" which is optional and physically present. For flexible topology config-
uration "DeviceList" does not have any entry because all of the IO devices are projected
as mandatory.
"PortInterconnectionList" contains the logical addresses of the port interconnections.
For example; for optional IO devices configuration "PortInterconnectionList" is empty
because each port has a fixed partner port. For flexible topology configuration "Port-
InterconnectionList" contains 5 entries ([65,270], [271, 277], [278, 260], [261, 284], [285,
291]).

0. QUIT
You can quit the application by entering 0.

Application examples
9.5 Option handling

 Quick Start PROFINET Driver V2.2
110 Getting Started, 04/2020, A5E42795137-AB

9.5 Option handling
The application example shows how to use the feature "configuration control". You can
activate a variant by writing a "control data record" to the IO device which describes the
expected configuration and then read a "feedback data record" from IO device which
describes the actual configuration of the IO device. Description of the variants and
configured hardware configuration of ET 200SP are given in the table below.

Table 9- 3 Description of the variants

Slot Numbers of ET 200SP

1

2

3

4

5

Projected configuration of the SIMATIC
ET 200SP

Modules:

M1

M2

M3

M4

SM

BaseUnits:

BU_D

BU_B

BU_B

BU_B

Real configuration of
the SIMATIC ET
200SP

Variant 2

Modules:

M1

M4

SM

BaseUnits:

BU_D

BU_B

Variant 3

Modules:

M1

M3

M4

M2

SM

BaseUnits:

BU_D

BU_B

BU_B

BU_B

Variant 4

with Modules:

M1

M2

M3

M4

SM

with BU cover:

M1

BC

M3

M4

BaseUnits:

BU_D

BU_B

BU_B

BU_B

Variant 5

Modules:

M1

M2

M3

M4

SM

BaseUnits:

BU_D

BU_B

BU_D

BU_B

Variant 6

with Modules:

M3

M4

M1

SM

With BU cover:

M3

BC

M1

BaseUnits:

BU_D

BU_B

BU_D

 Application examples
 9.5 Option handling

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 111

The application example for option handling ("option_handling") uses the hardware
configuration as shown in the figure below.

Figure 9-5 Physical hardware configuration of option handling

The required components are listed in the table below.

Table 9- 4 Hardware components of the configuration control for IO devices

Component Name Number Article number Firmware
Version

PN Driver 1 6ES7195-3AA00-
0YA0

V2.2

SIMATIC ET 200SP, PROFINET bun-
dle IM, IM 155-6 PN ST

 1 6ES7155-6AA01-
0BN0

V4.1

Light-colored BaseUnit (BU...D) BU_D 1 6ES7193-6BP20-
0DA0

Dark-colored BaseUnit (BU...B) BU_B 3 6ES7193-6BP20-
0BA0

DI 8x24VDC ST M1 1 6ES7131-6BF01-
0AB0

V0.0

DI 8x24VDC ST M2 1 6ES7131-6BF01-
0AB0

V0.0

DQ 4x24VDC/2A ST M3 1 6ES7132-6BD20-
0BA0

V1.1

DQ 8x24VDC/0.5A ST M4 1 6ES7132-6BF01-
0BA0

V0.0

BU cover BC 1 6ES7133-6CV15-
1AM0

Server module that comes with the de-
vice bundle of ET 200SP as shown in
the second record of this table

SM 1 6ES7 193-6PA00-
0AA0

V1.1

Application examples
9.5 Option handling

 Quick Start PROFINET Driver V2.2
112 Getting Started, 04/2020, A5E42795137-AB

9.5.1 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the chosen configu-
ration (1 for optional IO devices configuration and 2 for flexible topology). Opens the
local Ethernet interface. Registers PN Driver as an IO controller and callback function
for IO system reconfiguration. Also changes the mode of the controller to OPERATE.

3. Enable Variant 2
With this function, you can build the "control data record" for Variant 2 (module 1 (M1) is
inserted to slot 1 (S1), module 2 (M2) and module 3 (M3) are hidden and module 4 (M4)
is inserted to slot 2 (S2)). "Control data record" is written to IO device then "feedback
data record" is read from IO device.

4. Enable Variant 3
With this function, you can build the "control data record" for Variant 3 (module 1 (M1) is
inserted to slot 1 (S1), module 2 (M2) is inserted to slot 4 (S4), module 3 (M3) is insert-
ed to slot 2 (S2) and module 4 (M4) is inserted to slot 3 (S3)). "Control data record" is
written to IO device then "feedback data record" is read from IO device.

5. Enable Variant 4
With this function, you can build the "control data record" for Variant 4 (module 1 (M1) is
inserted to slot 1 (S1), module 2 (M2) is inserted to slot 2 (S2) or a BU cover is inserted
to slot 2 (S2), module 3 (M3) is inserted to slot 3 (S3) and module 4 (M4) is inserted to
slot 4 (S4)). "Control data record" is written to IO device then "feedback data record" is
read from IO device.

6. Enable Variant 5
With this function, you can build the "control data record" for Variant 5 (module 1 (M1) is
inserted to slot 1 (S1), module 2 (M2) is inserted to slot 2 (S2), module 3 (M3) is insert-
ed to slot 3 (S3) and a new potential group is opened and module 4 (M4) is inserted to
slot 4 (S4)). "Control data record" is written to IO device then "feedback data record" is
read from IO device.

7. Enable Variant 6
With this function, you can build the "control data record" for Variant 6 (module 1 (M1) is
inserted to slot 3 (S3) and a new potential group is opened, module 2 (M2) is hidden,
module 3 (M3) is inserted to slot 1 (S1) and module 4 (M4) is inserted to slot 2 (S2) or a
BU cover is inserted to slot 2 (S2)). "Control data record" is written to IO device then
"feedback data record" is read from IO device.

0. QUIT
You can quit the application by entering 0.

 Application examples
 9.6 Receiving alarms

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 113

9.6 Receiving alarms
The application example shows how to receive alarms from the local PDEV interface or from
any other IO device.

The application example for receiving alarms ("receiving_alarms") uses the same hardware
configuration and the same hardware components as the test application. For details, see
the section Test application. (Page 102)

9.6.1 Menu Items
Menu items in the test application example are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the chosen configu-
ration (1 for optional IO devices configuration and 2 for flexible topology). Opens the
local Ethernet interface. Registers PN Driver as an IO controller and callback function
for IO system reconfiguration. Also changes the mode of the controller to OPERATE.

3. Show Alarm Buffer
Received alarm information is stored in an alarm buffer. With this function, you can dis-
play all the alarm items.

4. Init Alarm Buffer
With this function, you can delete all the alarm items and clear the alarm buffer.

0. QUIT
You can quit the application by entering 0.

Application examples
9.7 Isochronous mode

 Quick Start PROFINET Driver V2.2
114 Getting Started, 04/2020, A5E42795137-AB

9.7 Isochronous mode
The application example for isochronous mode ("isochronous_mode") uses the hardware
configuration as shown in the figure below.

Figure 9-6 Physical hardware configuration of isochronous mode

The required device is listed in the table below. There are basically 2 servo motors with
wheels (blue and red), a double motor module, a line module, a sensor module and a control
unit (CU320-2 PN) inside the specified device.

Table 9- 5 Hardware components of the configuration control for IO devices

Component Number Article number
 Training Case SINAMICS S120 1 6ZB2480-0CN00

PN Driver supports ISO mode feature for only CP1625 Host and CP1625 Stand-alone
variants. For details see the sections Quick start for CP1625 Stand-alone (Page 64) for
CP1625 Stand-alone and Quick start for CP1625 Host (Page 77) for CP1625 Host variants.

Before starting the application example, you need to load the project to the control unit using
TIA Portal from port X150. If you need to see the online diagnostics while controlling the
device with PN Driver you can connect the control unit over port X127.

Application is capable of setting the PN Driver as a controller for the training case, changing
the speed of the servo motors, start-stop of the motors, read encoder position of the motors
and write the encoder position to a txt file.

In multiple fields of Isochronous Applications, e.g. motion, it is necessary to uncover whether
a data value is from the current cycle or some past cycle. For this purpose "PROFI drive"
which is the modular device profile for drive devices developed by PROFIBUS and
PROFINET International (PI), defines the so called "Sign-Of-Life" as companion value to the
process data. The "Sign-Of-Life" companion value has a range of 0..15, whereas "0" is
defined as "applications are not in sync". The sign of life bit is altered in each cycle in the
application.

 Application examples
 9.7 Isochronous mode

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 115

9.7.1 Menu Items
Menu items in the test application are explained as follows:

1. Help

Shows the menu again.
2. SERV_CP_Startup

Starts all the internal tasks and configures PNIO stack according to the configuration. It
must be called before "Open Controller".

4. SERV_CP_Shutdown
This must be called as the last function when exiting the user program. After the return
of the function, all internal threads have been exited and the entire local memory has
been released again.

5. Open Controller
Registers PN Driver as an IO controller with the IO-Base functions. It also registers
callback functions for setting the mode, device activation/deactivation, diagnostics re-
quests and IO system reconfiguration.

6. Close Controller
This function deregisters PN Driver as an IO controller. All registered callback functions
are also deregistered with this function.

7. Set Mode PNIO_MODE_OFFLINE
With this function, you change the mode of the controller to OFFLINE.

8. Set Mode PNIO_MODE_CLEAR
With this function, you change the mode of the controller to CLEAR.

9. Set Mode PNIO_MODE_OPERATE
With this function, you change the mode of the controller to OPERATE.

10. Set PN Driver as Controller
Makes the training case controllable from PN Driver. The related bit is set and control
unit and modules accept data from a controller.

11. Set Servo Motor Speeds
With this function, you can set servo motor speeds (1-6000 rpm) (Red Wheel is 1, Blue
Wheel is 2.). Note that, the speed is limited for safety.

12. Start Servo Motors
With this function, motors start rotating.

13. Stop Servo Motors
With this function, motors stop.

14. Read 1 second Encoder Position Data
With this function, you can read the encoder position for 1 second whenever needed.

15. Write 1 second Encoder Position Data to Text File
After reading the encoder position, with this function, you can write it to text file after it is
read.

0. QUIT
You can quit the application by entering 0.

Application examples
9.7 Isochronous mode

 Quick Start PROFINET Driver V2.2
116 Getting Started, 04/2020, A5E42795137-AB

In this application, an example working sequence of the training case with PN Driver in ISO
Mode can be like below:

2. SERV_CP_Startup

5. Open Contoller

9. Set Mode PNIO_MODE_OPERATE

10. Set PN Driver as Controller

11. Set Servo Motor Speeds (1-6000 rpm)

12. Servo Motors (rotating)

14. Read 1 second Encoder Position Data (if needed)

15. Write 1 second Encoder Position Data to Text File (if needed)

13. Stop Servo Motors

0. QUIT

Please note that RDY light or OPT LEDs on the control unit (CU320-2 PN) may flash red at
2Hz, if the mode of the controller is changed to PNIO_MODE_OFFLINE or
PNIO_MODE_CLEAR after PNIO_MODE_OPERATE. If it happens, these LEDs turn to
green once the FN key is pressed on the operator panel.

 Application examples
 9.8 Isochronous calculation

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 117

9.8 Isochronous calculation
The application example for isochronous calculation ("iso_calc") illustrates how to calculate
the time left for the user application in isochronous mode for a given hardware configuration.
If you are using PN Driver in isochronous mode, you may want to know for how long your
user program can safely run in each cycle without violating isochronous mode. This example
calculates the available free time for the user application in each cycle remaining after the
system process time is deduced. The system process time is the total value of IO copy times
and all kinds of latencies and jitters depending on the hardware and the operating system. In
case of isochronous mode violation, the application stops measuring with a notification. You
can either use this application as it is and follow the menu to calculate the remaining
application time for a hardware configuration of your choice, or you can adapt the source
code into an existing application as described in this section.

In order to get meaningful results, you must use a hardware configuration in which
isochronous mode is activated for IO controller and at least some of the IO devices and
modules. An example hardware configuration is provided for illustration purposes. Note
that PN Driver does not need a connection with actual IO devices for this application to work
correctly. Therefore, you can also perform the calculation with a hypothetical configuration.

The application measures the entire processing time and gives the time left for application
through a formula. The sample output is shown in the figure below:

Figure 9-7 Sample results

PN Driver supports ISO mode feature for CP1625 Host and CP1625 Stand-alone variants.
Additionally, this application is implemented to support only IPO model (read Inputs –
Processing – write Outputs). OIP model (write Outputs - read Inputs – Processing) is not
supported by this application in isochronous mode. Since PN Driver automatically uses the
OIP model for CACF values greater than 1, this application example must be used with a
hardware configuration where CACF=1; otherwise, the results will not be reliable.

Application examples
9.8 Isochronous calculation

 Quick Start PROFINET Driver V2.2
118 Getting Started, 04/2020, A5E42795137-AB

9.8.1 Interpretation of ISO calculation output
To be able to interpret the results of the calculation, you need to be aware of the following
concepts related to isochronous mode:

TDC (Time Data Cycle/Application Data Cycle): This attribute indicates the time for the
application data cycle. This time span includes all parts of the isochronous data cycle to
convey inputs and outputs. TDC is a binary multiple (i.e. 1, 2, 4, 8…) multiple of SendClock.
For PROFINET IO the Application Data Cycle is the so called update time of the
isochronously operated IO devices.

TCA_Start: It is the time elapsed between the beginning of the application cycle and the
moment the input data becomes available in the communication memory.

TCA_End: It is the time elapsed between the beginning of the application cycle and the
moment the output data is written to the communication memory.

TCA_Valid: It describes the time span between the start of the application cycle and the point
of time when the input data is available for the Isochronous Application.

TKI (Input PIP processing time): The time needed for processing and transfer of the input
data available in the communication memory to the Input PIP before they are ready for use
by the application.

TKO (Output PIP processing time): The time needed for processing and transfer of the
output data of the PIP before they are ready in the communication memory for sending.

TAppl (Application processing time): The processing time of the user application (TKI / TKO
not included). A user application reads input values from the input PIP, does some
processing and writes output values to the output PIP.

Sync PI / Sync PO depicts the buffering of inputs and outputs for the Isochronous
Application. The main advantage of the buffering is that the IO controller has a consistent
image of the process signals for the duration of one cycle of the Application.

Figure 9-8 Timeline of an application cycle

 Application examples
 9.8 Isochronous calculation

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 119

9.8.2 Menu Items
Menu items in the test application are explained as follows:

1. Help

Shows the menu again.
2. Startup

Starts all the internal tasks and configures PNIO stack according to the configuration.
Registers PN Driver as an IO controller with the IO-Base functions. It also registers
callback functions for setting the mode, device activation/deactivation, alarm requests,
start/stop and opFault.
Change the mode of the controller to OPERATE. ISO sync and interrupts start.

3. Start Calculation
"Measurement is started" is printed on screen. This message will retain on screen till
results will be available once user issues Menu Item 4

4. Stop Calculation
Measurement is stopped and the results are displayed on screen. "ISO Measurement
Results" are printed on screen.

5. Insert TAppl Time
Before starting the calculation, you can optionally insert a time period inside the applica-
tion time using this menu item. In this case, the results should be interpreted as the
remaining time after this much time is already used by the application.

0. QUIT
You can quit the application by entering 0.

9.8.3 Enabling debug mode when needed
A compilation flag called "DEBUG_ISO_CALC" is used for more details to be printed to the
console while the measurement is running. It can be activated by building the application
with the command "make debug".

9.8.4 Adapting calculation source code into an existing application
You can also adapt the source code of this example into an existing application to analyze
how much more time you can use for processing data. To do so, following steps must be
taken, details of which are explained in the subsequent sections:

1. Import relevant source files and include them in your Makefile

2. Insert your application program in the proper callback function

3. Call functions necessary to manage calculation lifecycle

Application examples
9.8 Isochronous calculation

 Quick Start PROFINET Driver V2.2
120 Getting Started, 04/2020, A5E42795137-AB

9.8.4.1 Import relevant source files and include them in your Makefile
The files "iso_calc.cpp" and "iso_calc.h" under the path
"[..]/pn_driver/src/examples/iso_calc/src" need to be included in your project.

Your typical Makefile would be similar to the Makefiles which you can find under variant
directories; for example "[..]/pn_driver /src/examples/iso_calc/cp1625_host/build". You need
to adapt your Makefile to compile "iso_calc.cpp" and keep "iso_calc.h" under an include
directory recognized by your Makefile.

9.8.4.2 Insert your application program in the proper callback function
The following callback function will be called at each ISO application cycle if it has been
registered with the callback event "PNIO_CP_CBE_STARTOP_CYCLEINFO_IND".
Application program should be inserted just before "PNIO_CP_set_opdone" function is called
in the function "callback_for_start_op_ind_cycleinfo" of the "iso_calc.cpp" module.

void callback_for_start_op_ind_cycleinfo(PNIO_CP_CBE_PRM* pCbfPrm)

{

 ...

 //Please insert your Application User Program here

 //

 //End of Application

 PNIO_CP_set_opdone(g_ApplHandle, &(pCbfPrm->u.StartOp.CycleInfo));

 ...

}

 Application examples
 9.9 References

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 121

9.8.4.3 Call functions necessary to manage calculation lifecycle
Before you start the measurement, you first need to startup PN Driver, register it as an IO
controller, register necessary callback functions and set the controller mode to "OPERATE".
You may use your own callback functions for other callback events, but make sure that the
callback events "PNIO_CP_CBE_STARTOP_CYCLEINFO_IND" and
"PNIO_CP_CBE_OPFAULT_IND" are registered with the functions
"callback_for_start_op_ind_cycleinfo()" and "callback_for_op_fault_ind()", respectively. These
functions are defined in "iso_calc.cpp" and they are responsible for the measurement logic.

To start the measurement, call the function "isoStartCalc()". Please note that the
measurement will start, if the controller mode is set to OPERATE.

To stop the measurement, call the function "isoStopDisplayCalc()". This function stops the
measurement and displays the results on console.

If any isochronous mode violation occurs, then the function "callback_for_op_fault_ind" is
called automatically and this function stops the calculation and displays the fault timing.

 Note

Please note that you can still register your own callback functions with the callback events
"PNIO_CP_CBE_STARTOP_CYCLEINFO_IND" and "PNIO_CP_CBE_OPFAULT_IND". If
you choose to do so, you need to adapt them to implement the measurement logic by calling
the function "updateIsoModeTiming" properly. You can refer to the definitions of the
functions "callback_for_start_op_ind_cycleinfo" and "callback_for_op_fault_ind" given in
"iso_calc.cpp" module for the implementation of the measurement logic.

9.9 References
● Additional information on the use of the configuration control can be found on the Internet

(https://support.industry.siemens.com/cs/ww/en/view/29430270).

● Additional information on multiple use IO systems and on configuration control for IO
systems is available in the function manual PROFINET
(https://support.industry.siemens.com/cs/ww/en/view/49948856).

● Additional information on PROFI drive and its usage can be found on the Internet
(https://www.profibus.com/technology/profidrive/)

https://support.industry.siemens.com/cs/ww/en/view/29430270
https://support.industry.siemens.com/cs/ww/en/view/49948856
https://www.profibus.com/technology/profidrive/

Application examples
9.10 Opening archived TIA projects in the TIA Portal

 Quick Start PROFINET Driver V2.2
122 Getting Started, 04/2020, A5E42795137-AB

9.10 Opening archived TIA projects in the TIA Portal
1. To open an archived TIA project, select the menu Project > Open.

Figure 9-9 TIA Portal - Open

2. In the next window, you first select the archive file of the required project followed by the
target directory to which the project should be extracted.

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 123

 Appendix A
A.1 Abbreviations / Glossary of terms

API Application Programming Interface
BC BaseUnit Cover
BU_B Dark BaseUnit
BU_C Light BaseUnit (opens a new potential group)
CACF Controller Application Cycle Factor
CPU Central Processing Unit
DCP Discovery and Configuration Protocol
DLL Dynamically Linked Library
GDB GNU Project Debugger
GSDML PROFINET General Station Description (GSD) file in XML format
HSP Hardware Support Package
IO Input/Output
IPO Read Inputs - Processing - Write Outputs
IRT Isochronous Real Time
Mx Module x (I/O module)
OIP Write Outputs - Read Inputs - Processing
PDEV Physical Device
PN PROFINET
PNConfigLib PROFINET Configuration Library
PNIO PROFINET IO
PM QOS Power Management Quality of Service
RSE Remote System Explorer
RT Real Time
SDK Software Development Kit
SM Server Module
SNMP Simple Network Management Protocol
SSH Secure Shell
TCF Target Communication Framework
USP User Datagram Protocol
UUID Universal Unique Identifier
XML Extensible Markup Language

 Quick Start PROFINET Driver V2.2
124 Getting Started, 04/2020, A5E42795137-AB

 Index

A
Automation, 7

B
bblayers, 44
BitBake, 41, 43

C
CP 1625, 8, 64
CP1625, 9, 77

D
Debian, 24, 25, 29, 30, 35, 39, 64

E
Eclipse, 24, 35, 37, 39, 47, 48, 48, 52, 61, 61
Ethernet, 8, 38, 42, 52, 85, 87

G
GDB, 61, 63

H
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
hardware configuration, 8, 10, 83, 87, 101, 107, 111
Hardware Support Package,

I
IO controller, 7, 103, 105, 106, 109, 112, 113, 115, 119
IO device, 103, 105, 106, 109, 112, 113, 115, 119
IOT20x0, 39, 40, 42

IRT, 123

K
kas, 41
kernel, 24, 64

L
LINUX, 7
Linux kernel, 27, 29, 30, 32, 37, 39, 40, 43, 46
Linux kernel, 27, 29, 30, 32, 37, 39, 40, 43, 46

M
module, 29, 30, 30, 32, 32, 43, 46, 102

P
PCI, 31, 31
PN Device
Driver, 29, 30, 32, 32, 33, 37, 43, 46, 46, 59, 81
PN Device
Driver, 29, 30, 32, 32, 33, 37, 43, 46, 46, 59, 81
PN Device
Driver, 29, 30, 32, 32, 33, 37, 43, 46, 46, 59, 81
PN Device
Driver, 29, 30, 32, 32, 33, 37, 43, 46, 46, 59, 81
PN Device
Driver, 29, 30, 32, 32, 33, 37, 43, 46, 46, 59, 81
PNConfigLib, 8, 10
PNDevDrv, 29, 31, 31, 32, 33, 37, 39, 43, 43, 46, 46, 8
0
PNDevDrv, 29, 31, 31, 32, 33, 37, 39, 43, 43, 46, 46, 8
0
PNIO, 19, 106, 107, 123
PROFINET, 7, 7, 7, 8, 10, 22, 85, 87, 102, 121

R
remote access, 51, 52
remote access, 51, 52
RT, 24, 27, 39, 40, 64, 123

 Index

Quick Start PROFINET Driver V2.2
Getting Started, 04/2020, A5E42795137-AB 125

S
SDK, 47
SIMATIC, 42, 102
SSH, 50, 123
STEP 7, 19, 83
submodule, 87

T
TCF, 55, 123
TIA Portal, 7, 8, 8, 83, 83, 83, 86, 122
TIA Portal, 7, 8, 8, 83, 83, 83, 86, 122
TIA Portal, 7, 8, 8, 83, 83, 83, 86, 122
TIA Portal, 7, 8, 8, 83, 83, 83, 86, 122
TIA Portal, 7, 8, 8, 83, 83, 83, 86, 122
topology, 108

V
Visual Studio, 15, 17, 20

W
Windows, 7, 15, 17, 17, 30, 43, 87, 87
WinPcap, 15, 17, 22

Y
Yocto, 39, 40, 41, 42, 44

	Quick Start PROFINET Driver V2.2
	Legal information
	Table of contents
	1 Introduction
	1.1 Overview
	1.2 Security information
	1.3 PROFINET security guidelines
	1.4 Open Source Software
	1.5 Disclaimer for third-party software updates
	1.6 Notes on protecting administrator accounts

	2 Quick start for Windows
	2.1 Quick start for Windows
	2.2 Installing WinPcap Developer's Pack
	2.3 Installing WinPcap
	2.4 Installing Visual Studio 2017
	2.5 Disabling network protocols that are not utilized
	2.6 Disabling the PNIO adapter of the PG/PC interface
	2.7 Start application example

	3 Quick start for Linux
	3.1 Quick start for Linux
	3.2 PN Driver Linux variants
	3.3 Installing Debian
	3.4 Enabling admin rights for the user
	3.5 Installing the real-time Linux kernel
	3.6 Installing other required packages
	3.7 Using the PN Device Driver for the Linux variant
	3.7.1 Compiling the PN Device Driver
	3.7.2 Loading the PN Device Driver
	3.7.3 Binding the PCI card
	3.7.4 Unbinding the PCI card
	3.7.5 Unloading the PN Device Driver
	3.7.6 Loading the PN Device Driver automatically
	3.7.7 Determining errors during loading of the PN Device Driver

	3.8 Additional Configuration for the Linux Native variant
	3.8.1 Disabling DHCP
	3.8.2 Removing IP address
	3.8.3 Disabling ARP Protocol
	3.8.4 Preventing duplicated packets
	3.8.5 Adapting LED Blink functionality to your hardware

	3.9 Installing and starting Eclipse IDE
	3.10 Starting the application example

	4 Quick start for IOT20x0
	4.1 Quick start for IOT20x0
	4.2 Installing Yocto Image
	4.2.1 Download IOT20x0 Board Support Package
	4.2.2 Using PREEMPT_RT kernel
	4.2.3 Building the Image
	4.2.4 Creating a bootable media

	4.3 Using the PN Device Driver
	4.3.1 Compiling the PN Device Driver
	4.3.2 Loading the PN Device Driver
	4.3.3 Unloading the PN Device Driver

	4.4 Building the PN Driver application
	4.4.1 Build on Command Line
	4.4.2 Build in Eclipse IDE

	4.5 Connecting to the target device
	4.6 Transferring files from the host to the target
	4.6.1 File transfer via USB flash drive
	4.6.2 File transfer via Remote Access

	4.7 Running the application on the target
	4.8 Debugging the PN Driver application
	4.8.1 Debugging the PN Driver application via GNU Debugger
	4.8.2 Debugging the PN Driver application via Remote Debugging

	5 Quick start for CP1625 Stand-alone
	5.1 Quick start for CP1625 Stand-alone
	5.2 Installing Buildroot Image
	5.2.1 Downloading Buildroot package
	5.2.2 Configuring Buildroot
	5.2.3 Building the image
	5.2.4 Adding custom files to the Linux image
	5.2.5 Connecting to the target device via serial console
	5.2.6 Flashing the bootloader
	5.2.7 Booting the image

	5.3 Building the PN Driver application
	5.4 Running the application on the target
	5.5 Transferring files from the target to the host
	5.5.1 Transferring files from the target to the host using serial port
	5.5.2 Transferring files between the target and the host using Secure Shell (SSH)

	6 Quick start for CP1625 Host
	6.1 Quick start for CP1625 Host
	6.2 Changing local port range
	6.3 Installing Buildroot image
	6.3.1 Downloading Buildroot package
	6.3.2 Configuring Buildroot
	6.3.3 Building the image
	6.3.4 Adding custom files to the Linux image
	6.3.5 Configuring CP1625 firmware application as an auto boot application

	6.4 Using the PN Device Driver
	6.5 Building the PN Driver application
	6.5.1 Building the firmware application
	6.5.2 Building the example application

	6.6 Running the PN Driver application

	7 Hardware configuration in engineering system
	7.1 Hardware configuration in the TIA Portal
	7.1.1 Installing the Hardware Support Package for PN Driver V2.2
	7.1.2 Generating an XML configuration file

	7.2 Hardware configuration in PNConfigLib
	7.2.1 Generating an XML configuration file

	8 Using PROFINET interface for IP communication
	8.1 How to use PROFINET interface for socket connections
	8.2 Limitations
	8.2.1 Transport protocols
	8.2.2 Local port range
	8.2.2.1 Changing local port range for Linux Native and CP1625 Host variants

	8.2.3 Default Gateway and IP assignment
	8.2.3.1 Default Gateway assignment via external tools and DHCP
	8.2.3.2 Supported methods for IP and Default Gateway assignment
	8.2.3.3 Disabling DHCP IP assignment for Linux Native and CP1625 Host variants

	8.2.4 Bandwidth limitation
	8.2.5 SNMP
	8.2.6 Firewall

	8.3 Network planning

	9 Application examples
	9.1 Test application
	9.1.1 Startup options
	9.1.2 Menu Items

	9.2 Multiple use IO systems
	9.2.1 Menu Items

	9.3 PNIO diagnostics
	9.3.1 Menu Items

	9.4 Configuration control for IO systems
	9.4.1 Optional IO devices
	9.4.2 Flexible topology
	9.4.3 Menu Items

	9.5 Option handling
	9.5.1 Menu Items

	9.6 Receiving alarms
	9.6.1 Menu Items

	9.7 Isochronous mode
	9.7.1 Menu Items

	9.8 Isochronous calculation
	9.8.1 Interpretation of ISO calculation output
	9.8.2 Menu Items
	9.8.3 Enabling debug mode when needed
	9.8.4 Adapting calculation source code into an existing application
	9.8.4.1 Import relevant source files and include them in your Makefile
	9.8.4.2 Insert your application program in the proper callback function
	9.8.4.3 Call functions necessary to manage calculation lifecycle

	9.9 References
	9.10 Opening archived TIA projects in the TIA Portal

	A Appendix
	A.1 Abbreviations / Glossary of terms

	 Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	P
	R
	S
	T
	V
	W
	Y

