
 

 

AI Software Development Kit 
 

Industrial AI 

 
AI Software Development Kit 

Function Manual 

 

 
11/2023 
A5E52031285-AG 

Introduction 
 1 

 

Safety notes 
 2 

 

Installing AI Software 
Development Kit 

 3 
 

Using AI Software 
Development Kit 

 4 
 

Guideline for writing 
pipeline components 

 5 
 

  

  

  

  

  



 

   Siemens Aktiengesellschaft 
Digital Industries 
Postfach 48 48 
90026 NÜRNBERG 
GERMANY 

A5E52031285-AG 
Ⓟ 11/2023 Subject to change 

Copyright © Siemens 2023. 
All rights reserved 

Legal information 
Warning notice system 

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent 
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert 
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are 
graded according to the degree of danger. 

 DANGER 
indicates that death or severe personal injury will result if proper precautions are not taken. 

 
 WARNING 

indicates that death or severe personal injury may result if proper precautions are not taken. 
 

 CAUTION 
indicates that minor personal injury can result if proper precautions are not taken. 

 
 NOTICE 

indicates that property damage can result if proper precautions are not taken. 
If more than one degree of danger is present, the warning notice representing the highest degree of danger will 
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to 
property damage. 

Qualified Personnel 
The product/system described in this documentation may be operated only by personnel qualified for the specific 
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. 
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and 
avoiding potential hazards when working with these products/systems. 

Proper use of Siemens products 
Note the following: 

 WARNING 
Siemens products may only be used for the applications described in the catalog and in the relevant technical 
documentation. If products and components from other manufacturers are used, these must be recommended 
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and 
maintenance are required to ensure that the products operate safely and without any problems. The permissible 
ambient conditions must be complied with. The information in the relevant documentation must be observed. 

Trademarks 
All names identified by ® are registered trademarks of Siemens Aktiengesellschaft. The remaining trademarks in 
this publication may be trademarks whose use by third parties for their own purposes could violate the rights of 
the owner. 

Disclaimer of Liability 
We have reviewed the contents of this publication to ensure consistency with the hardware and software 
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the 
information in this publication is reviewed regularly and any necessary corrections are included in subsequent 
editions. 
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Introduction 1 
1.1 Overview of Siemens Industrial Edge 

Siemens Industrial Edge is the next generation of digital automation. With Siemens Industrial 
Edge, you use intelligence and scalability of the cloud directly in your production - in a 
simple, high-performance manner and without your data leaving the manufacturing process. 
Siemens Industrial Edge combines local and high-performance data processing directly in the 
automation system itself with the advantages of the cloud: app-based data analysis, data 
processing and Infrastructure-as-a-Service concepts with central update functionality. In this 
way, you can quickly integrate apps into manufacturing and manage them with a high 
degree of automation. 

Siemens Industrial Edge allows you to continuously make changes to your automation 
components and plants, analyze large volumes of data in the automation system to 
implement innovative functions, such as predictive maintenance, and to achieve maximum 
flexibility and thus productivity over the entire machine lifecycle. 

Industrial Edge Hub 
With the Siemens Industrial Edge Hub, you have access to an app store where you can find all 
Siemens apps and 3rd-party apps. From here, you can manage all licenses for your apps and 
devices centrally. You can install updates for security issues, device firmware, apps and 
Industrial Edge Management. 

You can monitor and manage distributed Edge devices centrally in the Industrial Edge 
Management. In this way, new apps and software functions, for example, can be installed on 
all connected Edge devices company-wide. Central software management thus minimizes the 
workload for performing maintenance and updates on individual devices. 

On the individual Industrial Edge devices, you can start and run apps and keep statistics on an 
Edge device, for example. 

With the Industrial Edge Publisher, you can develop your own Edge apps and make them 
available to other users in Industrial Edge Management. 

Another component of the Siemens Industrial Edge ecosystem is the Industrial Edge Runtime, 
that is installed on Industrial Edge Devices (IED) or Unified Comfort Panels (UCP) and on 
which the system, including all applications, ultimately runs. 
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Industrial Edge Hub Industrial Edge Management Industrial Edge Runtime 
on Industrial Edge Devices 

Platform for purchasing apps and 
software, and for monitoring ma-
nagement systems 

Centralized control level for ma-
naging devices, apps, and store 
floor users 

Software level for app container 

 • Central management location 
for apps, contributing to 
corporate standardization 

• Management of all licenses in 
use and thus easy cost 
estimates 

• Overview of all management 
system instances that are in 
use worldwide 

 • Assignment of apps to the 
matching Edge devices 
(worldwide) 

• Specification of user rights 
(e.g. app installations) 

• Just a few clicks for app setup 
and security update cycles 

• Supervision of all operations 
using the centralized Admin 
view 

• Excellent usability for IT and 
OT users, helping to promote 
user adaptation and self-
service 

 • Installation of scalable apps on 
many different Edge devices 

• Supports usage in industrial 
environments by: 
– Ensuring security and 

reliability 
– Providing comprehensive 

user management to meet 
the requirements of 
machine manufacturers 
and plant operators alike 

– Adhering to Company 
Policy Compliance, e.g. user 
management integration or 
IT/firewall specifications 

• Integrating device connectivity 
to cloud and automation 
systems 
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1.2 Overview of Industrial AI@Edge 
Siemens Industrial Edge ecosystem is enabled with Industrial AI products. With Industrial AI, 
the scalable Industrial Edge ecosystem is expanded by AI capabilities that facilitate the 
deployment of AI models in the production environment on the shop floor. 

Introduction of AI models in the shop floor 
Customers can use the cloud or on-premises model training environment of their choice.  

Data scientists or AI engineers can use the AI framework of their choice. 
Siemens offers an easy-to-operate AI Software Development Kit (AI SDK) that has pre-
configured features that generate a Siemens standard format with the developed 
AI pipelines. This standard format is fully compatible with AI Inference Server for Siemens 
Industrial Edge. 
The AI Inference Server application is a ready-to-use inference runtime from Siemens that 
receives AI pipelines as configuration packages (content deployment). This can be done 
manually via the available user interface or automatically for scaling via the AI Model 
Manager that is the expansion of the Industrial Edge Manager for AI management. 

The AI Model Monitor solution consists of two Industrial Edge applications that enable 
monitoring AI pipelines running on AI Inference Server distributed across multiple Industrial 
Edge Devices (IED)at factory level. In this infrastructure AI Model Monitor Agents are installed 
on IEDs separately and are connected to the central AI Model Monitor application installed at 
factory level. The AI Model Monitor Agents gather information about the executing IED itself 
and about the pipeline running on the IED. 
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See also 
Industrial Edge Homepage (https://new.siemens.com/global/en/products/automation/topic-
areas/industrial-edge.html) 

AI@Edge Homepage (https://new.siemens.com/global/en/products/automation/topic-
areas/industrial-edge/production-machines.html) 

1.3 AI Software Development Kit functionalities 
The AI Software Development Kit, or AI SDK for short, is a set of Python libraries. These 
libraries provide building blocks for automating the creation, packaging, and testing of 
inference pipelines for the AI Inference Server. 

The AI SDK contains project templates that provide notebook-based workflows for training 
models, package them for deployment, and test those packages.  

The AI SDK assumes a Machine Learning (ML) workflow that includes the following steps: 

•  Preparing training data 

• Training of models 

• Packaging of models as an inference pipeline 

• Testing of packaged inference pipelines 

• Generating the inference pipeline for AI@Edge 

If you already have a trained model, you can skip the "Training data preparation (Page 14)" 
and "Training models (Page 15)" sections and start with the "Packaging models as an 
inference pipeline (Page 16)" section. However, to understand the concepts used, it is 
recommended to read through these chapters as they provide the necessary information.  

The AI SDK can be used both exploratively from interactive Python notebooks and purely 
programmatically as part of an automated ML workflow. 

1.4 Information about the software license 

Software from third-party suppliers 
AI SDK contains Open-Source Software and/or other software from third-party suppliers. 

Copyright © SIEMENS, 2023, and licensors. All rights reserved. Parts contain Open-Source 
Software. More information can be found in the README_OSS. 

https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/production-machines.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/production-machines.html
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Safety notes 2 
2.1 Security information 

Siemens provides products and solutions with industrial security functions that support the 
secure operation of plants, systems, machines and networks.  

In order to protect plants, systems, machines and networks against cyber threats, it is 
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial 
security concept. Siemens’ products and solutions constitute one element of such a concept.  

Customers are responsible for preventing unauthorized access to their plants, systems, 
machines and networks. Such systems, machines and components should only be connected 
to an enterprise network or the internet if and to the extent such a connection is necessary 
and only when appropriate security measures (e.g. firewalls and/or network segmentation) 
are in place.  

For additional information on industrial security measures that may be implemented, please 
visit (https://new.siemens.com/global/en/products/automation/topic-areas/industrial-
security.html).  

Siemens' products and solutions undergo continuous development to make them more 
secure. Siemens strongly recommends that product updates are applied as soon as they are 
available and that the latest product versions are used. Use of product versions that are no 
longer supported, and failure to apply the latest updates may increase customers' exposure to 
cyber threats.  

More information about network segmentation, firewall etc. is all on these pages. 

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS 
Feed visit (https://new.siemens.com/global/en/products/automation/topic-areas/industrial-
security.html). 

 

2.2 Note on use 

Protection of the host computer 
Customers are responsible for protecting their own host computers and preventing 
unauthorized access to their host computers.  

To protect the host computer Siemens suggests taking the following measures: 

• Deploy the host computer only in isolated plant network, but not office network. 

• Enable the screen saver and lock the screen when leave. 

• Install suitable anti-virus software. 

• Install updates and patches for the operating system and software on the host PC in time. 

https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
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Notes on protecting administrator accounts 
A user with administrator rights has extensive access and manipulation options available to 
the system. 

Therefore, ensure there are adequate safeguards for protecting the administrator accounts to 
prevent unauthorized changes. To do this, use secure passwords and a standard user account 
for normal operation. Other measures, such as the use of security policies, should be applied 
as needed. 

Notes on the use  
• Before installing AI Software Development Kit, it is recommended to verify the SHA-256 

checksum of the distribution zip package against the checksum provided on Siemens 
Online Industry Support. 

• AI Software Development Kit can only be accessed from the host computer.  Do NOT allow 
other machines in the plant network to access AI Software Development Kit. 

• The current AI Software Development Kit is only applicable for non-safety critical 
application. 

• AI Software Development Kit stores the project data without encryption on the host PC. 
The customer is responsible for the CIA (Confidentiality, Integrity and Availability) of the 
files created, stored, downloaded, or exported by AI Software Development Kit. 

• AI Software development Kit might be used in conjunction with Jupyter Lab, which 
includes a web server that can be accessed locally or remotely. The customer is 
responsible for configuring Jupyter Lab with HTTPS enabled (https://jupyter-
notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-
communication). 

• If you use the AI Software Development Kit to create pipeline configuration packages, 
make sure that you only include source code and Python packages from trusted sources. 

• If you use the AI Software Development Kit to run pipeline configuration packages locally, 
make sure that you only use pipeline configuration packages from trusted sources. 

2.3 Note regarding the general data protection regulation 
Siemens observes the principles of data protection, in particular the principle of data 
minimization (privacy by design). For this product this means:  

The product does not process / store any personal data, only technical functional data (e.g. 
time stamp, IP addresses of the connected manufacturing devices). If the user links this data 
with other data (e.g. shift plans) or stores personal data on the same medium (e.g. hard disk) 
and thus establishes a personal reference, the user must ensure compliance with data 
protection regulations. 

https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication
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Installing AI Software Development Kit 3 
3.1 Install and run 

Depending on your background, you can choose to use AI SDK in a pure Python 3.8 
environment or use the Jupyter Notebook-oriented project templates with a notebook editor 
of your choice. 

Start with the project templates to familiarize yourself with the AI SDK. These sample 
solutions contain all the necessary dependencies and allow for a quick and smooth start. As 
you move beyond the interactive exploration phase, you might consider switching to a purely 
Python-based approach. 

Prerequisites 
Before you begin, make sure you have access to the internet. If you access the internet via a 
proxy, when working in a corporate network directly or via VPN, please ensure that you have 
configured the following tools to use the correct proxy settings:  

• pip 

• conda (if you also use conda) 

Setting environment variables http_proxy and https_proxy covers both. A detailed 
explanation of alternative solutions is provided in: 

• Using a proxy server (https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server) 

• Using Anaconda behind a company proxy (https://docs.anaconda.com/anaconda/user-
guide/tasks/proxy/) 

Using the AI SDK without project templates 
To install the AI SDK from the Python wheel file, simply use pip in a Python 3.8 environment. 
This will ensure the installation of any additional required Python packages. 

pip install simaticai-1.4.0-py3-none-any.whl 

Note that, by default, pip installs the latest available version of the required packages that are 
compatible with the AI SDK and any other packages that might already be installed. If you 
want to ensure that you use the versions listed in Readme_OSS, you can apply the 
appropriate constraint during installation as follows: 

pip install simaticai-1.4.0-py3-none-any.who -c constraints.txt 

Note that this increases the probability that pip will not be able to resolve all applicable 
restrictions or that an older package and versions with security issues will be installed. 

To use the AI SDK from your Python code, you must import modules from the simaticai 
namespace. For more information, refer to the User Guide, AI SDK API reference, or project 
templates. 

https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server
https://docs.anaconda.com/anaconda/user-guide/tasks/proxy/
https://docs.anaconda.com/anaconda/user-guide/tasks/proxy/
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Using the AI SDK with project templates 
Standalone project template zip packages contain a prepared working directory that includes 
notebooks and sources. You can use them in a Python or Jupyter Lab environment of your 
choice. The prerequisites are as follows: 

• Python 3.8, installed either natively or via Conda. 

• A notebook editor such as Jupyter Notebook, Jupyter Lab, or Visual Studio Code. 

We strongly recommend that you set up a separate Python environment specifically for the 
project template, as described in the README file. The notebooks in the project templates 
assume a dedicated Python environment with a predefined name and a matching kernel 
name. For example, the State Identifier project template uses the environment name 
state_identifier. 

You can use your preferred Python environment manager to create the Python environment. 
Below we provide the commands for Conda and Python venv using the State Identifier 
project template, as an example. For other project templates, you must replace the name 
state_identifier as described in the corresponding README file. 

 
# create a Conda environment including Python and activate it 
conda create -n state_identifier python=3.8.16 
conda activate state_identifier 
 
# create a Python virtual environment in Linux and activate it 
python -m venv ~/venv/state_identifier 
source ~/venv/state_identifier/bin/activate 
 
# create a Python virtual environment in Windows and activate it 
python -m venv %USERPROFILE%\venv\state_identifier 
USERPROFILE%\venv\state_identifier\Scripts\activate.bat 

Once the environment is created and activated, you must register it as an interactive Python 
kernel to make it accessible within your notebook editor. This is usually achieved with the 
following commands: 

 
# install and register interactive Python kernel 
python -m ipykernel install --user --name state_identifier  
--display-name "Python (state_identifier)" 

Now your Python environment is ready to be used for the project template. Extract the 
project template from its package, change the working directory to the extracted project 
folder, and execute the command that follows: 

 
# install packages required for the template including the AI SDK 
and ipykernel 
pip install ipykernel -r requirements.txt -f <directory path 
containing simaticai wheel file> 

Note that you need to specify a path to the directory containing the AI SDK wheel file, not a 
path to the wheel file itself. 

Once the required packages are installed, you can explore and execute them in your 
notebook editor. 
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Please make sure that you select the appropriate interactive Python kernel to execute the 
notebooks in this example: Python (state_identifier). 

Note that by default, pip installs the latest available version of the required packages that are 
compatible with the AI SDK and the project template. If you want to make sure to use the 
versions that are listed in Readme_OSS, you can apply the appropriate constraint during 
installation as shown below: 

 
pip install ipykernel -r requirements.txt -f <directory path 
containing simaticai wheel> -c constraints.txt 

Note that this increases the probability of pip installings an older package version that might 
contain security vulnerabilities. 
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Using AI Software Development Kit 4 
4.1 Training data preparation 

Preparing data for model training is mostly out-of-scope of the AI SDK. Prepared example 
datasets are available for the project templates. You can try out these templates without 
requiring data acquisition. Each project template includes a notebook to guide you through 
downloading a sample dataset. 

Processing time series data 
The State Identifier project template provides basic building blocks for building ML models 
that process time series of aligned signals. Aligned signals mean that the input of the 
processing pipeline consists of rows, containing a value for each signal. For example, a row 
consisting of 3 signals and a time stamp would look like this: 

 
 
Time stamp var1 var2 var3 
09:50:23 1.2 202 25 

The building blocks help you create a time series pipeline that processes a stream of such 
rows according to the following pattern: 

 

The roles of the piping elements are as follows: 

• "Windowing" accumulates a given number of input rows in a processing window. 

• The "feature extractor" calculates several characteristics for each window. A feature is a 
mathematical value calculated from the values in the window. 

• The "classifier" is the actual machine learning model that predicts a class for each window, 
based on the extracted characteristics. 

Most pipelines contain other processing elements, such as imputers to fill missing values, or 
scalers that map an input to a predefined range. 



 Using AI Software Development Kit 
 4.2 Training models 

AI Software Development Kit 

Function Manual, 11/2023, A5E52031285-AG 15 

To train the classifier in such a pipeline, the input data must undergo the preprocessing steps 
during the training process. 

Therefore, this processing pipeline must be defined as a part of data preparation before 
training. This is where the building blocks in the State Identifier project template play a 
crucial role. 

These building blocks are based on the widely used machine learning Python package 
scikit-learn. Scikit-learn provides a framework for defining pipelines that allows you to 
combine data transformers with classifiers or other kinds of estimators. The building blocks 
can be found in the src/pipeline.py file in the State Identifier project template. The 
commonly used libraries are: 

• WindowTransformer, which transforms a series of input rows into a series of row-based 
windows 

• FeatureTransformer, which transforms a window of rows into the feature values 
according to user-defined functions 

In addition to these transformers, there is a transformer called FillMissingValues, which 
performs input data correction for simple cases. For more advanced cases, you should use a 
more sophisticated imputer to correct your input. 

For more details and concrete examples, refer to the training notebooks in the State Identifier 
project template. 

Mapping predicted classes of data windows to data points 
As described in the previous chapter, time series data is typically classified on a window-by-
window basis. This means that the class of a single data row is not defined on its own. 
Nevertheless, there are cases where it is convenient to map the classes defined window by 
window to the data points themselves. For example, if you want to visualize the data points 
according to their classification by color-coding the data points with the class. 

The State Identifier project template provides the utility function back_propagate_labels 
in the file src/pipeline.py to perform this mapping. For more details and concrete 
examples, please refer to the training notebooks in the State Identifier project template. 

4.2 Training models 
The AI SDK does not restrict how you train your models and save the trained model. You can 
use the training notebooks in the project templates as examples. The project templates 
include examples using scikit-learn and TensorFlow. 

Some ML frameworks, such as TensorFlow, use their own format for storing trained models. 
Other frameworks, such as scikit-learn, rely on persistent Python runtime objects. In the latter 
case, you need to ensure that the same versions of Python libraries exist when the objects are 
stored after training and then retrieved in the AI Inference Server. The packaging feature of 
the AI SDK supports it by requiring exact version specifiers for required Python packages in a 
pipeline package. 
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4.3 Packaging models as an inference pipeline 
The AI SDK provides the functionality to create a pipeline configuration package that 
encapsulates trained models. These models can be converted to an edge configuration 
package using the AI SDK. Then it can be uploaded and run on the AI Inference Server on an 
Industrial Edge Device. The related functions can be found within the 
simaticai.deployment module. 

Single or multiple components 
From a deployment perspective, the inference pipeline can consist of one or more 
components. This is independent of the logical structure of the inference pipeline. For 
example, you can package a typical time series pipeline that consists of multiple scikit-learn 
pipeline elements into a single pipeline component for deployment: 

 

Alternatively, you can deploy the same pipeline as two components: 

 

To keep the deployment simple and less error-prone, you should deploy your inference 
pipeline with as few components as possible. 
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In many cases, a single component is sufficient. However, there may be reasons why you 
might consider using separate components, such as: 

• You need a different Python environment for different parts of your processing – for 
instance, you have components that require conflicting package versions. 

• You want to exploit parallelism between components without implementing 
multithreading. 

• You want to modularize your pipeline and build it from a pool of component variants that 
you can flexibly combine. 

Creating an inference pipeline package 
The AI SDK allows you to create pipeline components implemented in Python and assemble 
linear pipelines from one or more such components. 

The API is designed to anticipate future possible types of components that could be based on 
a technology other than Python, such as ONNX or native TensorFlow serving. However, only 
Python is currently supported. 

The workflow for creating an inference pipeline package is as follows: 

1. Write the Python code that encapsulates your trained model as an inference pipeline 
component. 

2. Define the pipeline component. 

3. Repeat the above steps if you have multiple components. 

4. Configure the pipeline. 

5. Save the pipeline configuration in a pipeline configuration package. 

Creating pipeline components implemented in Python 
Implementing an inference pipeline component in Python is a comprehensive topic in itself 
and will be described in detail in the next chapter, "Guideline for writing pipeline components 
(Page 26)". 

A component consists of files and metadata. 

Files contain: 

• Python scripts 

• trained models 

Metadata includes: 

• component name and component version 

• required Python version and Python packages 

• input and output variables 

• the number of parallel executors 

• the entrypoint 

You can create your own arrangement of project files. We recommend that you follow the 
project templates for the AI SDK. Here the source code and stored trained models are 
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organized in a predefined structure. If you keep the same relative structure on the 
AI Inference Server, you can use the same relative references from the source code to the 
stored models or other files. 

Put together all the files for the components. Usually, there should be at least one Python 
script for the entrypoint, the inference wrapper, and the saved model. Create the pipeline 
component by running a Python script or notebook that provides the following functionality: 

• creates a Python component object with a specific name, component version, and 
required Python version 

• defines required Python packages 

• defines input and output variables 

• defines custom metrics 

• defines the number of parallel executors 

• adds Python scripts and saved models 

• defines the entrypoint under the Python scripts 

All this takes place with the corresponding functionality of the simaticai.deployment 
module. For concrete examples, refer to the packaging notebooks in the project templates. 
Please refer to the AI SDK API reference manual for more information and advanced options. 

Consider the following limitations: 

• The AI SDK allows you to select a required Python version that is supported by different 
versions of AI Inference Server. 

• Make sure you select a Python version that is supported by the version installed on your 
Industrial Edge target device. For the current AI SDK version, this is Python version 3.8. 

• The required Python packages must either be added as wheel files to the pipeline 
component or be available for download via pip for the target Inference Server. 

• The entrypoint script must be in the root folder of the package in the current AI SDK 
version. 

• AI Inference Server supports a maximum of 8 parallel executors. 

Configuring and saving the pipeline 
After you create the component(s), you must combine them into a pipeline using a 
Pipeline object. 

If the pipeline only consists of one single component, it has the same input variables and 
output variables as its single component. You only need to specify a pipeline name and 
version from which the file name is derived when you save the package. For example, refer to 
the end of the package creation notebooks in the project templates. 

To create a linear pipeline of multiple components, you can still mostly rely on the 
constructor of Pipeline, which attempts to automatically connect the components passed 
as a list: 

• connecting pipeline input to the first component 

• connecting inputs and outputs of subsequent components if the variable name matches 

• connecting the last component to the pipeline output 
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In general, you should pass data from one component to another component in a single 
variable of type String and serialize and deserialize any data you have through a string. 

The low-level methods of the Pipeline class allow you to connect any components, 
pipeline inputs and outputs. However, the AI SDK cannot guarantee that the result will 
behave as intended on the AI Inference Server. 

For information about pipeline input and output with different data types and defining 
custom metrics, refer to the Guideline for writing runtime components (Page 26). It 
describes, how input and output data is passed between the AI Inference Server and your 
entrypoint. It also explains special considerations that apply to a continuous stream of time 
series data or for bulk data. 

Whether you created the pipeline with a single constructor call or with low-level methods, 
you must save it for the creation of the pipeline. This step creates the pipeline configuration 
package as a .zip file and leaves the contents of the .zip file in the file system. You can 
explore it to troubleshoot or see how your package creation calls are reflected in the contents 
of files and directories. 

Pipeline packages are identified by their package ID and version attributes, and are grouped 
by package ID in the AI Inference Server and other Edge applications. 

When saving a pipeline – with the save() method – you can specify a package ID in a UUID 4-
compliant format, or an automatically generated one is assigned. 

If no package ID is defined in the save() method, and AI SDK finds an already assigned 
package ID in a previously generated and similarly named package, the package ID found in 
the latest package is used. 

AI SDK automatically assigns and increments the version number of a pipeline each time a 
package is saved, unless a new package ID is assigned in the save() method, or an explicit 
version number without a package ID is defined in the save() method, or in the pipeline 
constructor. 

Restrictions: 

• You cannot overwrite a previously saved package with the same package ID if the package 
ID is explicitly assigned in the save() method 

• Existing packages without a package ID will be overwritten 

• If a new package ID is assigned to an existing version of the package, the old one will be 
overwritten 

• If no predecessor of a package is found, AI SDK assigns version 1 to the created package 

• The version defined in the save() method takes precedence over the version assigned at 
the constructor level 

Pipeline parameters 
Advanced use cases might require a modification of the pipeline behavior after deployment, 
for example by changing the parameters of the AI model. For this reason, AI SDK allows you 
to define pipeline parameters. 

In many respects, pipeline parameters are similar to pipeline inputs. But pipeline parameters 
are handled separately and treated specially. Unlike input variables, pipeline parameters must 
have a default value, which the parameter takes initially after deployment. Therefore, a 
pipeline parameter's value is always defined. 
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Depending on the configuration, a pipeline parameter might be changed interactively via the 
user interface of the AI Inference Server or can also be connected to an MQTT topic like an 
input variable. In the latter case, the pipeline can receive parameter updates from other 
system components via the External Databus. 

The pipeline parameters apply to all components. This means that in a pipeline, all 
components with parameters must be ready to receive parameter updates. A pipeline 
component updates only relevant parameters for the specified components. 

For details on how to define pipeline parameters and how to handle parameter updates in 
the pipeline components, refer to "Guideline for writing pipeline components (Page 26)". For 
a complete code example that shows how to define and use pipeline parameters, refer to the 
State Identifier project template. 

Parallel execution 
By default, pipeline components process the inputs sequentially, within the same Python 
interpreter context. To increase the throughput of the component, you can instruct the 
AI Inference Server to run multiple instances of a pipeline component and distribute the 
inputs among them. This way you can exploit the parallelism available in most multi-core 
CPUs. 

If you specify parallel component execution, every instance will be initialized separately and 
will receive only a fraction of the inputs. Therefore, not all components are suitable for 
parallel execution. 

For example, the single component of the pipeline given in the State Identifier project 
template cannot be executed by parallel instances because the component must process 
inputs sequentially, one by one to form windows from the data. 

Theoretically, you could separate the State Identifier into two components, the first 
component forming the windows and the second component calculating the features and 
prediction. Then, the second component could be run in multiple parallel instances, as it does 
not have to keep previous inputs to calculate the output. (It is another question whether this 
complexity is worthwhile in a specific use case.) 

In contrast, the component given in the Image Classification project template can be 
executed by parallel instances out of the box. It is practically stateless, as the key global state 
the component uses is the model loaded during initialization. Otherwise, the component 
needs only the current input to calculate the output. 

Note that with parallel component execution, there is no guarantee that the outputs are 
produced in the same order as the corresponding inputs arrive. It might happen that one 
instance overtakes another even if the raw CPU time required for all inputs is about the same. 
The component instances compete for CPU cores with other applications running on the 
Industrial Edge device.  

You can predefine the number of parallel component instances using the AI SDK 
PythonComponent.set_parallel_steps() function. This setting can be overridden on 
the AI Inference Server user interface. 
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4.4 Testing the pipeline configuration package locally 
Once you created your pipeline configuration package, test it before converting to the Edge 
configuration package. Only then deploy the package to the AI Inference Server. 

The advantages of local testing are the following: 

• You can identify many potential issues more quickly because you don't need to go 
through a deployment cycle. 

• You can diagnose and troubleshoot problems much more easily because you can inspect 
artifacts in your development environment. 

• You can validate your fixes faster and move on to other issues that had been blocked from 
emerging by previous issues. 

• You can easily include the local pipeline tests in the test automation of your build process. 

2 tools for local testing 
You can apply state-of-the-art software engineering practices such as unit testing and test-
driven development. 

This means that ideally, you already have automated unit testing or even integration testing 
that ensures that the Python code and stored models work in isolation as expected. This helps 
you localize errors when you assemble these parts and integrate them as a pipeline 
configuration package. 

The AI SDK package simaticai.testing provides 2 tools for local testing: 

• A pipeline validator that performs static validation of the package for the availability of 
required Python packages. 

• A pipeline runner that allows you to simulate the execution of your pipeline in your 
Python environment. 

Note, that all these testing features apply to pipeline configuration packages, not Edge 
configuration packages. You must use it before you convert your pipeline configuration 
package to an Edge configuration package using the AI SDK. 

Since the conversion itself is done automatically, most of the potential issues are already 
present in the package before the conversion, thus a post-conversion verification would only 
delay the identification of these issues. 

Static validation of a pipeline package 
You can pass your pipeline configuration package to the 
validate_pipeline_dependencies function in the 
simaticai.testing.pipeline_validator submodule to perform static checks. These 
checks include: 

• Verifying that the Python version required in the package is supported by a known version 
of the AI Inference Server. 

• Verifying that all required Python packages are either included in the pipeline package 
itself or available on pypi.org for the target platform. 

For specific programming details, refer to the AI SDK API reference manual. 
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Local execution of a packaged pipeline 
The LocalPipelineRunner class in the simaticai.testing.pipeline_runner 
submodule can be used to locally mimic the behavior of the AI Inference Server for loading 
and running inference pipelines. This is a quick and easy way to find programming or 
configuration errors before deploying the package. 

The local pipeline runner simulates the server environment as follows: 

1. It unpacks the pipeline components into a test folder, similar to what would happen in the 
AI Inference Server. 

2. It creates a separate Python virtual environment for each component. 

3. It installs the required Python packages from the wheel files if provided in the package or by 
pypi.org. 

4. It installs the mock of log_module (refer to "Mocking the logger of AI Inference Server 
(Page 24)") 

5. It updates pipeline parameters if applicable. 

6. It feeds the pipeline with input data by triggering the entrypoints of the components 
accordingly. 

7. It collects the sequence of pipeline outputs for a given sequence of pipeline inputs. 

You can also use the local pipeline runner to drive your pipeline component by component. 
You can feed individual components with inputs and verify the output produced. 

If the pipeline contains parameters, the pipeline uses the default values for the parameters. 
You can also change the parameter values using the update_parameters() method. This 
allows you to test your pipeline with different parameters. 

 

 Note 

You can only use the update_parameters() method before calling run_component or 
run_pipeline(), but you cannot change pipeline parameters while these methods are 
running. 

 

From a testing strategy and risk-based testing perspective, we recommend that you validate 
the business logic within the pipeline components in unit tests as you would with any 
ordinary Python program and use the local pipeline runner to cover test risks such as the 
following: 

• A mismatch between pipeline and component input and output variable names 

• Required Python packages not covered by requirements.txt 

• Missing source or other files from the package 

• An interface mismatch between subsequent pipeline components 

• The entrypoint script cannot process input data due to a mismatch in the data format 

• The entrypoint script generates output data in the wrong format 

• For some reason, the pipeline does not work consistently as intended 
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A crucial point for making the local test faithful concerning data input and output formats is 
to understand how data connections work in the AI Inference Server. The following data 
connection types are straightforward: 
• Databus 

The Databus is a distributed application that runs on individual Industrial Edge Devices and 
facilitates access to the data of the field devices. If required, you can configure your own 
data points. 

• External Databus 
You can use the External Databus to connect remote clients to the Industrial Edge Device 
via MQTT. The data transmitted to the External Databus is automatically transferred to the 
Databus and can be used by other apps within the Databus. 

• IE Vision Connector 
IE Vision Connector connects to every "Generic Interface for CAMeras" that supports image 
processing systems and makes image or video data available over the standard data bus or 
a high-throughput data bus. The IE Vision Connector has a user interface that offers 
options for configuring camera-specific parameters according to the "GEN<I>CAM" 
standard. It forms the image frame/live stream for the user to view. 

For these data connection types, the AI Inference Server passes the MQTT payload string 
directly as the value of the connected pipeline input variable. In many use cases where you 
use this data connection type, your pipeline has a single input variable of type string. This 
means that you need to pass a Python dictionary to the local pipeline runner with each 
individual element. 

For example, if you take the pipeline from the Image Classification project template, you have 
a single input variable vision_payload. To run your pipeline on two consecutive input 
images, you must call the pipeline runner as follows: 
 
pipeline_input1 = { 'vision_payload': mqtt_payload1 }  
pipeline_input2 = { 'vision_payload': mqtt_payload2 }  
pipeline_output = runner.run_pipeline([pipeline_input1, 
pipeline_input2]) 
 
For a complete code example that shows how to feed a pipeline with a single string input 
variable in a local test, refer to the Local Pipeline Test Notebook in the Image Classification 
project template. 

The SIMATIC S7 Connector data connection type requires a higher level of effort. This 
connector is typically used in time series use cases. Using this connection, the AI Inference 
Server processes the MQTT payload used by the S7 Connector and only passes on the values 
of the PLC variables, but not the metadata. So, if you intend to use your pipeline with the 
S7 Connector, you need to feed it with dictionaries holding the PLC tag values. 

Taking the pipeline from the State Identifier project template for example, you have input 
variables ph1, ph2 and ph3, that should be used with the SIMATIC S7 Connector data 
connection type. To replicate how the AI Inference Server feeds the pipeline, you must call 
the pipeline runner as follows: 
 
pipeline_input1 = {'ph1': 4732.89, 'ph2': 4654.44, 'ph3': 4835.02} 
pipeline_input2 = {'ph1': 4909.13, 'ph2': 4775.16, 'ph3': 4996.67} 
pipeline_output = runner.run_pipeline([pipeline_input1, 
pipeline_input2]) 
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For a complete code example that shows how to feed a pipeline with an input line of PLC tag 
values in a local test, see the Local Pipeline Test Notebook in the State Identifier project 
template. 

Restrictions of local pipeline execution 
The local runner works with batches of input data and processes the whole input batch 
component by component. In the case of a sequence of pipeline inputs, the entire sequence 
is first processed by the first component, and only then is the output of the first component 
processed by the second component.  

This is different from the runtime environment on the AI Inference Server, where the 
components in the pipeline potentially start consuming input as soon as the preceding 
component has produced output. 

You cannot fully test input and output data formats, as these depend on the data connection 
settings of the AI Inference Server, and you must provide the local runner with the input data 
in the representation that matches the output side of the connector. This means that if your 
assumptions on the data connection settings or the resulting data formats are wrong, your 
tests will also provide misleading results. The local runner can only simulate linear pipelines: 
where the pipeline input variables are only used by one component, each component uses 
only the outputs of the previous components, and the pipeline output only consists of 
variables from the last component.  

Furthermore, the results obtained in local tests are not fully representative of the AI Inference 
Server, including but not limited to the following aspects: 

• The local version of Python may be different from that in the AI Inference Server. 

• The local architecture may be different, resulting in different builds of imported Python 
packages being used. 

• The local runner executes only one instance of the Python code, regardless of the 
parallelism settings in the configuration. 

Despite all these limitations, we recommend testing your pipeline locally before deployment. 
This will most likely save you more time than skipping this step. 

4.5 Mocking the logger of the AI Inference Server 
The Python environment on the AI Inference Server injects a Python module named 
log_module that the Python scripts can use for logging on the server. To be able to run the 
same code in a local development environment on a PC, the AI SDK provides a mock of 
log_module in a wheel, which you can install, import, and use in the same way. This wheel 
file must not be included in the pipeline package dependencies. 



 Using AI Software Development Kit 
 4.6 Deploy the packaged inference pipeline for AI@Edge 

AI Software Development Kit 

Function Manual, 11/2023, A5E52031285-AG 25 

4.6 Deploy the packaged inference pipeline for AI@Edge 
After you create and test your pipeline configuration package, you must convert it to an Edge 
configuration package, so it could be deployed to the AI Inference Server.  

Conversion is required because, while a pipeline configuration package defines the inputs, 
outputs, and inner workings of an inference pipeline, it does not contain all the components 
required to run in the AI Inference Server. To make it complete for deployment on the 
AI Inference Server, the pipeline configuration package must be converted to an Edge 
configuration package. 

Amongst other things, the conversion ensures that all the necessary Python packages for the 
target platform are included. If any of the required packages, including transitive 
dependencies, are not included in the pipeline configuration package for the target platform, 
they will be downloaded from pypi.org. 

The conversion function is available in AI SDK both as a Python function and a CLI command. 
Please refer to the details of the function convert_package in module 
simaticai.deployment in the AI SDK API reference manual. 

An Edge configuration package can be deployed to the AI Inference Server:  

• via AI Model Manager, 

• via AI Inference Server's API, 

• uploaded directly to AI Inference Server via UI. 

For more information, refer to AI Inference Server and AI Model Manager documentation. 

4.7 Create a delta package and deploy it to AI@Edge 
The amount of time taken by deployment strongly correlates with the size of the Edge 
configuration package. To reduce it, the AI SDK provides the functionality to create a delta 
pipeline package. A delta package contains only the files that are updated or newly added 
compared to the original version. 

You can use function create_delta_package in module simaticai.deployment or 
the corresponding CLI command. For more details, refer to the AI SDK API reference manual. 

 

 Note 

The delta configuration package can be deployed in the same way as the Edge configuration 
package. The original Edge configuration package must be deployed before the delta 
configuration package.  
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Guideline for writing pipeline components 5 
 

AI Inference Server is an Industrial Edge application designed to execute your ML models on 
an Industrial Edge Device. The interface between your ML model and AI Inference Server is a 
Python script that consumes incoming data, processes it and creates an output response. This 
guideline explains the workflow for defining a pipeline component using a Python script. 

5.1 Component definition 
In this context, a component means a pipeline step that which consumes input data, 
processes that data by using a model, and produces the output data. The model can mean, in 
a narrower sense, an ML model such as a neural network or a random forest algorithm, or 
simply an aggregator or other pre- or postprocessing logic. In every case, a Python script, 
hereinafter referred to as the "entrypoint", establishes the connection between the model 
and the AI Inference Server. The server needs to receive information about what Python 
environment is required to execute the code, including the required Python packages or file 
resources. 

Essential information for the execution of the code 
The most essential information for the execution of the code is: 

• The Python script that receives the input data 

• The Python version required to run the Python script 

• The input and output variables of the component 

Example 
The following code shows how to define component settings. The created configuration can 
be checked in the pipeline-config.yml which can be found in the Examples (Page 45) 
section. Please note that this code is only used to create the pipeline configuration package, 
but it is not contained in the package itself. 

# create_pipeline_config_package.py 

from simaticai import deployment 
 
# defining basic properties of the pipeline component 

# AI Inference Server version 1.4 supports Python 3.8 

component = deployment.PythonComponent(name='classifier', 
version='1.0.0', python_version='3.8') 
 
# defining entrypoint Python script 

component.add_resources("../src", "entrypoint.py") 

component.set_entrypoint('entrypoint.py') 

 



 Guideline for writing pipeline components 
 5.1 Component definition 

AI Software Development Kit 

Function Manual, 11/2023, A5E52031285-AG 27 

# defining input variable of component 

component.add_input(name='input_1', _type='Double') 

component.add_input(name='input_2', _type='Double') 

 

# defining output variable of component 

component.add_output(name='class_label', _type='Integer') 

component.add_output(name='confidence', _type='Double') 

 

In this example, the code uses a pre-trained scikit-learn model that is stored in a joblib file. 
The file acts as a resource file in this model. For more details about resource files, see the File 
resources section. The code also uses external Python modules (Page 33) that must be 
deployed and installed on the AI Inference Server. 

 

# adding stored scikit-learn model as a resource file  

component.add_resources('..', 'models/classifier-model.joblib') 

 

# adding python dependency scikit-learn with version==1.0.1 

component.add_dependencies([('scikit-learn', '1.0.1')]) 

 

With this configuration, the AI Inference Server collects data for input_1 and input_2. 
When the data is available, the server wraps it into a data payload and calls the 
process_input() function in entrypoint.py. Once the data is processed and the 
class_label and confidence results are calculated, the function generates a return 
value. 
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5.2 The entrypoint 
AI Inference Server itself receives the data payload from the input data connection. With each 
input, the AI Inference Server triggers the process_input(data: dict) -> dict 
function in the entrypoint module. After process_input() returns, the server forwards the 
output to the next pipeline component, or emits it as pipeline output over the output data 
connection. 

Example 
# entrypoint.py 

import sys 

from pathlib import Path 

# when you import from source, the parent folder of the module 
('./src') must be added to the system path 

sys.path.insert(0, str(Path('./src').resolve())) 

from my_module import data_processor # should be adapted to your 
code 

def process_input(data: dict) -> dict: 

    return data_processor.process_data(data["input_1"], 
data["input_2"]) 

 

In this case, it is assumed that business logic is encapsulated in 
data_processor.process_data(). You can place the code into your package and 
modify only the reference to your data processor. 

5.3 Input data 
AI Inference Server wraps the acquired input values into a dictionary and passes them to 
process_input() as a single parameter. Each input variable is represented as a separate 
element in the dictionary, for example: 
 
     {"input_1": 123.51, "input_2": 47.02} 
 
If you have multiple inputs, the process_input() might be triggered with incomplete data. 
If inter-signal alignment is enabled, the missing input variables are None in the dictionary. 
 
     {"input_1": 123.51, "input_2": None} 
 
Without inter-signal alignment, inputs are passed to process_input() one by one, variable 
by variable, so that the dictionary contains only one element for each call. 
 
     {"input_1": 123.51} 
 
For further details, refer to the Processing time series of signals (Page 43). 
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5.3.1 Variable types 
Let's take another look and check how you defined the input variable input_1 

# defining input variable 

component.add_input(name= 'input_1', _type='Double') 

You defined it as Double, which is a data type of AI Inference Server. 

The process_input() function receives the inputs converted to a Python data type, which 
is a float for AI Inference Server type Double. 

In general, you need to define the types of input and output variables as AI Inference Server 
types, but the Python script should use the appropriate Python type. The match between 
AI Inference Server data types and Python data types is shown in the following table. The 
table also shows which data type is supported by which data connection in AI Inference 
Server version 1.5.0. 
 

AI Inference 
Server 

Python Databus S7 Connector Vision 
Connector 

ZMQ 

Bool bool  I/O   
Integer int  I/O   
Double float  I/O   
String str I/O I/O input  
Object dict   input output 
Binary bytes    I/O 
ImageSet dict   I/O  

External Databus connections support the same data types as Databus. 

5.3.2 Restrictions on type Object 
AI Inference Server version 1.5 imposes restrictions on the dictionaries returned by the 
inference wrappers for output variables of type Object. The returned dictionary must 
contain a metadata string and a binary sequence. The metadata and the binary sequence can 
have any key in the dict but must be of type str and bytes respectively. For details, refer 
to the section "Returning the result (Page 36)". 

 

 Note 

The structure of dictionaries that is received as pipeline input is different from the dictionary 
structure that is required as component output. For details, see the section "Processing 
images (Page 40)". 

 

5.3.3 Restrictions on type Binary 
Currently, the "binary" data format can only be used as pipeline input and output with the 
ZMQ connector. 

However, it can be used as an intermediate format between pipeline steps without any 
limitations. 
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5.3.4 Custom data formats 
To connect your pipeline to a custom application with its own data format, you can take one 
of the following methods: 

• Use String and connect input or output through Databus or External Databus. In this 
case, you can use any text data format, such as JSON, XML, CSV, or any combination of 
these. 

• Use Object and connect output via ZMQ. In this case, the AI Inference Server converts 
the metadata dictionary into a JSON string and passes it to the receiver together with the 
binary contents in a multi-part ZMQ message. For more details, refer to the AI Inference 
Server Function Manual 
(https://support.industry.siemens.com/cs/ww/en/view/109822331). 

Specific variable types for images 
AI Inference Server supports receiving URL-encoded images via MQTT. The payload type is 
str and can be extracted into a PIL image as follows: 

# define input 
component.add_input("image", "String") 

# extract payload 
def process_input(payload: dict): 
  url_encoded_image = payload["image"] 
  with urlopen(url_encoded_image) as response: 
    assert response.headers["Content-type"] in ["image/png", 
"image/jpeg"] 
    image_bytes = response.read() 
    pil_image = 
Image.open(io.BytesIO(image_bytes)).resize(IMAGE_SIZE) 

Another supported type for images is Object which can be used to receive or send images 
via ZMQ.  

If the "input variable" is defined with type Object, the AI Inference Server takes the image 
from ZMQ and creates a specific payload format. In your code, this format can be processed 
and extracted into a PIL Image. A specific code example can be found in the Image 
Classification project example in the "Examples (Page 45)" chapter. 

# define input 
component.add_input("image", "Object") 

# Object input format 
payload = { "image": 
            { 
              "resolutionWidth": image.width, 
              "resolutionHeight": image.height, 
              "mimeType": ["image/raw"], 
              "dataType": "uint8", 
              "channelsPerPixel": 3, 
              "image": _swap_bytes(image.tobytes()) 
            } 
          } 

https://support.industry.siemens.com/cs/ww/en/view/109822331
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When the "output variable" is defined with type Object, the output must be provided in a 
specific format. In your code, a dictionary must be created with a string and a bytes field. 
They must contain the width and height information in a JSON string and the UINT8 bytes of 
the raw image. A concrete code example can be found in the project example Image 
Classification. 

# define output 
component.add_output("image_with_filter", "Object") 

# Object output format 
return { 
  "image_with_filter": { 
    "metadata": json.dumps( { 
                "resolutionWidth": image.width, 
                "resolutionHeight": image.height 
                 } 
     ), 
  "bytes": image.tobytes() 
} 

The most commonly supported data format is "Binary", that is used to receive or send a byte 
array over ZMQ. 

If an input variable is defined as "Binary", the AI Inference Server provides it as a Python 
dictionary, where the variable name is the key, and the value is the binary data provided as 
the Python type "bytes". 

A specific code example can be found in the Image Classification project example in the 
"Examples (Page 45)" chapter. 
 
# definition of input 
component.add_input("image", "Binary") 
 
# Binary input format 
with open('image.png', 'rb') as f: 
    binary = f.read() 
    payload = { "image": binary } 
... 
# Decode a PIL image from Binary data 
image = Image.open(io.BytesIO(binary)) 

... 

If an output variable is defined with type "Binary" the output must be provided as a "bytes" 
value in the returned dictionary. 
 
# output definition 
component.add_output("processed_image", "Binary") 

 
# Binary output format from a PIL image 
membuf = io.BytesIO() 
image.save(membuf, format="png") 
return { 
    "processed_image": membuf.getvalue() 
  } 
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ImageSet data type allows receiving multiple images, along with their format, dimension 
information, and metadata.  

Example of processing an incoming ImageSet in Python:  

 
# Define input  
component.add_input("image_set", "ImageSet") 
  
# Handle incoming image(s)  
def process_input(data: dict): 
     image_set = data['image_set'] 
     for image_data in image_set['image_list']: 
         process_image_data(image_data['image'] 
         # ...  

 

Example of producing an ImageSet output in Python: 
# Define output 
component.add_output("image_set", "ImageSet") 
# Assemble an ImageSet object 
import json 
def process_input(data): 
    # ... 
    image_set: { 
        "version": "1", 
        "camera_id": "...", 
        "timestamp": "2023-08-08T09:11:12.000Z", 
        "metadata": json.dumps({ 
            "key1": "value1", 
            "key2": "value2", 
            # ... 
        }), 
        "image_list": [{ 
            "id": "...", 
            "width": 640, 
            "height": 480, 
            "format": "<GeniCam image format>", 
            "timestamp": "2023-08-08T09:11:12.000Z", 
            "metadata": json.dumps({ 
                "key1": "value1", 
                "key2": "value2", 
            # ... 
        }), 
        "image": b"..." 
    }, { 
        # ... 
    }] 
} 
return { 
    "image_set": image_set 
} 
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5.4 Processing data 
The main part of your Python script is the logic for calculating the output from the input. This 
is done by your Python code, which can use configuration files and persistent ML models in a 
well-defined Python environment. To define these resources, the PythonComponent class 
of the simaticai.deployment module is used to add dependencies or additional files. 
These files are included in the configuration package and extracted in the AI Inference Server 
as follows: 

• Dependencies are installed on the server via pip. 

• Additional files are copied into the component directory. 

5.5 Python dependencies 
The AI Inference Server executes every component of a pipeline in an isolated Python virtual 
environment. For each component, you must specify which Python packages are required by 
the Python scripts in that component, including the Python packages required to load 
persistent Python objects.  

Adding Python dependencies 
The Python dependencies of a component can be added in two ways: 
 
• As a standard wheel file or as a zip/tar file that contains standard wheel files 

In both cases, the packages, which can be precompiled wheel files or pure Python source 
distributions, are added to the component.dependencies dictionary and binaries are 
zipped into the configuration package. 

AI Inference server supports only installing source distributions that contain only Python 
source code. 

... 

component.add_python_packages('../packages/my_module-0.0.1-py3-any-
any.whl') 

component.add_python_packages('../packages/MyPackages.zip') 

component.add_python_packages('../packages/my_source_module-
0.0.2.tar.gz') 

... 
 
• By name using a list that contains the names of the Python modules 

In this case, the method searches for the module in the current Python environment and adds 
the package with its version and all of its transitive dependencies. 

component.add_dependencies(['numpy', 'scikit-learn']) 

Dependencies can be added by name and version using a list that contains corresponding 
tuples. When the component is saved, it will perform a check if all specified dependencies can 
be installed together. Transitive dependencies will also be downloaded. 
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... 

component.add_dependencies([('pandas', '1.3.0'), ('pyarrow', 
'3.0.0')]) 

... 

Dependencies added to a component are installed on the AI Inference Server with the 
defined version and can be imported into your Python code during execution. 

 

# entrypoint.py or data_processor.py 

import numpy as np 

import pandas as pd 

... 

Download from non-public repository  
Dependencies from non-public repositories can be downloaded by specifying an extra index 
URL at the beginning of the requirements.txt file. 

... 

extra-index-url https://<API_KEY>@your/private/repository 

... 

Please be aware that if a package is also available in a public repository, pip may download it 
from there and not look for it in the private repository, which may pose a cybersecurity risk. 

It is recommended to only use trusted private repositories, pin the version of the package, 
and check if a package with the same properties already exists on 
https://pypi.org/simple. 

If you want to change the default https://pypi.org/simple package index, you can do 
it by using an index URL at the beginning of the requirements.txt file. This allows you to 
download dependencies exclusively from a private repository. 

... 

index-url https://<API_KEY>@your/private/repository 

... 
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5.6 File resources 
File resources can be of any file type required to execute the Python code, including the 
Python sources themselves, such as configuration file, static data, or trained AI models stored 
in joblib or pickle format.  

Adding resources 
In order for the configuration package to transfer these files to the server environment, you 
must specify them using the add_resources(base_dir, resources) method, as 
shown below: 
 

# the method adds 'prediction_model.joblib' from the '../models' directory file to the 
component 

# and the file will be extracted on the server into the component folder under the 'models' 
directory 

component.add_resources(base_dir="..", 
resources="models/prediction_model.joblib") 

# same way we define a file 'model-config.yml' to bring into the 'config' directory 

component.add_resources(base_dir="..", resources="config/model-
config.yml") 

 

Once the pipeline is imported into the AI Inference Server and the component is installed, the 
files in the server file system are available in the component directory and can be accessed by 
the Python scripts: 

# data_processor.py 

import yaml 

import joblib 

from pathlib import Path 

# Our goal is to have an identical relative path to the resources in 
the source repository and on the server. 

base_dir = Path(__file__).parents[1] 

# file 'model-config.yml' is extracted into the 'config' directory  

config_path = base_dir / "config/model-config.yml"  

model_config = yaml.load(config_path) 

# file 'prediction_model.joblib' is extracted into the 'models' 
directory 

model_path = base_dir / "models/prediction_model.joblib" 

with open(model_path, "rb") as model_file: 

    model = joblib.load(model_file) 
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As loading files can be time-consuming, it is recommended to load files and ML models into 
memory at initialization time of your Python code and not during the call to 
process_input(). The entrypoint process_input() should focus on processing the 
incoming data as quickly as possible. We highly suggest initializing the objects that are used 
in this code at the beginning of the script, and then using them in the functions invoked by 
process_input. 

Please be aware that this approach can result in a massive memory load, so you have to make 
a trade-off between memory consumption or CPU load and response time. 

After loading, the model is ready to be used to process the input data. In simple cases, this 
can be done directly in the entrypoint script. In the given example, we have factored this out 
into a module to illustrate how another module can be called from the entrypoint. 

 

# data_processor.py 

def process_data(width, height): 

    data=[width, height] 

    class_label, confidence=model.predict(data) 

    return{"class_label": class_label, "confidence": confidence} 

5.7 Returning the result 
If you want to return the results after processing the input data, you must return them in a 
dictionary. The keys should be the variable names of the component's outputs. In the 
example in File resources (Page 35), the process_data() function returns such a 
dictionary. It can be directly returned from process_inputs() as well. The dictionary 
contains an integer for class_label and a floating-point value that represents the 
confidence of the prediction. 

If there is no output for a particular call to process_input(), you should return None. As a 
result, the AI Inference Server does not trigger the next component in the pipeline, or if it is 
the last component of the pipeline, the pipeline does not emit any output from that 
component. A specific use case can be found under "Use cases (Page 40)". 

Returning Object 
AI Inference Server version 1.5 restricts the type of dictionary that a pipeline component can 
return in an output variable of type Object. The dictionary must hold a metadata string and 
a binary sequence. The metadata and the binary sequence can have an arbitrary key in the 
dict but must be of type str and bytes respectively. This means that any dictionary with 
two elements will work if one of the elements is a str and the other is a bytes type. 
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For example, if you want to pass a processed version of the input image to a later component 
or to ZMQ, you can do it as follows: 

 
# define output 
component.add_output("processed_image", "Object") 

# Object output format 
return { "processed_image": { 
    "metadata": json.dumps( { 
                "mode": image.mode, 
                "width": image.width, 
                "height": image.height 
                } 
          ), 
       "bytes": image.tobytes() 
    } 
} 

 

 Note 

You cannot pass a dictionary received as pipeline input as component output because the 
structures of these dictionaries are different. 

 

In the receiver pipeline component, you can decode the image as follows: 

 
# define input 
component.add_input("processed_image", "Object") 
# construct PIL Object from metadata and binary data 
def process_input(data: dict): 
  metadata = json.loads(data['processed_image']['metadata']) 
  image_data = data['processed_image']['bytes'] 
  mode = metadata['mode'] 
  width = metadata['width'] 
  height = metadata['height'] 
  image = Image.frombytes(mode, (width, height), image_data) 

5.7.1 Returning Binary data 
AI Inference Server version 1.5.0 allows data to be returned in "Byte" format as an output 
variable, which is defined as "Binary" in the pipeline configuration. 

To pass binary data, such as an image, between components or as pipeline output, you can 
do the following: 

 
# definition of outputs 
component.add_output("prediction", "String") 
component.add_output("processed_image", "Binary") 

 
# Binary output format from a PIL image 
membuf = io.BytesIO() 
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image.save(membuf, format="png") 
return { 
    "prediction": str(prediction), 
    "processed_image": membuf.getvalue() 
  } 

 

In the receiver pipeline component, you can decode the image as follows: 

 
# definition of input 
component.add_input("processed_image", "Binary") 
# construct PIL object from metadata and binary data 
def process_input(data: dict): 
    image_data = data['processed_image'] 
    image = Image.open(io.BytesIO(image_data)) 

5.8 Adding custom metrics 
You can implement any model metrics as component metrics that you can use to evaluate 
the performance of the model in the AI Model Monitor. The pipeline automatically generates 
the metrics as outputs that are automatically mapped to the required Databus topics. In the 
AI Inference Server, you only need to select Databus as the data connection for these metric 
outputs. 

A custom metric must be defined for the component as follows: 
component.add_metric("ic_probability") 

 
 

 Note 

The metric name must be prefixed and must contain an underscore (_), because the prefix is 
used to group custom metrics on the dashboard. 

 

An output with the same name can be returned from the inference wrapper as follows: 

 
def process_input(data: dict): 
     
    prediction, metric_value = predict(data) 

 
    return { 
        "prediction": prediction, 
        "ic_probability": json.dumps({"values": metric_value}), 
    } 
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Once the pipeline is created, it collects the metrics from all components and delivers them as 
pipeline outputs. The AI Inference Server can continue to use them as output. The custom 
metric is displayed in the AI Inference Server as output with a pre-configured topic that needs 
to be connected to the Databus. 

 

 Note 

You can also add custom metrics to a monitoring component provided by the AI SDK 
Monitoring Extension.  

 

5.9 Pipeline parameters 
If a component is used in a pipeline with parameters, the component must provide an 
update_parameters() function to handle parameter updates. AI Inference Server calls 
update_parameters() at least once after the pipeline has been started. However, before 
passing the first input to the update_parameters() component, it can be called again if 
pipeline parameters are changed while the pipeline is running. AI Inference Server ensures 
that calls to update_parameters() and process_input() do not occur t the same 
timeconcurrently. 

Parameters to be changed on the user interface 
Use individual parameters if you intend to let the operator to change pipeline parameters 
interactively in the AI Inference Server user interface. For each parameter, you must define 
the name, default value and type. 

 
# define individual parameters for the pipeline 
pipeline.add_parameter('windowSize', 300, 'Integer') 
pipeline.add_parameter('windowStepSize', 75, 'Integer') 

In this way, the AI Inference Server provides individual input fields for each parameter on its 
user interface. In the handler function, the parameters can be retrieved as individual 
dictionary elements from the function parameters. 

 
# entrypoint.py 
def update_parameters(params: dict):  
    windowSize = params['windowSize']    
    windowStepSize = params['windowStepSize'] 

Parameters to be changed via MQTT 
If you need to change pipeline parameters programmatically by sending MQTT messages, use 
a single composite parameter of type String and combine multiple parameters into 
JSON.For the AI Inference Server to provide parameter values from an MQTT topic, you must 
enable this function by passing True as an additional, fourth argument. 

 
# define compound JSON parameter for the pipeline 
pipeline.add_parameter('windowing', json.dumps({'windowSize': 300, 
'stepSize': 75}), 'String', True) 
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Therefore, the AI Inference Server allows you to map this parameter to an MQTT topic, which 
is similar to the method of mapping input and output variables. In the handler function, the 
parameters can be retrieved by first unfolding the JSON in the individual formal pipeline 
parameter into a dictionary, then they can be accessed individually. 

 
def update_parameters(params: dict): 
    windowing = json.loads(params['windowing']) 
    windowSize = windowing['windowSize'] 
    windowStepSize = windowing['stepSize'] 

5.10 Use cases 
The following sections provide guidance on how to use inputs and outputs as intended in 
selected typical ML use cases. 

5.10.1 Processing images 
AI Inference Server version 1.5 supports image input from the Vision Connector application. 
The connection can be made via Databus or ZMQ. Depending on the connection, the images 
are represented either as input Strings or input Objects. 

Using ZMQ connection 
For use cases with large images or high input rates, use a ZMQ connection because the 
Databus is not designed to handle large quantities of data. For image input via ZMQ, you 
need to define the input variable as Object as follows: 
 
# define input 
component.add_input('vision_payload', 'Object') 

Currently, the MIME type, the data type, and the number of channels are limited to the values 
defined in the example. AI Inference Server converts the Vision Connector payload received 
via ZMQ into a Python imagery data dictionary with the following entries: 
 
# Object input format 
image_data = { 'image': 
                { 
                  'resolutionWidth': 640, 
                  'resolutionHeight': 480, 
                  'mimeType': 'image/raw', 
                  'dataType': 'uint8', 
                  'channelsPerPixel': 3, 
                  'image': 'placeholder for binary image contents' 
                } 
             } 
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You can extract the binary image into a PIL image: 
 
from PIL import Image 
 
def process_input(data: dict): 
  image_data = data['vision_payload'] 
 
  assert image_data['dataType'] == 'uint8' and 
image_data['channelsPerPixel'] == 3 
 
  width = image_data['resolutionWidth'] 
  height = image_data['resolutionHeight'] 
 
# image received with 'BGR' byte order 
return Image.frombytes('RGB', (width, height), image_data['image'], 
'raw', 'BGR') 

 

Sending multiple images as ImageSet  
If you want to send multiple images in a single payload, you should use the ImageSet data 
type. Refer to Image Classification project template for a complete example for MQTT and 
ZMQ connection variants. 

... 
# define input 
component.add_input('vision_payload', 'String') 

... 

AI Inference Server passes through the payload provided by the Vision Connector as a dict, 
with the following fields: 

Example of producing an ImageSet payload 
payload = { 
    "version": "1", 
    "camera_id": "...", 
    "timestamp": "2023-08-08T09:11:12.000Z", 
    "metadata": json.dumps({ 
        "key1": "value1", 
        "key2": "value2", 
        # ... 
    }), 
    "image_list": [{ 
        "id": "...", 
        "height": 480, 
        "format": "<GeniCam image format>", 
        "timestamp": "2023-08-08T09:11:12.000Z", 
        "metadata": json.dumps({ 
            "key1": "value1", 
            "key2": "value2", 
            # ... 
        }), 
        "image": b"..." 
    },{ 
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        # ... 
    }] 
} 

 

To extract the images of an image set: 
… 
from PIL import Image 
 
def process_input(data: dict): 
    payload = data['vision_payload'] 
    pil_images = [Image.frombytes(image["format"], (image["width"], 
image["height"]), image["image"]) for image in 
image_set['image_list']] 
… 

Using Databus connection 
For use cases with small images and low input rates, you can use Databus. In this case, you 
need to define the type of component input variable for passing the image as a String that 
corresponds to a Python str in the input dictionary. 
# define input 
component.add_input('vision_payload', 'String') 

AI Inference Server passes through the payload provided by the Vision Connector directly as a 
string. This string is a JSON file that contains metadata and the image itself in data URL-
encoded form as follows: 
 
# example image in Vision Connector MQTT JSON format 
{ 
    'timestamp': '2022-02-23T09:29:45.276338', 
    'sensor_id': 'a204dba4-274e-43ce-9a71-55de9e715e72', 
    'image': 
'data:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAASwAAAGQCAIA...QmCC',  
    # note this URL encoded string is truncated 
    'status': 
    { 
    'genicam_signal': {'code': 3} 
    } 
} 

You can extract the URL-encoded image into a PIL image object as follows: 
 
# extract payload 
from urllib.request import urlopen 
from PIL import Image 
 
def process_input(data: dict): 
  payload = json.loads(data['vision_payload']) 
  url_encoded_image = payload['image'] 
  with urlopen(url_encoded_image) as response: 
    assert response.headers['Content-type'] in ['image/png', 
'image/jpeg'] 
    image_bytes = response.read() 
    return Image.open(io.BytesIO(image_bytes)) 
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Refer to Image Classification project template for a complete example of MQTT and ZMQ 
connection variants. 

For more details, refer to the Vision Connector User Guide. 

5.10.2 Processing time series of signals 
For time series use cases, the situation is typically as follows. You have several signals, that 
you want to sample at a regular rate, and you want to feed your ML model with a time 
window of multiple samples at once. For example, your model might be designed to expect a 
window of 5 samples for 3 variables. 
 
Time stamp var1 var2 var3 
09:50:23 1.2 202 25 
09:50:28 1.3 230 5 
09:50:33 1.2 244 18 
09:50:38 1.2 244 18 
09:50433 1.2 244 18 

Ideally, each signal is a variable that is read by the Industrial Edge Databus, as configured in 
the AI Inference Server. Often, the signals from PLCs are captured using the Industrial Edge 
S7 Connector, which samples these signals from given PLC tags and makes them available on 
the Databus. 

Unfortunately, data points for the signals do not necessarily arrive at a regular rate or 
synchronously. By default, your Python script is usually called with a single variable and the 
others are None. However, the ML model expects an entire matrix of multiple variables in an 
entire time window. 
 
Time stamp var1 var2 var3 
09:50:28 None 230 None 

To ensure the regular rate and the synchronicity of inputs, the AI Inference Server supports 
inter-signal alignment. You can specify a time interval and receive the inputs for all variables 
stimulated in that interval. In our example, you specify 5 seconds as the time interval and 
receive inputs such as: 
 

Time stamp var1 var2 var3 
09:50:28 1.3 230 5 

As there is no guarantee that the data source will deliver a data point in each interval, there is 
still a possibility that some values are missing and set to None in an input row. However, if 
the sample rate of inter-signal alignment does not exceed the data rate of the sources, your 
Python script will mostly provide complete rows of data. 

For details of inter-signal alignment, refer to the AI Inference Server user's manual.  

Refer to the packaging notebook in the State Identifier project template and the AI SDK API 
reference to specify inter signal alignment to be applied to the input of an ML pipeline when 
it is packaged for deployment to the AI Inference Server. 
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However, rows are not yet enough to feed time series ML models when they need data 
windows consisting of multiple rows. Since the AI Inference Server does not support 
accumulating windows, the Python script must take over this task. The key point of the 
server's script interface here is that not all inputs in your Python script result in an output 
because the ML model can only produce output if the received input has just completed a 
data window that can be passed to the model to calculate an output. 
As described above in Returning the result (Page 36), the script can return None while it 
accumulates input, and the model cannot calculate a value for the output. For reasons of 
compactness, the following diagram shows this for a window size of two. 

 

This can be even more complex in real life, depending on whether the windows are 
overlapping or not. For a concrete implementation of such accumulation logic, refer to the 
Python script provided in the State Identifier project template. 
Note that you cannot use parallel component execution if your component relies on building 
up windows from subsequent data points, as the data points would be distributed to different 
instances of the component. You can, however, separate the aggregation of data windows 
and CPU-intensive processing of the windows into a component each, and enable parallel 
execution for the latter only. 
Even in this case, there is no guarantee that the processing of the windows finishes in the 
original sequence of the data. If that is essential, you should supply the windows with a 
sequence ID in the aggregating component that you pass on to the output of the processing 
component. That way the consumer of the pipeline can recreate the original sequence. 

5.10.3 Processing batch data 
In batch use cases, such as the classification of discretely manufactured items, the input data 
is often available in a single packet on the Databus in a text representation such as a JSON 
structure or CSV table. For example, data is provided through External Databus as a textual 
payload. The Industrial Edge Vision Connector also delivers images embedded in a JSON 
through Databus. 
Such data is treated as a single variable of type String, which is passed then to 
process_input() as a dictionary with a single element. You need to process this input 
string according to which representation it uses, for example, json.loads() for JSON or a 
combination of splitlines() and csv.reader() for CSV. 
For a concrete code example that shows how to process a single input variable with a JSON 
structure refer to the Image Classification project template. 
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5.11 Examples 

Component definition example 
The following script creates an example pipeline with a single component, two inputs and 
two outputs. 

from simaticai import deployment 

# defines basic properties of the pipeline step 

component = deployment.PythonComponent(name='classifier', 
version='1.0.0', python_version='3.8')  

component.add_input(name='input_1', _type='Double')  

# defines input variable 

component.add_input(name='input_2', _type='Double')  

# defines input variable 

component.add_output(name='class_label', _type='Integer')  

# defines output variable 

component.add_output(name='confidence', _type='Double')  

# defines output variable 

component.add_resources("../src/", "entrypoint.py") 

component.set_entrypoint('entrypoint.py') 

pipeline = deployment.Pipeline.from_components([component], 
name='Example', version='1.0.0') 

pipeline_package_path = pipeline.save('../packages') 

 

The above code generates a pipeline-config.yml that contains, among others, the 
following: 

# pipeline-config.yml 

  components: 

    name: classifier 

    entrypoint: entrypoint.py 

    version: 1.0.0 

    runtime: 

      type: python 

      version: 3.8 

    inputType: 

      - name: input_1 

        type: Double 
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      - name: input_2 

        type: Double 

    outputType: 

      - name: class_label 

        type: Integer 

      - name: confidence 

        type: Double 
 

The pipeline looks as follows: 

 

Image Classification 
The following script creates an image classification pipeline that consists of a single 
component. The pipeline processes images embedded in JSON strings and produces a 
classification result as a string. This example is detailed in the Image Classification project 
template. 
 
from simaticai import deployment 

# create pipeline component and define basic properties 

component = deployment.PythonComponent(name='inference', 
version='1.0.0', python_version='3.8')  

component.add_input('vision_payload', 'String')  

# define a single input variable 

component.add_output('prediction', 'String')  

# define a single output variable 

component.add_resources('..', 'entrypoint.py')  

# add Python script 

component.set_entrypoint('entrypoint.py')  

# define the above script as entrypoint 

component.add_resources('..', 'src/vision_classifier_tflite.py')  
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# add classifier script used by entrypoint 

component.set_requirements("../runtime_requirements_tflite.txt")  

# define required Python packages 

component.add_resources('..', 
'models/classification_mobilnet.tflite')  

# add saved model used in classifier 

component.set_parallel_steps(2) # set the number of parallel executors 

# create and save a pipeline consisting of a single component 

pipeline = deployment.Pipeline.from_components([component], 
name='Image_TFLite_package', version='1.0.0') 

pipeline_package_path = pipeline.save('../packages') 

# convert pipeline configuration package to edge configuration 
package 

deployment.convert_package(pipeline_package_path) 

 

The above code generates a pipeline_config.yml that contains, among other things: 

dataFlowPipeline: 

  components: 

  - entrypoint: ./entrypoint.py 

    inputType: 

    - name: vision_payload 

      type: String 

    name: inference 

    outputType: 

    - name: prediction 

      type: String 

    runtime: 

type: python 

      version: '3.8' 

    version: 1.0.0 

pipelineDag: 

  - source: Databus.vision_payload 

    target: inference.vision_payload 

  - source: inference.prediction 

    target: Databus.prediction 
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  pipelineInputs: 

  - name: vision_payload 

    type: String 

  pipelineOutputs: 

  - name: prediction 

    type: String 

dataFlowPipelineInfo: 

  dataFlowPipelineVersion: 1.0.0 

  projectName: Image_TFLite_package 

 

The saved pipeline configuration package contains the files listed below. The main folder 
contains the YAML files that describe the pipeline. The inference subfolder contains the 
files that belong to this component. 

Image_TFLite_package_1.0.0/pipeline_config.yml 

Image_TFLite_package_1.0.0/datalink_metadata.yml 

Image_TFLite_package_1.0.0/inference/entrypoint.py 

Image_TFLite_package_1.0.0/inference/requirements.txt 

Image_TFLite_package_1.0.0/inference/src/vision_classifier_tflite.py 

Image_TFLite_package_1.0.0/inference/models/classification_mobilnet.
tflite.py 
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5.12 Writing components for earlier versions of the AI Inference 
Server 

AI Inference Server versions up to 1.1 require the entrypoint to define a function named as 
run() instead of process_input(). Not only is the function name different, the 
component inputs and outputs are passed differently too. 

AI Inference Server version 1.1 passes the input variables as a JSON string, which you must 
convert to a dictionary. On the output side, you must also pass the outputs as a JSON string, 
and embed it all into a dictionary with a ready flag. 

The following code example shows how to wrap process_input() into a run() function 
compatible with AI Inference Server 1.1. 

# entrypoint.py 

 ... 

 # compatibility run() wrapper for process_input() 
 def run(data: str) -> dict: 
     input_data = json.loads(data) 
 
     result = process_input(input_data) 
 
     if result is None: 
         answer = {"ready": False, "output": None} 
     else: 
         answer = {"ready": True, "output": json.dumps(result)} 
     return answer 
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