

AI Software Development Kit

Industrial AI

AI Software Development Kit

Function Manual

11/2023
A5E52031285-AG

Introduction
 1

Safety notes
 2

Installing AI Software
Development Kit

 3

Using AI Software
Development Kit

 4

Guideline for writing
pipeline components

 5

 Siemens Aktiengesellschaft
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E52031285-AG
Ⓟ 11/2023 Subject to change

Copyright © Siemens 2023.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens Aktiengesellschaft. The remaining trademarks in
this publication may be trademarks whose use by third parties for their own purposes could violate the rights of
the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 3

Table of contents

1 Introduction ... 5

1.1 Overview of Siemens Industrial Edge .. 5

1.2 Overview of Industrial AI@Edge ... 7

1.3 AI Software Development Kit functionalities ... 8

1.4 Information about the software license .. 8

2 Safety notes ... 9

2.1 Security information .. 9

2.2 Note on use ... 9

2.3 Note regarding the general data protection regulation ... 10

3 Installing AI Software Development Kit .. 11

3.1 Install and run.. 11

4 Using AI Software Development Kit .. 14

4.1 Training data preparation ... 14

4.2 Training models ... 15

4.3 Packaging models as an inference pipeline ... 16

4.4 Testing the pipeline configuration package locally .. 21

4.5 Mocking the logger of the AI Inference Server .. 24

4.6 Deploy the packaged inference pipeline for AI@Edge .. 25

4.7 Create a delta package and deploy it to AI@Edge .. 25

5 Guideline for writing pipeline components .. 26

5.1 Component definition .. 26

5.2 The entrypoint ... 28

5.3 Input data .. 28
5.3.1 Variable types .. 29
5.3.2 Restrictions on type Object ... 29
5.3.3 Restrictions on type Binary ... 29
5.3.4 Custom data formats ... 30

5.4 Processing data .. 33

5.5 Python dependencies ... 33

5.6 File resources... 35

5.7 Returning the result ... 36
5.7.1 Returning Binary data .. 37

5.8 Adding custom metrics .. 38

Table of contents

 AI Software Development Kit

4 Function Manual, 11/2023, A5E52031285-AG

5.9 Pipeline parameters ... 39

5.10 Use cases ... 40
5.10.1 Processing images ... 40
5.10.2 Processing time series of signals... 43
5.10.3 Processing batch data .. 44

5.11 Examples ... 45

5.12 Writing components for earlier versions of the AI Inference Server 49

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 5

Introduction 1
1.1 Overview of Siemens Industrial Edge

Siemens Industrial Edge is the next generation of digital automation. With Siemens Industrial
Edge, you use intelligence and scalability of the cloud directly in your production - in a
simple, high-performance manner and without your data leaving the manufacturing process.
Siemens Industrial Edge combines local and high-performance data processing directly in the
automation system itself with the advantages of the cloud: app-based data analysis, data
processing and Infrastructure-as-a-Service concepts with central update functionality. In this
way, you can quickly integrate apps into manufacturing and manage them with a high
degree of automation.

Siemens Industrial Edge allows you to continuously make changes to your automation
components and plants, analyze large volumes of data in the automation system to
implement innovative functions, such as predictive maintenance, and to achieve maximum
flexibility and thus productivity over the entire machine lifecycle.

Industrial Edge Hub
With the Siemens Industrial Edge Hub, you have access to an app store where you can find all
Siemens apps and 3rd-party apps. From here, you can manage all licenses for your apps and
devices centrally. You can install updates for security issues, device firmware, apps and
Industrial Edge Management.

You can monitor and manage distributed Edge devices centrally in the Industrial Edge
Management. In this way, new apps and software functions, for example, can be installed on
all connected Edge devices company-wide. Central software management thus minimizes the
workload for performing maintenance and updates on individual devices.

On the individual Industrial Edge devices, you can start and run apps and keep statistics on an
Edge device, for example.

With the Industrial Edge Publisher, you can develop your own Edge apps and make them
available to other users in Industrial Edge Management.

Another component of the Siemens Industrial Edge ecosystem is the Industrial Edge Runtime,
that is installed on Industrial Edge Devices (IED) or Unified Comfort Panels (UCP) and on
which the system, including all applications, ultimately runs.

Introduction
1.1 Overview of Siemens Industrial Edge

 AI Software Development Kit

6 Function Manual, 11/2023, A5E52031285-AG

Industrial Edge Hub Industrial Edge Management Industrial Edge Runtime
on Industrial Edge Devices

Platform for purchasing apps and
software, and for monitoring ma-
nagement systems

Centralized control level for ma-
naging devices, apps, and store
floor users

Software level for app container

 • Central management location
for apps, contributing to
corporate standardization

• Management of all licenses in
use and thus easy cost
estimates

• Overview of all management
system instances that are in
use worldwide

 • Assignment of apps to the
matching Edge devices
(worldwide)

• Specification of user rights
(e.g. app installations)

• Just a few clicks for app setup
and security update cycles

• Supervision of all operations
using the centralized Admin
view

• Excellent usability for IT and
OT users, helping to promote
user adaptation and self-
service

 • Installation of scalable apps on
many different Edge devices

• Supports usage in industrial
environments by:
– Ensuring security and

reliability
– Providing comprehensive

user management to meet
the requirements of
machine manufacturers
and plant operators alike

– Adhering to Company
Policy Compliance, e.g. user
management integration or
IT/firewall specifications

• Integrating device connectivity
to cloud and automation
systems

 Introduction
 1.2 Overview of Industrial AI@Edge

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 7

1.2 Overview of Industrial AI@Edge
Siemens Industrial Edge ecosystem is enabled with Industrial AI products. With Industrial AI,
the scalable Industrial Edge ecosystem is expanded by AI capabilities that facilitate the
deployment of AI models in the production environment on the shop floor.

Introduction of AI models in the shop floor
Customers can use the cloud or on-premises model training environment of their choice.

Data scientists or AI engineers can use the AI framework of their choice.
Siemens offers an easy-to-operate AI Software Development Kit (AI SDK) that has pre-
configured features that generate a Siemens standard format with the developed
AI pipelines. This standard format is fully compatible with AI Inference Server for Siemens
Industrial Edge.
The AI Inference Server application is a ready-to-use inference runtime from Siemens that
receives AI pipelines as configuration packages (content deployment). This can be done
manually via the available user interface or automatically for scaling via the AI Model
Manager that is the expansion of the Industrial Edge Manager for AI management.

The AI Model Monitor solution consists of two Industrial Edge applications that enable
monitoring AI pipelines running on AI Inference Server distributed across multiple Industrial
Edge Devices (IED)at factory level. In this infrastructure AI Model Monitor Agents are installed
on IEDs separately and are connected to the central AI Model Monitor application installed at
factory level. The AI Model Monitor Agents gather information about the executing IED itself
and about the pipeline running on the IED.

Introduction
1.3 AI Software Development Kit functionalities

 AI Software Development Kit

8 Function Manual, 11/2023, A5E52031285-AG

See also
Industrial Edge Homepage (https://new.siemens.com/global/en/products/automation/topic-
areas/industrial-edge.html)

AI@Edge Homepage (https://new.siemens.com/global/en/products/automation/topic-
areas/industrial-edge/production-machines.html)

1.3 AI Software Development Kit functionalities
The AI Software Development Kit, or AI SDK for short, is a set of Python libraries. These
libraries provide building blocks for automating the creation, packaging, and testing of
inference pipelines for the AI Inference Server.

The AI SDK contains project templates that provide notebook-based workflows for training
models, package them for deployment, and test those packages.

The AI SDK assumes a Machine Learning (ML) workflow that includes the following steps:

• Preparing training data

• Training of models

• Packaging of models as an inference pipeline

• Testing of packaged inference pipelines

• Generating the inference pipeline for AI@Edge

If you already have a trained model, you can skip the "Training data preparation (Page 14)"
and "Training models (Page 15)" sections and start with the "Packaging models as an
inference pipeline (Page 16)" section. However, to understand the concepts used, it is
recommended to read through these chapters as they provide the necessary information.

The AI SDK can be used both exploratively from interactive Python notebooks and purely
programmatically as part of an automated ML workflow.

1.4 Information about the software license

Software from third-party suppliers
AI SDK contains Open-Source Software and/or other software from third-party suppliers.

Copyright © SIEMENS, 2023, and licensors. All rights reserved. Parts contain Open-Source
Software. More information can be found in the README_OSS.

https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/production-machines.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-edge/production-machines.html

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 9

Safety notes 2
2.1 Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.

For additional information on industrial security measures that may be implemented, please
visit (https://new.siemens.com/global/en/products/automation/topic-areas/industrial-
security.html).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure to
cyber threats.

More information about network segmentation, firewall etc. is all on these pages.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed visit (https://new.siemens.com/global/en/products/automation/topic-areas/industrial-
security.html).

2.2 Note on use

Protection of the host computer
Customers are responsible for protecting their own host computers and preventing
unauthorized access to their host computers.

To protect the host computer Siemens suggests taking the following measures:

• Deploy the host computer only in isolated plant network, but not office network.

• Enable the screen saver and lock the screen when leave.

• Install suitable anti-virus software.

• Install updates and patches for the operating system and software on the host PC in time.

https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html
https://new.siemens.com/global/en/products/automation/topic-areas/industrial-security.html

Safety notes
2.3 Note regarding the general data protection regulation

 AI Software Development Kit

10 Function Manual, 11/2023, A5E52031285-AG

Notes on protecting administrator accounts
A user with administrator rights has extensive access and manipulation options available to
the system.

Therefore, ensure there are adequate safeguards for protecting the administrator accounts to
prevent unauthorized changes. To do this, use secure passwords and a standard user account
for normal operation. Other measures, such as the use of security policies, should be applied
as needed.

Notes on the use
• Before installing AI Software Development Kit, it is recommended to verify the SHA-256

checksum of the distribution zip package against the checksum provided on Siemens
Online Industry Support.

• AI Software Development Kit can only be accessed from the host computer. Do NOT allow
other machines in the plant network to access AI Software Development Kit.

• The current AI Software Development Kit is only applicable for non-safety critical
application.

• AI Software Development Kit stores the project data without encryption on the host PC.
The customer is responsible for the CIA (Confidentiality, Integrity and Availability) of the
files created, stored, downloaded, or exported by AI Software Development Kit.

• AI Software development Kit might be used in conjunction with Jupyter Lab, which
includes a web server that can be accessed locally or remotely. The customer is
responsible for configuring Jupyter Lab with HTTPS enabled (https://jupyter-
notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-
communication).

• If you use the AI Software Development Kit to create pipeline configuration packages,
make sure that you only include source code and Python packages from trusted sources.

• If you use the AI Software Development Kit to run pipeline configuration packages locally,
make sure that you only use pipeline configuration packages from trusted sources.

2.3 Note regarding the general data protection regulation
Siemens observes the principles of data protection, in particular the principle of data
minimization (privacy by design). For this product this means:

The product does not process / store any personal data, only technical functional data (e.g.
time stamp, IP addresses of the connected manufacturing devices). If the user links this data
with other data (e.g. shift plans) or stores personal data on the same medium (e.g. hard disk)
and thus establishes a personal reference, the user must ensure compliance with data
protection regulations.

https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication
https://jupyter-notebook.readthedocs.io/en/stable/public_server.html#using-ssl-for-encrypted-communication

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 11

Installing AI Software Development Kit 3
3.1 Install and run

Depending on your background, you can choose to use AI SDK in a pure Python 3.8
environment or use the Jupyter Notebook-oriented project templates with a notebook editor
of your choice.

Start with the project templates to familiarize yourself with the AI SDK. These sample
solutions contain all the necessary dependencies and allow for a quick and smooth start. As
you move beyond the interactive exploration phase, you might consider switching to a purely
Python-based approach.

Prerequisites
Before you begin, make sure you have access to the internet. If you access the internet via a
proxy, when working in a corporate network directly or via VPN, please ensure that you have
configured the following tools to use the correct proxy settings:

• pip

• conda (if you also use conda)

Setting environment variables http_proxy and https_proxy covers both. A detailed
explanation of alternative solutions is provided in:

• Using a proxy server (https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server)

• Using Anaconda behind a company proxy (https://docs.anaconda.com/anaconda/user-
guide/tasks/proxy/)

Using the AI SDK without project templates
To install the AI SDK from the Python wheel file, simply use pip in a Python 3.8 environment.
This will ensure the installation of any additional required Python packages.

pip install simaticai-1.4.0-py3-none-any.whl

Note that, by default, pip installs the latest available version of the required packages that are
compatible with the AI SDK and any other packages that might already be installed. If you
want to ensure that you use the versions listed in Readme_OSS, you can apply the
appropriate constraint during installation as follows:

pip install simaticai-1.4.0-py3-none-any.who -c constraints.txt

Note that this increases the probability that pip will not be able to resolve all applicable
restrictions or that an older package and versions with security issues will be installed.

To use the AI SDK from your Python code, you must import modules from the simaticai
namespace. For more information, refer to the User Guide, AI SDK API reference, or project
templates.

https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server
https://docs.anaconda.com/anaconda/user-guide/tasks/proxy/
https://docs.anaconda.com/anaconda/user-guide/tasks/proxy/

Installing AI Software Development Kit
3.1 Install and run

 AI Software Development Kit

12 Function Manual, 11/2023, A5E52031285-AG

Using the AI SDK with project templates
Standalone project template zip packages contain a prepared working directory that includes
notebooks and sources. You can use them in a Python or Jupyter Lab environment of your
choice. The prerequisites are as follows:

• Python 3.8, installed either natively or via Conda.

• A notebook editor such as Jupyter Notebook, Jupyter Lab, or Visual Studio Code.

We strongly recommend that you set up a separate Python environment specifically for the
project template, as described in the README file. The notebooks in the project templates
assume a dedicated Python environment with a predefined name and a matching kernel
name. For example, the State Identifier project template uses the environment name
state_identifier.

You can use your preferred Python environment manager to create the Python environment.
Below we provide the commands for Conda and Python venv using the State Identifier
project template, as an example. For other project templates, you must replace the name
state_identifier as described in the corresponding README file.

create a Conda environment including Python and activate it
conda create -n state_identifier python=3.8.16
conda activate state_identifier

create a Python virtual environment in Linux and activate it
python -m venv ~/venv/state_identifier
source ~/venv/state_identifier/bin/activate

create a Python virtual environment in Windows and activate it
python -m venv %USERPROFILE%\venv\state_identifier
USERPROFILE%\venv\state_identifier\Scripts\activate.bat

Once the environment is created and activated, you must register it as an interactive Python
kernel to make it accessible within your notebook editor. This is usually achieved with the
following commands:

install and register interactive Python kernel
python -m ipykernel install --user --name state_identifier
--display-name "Python (state_identifier)"

Now your Python environment is ready to be used for the project template. Extract the
project template from its package, change the working directory to the extracted project
folder, and execute the command that follows:

install packages required for the template including the AI SDK
and ipykernel
pip install ipykernel -r requirements.txt -f <directory path
containing simaticai wheel file>

Note that you need to specify a path to the directory containing the AI SDK wheel file, not a
path to the wheel file itself.

Once the required packages are installed, you can explore and execute them in your
notebook editor.

 Installing AI Software Development Kit
 3.1 Install and run

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 13

Please make sure that you select the appropriate interactive Python kernel to execute the
notebooks in this example: Python (state_identifier).

Note that by default, pip installs the latest available version of the required packages that are
compatible with the AI SDK and the project template. If you want to make sure to use the
versions that are listed in Readme_OSS, you can apply the appropriate constraint during
installation as shown below:

pip install ipykernel -r requirements.txt -f <directory path
containing simaticai wheel> -c constraints.txt

Note that this increases the probability of pip installings an older package version that might
contain security vulnerabilities.

 AI Software Development Kit

14 Function Manual, 11/2023, A5E52031285-AG

Using AI Software Development Kit 4
4.1 Training data preparation

Preparing data for model training is mostly out-of-scope of the AI SDK. Prepared example
datasets are available for the project templates. You can try out these templates without
requiring data acquisition. Each project template includes a notebook to guide you through
downloading a sample dataset.

Processing time series data
The State Identifier project template provides basic building blocks for building ML models
that process time series of aligned signals. Aligned signals mean that the input of the
processing pipeline consists of rows, containing a value for each signal. For example, a row
consisting of 3 signals and a time stamp would look like this:

Time stamp var1 var2 var3
09:50:23 1.2 202 25

The building blocks help you create a time series pipeline that processes a stream of such
rows according to the following pattern:

The roles of the piping elements are as follows:

• "Windowing" accumulates a given number of input rows in a processing window.

• The "feature extractor" calculates several characteristics for each window. A feature is a
mathematical value calculated from the values in the window.

• The "classifier" is the actual machine learning model that predicts a class for each window,
based on the extracted characteristics.

Most pipelines contain other processing elements, such as imputers to fill missing values, or
scalers that map an input to a predefined range.

 Using AI Software Development Kit
 4.2 Training models

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 15

To train the classifier in such a pipeline, the input data must undergo the preprocessing steps
during the training process.

Therefore, this processing pipeline must be defined as a part of data preparation before
training. This is where the building blocks in the State Identifier project template play a
crucial role.

These building blocks are based on the widely used machine learning Python package
scikit-learn. Scikit-learn provides a framework for defining pipelines that allows you to
combine data transformers with classifiers or other kinds of estimators. The building blocks
can be found in the src/pipeline.py file in the State Identifier project template. The
commonly used libraries are:

• WindowTransformer, which transforms a series of input rows into a series of row-based
windows

• FeatureTransformer, which transforms a window of rows into the feature values
according to user-defined functions

In addition to these transformers, there is a transformer called FillMissingValues, which
performs input data correction for simple cases. For more advanced cases, you should use a
more sophisticated imputer to correct your input.

For more details and concrete examples, refer to the training notebooks in the State Identifier
project template.

Mapping predicted classes of data windows to data points
As described in the previous chapter, time series data is typically classified on a window-by-
window basis. This means that the class of a single data row is not defined on its own.
Nevertheless, there are cases where it is convenient to map the classes defined window by
window to the data points themselves. For example, if you want to visualize the data points
according to their classification by color-coding the data points with the class.

The State Identifier project template provides the utility function back_propagate_labels
in the file src/pipeline.py to perform this mapping. For more details and concrete
examples, please refer to the training notebooks in the State Identifier project template.

4.2 Training models
The AI SDK does not restrict how you train your models and save the trained model. You can
use the training notebooks in the project templates as examples. The project templates
include examples using scikit-learn and TensorFlow.

Some ML frameworks, such as TensorFlow, use their own format for storing trained models.
Other frameworks, such as scikit-learn, rely on persistent Python runtime objects. In the latter
case, you need to ensure that the same versions of Python libraries exist when the objects are
stored after training and then retrieved in the AI Inference Server. The packaging feature of
the AI SDK supports it by requiring exact version specifiers for required Python packages in a
pipeline package.

Using AI Software Development Kit
4.3 Packaging models as an inference pipeline

 AI Software Development Kit

16 Function Manual, 11/2023, A5E52031285-AG

4.3 Packaging models as an inference pipeline
The AI SDK provides the functionality to create a pipeline configuration package that
encapsulates trained models. These models can be converted to an edge configuration
package using the AI SDK. Then it can be uploaded and run on the AI Inference Server on an
Industrial Edge Device. The related functions can be found within the
simaticai.deployment module.

Single or multiple components
From a deployment perspective, the inference pipeline can consist of one or more
components. This is independent of the logical structure of the inference pipeline. For
example, you can package a typical time series pipeline that consists of multiple scikit-learn
pipeline elements into a single pipeline component for deployment:

Alternatively, you can deploy the same pipeline as two components:

To keep the deployment simple and less error-prone, you should deploy your inference
pipeline with as few components as possible.

 Using AI Software Development Kit
 4.3 Packaging models as an inference pipeline

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 17

In many cases, a single component is sufficient. However, there may be reasons why you
might consider using separate components, such as:

• You need a different Python environment for different parts of your processing – for
instance, you have components that require conflicting package versions.

• You want to exploit parallelism between components without implementing
multithreading.

• You want to modularize your pipeline and build it from a pool of component variants that
you can flexibly combine.

Creating an inference pipeline package
The AI SDK allows you to create pipeline components implemented in Python and assemble
linear pipelines from one or more such components.

The API is designed to anticipate future possible types of components that could be based on
a technology other than Python, such as ONNX or native TensorFlow serving. However, only
Python is currently supported.

The workflow for creating an inference pipeline package is as follows:

1. Write the Python code that encapsulates your trained model as an inference pipeline
component.

2. Define the pipeline component.

3. Repeat the above steps if you have multiple components.

4. Configure the pipeline.

5. Save the pipeline configuration in a pipeline configuration package.

Creating pipeline components implemented in Python
Implementing an inference pipeline component in Python is a comprehensive topic in itself
and will be described in detail in the next chapter, "Guideline for writing pipeline components
(Page 26)".

A component consists of files and metadata.

Files contain:

• Python scripts

• trained models

Metadata includes:

• component name and component version

• required Python version and Python packages

• input and output variables

• the number of parallel executors

• the entrypoint

You can create your own arrangement of project files. We recommend that you follow the
project templates for the AI SDK. Here the source code and stored trained models are

Using AI Software Development Kit
4.3 Packaging models as an inference pipeline

 AI Software Development Kit

18 Function Manual, 11/2023, A5E52031285-AG

organized in a predefined structure. If you keep the same relative structure on the
AI Inference Server, you can use the same relative references from the source code to the
stored models or other files.

Put together all the files for the components. Usually, there should be at least one Python
script for the entrypoint, the inference wrapper, and the saved model. Create the pipeline
component by running a Python script or notebook that provides the following functionality:

• creates a Python component object with a specific name, component version, and
required Python version

• defines required Python packages

• defines input and output variables

• defines custom metrics

• defines the number of parallel executors

• adds Python scripts and saved models

• defines the entrypoint under the Python scripts

All this takes place with the corresponding functionality of the simaticai.deployment
module. For concrete examples, refer to the packaging notebooks in the project templates.
Please refer to the AI SDK API reference manual for more information and advanced options.

Consider the following limitations:

• The AI SDK allows you to select a required Python version that is supported by different
versions of AI Inference Server.

• Make sure you select a Python version that is supported by the version installed on your
Industrial Edge target device. For the current AI SDK version, this is Python version 3.8.

• The required Python packages must either be added as wheel files to the pipeline
component or be available for download via pip for the target Inference Server.

• The entrypoint script must be in the root folder of the package in the current AI SDK
version.

• AI Inference Server supports a maximum of 8 parallel executors.

Configuring and saving the pipeline
After you create the component(s), you must combine them into a pipeline using a
Pipeline object.

If the pipeline only consists of one single component, it has the same input variables and
output variables as its single component. You only need to specify a pipeline name and
version from which the file name is derived when you save the package. For example, refer to
the end of the package creation notebooks in the project templates.

To create a linear pipeline of multiple components, you can still mostly rely on the
constructor of Pipeline, which attempts to automatically connect the components passed
as a list:

• connecting pipeline input to the first component

• connecting inputs and outputs of subsequent components if the variable name matches

• connecting the last component to the pipeline output

 Using AI Software Development Kit
 4.3 Packaging models as an inference pipeline

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 19

In general, you should pass data from one component to another component in a single
variable of type String and serialize and deserialize any data you have through a string.

The low-level methods of the Pipeline class allow you to connect any components,
pipeline inputs and outputs. However, the AI SDK cannot guarantee that the result will
behave as intended on the AI Inference Server.

For information about pipeline input and output with different data types and defining
custom metrics, refer to the Guideline for writing runtime components (Page 26). It
describes, how input and output data is passed between the AI Inference Server and your
entrypoint. It also explains special considerations that apply to a continuous stream of time
series data or for bulk data.

Whether you created the pipeline with a single constructor call or with low-level methods,
you must save it for the creation of the pipeline. This step creates the pipeline configuration
package as a .zip file and leaves the contents of the .zip file in the file system. You can
explore it to troubleshoot or see how your package creation calls are reflected in the contents
of files and directories.

Pipeline packages are identified by their package ID and version attributes, and are grouped
by package ID in the AI Inference Server and other Edge applications.

When saving a pipeline – with the save() method – you can specify a package ID in a UUID 4-
compliant format, or an automatically generated one is assigned.

If no package ID is defined in the save() method, and AI SDK finds an already assigned
package ID in a previously generated and similarly named package, the package ID found in
the latest package is used.

AI SDK automatically assigns and increments the version number of a pipeline each time a
package is saved, unless a new package ID is assigned in the save() method, or an explicit
version number without a package ID is defined in the save() method, or in the pipeline
constructor.

Restrictions:

• You cannot overwrite a previously saved package with the same package ID if the package
ID is explicitly assigned in the save() method

• Existing packages without a package ID will be overwritten

• If a new package ID is assigned to an existing version of the package, the old one will be
overwritten

• If no predecessor of a package is found, AI SDK assigns version 1 to the created package

• The version defined in the save() method takes precedence over the version assigned at
the constructor level

Pipeline parameters
Advanced use cases might require a modification of the pipeline behavior after deployment,
for example by changing the parameters of the AI model. For this reason, AI SDK allows you
to define pipeline parameters.

In many respects, pipeline parameters are similar to pipeline inputs. But pipeline parameters
are handled separately and treated specially. Unlike input variables, pipeline parameters must
have a default value, which the parameter takes initially after deployment. Therefore, a
pipeline parameter's value is always defined.

Using AI Software Development Kit
4.3 Packaging models as an inference pipeline

 AI Software Development Kit

20 Function Manual, 11/2023, A5E52031285-AG

Depending on the configuration, a pipeline parameter might be changed interactively via the
user interface of the AI Inference Server or can also be connected to an MQTT topic like an
input variable. In the latter case, the pipeline can receive parameter updates from other
system components via the External Databus.

The pipeline parameters apply to all components. This means that in a pipeline, all
components with parameters must be ready to receive parameter updates. A pipeline
component updates only relevant parameters for the specified components.

For details on how to define pipeline parameters and how to handle parameter updates in
the pipeline components, refer to "Guideline for writing pipeline components (Page 26)". For
a complete code example that shows how to define and use pipeline parameters, refer to the
State Identifier project template.

Parallel execution
By default, pipeline components process the inputs sequentially, within the same Python
interpreter context. To increase the throughput of the component, you can instruct the
AI Inference Server to run multiple instances of a pipeline component and distribute the
inputs among them. This way you can exploit the parallelism available in most multi-core
CPUs.

If you specify parallel component execution, every instance will be initialized separately and
will receive only a fraction of the inputs. Therefore, not all components are suitable for
parallel execution.

For example, the single component of the pipeline given in the State Identifier project
template cannot be executed by parallel instances because the component must process
inputs sequentially, one by one to form windows from the data.

Theoretically, you could separate the State Identifier into two components, the first
component forming the windows and the second component calculating the features and
prediction. Then, the second component could be run in multiple parallel instances, as it does
not have to keep previous inputs to calculate the output. (It is another question whether this
complexity is worthwhile in a specific use case.)

In contrast, the component given in the Image Classification project template can be
executed by parallel instances out of the box. It is practically stateless, as the key global state
the component uses is the model loaded during initialization. Otherwise, the component
needs only the current input to calculate the output.

Note that with parallel component execution, there is no guarantee that the outputs are
produced in the same order as the corresponding inputs arrive. It might happen that one
instance overtakes another even if the raw CPU time required for all inputs is about the same.
The component instances compete for CPU cores with other applications running on the
Industrial Edge device.

You can predefine the number of parallel component instances using the AI SDK
PythonComponent.set_parallel_steps() function. This setting can be overridden on
the AI Inference Server user interface.

 Using AI Software Development Kit
 4.4 Testing the pipeline configuration package locally

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 21

4.4 Testing the pipeline configuration package locally
Once you created your pipeline configuration package, test it before converting to the Edge
configuration package. Only then deploy the package to the AI Inference Server.

The advantages of local testing are the following:

• You can identify many potential issues more quickly because you don't need to go
through a deployment cycle.

• You can diagnose and troubleshoot problems much more easily because you can inspect
artifacts in your development environment.

• You can validate your fixes faster and move on to other issues that had been blocked from
emerging by previous issues.

• You can easily include the local pipeline tests in the test automation of your build process.

2 tools for local testing
You can apply state-of-the-art software engineering practices such as unit testing and test-
driven development.

This means that ideally, you already have automated unit testing or even integration testing
that ensures that the Python code and stored models work in isolation as expected. This helps
you localize errors when you assemble these parts and integrate them as a pipeline
configuration package.

The AI SDK package simaticai.testing provides 2 tools for local testing:

• A pipeline validator that performs static validation of the package for the availability of
required Python packages.

• A pipeline runner that allows you to simulate the execution of your pipeline in your
Python environment.

Note, that all these testing features apply to pipeline configuration packages, not Edge
configuration packages. You must use it before you convert your pipeline configuration
package to an Edge configuration package using the AI SDK.

Since the conversion itself is done automatically, most of the potential issues are already
present in the package before the conversion, thus a post-conversion verification would only
delay the identification of these issues.

Static validation of a pipeline package
You can pass your pipeline configuration package to the
validate_pipeline_dependencies function in the
simaticai.testing.pipeline_validator submodule to perform static checks. These
checks include:

• Verifying that the Python version required in the package is supported by a known version
of the AI Inference Server.

• Verifying that all required Python packages are either included in the pipeline package
itself or available on pypi.org for the target platform.

For specific programming details, refer to the AI SDK API reference manual.

Using AI Software Development Kit
4.4 Testing the pipeline configuration package locally

 AI Software Development Kit

22 Function Manual, 11/2023, A5E52031285-AG

Local execution of a packaged pipeline
The LocalPipelineRunner class in the simaticai.testing.pipeline_runner
submodule can be used to locally mimic the behavior of the AI Inference Server for loading
and running inference pipelines. This is a quick and easy way to find programming or
configuration errors before deploying the package.

The local pipeline runner simulates the server environment as follows:

1. It unpacks the pipeline components into a test folder, similar to what would happen in the
AI Inference Server.

2. It creates a separate Python virtual environment for each component.

3. It installs the required Python packages from the wheel files if provided in the package or by
pypi.org.

4. It installs the mock of log_module (refer to "Mocking the logger of AI Inference Server
(Page 24)")

5. It updates pipeline parameters if applicable.

6. It feeds the pipeline with input data by triggering the entrypoints of the components
accordingly.

7. It collects the sequence of pipeline outputs for a given sequence of pipeline inputs.

You can also use the local pipeline runner to drive your pipeline component by component.
You can feed individual components with inputs and verify the output produced.

If the pipeline contains parameters, the pipeline uses the default values for the parameters.
You can also change the parameter values using the update_parameters() method. This
allows you to test your pipeline with different parameters.

 Note

You can only use the update_parameters() method before calling run_component or
run_pipeline(), but you cannot change pipeline parameters while these methods are
running.

From a testing strategy and risk-based testing perspective, we recommend that you validate
the business logic within the pipeline components in unit tests as you would with any
ordinary Python program and use the local pipeline runner to cover test risks such as the
following:

• A mismatch between pipeline and component input and output variable names

• Required Python packages not covered by requirements.txt

• Missing source or other files from the package

• An interface mismatch between subsequent pipeline components

• The entrypoint script cannot process input data due to a mismatch in the data format

• The entrypoint script generates output data in the wrong format

• For some reason, the pipeline does not work consistently as intended

 Using AI Software Development Kit
 4.4 Testing the pipeline configuration package locally

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 23

A crucial point for making the local test faithful concerning data input and output formats is
to understand how data connections work in the AI Inference Server. The following data
connection types are straightforward:
• Databus

The Databus is a distributed application that runs on individual Industrial Edge Devices and
facilitates access to the data of the field devices. If required, you can configure your own
data points.

• External Databus
You can use the External Databus to connect remote clients to the Industrial Edge Device
via MQTT. The data transmitted to the External Databus is automatically transferred to the
Databus and can be used by other apps within the Databus.

• IE Vision Connector
IE Vision Connector connects to every "Generic Interface for CAMeras" that supports image
processing systems and makes image or video data available over the standard data bus or
a high-throughput data bus. The IE Vision Connector has a user interface that offers
options for configuring camera-specific parameters according to the "GEN<I>CAM"
standard. It forms the image frame/live stream for the user to view.

For these data connection types, the AI Inference Server passes the MQTT payload string
directly as the value of the connected pipeline input variable. In many use cases where you
use this data connection type, your pipeline has a single input variable of type string. This
means that you need to pass a Python dictionary to the local pipeline runner with each
individual element.

For example, if you take the pipeline from the Image Classification project template, you have
a single input variable vision_payload. To run your pipeline on two consecutive input
images, you must call the pipeline runner as follows:

pipeline_input1 = { 'vision_payload': mqtt_payload1 }
pipeline_input2 = { 'vision_payload': mqtt_payload2 }
pipeline_output = runner.run_pipeline([pipeline_input1,
pipeline_input2])

For a complete code example that shows how to feed a pipeline with a single string input
variable in a local test, refer to the Local Pipeline Test Notebook in the Image Classification
project template.

The SIMATIC S7 Connector data connection type requires a higher level of effort. This
connector is typically used in time series use cases. Using this connection, the AI Inference
Server processes the MQTT payload used by the S7 Connector and only passes on the values
of the PLC variables, but not the metadata. So, if you intend to use your pipeline with the
S7 Connector, you need to feed it with dictionaries holding the PLC tag values.

Taking the pipeline from the State Identifier project template for example, you have input
variables ph1, ph2 and ph3, that should be used with the SIMATIC S7 Connector data
connection type. To replicate how the AI Inference Server feeds the pipeline, you must call
the pipeline runner as follows:

pipeline_input1 = {'ph1': 4732.89, 'ph2': 4654.44, 'ph3': 4835.02}
pipeline_input2 = {'ph1': 4909.13, 'ph2': 4775.16, 'ph3': 4996.67}
pipeline_output = runner.run_pipeline([pipeline_input1,
pipeline_input2])

Using AI Software Development Kit
4.5 Mocking the logger of the AI Inference Server

 AI Software Development Kit

24 Function Manual, 11/2023, A5E52031285-AG

For a complete code example that shows how to feed a pipeline with an input line of PLC tag
values in a local test, see the Local Pipeline Test Notebook in the State Identifier project
template.

Restrictions of local pipeline execution
The local runner works with batches of input data and processes the whole input batch
component by component. In the case of a sequence of pipeline inputs, the entire sequence
is first processed by the first component, and only then is the output of the first component
processed by the second component.

This is different from the runtime environment on the AI Inference Server, where the
components in the pipeline potentially start consuming input as soon as the preceding
component has produced output.

You cannot fully test input and output data formats, as these depend on the data connection
settings of the AI Inference Server, and you must provide the local runner with the input data
in the representation that matches the output side of the connector. This means that if your
assumptions on the data connection settings or the resulting data formats are wrong, your
tests will also provide misleading results. The local runner can only simulate linear pipelines:
where the pipeline input variables are only used by one component, each component uses
only the outputs of the previous components, and the pipeline output only consists of
variables from the last component.

Furthermore, the results obtained in local tests are not fully representative of the AI Inference
Server, including but not limited to the following aspects:

• The local version of Python may be different from that in the AI Inference Server.

• The local architecture may be different, resulting in different builds of imported Python
packages being used.

• The local runner executes only one instance of the Python code, regardless of the
parallelism settings in the configuration.

Despite all these limitations, we recommend testing your pipeline locally before deployment.
This will most likely save you more time than skipping this step.

4.5 Mocking the logger of the AI Inference Server
The Python environment on the AI Inference Server injects a Python module named
log_module that the Python scripts can use for logging on the server. To be able to run the
same code in a local development environment on a PC, the AI SDK provides a mock of
log_module in a wheel, which you can install, import, and use in the same way. This wheel
file must not be included in the pipeline package dependencies.

 Using AI Software Development Kit
 4.6 Deploy the packaged inference pipeline for AI@Edge

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 25

4.6 Deploy the packaged inference pipeline for AI@Edge
After you create and test your pipeline configuration package, you must convert it to an Edge
configuration package, so it could be deployed to the AI Inference Server.

Conversion is required because, while a pipeline configuration package defines the inputs,
outputs, and inner workings of an inference pipeline, it does not contain all the components
required to run in the AI Inference Server. To make it complete for deployment on the
AI Inference Server, the pipeline configuration package must be converted to an Edge
configuration package.

Amongst other things, the conversion ensures that all the necessary Python packages for the
target platform are included. If any of the required packages, including transitive
dependencies, are not included in the pipeline configuration package for the target platform,
they will be downloaded from pypi.org.

The conversion function is available in AI SDK both as a Python function and a CLI command.
Please refer to the details of the function convert_package in module
simaticai.deployment in the AI SDK API reference manual.

An Edge configuration package can be deployed to the AI Inference Server:

• via AI Model Manager,

• via AI Inference Server's API,

• uploaded directly to AI Inference Server via UI.

For more information, refer to AI Inference Server and AI Model Manager documentation.

4.7 Create a delta package and deploy it to AI@Edge
The amount of time taken by deployment strongly correlates with the size of the Edge
configuration package. To reduce it, the AI SDK provides the functionality to create a delta
pipeline package. A delta package contains only the files that are updated or newly added
compared to the original version.

You can use function create_delta_package in module simaticai.deployment or
the corresponding CLI command. For more details, refer to the AI SDK API reference manual.

 Note

The delta configuration package can be deployed in the same way as the Edge configuration
package. The original Edge configuration package must be deployed before the delta
configuration package.

 AI Software Development Kit

26 Function Manual, 11/2023, A5E52031285-AG

Guideline for writing pipeline components 5

AI Inference Server is an Industrial Edge application designed to execute your ML models on
an Industrial Edge Device. The interface between your ML model and AI Inference Server is a
Python script that consumes incoming data, processes it and creates an output response. This
guideline explains the workflow for defining a pipeline component using a Python script.

5.1 Component definition
In this context, a component means a pipeline step that which consumes input data,
processes that data by using a model, and produces the output data. The model can mean, in
a narrower sense, an ML model such as a neural network or a random forest algorithm, or
simply an aggregator or other pre- or postprocessing logic. In every case, a Python script,
hereinafter referred to as the "entrypoint", establishes the connection between the model
and the AI Inference Server. The server needs to receive information about what Python
environment is required to execute the code, including the required Python packages or file
resources.

Essential information for the execution of the code
The most essential information for the execution of the code is:

• The Python script that receives the input data

• The Python version required to run the Python script

• The input and output variables of the component

Example
The following code shows how to define component settings. The created configuration can
be checked in the pipeline-config.yml which can be found in the Examples (Page 45)
section. Please note that this code is only used to create the pipeline configuration package,
but it is not contained in the package itself.

create_pipeline_config_package.py

from simaticai import deployment

defining basic properties of the pipeline component

AI Inference Server version 1.4 supports Python 3.8

component = deployment.PythonComponent(name='classifier',
version='1.0.0', python_version='3.8')

defining entrypoint Python script

component.add_resources("../src", "entrypoint.py")

component.set_entrypoint('entrypoint.py')

 Guideline for writing pipeline components
 5.1 Component definition

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 27

defining input variable of component

component.add_input(name='input_1', _type='Double')

component.add_input(name='input_2', _type='Double')

defining output variable of component

component.add_output(name='class_label', _type='Integer')

component.add_output(name='confidence', _type='Double')

In this example, the code uses a pre-trained scikit-learn model that is stored in a joblib file.
The file acts as a resource file in this model. For more details about resource files, see the File
resources section. The code also uses external Python modules (Page 33) that must be
deployed and installed on the AI Inference Server.

adding stored scikit-learn model as a resource file

component.add_resources('..', 'models/classifier-model.joblib')

adding python dependency scikit-learn with version==1.0.1

component.add_dependencies([('scikit-learn', '1.0.1')])

With this configuration, the AI Inference Server collects data for input_1 and input_2.
When the data is available, the server wraps it into a data payload and calls the
process_input() function in entrypoint.py. Once the data is processed and the
class_label and confidence results are calculated, the function generates a return
value.

Guideline for writing pipeline components
5.2 The entrypoint

 AI Software Development Kit

28 Function Manual, 11/2023, A5E52031285-AG

5.2 The entrypoint
AI Inference Server itself receives the data payload from the input data connection. With each
input, the AI Inference Server triggers the process_input(data: dict) -> dict
function in the entrypoint module. After process_input() returns, the server forwards the
output to the next pipeline component, or emits it as pipeline output over the output data
connection.

Example
entrypoint.py

import sys

from pathlib import Path

when you import from source, the parent folder of the module
('./src') must be added to the system path

sys.path.insert(0, str(Path('./src').resolve()))

from my_module import data_processor # should be adapted to your
code

def process_input(data: dict) -> dict:

 return data_processor.process_data(data["input_1"],
data["input_2"])

In this case, it is assumed that business logic is encapsulated in
data_processor.process_data(). You can place the code into your package and
modify only the reference to your data processor.

5.3 Input data
AI Inference Server wraps the acquired input values into a dictionary and passes them to
process_input() as a single parameter. Each input variable is represented as a separate
element in the dictionary, for example:

 {"input_1": 123.51, "input_2": 47.02}

If you have multiple inputs, the process_input() might be triggered with incomplete data.
If inter-signal alignment is enabled, the missing input variables are None in the dictionary.

 {"input_1": 123.51, "input_2": None}

Without inter-signal alignment, inputs are passed to process_input() one by one, variable
by variable, so that the dictionary contains only one element for each call.

 {"input_1": 123.51}

For further details, refer to the Processing time series of signals (Page 43).

 Guideline for writing pipeline components
 5.3 Input data

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 29

5.3.1 Variable types
Let's take another look and check how you defined the input variable input_1

defining input variable

component.add_input(name= 'input_1', _type='Double')

You defined it as Double, which is a data type of AI Inference Server.

The process_input() function receives the inputs converted to a Python data type, which
is a float for AI Inference Server type Double.

In general, you need to define the types of input and output variables as AI Inference Server
types, but the Python script should use the appropriate Python type. The match between
AI Inference Server data types and Python data types is shown in the following table. The
table also shows which data type is supported by which data connection in AI Inference
Server version 1.5.0.

AI Inference
Server

Python Databus S7 Connector Vision
Connector

ZMQ

Bool bool I/O
Integer int I/O
Double float I/O
String str I/O I/O input
Object dict input output
Binary bytes I/O
ImageSet dict I/O

External Databus connections support the same data types as Databus.

5.3.2 Restrictions on type Object
AI Inference Server version 1.5 imposes restrictions on the dictionaries returned by the
inference wrappers for output variables of type Object. The returned dictionary must
contain a metadata string and a binary sequence. The metadata and the binary sequence can
have any key in the dict but must be of type str and bytes respectively. For details, refer
to the section "Returning the result (Page 36)".

 Note

The structure of dictionaries that is received as pipeline input is different from the dictionary
structure that is required as component output. For details, see the section "Processing
images (Page 40)".

5.3.3 Restrictions on type Binary
Currently, the "binary" data format can only be used as pipeline input and output with the
ZMQ connector.

However, it can be used as an intermediate format between pipeline steps without any
limitations.

Guideline for writing pipeline components
5.3 Input data

 AI Software Development Kit

30 Function Manual, 11/2023, A5E52031285-AG

5.3.4 Custom data formats
To connect your pipeline to a custom application with its own data format, you can take one
of the following methods:

• Use String and connect input or output through Databus or External Databus. In this
case, you can use any text data format, such as JSON, XML, CSV, or any combination of
these.

• Use Object and connect output via ZMQ. In this case, the AI Inference Server converts
the metadata dictionary into a JSON string and passes it to the receiver together with the
binary contents in a multi-part ZMQ message. For more details, refer to the AI Inference
Server Function Manual
(https://support.industry.siemens.com/cs/ww/en/view/109822331).

Specific variable types for images
AI Inference Server supports receiving URL-encoded images via MQTT. The payload type is
str and can be extracted into a PIL image as follows:

define input
component.add_input("image", "String")

extract payload
def process_input(payload: dict):
 url_encoded_image = payload["image"]
 with urlopen(url_encoded_image) as response:
 assert response.headers["Content-type"] in ["image/png",
"image/jpeg"]
 image_bytes = response.read()
 pil_image =
Image.open(io.BytesIO(image_bytes)).resize(IMAGE_SIZE)

Another supported type for images is Object which can be used to receive or send images
via ZMQ.

If the "input variable" is defined with type Object, the AI Inference Server takes the image
from ZMQ and creates a specific payload format. In your code, this format can be processed
and extracted into a PIL Image. A specific code example can be found in the Image
Classification project example in the "Examples (Page 45)" chapter.

define input
component.add_input("image", "Object")

Object input format
payload = { "image":
 {
 "resolutionWidth": image.width,
 "resolutionHeight": image.height,
 "mimeType": ["image/raw"],
 "dataType": "uint8",
 "channelsPerPixel": 3,
 "image": _swap_bytes(image.tobytes())
 }
 }

https://support.industry.siemens.com/cs/ww/en/view/109822331

 Guideline for writing pipeline components
 5.3 Input data

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 31

When the "output variable" is defined with type Object, the output must be provided in a
specific format. In your code, a dictionary must be created with a string and a bytes field.
They must contain the width and height information in a JSON string and the UINT8 bytes of
the raw image. A concrete code example can be found in the project example Image
Classification.

define output
component.add_output("image_with_filter", "Object")

Object output format
return {
 "image_with_filter": {
 "metadata": json.dumps({
 "resolutionWidth": image.width,
 "resolutionHeight": image.height
 }
),
 "bytes": image.tobytes()
}

The most commonly supported data format is "Binary", that is used to receive or send a byte
array over ZMQ.

If an input variable is defined as "Binary", the AI Inference Server provides it as a Python
dictionary, where the variable name is the key, and the value is the binary data provided as
the Python type "bytes".

A specific code example can be found in the Image Classification project example in the
"Examples (Page 45)" chapter.

definition of input
component.add_input("image", "Binary")

Binary input format
with open('image.png', 'rb') as f:
 binary = f.read()
 payload = { "image": binary }
...
Decode a PIL image from Binary data
image = Image.open(io.BytesIO(binary))

...

If an output variable is defined with type "Binary" the output must be provided as a "bytes"
value in the returned dictionary.

output definition
component.add_output("processed_image", "Binary")

Binary output format from a PIL image
membuf = io.BytesIO()
image.save(membuf, format="png")
return {
 "processed_image": membuf.getvalue()
 }

Guideline for writing pipeline components
5.3 Input data

 AI Software Development Kit

32 Function Manual, 11/2023, A5E52031285-AG

ImageSet data type allows receiving multiple images, along with their format, dimension
information, and metadata.

Example of processing an incoming ImageSet in Python:

Define input
component.add_input("image_set", "ImageSet")

Handle incoming image(s)
def process_input(data: dict):
 image_set = data['image_set']
 for image_data in image_set['image_list']:
 process_image_data(image_data['image']
 # ...

Example of producing an ImageSet output in Python:
Define output
component.add_output("image_set", "ImageSet")
Assemble an ImageSet object
import json
def process_input(data):
 # ...
 image_set: {
 "version": "1",
 "camera_id": "...",
 "timestamp": "2023-08-08T09:11:12.000Z",
 "metadata": json.dumps({
 "key1": "value1",
 "key2": "value2",
 # ...
 }),
 "image_list": [{
 "id": "...",
 "width": 640,
 "height": 480,
 "format": "<GeniCam image format>",
 "timestamp": "2023-08-08T09:11:12.000Z",
 "metadata": json.dumps({
 "key1": "value1",
 "key2": "value2",
 # ...
 }),
 "image": b"..."
 }, {
 # ...
 }]
}
return {
 "image_set": image_set
}

 Guideline for writing pipeline components
 5.4 Processing data

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 33

5.4 Processing data
The main part of your Python script is the logic for calculating the output from the input. This
is done by your Python code, which can use configuration files and persistent ML models in a
well-defined Python environment. To define these resources, the PythonComponent class
of the simaticai.deployment module is used to add dependencies or additional files.
These files are included in the configuration package and extracted in the AI Inference Server
as follows:

• Dependencies are installed on the server via pip.

• Additional files are copied into the component directory.

5.5 Python dependencies
The AI Inference Server executes every component of a pipeline in an isolated Python virtual
environment. For each component, you must specify which Python packages are required by
the Python scripts in that component, including the Python packages required to load
persistent Python objects.

Adding Python dependencies
The Python dependencies of a component can be added in two ways:

• As a standard wheel file or as a zip/tar file that contains standard wheel files

In both cases, the packages, which can be precompiled wheel files or pure Python source
distributions, are added to the component.dependencies dictionary and binaries are
zipped into the configuration package.

AI Inference server supports only installing source distributions that contain only Python
source code.

...

component.add_python_packages('../packages/my_module-0.0.1-py3-any-
any.whl')

component.add_python_packages('../packages/MyPackages.zip')

component.add_python_packages('../packages/my_source_module-
0.0.2.tar.gz')

...

• By name using a list that contains the names of the Python modules

In this case, the method searches for the module in the current Python environment and adds
the package with its version and all of its transitive dependencies.

component.add_dependencies(['numpy', 'scikit-learn'])

Dependencies can be added by name and version using a list that contains corresponding
tuples. When the component is saved, it will perform a check if all specified dependencies can
be installed together. Transitive dependencies will also be downloaded.

Guideline for writing pipeline components
5.5 Python dependencies

 AI Software Development Kit

34 Function Manual, 11/2023, A5E52031285-AG

...

component.add_dependencies([('pandas', '1.3.0'), ('pyarrow',
'3.0.0')])

...

Dependencies added to a component are installed on the AI Inference Server with the
defined version and can be imported into your Python code during execution.

entrypoint.py or data_processor.py

import numpy as np

import pandas as pd

...

Download from non-public repository
Dependencies from non-public repositories can be downloaded by specifying an extra index
URL at the beginning of the requirements.txt file.

...

extra-index-url https://<API_KEY>@your/private/repository

...

Please be aware that if a package is also available in a public repository, pip may download it
from there and not look for it in the private repository, which may pose a cybersecurity risk.

It is recommended to only use trusted private repositories, pin the version of the package,
and check if a package with the same properties already exists on
https://pypi.org/simple.

If you want to change the default https://pypi.org/simple package index, you can do
it by using an index URL at the beginning of the requirements.txt file. This allows you to
download dependencies exclusively from a private repository.

...

index-url https://<API_KEY>@your/private/repository

...

 Guideline for writing pipeline components
 5.6 File resources

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 35

5.6 File resources
File resources can be of any file type required to execute the Python code, including the
Python sources themselves, such as configuration file, static data, or trained AI models stored
in joblib or pickle format.

Adding resources
In order for the configuration package to transfer these files to the server environment, you
must specify them using the add_resources(base_dir, resources) method, as
shown below:

the method adds 'prediction_model.joblib' from the '../models' directory file to the
component

and the file will be extracted on the server into the component folder under the 'models'
directory

component.add_resources(base_dir="..",
resources="models/prediction_model.joblib")

same way we define a file 'model-config.yml' to bring into the 'config' directory

component.add_resources(base_dir="..", resources="config/model-
config.yml")

Once the pipeline is imported into the AI Inference Server and the component is installed, the
files in the server file system are available in the component directory and can be accessed by
the Python scripts:

data_processor.py

import yaml

import joblib

from pathlib import Path

Our goal is to have an identical relative path to the resources in
the source repository and on the server.

base_dir = Path(__file__).parents[1]

file 'model-config.yml' is extracted into the 'config' directory

config_path = base_dir / "config/model-config.yml"

model_config = yaml.load(config_path)

file 'prediction_model.joblib' is extracted into the 'models'
directory

model_path = base_dir / "models/prediction_model.joblib"

with open(model_path, "rb") as model_file:

 model = joblib.load(model_file)

Guideline for writing pipeline components
5.7 Returning the result

 AI Software Development Kit

36 Function Manual, 11/2023, A5E52031285-AG

As loading files can be time-consuming, it is recommended to load files and ML models into
memory at initialization time of your Python code and not during the call to
process_input(). The entrypoint process_input() should focus on processing the
incoming data as quickly as possible. We highly suggest initializing the objects that are used
in this code at the beginning of the script, and then using them in the functions invoked by
process_input.

Please be aware that this approach can result in a massive memory load, so you have to make
a trade-off between memory consumption or CPU load and response time.

After loading, the model is ready to be used to process the input data. In simple cases, this
can be done directly in the entrypoint script. In the given example, we have factored this out
into a module to illustrate how another module can be called from the entrypoint.

data_processor.py

def process_data(width, height):

 data=[width, height]

 class_label, confidence=model.predict(data)

 return{"class_label": class_label, "confidence": confidence}

5.7 Returning the result
If you want to return the results after processing the input data, you must return them in a
dictionary. The keys should be the variable names of the component's outputs. In the
example in File resources (Page 35), the process_data() function returns such a
dictionary. It can be directly returned from process_inputs() as well. The dictionary
contains an integer for class_label and a floating-point value that represents the
confidence of the prediction.

If there is no output for a particular call to process_input(), you should return None. As a
result, the AI Inference Server does not trigger the next component in the pipeline, or if it is
the last component of the pipeline, the pipeline does not emit any output from that
component. A specific use case can be found under "Use cases (Page 40)".

Returning Object
AI Inference Server version 1.5 restricts the type of dictionary that a pipeline component can
return in an output variable of type Object. The dictionary must hold a metadata string and
a binary sequence. The metadata and the binary sequence can have an arbitrary key in the
dict but must be of type str and bytes respectively. This means that any dictionary with
two elements will work if one of the elements is a str and the other is a bytes type.

 Guideline for writing pipeline components
 5.7 Returning the result

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 37

For example, if you want to pass a processed version of the input image to a later component
or to ZMQ, you can do it as follows:

define output
component.add_output("processed_image", "Object")

Object output format
return { "processed_image": {
 "metadata": json.dumps({
 "mode": image.mode,
 "width": image.width,
 "height": image.height
 }
),
 "bytes": image.tobytes()
 }
}

 Note

You cannot pass a dictionary received as pipeline input as component output because the
structures of these dictionaries are different.

In the receiver pipeline component, you can decode the image as follows:

define input
component.add_input("processed_image", "Object")
construct PIL Object from metadata and binary data
def process_input(data: dict):
 metadata = json.loads(data['processed_image']['metadata'])
 image_data = data['processed_image']['bytes']
 mode = metadata['mode']
 width = metadata['width']
 height = metadata['height']
 image = Image.frombytes(mode, (width, height), image_data)

5.7.1 Returning Binary data
AI Inference Server version 1.5.0 allows data to be returned in "Byte" format as an output
variable, which is defined as "Binary" in the pipeline configuration.

To pass binary data, such as an image, between components or as pipeline output, you can
do the following:

definition of outputs
component.add_output("prediction", "String")
component.add_output("processed_image", "Binary")

Binary output format from a PIL image
membuf = io.BytesIO()

Guideline for writing pipeline components
5.8 Adding custom metrics

 AI Software Development Kit

38 Function Manual, 11/2023, A5E52031285-AG

image.save(membuf, format="png")
return {
 "prediction": str(prediction),
 "processed_image": membuf.getvalue()
 }

In the receiver pipeline component, you can decode the image as follows:

definition of input
component.add_input("processed_image", "Binary")
construct PIL object from metadata and binary data
def process_input(data: dict):
 image_data = data['processed_image']
 image = Image.open(io.BytesIO(image_data))

5.8 Adding custom metrics
You can implement any model metrics as component metrics that you can use to evaluate
the performance of the model in the AI Model Monitor. The pipeline automatically generates
the metrics as outputs that are automatically mapped to the required Databus topics. In the
AI Inference Server, you only need to select Databus as the data connection for these metric
outputs.

A custom metric must be defined for the component as follows:
component.add_metric("ic_probability")

 Note

The metric name must be prefixed and must contain an underscore (_), because the prefix is
used to group custom metrics on the dashboard.

An output with the same name can be returned from the inference wrapper as follows:

def process_input(data: dict):

 prediction, metric_value = predict(data)

 return {
 "prediction": prediction,
 "ic_probability": json.dumps({"values": metric_value}),
 }

 Guideline for writing pipeline components
 5.9 Pipeline parameters

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 39

Once the pipeline is created, it collects the metrics from all components and delivers them as
pipeline outputs. The AI Inference Server can continue to use them as output. The custom
metric is displayed in the AI Inference Server as output with a pre-configured topic that needs
to be connected to the Databus.

 Note

You can also add custom metrics to a monitoring component provided by the AI SDK
Monitoring Extension.

5.9 Pipeline parameters
If a component is used in a pipeline with parameters, the component must provide an
update_parameters() function to handle parameter updates. AI Inference Server calls
update_parameters() at least once after the pipeline has been started. However, before
passing the first input to the update_parameters() component, it can be called again if
pipeline parameters are changed while the pipeline is running. AI Inference Server ensures
that calls to update_parameters() and process_input() do not occur t the same
timeconcurrently.

Parameters to be changed on the user interface
Use individual parameters if you intend to let the operator to change pipeline parameters
interactively in the AI Inference Server user interface. For each parameter, you must define
the name, default value and type.

define individual parameters for the pipeline
pipeline.add_parameter('windowSize', 300, 'Integer')
pipeline.add_parameter('windowStepSize', 75, 'Integer')

In this way, the AI Inference Server provides individual input fields for each parameter on its
user interface. In the handler function, the parameters can be retrieved as individual
dictionary elements from the function parameters.

entrypoint.py
def update_parameters(params: dict):
 windowSize = params['windowSize']
 windowStepSize = params['windowStepSize']

Parameters to be changed via MQTT
If you need to change pipeline parameters programmatically by sending MQTT messages, use
a single composite parameter of type String and combine multiple parameters into
JSON.For the AI Inference Server to provide parameter values from an MQTT topic, you must
enable this function by passing True as an additional, fourth argument.

define compound JSON parameter for the pipeline
pipeline.add_parameter('windowing', json.dumps({'windowSize': 300,
'stepSize': 75}), 'String', True)

Guideline for writing pipeline components
5.10 Use cases

 AI Software Development Kit

40 Function Manual, 11/2023, A5E52031285-AG

Therefore, the AI Inference Server allows you to map this parameter to an MQTT topic, which
is similar to the method of mapping input and output variables. In the handler function, the
parameters can be retrieved by first unfolding the JSON in the individual formal pipeline
parameter into a dictionary, then they can be accessed individually.

def update_parameters(params: dict):
 windowing = json.loads(params['windowing'])
 windowSize = windowing['windowSize']
 windowStepSize = windowing['stepSize']

5.10 Use cases
The following sections provide guidance on how to use inputs and outputs as intended in
selected typical ML use cases.

5.10.1 Processing images
AI Inference Server version 1.5 supports image input from the Vision Connector application.
The connection can be made via Databus or ZMQ. Depending on the connection, the images
are represented either as input Strings or input Objects.

Using ZMQ connection
For use cases with large images or high input rates, use a ZMQ connection because the
Databus is not designed to handle large quantities of data. For image input via ZMQ, you
need to define the input variable as Object as follows:

define input
component.add_input('vision_payload', 'Object')

Currently, the MIME type, the data type, and the number of channels are limited to the values
defined in the example. AI Inference Server converts the Vision Connector payload received
via ZMQ into a Python imagery data dictionary with the following entries:

Object input format
image_data = { 'image':
 {
 'resolutionWidth': 640,
 'resolutionHeight': 480,
 'mimeType': 'image/raw',
 'dataType': 'uint8',
 'channelsPerPixel': 3,
 'image': 'placeholder for binary image contents'
 }
 }

 Guideline for writing pipeline components
 5.10 Use cases

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 41

You can extract the binary image into a PIL image:

from PIL import Image

def process_input(data: dict):
 image_data = data['vision_payload']

 assert image_data['dataType'] == 'uint8' and
image_data['channelsPerPixel'] == 3

 width = image_data['resolutionWidth']
 height = image_data['resolutionHeight']

image received with 'BGR' byte order
return Image.frombytes('RGB', (width, height), image_data['image'],
'raw', 'BGR')

Sending multiple images as ImageSet
If you want to send multiple images in a single payload, you should use the ImageSet data
type. Refer to Image Classification project template for a complete example for MQTT and
ZMQ connection variants.

...
define input
component.add_input('vision_payload', 'String')

...

AI Inference Server passes through the payload provided by the Vision Connector as a dict,
with the following fields:

Example of producing an ImageSet payload
payload = {
 "version": "1",
 "camera_id": "...",
 "timestamp": "2023-08-08T09:11:12.000Z",
 "metadata": json.dumps({
 "key1": "value1",
 "key2": "value2",
 # ...
 }),
 "image_list": [{
 "id": "...",
 "height": 480,
 "format": "<GeniCam image format>",
 "timestamp": "2023-08-08T09:11:12.000Z",
 "metadata": json.dumps({
 "key1": "value1",
 "key2": "value2",
 # ...
 }),
 "image": b"..."
 },{

Guideline for writing pipeline components
5.10 Use cases

 AI Software Development Kit

42 Function Manual, 11/2023, A5E52031285-AG

 # ...
 }]
}

To extract the images of an image set:
…
from PIL import Image

def process_input(data: dict):
 payload = data['vision_payload']
 pil_images = [Image.frombytes(image["format"], (image["width"],
image["height"]), image["image"]) for image in
image_set['image_list']]
…

Using Databus connection
For use cases with small images and low input rates, you can use Databus. In this case, you
need to define the type of component input variable for passing the image as a String that
corresponds to a Python str in the input dictionary.
define input
component.add_input('vision_payload', 'String')

AI Inference Server passes through the payload provided by the Vision Connector directly as a
string. This string is a JSON file that contains metadata and the image itself in data URL-
encoded form as follows:

example image in Vision Connector MQTT JSON format
{
 'timestamp': '2022-02-23T09:29:45.276338',
 'sensor_id': 'a204dba4-274e-43ce-9a71-55de9e715e72',
 'image':
'...QmCC',
 # note this URL encoded string is truncated
 'status':
 {
 'genicam_signal': {'code': 3}
 }
}

You can extract the URL-encoded image into a PIL image object as follows:

extract payload
from urllib.request import urlopen
from PIL import Image

def process_input(data: dict):
 payload = json.loads(data['vision_payload'])
 url_encoded_image = payload['image']
 with urlopen(url_encoded_image) as response:
 assert response.headers['Content-type'] in ['image/png',
'image/jpeg']
 image_bytes = response.read()
 return Image.open(io.BytesIO(image_bytes))

 Guideline for writing pipeline components
 5.10 Use cases

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 43

Refer to Image Classification project template for a complete example of MQTT and ZMQ
connection variants.

For more details, refer to the Vision Connector User Guide.

5.10.2 Processing time series of signals
For time series use cases, the situation is typically as follows. You have several signals, that
you want to sample at a regular rate, and you want to feed your ML model with a time
window of multiple samples at once. For example, your model might be designed to expect a
window of 5 samples for 3 variables.

Time stamp var1 var2 var3
09:50:23 1.2 202 25
09:50:28 1.3 230 5
09:50:33 1.2 244 18
09:50:38 1.2 244 18
09:50433 1.2 244 18

Ideally, each signal is a variable that is read by the Industrial Edge Databus, as configured in
the AI Inference Server. Often, the signals from PLCs are captured using the Industrial Edge
S7 Connector, which samples these signals from given PLC tags and makes them available on
the Databus.

Unfortunately, data points for the signals do not necessarily arrive at a regular rate or
synchronously. By default, your Python script is usually called with a single variable and the
others are None. However, the ML model expects an entire matrix of multiple variables in an
entire time window.

Time stamp var1 var2 var3
09:50:28 None 230 None

To ensure the regular rate and the synchronicity of inputs, the AI Inference Server supports
inter-signal alignment. You can specify a time interval and receive the inputs for all variables
stimulated in that interval. In our example, you specify 5 seconds as the time interval and
receive inputs such as:

Time stamp var1 var2 var3
09:50:28 1.3 230 5

As there is no guarantee that the data source will deliver a data point in each interval, there is
still a possibility that some values are missing and set to None in an input row. However, if
the sample rate of inter-signal alignment does not exceed the data rate of the sources, your
Python script will mostly provide complete rows of data.

For details of inter-signal alignment, refer to the AI Inference Server user's manual.

Refer to the packaging notebook in the State Identifier project template and the AI SDK API
reference to specify inter signal alignment to be applied to the input of an ML pipeline when
it is packaged for deployment to the AI Inference Server.

Guideline for writing pipeline components
5.10 Use cases

 AI Software Development Kit

44 Function Manual, 11/2023, A5E52031285-AG

However, rows are not yet enough to feed time series ML models when they need data
windows consisting of multiple rows. Since the AI Inference Server does not support
accumulating windows, the Python script must take over this task. The key point of the
server's script interface here is that not all inputs in your Python script result in an output
because the ML model can only produce output if the received input has just completed a
data window that can be passed to the model to calculate an output.
As described above in Returning the result (Page 36), the script can return None while it
accumulates input, and the model cannot calculate a value for the output. For reasons of
compactness, the following diagram shows this for a window size of two.

This can be even more complex in real life, depending on whether the windows are
overlapping or not. For a concrete implementation of such accumulation logic, refer to the
Python script provided in the State Identifier project template.
Note that you cannot use parallel component execution if your component relies on building
up windows from subsequent data points, as the data points would be distributed to different
instances of the component. You can, however, separate the aggregation of data windows
and CPU-intensive processing of the windows into a component each, and enable parallel
execution for the latter only.
Even in this case, there is no guarantee that the processing of the windows finishes in the
original sequence of the data. If that is essential, you should supply the windows with a
sequence ID in the aggregating component that you pass on to the output of the processing
component. That way the consumer of the pipeline can recreate the original sequence.

5.10.3 Processing batch data
In batch use cases, such as the classification of discretely manufactured items, the input data
is often available in a single packet on the Databus in a text representation such as a JSON
structure or CSV table. For example, data is provided through External Databus as a textual
payload. The Industrial Edge Vision Connector also delivers images embedded in a JSON
through Databus.
Such data is treated as a single variable of type String, which is passed then to
process_input() as a dictionary with a single element. You need to process this input
string according to which representation it uses, for example, json.loads() for JSON or a
combination of splitlines() and csv.reader() for CSV.
For a concrete code example that shows how to process a single input variable with a JSON
structure refer to the Image Classification project template.

 Guideline for writing pipeline components
 5.11 Examples

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 45

5.11 Examples

Component definition example
The following script creates an example pipeline with a single component, two inputs and
two outputs.

from simaticai import deployment

defines basic properties of the pipeline step

component = deployment.PythonComponent(name='classifier',
version='1.0.0', python_version='3.8')

component.add_input(name='input_1', _type='Double')

defines input variable

component.add_input(name='input_2', _type='Double')

defines input variable

component.add_output(name='class_label', _type='Integer')

defines output variable

component.add_output(name='confidence', _type='Double')

defines output variable

component.add_resources("../src/", "entrypoint.py")

component.set_entrypoint('entrypoint.py')

pipeline = deployment.Pipeline.from_components([component],
name='Example', version='1.0.0')

pipeline_package_path = pipeline.save('../packages')

The above code generates a pipeline-config.yml that contains, among others, the
following:

pipeline-config.yml

 components:

 name: classifier

 entrypoint: entrypoint.py

 version: 1.0.0

 runtime:

 type: python

 version: 3.8

 inputType:

 - name: input_1

 type: Double

Guideline for writing pipeline components
5.11 Examples

 AI Software Development Kit

46 Function Manual, 11/2023, A5E52031285-AG

 - name: input_2

 type: Double

 outputType:

 - name: class_label

 type: Integer

 - name: confidence

 type: Double

The pipeline looks as follows:

Image Classification
The following script creates an image classification pipeline that consists of a single
component. The pipeline processes images embedded in JSON strings and produces a
classification result as a string. This example is detailed in the Image Classification project
template.

from simaticai import deployment

create pipeline component and define basic properties

component = deployment.PythonComponent(name='inference',
version='1.0.0', python_version='3.8')

component.add_input('vision_payload', 'String')

define a single input variable

component.add_output('prediction', 'String')

define a single output variable

component.add_resources('..', 'entrypoint.py')

add Python script

component.set_entrypoint('entrypoint.py')

define the above script as entrypoint

component.add_resources('..', 'src/vision_classifier_tflite.py')

 Guideline for writing pipeline components
 5.11 Examples

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 47

add classifier script used by entrypoint

component.set_requirements("../runtime_requirements_tflite.txt")

define required Python packages

component.add_resources('..',
'models/classification_mobilnet.tflite')

add saved model used in classifier

component.set_parallel_steps(2) # set the number of parallel executors

create and save a pipeline consisting of a single component

pipeline = deployment.Pipeline.from_components([component],
name='Image_TFLite_package', version='1.0.0')

pipeline_package_path = pipeline.save('../packages')

convert pipeline configuration package to edge configuration
package

deployment.convert_package(pipeline_package_path)

The above code generates a pipeline_config.yml that contains, among other things:

dataFlowPipeline:

 components:

 - entrypoint: ./entrypoint.py

 inputType:

 - name: vision_payload

 type: String

 name: inference

 outputType:

 - name: prediction

 type: String

 runtime:

type: python

 version: '3.8'

 version: 1.0.0

pipelineDag:

 - source: Databus.vision_payload

 target: inference.vision_payload

 - source: inference.prediction

 target: Databus.prediction

Guideline for writing pipeline components
5.11 Examples

 AI Software Development Kit

48 Function Manual, 11/2023, A5E52031285-AG

 pipelineInputs:

 - name: vision_payload

 type: String

 pipelineOutputs:

 - name: prediction

 type: String

dataFlowPipelineInfo:

 dataFlowPipelineVersion: 1.0.0

 projectName: Image_TFLite_package

The saved pipeline configuration package contains the files listed below. The main folder
contains the YAML files that describe the pipeline. The inference subfolder contains the
files that belong to this component.

Image_TFLite_package_1.0.0/pipeline_config.yml

Image_TFLite_package_1.0.0/datalink_metadata.yml

Image_TFLite_package_1.0.0/inference/entrypoint.py

Image_TFLite_package_1.0.0/inference/requirements.txt

Image_TFLite_package_1.0.0/inference/src/vision_classifier_tflite.py

Image_TFLite_package_1.0.0/inference/models/classification_mobilnet.
tflite.py

 Guideline for writing pipeline components
 5.12 Writing components for earlier versions of the AI Inference Server

AI Software Development Kit

Function Manual, 11/2023, A5E52031285-AG 49

5.12 Writing components for earlier versions of the AI Inference
Server

AI Inference Server versions up to 1.1 require the entrypoint to define a function named as
run() instead of process_input(). Not only is the function name different, the
component inputs and outputs are passed differently too.

AI Inference Server version 1.1 passes the input variables as a JSON string, which you must
convert to a dictionary. On the output side, you must also pass the outputs as a JSON string,
and embed it all into a dictionary with a ready flag.

The following code example shows how to wrap process_input() into a run() function
compatible with AI Inference Server 1.1.

entrypoint.py

 ...

 # compatibility run() wrapper for process_input()
 def run(data: str) -> dict:
 input_data = json.loads(data)

 result = process_input(input_data)

 if result is None:
 answer = {"ready": False, "output": None}
 else:
 answer = {"ready": True, "output": json.dumps(result)}
 return answer

	AI Software Development Kit
	Legal information
	Table of contents
	1 Introduction
	1.1 Overview of Siemens Industrial Edge
	1.2 Overview of Industrial AI@Edge
	1.3 AI Software Development Kit functionalities
	1.4 Information about the software license

	2 Safety notes
	2.1 Security information
	2.2 Note on use
	2.3 Note regarding the general data protection regulation

	3 Installing AI Software Development Kit
	3.1 Install and run

	4 Using AI Software Development Kit
	4.1 Training data preparation
	4.2 Training models
	4.3 Packaging models as an inference pipeline
	4.4 Testing the pipeline configuration package locally
	4.5 Mocking the logger of the AI Inference Server
	4.6 Deploy the packaged inference pipeline for AI@Edge
	4.7 Create a delta package and deploy it to AI@Edge

	5 Guideline for writing pipeline components
	5.1 Component definition
	5.2 The entrypoint
	5.3 Input data
	5.3.1 Variable types
	5.3.2 Restrictions on type Object
	5.3.3 Restrictions on type Binary
	5.3.4 Custom data formats

	5.4 Processing data
	5.5 Python dependencies
	5.6 File resources
	5.7 Returning the result
	5.7.1 Returning Binary data

	5.8 Adding custom metrics
	5.9 Pipeline parameters
	5.10 Use cases
	5.10.1 Processing images
	5.10.2 Processing time series of signals
	5.10.3 Processing batch data

	5.11 Examples
	5.12 Writing components for earlier versions of the AI Inference Server

